WO2014148849A1 - Anode active material for secondary battery, anode, secondary battery using anode, and method for manufacturing secondary battery - Google Patents

Anode active material for secondary battery, anode, secondary battery using anode, and method for manufacturing secondary battery Download PDF

Info

Publication number
WO2014148849A1
WO2014148849A1 PCT/KR2014/002366 KR2014002366W WO2014148849A1 WO 2014148849 A1 WO2014148849 A1 WO 2014148849A1 KR 2014002366 W KR2014002366 W KR 2014002366W WO 2014148849 A1 WO2014148849 A1 WO 2014148849A1
Authority
WO
WIPO (PCT)
Prior art keywords
membered
negative electrode
alloy
secondary battery
alloy powder
Prior art date
Application number
PCT/KR2014/002366
Other languages
French (fr)
Korean (ko)
Inventor
최원길
노승윤
장주희
서인용
소윤미
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority claimed from KR1020140032588A external-priority patent/KR101583652B1/en
Publication of WO2014148849A1 publication Critical patent/WO2014148849A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a secondary battery, a negative electrode and a secondary battery using the same, and a method for manufacturing the same. Particularly, by using graphite having excellent stability and long lifespan as a main component and a six-element Si alloy having a large battery capacity as an additive, The present invention relates to a negative active material for a secondary battery, a negative electrode, a secondary battery using the same, and a method of manufacturing the same.
  • a battery is composed of a cathode, an anode, an electrolyte, and a separator.
  • Each active material constituting the anode and the cathode has the greatest influence on the characteristics of the battery.
  • lithium metal lithium metal alloy
  • carbon material silicon, tin oxide, and transition metal oxide
  • silicon silicon, tin oxide, and transition metal oxide
  • transition metal oxide carbon having a small potential change and excellent reversibility for the insertion and release reaction of lithium Materials
  • the carbon material (graphite, graphite) currently commercially used is theoretically limited to increase the capacity by limiting the theoretical maximum capacity to 372 mAh / g by inserting one lithium per 6 carbon atoms (LiC 6 ).
  • a negative electrode active material having a small capacity deterioration and an increase in internal resistance and a small volume expansion is required during pulse charging or discharging due to a large current.
  • the carbon material of does not satisfy these characteristics.
  • Examples of the negative electrode active material capable of leading a second generation battery include silicon (Si), tin (Sn), or alloys and oxides thereof.
  • the rutile structure of SnO 2 is known as an alloy / dealloy mechanism whose charge / discharge mechanism is not a general insertion / release.
  • Li metal substitute anode materials Therefore, a small potential difference with respect to lithium, a small initial irreversible reaction, excellent cycle characteristics, room temperature and low temperature manufacturability, thermal and chemical stability, and a small volume expansion (swelling) during charging and discharging due to cycle characteristics are required as Li metal substitute anode materials. It is becoming.
  • US Patent Publication No. 2007/0020521 A1 proposes the following six-membered Si alloy composition as a negative electrode material for a lithium ion battery.
  • Si 60 Al 14 Ti 1 Sn 7 (MM) 10 (wherein MM is misch metal) is mixed with each of the composition raw materials necessary for melting, and then ingot is made, and then melted.
  • An amorphous ribbon strip is formed by spinning, and the mixture obtained by milling the obtained ribbon strip with carbon, polyimide coating solution, N-methyl-2-pyrroline and the like is used as an active material for negative electrode.
  • the Si-based alloy composition has a problem in that the powdering process after preparing the amorphous ribbon strip is very complicated, and since the Si alloy is expensive, forming an active material for a negative electrode based on the alloy is a main component. There is a problem of low price competitiveness.
  • general nano-alloy powder is partially produced by a method such as hydrothermal synthesis after preparing a two-component oxide by a mechanical mixing of the two-component oxide powder with a hydrogen reduction process or a sol-gel process.
  • the mechanical mixing method is impossible to uniformly prepare three or more components due to the limitation of uniform mixing, and the oxide powder produced by the sol-gel process has fine pores so that the alloying is uniformly carried out to the inside during hydrogen reduction or hydrothermal synthesis. Do not.
  • Korean Unexamined Patent Publication No. 10-2009-50872 proposes a method for producing metal fibers in which a mixed solution of a metal salt and a polymer is electrospun to collect fibers and heat treated to form metal fibers.
  • Korean Patent Laid-Open Publication No. 10-2009-50872 provides a simple and mass-produced process, and manufactures metal fibers that can be used as filter membranes, photochemical sensor materials, electromagnetic wave absorbers, etc., because they have a one-dimensional fiber shape and a large square ratio.
  • a multi-component alloy that can be used as a negative electrode active material for a secondary battery and has a large battery capacity has not been proposed only by suggesting a method.
  • the present applicant has prepared a process by pulverizing and then pulverizing a polymer nanofiber obtained by electrospinning two or more metal precursors together with a polymer in a reducing atmosphere in Korea Patent Publication No. 10-2011-63390.
  • This simple and uniform alloying can be made and obtained in the form of nano-aggregates or nanoparticles, and has been proposed a method for producing a multi-component nano alloy powder that can be used as a negative electrode material for thin film batteries.
  • the six-membered Si alloy of the alloy that can be obtained using the manufacturing method of the multi-component nano-alloy powder has a high price
  • forming an active material for a negative electrode with the alloy as a main component has a problem of low price competitiveness.
  • the silicon-based negative active material has a short charge life instead of a large storage capacity, whereas the graphite-based active material has a low storage capacity instead of a long life.
  • the present invention has been made in order to solve the above problems of the prior art, the object of which is to use a graphite having excellent stability as a main component and a six-element Si alloy having a large battery capacity as an additive, a long life and capacity It is to provide a secondary battery negative electrode and a secondary battery using the same and a method of manufacturing the same for large and small swelling.
  • Another object of the present invention is to manufacture a six-membered Si alloy inexpensively by using an electrospinning method, and to use it as an additive of a negative electrode active material, which can be manufactured at low cost and can increase battery capacity. It is to provide a secondary battery and a manufacturing method using the same.
  • Another object of the present invention is to increase the electrical conductivity by modifying the surface of the six-membered Si alloy (powder) in the form of nanofibers (wires, rods) with reduced graphene oxide (capacitance) to increase the electrical conductivity of the battery capacity characteristics And to provide a secondary battery negative electrode and a secondary battery using the same and a method for manufacturing the same with improved cycle characteristics.
  • Another object of the present invention to provide a negative electrode active material for secondary batteries that can easily form a reduced graphene oxide (reduced graphene oxide) having a high electrical conductivity on the surface of the six-membered Si alloy powder using a self-assembly method.
  • the secondary battery negative electrode of the present invention is composed of a negative electrode current collector and a negative electrode active material formed on at least one surface of the negative electrode current collector, the negative electrode active material is 70 to 90% by weight graphite powder and six-membered Si alloy It consists of 10 to 30% by weight of the six-membered Si alloy powder obtained by chopping the amorphous nanofibers.
  • the negative electrode active material contains less than 70% by weight of graphite powder, there is a problem in that the addition amount of Si alloy is increased and the manufacturing cost increases, and when it exceeds 90% by weight, the battery capacity does not increase to a satisfactory level. .
  • nanofibers are made of powder in the form of nanowires, nanorods or nanoparticles, and the surface of the powder may be wrapped with reduced graphene oxide to increase conductivity.
  • the negative electrode active material further includes a conductive material and the like in order to improve the electrical conductivity between a certain amount of the binder and the active material particles in order to prevent detachment from the current collector.
  • the six-membered Si alloy may be represented by the following equation.
  • the present invention includes a negative electrode having a negative electrode current collector and a negative electrode active material formed of graphite powder and six-membered Si alloy powder on at least one surface of the negative electrode current collector, a separator or an electrolyte, and a positive electrode ,
  • the six-membered Si alloy powder is made of amorphous nanofibers including Si, Al, Fe, Ti, Sn and Ce, the surface of the nanofibers is characterized in that the secondary (wrapping) wrapped with reduced graphene oxide Provide a battery.
  • the six-membered Si alloy is preferably made of Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 or Si 60 Al 3 Fe 5 Ti 2 Sn 12 (CE) 18 alloy.
  • Method of manufacturing a negative electrode for a secondary battery comprises the steps of preparing a six-membered Si alloy powder; Preparing a slurry by mixing a negative electrode active material including 70 to 90% by weight of graphite powder and 10 to 30% by weight of the six-membered Si alloy powder with a solvent; And casting the slurry on at least one surface of the negative electrode current collector.
  • the preparing of the six-membered Si alloy powder may include preparing a spinning solution by mixing a precursor of Si, Al, Fe, Ti, Sn, and Ce and a fiber-forming polymer with a solvent; Spinning the spinning solution to produce a nanocomposite fiber loaded with a metal precursor; Converting the nanocomposite fibers into nanofibers made of a six-membered Si alloy and having an amorphous phase by removing a polymer material; And pulverizing the obtained nanofibers to form a six-membered Si alloy powder.
  • the preparing of the spinning solution may include preparing a first solution by dissolving the precursors of Si, Ti, and Sn in a first solvent; Preparing a second solution by dissolving the precursors of Al, Fe and Ce in a second solvent; And after mixing and stirring the first and second solutions, it is preferable to include a step of preparing the spinning solution by mixing the fiber-forming polymer.
  • the present invention comprises the steps of surface modification to have a positive charge on the surface of the Si alloy powder; Self-assembling graphene oxide on the surface of the Si alloy powder through electrostatic interaction by dispersing the surface-modified Si alloy powder in a graphene oxide solution having a negative charge ; And reducing graphene oxide self-assembled on the surface of the Si alloy powder to form a reduced graphene oxide.
  • Surface modification of the surface of the Si alloy powder to have a positive charge may be carried out using 3-aminopropyltriethoxysilane (APS) or 3-aminepropyltrimethoxysilane (3-aminoproyltrimethoxysilane). It is preferable to surface-modify the surface of the alloy powder with an amine group (-NH 2 ).
  • the surface modification of the surface of the Si alloy powder with an amine group (-NH 2 ) after dispersing the six-membered Si alloy powder in a solvent, 3-aminepropyltriethoxysilane or 3-aminepropyltrimeth is made by adding an aqueous oxysilane solution and refluxing in a reducing atmosphere.
  • the self-assembling may be performed by an amide bond between the amine group (-NH 2 ) on the surface of the six-membered Si alloy and the carboxyl group of graphene oxide.
  • the anode active material for a secondary battery of the present invention is made of amorphous nanofibers, a six-membered Si alloy containing Si, Al, Fe, Ti, Sn and Ce, the surface of the nanofibers is reduced It is characterized in that it is wrapped with graphene oxide (wrapping).
  • the present invention provides a negative active material for a secondary battery having a long lifetime, a large capacity, and a small swelling by using graphite having excellent stability as a main component and using a large-cost six-membered Si alloy as an additive.
  • the present invention by modifying the surface of the six-membered Si alloy (powder) in the form of nanofibers (wires, rods) with reduced graphene oxide (reduced graphene oxide) to increase the electrical conductivity of the battery capacity characteristics and cycle Properties can be improved.
  • the present invention can easily form reduced graphene oxide (reduced graphene oxide) having high electrical conductivity on the surface of the six-membered Si alloy powder using a self-assembly method.
  • Example 1 is an enlarged photograph of the polymer nanocomposite fiber of Example 1 obtained by electrospinning before and after heat treatment in a reducing atmosphere;
  • 2 and 3 are XRD and TEM images taken by X-ray diffraction analysis and transmission electron microscopy to confirm the crystallization state of the nanofibers obtained by thermally decomposing the polymer by heat-treating the polymer nanocomposite fiber of Example 1, respectively;
  • Example 4 is a cell test for using a six-membered Si alloy powder (Si 60 Al 14 Fe 8 Ti 1 Sn 7 (MM) 10 ) according to Example 1 as a negative electrode active material to show the capacity characteristics during charge and discharge graph,
  • FIG. 5 is a graph comparing capacity characteristics of six-component Si alloys (6COMS nanofibers) and Si nanoparticles (Si nanoparticles) of Example 1;
  • 6COMS nanofibers six-component Si alloys
  • Si nanoparticles Si nanoparticles
  • 6 and 7 are graphs showing the voltage characteristics of each cycle of the six-membered Si alloy of Example 1,
  • Example 8 is an enlarged SEM photograph of the polymer nanocomposite fiber of Example 2 obtained by electrospinning
  • 9A to 9D are SEM and TEM photographs of enlarged six-membered Si alloy powders wrapped with reduced graphene oxide (rGO) according to Example 2, respectively;
  • Si alloys Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs
  • ternary ternary
  • Discharge Capacity Characteristics and C of Quaternary and Pentameric Si Alloys Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs , Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs, Si 61.22 Sn 12.25 Al 3.06 Fe 5.1 CE 16.37 NFs
  • the negative electrode for a secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material formed on at least one surface of the negative electrode current collector.
  • the negative electrode active material includes 70 to 90% by weight of graphite and 10 to 30% by weight of the six-membered Si alloy, and the six-membered Si alloy is made of amorphous nanofibers.
  • the negative electrode active material may further include a conductive material and a binder.
  • the six-membered Si alloy may be represented by Equation 1 below.
  • Si is an active material of the amorphous phase and is included to increase the capacity.
  • Al is an element that facilitates the formation of the amorphous phase, forms an intermetallic compound by combining with a transition metal, and lowers the melting point of the alloy.
  • T (transition metal) Is an element that combines with Al to facilitate the formation of an amorphous phase
  • Sn is an active material of the crystalline phase, and is included to increase capacity and increase the rate of lithium substitution reaction, and is combined with M (the fifth element) to form an intermetallic compound ( For example, an element that forms Sn 3 M) and exists as a crystal phase
  • M (a fifth element) is an element that forms an intermetallic compound with Sn and exists as a crystal phase.
  • T (transition metal) is made of one of Co, Ni, Fe, Mo, Cu, Zr, Nb, W, Ti.
  • the six-membered Si alloy preferably has a low shrinkage / expansion rate, and a representative alloy having a low shrinkage / expansion rate (swelling) of 115% is Si 60 Al 14 Fe 8 Ti 1 Sn 7 (MM) 10 or Si 60 Al 3 Fe. It is preferred to consist of a 5 Ti 2 Sn 12 (CE) 18 alloy.
  • MM may use Ce as a micrometal.
  • Si forms an amorphous phase
  • Al, Fe, and Ti form an amorphous matrix
  • Ce forms an intermetallic compound
  • Sn exists as a crystal phase, but has an amorphous phase as a whole.
  • the six-membered Si alloy is made of amorphous nanofibers.
  • the method for preparing amorphous nanofibers made of Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 alloy is as follows.
  • the metal precursors of the six elements constituting the alloy i.e., Si, Al, Fe, Ti, Sn and Ce, are weighed according to the atomic percentage of the alloy, and then mixed with a solvent together with a fiber-forming polymer to form a spinning solution.
  • Si, Ti, and Sn precursors are mixed with an organic solvent, for example, a DMF solvent, and since the Ti precursor is not very soluble in the DMF solvent, an additional acetic acid is added to prepare a DMF solution, and a hydrate in the precursor.
  • Al, Fe and Ce precursors containing are mixed using pure water (DI) as a solvent and Ce precursor is not very soluble to give a slight stirring (stirring) to prepare a DI solution.
  • the DMF solution and the DI solution are mixed together and stirred for a predetermined time, and then a fiber-forming polymer is added thereto and sufficiently stirred to prepare a spinning solution.
  • the Si, Ti and Sn precursors may be, for example, 3-aminopropyltriethoxysilane, titanium butoxide, Ti acetate (Sn (C 2 H 3 O 2 ) 4) (Tin (IV) Acetate) and other known precursor materials.
  • the Al precursor is aluminum chloride hexahydrate (Aluminum Chloride Hexahydrate), aluminum nitrate nonahydrate (Aluminum Nitrate Nonahydrate), aluminum fluoride trihydrate (Aluminum Fluoride Trihydrate), aluminum phosphate hydrate (Aluminum Phosphate Hydrate), aluminum hydroxide Any one selected from the group consisting of Aluminum Hydroxide, Aluminum Sulfate Hexadecahydrate, and Aluminum Ammonium Dodecahydrate may be used.
  • the Fe precursor is iron (III) nitrate hydrate (Fe (NO) .9HO), iron acetate (Fe (COCH)), iron oxalate hydrate (Fe (CO) .6HO), iron acetylacetonate (Fe (CHO). ))
  • iron chloride (FeCl) can be used any one selected from the group consisting of Fe (II) and Fe (III) precursors.
  • the Ce precursor is cerium (III) acetate hydrate, cerium (III) acetylacetonate hydrate, cerium (III) bromide, cerium (III) carbonate hydrate (cerium (III) carbonate hydrate), cerium (III) chloride, cerium (III) chloride heptahydrate, cerium (III) 2-ethyl Hexanoate (cerium (III) 2-ethylhexanoate), cerium (III) fluoride, cerium (IV) fluoride, cerium (IV) hydroxide (IV) hydroxide), cerium (III) iodide, cerium (III) nitrate hexahydrate, cerium (III) oxalate hydrate oxalate hydrate, cerium (III) sulfate, cerium (III) sulfate hydrate Any one selected from the group consisting of (cerium (III) sulfate hydrate) and cerium (IV) sulfate may be used.
  • Fiber forming polymers used in the present invention include polyurethane (PU), polyetherurethane, polyurethane copolymer, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polymethylmethacrylate (PMMA), Polymethyl acrylate (PMA), polyacrylic copolymer, polyvinylacetate (PVAc), polyvinylacetate copolymer, polyvinyl alcohol (PVA), polyperfuryl alcohol (PPFA), polystyrene (PS), polystyrene copolymer, Polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide copolymer, polypropylene oxide copolymer, polycarbonate (PC), polyvinyl chloride (PVC), polycaprolactone (PCL), polyvinylpyrrolidone ( PVP), polyvinylidene fluoride (PVdF), polyvinylidene fluoride copolymer and polyamide Is any one or a mixture
  • the electrospinning of the spinning solution is carried out using a high voltage generator to the spinning nozzle of the electrospinning apparatus, for example, at a rate of 12 ⁇ m / min in a charged state of 20 kV.
  • the loaded polymer nanocomposite fibers are obtained.
  • the spinning method that can be used for the production of the polymer nanocomposite fiber is in addition to electrospinning (electroblown spinning), centrifugal electrospinning, flash-electrospinning, air electrospinning (Air Any one of -electrospinning can be used.
  • the nanocomposite fiber when the nanocomposite fiber is heat-treated in a reducing atmosphere such as N 2 , H 2 , Co, the nanocomposite fiber is thermally decomposed to remove the polymer, and at the same time, the metal precursors are agglomerated with a plurality of nano alloy particles by a multi-step heat treatment. Si, Al, Fe, Ti, Sn and Ce contained in the six-element precursor to form a six-membered Si alloy.
  • a reducing atmosphere such as N 2 , H 2 , Co
  • the polymer in the nano-composite fibers is carbonized to produce carbon, and the carbon obtained at this time is required by appropriate treatment. It can be used as a negative electrode active material excellent in electrical conductivity by remaining to such a degree.
  • the heat treatment process of the nano-composite fibers is carried out in a reducing atmosphere through a low temperature stabilization step and a final phase forming step.
  • the low temperature stabilization step is, for example, a drying process for blowing the solvent contained in the spinning solution in a vacuum atmosphere between room temperature and 150 °C
  • the final phase forming step is to remove the polymer by decomposing the nanocomposite fibers in a reducing atmosphere.
  • the heat treatment results in a nanofiber made of an alloy of a desired amorphous phase.
  • the heat treatment method and the heat treatment temperature and time may be changed depending on the type of alloy to be obtained or the type of polymer.
  • the heat-treated nanofibers are pulverized using a well-known pulverizer, and the nanofibers are chopped to obtain six-membered Si alloy powder in the form of nanowires, nanoparticles, or nano-aggregates.
  • Nanowires, nanorods or nanoparticles yields nanowires, nanorods or nanoparticles in the range of 200 nm to 2 um, and then microbead-mills the nanowires and nanorods in the range of 20 to 100 nm. Or nanoparticles are obtained.
  • the above-mentioned six-membered Si alloy powder has many advantages in mass production in that it is possible to form a cathode without using a clean room at room temperature as a cathode material that can replace Li metal.
  • the six-membered Si alloy powder preferably forms reduced graphene oxide on the surface in order to improve electrical conductivity.
  • the surface of the six-membered Si alloy has a very thin SiO 2 layer due to slight oxidation in air.
  • the SiO 2 layer is hydrophilic and consists of a hydroxyl group (OH—).
  • the six-membered Si alloy (powder) is first dispersed in toluene as a solvent, and then 3-aminepropyltriethoxy Aqueous silane (3-aminopropyltriethoxysilane (APS) or 3-aminopropyltrimethoxysilane) solution is added and refluxed at 110 ° C. in a reducing atmosphere using N 2 for 24 hours.
  • 3-aminepropyltriethoxy Aqueous silane (3-aminopropyltriethoxysilane (APS) or 3-aminopropyltrimethoxysilane) solution is added and refluxed at 110 ° C. in a reducing atmosphere using N 2 for 24 hours.
  • the surface-modified six-membered Si alloy (powder) is dispersed in a graphene oxide solution having a negative charge in water by a carboxyl group.
  • a graphene oxide solution having a negative charge in water by a carboxyl group.
  • self-assembled graphene oxide is formed on the surface of the six-membered Si alloy (powder) by electrostatic interaction.
  • the self-assembly is accomplished by an amide bond between the amine group (-NH 2 ) on the surface of the six-membered Si alloy and the carboxyl group of GO.
  • hydrazine which is a reducing agent, is added and stirred to convert the graphene oxide into a reduced graphene oxide (rGO).
  • the six-membered Si alloy (powder) treated as described above has graphene oxide wrapped on the surface, the conductivity is improved, and the graphene oxide is reduced to reduce graphene oxide (rGO). As the conductivity increases, the capacity characteristic of the battery may be further improved.
  • a reduced graphene oxide (rGO) film is formed on the surface of the six-membered Si alloy (powder).
  • the surface of the six-membered Si alloy (powder) in which the reduced graphene oxide (rGO) is formed it can be confirmed that the capacity comes out up to 2100 cycles at 500 mAh / g at about 1C as shown in FIG.
  • Graphite and the six-membered Si alloy powder obtained above as a negative electrode active material or a six-membered Si alloy powder having reduced graphene oxide (rGO) formed on its surface were prepared by weighing an appropriate amount at a ratio of 70 to 90 wt%: 10 to 30 wt%, A slurry is prepared by mixing in an organic solvent together with a conductive material (eg, SUPER-P) and a binder (eg, PVdF).
  • a conductive material eg, SUPER-P
  • a binder eg, PVdF
  • the conductive material may include carbon black (CB; acetylene black), ketjen black, graphite (sfg 6), and the like, but is not limited thereto.
  • the slurry is cast on a negative electrode current collector (for example, copper foil), and roll drying is performed to increase adhesion between the particles and the metal foil after drying to obtain a negative electrode for a secondary battery.
  • a negative electrode current collector for example, copper foil
  • the negative electrode current collector is platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), rhodium (Rh), ruthenium (Ru), nickel (Ni) instead of copper foil.
  • Stainless steel, molybdenum (Mo), chromium (Cr), aluminum (Al), titanium (Ti) or tungsten (W) materials can be used.
  • the secondary battery negative electrode may comprise a Li-ion battery including a Li-based positive electrode, a separator and an electrolyte, or a flexible polymer electrolyte battery may include a lithium-based positive electrode, a gel polymer electrolyte impregnated with an electrolyte.
  • the positive electrode may be used by casting a slurry composed of a positive electrode active material, a conductive material, and a binder to an aluminum foil used as a positive electrode current collector.
  • the cathode active material includes a cathode active material capable of reversibly intercalating and deintercalating lithium ions.
  • Representative examples of the cathode active material include LiCoO 2 , LiNiO 2 , LiNiCoO 2 , LiMn 2 O 4 , and LiFeO 2. , V 2 O 5 , V 6 O 13 , TiS, MoS, or a substance capable of occluding and releasing lithium such as an organic disulfide compound or an organic polysulfide compound can be used.
  • a spinning solution was prepared to prepare amorphous nanofibers composed of Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 alloy by an electrospinning method.
  • Sn (C 2 H 3 O 2 ) tin acetate
  • (Tin (IV) Acetate) 0.47892g of DMF was mixed with 3.5g of DMF as a solvent to dissolve to prepare a DMF spinning solution.
  • titanium butoxide Ti butoxide
  • acetic acid was added.
  • the spinning solution was spun with a collector at a speed of 12 ⁇ m / min and a distance of 15 cm between the tip and the collector in a 20 kV charged state to the spinning nozzle of the electrospinning apparatus to obtain a polymer nanocomposite fiber.
  • the obtained polymer nanocomposite fibers were heat-treated in a reducing atmosphere, and enlarged photographs before and after heat treatment were taken in FIG. 1.
  • XRD and TEM images taken by X-ray diffraction analysis and transmission electron microscopy to confirm the crystallization state of the nanofibers obtained by heat-treating the polymer nanocomposite fibers to thermally decompose the polymer are shown in FIGS. 2 and 3.
  • the nanofibers obtained by heat-treating the polymer nanocomposite fibers prepared by the electrospinning method in a reducing atmosphere have an amorphous (amorphous) phase.
  • a cell test for using the six-membered Si alloy powder obtained by chopping the nanofibers as a negative electrode active material is carried out to show capacity characteristics at the time of charge and discharge, and the six-membered Si alloy (6COMS nanofibers) and Si obtained are shown in FIG.
  • the capacity characteristics of the nanoparticles (Si nanoparticles) are compared and shown in FIG. 5, and the cycle characteristics of the six-membered Si alloy are shown in FIGS. 6 and 7.
  • the six-membered Si alloy (6COMS nanofibers) has a capacity of 1000 mAh / g.
  • a spinning solution was prepared to prepare amorphous nanofibers composed of Si 60 Al 3 Fe 5 Ti 2 Sn 12 (CE) 18 alloy by electrospinning.
  • 4) (Tin (IV) Acetate) 0.47892g of DMF was mixed with 3.5g of DMF as a solvent to dissolve to prepare a DMF spinning solution.
  • titanium butoxide Ti butoxide
  • acetic acid was added.
  • the obtained polymer nanocomposite fibers were heat-treated at a heating rate of 5 ° C./min and 700 ° C. for 2 hours in a reducing atmosphere of H 2 5% and N 2 95% mixed gas, and the obtained nanofibers were chopped to form nanowires or nanorods.
  • a six-membered Si alloy powder was obtained.
  • the obtained six-membered Si alloy powder was dispersed in 25 ml toluene, and then 1.5 ml APS (3-aminopropyltriethoxysilane) was added for surface modification of the six-membered Si alloy powder, and refluxed at 110 ° C. in an N 2 atmosphere for 24 hours. I was.
  • the modified six-membered Si alloy powder was dispersed in 0.16 mg / ml of a graphene oxide (GO) solution, and chemically reduced by stirring for 5 hours using 0.6 ml of hydrazine monohydrate as a reducing agent. Then, the outer periphery of the Si alloy powder in the form of nanowires was wrapped with reduced graphene oxide (rGO).
  • GO graphene oxide
  • FIGS. 9A to 9D SEM and TEM photographs of enlarged six-membered Si alloy powders wrapped with reduced graphene oxide (rGO) are shown in FIGS. 9A to 9D, and a cell test was performed to use the obtained powder as a negative electrode active material.
  • the capacity characteristics at the time of charge and discharge are shown in FIG. 10, and the voltage profile characteristics for each cycle are shown in FIG. 11.
  • the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) according to the present invention obtained before being wrapped with reduced graphene oxide (rGO) has a capacity of 1000 mAh / g. It can be seen that having.
  • the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) and ternary, quaternary and five-membered Si alloy (Si) according to the present invention obtained before wrapping with reduced graphene oxide (rGO)
  • the discharge capacity characteristics of 60 Al 3 Fe 5 Ti 2 Sn 12 NFs , Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs, Si 61.22 Sn 12.25 Al 3.06 Fe 5.1 CE 16.37 NFs are shown in FIG.
  • the characteristic is shown in FIG.
  • the discharge capacity characteristics and C-rate characteristics of the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) according to the present invention is a ternary, quaternary and 5-membered system It was found to be superior to Si alloys (Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs , Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs, Si 61.22 Sn 12.25 Al 3.06 Fe 5.1 CE 16.37 NFs).
  • the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) obtained before the lapping with reduced graphene oxide (rGO) according to the present invention and the six-membered system wrapped with reduced graphene oxide (rGO)
  • the cycle characteristics at 500 mA / g (1C) in FIG. 14 and the current density changes in FIG. Rate capabilities are shown.
  • cycle and rate-rate characteristics of a six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs @ rGO) wrapped with reduced graphene oxide (rGO) may be reduced. It was found to be superior to the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) obtained before being wrapped with oxide (rGO).
  • the six-membered Si alloy powder obtained by the electrospinning method is used as an additive in a negative electrode active material of a flexible battery such as a secondary battery or a thin film battery, the battery life is extended while the battery capacity is increased. It is possible to greatly improve at low cost.
  • the present invention uses graphite as a main component with excellent stability and long lifespan, and uses a six-element Si alloy having a large battery capacity as an additive, and is used for the manufacture of a negative electrode for a secondary battery having a long lifespan and a large battery capacity, and a secondary battery using the same. do.

Abstract

The present invention relates to: an anode active material for a secondary battery capable of having a long lifespan and a large battery capacity and being large and cheap by using, as a main component, graphite having excellent stability and a long lifespan and using, as an additive, a senary Si alloy having large battery capacity; an anode; a secondary battery using the anode; and a method for manufacturing the secondary battery. The anode for a secondary battery of the present invention is characterized by comprising an anode current collector and an anode active material formed on at least one surface of the anode current collector; the anode active material is characterized by containing 70-90 wt% of graphite and 10-30 wt% of a senary Si alloy; and the senary Si alloy is characterized by being composed of amorphous nanofibers.

Description

이차전지용 음극 활물질, 음극 및 이를 이용한 이차전지와 그의 제조방법Anode active material for secondary battery, anode, secondary battery using same and manufacturing method thereof
본 발명은 이차전지용 음극 활물질, 음극 및 이를 이용한 이차전지와 그의 제조방법에 관한 것으로, 특히 안정성이 우수하고 수명이 긴 그라파이트를 주성분으로 사용하고 전지 용량이 큰 6원계 Si 합금을 첨가제로 사용함에 의해 수명이 길고 전지 용량이 크며 저렴한 이차전지용 음극 활물질, 음극 및 이를 이용한 이차전지와 그의 제조방법에 관한 것이다.The present invention relates to a negative electrode active material for a secondary battery, a negative electrode and a secondary battery using the same, and a method for manufacturing the same. Particularly, by using graphite having excellent stability and long lifespan as a main component and a six-element Si alloy having a large battery capacity as an additive, The present invention relates to a negative active material for a secondary battery, a negative electrode, a secondary battery using the same, and a method of manufacturing the same.
2000년대에 들어오면서 각종 전자 제품의 휴대화 및 소형화가 가속화됨에 따라 전력 공급원으로 사용되는 이차전지의 소형화, 경량화 및 고 효율화에 대한 요구가 증대되고 있다.As the portable electronics and miniaturization of various electronic products have been accelerated in the 2000s, the demand for miniaturization, light weight, and high efficiency of secondary batteries used as power sources has increased.
또한, 최근 들어서는, 석유 자원의 고갈 및 환경 오염 등을 이유로 기존의 내연기관 자동차를 전기 자동차(EV) 또는 하이브리드 전기 자동차 (HEV)로 대체하려는 노력도 꾸준히 진행 중인데, 이를 위해서는 단시간에 큰 출력(높은 C-rate 특성)을 발휘하고, 에너지 밀도가 높으며, 대전류로 충전과 방전을 반복하여도 안정성이 우수한 환경 친화적인 전지가 요구된다.In recent years, efforts are being made to replace existing internal combustion engine cars with electric vehicles (EVs) or hybrid electric vehicles (HEVs) due to the depletion of petroleum resources and environmental pollution. There is a need for an environmentally friendly battery that exhibits C-rate characteristics, high energy density, and excellent stability even after repeated charging and discharging with a large current.
일반적으로, 전지는 양극(cathode), 음극(anode), 전해질(electrolyte), 분리막(separator)으로 구성되어 있는데, 양극과 음극을 구성하는 각각의 활물질 (active material)이 전지 특성에 가장 큰 영향을 미친다.In general, a battery is composed of a cathode, an anode, an electrolyte, and a separator. Each active material constituting the anode and the cathode has the greatest influence on the characteristics of the battery. Crazy
이 중 음극 활물질로, 리튬 금속, 리튬 금속 합금, 탄소 재료, 실리콘, 주석산화물 및 전이금속산화물 등 다양한 물질이 보고되고 있지만, 현재는 리튬의 삽입과 방출 반응에 대해 전위 변화가 작고 가역성이 우수한 탄소 재료가 상용화되고 있다.Among them, as a negative electrode active material, various materials such as lithium metal, lithium metal alloy, carbon material, silicon, tin oxide, and transition metal oxide have been reported, but at present, carbon having a small potential change and excellent reversibility for the insertion and release reaction of lithium Materials are commercially available.
그러나, 현재 상용화되어 사용되고 있는 탄소 소재(흑연, graphite)는 이론적으로 6개의 탄소 원자당 하나의 리튬(LiC6)을 삽입함으로써 이론적 최대 용량이 372 mAh/g으로 제한되어 용량 증대에 한계가 있다. 특히, 고출·입력 특성에 대해 안정적이고, 긴 사이클 수명 특성을 달성하기 위해서는, 대전류에 의한 펄스 충전 혹은 방전시에 용량 열화 및 내부저항의 증가가 적고, 부피 팽창이 적은 음극 활물질이 요구되는데, 기존의 탄소 소재는 이러한 특성을 만족시키지 못하고 있다.However, the carbon material (graphite, graphite) currently commercially used is theoretically limited to increase the capacity by limiting the theoretical maximum capacity to 372 mAh / g by inserting one lithium per 6 carbon atoms (LiC 6 ). In particular, in order to be stable against high output and input characteristics, and to achieve long cycle life characteristics, a negative electrode active material having a small capacity deterioration and an increase in internal resistance and a small volume expansion is required during pulse charging or discharging due to a large current. The carbon material of does not satisfy these characteristics.
2세대 전지를 이끌 수 있는 음극 활물질 소재로서, 실리콘(Si), 주석(Sn), 또는 그들의 합금 및 산화물을 들 수 있다. 특히, 루타일(rutile) 구조의 SnO2는 충방전 메커니즘이 일반적인 삽입/방출이 아닌 합금/탈합금 메커니즘으로 알려져 있다.Examples of the negative electrode active material capable of leading a second generation battery include silicon (Si), tin (Sn), or alloys and oxides thereof. In particular, the rutile structure of SnO 2 is known as an alloy / dealloy mechanism whose charge / discharge mechanism is not a general insertion / release.
그러나, 합금/탈합금 과정에서 부피 변화로 인한 상당한 스트레스가 유도되며, 이러한 스트레스에 의해 활물질이 전극으로부터 분리되거나 내부 구조가 무너지면서 전기적인 콘택이 저하되어 전극 특성이 열화되는 문제점이 있다.However, considerable stress is induced due to volume change in the alloy / dealloy process, and electrical stress is degraded as the active material is separated from the electrode or the internal structure collapses due to such stress, thereby deteriorating electrode characteristics.
한편, 박막전지의 음극으로 Li을 사용하는 경우 낮은 융점과 대기 및 수분과의 강한 반응성 때문에 제조공정의 어려움이 있어 응용에 제한이 있다. 그 결과 Li 금속을 대체할 음극 재료로서 그라파이트의 10배 전지 용량을 가지는 Sn이나 Si을 고려하고 있으나, Sn이나 Si은 사이클 특성상 충방전시에 큰 부피 수축/팽창(스웰링)이 발생하고, SnO, SnO2인 경우 초기 비가역 용량이 크고 충방전시에 Sn 원자의 응집이 발생하는 구조적 불안정성이 존재하며, LiySITON인 경우 비가역적인 Li2O 및 Li3N이 형성되는 되는 문제가 있다.On the other hand, when Li is used as a negative electrode of a thin film battery, there is a limitation in application due to difficulty in the manufacturing process due to low melting point and strong reactivity with air and moisture. As a result, Sn or Si having a 10 times the capacity of graphite is considered as a negative electrode material to replace Li metal, but Sn or Si has a large volume shrinkage / expansion (swelling) during charging and discharging due to cycle characteristics. , SnO 2 has a large initial irreversible capacity and there is a structural instability in which agglomeration of Sn atoms occurs during charging and discharging, and in the case of Li y SITON, irreversible Li 2 O and Li 3 N are formed.
따라서, Li 금속 대체 음극 재료로서 리튬에 대한 작은 전위차, 작은 초기 비가역 반응, 우수한 사이클 특성, 상온 및 저온 제조 가능성, 열적 및 화학적 안정성, 사이클 특성상 충방전시에 작은 부피 팽창(스웰링) 등이 요구되고 있다.Therefore, a small potential difference with respect to lithium, a small initial irreversible reaction, excellent cycle characteristics, room temperature and low temperature manufacturability, thermal and chemical stability, and a small volume expansion (swelling) during charging and discharging due to cycle characteristics are required as Li metal substitute anode materials. It is becoming.
이러한 점을 고려하여 미국 공개특허공보 US 2007/0020521 A1에는 리튬 이온 배터리용 음극 재료로서 하기와 같은 6원계 Si 합금 조성물이 제안되어 있다.In view of this point, US Patent Publication No. 2007/0020521 A1 proposes the following six-membered Si alloy composition as a negative electrode material for a lithium ion battery.
상기 공개특허에서는 합금 조성물의 제조시에 Si60Al14Ti1Sn7(MM)10(여기서, MM은 misch metal)에 필요한 각 조성 원료물질들을 혼합하여 용융한 후, 잉곳을 만들고, 그 후 멜트 스피닝(melt spinning)에 의해 비정질 리본 스트립을 형성하며, 얻어진 리본 스트립을 카본, 폴리이미드 코팅 용액, N-methyl-2-pyrroline와 함께 밀링 등에 의해 분쇄하여 얻어진 혼합물을 음극용 활물질로 사용하고 있다. In the above-mentioned patent, in the preparation of the alloy composition, Si 60 Al 14 Ti 1 Sn 7 (MM) 10 (wherein MM is misch metal) is mixed with each of the composition raw materials necessary for melting, and then ingot is made, and then melted. An amorphous ribbon strip is formed by spinning, and the mixture obtained by milling the obtained ribbon strip with carbon, polyimide coating solution, N-methyl-2-pyrroline and the like is used as an active material for negative electrode.
그러나, 상기한 Si계 합금 조성물은 비정질 리본 스트립을 제조한 후 분말화하는 공정이 매우 복잡한 문제가 있으며, 또한, 상기 Si 합금은 가격이 고가이기 때문에 이 합금을 주성분으로 음극용 활물질을 형성하는 것은 가격 경쟁력이 떨어지는 문제가 있다.However, the Si-based alloy composition has a problem in that the powdering process after preparing the amorphous ribbon strip is very complicated, and since the Si alloy is expensive, forming an active material for a negative electrode based on the alloy is a main component. There is a problem of low price competitiveness.
한편, 일반적인 나노합금분말은 2성분계 산화물 분말을 기계적으로 혼합하여 수소 환원하는 공정 또는 졸-겔 공정으로 2성분계 산화물을 제조한 후, 수열합성 등의 방법으로 일부 제조되고 있다. 그러나, 기계적 혼합법은 균일 혼합의 한계로 3성분계 이상을 균일하게 제조하는 것이 불가능하고, 졸-겔 공정으로 제조되는 산화물 분말은 기공이 미세하여 수소 환원 혹은 수열합성시 내부까지 균일하게 합금화가 일어나지 않는다.On the other hand, general nano-alloy powder is partially produced by a method such as hydrothermal synthesis after preparing a two-component oxide by a mechanical mixing of the two-component oxide powder with a hydrogen reduction process or a sol-gel process. However, the mechanical mixing method is impossible to uniformly prepare three or more components due to the limitation of uniform mixing, and the oxide powder produced by the sol-gel process has fine pores so that the alloying is uniformly carried out to the inside during hydrogen reduction or hydrothermal synthesis. Do not.
따라서, 종래의 방법으로는 예를 들어, Sn-Zr 등과 같은 2차 전지 또는 박막전지의 음극의 활물질, Fe-Si-Al 합금과 같은 자성 재료 등에 사용되는 다성분계 나노 합금 분말의 제조가 어려웠다.Therefore, in the conventional method, for example, it is difficult to manufacture multicomponent nanoalloy powders used for active materials of negative electrodes of secondary batteries or thin film batteries such as Sn-Zr and the like, magnetic materials such as Fe-Si-Al alloys, and the like.
한국 공개특허공보 제10-2009-50872호에는 금속염과 폴리머의 혼합 용액을 전기방사하여 섬유를 채집하고 이를 열처리하여 금속 섬유를 형성하는 금속 섬유의 제조방법이 제안되어 있다.Korean Unexamined Patent Publication No. 10-2009-50872 proposes a method for producing metal fibers in which a mixed solution of a metal salt and a polymer is electrospun to collect fibers and heat treated to form metal fibers.
상기 한국 공개특허공보 제10-2009-50872호에서는 공정이 간단하고 대량 생산이 가능하며, 1차원의 섬유상을 이루면서 각형비가 커서 필터 멤브레인, 광화학 센서 소재, 전자파 흡수재 등으로 사용이 가능한 금속 섬유의 제조방법을 제안할 뿐 이차전지용 음극 활물질로 사용 가능하고 전지 용량이 큰 다성분계 합금은 제안하지 못하고 있다.Korean Patent Laid-Open Publication No. 10-2009-50872 provides a simple and mass-produced process, and manufactures metal fibers that can be used as filter membranes, photochemical sensor materials, electromagnetic wave absorbers, etc., because they have a one-dimensional fiber shape and a large square ratio. A multi-component alloy that can be used as a negative electrode active material for a secondary battery and has a large battery capacity has not been proposed only by suggesting a method.
이러한 종래기술의 문제점을 고려하여 본 출원인은 한국 공개특허공보 제10-2011-63390호에 2이상의 금속전구체를 고분자와 함께 전기 방사하여 얻어진 고분자 나노 섬유를 환원 분위기에서 열처리한 후 분쇄함에 의해 제조공정이 간단하고 균일하게 합금화가 이루어질 수 있고 나노 응집체 또는 나노 입자 형태로 얻어지며, 박막전지용 음극 재료로 사용 가능한 다성분계 나노 합금 분말의 제조방법을 제안하였다.In consideration of such a problem of the prior art, the present applicant has prepared a process by pulverizing and then pulverizing a polymer nanofiber obtained by electrospinning two or more metal precursors together with a polymer in a reducing atmosphere in Korea Patent Publication No. 10-2011-63390. This simple and uniform alloying can be made and obtained in the form of nano-aggregates or nanoparticles, and has been proposed a method for producing a multi-component nano alloy powder that can be used as a negative electrode material for thin film batteries.
그러나, 상기 다성분계 나노 합금 분말의 제조방법을 이용하여 얻어질 수 있는 합금 중 6원계 Si 합금은 가격이 고가이기 때문에 이 합금을 주성분으로 음극용 활물질을 형성하는 것은 가격 경쟁력이 떨어지는 문제가 있다.However, since the six-membered Si alloy of the alloy that can be obtained using the manufacturing method of the multi-component nano-alloy powder has a high price, forming an active material for a negative electrode with the alloy as a main component has a problem of low price competitiveness.
일반적으로 실리콘계 음극 활물질은 저장용량이 큰 대신 충전 수명이 짧고, 반면에 그라파이트계는 긴 수명 대신 저장용량은 적다. In general, the silicon-based negative active material has a short charge life instead of a large storage capacity, whereas the graphite-based active material has a low storage capacity instead of a long life.
본 발명은, 종래기술의 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 그 목적은 안정성이 우수한 그라파이트를 주성분으로 사용하고 전지 용량이 큰 6원계 Si 합금을 첨가제로 사용함에 의해 수명이 길고 용량이 크고 스웰링이 작은 이차전지용 음극 및 이를 이용한 이차전지와 그의 제조방법을 제공하는 데 있다.The present invention has been made in order to solve the above problems of the prior art, the object of which is to use a graphite having excellent stability as a main component and a six-element Si alloy having a large battery capacity as an additive, a long life and capacity It is to provide a secondary battery negative electrode and a secondary battery using the same and a method of manufacturing the same for large and small swelling.
본 발명의 다른 목적은 전기방사방법을 이용하여 6원계 Si 합금을 저렴하게 제조한 후, 이를 음극 활물질의 첨가제로 사용함에 따라 저렴한 비용으로 제조가 가능하면서도 전지용량을 증가시킬 수 있는 이차전지용 음극 및 이를 이용한 이차전지와 그의 제조방법을 제공하는 데 있다.Another object of the present invention is to manufacture a six-membered Si alloy inexpensively by using an electrospinning method, and to use it as an additive of a negative electrode active material, which can be manufactured at low cost and can increase battery capacity. It is to provide a secondary battery and a manufacturing method using the same.
본 발명의 또 다른 목적은 나노 섬유(와이어, 로드)의 형태를 이루는 6원계 Si 합금(분말)의 표면을 환원된 그래핀 옥사이드(reduced graphene oxide)로 개질함에 의해 전기전도도를 높여서 전지의 용량 특성과 사이클 특성을 향상시킨 이차전지용 음극 및 이를 이용한 이차전지와 그의 제조방법을 제공하는 데 있다.Another object of the present invention is to increase the electrical conductivity by modifying the surface of the six-membered Si alloy (powder) in the form of nanofibers (wires, rods) with reduced graphene oxide (capacitance) to increase the electrical conductivity of the battery capacity characteristics And to provide a secondary battery negative electrode and a secondary battery using the same and a method for manufacturing the same with improved cycle characteristics.
본 발명의 다른 목적은 자기조립법을 이용하여 6원계 Si 합금 분말의 표면에 높은 전기전도도를 갖는 환원 그래핀 옥사이드(reduced graphene oxide)를 쉽게 형성할 수 있는 이차전지용 음극 활물질을 제공하는 데 있다.Another object of the present invention to provide a negative electrode active material for secondary batteries that can easily form a reduced graphene oxide (reduced graphene oxide) having a high electrical conductivity on the surface of the six-membered Si alloy powder using a self-assembly method.
상기 목적을 달성하기 위해, 본 발명의 이차전지용 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면에 형성되는 음극 활물질로 이루어지며, 상기 음극 활물질은 그라파이트 분말 70 내지 90중량% 및 6원계 Si 합금으로 이루어지며 비정질 나노섬유를 초핑하여 얻어진 6원계 Si 합금 분말 10 내지 30중량%를 포함하는 것을 특징으로 한다.In order to achieve the above object, the secondary battery negative electrode of the present invention is composed of a negative electrode current collector and a negative electrode active material formed on at least one surface of the negative electrode current collector, the negative electrode active material is 70 to 90% by weight graphite powder and six-membered Si alloy It consists of 10 to 30% by weight of the six-membered Si alloy powder obtained by chopping the amorphous nanofibers.
상기 음극 활물질이 그라파이트분말을 70중량% 미만으로 함유하는 경우, Si 합금의 첨가량이 많게 되어 제조비용이 증가하는 문제가 있고, 90중량%를 초과하는 경우 전지 용량이 만족할 정도로 증가하지 못하는 문제가 있다.When the negative electrode active material contains less than 70% by weight of graphite powder, there is a problem in that the addition amount of Si alloy is increased and the manufacturing cost increases, and when it exceeds 90% by weight, the battery capacity does not increase to a satisfactory level. .
또한, 상기 나노섬유는 나노 와이어, 나노 로드 또는 나노 입자 형태의 분말로 이루어지며, 상기 분말의 표면은 전도도를 높이도록 환원 그래핀 옥사이드로 래핑(wrapping)될 수 있다.In addition, the nanofibers are made of powder in the form of nanowires, nanorods or nanoparticles, and the surface of the powder may be wrapped with reduced graphene oxide to increase conductivity.
이 경우, 상기 음극 활물질은 집전체로부터의 탈리를 방지하기 위해 일정량의 바인더 및 활물질 입자 간 전기전도성을 향상시키기 위해 도전재 등을 더 포함하는 것이 바람직하다.In this case, it is preferable that the negative electrode active material further includes a conductive material and the like in order to improve the electrical conductivity between a certain amount of the binder and the active material particles in order to prevent detachment from the current collector.
상기 6원계 Si 합금은 하기 수학식으로 표현될 수 있다. The six-membered Si alloy may be represented by the following equation.
SiaAlbTcSndMeLif Si a Al b T c Sn d M e Li f
여기서, a= 35~70, b= 1~45, T= 전이금속(transition metal), c= 5~25, d=1~15, M= 이트륨, 란탄족 원소(lanthanide element), 악티늄족 원소(actinide element) 또는 이들의 화합물(combination), e= 2~20, 100=a+b+c+d+e이고, f= 0~[4.4(a+d)+b]이다. Where a = 35 to 70, b = 1 to 45, T = transition metal, c = 5 to 25, d = 1 to 15, M = yttrium, lanthanide element, and actinium group element (actinide element) or a compound thereof (combination), e = 2-20, 100 = a + b + c + d + e, and f = 0 ~ [4.4 (a + d) + b].
본 발명의 다른 특징에 따르면, 본 발명은 음극 집전체 및 상기 음극 집전체의 적어도 일면에 그라파이트 분말과 6원계 Si 합금 분말로 형성된 음극 활물질을 구비하는 음극과, 분리막 또는 전해질과, 양극을 포함하며, 상기 6원계 Si 합금 분말은 Si, Al, Fe, Ti, Sn 및 Ce을 포함하는 비정질 나노섬유로 이루어지고, 상기 나노섬유의 표면은 환원 그래핀 옥사이드로 래핑(wrapping)된 것을 특징으로 하는 이차전지를 제공한다.According to another feature of the present invention, the present invention includes a negative electrode having a negative electrode current collector and a negative electrode active material formed of graphite powder and six-membered Si alloy powder on at least one surface of the negative electrode current collector, a separator or an electrolyte, and a positive electrode , The six-membered Si alloy powder is made of amorphous nanofibers including Si, Al, Fe, Ti, Sn and Ce, the surface of the nanofibers is characterized in that the secondary (wrapping) wrapped with reduced graphene oxide Provide a battery.
이 경우, 상기 6원계 Si 합금은 Si60Al14Fe8Ti1Sn7(CE)10 또는 Si60Al3Fe5Ti2Sn12(CE)18 합금으로 이루어지는 것이 바람직하다.In this case, the six-membered Si alloy is preferably made of Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 or Si 60 Al 3 Fe 5 Ti 2 Sn 12 (CE) 18 alloy.
본 발명에 따른 이차전지용 음극의 제조방법은 6원계 Si 합금 분말을 준비하는 단계; 그라파이트 분말 70 내지 90중량% 및 상기 6원계 Si 합금 분말 10 내지 30중량%를 포함하는 음극 활물질을 용매와 혼합하여 슬러리를 준비하는 단계; 및 상기 슬러리를 음극 집전체의 적어도 일면에 캐스팅하는 단계를 포함하는 것을 특징으로 한다.Method of manufacturing a negative electrode for a secondary battery according to the present invention comprises the steps of preparing a six-membered Si alloy powder; Preparing a slurry by mixing a negative electrode active material including 70 to 90% by weight of graphite powder and 10 to 30% by weight of the six-membered Si alloy powder with a solvent; And casting the slurry on at least one surface of the negative electrode current collector.
상기 6원계 Si 합금 분말을 준비하는 단계는 각각 Si, Al, Fe, Ti, Sn 및 Ce의 전구체와 섬유 성형성 고분자를 용매와 혼합하여 방사용액을 준비하는 단계; 상기 방사용액을 방사하여 금속전구체가 탑재된 나노 복합섬유를 제조하는 단계; 상기 나노 복합섬유를 열처리하여 고분자 물질을 제거함에 의해 6원계 Si 합금으로 이루어지며 비정질 상을 갖는 나노 섬유로 변환하는 단계; 및 상기 얻어진 나노 섬유를 분쇄하여 6원계 Si 합금 분말을 형성하는 단계를 포함할 수 있다.The preparing of the six-membered Si alloy powder may include preparing a spinning solution by mixing a precursor of Si, Al, Fe, Ti, Sn, and Ce and a fiber-forming polymer with a solvent; Spinning the spinning solution to produce a nanocomposite fiber loaded with a metal precursor; Converting the nanocomposite fibers into nanofibers made of a six-membered Si alloy and having an amorphous phase by removing a polymer material; And pulverizing the obtained nanofibers to form a six-membered Si alloy powder.
상기 방사용액을 준비하는 단계는 상기 Si, Ti 및 Sn의 전구체를 제1용매에 용해하여 제1용액을 준비하는 단계; 상기 Al, Fe 및 Ce의 전구체를 제2용매에 용해하여 제2용액을 준비하는 단계; 및 상기 제1 및 제2 용액을 혼합하여 교반한 후, 섬유 성형성 고분자를 혼합하여 상기 방사용액을 준비하는 단계를 포함하는 것이 바람직하다.The preparing of the spinning solution may include preparing a first solution by dissolving the precursors of Si, Ti, and Sn in a first solvent; Preparing a second solution by dissolving the precursors of Al, Fe and Ce in a second solvent; And after mixing and stirring the first and second solutions, it is preferable to include a step of preparing the spinning solution by mixing the fiber-forming polymer.
또한, 본 발명은 상기 Si 합금 분말의 표면을 양전하를 가지도록 표면개질하는 단계; 상기 표면개질된 Si 합금 분말을 음전하를 가지는 그래핀 옥사이드 솔루션(graphene oxide solution)에 분산시킴에 의해 정전기적 상호작용(electrostatic interaction)을 통해 상기 Si 합금 분말의 표면에 그래핀 옥사이드를 자기조립하는 단계; 및 상기 Si 합금 분말의 표면에 자기조립된 그래핀 옥사이드를 환원하여 환원 그래핀 옥사이드를 형성하는 단계를 더 포함할 수 있다. In addition, the present invention comprises the steps of surface modification to have a positive charge on the surface of the Si alloy powder; Self-assembling graphene oxide on the surface of the Si alloy powder through electrostatic interaction by dispersing the surface-modified Si alloy powder in a graphene oxide solution having a negative charge ; And reducing graphene oxide self-assembled on the surface of the Si alloy powder to form a reduced graphene oxide.
상기 Si 합금 분말의 표면을 양전하를 가지도록 표면개질하는 단계는 3-아민프로필트리에톡시실란(3-aminopropyltriethoxysilane; APS) 또는 3-아민프로필트리메톡시실란(3-aminoproyltrimethoxysilane)을 이용하여 상기 Si 합금 분말의 표면을 아민기(-NH2)로 표면개질하는 것이 바람직하다. Surface modification of the surface of the Si alloy powder to have a positive charge may be carried out using 3-aminopropyltriethoxysilane (APS) or 3-aminepropyltrimethoxysilane (3-aminoproyltrimethoxysilane). It is preferable to surface-modify the surface of the alloy powder with an amine group (-NH 2 ).
또한, 상기 Si 합금 분말의 표면을 아민기(-NH2)로 표면개질하는 단계는 상기 6원계 Si 합금 분말을 용매에 분산시킨 후, 3-아민프로필트리에톡시실란 또는 3-아민프로필트리메톡시실란 수용액을 첨가하고, 환원 분위기에서 환류시키는 것에 의해 이루어진다.In addition, the surface modification of the surface of the Si alloy powder with an amine group (-NH 2 ) after dispersing the six-membered Si alloy powder in a solvent, 3-aminepropyltriethoxysilane or 3-aminepropyltrimeth It is made by adding an aqueous oxysilane solution and refluxing in a reducing atmosphere.
더욱이, 상기 자기조립하는 단계는 상기 6원계 Si 합금 표면의 아민기(-NH2)와 그래핀 옥사이드의 카르복실기(carboxyl group) 사이의 아마이드 결합(amide bond)에 의해 이루어질 수 있다.Further, the self-assembling may be performed by an amide bond between the amine group (-NH 2 ) on the surface of the six-membered Si alloy and the carboxyl group of graphene oxide.
본 발명의 다른 특징에 따르면, 본 발명의 이차전지용 음극 활물질은 비정질 나노섬유로 이루어지고, Si, Al, Fe, Ti, Sn 및 Ce을 포함하는 6원계 Si 합금으로서, 상기 나노섬유의 표면은 환원 그래핀 옥사이드로 래핑(wrapping)된 것을 특징으로 한다.According to another feature of the invention, the anode active material for a secondary battery of the present invention is made of amorphous nanofibers, a six-membered Si alloy containing Si, Al, Fe, Ti, Sn and Ce, the surface of the nanofibers is reduced It is characterized in that it is wrapped with graphene oxide (wrapping).
상기한 바와 같이 본 발명에서는 안정성이 우수한 그라파이트를 주성분으로 사용하고 비용량이 큰 6원계 Si 합금을 첨가제로 사용함에 의해 수명이 길고 용량이 크고 스웰링이 작은 이차전지용 음극 활물질을 제공한다.As described above, the present invention provides a negative active material for a secondary battery having a long lifetime, a large capacity, and a small swelling by using graphite having excellent stability as a main component and using a large-cost six-membered Si alloy as an additive.
또한, 본 발명에서는 전기방사방법을 이용하여 6원계 Si 합금을 저렴하게 제조한 후, 이를 음극 활물질의 첨가제로 사용함에 따라 저렴한 비용으로 제조가 가능하면서도 전지용량을 증가시킬 수 있다.In addition, in the present invention, by using the electrospinning method to produce a six-membered Si alloy inexpensively, by using it as an additive of the negative electrode active material it is possible to manufacture at a low cost while increasing battery capacity.
더욱이, 본 발명에서는 나노 섬유(와이어, 로드)의 형태를 이루는 6원계 Si 합금(분말)의 표면을 환원된 그래핀 옥사이드(reduced graphene oxide)로 개질함에 의해 전기전도도를 높여서 전지의 용량 특성과 사이클 특성을 향상시킬 수 있다.Furthermore, in the present invention, by modifying the surface of the six-membered Si alloy (powder) in the form of nanofibers (wires, rods) with reduced graphene oxide (reduced graphene oxide) to increase the electrical conductivity of the battery capacity characteristics and cycle Properties can be improved.
또한, 본 발명에서는 자기조립법을 이용하여 6원계 Si 합금 분말의 표면에 높은 전기전도도를 갖는 환원 그래핀 옥사이드(reduced graphene oxide)를 쉽게 형성할 수 있다.In addition, the present invention can easily form reduced graphene oxide (reduced graphene oxide) having high electrical conductivity on the surface of the six-membered Si alloy powder using a self-assembly method.
도 1은 전기방사하여 얻어진 실시예 1의 고분자 나노 복합섬유를 환원성 분위기에서 열처리하기 전과 열처리 후의 확대 사진,1 is an enlarged photograph of the polymer nanocomposite fiber of Example 1 obtained by electrospinning before and after heat treatment in a reducing atmosphere;
도 2 및 도 3은 각각 실시예 1의 고분자 나노 복합섬유를 열처리하여 고분자를 열분해시켜서 얻어지는 나노 섬유의 결정화 상태를 확인하기 위해 X-선 회절분석 및 투과전자현미경 촬영된 XRD 및 TEM 사진,2 and 3 are XRD and TEM images taken by X-ray diffraction analysis and transmission electron microscopy to confirm the crystallization state of the nanofibers obtained by thermally decomposing the polymer by heat-treating the polymer nanocomposite fiber of Example 1, respectively;
도 4는 실시예 1에 따른 6원계 Si 합금 분말(Si60Al14Fe8Ti1Sn7(MM)10)을 음극 활물질로 사용하기 위한 셀 테스트를 실시하여 충전 및 방전시의 용량 특성을 나타낸 그래프,4 is a cell test for using a six-membered Si alloy powder (Si 60 Al 14 Fe 8 Ti 1 Sn 7 (MM) 10 ) according to Example 1 as a negative electrode active material to show the capacity characteristics during charge and discharge graph,
도 5는 실시예 1의 6원계 Si 합금(6COMS nanofibers)과 Si 나노 파티클(Si nanoparticles)의 용량 특성을 비교하여 나타낸 그래프,FIG. 5 is a graph comparing capacity characteristics of six-component Si alloys (6COMS nanofibers) and Si nanoparticles (Si nanoparticles) of Example 1; FIG.
도 6 및 도 7은 각각 실시예 1의 6원계 Si 합금의 사이클별 전압 특성을 나타낸 그래프,6 and 7 are graphs showing the voltage characteristics of each cycle of the six-membered Si alloy of Example 1,
도 8은 전기방사하여 얻어진 실시예 2의 고분자 나노 복합섬유를 확대 촬영한 SEM 사진,8 is an enlarged SEM photograph of the polymer nanocomposite fiber of Example 2 obtained by electrospinning,
도 9a 내지 도 9d는 각각 실시예 2에 따라 환원 그래핀 옥사이드(rGO)로 래핑(wrapping)된 6원계 Si 합금 분말을 확대 촬영한 SEM 및 TEM 사진,9A to 9D are SEM and TEM photographs of enlarged six-membered Si alloy powders wrapped with reduced graphene oxide (rGO) according to Example 2, respectively;
도 10 및 도 11은 각각 실시예 2에 따라 얻어진 6원계 Si 합금 분말(Si60Al3Fe5Ti2Sn12CE18 NFs)을 음극 활물질로 사용하기 위한 셀 테스트를 실시하여 충전 및 방전시의 용량 특성을 나타낸 그래프 및 사이클별 전압 프로파일 특성 그래프,10 and 11 show cell tests for using the six-membered Si alloy powder (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) obtained according to Example 2 as a negative electrode active material during charge and discharge, respectively. Graph showing capacity characteristics and voltage profile characteristic graph for each cycle,
도 12 및 도 13은 각각 실시예 2에 따라 환원 그래핀 옥사이드(rGO)로 래핑되기 전에 본 발명에 따른 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs)과 3원계, 4원계 및 5원계 Si 합금(Si60Al3Fe5Ti2Sn12 NFs, Si60Al3Fe5Ti2Sn12 NFs, Si61.22Sn12.25Al3.06Fe5.1CE16.37 NFs)의 방전 용량 특성과 C-rate 특성을 비교하여 나타낸 그래프,12 and 13 are six-membered Si alloys (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) and ternary, according to the present invention before being wrapped with reduced graphene oxide (rGO) according to Example 2, respectively. Discharge Capacity Characteristics and C of Quaternary and Pentameric Si Alloys (Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs , Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs, Si 61.22 Sn 12.25 Al 3.06 Fe 5.1 CE 16.37 NFs) graph comparing the -rate properties,
도 14 및 도 15는 각각 실시예 2에 따른 환원 그래핀 옥사이드(rGO)로 래핑되기 전에 얻어진 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs)과 환원 그래핀 옥사이드(rGO)로 래핑된 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs@rGO) 사이의 전기화학적 특성을 비교하도록 500mA/g(1C)일 때의 사이클 특성과 전류밀도 변화에 따른 율속 특성(rate capabilities)을 나타낸 그래프이다.14 and 15 are six-membered Si alloys (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) and reduced graphene oxide (rGO) obtained before being wrapped with reduced graphene oxide (rGO) according to Example 2, respectively. Cycle characteristics and current density at 500 mA / g (1C) to compare the electrochemical properties of hexagonal Si alloys (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs @ rGO) A graph showing rate capabilities.
이하, 첨부된 도면을 참고하여 본 발명의 바람직한 일 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention.
본 발명의 이차전지용 음극은 음극 집전체 및 상기 음극 집전체의 적어도 일면에 형성되는 음극 활물질로 이루어진다.The negative electrode for a secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material formed on at least one surface of the negative electrode current collector.
상기 음극 활물질은 그라파이트 70 내지 90중량% 및 6원계 Si 합금 10 내지 30중량%를 포함하며, 상기 6원계 Si 합금은 비정질 나노섬유로 이루어진다. The negative electrode active material includes 70 to 90% by weight of graphite and 10 to 30% by weight of the six-membered Si alloy, and the six-membered Si alloy is made of amorphous nanofibers.
이 경우, 상기 음극 활물질은 도전재와 바인더를 더 포함할 수 있다.In this case, the negative electrode active material may further include a conductive material and a binder.
상기 6원계 Si 합금은 하기 수학식 1로 표현될 수 있다. The six-membered Si alloy may be represented by Equation 1 below.
[수학식 1][Equation 1]
SiaAlbTcSndMeLif Si a Al b T c Sn d M e Li f
여기서, a= 35~70, b= 1~45, T= 전이금속(transition metal), c= 5~25, d=1~15, M= 이트륨, 란탄족 원소(lanthanide element), 악티늄족 원소(actinide element) 또는 이들의 화합물(combination), e= 2~20, 100=a+b+c+d+e이고, f= 0~[4.4(a+d)+b]이다.Where a = 35 to 70, b = 1 to 45, T = transition metal, c = 5 to 25, d = 1 to 15, M = yttrium, lanthanide element, and actinium group element (actinide element) or a compound thereof (combination), e = 2-20, 100 = a + b + c + d + e, and f = 0 ~ [4.4 (a + d) + b].
Si은 비정질 상의 활물질로서 용량 증가를 위해 포함되는 원소이고, Al은 비정질 상 형성을 용이하게 해주며 전이금속과 결합하여 금속간화합물을 형성하며 합금의 융점을 낮춰주는 원소이며, T(전이금속)는 Al과 결합하여 비정질 상의 형성을 용이하게 해주는 원소이고, Sn은 결정상의 활물질로서 용량 증가와 리튬 치환반응(lithiation) 속도를 증가를 위해 포함되며 M(제5원소)과 결합하여 금속간화합물(예를 들어, Sn3M)을 형성하며 결정상으로 존재하는 원소이며, M(제5원소)은 Sn과 금속간화합물을 형성하며 결정상으로 존재하는 원소이다. T(전이금속)는 Co, Ni, Fe, Mo, Cu, Zr, Nb, W, Ti 중 하나로 이루어진다.Si is an active material of the amorphous phase and is included to increase the capacity.Al is an element that facilitates the formation of the amorphous phase, forms an intermetallic compound by combining with a transition metal, and lowers the melting point of the alloy.T (transition metal) Is an element that combines with Al to facilitate the formation of an amorphous phase, and Sn is an active material of the crystalline phase, and is included to increase capacity and increase the rate of lithium substitution reaction, and is combined with M (the fifth element) to form an intermetallic compound ( For example, an element that forms Sn 3 M) and exists as a crystal phase, and M (a fifth element) is an element that forms an intermetallic compound with Sn and exists as a crystal phase. T (transition metal) is made of one of Co, Ni, Fe, Mo, Cu, Zr, Nb, W, Ti.
상기 6원계 Si 합금은 수축/팽창율이 낮은 것이 바람직하며, 수축/팽창율(스웰링)이 115%로 낮은 대표적인 합금은 Si60Al14Fe8Ti1Sn7(MM)10 또는 Si60Al3Fe5Ti2Sn12(CE)18 합금으로 이루어지는 것이 바람직하다. 여기서, MM은 미시 메탈(mischmetal)로서 Ce를 사용할 수 있다. The six-membered Si alloy preferably has a low shrinkage / expansion rate, and a representative alloy having a low shrinkage / expansion rate (swelling) of 115% is Si 60 Al 14 Fe 8 Ti 1 Sn 7 (MM) 10 or Si 60 Al 3 Fe. It is preferred to consist of a 5 Ti 2 Sn 12 (CE) 18 alloy. Here, MM may use Ce as a micrometal.
상기 6원계 Si 합금은 Si이 비정질 상을 이루고 있고, Al과 Fe, Ti이 비정질 매트릭스를 형성하며, Ce는 Sn과 금속간화합물을 형성하고 Sn이 결정상으로 존재하나, 전체적으로는 비정질 상을 가진다.In the six-membered Si alloy, Si forms an amorphous phase, Al, Fe, and Ti form an amorphous matrix, Ce forms an intermetallic compound, and Sn exists as a crystal phase, but has an amorphous phase as a whole.
본 발명에서 상기 6원계 Si 합금은 비정질 나노 섬유로 이루어지며, 예를 들어, Si60Al14Fe8Ti1Sn7(CE)10 합금으로 이루어진 비정질 나노 섬유의 제조 방법을 설명하면 다음과 같다.In the present invention, the six-membered Si alloy is made of amorphous nanofibers. For example, the method for preparing amorphous nanofibers made of Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 alloy is as follows.
먼저, 상기 합금을 구성하는 6원소, 즉 Si, Al, Fe, Ti, Sn 및 Ce의 금속전구체를 합금의 원자% 비율에 맞추어서 칭량한 후, 섬유 성형성 고분자와 함께 용매와 혼합하여 방사용액을 준비한다.First, the metal precursors of the six elements constituting the alloy, i.e., Si, Al, Fe, Ti, Sn and Ce, are weighed according to the atomic percentage of the alloy, and then mixed with a solvent together with a fiber-forming polymer to form a spinning solution. Prepare.
이 경우, Si, Ti 및 Sn 전구체는 유기용매, 예를 들어, DMF 용매와 혼합하며 Ti 전구체는 DMF 용매에 잘 녹지 않으므로 아세트산(acetic acid)을 추가로 첨가하여 DMF 용액을 준비하고, 전구체 중에 수화물을 포함하고 있는 Al, Fe 및 Ce 전구체는 용매로서 순수(DI)를 사용하여 혼합하고 Ce 전구체는 잘 녹지 않으므로 약간의 교반(stirring)을 실시하여 DI 용액을 준비한다. In this case, Si, Ti, and Sn precursors are mixed with an organic solvent, for example, a DMF solvent, and since the Ti precursor is not very soluble in the DMF solvent, an additional acetic acid is added to prepare a DMF solution, and a hydrate in the precursor. Al, Fe and Ce precursors containing are mixed using pure water (DI) as a solvent and Ce precursor is not very soluble to give a slight stirring (stirring) to prepare a DI solution.
이어서, 먼저 상기 DMF 용액과 DI 용액을 같이 섞어서 소정시간 교반한 후, 섬유 성형성 고분자를 넣고 충분히 교반하여 방사용액을 준비한다.Subsequently, first, the DMF solution and the DI solution are mixed together and stirred for a predetermined time, and then a fiber-forming polymer is added thereto and sufficiently stirred to prepare a spinning solution.
상기 Si, Ti 및 Sn 전구체는 각각 예를 들어, 3-아미노프로필에톡시실란(3-aminopropyltriethoxysilane), 티타늄 부톡사이드(Ti butoxide), 틴 아세테이트(Sn(C2H3O2)4)(Tin(IV) Acetate)를 사용할 수 있으며, 주지된 다른 전구체 물질을 사용할 수 있다.The Si, Ti and Sn precursors may be, for example, 3-aminopropyltriethoxysilane, titanium butoxide, Ti acetate (Sn (C 2 H 3 O 2 ) 4) (Tin (IV) Acetate) and other known precursor materials.
또한, 상기 Al 전구체는 알루미늄 클로라이드 헥사하이드레이트(Aluminum Chloride Hexahydrate), 알루미늄 나이트레이트 노나하이드레이트(Aluminum Nitrate Nonahydrate), 알루미늄 플로라이드 트리하이드레이트(Aluminum Fluoride Trihydrate), 알루미늄 포스페이트 하이드레이트(Aluminum Phosphate Hydrate), 알루미늄 하이드록사이드(Aluminum Hydroxide), 알루미늄 썰페이트 헥사데카하이드레이트(Aluminum Sulfate Hexadecahydrate) 및 알루미늄 암모늄 썰페이트 도데카하이드레이트(Aluminum Ammonium Dodecahydrate)로 이루어진 군에서 선택된 어느 하나를 사용할 수 있고, In addition, the Al precursor is aluminum chloride hexahydrate (Aluminum Chloride Hexahydrate), aluminum nitrate nonahydrate (Aluminum Nitrate Nonahydrate), aluminum fluoride trihydrate (Aluminum Fluoride Trihydrate), aluminum phosphate hydrate (Aluminum Phosphate Hydrate), aluminum hydroxide Any one selected from the group consisting of Aluminum Hydroxide, Aluminum Sulfate Hexadecahydrate, and Aluminum Ammonium Dodecahydrate may be used.
상기 Fe 전구체는 아이언(III) 나이트레이트 수화물(Fe(NO)·9HO), 아이언 아세테이트(Fe(COCH)), 아이언 옥살레이트 수화물(Fe(CO)·6HO), 아이언 아세틸아세트네이트(Fe(CHO)) 및 아이언 클로라이드(FeCl)인 Fe(II) 및 Fe(III) 전구체로 이루어진 군에서 선택된 어느 하나를 사용할 수 있다.The Fe precursor is iron (III) nitrate hydrate (Fe (NO) .9HO), iron acetate (Fe (COCH)), iron oxalate hydrate (Fe (CO) .6HO), iron acetylacetonate (Fe (CHO). )) And iron chloride (FeCl) can be used any one selected from the group consisting of Fe (II) and Fe (III) precursors.
상기 Ce 전구체는 세륨(III) 아세테이트 하이드레이트(cerium(III) acetate hydrate), 세륨(III) 아세틸아세토네이트 하이드레이트(cerium(III) acetylacetonate hydrate), 세륨(III) 브로마이드(cerium(III) bromide), 세륨(III) 카보네이트 하이드레이트(cerium(III) carbonate hydrate), 세륨(III) 클로라이드(cerium(III) chloride), 세륨(III) 클로라이드 헵타하이드레이트(cerium(III) chloride heptahydrate), 세륨(III)2-에틸헥사노에이트(cerium(III) 2-ethylhexanoate), 세륨(III) 플로라이드(cerium(III) fluoride), 세륨(IV) 플로라이드(cerium(IV) fluoride), 세륨(IV) 하이드록사이드(cerium(IV) hydroxide), 세륨(III) 아이오다이드(cerium(III) iodide), 세륨(III) 나이트레이트 헥사하이드레이트(cerium(III) nitrate hexahydrate), 세륨(III) 옥살레이트 하이드레이트(cerium(III) oxalate hydrate), 세륨(III) 설페이트(cerium(III) sulfate), 세륨(III) 설페이트 하이드레이트(cerium(III) sulfate hydrate) 및 세륨(IV) 설페이트(cerium(IV) sulfate)로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다.The Ce precursor is cerium (III) acetate hydrate, cerium (III) acetylacetonate hydrate, cerium (III) bromide, cerium (III) carbonate hydrate (cerium (III) carbonate hydrate), cerium (III) chloride, cerium (III) chloride heptahydrate, cerium (III) 2-ethyl Hexanoate (cerium (III) 2-ethylhexanoate), cerium (III) fluoride, cerium (IV) fluoride, cerium (IV) hydroxide (IV) hydroxide), cerium (III) iodide, cerium (III) nitrate hexahydrate, cerium (III) oxalate hydrate oxalate hydrate, cerium (III) sulfate, cerium (III) sulfate hydrate Any one selected from the group consisting of (cerium (III) sulfate hydrate) and cerium (IV) sulfate may be used.
상기 본 발명에서 사용되는 섬유 성형성 고분자로는 폴리우레탄(PU), 폴리에테르우레탄, 폴리우레탄 공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트, 폴리메틸메스아크릴레이트(PMMA), 폴리메틸아크릴레이트(PMA), 폴리아크릴 공중합체, 폴리비닐아세테이트(PVAc), 폴리비닐아세테이트 공중합체, 폴리비닐알콜(PVA), 폴리퍼퓨릴알콜(PPFA), 폴리스티렌(PS), 폴리스티렌 공중합체, 폴리에틸렌 옥사이드(PEO), 폴리프로필렌옥사이드(PPO), 폴리에틸렌옥사이드 공중합체, 폴리프로필렌옥사이드 공중합체, 폴리카보네이트(PC), 폴리비닐클로라이드(PVC), 폴리카프로락톤(PCL), 폴리비닐피롤리돈(PVP), 폴리비닐리덴풀루오라이드(PVdF), 폴리비닐리덴풀루오라이드 공중합체 및 폴리아마이드로 이루어진 군에서 선택되는 어느 하나 또는 이들의 혼합물이 사용될 수 있다.Fiber forming polymers used in the present invention include polyurethane (PU), polyetherurethane, polyurethane copolymer, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polymethylmethacrylate (PMMA), Polymethyl acrylate (PMA), polyacrylic copolymer, polyvinylacetate (PVAc), polyvinylacetate copolymer, polyvinyl alcohol (PVA), polyperfuryl alcohol (PPFA), polystyrene (PS), polystyrene copolymer, Polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene oxide copolymer, polypropylene oxide copolymer, polycarbonate (PC), polyvinyl chloride (PVC), polycaprolactone (PCL), polyvinylpyrrolidone ( PVP), polyvinylidene fluoride (PVdF), polyvinylidene fluoride copolymer and polyamide Is any one or a mixture thereof is chosen, it can be used.
그 후, 상기 방사용액의 전기방사는 고전압발생기를 사용하여 전기방사장치의 방사노즐에, 예를 들어, 20kV의 하전 상태에서 12㎕m/min의 속도로 콜렉터에 분출하면 6개의 금속 전구체가 혼합되어 탑재된 고분자 나노 복합섬유가 얻어진다. Thereafter, the electrospinning of the spinning solution is carried out using a high voltage generator to the spinning nozzle of the electrospinning apparatus, for example, at a rate of 12 µm / min in a charged state of 20 kV. The loaded polymer nanocomposite fibers are obtained.
본 발명에서 상기 고분자 나노 복합섬유의 제조에 사용 가능한 방사방법으로는 전기방사 이외에 전기분사방사(electroblown spinning), 원심전기방사(centrifugal electrospinning), 플래쉬 전기방사(flash-electrospinning), 에어 전기방사(Air-electrospinning) 중의 어느 하나의 방법을 사용할 수 있다. In the present invention, the spinning method that can be used for the production of the polymer nanocomposite fiber is in addition to electrospinning (electroblown spinning), centrifugal electrospinning, flash-electrospinning, air electrospinning (Air Any one of -electrospinning can be used.
이어서, 상기 나노 복합섬유를 N2, H2, Co와 같은 환원분위기에서 열처리하면, 상기 나노 복합섬유가 열분해되어 고분자가 제거되면서 동시에 금속 전구체들은 다단계의 열처리에 의해 다수의 나노 합금 입자들이 응집된 상태로 뭉쳐지게 되어 6원소 전구체에 포함된 Si, Al, Fe, Ti, Sn 및 Ce는 6원계 Si 합금을 형성하게 된다. Subsequently, when the nanocomposite fiber is heat-treated in a reducing atmosphere such as N 2 , H 2 , Co, the nanocomposite fiber is thermally decomposed to remove the polymer, and at the same time, the metal precursors are agglomerated with a plurality of nano alloy particles by a multi-step heat treatment. Si, Al, Fe, Ti, Sn and Ce contained in the six-element precursor to form a six-membered Si alloy.
또한, 본 발명에서는 상기 나노 복합섬유를 환원분위기에서 열처리함에 의해 산화성분위기 하의 열처리 공정과는 달리 나노 복합섬유 중의 고분자가 탄화되어 카본이 생성되는 데, 이 때 얻어지는 카본은 후속하는 적절한 처리에 의해 필요한 정도로 잔류시킴으로써 전기 전도성이 우수한 음극 활물질로 사용될 수 있다.In addition, in the present invention, unlike the heat treatment process under an oxidizing component atmosphere by heat-treating the nano-composite fibers in a reducing atmosphere, the polymer in the nano-composite fibers is carbonized to produce carbon, and the carbon obtained at this time is required by appropriate treatment. It can be used as a negative electrode active material excellent in electrical conductivity by remaining to such a degree.
상기 나노 복합섬유의 열처리공정은 예를 들어, 저온안정화 단계 및 최종상 형성 단계를 거치며 환원분위기에서 이루어진다. 상기 저온안정화 단계는 예를 들어, 상온 내지 150℃ 사이의 진공분위기에서 방사용액에 포함된 용매를 날리기 위한 건조 공정이고, 최종상 형성 단계는 환원분위기에서 상기 나노 복합섬유를 분해시켜 고분자를 제거하며 각 전구체에 포함된 금속이 반응하여 합금을 형성하도록 열처리하는 공정으로서, 열처리 결과 원하는 비정질 상의 합금으로 이루어진 나노 섬유가 얻어진다. The heat treatment process of the nano-composite fibers, for example, is carried out in a reducing atmosphere through a low temperature stabilization step and a final phase forming step. The low temperature stabilization step is, for example, a drying process for blowing the solvent contained in the spinning solution in a vacuum atmosphere between room temperature and 150 ℃, the final phase forming step is to remove the polymer by decomposing the nanocomposite fibers in a reducing atmosphere, As a process of heat-treating the metal contained in the precursor to react to form an alloy, the heat treatment results in a nanofiber made of an alloy of a desired amorphous phase.
이 경우, 열처리 방법 및 열처리 온도와 시간은 얻고자하는 합금의 종류에 따라 또는 고분자의 종류에 따라 변경될 수 있다.In this case, the heat treatment method and the heat treatment temperature and time may be changed depending on the type of alloy to be obtained or the type of polymer.
이어서, 필요에 따라 상기 열처리된 나노 섬유를 주지된 분쇄기를 사용하여 분쇄공정을 진행하면 나노 섬유가 초핑되어 나노 와이어, 나노 입자 또는 나노 응집체 형태의 6원계 Si 합금 분말이 얻어진다. Subsequently, if necessary, the heat-treated nanofibers are pulverized using a well-known pulverizer, and the nanofibers are chopped to obtain six-membered Si alloy powder in the form of nanowires, nanoparticles, or nano-aggregates.
얻어진 나노 와이어를 볼 밀링(ball-milling)하면 200nm~2um 범위의 나노 와이어, 나노 로드 또는 나노 입자가 얻어지고, 이를 다시 마이크로비드 밀링(microbead-milling)하면 20~100nm 범위의 나노 와이어, 나노 로드 또는 나노 입자가 얻어진다.Ball milling the obtained nanowires yields nanowires, nanorods or nanoparticles in the range of 200 nm to 2 um, and then microbead-mills the nanowires and nanorods in the range of 20 to 100 nm. Or nanoparticles are obtained.
상기한 6원계 Si 합금 분말은 Li 금속을 대체할 수 있는 음극 재료로서 상온에서 클린룸을 이용하지 않고 음극을 형성하는 것이 가능하다는 점에서 대량 생산시에 이점이 많다.The above-mentioned six-membered Si alloy powder has many advantages in mass production in that it is possible to form a cathode without using a clean room at room temperature as a cathode material that can replace Li metal.
상기한 6원계 Si 합금 분말은 전기전도도 향상을 위해 표면에 환원 그래핀 옥사이드(reduced graphene oxide)를 형성하는 것이 바람직하다. The six-membered Si alloy powder preferably forms reduced graphene oxide on the surface in order to improve electrical conductivity.
이하에 나노 와이어, 나노 로드 또는 나노 입자 형태의 6원계 Si 합금 분말의 표면에 환원 그래핀 옥사이드(reduced graphene oxide)를 형성하는 방법에 대하여 설명한다. Hereinafter, a method of forming reduced graphene oxide on the surface of a six-membered Si alloy powder in the form of nanowires, nanorods, or nanoparticles will be described.
우선, 6원계 Si 합금(분말)의 표면은 공기 중에서 약간의 산화에 의한 초박막의 SiO2층이 존재한다. SiO2층은 친수성(Hydrophilic)이며, 하이드록실기(Hydroxyl group)(OH-)로 이루어져 있다.First, the surface of the six-membered Si alloy (powder) has a very thin SiO 2 layer due to slight oxidation in air. The SiO 2 layer is hydrophilic and consists of a hydroxyl group (OH—).
상기 6원계 Si 합금(분말)의 표면을 아민기(-NH2)로 표면개질(surface modification)하도록 먼저 용매로서 톨루엔에 6원계 Si 합금(분말)을 분산시킨 후, 3-아민프로필트리에톡시실란(3-aminopropyltriethoxysilane; APS) 또는 3-아민프로필트리메톡시실란(3-aminoproyltrimethoxysilane) 수용액을 첨가하고 110℃, N2를 사용한 환원 분위기에서 24시간 환류(refluxing)시킨다. 그 결과 아민기(-NH2)로 표면 개질된 6원계 Si 합금(분말)이 얻어지며, 얻어진 아민기(-NH2)로 표면 개질된 6원계 Si 합금(분말)은 물속에서 양전하를 가지게 된다.In order to surface modify the surface of the six-membered Si alloy (powder) with an amine group (-NH 2 ), the six-membered Si alloy (powder) is first dispersed in toluene as a solvent, and then 3-aminepropyltriethoxy Aqueous silane (3-aminopropyltriethoxysilane (APS) or 3-aminopropyltrimethoxysilane) solution is added and refluxed at 110 ° C. in a reducing atmosphere using N 2 for 24 hours. As a result, a six-membered Si alloy (powder) surface-modified with an amine group (-NH 2 ) is obtained, and the six-membered Si alloy (powder) surface-modified with the amine group (-NH 2 ) obtained has a positive charge in water. .
이어서, 카르복실기(carboxyl group)에 의해 물속에서 음전하를 가지는 그래핀 옥사이드 솔루션(graphene oxide solution)에 상기 표면이 개질된 6원계 Si합금(분말)을 분산시킨다. 그 결과, 정전기적 상호작용(electrostatic interaction)에 의해 상기 6원계 Si 합금(분말)의 표면에 그래핀 옥사이드(graphene oxide)의 자기조립(self-assembled)이 이루어진다. 상기 자기조립은 6원계 Si합금 표면 위의 아민기(-NH2)와 GO의 카르복실기(carboxyl group) 사이의 아마이드 결합(amide bond)에 의해 이루어진다.Subsequently, the surface-modified six-membered Si alloy (powder) is dispersed in a graphene oxide solution having a negative charge in water by a carboxyl group. As a result, self-assembled graphene oxide is formed on the surface of the six-membered Si alloy (powder) by electrostatic interaction. The self-assembly is accomplished by an amide bond between the amine group (-NH 2 ) on the surface of the six-membered Si alloy and the carboxyl group of GO.
그 후, 환원제인 하이드라진(hydrazine)을 첨가하여 교반함에 의해 그래핀 옥사이드(graphene oxide)의 화학적 환원을 진행하여 환원 그래핀 옥사이드(reduced graphene oxide; rGO)로 변환시킨다.Thereafter, hydrazine, which is a reducing agent, is added and stirred to convert the graphene oxide into a reduced graphene oxide (rGO).
상기와 같이 처리된 6원계 Si 합금(분말)은 표면에 그래핀 옥사이드(graphene oxide)가 래핑(wrapping)되어 있기 때문에 전도도 특성이 향상되며, 또한 그래핀 옥사이드를 환원시켜서 환원 그래핀 옥사이드(rGO)가 형성됨에 따라 전도도가 더 높아지면 전지의 용량 특성은 더 개선될 수 있다.Since the six-membered Si alloy (powder) treated as described above has graphene oxide wrapped on the surface, the conductivity is improved, and the graphene oxide is reduced to reduce graphene oxide (rGO). As the conductivity increases, the capacity characteristic of the battery may be further improved.
도 9a 내지 도 9d를 참고하면, 6원계 Si 합금(분말)의 표면에 환원 그래핀 옥사이드(rGO)막이 형성된 것을 알 수 있다.9A to 9D, it can be seen that a reduced graphene oxide (rGO) film is formed on the surface of the six-membered Si alloy (powder).
또한, 표면이 환원 그래핀 옥사이드(rGO)가 형성된 6원계 Si 합금(분말)은 도 14에 도시된 바와 같이 1C 정도에서 500 mAh/g으로 2100 사이클까지 용량이 나오는 것을 확인을 할 수 있다.In addition, the surface of the six-membered Si alloy (powder) in which the reduced graphene oxide (rGO) is formed, it can be confirmed that the capacity comes out up to 2100 cycles at 500 mAh / g at about 1C as shown in FIG.
이하에 상기한 6원계 Si 합금 분말을 이용한 이차전지용 음극의 제조방법에 대하여 설명한다.The manufacturing method of the negative electrode for secondary batteries using the above-mentioned six-membered Si alloy powder is demonstrated.
음극 활물질로서 그라파이트와 상기에서 얻어진 6원계 Si 합금 분말 또는 표면에 환원 그래핀 옥사이드(rGO)가 형성된 6원계 Si 합금 분말을 70 내지 90중량% : 10 내지 30중량% 비율로 적당량 칭량하여 준비하고, 도전재(예를 들어, 수퍼-P(SUPER-P)) 및 바인더(예를 들어, PVdF)와 함께 유기용매에 혼합하여 슬러리를 제조한다.Graphite and the six-membered Si alloy powder obtained above as a negative electrode active material or a six-membered Si alloy powder having reduced graphene oxide (rGO) formed on its surface were prepared by weighing an appropriate amount at a ratio of 70 to 90 wt%: 10 to 30 wt%, A slurry is prepared by mixing in an organic solvent together with a conductive material (eg, SUPER-P) and a binder (eg, PVdF).
상기 도전재는 카본 블랙(CB ; carbon black), 아세틸렌 블랙(acetylene black), 캐챈 블랙(ketjen black), 또는 흑연(sfg 6) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The conductive material may include carbon black (CB; acetylene black), ketjen black, graphite (sfg 6), and the like, but is not limited thereto.
그 후, 슬러리를 음극 집전체(예를 들어, 구리 호일)에 캐스팅하고, 건조 후에 입자 간 및 금속 호일과의 접착력을 증대시키기 위하여 롤 프레싱을 실시하면 이차전지용 음극이 얻어진다.Thereafter, the slurry is cast on a negative electrode current collector (for example, copper foil), and roll drying is performed to increase adhesion between the particles and the metal foil after drying to obtain a negative electrode for a secondary battery.
또한, 상기 음극 집전체는 구리 호일 대신에 백금 (Pt), 금 (Au), 팔라듐 (Pd), 이리듐 (Ir), 은 (Ag), 로듐 (Rh), 루테늄 (Ru), 니켈 (Ni), 스테인리스 스틸, 몰리브데늄 (Mo), 크롬 (Cr), 알루미늄(Al), 티타늄 (Ti) 또는 텅스텐 (W) 재료를 사용할 수 있다.In addition, the negative electrode current collector is platinum (Pt), gold (Au), palladium (Pd), iridium (Ir), silver (Ag), rhodium (Rh), ruthenium (Ru), nickel (Ni) instead of copper foil. , Stainless steel, molybdenum (Mo), chromium (Cr), aluminum (Al), titanium (Ti) or tungsten (W) materials can be used.
한편, 상기 이차전지용 음극은 Li계 양극, 분리막 및 전해액을 포함하여 Li 이온 전지를 구성하거나, Li계 양극, 전해액을 함침한 젤 폴리머 전해질을 포함하여 플렉서블 폴리머 전해질 전지를 구성할 수 있다.On the other hand, the secondary battery negative electrode may comprise a Li-ion battery including a Li-based positive electrode, a separator and an electrolyte, or a flexible polymer electrolyte battery may include a lithium-based positive electrode, a gel polymer electrolyte impregnated with an electrolyte.
이 경우, 양극은 양극 활물질, 도전재, 결합제로 구성된 슬러리를 양극 집전체로 사용되는 알루미늄 호일에 캐스팅하여 사용할 수 있다.In this case, the positive electrode may be used by casting a slurry composed of a positive electrode active material, a conductive material, and a binder to an aluminum foil used as a positive electrode current collector.
상기 양극 활물질은 리튬 이온을 가역적으로 인터칼레이션 및 디인터칼레이션할 수 있는 양극 활물질을 포함하며, 이러한 양극 활물질의 대표적인 예로는, LiCoO2, LiNiO2, LiNiCoO2, LiMn2O4, LiFeO2, V2O5, V6O13, TiS, MoS, 또는 유기디설파이드 화합물이나 유기폴리설파이드 화합물 등의 리튬을 흡장, 방출이 가능한 물질을 사용할 수 있다. 그러나, 본 발명에서는 상기 양극 활물질 이외에도 다른 종류의 양극 활물질을 사용하는 것도 물론 가능하다. The cathode active material includes a cathode active material capable of reversibly intercalating and deintercalating lithium ions. Representative examples of the cathode active material include LiCoO 2 , LiNiO 2 , LiNiCoO 2 , LiMn 2 O 4 , and LiFeO 2. , V 2 O 5 , V 6 O 13 , TiS, MoS, or a substance capable of occluding and releasing lithium such as an organic disulfide compound or an organic polysulfide compound can be used. However, in the present invention, it is of course possible to use other types of positive electrode active materials in addition to the positive electrode active material.
이하에서는 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 그러나, 아래의 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely examples of the present invention, and the scope of the present invention is not limited thereto.
(실시예 1)(Example 1)
Si60Al14Fe8Ti1Sn7(CE)10 합금으로 이루어진 비정질 나노 섬유를 전기방사방법으로 제조하기 위하여 방사용액을 준비한다. 우선, Si, Ti 및 Sn에 대한 전구체 물질로서 각각 3-아미노프로필에톡시실란(3-aminopropyltriethoxysilane) 1.49369g, 티타늄 부톡사이드(Ti butoxide) 0.07658g, 틴 아세테이트(Sn(C2H3O2)4)(Tin(IV) Acetate) 0.47892g을 용매로서 DMF 3.5g에 혼합하여 용해시켜서 DMF 방사용액을 준비한다. 이 경우, 티타늄 부톡사이드(Ti butoxide)는 DMF에 녹지 않으므로 아세트산 1g을 첨가하였다.A spinning solution was prepared to prepare amorphous nanofibers composed of Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 alloy by an electrospinning method. First, 1.49369 g of 3-aminopropyltriethoxysilane, 0.07658 g of titanium butoxide, and tin acetate (Sn (C 2 H 3 O 2 )) as precursor materials for Si, Ti, and Sn, respectively. 4) (Tin (IV) Acetate) 0.47892g of DMF was mixed with 3.5g of DMF as a solvent to dissolve to prepare a DMF spinning solution. In this case, titanium butoxide (Ti butoxide) was not dissolved in DMF, so 1 g of acetic acid was added.
또한, Al, Fe 및 Ce에 대한 전구체 물질로서 각각 알루미늄 클로라이드 헥사하이드레이트(AlCl4 Hexahydrate) 0.08145g, 페릭 니트레이트 노나하이드레이트(Fe(NO3)3·9H2O) 0.22717g, 세륨(III) 아세테이트 하이드레이트(C6H9CeO6·H2O: Cerium(III) Acetate Hydrate) 0.64221g을 순수(DI) 7g에 용해시켜서 DI 방사용액을 준비한다. 이 경우, 세륨(III) 아세테이트 하이드레이트는 잘 녹지 않으므로 약간의 교반을 해주었다.In addition, 0.08145 g of aluminum chloride hexahydrate (AlCl 4 Hexahydrate), 0.22717 g of ferric nitrate nonahydrate (Fe (NO 3 ) 3 .9H 2 O) as precursor materials for Al, Fe and Ce, respectively, cerium (III) acetate Dissolve 0.64221 g of hydrate (C 6 H 9 CeO 6 · H 2 O: Cerium (III) Acetate Hydrate) in 7 g of pure water (DI) to prepare a DI spinning solution. In this case, cerium (III) acetate hydrate was not very soluble, so some stirring was performed.
그 후, 상기 DMF 방사용액과 DI 방사용액을 같이 섞어서 10분간 교반한 후, 폴리비닐피롤리돈(PVP)(1300k) 1.3g을 넣고 교반하여 방사용액을 준비한다.Thereafter, the DMF spinning solution and the DI spinning solution are mixed together and stirred for 10 minutes, and then 1.3 g of polyvinylpyrrolidone (PVP) (1300k) is added thereto to prepare a spinning solution.
그 후, 전기방사장치의 방사노즐에 20kV 하전 상태에서 12㎕m/min의 속도, 팁과 콜렉터 사이의 거리 15cm로 설정한 상태에서 상기 방사용액을 콜렉터로 방사하여 고분자 나노 복합섬유를 얻었다. Thereafter, the spinning solution was spun with a collector at a speed of 12 µm / min and a distance of 15 cm between the tip and the collector in a 20 kV charged state to the spinning nozzle of the electrospinning apparatus to obtain a polymer nanocomposite fiber.
얻어진 고분자 나노 복합섬유는 환원성 분위기에서 열처리하였으며, 열처리 전과 열처리 후의 확대 사진을 촬영하여 도 1에 나타내었다. 또한, 고분자 나노 복합섬유를 열처리하여 고분자를 열분해시켜서 얻어지는 나노 섬유의 결정화 상태를 확인하기 위해 X-선 회절분석 및 투과전자현미경 촬영된 XRD 및 TEM 사진을 도 2 및 도 3에 나타내었다.The obtained polymer nanocomposite fibers were heat-treated in a reducing atmosphere, and enlarged photographs before and after heat treatment were taken in FIG. 1. In addition, XRD and TEM images taken by X-ray diffraction analysis and transmission electron microscopy to confirm the crystallization state of the nanofibers obtained by heat-treating the polymer nanocomposite fibers to thermally decompose the polymer are shown in FIGS. 2 and 3.
상기한 도 2 및 도 3을 참고하면, 상기한 전기방사방법으로 제조된 고분자 나노 복합섬유를 환원성 분위기에서 열처리하여 얻어진 나노 섬유는 비정질(amorphous) 상을 갖는 것을 확인할 수 있다.2 and 3, it can be seen that the nanofibers obtained by heat-treating the polymer nanocomposite fibers prepared by the electrospinning method in a reducing atmosphere have an amorphous (amorphous) phase.
또한, 상기 나노 섬유를 초핑하여 얻어진 6원계 Si 합금 분말을 음극 활물질로 사용하기 위한 셀 테스트를 실시하여 충전 및 방전시의 용량 특성을 도 4에 나타내고, 얻어진 6원계 Si 합금(6COMS nanofibers)과 Si 나노 파티클(Si nanoparticles)의 용량 특성을 비교하여 도 5에 나타내고, 6원계 Si 합금의 사이클 특성을 도 6 및 도 7에 나타내었다. In addition, a cell test for using the six-membered Si alloy powder obtained by chopping the nanofibers as a negative electrode active material is carried out to show capacity characteristics at the time of charge and discharge, and the six-membered Si alloy (6COMS nanofibers) and Si obtained are shown in FIG. The capacity characteristics of the nanoparticles (Si nanoparticles) are compared and shown in FIG. 5, and the cycle characteristics of the six-membered Si alloy are shown in FIGS. 6 and 7.
상기한 도 4 및 도 5를 참고하면, 상기한 6원계 Si 합금(6COMS nanofibers)은 1000 mAh/g의 용량을 갖는 것을 알 수 있다.4 and 5, the six-membered Si alloy (6COMS nanofibers) has a capacity of 1000 mAh / g.
(실시예 2)(Example 2)
Si60Al3Fe5Ti2Sn12(CE)18 합금으로 이루어진 비정질 나노 섬유를 전기방사방법으로 제조하기 위하여 방사용액을 준비한다. 우선, Si, Ti 및 Sn에 대한 전구체 물질로서 각각 3-아미노프로필에톡시실란(3-aminopropyltriethoxysilane) 1.49369g, 티타늄 부톡사이드(Ti butoxide) 0.07655g, 틴 아세테이트(Sn(C2H3O2)4)(Tin(IV) Acetate) 0.47892g을 용매로서 DMF 3.5g에 혼합하여 용해시켜서 DMF 방사용액을 준비한다. 이 경우, 티타늄 부톡사이드(Ti butoxide)는 DMF에 녹지 않으므로 아세트산 1g을 첨가하였다.A spinning solution was prepared to prepare amorphous nanofibers composed of Si 60 Al 3 Fe 5 Ti 2 Sn 12 (CE) 18 alloy by electrospinning. First, 1.49369 g of 3-aminopropyltriethoxysilane, 0.07655 g of titanium butoxide, and tin acetate (Sn (C 2 H 3 O 2 )) as precursor materials for Si, Ti, and Sn, respectively. 4) (Tin (IV) Acetate) 0.47892g of DMF was mixed with 3.5g of DMF as a solvent to dissolve to prepare a DMF spinning solution. In this case, titanium butoxide (Ti butoxide) was not dissolved in DMF, so 1 g of acetic acid was added.
또한, Al, Fe 및 Ce에 대한 전구체 물질로서 각각 알루미늄 클로라이드 헥사하이드레이트(AlCl4 Hexahydrate) 0.08145g, 아이언(III) 나이트레이트 수화물(Fe(NO)·9HO) 0.22717g, 세륨(III) 아세테이트 하이드레이트(C6H9CeO6·H2O: Cerium(III) Acetate Hydrate) 0.64221g을 순수(DI) 7g에 용해시켜서 DI 방사용액을 준비한다. 이 경우, 세륨(III) 아세테이트 하이드레이트는 잘 녹지 않으므로 약간의 교반을 해주었다.In addition, 0.08145 g of aluminum chloride hexahydrate (AlCl 4 Hexahydrate), 0.22717 g of iron (III) nitrate hydrate (Fe (NO) 9HO), and cerium (III) acetate hydrate (A) as precursor materials for Al, Fe and Ce, respectively. C 6 H 9 CeO 6 H 2 O: Cerium (III) Acetate Hydrate) Dissolve 0.64221 g of pure water (DI) to prepare a DI spinning solution. In this case, cerium (III) acetate hydrate was not very soluble, so some stirring was performed.
그 후, 상기 DMF 방사용액과 DI 방사용액을 같이 섞어서 10분간 교반한 후, 폴리비닐피롤리돈(PVP)(1300k) 1.3g을 넣고 교반하여 방사용액을 준비한다.Thereafter, the DMF spinning solution and the DI spinning solution are mixed together and stirred for 10 minutes, and then 1.3 g of polyvinylpyrrolidone (PVP) (1300k) is added thereto to prepare a spinning solution.
그 후, 전기방사장치의 방사노즐에 22kV 하전 상태에서 12㎕m/min의 속도, 팁과 콜렉터 사이의 거리 18cm로 설정한 상태에서 상기 방사용액을 콜렉터로 방사하여 고분자 나노 복합섬유를 얻었으며, 확대 촬영한 SEM 사진을 도 8에 나타내었다.Thereafter, the spinning solution was spun onto the spinning nozzle of the electrospinning apparatus at a speed of 12 µm / min and a distance of 18 cm between the tip and the collector at 22 kV charged state to obtain a polymer nanocomposite fiber. An enlarged SEM photograph is shown in FIG. 8.
얻어진 고분자 나노 복합섬유는 H2 5%와 N2 95% 혼합가스의 환원성 분위기에서 가열속도 5℃/min, 700℃에서 2시간 동안 열처리하고, 얻어진 나노 섬유를 초핑하여 나노 와이어 또는 나노 로드 형태의 6원계 Si 합금 분말을 얻었다.The obtained polymer nanocomposite fibers were heat-treated at a heating rate of 5 ° C./min and 700 ° C. for 2 hours in a reducing atmosphere of H 2 5% and N 2 95% mixed gas, and the obtained nanofibers were chopped to form nanowires or nanorods. A six-membered Si alloy powder was obtained.
이어서, 얻어진 6원계 Si 합금 분말을 25ml 톨루엔에 분산시킨 후, 6원계 Si 합금 분말의 표면개질을 위하여 1.5ml APS(3-aminopropyltriethoxysilane) 첨가하고, 110℃, N2 분위기에서 24시간 환류(refluxing)시켰다.Subsequently, the obtained six-membered Si alloy powder was dispersed in 25 ml toluene, and then 1.5 ml APS (3-aminopropyltriethoxysilane) was added for surface modification of the six-membered Si alloy powder, and refluxed at 110 ° C. in an N 2 atmosphere for 24 hours. I was.
그 후, 개질된 6원계 Si 합금 분말 56mg을 GO(graphene oxide) 솔루션 0.16 mg/ml에 분산시키고, 환원제로서 하이드라진(Hydrazine monohydrate) 0.6 ml를 이용하여 5시간동안 교반(mild stirring)하여 화학적으로 환원시켜서, 나노 와이어 형태의 Si 합금 분말 외주에 환원 그래핀 옥사이드(reduced graphene oxide; rGO)로 래핑(wrapping)시켰다.Thereafter, 56 mg of the modified six-membered Si alloy powder was dispersed in 0.16 mg / ml of a graphene oxide (GO) solution, and chemically reduced by stirring for 5 hours using 0.6 ml of hydrazine monohydrate as a reducing agent. Then, the outer periphery of the Si alloy powder in the form of nanowires was wrapped with reduced graphene oxide (rGO).
얻어진 환원 그래핀 옥사이드(rGO)로 래핑(wrapping)된 6원계 Si 합금 분말을 확대 촬영한 SEM 및 TEM 사진을 도 9a 내지 도 9d에 나타내고, 얻어진 분말을 음극 활물질로 사용하기 위한 셀 테스트를 실시하여 충전 및 방전시의 용량 특성을 도 10에 나타내고, 사이클별 전압 프로파일 특성을 도 11에 나타내었다.SEM and TEM photographs of enlarged six-membered Si alloy powders wrapped with reduced graphene oxide (rGO) are shown in FIGS. 9A to 9D, and a cell test was performed to use the obtained powder as a negative electrode active material. The capacity characteristics at the time of charge and discharge are shown in FIG. 10, and the voltage profile characteristics for each cycle are shown in FIG. 11.
상기한 도 10을 참고하면, 환원 그래핀 옥사이드(rGO)로 래핑되기 전에 얻어진 본 발명에 따른 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs)은 1000 mAh/g의 용량을 갖는 것을 알 수 있다.Referring to FIG. 10, the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) according to the present invention obtained before being wrapped with reduced graphene oxide (rGO) has a capacity of 1000 mAh / g. It can be seen that having.
또한, 환원 그래핀 옥사이드(rGO)로 래핑되기 전에 얻어진 본 발명에 따른 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs)과 3원계, 4원계 및 5원계 Si 합금(Si60Al3Fe5Ti2Sn12 NFs, Si60Al3Fe5Ti2Sn12 NFs, Si61.22Sn12.25Al3.06Fe5.1CE16.37 NFs)의 방전 용량 특성을 비교하여 도 12에 나타내고, C-rate 특성을 도 13에 나타내었다.In addition, the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) and ternary, quaternary and five-membered Si alloy (Si) according to the present invention obtained before wrapping with reduced graphene oxide (rGO) The discharge capacity characteristics of 60 Al 3 Fe 5 Ti 2 Sn 12 NFs , Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs, Si 61.22 Sn 12.25 Al 3.06 Fe 5.1 CE 16.37 NFs) are shown in FIG. The characteristic is shown in FIG.
도 12 및 도 13을 참고하면, 본 발명에 따른 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs)의 방전 용량 특성과 C-rate 특성이 3원계, 4원계 및 5원계 Si 합금(Si60Al3Fe5Ti2Sn12 NFs, Si60Al3Fe5Ti2Sn12 NFs, Si61.22Sn12.25Al3.06Fe5.1CE16.37 NFs) 보다 우수한 것으로 나타났다.12 and 13, the discharge capacity characteristics and C-rate characteristics of the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) according to the present invention is a ternary, quaternary and 5-membered system It was found to be superior to Si alloys (Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs , Si 60 Al 3 Fe 5 Ti 2 Sn 12 NFs, Si 61.22 Sn 12.25 Al 3.06 Fe 5.1 CE 16.37 NFs).
그리고, 본 발명에 따른 환원 그래핀 옥사이드(rGO)로 래핑되기 전에 얻어진 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs)과 환원 그래핀 옥사이드(rGO)로 래핑된 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs@rGO) 사이의 전기화학적 특성을 비교하도록 도 14에 500mA/g(1C)일 때의 사이클 특성, 도 15에 전류밀도 변화에 따른 율속 특성(rate capabilities)을 나타내었다.In addition, the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) obtained before the lapping with reduced graphene oxide (rGO) according to the present invention and the six-membered system wrapped with reduced graphene oxide (rGO) To compare the electrochemical properties between Si alloys (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs @ rGO), the cycle characteristics at 500 mA / g (1C) in FIG. 14 and the current density changes in FIG. Rate capabilities are shown.
도 14 및 도 15를 참고하면, 환원 그래핀 옥사이드(rGO)로 래핑된 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs@rGO)의 사이클 특성 및 율속 특성이 환원 그래핀 옥사이드(rGO)로 래핑되기 전에 얻어진 6원계 Si 합금(Si60Al3Fe5Ti2Sn12CE18 NFs) 보다 우수한 것으로 나타났다.Referring to FIGS. 14 and 15, cycle and rate-rate characteristics of a six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs @ rGO) wrapped with reduced graphene oxide (rGO) may be reduced. It was found to be superior to the six-membered Si alloy (Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 NFs) obtained before being wrapped with oxide (rGO).
상기한 바와 같이 본 발명에서는 전기방사방법을 이용하여 얻어진 6원계 Si 합금 분말을 2차 전지 또는 박막전지와 같은 플랙시블 배터리의 음극 활물질에 첨가제로 사용하면 전지의 수명을 연장함과 동시에 전지 용량을 저렴한 비용으로 크게 향상시키는 것이 가능하다.As described above, in the present invention, when the six-membered Si alloy powder obtained by the electrospinning method is used as an additive in a negative electrode active material of a flexible battery such as a secondary battery or a thin film battery, the battery life is extended while the battery capacity is increased. It is possible to greatly improve at low cost.
본 발명은 안정성이 우수하고 수명이 긴 그라파이트를 주성분으로 사용하고 전지 용량이 큰 6원계 Si 합금을 첨가제로 사용함에 의해 수명이 길고 전지 용량이 크며 저렴한 이차전지용 음극 및 이를 이용한 이차전지의 제조에 이용된다.The present invention uses graphite as a main component with excellent stability and long lifespan, and uses a six-element Si alloy having a large battery capacity as an additive, and is used for the manufacture of a negative electrode for a secondary battery having a long lifespan and a large battery capacity, and a secondary battery using the same. do.

Claims (17)

  1. 음극 집전체 및 상기 음극 집전체의 적어도 일면에 형성된 음극 활물질로 이루어지며,It is made of a negative electrode active material and a negative electrode active material formed on at least one surface of the negative electrode current collector,
    상기 음극 활물질은 그라파이트 분말 70 내지 90중량% 및 6원계 Si 합금 분말 10 내지 30중량%를 포함하며, 상기 6원계 Si 합금 분말은 비정질 나노섬유로 이루어지는 것을 특징으로 하는 이차전지용 음극.The negative electrode active material comprises 70 to 90% by weight of graphite powder and 10 to 30% by weight of the six-membered Si alloy powder, wherein the six-membered Si alloy powder is made of amorphous nanofibers.
  2. 제1항에 있어서, The method of claim 1,
    상기 나노섬유는 나노 와이어, 나노 로드 또는 나노 입자 형태의 분말로 이루어지며, 상기 분말의 표면은 환원 그래핀 옥사이드로 래핑(wrapping)된 것을 특징으로 하는 이차전지용 음극.The nanofiber is made of a powder in the form of nanowires, nanorods or nanoparticles, the surface of the powder is a secondary battery negative electrode, characterized in that (wrapping) wrapped with reduced graphene oxide (wrapping).
  3. 제1항에 있어서, The method of claim 1,
    상기 6원계 Si 합금은 하기 수학식으로 표현되는 이차전지용 음극. The six-membered Si alloy is a secondary battery negative electrode represented by the following equation.
    SiaAlbTcSndMeLif Si a Al b T c Sn d M e Li f
    여기서, a= 35~70, b= 1~45, T= 전이금속(transition metal), c= 5~25, d=1~15, M= 이트륨, 란탄족 원소(lanthanide element), 악티늄족 원소(actinide element) 또는 이들의 화합물(combination), e= 2~20, 100=a+b+c+d+e이고, f= 0~[4.4(a+d)+b]Where a = 35 to 70, b = 1 to 45, T = transition metal, c = 5 to 25, d = 1 to 15, M = yttrium, lanthanide element, and actinium group element (actinide element) or a compound thereof (combination), e = 2-20, 100 = a + b + c + d + e, f = 0 ~ [4.4 (a + d) + b]
  4. 제3항에 있어서, The method of claim 3,
    상기 6원계 Si 합금은 Si60Al14Fe8Ti1Sn7(CE)10 또는 Si60Al3Fe5Ti2Sn12CE18인 것을 특징으로 하는 이차전지용 음극.The six-membered Si alloy is Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 or Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 characterized in that the negative electrode for secondary batteries.
  5. 음극 집전체 및 상기 음극 집전체의 적어도 일면에 그라파이트 분말과 6원계 Si 합금 분말로 형성된 음극 활물질을 구비하는 음극과, 분리막 또는 전해질과, 양극을 포함하며,A negative electrode including a negative electrode current collector and a negative electrode active material formed of graphite powder and a six-membered Si alloy powder on at least one surface of the negative electrode current collector, a separator or an electrolyte, and a positive electrode,
    상기 6원계 Si 합금 분말은 Si, Al, Fe, Ti, Sn 및 Ce을 포함하는 비정질 나노섬유로 이루어지고,The six-membered Si alloy powder is made of amorphous nanofibers containing Si, Al, Fe, Ti, Sn and Ce,
    상기 나노섬유의 표면은 환원 그래핀 옥사이드로 래핑(wrapping)된 것을 특징으로 하는 이차전지.The surface of the nanofibers, the secondary battery characterized in that the wrap (wrapping) with reduced graphene oxide.
  6. 제5항에 있어서, The method of claim 5,
    상기 음극 활물질은 그라파이트 분말 70 내지 90중량% 및 6원계 Si 합금 분말 10 내지 30중량%를 포함하는 것을 특징으로 하는 이차전지.The negative active material is a secondary battery comprising 70 to 90% by weight graphite powder and 10 to 30% by weight of the six-membered Si alloy powder.
  7. 제5항에 있어서, The method of claim 5,
    상기 6원계 Si 합금은 Si60Al14Fe8Ti1Sn7(CE)10 또는 Si60Al3Fe5Ti2Sn12CE18인 것을 특징으로 하는 이차전지.The six-membered Si alloy is Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 or Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 , characterized in that the secondary battery.
  8. 6원계 Si 합금 분말을 준비하는 단계;Preparing a six-membered Si alloy powder;
    그라파이트 분말 70 내지 90중량% 및 상기 6원계 Si 합금 분말 10 내지 30중량%를 포함하는 음극 활물질을 용매와 혼합하여 슬러리를 준비하는 단계; 및Preparing a slurry by mixing a negative electrode active material including 70 to 90% by weight of graphite powder and 10 to 30% by weight of the six-membered Si alloy powder with a solvent; And
    상기 슬러리를 음극 집전체의 적어도 일면에 캐스팅하는 단계를 포함하는 것을 특징으로 하는 이차전지용 음극의 제조방법.Method of manufacturing a negative electrode for a secondary battery comprising the step of casting the slurry on at least one surface of the negative electrode current collector.
  9. 제8항에 있어서, The method of claim 8,
    상기 6원계 Si 합금 분말을 준비하는 단계는 Preparing the six-membered Si alloy powder
    각각 Si, Al, Fe, Ti, Sn 및 Ce의 전구체와 섬유 성형성 고분자를 용매와 혼합하여 방사용액을 준비하는 단계; Preparing a spinning solution by mixing a precursor of Si, Al, Fe, Ti, Sn and Ce and a fiber-forming polymer with a solvent, respectively;
    상기 방사용액을 방사하여 금속전구체가 탑재된 나노 복합섬유를 제조하는 단계; 및Spinning the spinning solution to produce a nanocomposite fiber loaded with a metal precursor; And
    상기 나노 복합섬유를 열처리하여 고분자 물질을 제거함에 의해 6원계 Si 합금으로 이루어지며 비정질 상을 갖는 나노 섬유로 변환하는 단계; 및 Converting the nanocomposite fibers into nanofibers made of a six-membered Si alloy and having an amorphous phase by removing a polymer material; And
    상기 얻어진 나노 섬유를 분쇄하여 6원계 Si 합금 분말을 형성하는 단계를 포함하는 것을 특징으로 하는 이차전지용 음극의 제조방법. And pulverizing the obtained nanofibers to form a six-membered Si alloy powder.
  10. 제9항에 있어서, The method of claim 9,
    상기 방사용액을 준비하는 단계는 Preparing the spinning solution is
    상기 Si, Ti 및 Sn의 전구체를 제1용매에 용해하여 제1용액을 준비하는 단계; Preparing a first solution by dissolving the precursors of Si, Ti and Sn in a first solvent;
    상기 Al, Fe 및 Ce의 전구체를 제2용매에 용해하여 제2용액을 준비하는 단계; 및Preparing a second solution by dissolving the precursors of Al, Fe and Ce in a second solvent; And
    상기 제1 및 제2 용액을 혼합하여 교반한 후, 섬유 성형성 고분자를 혼합하여 상기 방사용액을 준비하는 단계를 포함하는 것을 특징으로 하는 이차전지용 음극의 제조방법. After mixing and stirring the first and second solutions, a method of manufacturing a negative electrode for a secondary battery, comprising the step of preparing the spinning solution by mixing a fiber-shaped polymer.
  11. 제9항에 있어서, The method of claim 9,
    상기 Si 합금 분말의 표면을 양전하를 가지도록 표면개질하는 단계; Surface modifying the surface of the Si alloy powder to have a positive charge;
    상기 표면개질된 Si 합금 분말을 음전하를 가지는 그래핀 옥사이드 솔루션(graphene oxide solution)에 분산시킴에 의해 정전기적 상호작용(electrostatic interaction)을 통해 상기 Si 합금 분말의 표면에 그래핀 옥사이드를 자기조립하는 단계; 및 Self-assembling graphene oxide on the surface of the Si alloy powder through electrostatic interaction by dispersing the surface-modified Si alloy powder in a graphene oxide solution having a negative charge ; And
    상기 Si 합금 분말의 표면에 자기조립된 그래핀 옥사이드를 환원하여 환원 그래핀 옥사이드를 형성하는 단계를 더 포함하는 것을 특징으로 하는 이차전지용 음극의 제조방법. Reducing graphene oxide self-assembled on the surface of the Si alloy powder to form a reduced graphene oxide further comprising the step of producing a negative electrode for a secondary battery.
  12. 제11항에 있어서, The method of claim 11,
    상기 Si 합금 분말의 표면을 양전하를 가지도록 표면개질하는 단계는 Surface modification of the surface of the Si alloy powder to have a positive charge
    3-아민프로필트리에톡시실란(3-aminopropyltriethoxysilane; APS) 또는 3-아민프로필트리메톡시실란(3-aminoproyltrimethoxysilane)을 이용하여 상기 Si 합금 분말의 표면을 아민기(-NH2)로 표면개질하는 것을 특징으로 하는 이차전지용 음극의 제조방법. Surface modification of the surface of the Si alloy powder with an amine group (-NH 2 ) using 3-aminopropyltriethoxysilane (APS) or 3-aminopropyltrimethoxysilane (3-aminoproyltrimethoxysilane) Method for producing a negative electrode for a secondary battery, characterized in that.
  13. 제12항에 있어서, The method of claim 12,
    상기 Si 합금 분말의 표면을 아민기(-NH2)로 표면개질하는 단계는 Surface modification of the surface of the Si alloy powder with an amine group (-NH 2 )
    상기 6원계 Si 합금 분말을 용매에 분산시킨 후, 3-아민프로필트리에톡시실란 또는 3-아민프로필트리메톡시실란 수용액을 첨가하고, 환원 분위기에서 환류시키는 것을 특징으로 하는 이차전지용 음극의 제조방법. After dispersing the six-membered Si alloy powder in a solvent, an aqueous solution of 3-aminepropyltriethoxysilane or 3-aminepropyltrimethoxysilane is added and refluxed in a reducing atmosphere to produce a negative electrode for a secondary battery. .
  14. 제11항에 있어서, The method of claim 11,
    상기 자기조립하는 단계는 상기 6원계 Si 합금 표면의 아민기(-NH2)와 그래핀 옥사이드의 카르복실기(carboxyl group) 사이의 아마이드 결합(amide bond)에 의해 이루어지는 것을 특징으로 하는 이차전지용 음극의 제조방법. The self-assembling step is prepared by the amide bond between the amine group (-NH 2 ) and the carboxyl group of the graphene oxide on the surface of the six-membered Si alloy (amide bond) Way.
  15. 제8항에 있어서, The method of claim 8,
    상기 6원계 Si 합금은 Si60Al14Fe8Ti1Sn7(CE)10 또는 Si60Al3Fe5Ti2Sn12CE18인 것을 특징으로 하는 이차전지용 음극의 제조방법. The six-membered Si alloy is Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 or Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 The method of manufacturing a negative electrode for a secondary battery.
  16. 비정질 나노섬유로 이루어지고, Si, Al, Fe, Ti, Sn 및 Ce을 포함하는 6원계 Si 합금으로서, A six-membered Si alloy composed of amorphous nanofibers and containing Si, Al, Fe, Ti, Sn, and Ce,
    상기 나노섬유의 표면은 환원 그래핀 옥사이드로 래핑(wrapping)된 것을 특징으로 하는 이차전지용 음극 활물질.The surface of the nanofiber is a negative active material for a secondary battery, characterized in that the wrap (wrapping) with reduced graphene oxide.
  17. 제16항에 있어서, The method of claim 16,
    상기 6원계 Si 합금은 Si60Al14Fe8Ti1Sn7(CE)10 또는 Si60Al3Fe5Ti2Sn12CE18인 것을 특징으로 하는 이차전지용 음극 활물질.The six-membered Si alloy is Si 60 Al 14 Fe 8 Ti 1 Sn 7 (CE) 10 or Si 60 Al 3 Fe 5 Ti 2 Sn 12 CE 18 The negative electrode active material for a secondary battery.
PCT/KR2014/002366 2013-03-20 2014-03-20 Anode active material for secondary battery, anode, secondary battery using anode, and method for manufacturing secondary battery WO2014148849A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0029814 2013-03-20
KR20130029814 2013-03-20
KR1020140032588A KR101583652B1 (en) 2013-03-20 2014-03-20 Anode Active Materials, Anode Electrode for Secondary Battery, Secondary Battery Using the Same and Manufacturing Method thereof
KR10-2014-0032588 2014-03-20

Publications (1)

Publication Number Publication Date
WO2014148849A1 true WO2014148849A1 (en) 2014-09-25

Family

ID=51580437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002366 WO2014148849A1 (en) 2013-03-20 2014-03-20 Anode active material for secondary battery, anode, secondary battery using anode, and method for manufacturing secondary battery

Country Status (1)

Country Link
WO (1) WO2014148849A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916826A (en) * 2015-07-03 2015-09-16 东莞市迈科科技有限公司 Silicon cathode material coated with graphene and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080031323A (en) * 2005-07-25 2008-04-08 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Alloy compositions for lithium ion batteries
KR20090099922A (en) * 2008-03-19 2009-09-23 금호석유화학 주식회사 Silicon anode active material for lithium secondary battery
KR20100060613A (en) * 2008-11-28 2010-06-07 금호석유화학 주식회사 Silicon anode active material for lithium secondary battery
KR20110063390A (en) * 2009-12-04 2011-06-10 주식회사 아모그린텍 Method of manufacturing nano alloy powders for anode of thin film battery
KR20120050037A (en) * 2010-11-10 2012-05-18 주식회사 엘지화학 Anode active material for lithium secondary battery and lithium secondary battery comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080031323A (en) * 2005-07-25 2008-04-08 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Alloy compositions for lithium ion batteries
KR20090099922A (en) * 2008-03-19 2009-09-23 금호석유화학 주식회사 Silicon anode active material for lithium secondary battery
KR20100060613A (en) * 2008-11-28 2010-06-07 금호석유화학 주식회사 Silicon anode active material for lithium secondary battery
KR20110063390A (en) * 2009-12-04 2011-06-10 주식회사 아모그린텍 Method of manufacturing nano alloy powders for anode of thin film battery
KR20120050037A (en) * 2010-11-10 2012-05-18 주식회사 엘지화학 Anode active material for lithium secondary battery and lithium secondary battery comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916826A (en) * 2015-07-03 2015-09-16 东莞市迈科科技有限公司 Silicon cathode material coated with graphene and preparation method thereof

Similar Documents

Publication Publication Date Title
US20220209219A1 (en) Electrodes and lithium ion cells with high capacity anode materials
EP2711338B1 (en) Composite anode active material, anode and lithium battery each including the composite anode active material, method of preparing the composite anode active material
KR100796687B1 (en) Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same
WO2014014274A1 (en) Carbon-silicon composite, method for preparing same, and cathode active material comprising carbon-silicon composite
WO2011019218A9 (en) Amorphous anode active material, preparation method of electrode using same, secondary battery containing same, and hybrid capacitor
WO2016204565A1 (en) Silicon oxide-carbon-polymer composite, and anode active material comprising same
WO2015145521A1 (en) Negative electrode active material for non-aqueous electrolyte cell, negative electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and cell pack
WO2011142575A2 (en) Anode active material for a lithium secondary battery, method for preparing same, and lithium secondary battery including same
WO2014182036A1 (en) Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2010002084A1 (en) Anode for secondary battery having negative active material with multi-component metal oxide nanofiber web structure and secondary battery using the same, and fabrication method of negative active material for secondary battery
WO2010079964A2 (en) Positive electrode active material and lithium secondary battery comprising the same
TW201840044A (en) Negative electrode material, method for producing said negative electrode material, and mixed negative electrode material
TW201417380A (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2010079963A2 (en) Positive electrode active material and lithium secondary battery comprising the same
KR20110063390A (en) Method of manufacturing nano alloy powders for anode of thin film battery
KR20110116585A (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2020130434A1 (en) Anode active material, preparation method therefor, and lithium secondary battery comprising same
WO2015199251A1 (en) Nanoparticle-graphene-carbon composite having graphene network formed therein, preparation method therefor and application thereof
WO2019112325A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing same
WO2020162708A1 (en) Anode and lithium secondary battery comprising same
WO2012115340A1 (en) Negative electrode material for a secondary battery and method for manufacturing same
KR101583652B1 (en) Anode Active Materials, Anode Electrode for Secondary Battery, Secondary Battery Using the Same and Manufacturing Method thereof
Ao et al. A novel composite of SnOx nanoparticles and SiO2@ N-doped carbon nanofibers with durable lifespan for diffusion-controlled lithium storage
WO2015088283A1 (en) Negative electrode material for secondary battery, and secondary battery using same
WO2020166871A1 (en) Cathode active material for lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768159

Country of ref document: EP

Kind code of ref document: A1