WO2014148580A1 - 淡水製造方法 - Google Patents

淡水製造方法 Download PDF

Info

Publication number
WO2014148580A1
WO2014148580A1 PCT/JP2014/057615 JP2014057615W WO2014148580A1 WO 2014148580 A1 WO2014148580 A1 WO 2014148580A1 JP 2014057615 W JP2014057615 W JP 2014057615W WO 2014148580 A1 WO2014148580 A1 WO 2014148580A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
organic matter
unit
semipermeable membrane
Prior art date
Application number
PCT/JP2014/057615
Other languages
English (en)
French (fr)
Inventor
智宏 前田
寛生 高畠
谷口 雅英
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to SG11201507830XA priority Critical patent/SG11201507830XA/en
Priority to CN201480017159.2A priority patent/CN105073652A/zh
Priority to JP2014530045A priority patent/JP6194887B2/ja
Publication of WO2014148580A1 publication Critical patent/WO2014148580A1/ja
Priority to ZA2015/07065A priority patent/ZA201507065B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/043Treatment of partial or bypass streams

Definitions

  • the present invention relates to a method for producing fresh water using a semipermeable membrane unit for producing fresh water from a plurality of types of raw water such as seawater and river water, factory waste water, sewage waste water, and combinations thereof. .
  • Separation membranes used in water treatment are microfiltration membranes with sub-micrometer order pores, smaller ultrafiltration membranes, nanofiltration membranes capable of nano-order separation, and reverse osmosis membranes capable of sub-nano-order separation It is divided roughly into.
  • nanofiltration membranes with small pores and reverse osmosis membranes are called semipermeable membranes and are classified as membranes that allow water to permeate but not solutes.
  • reverse osmosis membranes are drinkable from seawater or brackish water. As a technique capable of obtaining fresh water suitable for water, it is particularly widely applied.
  • river water used as dilution water, organic matter components and microbial components of factory wastewater and sewage wastewater vary depending on rainfall and season if river water, and change depending on time zone and season if wastewater, If so, it will vary depending on the production volume, production process, etc., so semi-permeable membrane treatment of seawater mixed with dilution water collected during periods with a large amount of organic or microbial components may cause significant contamination of the semi-permeable membrane. It has become.
  • river water, factory wastewater or semi-permeable membrane concentrated water from sewage wastewater is used as dilution water, organic matter components and microbial components are concentrated, and there is contamination of the semipermeable membrane that separates diluted seawater into permeated water and concentrated water. It becomes a problem because it becomes more prominent.
  • the disinfectant in order to prevent microbial growth on the surface of the semipermeable membrane, the disinfectant is intermittently or continuously operated as in Non-Patent Documents 1 and 2. Or a flushing cleaning that periodically cleans the surface of the semipermeable membrane with a water flow as in Patent Document 7, or a cleaning liquid that is opposite to the direction of inflow of raw water during fresh water generation as in Patent Document 8
  • a flushing cleaning that periodically cleans the surface of the semipermeable membrane with a water flow as in Patent Document 7
  • a cleaning liquid that is opposite to the direction of inflow of raw water during fresh water generation as in Patent Document 8
  • the counter-flow cleaning is performed to flow in the direction to clean the surface of the semipermeable membrane, dirt containing organic components and microbial components is separated from the semipermeable membrane surface into the semipermeable membrane concentrated water, and diluted seawater is separated into the permeated water and concentrated water. Contamination of the semipermeable membrane that separates into two becomes more prominent, which is a serious problem.
  • An object of the present invention is a method for producing fresh water using a semipermeable membrane unit for producing fresh water from a plurality of types of raw water such as seawater and river water, factory waste water, sewage waste water or a combination of these treated waters. It is to efficiently prevent contamination of semipermeable membranes by organic matter and microorganisms contained in river water, factory wastewater, sewage wastewater and concentrated wastewater for diluting seawater.
  • the present invention has the following configurations (1) to (16).
  • (1) Treated water A is treated with a first semipermeable membrane unit to produce fresh water, and the first concentrated water Ac generated when treated with the first semipermeable membrane unit has a solute concentration.
  • the treated water A is passed through an organic matter / microorganism removal unit, the organic matter / microorganism removal line for reducing the organic matter concentration or microbial concentration of the treated water A and mixing with the treated water B, and the treated water A A bypass line for mixing with the water to be treated B without going through the organic matter / microorganism removal unit, and depending on the organic matter concentration or the microorganism concentration of the water to be treated A on the upstream side of the organic matter / microorganism removal unit, A fresh water production method for controlling a flow rate of the treated water A to an organic matter / microorganism removal unit.
  • the fresh water production according to any one of (9) to (12), wherein the treated waste water of the organic matter / microorganism removal unit and the concentrated water of the semipermeable membrane unit are mixed and discharged out of the system.
  • the organic substance concentration or microbial concentration is a total organic carbon concentration (TOC), an assimilable organic carbon (AOC), a soluble organic carbon concentration (DOC), a chemical oxygen demand (COD), or a biological oxygen demand. (1) comprising at least one selected from the group consisting of an amount (BOD), an ultraviolet absorption amount (UV), a transparent extracellular polymer particle (TEP), adenosine triphosphate (ATP), a bacteriocide and a chlorophyll.
  • the organic matter / microorganism removal unit is at least one selected from the group consisting of flotation separation, precipitation separation, lagoon treatment, sand filtration, microfiltration, ultrafiltration, nanofiltration, agglomeration treatment, oxidation treatment and adsorption treatment.
  • the fresh water production apparatus of the present invention when producing fresh water from a mixed water of plural kinds of raw water such as sea water and river water, factory waste water, sewage waste water or a combination of these treated waters, river water, factory waste water, It is possible to efficiently prevent contamination of the semipermeable membrane that treats the mixed water of organic waste and microorganisms contained in the sewage wastewater and the treated water.
  • FIG. 1 is a flowchart showing an example of an embodiment of a fresh water production method according to the present invention.
  • FIG. 2 is a flowchart showing an example of another embodiment of the fresh water production method according to the present invention.
  • FIG. 3 is a flowchart showing an example of still another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 4 is a flowchart showing an example of still another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 5 is a flowchart showing an example of still another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 6 is a flowchart showing an example of still another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 7 is a flowchart showing an example of still another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 8 is a flowchart showing an example of still another embodiment of the method for producing fresh water according to the present invention.
  • FIG. 1 is a flowchart showing an example of an embodiment of a fresh water production method according to the present invention.
  • the to-be-treated water A is stored in the to-be-treated water A tank 1, it is supplied to the first pretreatment unit 3 by the to-be-treated water A supply pump 2 and subjected to pretreatment such as turbidity removal,
  • the first semipermeable membrane unit 6 After being temporarily stored in the first pretreatment water tank 4, it is processed by the first semipermeable membrane unit 6 by the first booster pump 5.
  • the semipermeable membrane treated water that has been pretreated with the treated water A is separated into a permeable component (permeated water) and a non-permeable component (concentrated water) of the semipermeable membrane.
  • the first permeated water Ap may be stored in the first permeated water tank 7 as fresh water.
  • the concentrated water discharged from the first semipermeable membrane unit 6 (hereinafter referred to as “first concentrated water Ac”) is temporarily stored in a first concentrated water tank 9 provided with a water quality sensor 8a.
  • the fresh water production method of the present invention controls the flow rate of the first concentrated water Ac to the organic matter / microorganism removal unit 12 according to the detection value of the water quality sensor 8a.
  • Examples of means for controlling the flow rate of the first concentrated water Ac include the first concentrated water supply valve 10a and the second concentrated water supply valve 10b.
  • the first concentrated water Ac is transferred to the organic matter / microorganism removal unit 12 by the first concentrated water pump 11.
  • the amount of water flowing and the amount of water flowing to the bypass line 13 that bypasses the organic matter / microorganism removal unit 12 are controlled.
  • the entire amount of the first concentrated water Ac may flow through the bypass line 13, or the entire amount thereof may be passed through the organic matter / microorganism removal unit 12 and processed.
  • the flow rate of the first concentrated water Ac to the organic matter / microorganism removal unit 12 and the bypass line 13 is a first half obtained from a detection value of the water quality sensor 8a and / or a pressure sensor 21 described later. Control is performed according to a change in the differential pressure between the inflow side and the non-permeation side of the permeable membrane unit 6.
  • the first concentrated water Ac that has passed through the organic matter / microorganism removal unit 12 or the bypass line 13 is merged at the downstream side of the organic matter / microorganism removal unit 12 and temporarily stored in the mixed water tank 14 that mixes the water to be treated B. Is done.
  • the treated water B is stored in the treated water B tank 15 and then supplied to the second pretreatment unit 17 by the treated water B supply pump 16 and subjected to pretreatment such as turbidity removal. Thereafter, the mixed water tank 14 is supplied. After the mixed water composed of the first concentrated water Ac and the water to be treated B in the mixed water tank 14 is pressurized by the second booster pump 18, it is processed by the second semipermeable membrane unit 19, and the second semipermeable membrane unit 19 is processed.
  • the permeated water of the permeable membrane unit 19 (hereinafter sometimes referred to as “second permeated water Bp”) is stored in the second permeated water tank 20.
  • the permeated water in the first permeated water tank 7 and the second permeated water tank 20 is used after adjusting the pH, Langeria index, bactericidal agent concentration, and mineral concentration as needed.
  • the treated water A and the treated water B to be treated by the fresh water production method of the present invention are not particularly limited as long as the concentration of the solute that affects the osmotic pressure is different.
  • high-concentration seawater or concentrated seawater, River water, ground water, sewage waste water, factory waste water, and treated water thereof having a lower concentration than seawater can be used.
  • treated water include filtered water and concentrated water.
  • FIG. 1 when the first concentrated water Ac obtained by treating the water to be treated A with a semipermeable membrane unit is used as dilution water, it is possible to effectively utilize the concentrated wastewater that is normally discharged out of the system. Is effective.
  • to-be-treated water A (for example, seawater) having a high concentration without being treated with a semipermeable membrane unit. ) Is preferable because it can be easily prepared while reducing capital investment.
  • a specific method for controlling the amount of water flow is that the treated water A is treated by the first pretreatment unit 3 and the water quality sensor 8 b of the pretreated water obtained is used. Based on the detected value, it can be supplied to the mixed water tank 14 via the organic matter / microorganism removing unit 12 and / or the bypass line 13 and mixed with the water B to be treated.
  • FIG. 1 the example, seawater having a high concentration without being treated with a semipermeable membrane unit.
  • the water quality of the water to be treated A is detected by the water quality sensor 8c, and the mixed water tank 14 is passed through the organic matter / microorganism removal unit 12 and / or the bypass line 13 based on the obtained detection value. Can be mixed with the water B to be treated.
  • the pretreatment unit 3 may be any process that can treat suspended substances and organic substances, for example, flotation separation, precipitation separation, lagoon treatment, sand filtration, microfiltration, ultrafiltration, nanofiltration, aggregation treatment, oxidation treatment, adsorption A process etc. can be mentioned and you may combine a some processing process in series.
  • the semipermeable membrane unit 6 can be selected from a nanofiltration membrane having a small pore, a reverse osmosis membrane, and the like.
  • the organic matter / microorganism removal unit 12 may be any treatment process that can reduce organic matter components and microorganism components composed of microorganisms, metabolites, and by-products, etc., which are to be removed, such as flotation separation, precipitation separation, lagoon treatment, Examples thereof include sand filtration, microfiltration, ultrafiltration, nanofiltration, agglomeration treatment, oxidation treatment, and adsorption treatment.
  • the organic matter / microorganism removal unit 12 may combine a plurality of treatment processes in series, or may switch the treatment processes according to detection values of the water quality sensors 8a, 8b, and 8c in parallel. I do not care.
  • the removal target substance of the organic matter / microorganism removal unit 12 is composed of microorganisms, their metabolites, by-products, etc., and it is preferable to measure a water quality index usually used in the water treatment field as the organic matter concentration or the microorganism concentration.
  • a water quality index usually used in the water treatment field is usually used in the water treatment field.
  • TOC total organic carbon content
  • AOC adjuvant organic carbon
  • DOC dissolvable organic carbon
  • COD chemical oxygen
  • BOD biological oxygen demand amount
  • the water quality sensors 8a, 8b, and 8c may be any sensor that can measure the organic substance concentration and the microorganism concentration described above.
  • the water quality sensors 8a, 8b, and 8c may be manual measuring instruments or measuring instruments capable of online measurement, but the water quality sensors 8a, 8b, and 8c are water quality of the treated water A and the first concentrated water Ac. From the viewpoint of being able to respond to changes instantly, it is preferable to be an on-line measuring instrument.
  • examples of means for controlling the amount of water flow to the organic matter / microorganism removal unit 12 include various valves and three-way valves capable of adjusting the flow rate.
  • the water quality sensors 8a, 8b, and 8c are TOC meters
  • the TOC of the first concentrated water Ac is less than 5 mg / l
  • the water flow rate to the bypass line 13 is increased, and the TOC is 5 mg / l or more.
  • the flow rate of the first concentrated water Ac is controlled by adjusting the opening / closing degree of the first concentrated water supply valve 10a and the second concentrated water supply valve 10b. It is also possible to switch all amounts using a three-way valve.
  • biofouling generated inside the first semipermeable membrane unit 6 grows excessively on the semipermeable membrane surface or receives stress due to changes in the water temperature or water quality, so that organic matter is generated from the semipermeable membrane surface.
  • the biofouling substance is removed (peeled), so that the first semipermeable membrane unit 6 does not permeate from the pressure of the supply water (supply side pressure) of the first semipermeable membrane unit 6.
  • the differential pressure (flow path pressure loss) on the non-permeation side in the first semipermeable membrane unit 6 calculated by subtracting the pressure of the obtained concentrated water (non-permeation side pressure) decreases. That is, it is possible to predict the water quality change of the first concentrated water Ac from the change in the differential pressure between the inflow side and the non-permeation side of the first semipermeable membrane unit 6.
  • the opening / closing degrees of the first concentrated water supply valve 10a and the second concentrated water supply valve 10b are adjusted,
  • the flow rate of the first concentrated water Ac to the organic matter / microorganism removal unit 12 can be controlled.
  • the pressure difference between the inflow side and the non-permeate side of the first semipermeable membrane unit 6 detects the pressure of the first supply water Af and the first concentrated water Ac, and Measurement can be performed by arranging a pressure sensor 21 that indicates a differential pressure (flow path pressure loss).
  • the differential pressure between the inflow side and the non-permeate side of the first semipermeable membrane unit is an important parameter for monitoring the degree of biofouling formation.
  • a fresh water production apparatus using a semipermeable membrane is provided with a pressure sensor that detects a differential pressure between the inflow side and the non-permeate side of the semipermeable membrane unit.
  • the change in the differential pressure between the inflow side and the non-permeate side of the first semipermeable membrane unit 6 for example, when the differential pressure is reduced by 10 kPa or more, that is, when the biofilm on the semipermeable membrane surface is peeled off, It is preferable to increase the water flow rate to the microorganism removal unit 12, and further increase the water flow rate to the organic matter / microorganism removal unit 12 when the pressure decreases by 20 kPa or more. More preferably, the entire amount of concentrated water Ac is passed through.
  • the differential pressure between the inflow side and the non-permeate side of the semipermeable membrane unit 6 is compared with the non-added system. Even when the decrease is small, the opening / closing degrees of the first concentrated water supply valve 10a and the second concentrated water supply valve 10b can be adjusted so as to increase the amount of water flow to the organic matter / microorganism removal unit 12.
  • the fresh water production method of the present invention controls the flow rate of the first concentrated water Ac to the organic matter / microorganism removal unit 12 according to the detection value of the water quality sensor 8a, or FIG.
  • a change in the differential pressure between the inflow side and the non-permeation side of the semipermeable membrane unit 6 calculated by subtracting the pressure of the first concentrated water Ac from the pressure of the first supply water Af of the semipermeable membrane unit 6.
  • the flow rate of the first concentrated water Ac to the organic matter / microorganism removal unit 12 is controlled in accordance with the detection value of the water quality sensor 8a and the inflow side of the semipermeable membrane unit 6 as shown in FIG.
  • the flow rate of the first concentrated water Ac to the organic matter / microorganism removal unit 12 can be controlled in accordance with the change in the differential pressure on the non-permeating side.
  • the amount of water passing through the first concentrated water Ac to the organic matter / microorganism removal unit 12 can be controlled based on the detection values of both the water quality sensor and the pressure sensor.
  • the water quality sensor 8a and the pressure sensor 21 can be used simultaneously.
  • the flow rate of water to the organic matter / microorganism removal unit can be controlled with priority given to the change in the differential pressure between the inflow side and the non-permeation side of the first semipermeable membrane unit detected by the pressure sensor 21.
  • the amount of water Ac passed can be controlled.
  • the organic matter and microorganisms in the first concentrated water Ac include organic matter and microorganisms that could not be removed by the first pretreatment unit 3, so the organic matter / microorganism removal unit 12 is the first pretreatment unit. 3 and at least one preferably include different processing processes.
  • the organic matter / microorganism removal unit 12 performs solid-liquid separation such as membrane filtration such as sand filtration, microfiltration, and ultrafiltration
  • the organic matter / microorganism removal unit 12 performs oxidation treatment such as ozone and biological treatment to obtain solid-liquid separation.
  • Organic substances and microorganisms that could not be removed by separation may be decomposed and removed, or flocculants and adsorbents may be added to remove organic substances and microorganisms.
  • the first concentrated water Ac is obtained. It is possible to decompose and remove organic substances and microorganisms by adding a flocculant and an adsorbent to.
  • the second pretreatment unit 17 for treating the water to be treated B as an organic matter / microorganism removal unit as illustrated in FIG. .
  • FIG. 6 after the to-be-treated water A is stored in the to-be-treated water A tank 1, the treated water A is supplied to the first pretreatment unit 3 by the to-be-treated water A supply pump 2, and after pretreatment, Once stored in one pretreatment water tank 4, it is processed by the first semipermeable membrane unit 6 by the first booster pump 5. In the first semipermeable membrane unit 6, the semipermeable membrane permeate Ap is stored in the first permeate tank 7 as fresh water.
  • the first concentrated water Ac discharged from the first semipermeable membrane unit 6 flows out to a pipe provided with the water quality sensor 8.
  • the first concentrated water tank and the first concentrated water pump are not arranged, and the first concentrated water according to the detection value of the water quality sensor 8 due to the pressure of the first concentrated water Ac.
  • the opening / closing degrees of the supply valve 10a and the second concentrated water supply valve 10b are adjusted and supplied to the mixed water tank 14 that mixes the second pretreatment unit 17 or the water to be treated B.
  • the flocculant tank or adsorbent tank 22b and the flocculant addition pump or adsorbent addition pump 23b are arranged upstream of the second pretreatment unit 17, so that the flocculant and adsorbent are adsorbed to the first concentrated water Ac.
  • An organic agent and microorganisms can be decomposed and removed by adding an agent.
  • the treated water B is stored in the treated water B tank 15 and then supplied to the second pretreatment unit 17 by the treated water B supply pump 16, and at least a part of the first concentrated water Ac described above. At the same time, after being pretreated, the mixed water tank 14 is supplied.
  • the mixed water composed of the first concentrated water Ac and the water to be treated B in the mixed water tank 14 is pressurized by the second booster pump 18, it is processed by the second semipermeable membrane unit 19, and the second semipermeable membrane unit 19 is processed.
  • the permeated water (second permeated water Bp) of the permeable membrane unit 19 is stored in the second permeated water tank 20.
  • the organic matter / microorganism removal unit is preferably a group consisting of flotation separation, precipitation separation, lagoon treatment, sand filtration, microfiltration, ultrafiltration, nanofiltration, aggregation treatment, oxidation treatment and adsorption treatment.
  • the fine bubbles may be generated by blowing compressed air, or may be generated by rapidly depressurizing pressurized water.
  • the lagoon treatment in which the aerobic treatment is performed simultaneously in the upper layer and the anaerobic treatment is performed simultaneously in the lower layer reduces organic matter and microorganisms in the first concentrated water Ac without power. It is preferable because it is possible. In the lagoon treatment, it is preferable to stay for about 5 to 30 days in a reservoir having a water depth of usually 1.2 to 2.5 m.
  • the first concentrated water Ac is passed through the water-permeable layer, and has a function of purifying and decomposing anaerobic and aerobic useful microorganisms such as photosynthetic bacteria, yeast, lactic acid bacteria, filamentous fungi, actinomycetes, etc. existing in the ground. Utilizing it, the organic substance concentration or microbial concentration of the first concentrated water Ac may be reduced, and then the water stored in the underground aquifer may be used as dilution water.
  • microfiltration membrane or ultrafiltration membrane there are no particular restrictions on the microfiltration membrane or ultrafiltration membrane, and flat membranes, hollow fiber membranes, tubular membranes, pleated types, and any other shapes can be used as appropriate.
  • the material of the membrane is not particularly limited, and polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polytetrafluoroethylene, polyvinyl alcohol, cellulose acetate, polyamide, polyester, polyimide Inorganic materials such as vinyl polymer and ceramic can be used.
  • transmission side are applicable.
  • a pressure flotation filtration that combines pressure flotation and sand filtration or a submerged membrane filtration unit.
  • so-called coagulation membrane filtration or membrane-utilized activated sludge method (MBR) in which a microfiltration membrane or an ultrafiltration membrane is immersed in a coagulation sedimentation tank or a biological treatment tank and filtered, may be applied.
  • MLR membrane-utilized activated sludge method
  • the membrane structure has a dense layer on at least one side of the membrane, and an asymmetric membrane having fine pores with gradually larger pore diameters from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane.
  • the composite film may be a composite film having a very thin functional layer formed of another material.
  • the filtration material of the organic matter / microorganism removal unit is the same material as the filtration material of the second semipermeable membrane unit. It is preferable.
  • the agglomeration treatment constituting the organic matter / microorganism removal unit is a treatment for adding a flocculant to flock organic matter and microorganisms in the water so that solid-liquid separation is efficiently performed.
  • the first concentrated water Ac that has been subjected to the agglomeration treatment is sedimented using a slanted plate or the like, and then subjected to sand filtration, microfiltration, or ultrafiltration, whereby the second semipermeable material is obtained.
  • Supply water suitable for passing through the membrane unit can be obtained.
  • the flocculants are roughly classified into inorganic flocculants and organic polymer flocculants.
  • the inorganic flocculants include aluminum flocculants such as aluminum sulfate (sulfuric acid band) and polyaluminum chloride (PACl), and chlorides.
  • iron-based flocculants such as ferric iron and polyferric sulfate.
  • the polymer organic flocculants include cationic polymer flocculants such as aminoalkyl (meth) acrylate quaternary salt (co) polymers, anionic polymer flocculants such as acrylamide / sodium acrylate copolymers,
  • nonionic polymer flocculants such as polyacrylamide.
  • an inorganic flocculant and an organic polymer flocculant are used rather than using an inorganic flocculant alone. It is preferable to use together.
  • an alkali such as caustic soda, lime, or bicarbonate, or an acid such as hydrochloric acid or sulfuric acid.
  • oxidation treatment examples include biological treatment, irradiation with ozone, ultraviolet rays or gamma rays, addition of fluorine or hydrogen peroxide, catalyst treatment, and the like. It is also possible to apply accelerated oxidation treatment performed by combining at least two. Considering the influence on the environment, ozone, ultraviolet irradiation, hydrogen peroxide addition, and catalyst treatment are preferable.
  • the catalyst include catalysts such as iron, copper, and manganese that can increase the oxidizing power in combination with ozone and hydrogen peroxide, and metal oxides having a so-called photocatalytic function, such as titanium oxide.
  • AOP Advance Oxidance ⁇ Process
  • a combination that generates more hydroxy radicals that contribute to oxidative decomposition is preferable, and a combination of hydrogen peroxide and ultraviolet light, ozone and hydrogen peroxide, or ozone and ultraviolet light is more preferable.
  • ozone, ultraviolet rays, and hydrogen peroxide it is preferable because oxidative decomposition can be performed more efficiently.
  • the adsorption treatment is a treatment for adsorbing a relatively small organic substance having a molecular weight of several hundred or less in water to the solid surface by adding an adsorbent.
  • the adsorbent include activated carbon, ion exchange resin, zeolite, and the like. From the viewpoint that handling is relatively easy, it is preferable to use powdered activated carbon.
  • the adsorbent is granular, it is configured so that the water is filled in the column, and when the adsorbent is powder, it is added directly to the first concentrated water Ac, and solid-liquid separation such as precipitation separation or membrane filtration is performed. It is good to use in combination.
  • a semipermeable membrane such as a low pressure reverse osmosis membrane or a nanofiltration membrane is applied as the semipermeable membrane unit 6. Since it is low, a high recovery rate operation can be performed, and as a result, the amount of the first concentrated water Ac decreases. Therefore, even if an energy recovery unit is installed on the downstream side from which the concentrated water of the semipermeable membrane unit is discharged, the energy that can be recovered is small, the cost performance of the energy recovery unit is small, and it is often not economically appropriate. For this reason, the semipermeable membrane unit 6 for treating low salt concentration water is not usually recovered and is often discharged out of the system.
  • a pressure filtration unit 12 a that can be filtered with concentrated water pressure is a first semipermeable membrane unit. Direct connection to 6 is preferable because the organic substance concentration or microbial concentration can be reduced without power.
  • pressure filtration unit 12a cartridge filters, disk filters, microfiltration, ultrafiltration, sand filtration, biological carrier filtration, nanofilters, sand filtration, precoat filters, adsorbent filters represented by activated carbon and ion exchange resins Etc. can be used.
  • the first concentrated water Ac maintains a concentrated water pressure of about 0.8 to 1.5 MPa.
  • the organic matter / microorganism removal unit is a membrane separation unit adopting the cross flow method, it separates into permeate and concentrated water while washing the membrane surface with fine bubbles.
  • the fine bubble generating unit 24 that rapidly reduces the pressure of the first concentrated water Ac include an aspirator.
  • the position where the fine bubble generating unit 24 is arranged may be any position as long as the pressure of the concentrated water is applied, but as illustrated in FIG. 7, the first concentrated water Ac is concentrated.
  • the present invention produces fresh water from a plurality of types of raw water, such as a combination of seawater and river water, ground water or wastewater treated water, and a fresh water production method and a fresh water production method using a semipermeable membrane unit.
  • a fresh water production method for efficiently preventing contamination of a semipermeable membrane with organic matter and microorganisms contained in concentrated waste water.

Landscapes

  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 本発明の淡水製造方法は、被処理水を第1の半透膜ユニットで処理して得た濃縮水を溶質濃度が濃縮水よりも高い被処理水に混合させ、その混合水を第2の半透膜ユニットで処理するとき、濃縮水を有機物/微生物除去ユニットに通して被処理水と混合する有機物/微生物除去ラインと、濃縮水が前記除去ユニットを経由しないバイパスラインを有し、前記除去ユニットの上流側の濃縮水中の有機物濃度または微生物濃度、および、第1の半透膜ユニットの流入側と非透過側の差圧の変化の少なくとも1つに応じて、濃縮水の通水量を制御する。

Description

淡水製造方法
 本発明は、海水と河川水、工場廃水、下廃水やそれら処理水との組合せのような複数種の原水から淡水を製造するための、半透膜ユニットを用いた淡水製造方法に関するものである。
 近年深刻化してきている水環境の悪化に伴い、これまで以上に水処理技術が重要になってきており、分離膜利用技術が非常に幅広く適用されてきている。
 水処理で用いられる分離膜はサブマイクロメートルオーダーの細孔をもって分離する精密ろ過膜、さらに小さな限外ろ過膜、ナノオーダーの分離が可能なナノろ過膜、サブナノオーダーの分離が可能な逆浸透膜に大別される。この中でも、ナノろ過膜の小さな細孔を持つものや逆浸透膜は半透膜と呼ばれ、水は透過させるが、溶質は透過しない膜として分類され、特に逆浸透膜は海水やかん水から飲料水に適した淡水を得ることが出来る技術として、特に幅広く適用されている。
 海水を原水とした半透膜による淡水製造は、蒸発法に比べるとエネルギー的に優れているとはいえ、海水の高い浸透圧に起因する高圧力プロセスであるため、河川水を原水とする上水製造プロセスに比べて必要とするエネルギーは大きい。最近では、海水と河川水、工場廃水や下廃水といった海水よりも低塩濃度な水とを混合し希釈することよって浸透圧を下げ、エネルギーコストを下げるシステムが提案されている(特許文献1参照)。また、工場廃水や下廃水を浄化処理し半透膜で回収再利用するプロセスによって排出される濃縮排水を希釈水として使用することもある(特許文献2~6参照)。
 通常、河川水、工場廃水や下廃水を半透膜処理する場合、前処理で除濁してから半透膜に供給されるが、前処理ではBOD(Biological Oxygen Demand:生物学的酸素要求量)成分やCOD(Chemical Oxygen Demand:化学的酸素要求量)成分や高分子多糖類やクロロフィル等の有機物成分や微生物成分を効率良く除去できていないことが多い。よって、有機物成分や微生物成分の多い河川水、工場廃水、下廃水やそれら濃縮排水を混合した希釈海水を半透膜処理するシステムでは、海水と比較すると、半透膜の表面で微生物が繁殖し易く、バイオファウリングが発生することによって、半透膜の性能が低下することが問題となっている。
 さらに、希釈水として使用する河川水、工場廃水や下廃水の有機物成分や微生物成分は、河川水であれば降雨や季節により変動し、下廃水であれば時間帯や季節により変動し、工場廃水であれば生産量や生産工程等により変動するため、有機物成分や微生物成分が多い期間に採取した希釈水を混合した海水を半透膜処理すると、半透膜の汚染が顕著となることも問題となっている。特に、河川水、工場廃水や下廃水の半透膜濃縮水を希釈水として使用する場合、有機物成分や微生物成分が濃縮され、希釈海水を透過水と濃縮水に分離する半透膜の汚染がより顕著となるので問題となっている。
 また、河川水、工場廃水や下廃水の半透膜処理において、半透膜表面での微生物繁殖を防止するために、非特許文献1、2のように運転しながら殺菌剤を間欠的もしくは連続的に添加したり、特許文献7のように定期的に水流によって半透膜表面を洗浄するフラッシング洗浄をしたり、特許文献8のように洗浄液を造水時の原水流入の方向とは逆の方向へ流動させて半透膜表面を洗浄する逆流洗浄をしたりすると、半透膜表面から有機物成分や微生物成分を含む汚れが半透膜濃縮水中に剥離し、希釈海水を透過水と濃縮水に分離する半透膜の汚染がより顕著となり、深刻な問題となっている。
国際公開第2011/114967号 日本国特開2010-207805号公報 日本国特開2012-16695号公報 日本国特開2012-16696号公報 日本国特開2010-149100号公報 日本国特開2010-149123号公報 日本国特許第4472050号公報 日本国特開2012-139614号公報
木村拓平ら、"Innovative Biofouling Prevention on Seawater Desalination Reverse Osmosis Membrane," Proceedings of IDA World Congress, BAH01-048 (2001). Katariina Majamaaら、"Field Trial to Optimize the Use of DBNPA in WRU Application," Proceedings of IDA World Congress, DB09-076 (2009).
 本発明の目的は、海水と河川水、工場廃水、下廃水やそれら処理水との組合せのような複数種の原水から淡水を製造するための、半透膜ユニットを用いた淡水製造方法において、海水を希釈するための河川水、工場廃水、下廃水やその濃縮排水中に含まれる有機物や微生物による半透膜の汚染を効率良く防止することである。
 前記課題を解決するために、本発明は次の(1)~(16)の構成をとる。
(1)被処理水Aを第1の半透膜ユニットで処理して淡水を製造すると共に、前記第1の半透膜ユニットで処理した際に生じる第1の濃縮水Acを、溶質濃度が前記第1の濃縮水Acよりも高い被処理水Bに混合させ、その混合水を第2の半透膜ユニットで処理して淡水を製造する方法であって、前記第1の濃縮水Acを有機物/微生物除去ユニットに通し、前記第1の濃縮水Acの有機物濃度または微生物濃度を低減するとともに前記被処理水Bと混合する有機物/微生物除去ラインと、前記第1の濃縮水Acを前記有機物/微生物除去ユニットを経由せずに前記被処理水Bと混合するバイパスラインを有し、前記有機物/微生物除去ユニットの上流側における前記第1の濃縮水Ac中の有機物濃度または微生物濃度、および、前記第1の半透膜ユニットの供給水の圧力から前記第1の濃縮水Acの圧力を差し引いて算出される前記第1の半透膜ユニットの流入側と非透過側の差圧の変化の少なくとも1つに応じて、前記有機物/微生物除去ユニットへの前記第1の濃縮水Acの通水量を制御する淡水製造方法。
(2)前記第1の半透膜ユニットの流入側と非透過側の差圧の変化が所定値を超えたときは、前記差圧の変化に応じて前記有機物/微生物除去ユニットへの前記第1の濃縮水Acの通水量を制御し、前記第1の半透膜ユニットの流入側と非透過側の差圧の変化が所定値以下のときは、前記第1の濃縮水Ac中の有機物濃度または微生物濃度に応じて前記有機物/微生物除去ユニットへの前記第1の濃縮水Acの通水量を制御する、前記(1)に記載の淡水製造方法。
(3)前記被処理水Aを、前記第1の半透膜ユニットで処理する前に、前処理ユニットで処理する、前記(1)または(2)に記載の淡水製造方法。
(4)前記有機物/微生物除去ユニットを構成する処理プロセスが、前記被処理水Aにおける前記前処理ユニットを構成する処理プロセスと少なくとも1つは異なる処理プロセスを含む、前記(3)に記載の淡水製造方法。
(5)前記有機物/微生物除去ユニットの上流側に、前記第1の濃縮水Acを減圧することによって微細気泡を発生させる微細気泡発生ユニットを備え、前記第1の濃縮水Acに微細気泡を発生させる、前記(1)~(4)のいずれか1つに記載の淡水製造方法。
(6)前記有機物/微生物除去ユニットが、前記第1の濃縮水Acの水圧を利用して分離する加圧ろ過ユニットである、前記(1)~(5)のいずれか1つに記載の淡水製造方法。
(7)前記第2の半透膜ユニットのろ過材料と同素材のろ過材料を、前記有機物/微生物除去ユニットのろ過材料に使用する、前記(1)~(6)のいずれか1つに記載の淡水製造方法。
(8)前記有機物/微生物除去ユニットの処理排水と、前記第2の半透膜ユニットの濃縮水を混合し、系外へ放流する、前記(1)~(7)のいずれか1つに記載の淡水製造方法。
(9)被処理水Aを、溶質濃度が前記被処理水Aよりも高い被処理水Bを混合させ、その混合水を半透膜ユニットで処理して淡水を製造する方法であって、前記被処理水Aを有機物/微生物除去ユニットに通し、前記被処理水Aの有機物濃度または微生物濃度を低減するとともに前記被処理水Bと混合する有機物/微生物除去ラインと、前記被処理水Aを前記有機物/微生物除去ユニットを経由せずに前記被処理水Bと混合するバイパスラインを有し、前記有機物/微生物除去ユニットの上流側における前記被処理水Aの有機物濃度または微生物濃度に応じて、前記有機物/微生物除去ユニットへの前記被処理水Aの通水量を制御する淡水製造方法。
(10)前記被処理水Aを、前記被処理水Bと混合する前に、前処理ユニットで処理する、前記(9)に記載の淡水製造方法。
(11)前記有機物/微生物除去ユニットを構成する処理プロセスが、前記被処理水Aにおける前記前処理ユニットを構成する処理プロセスと少なくとも1つは異なる処理プロセスを含む、前記(10)に記載の淡水製造方法。
(12)前記半透膜ユニットのろ過材料と同素材のろ過材料を、前記有機物/微生物除去ユニットのろ過材料に使用する、前記(9)~(11)のいずれか1つに記載の淡水製造方法。
(13)前記有機物/微生物除去ユニットの処理排水と、前記半透膜ユニットの濃縮水を混合し、系外へ放流する、前記(9)~(12)のいずれか1つに記載の淡水製造方法。
(14)前記有機物濃度または微生物濃度が、総有機炭素濃度(TOC)、同化可能有機炭素(AOC)、溶解性有機炭素濃度(DOC)、化学的酸素要求量(COD)、生物学的酸素要求量(BOD)、紫外線吸収量(UV)、透明細胞外高分子粒子(TEP)、アデノシン三リン酸(ATP)、バクテリアカウントおよびクロロフィルからなる群から選択される少なくとも1つを含む、前記(1)~(13)のいずれか1つに記載の淡水製造方法。
(15)前記有機物/微生物除去ユニットが、浮上分離、沈殿分離、ラグーン処理、砂ろ過、精密ろ過、限外ろ過、ナノろ過、凝集処理、酸化処理および吸着処理からなる群から選択される少なくとも1つを含む、前記(1)~(14)のいずれか1つに記載の淡水製造方法。
(16)前記有機物/微生物除去ユニットが、前記被処理水Bの前処理ユニットを兼用する、前記(1)~(15)のいずれか1つに記載の淡水製造方法。
 本発明の淡水製造装置によれば、海水と河川水、工場廃水、下廃水やそれら処理水との組合せのような複数種の原水の混合水から淡水を製造するとき、河川水、工場廃水、下廃水やそれら処理水中に含まれる有機物や微生物による混合水を処理する半透膜の汚染を効率良く防止すること可能となる。
図1は、本発明に係る、淡水製造方法の実施形態の一例を示すフロー図である。 図2は、本発明に係る、淡水製造方法の別の実施形態の一例を示すフロー図である。 図3は、本発明に係る、淡水製造方法の更に他の実施形態の一例を示すフロー図である。 図4は、本発明に係る、淡水製造方法の更に他の実施形態の一例を示すフロー図である。 図5は、本発明に係る、淡水製造方法の更に他の実施形態の一例を示すフロー図である。 図6は、本発明に係る、淡水製造方法の更に他の実施形態の一例を示すフロー図である。 図7は、本発明に係る、淡水製造方法の更に他の実施形態の一例を示すフロー図である。 図8は、本発明に係る、淡水製造方法の更に他の実施形態の一例を示すフロー図である。
 以下、本発明の実施の形態について、図面を参照しながら説明するが、本発明はこれら図面に示す実施態様に限定されるものではない。
 図1は、本発明に係る淡水製造方法の実施形態の一例を示すフロー図である。被処理水Aは、被処理水Aタンク1に貯留された後、被処理水A供給ポンプ2で第1の前処理ユニット3に供給され、濁質除去等の前処理を施された後、第1の前処理水タンク4に一旦貯留されてから、第1の昇圧ポンプ5によって第1の半透膜ユニット6にて処理される。第1の半透膜ユニット6では、被処理水Aを前処理した半透膜被処理水を半透膜の透過成分(透過水)と非透過成分(濃縮水)に分離し、透過水(以下、「第1の透過水Ap」ということがある。)を淡水として第1の透過水タンク7に貯留する。一方、第1の半透膜ユニット6から排出した濃縮水(以下、「第1の濃縮水Ac」という。)は、水質センサー8aを備えた第1の濃縮水タンク9に一旦貯留される。
 本発明の淡水製造方法は、この水質センサー8aの検出値に応じて、有機物/微生物除去ユニット12への第1の濃縮水Acの通水量を制御する。第1の濃縮水Acの通水量を制御する手段としては、第1の濃縮水供給弁10aと第2の濃縮水供給弁10bを例示することができる。この第1の濃縮水供給弁10aおよび第2の濃縮水供給弁10bの開閉度を調整することにより、第1の濃縮水Acが第1の濃縮水ポンプ11で、有機物/微生物除去ユニット12に流れる通水量および有機物/微生物除去ユニット12をバイパスするバイパスライン13に流れる通水量が制御される。第1の濃縮水Acは、その全量がバイパスライン13を流れてもよいし、或いはその全量が有機物/微生物除去ユニット12に通され処理されてもよい。本発明において、有機物/微生物除去ユニット12およびバイパスライン13への第1の濃縮水Acの通水量は、水質センサー8aの検出値、および/または、後述する圧力センサー21より求められる第1の半透膜ユニット6の流入側と非透過側の差圧の変化に応じて制御される。
 有機物/微生物除去ユニット12またはバイパスライン13を経由したそれぞれの第1の濃縮水Acは、有機物/微生物除去ユニット12の下流側で合流し、被処理水Bを混合する混合水タンク14で一旦貯留される。
 なお、被処理水Bは、被処理水Bタンク15に貯留された後、被処理水B供給ポンプ16で第2の前処理ユニット17に供給され、濁質除去等の前処理を施された後、混合水タンク14に供給される。混合水タンク14内の第1の濃縮水Acと被処理水Bからなる混合水を第2の昇圧ポンプ18によって加圧した後、第2の半透膜ユニット19で処理し、第2の半透膜ユニット19の透過水(以下、「第2の透過水Bp」ということがある。)は第2の透過水タンク20に貯留される。なお、第1の透過水タンク7と第2の透過水タンク20の透過水は、必要に応じてpH、ランゲリア指数、殺菌剤濃度、ミネラル濃度を適宜調整した後、使用される。
 本発明の淡水製造方法が処理対象とする被処理水Aおよび被処理水Bは、浸透圧に影響を与える溶質の濃度が異なれば特に制限はなく、例えば、高濃度である海水や濃縮海水、海水よりも低濃度である河川水、地下水、下廃水、工場廃水やそれらの処理水を用いることができる。処理水としては、ろ過水および濃縮水が例示される。図1に例示するように、被処理水Aを半透膜ユニットで処理した第1の濃縮水Acを希釈水として用いると、通常系外に排出される濃縮排水を有効活用することができるため、効果的である。一方、図2と図3に例示するように、低濃度である被処理水A(例えば、下廃水)を半透膜ユニットで処理せずに、高濃度である被処理水B(例えば、海水)の希釈水として用いることで、設備投資を抑えつつ、容易に希釈海水を調製することができるため、好ましい。図2と図3における具体的な通水量の制御方法は、図2の例では、被処理水Aを第1の前処理ユニット3で処理し、得られた前処理水の水質センサー8bでの検出値に基づき、有機物/微生物除去ユニット12および/またはバイパスライン13を経由させて混合水タンク14に供給し、被処理水Bと混合することができる。また、図3の例では、被処理水Aの水質を水質センサー8cで検出し、得られた検出値に基づき、有機物/微生物除去ユニット12および/またはバイパスライン13に経由させて混合水タンク14に供給し、被処理水Bと混合することができる。いずれの場合も被処理水Aタンク1に備えた水質センサー8cまたは第1の前処理水タンク4に備えた水質センサー8bの検出値に応じて、有機物/微生物除去ユニットへの被処理水Aまたは被処理水Aの前処理水の通水量を制御することができる。図2および3において、図1と共通する符号の説明は省略する。
 前処理ユニット3は、縣濁物質や有機物を処理できるプロセスであればよく、例えば浮上分離、沈殿分離、ラグーン処理、砂ろ過、精密ろ過、限外ろ過、ナノろ過、凝集処理、酸化処理、吸着処理等を挙げることができ、複数の処理プロセスを直列に組み合わせても構わない。
 半透膜ユニット6は、小さな細孔を持つナノろ過膜、逆浸透膜等から選ぶことができる。
 有機物/微生物除去ユニット12は、除去対象物質である微生物やその代謝物、副生成物等からなる有機物成分や微生物成分を低減できる処理プロセスであればよく、例えば浮上分離、沈殿分離、ラグーン処理、砂ろ過、精密ろ過、限外ろ過、ナノろ過、凝集処理、酸化処理、吸着処理等を挙げることができる。有機物/微生物除去ユニット12は、複数の処理プロセスを直列に組み合わせても構わないし、複数の処理プロセスを並列にして、水質センサー8a,8b,8cの検出値に応じて、処理プロセスを切り替えても構わない。
 有機物/微生物除去ユニット12の除去対象物質は、微生物やその代謝物、副生成物等からなり、その有機物濃度または微生物濃度として、水処理分野で通常使用される水質指標を測定することが好ましい。有機物濃度や微生物濃度の測定に関しては、特に制約はないが、有機物濃度については、TOC(全有機炭素量)、AOC(同化可能有機炭素)、DOC(溶解性有機炭素)、COD(化学的酸素要求量)、BOD(生物学的酸素要求量)等が一般的である。微生物濃度に関しては、TEP(透明細胞外高分子粒子)、バクテリアカウント、ATP(アデノシン三リン酸)、クロロフィル等を適用することができる。
 水質センサー8a,8b,8cは前述した有機物濃度や微生物濃度を測定できるものであればよい。また水質センサー8a,8b,8cは、マニュアル測定の測定器でもオンライン測定が可能な測定器でも構わないが、水質センサー8a,8b,8cは、被処理水Aおよび第1の濃縮水Acの水質変化に瞬時に対応できる観点から、オンライン測定の測定器であることが好ましい。
 また、有機物/微生物除去ユニット12への通水量を制御する手段としては、例えば流量調整の可能な各種バルブ、三方弁を例示することができる。例えば、水質センサー8a,8b,8cがTOC計の場合、第1の濃縮水AcのTOCが5mg/l未満の場合はバイパスライン13への通水量を増加させ、TOCが5mg/l以上の場合は有機物/微生物除去ユニット12への通水量を増加させるように、第1の濃縮水供給弁10aと第2の濃縮水供給弁10bの開閉度を調整することができる。図1では、第1の濃縮水供給弁10aと第2の濃縮水供給弁10bの開閉度の調整により第1の濃縮水Acの通水量を制御しているが、第1の濃縮水供給弁に三方弁を用いて全量切替しても差し支えない。
 また、第1の半透膜ユニット6の内部で発生したバイオファウリングは、半透膜表面で過度に増殖したり、水温や水質の変化によってストレスを受けたりして、半透膜表面から有機物成分や微生物成分を含む汚れとして剥離し、第1の濃縮水Ac中に分散し、下流の第2の半透膜ユニット19を汚染する虞がある。また、殺菌剤添加や膜表面洗浄によっても剥離し、第1の濃縮水Acの水質低下を引き起こし、下流の第2の半透膜ユニット19を汚染する虞がある。この場合、バイオファウリング物質が除去(剥離)されたことによって、第1の半透膜ユニット6の供給水の圧力(供給側圧力)から、第1の半透膜ユニット6を透過せずに得られる濃縮水の圧力(非透過側圧力)を差し引いて算出される第1の半透膜ユニット6における非透過側の差圧(流路圧力損失)が低下する。すなわち、第1の半透膜ユニット6の流入側と非透過側の差圧の変化から、第1の濃縮水Acの水質変化を予測することができる。このため第1の半透膜ユニット6の流入側と非透過側の差圧の変化に応じて、第1の濃縮水供給弁10aと第2の濃縮水供給弁10bの開閉度を調整し、有機物/微生物除去ユニット12への第1の濃縮水Acの通水量を制御することができる。
 第1の半透膜ユニット6の流入側と非透過側の差圧は、図4に示すように、第1の供給水Afと第1の濃縮水Acの圧力を検知して非透過側の差圧(流路圧力損失)を示す圧力センサー21を配置することによって、測定することができる。なお、半透膜を用いた淡水製造方法において、第1の半透膜ユニットの流入側と非透過側の差圧は、バイオファウリングの形成度合いをモニタリングするための重要なパラメータであって、半透膜を用いた淡水製造装置に半透膜ユニットの流入側と非透過側の差圧を検知する圧力センサーが設置されていることが多く、第1の半透膜ユニットの流入側と非透過側の差圧の変化に応じて、第1の濃縮水供給弁10aと第2の濃縮水供給弁10bの開閉度を制御することで、第1の濃縮水Acの水質変化をモニタリングする水質センサー8aを省くことができ、設備費を抑えることができるため好ましい。
 第1の半透膜ユニット6の流入側と非透過側の差圧の変化については、例えば前記差圧が10kPa以上低下した場合、すなわち、半透膜表面のバイオフィルムが剥離した場合に、有機物/微生物除去ユニット12への通水量を増加させることが好ましく、20kPa以上低下した場合に、有機物/微生物除去ユニット12への通水量をさらに増加させること、或いは有機物/微生物除去ユニット12へ第1の濃縮水Acの全量を通水することがより好ましい。また、例えば、第1の半透膜ユニット6の被処理水に殺菌剤が添加されている場合は、無添加系と比較し、半透膜ユニット6の流入側と非透過側の差圧の低下が小さい場合でも、有機物/微生物除去ユニット12への通水量を増加させるように、第1の濃縮水供給弁10aと第2の濃縮水供給弁10bの開閉度を調整することができる。
 本発明の淡水製造方法は、図1に示すように、水質センサー8aの検出値に応じて、有機物/微生物除去ユニット12への第1の濃縮水Acの通水量を制御するか、図4に示すように、半透膜ユニット6の第1の供給水Afの圧力から第1の濃縮水Acの圧力を差し引いて算出される半透膜ユニット6の流入側と非透過側の差圧の変化に応じて、有機物/微生物除去ユニット12への第1の濃縮水Acの通水量を制御するか、或いは図5に示すように、水質センサー8aの検出値および半透膜ユニット6の流入側と非透過側の差圧の変化に応じて、有機物/微生物除去ユニット12への第1の濃縮水Acの通水量を制御することができる。
 図5に示した淡水製造方法では、上記の通り水質センサーおよび圧力センサーの両方の検出値に基づき、第1の濃縮水Acの有機物/微生物除去ユニット12への通水量を制御することができる。水質センサー8aおよび圧力センサー21を同時に使用することができる。このとき、圧力センサー21で検出された第1の半透膜ユニットの流入側と非透過側の差圧の変化を優先して有機物/微生物除去ユニットへの通水量を制御することができる。例えば前記差圧の変化が10kPa未満のときは水質センサー8aの検出値、前記差圧の変化が10kPa以上のときは圧力センサーの検出値、に応じて有機物/微生物除去ユニットへの第1の濃縮水Acの通水量を制御することができる。
 なお、第1の濃縮水Ac中の有機物や微生物は、第1の前処理ユニット3では除去しきれなかった有機物や微生物も含まれることから、有機物/微生物除去ユニット12は第1の前処理ユニット3と少なくとも1つは異なる処理プロセスを含んでいることが好ましい。例えば、第1の前処理ユニット3が砂ろ過や精密ろ過、限外ろ過等の膜ろ過といった固液分離の場合は、有機物/微生物除去ユニット12でオゾンや生物処理といった酸化処理を行い、固液分離では除去できなかった有機物や微生物を分解除去してもよいし、凝集剤や吸着剤を添加して有機物や微生物を除去してもよい。例えば図1に示すように、有機物/微生物除去ユニット12の上流側に、凝集剤タンクあるいは吸着剤タンク22aおよび凝集剤添加ポンプあるいは吸着剤添加ポンプ23aを配置することにより、第1の濃縮水Acに凝集剤や吸着剤を添加して有機物や微生物を分解除去することができる。
 さらに、有機物/微生物除去ユニット12の設備費削減の観点から、図6に例示するように、被処理水Bを処理する第2の前処理ユニット17を有機物/微生物除去ユニットとして兼用することが好ましい。図6において、被処理水Aは、被処理水Aタンク1に貯留された後、被処理水A供給ポンプ2で第1の前処理ユニット3に供給し、前処理を施された後、第1の前処理水タンク4に一旦貯留されてから、第1の昇圧ポンプ5によって第1の半透膜ユニット6にて処理される。第1の半透膜ユニット6では、半透膜の透過水Apを淡水として第1の透過水タンク7に貯留する。一方、第1の半透膜ユニット6から排出された第1の濃縮水Acは、水質センサー8を備えた配管に流れ出す。図7の例では、第1の濃縮水タンクおよび第1の濃縮水ポンプを配置しておらず第1の濃縮水Acがもつ圧力により、水質センサー8の検出値に応じ、第1の濃縮水供給弁10aと第2の濃縮水供給弁10bの開閉度が調整され、第2の前処理ユニット17または被処理水Bを混合する混合水タンク14に供給される。ここで第2の前処理ユニット17の上流側に、凝集剤タンクあるいは吸着剤タンク22bおよび凝集剤添加ポンプあるいは吸着剤添加ポンプ23bを配置することにより、第1の濃縮水Acに凝集剤や吸着剤を添加して有機物や微生物を分解除去することができる。また被処理水Bは、被処理水Bタンク15に貯留された後、被処理水B供給ポンプ16で第2の前処理ユニット17に供給し、上述した第1の濃縮水Acの少なくとも一部と共に前処理を施された後、混合水タンク14に供給される。混合水タンク14内の第1の濃縮水Acと被処理水Bからなる混合水を第2の昇圧ポンプ18によって加圧した後、第2の半透膜ユニット19で処理し、第2の半透膜ユニット19の透過水(第2の透過水Bp)は第2の透過水タンク20に貯留される。
 本発明の淡水製造方法において、有機物/微生物除去ユニットは、好ましくは浮上分離、沈殿分離、ラグーン処理、砂ろ過、精密ろ過、限外ろ過、ナノろ過、凝集処理、酸化処理および吸着処理からなる群から選択される少なくとも1つを含む処理ユニットである。このうち、浮上分離については、軽質油分や界面活性剤が多い場合に適しており、マイクロバブルやナノバブルといった微細気泡を加圧導入する加圧浮上分離が効果的である。微細気泡は圧縮空気を吹き込み発生させてもよく、加圧水を急減圧して発生させてもよい。さらに、広大な敷地を確保できるのであれば、上層部で好気性処理が、下層部で嫌気性処理が同時に行われるラグーン処理が、第1の濃縮水Ac中の有機物や微生物を無動力で低減できるので好ましい。ラグーン処理では、通常1.2~2.5mの水深を有する貯留池で、5~30日間程度滞留させることが好ましい。
 砂ろ過の場合は、自然に流下する方式の重力式ろ過を適用することも可能であり、加圧タンクの中に砂を充填した加圧式ろ過を適用することも可能である。充填する砂も、単一成分の砂を適用することが可能であるが、例えば、アンスラサイト、珪砂、ガーネット、軽石等を組み合わせて、ろ過効率を高めることが可能である。また、第1の濃縮水Acを透水層に通水し、地中に存在する光合成菌、酵母菌、乳酸菌、糸状菌、放線菌等からなる嫌気性および好気性の有用微生物の浄化分解機能を利用して、第1の濃縮水Acの有機物濃度または微生物濃度を低減させ、その後、地中の帯水層に貯まったものを希釈水としても構わない。
 精密ろ過膜や限外ろ過膜については、特に制約はなく、平膜、中空糸膜、管状型膜、プリーツ型、その他いかなる形状のものも適宜用いることができる。膜の素材についても、特に限定されるものではなく、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリテトラフルオロエチレン、ポリビニルアルコール、酢酸セルロース、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーや、セラミック等の無機素材を用いることができる。また、ろ過方式にしても供給水を加圧してろ過する加圧ろ過方式や透過側を吸引してろ過する吸引ろ過方式のいずれも適用可能である。さらに、加圧浮上と砂ろ過を併せた加圧浮上ろ過や、浸漬式膜ろ過ユニットを適用することも可能である。とくに、吸引ろ過方式の場合は、凝集沈殿槽や生物処理槽に精密ろ過膜や限外ろ過膜を浸漬してろ過する、いわゆる凝集膜ろ過や膜利用活性汚泥法(MBR)を適用することも好ましい。
 ナノろ過膜や逆浸透膜といった半透膜については、膜の素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマー等の高分子素材を使用することができる。また、その膜構造は、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い機能層を有する複合膜のどちらでもよい。しかし、第2の半透膜ユニット19を半透膜に吸着し易い成分から保護する観点では、有機物/微生物除去ユニットのろ過材料が、第2の半透膜ユニットのろ過材料と同素材であることが好ましい。
 有機物/微生物除去ユニットを構成する、凝集処理とは、凝集剤を添加して水中の有機物や微生物をフロック化し、固液分離を効率良くするための処理である。この場合、凝集処理した第1の濃縮水Acは、斜向板等を用いて沈降させた後、砂ろ過を行ったり、精密ろ過や限外ろ過を行ったりすることによって、第2の半透膜ユニットを通過させるのに適した供給水とすることができる。凝集剤としては、大きくは無機系凝集剤と有機系高分子凝集剤に分類され、無機系凝集剤には硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PACl)等のアルミ系凝集剤や、塩化第二鉄、ポリ硫酸第二鉄等の鉄系凝集剤がある。また、高分子有機系凝集剤にはアミノアルキル(メタ)アクリレート4級塩(共)重合体等のカチオン系高分子凝集剤、アクリルアミド/アクリル酸ソーダ共重合体等のアニオン系高分子凝集剤、ポリアクリルアミド等の非イオン系高分子凝集剤がある。これらの凝集剤は、単独で用いられる場合と、凝集助剤として無機系凝集剤と併用して用いられる場合とがある。また、無機系凝集剤よりも有機系高分子凝集剤を用いた方がスラッジの発生を抑制できることから、無機系凝集剤を単独で用いるよりも、無機系凝集剤と有機系高分子凝集剤とを併用することが好ましい。また、凝集は被処理水のpHによって作用効果が大きくことなることから、苛性ソーダ、石灰、重炭酸ソーダ等のアルカリや塩酸、硫酸等の酸を用いて、pHを適正な範囲に調整することが好ましい。
 酸化処理としては、生物処理、オゾンや紫外線またはガンマ線照射、フッ素や過酸化水素添加、触媒処理等が挙げられ、少なくとも2つを組み合わせて行う促進酸化処理を適用することも可能である。環境への影響を鑑みるとオゾンや紫外線照射、過酸化水素添加、触媒処理が好ましい。触媒としては、オゾンや過酸化水素と組み合わせて酸化力を高めることができる鉄、銅、マンガン等の触媒や、いわゆる光触媒機能を有する金属酸化物、例えば酸化チタン等を挙げることができる。促進酸化処理とは、AOP(=Advance Oxidance Process)と称され、オゾンや紫外線、過酸化水素、触媒(光触媒等)等を併用して、酸化力の大きなヒドロキシラジカルを水中に生成させ、有機物を分解する方法である。さらに、この促進酸化処理の特徴は、2次廃棄物の発生がなく、処理効果が有機物の分解に加えて、脱臭、脱色や殺菌等できることである。促進酸化処理の組み合わせとしては、酸化分解に寄与するヒドロキシラジカルをより多く生成する組み合わせが好ましく、過酸化水素と紫外線、オゾンと過酸化水素、オゾンと紫外線の組み合わせがより好ましい。そして、オゾン、紫外線、過酸化水素の3つを組み合わせる場合には、さらに酸化分解を効率良く行うことができるので好ましい。
 吸着処理は、吸着剤を添加することにより、水中の分子量数百以下の比較的小さな有機物を固体表面に吸着させる処理である。吸着剤としては、活性炭、イオン交換樹脂、ゼオライト等が挙げられ、比較的取り扱いが容易であるという観点から、粉末活性炭を用いることが好ましい。吸着剤が粒状の場合にはカラム充填して通水するように構成し、吸着剤が粉末の場合には第1の濃縮水Acに直接添加し、沈殿分離や膜ろ過のような固液分離と組み合わせて使用するとよい。また、活性炭やイオン交換樹脂等の吸着剤に体表された吸着剤フィルターを使用してもよい。
 ところで、河川水、工場廃水や下廃水のような低塩濃度水の場合、半透膜ユニット6として低圧用逆浸透膜やナノろ過膜のような半透膜が適用されるが、浸透圧が低いため高回収率運転することができ、結果的に第1の濃縮水Acの水量が少なくなる。そのため、半透膜ユニットの濃縮水を排出した下流側にエネルギー回収ユニットを設置しても回収できるエネルギーは小さく、エネルギー回収ユニットのコストパフォーマンスが小さくなり、経済的に見合わない場合が多い。このため、低塩濃度水を処理する半透膜ユニット6では通常エネルギー回収はされずに、系外に排出されることが多い。そこで、図7に例示するように、第1の濃縮水Acの有機物濃度または微生物濃度を低減する有機物/微生物除去ユニットとして、濃縮水圧でろ過できる加圧ろ過ユニット12aが第1の半透膜ユニット6と直結されていると、無動力で有機物濃度または微生物濃度を低減できるので好ましい。加圧ろ過ユニット12aに関しては、カートリッジフィルター、ディスクフィルター、精密ろ過、限外ろ過、砂ろ過、生物担体ろ過、ナノフィルター、砂ろ過、プリコートフィルター、活性炭やイオン交換樹脂に体表された吸着剤フィルター等を用いることができる。
 また、河川水、工場廃水や下廃水のような低塩濃度な水を半透膜処理した場合、第1の濃縮水Acは0.8~1.5MPa程度の濃縮水圧を保持している。このため、第1の濃縮水Acの圧力を急減圧させ第1の濃縮水Ac中に微細気泡を発生させる微細気泡発生ユニット24を備えることが好ましい。微細気泡発生ユニット24により、第1の半透膜ユニット6の濃縮水中に微細気泡を発生させることで、有機物/微生物除去ユニットが加圧浮上分離や生物処理の場合、微細気泡を発生させるためのブロアーやコンプレッサー等のエネルギーを削減することができ好ましく、また、有機物/微生物除去ユニットがクロスフロー方式を採用した膜分離ユニットの場合、微細気泡で膜表面を洗浄しながら透過水と濃縮水に分離することができ好ましい。第1の濃縮水Acの圧力を急減圧させる微細気泡発生ユニット24としては、例えばアスピレーター等を例示することができる。微細気泡発生ユニット24を配置する位置は、濃縮水の圧力が掛かっている配管であれば、いずれの位置でも構わないが、図7に例示するように、第1の濃縮水Acが、その濃縮水圧を利用して、有機物/微生物除去ユニット(加圧ろ過ユニット12a)で分離される場合、分離に必要なエネルギーとのバランスを維持しつつ、微細気泡を発生させる必要がある。
 本発明では、有機物/微生物除去ユニットから有機物や微生物が多く含有した物理洗浄排水や、クロスフロー方式を採用した膜分離ユニットの濃縮排水が排出されることから、図8に例示するように、加圧ろ過ユニット12aの洗浄排水や濃縮排水25等の処理排水と第2の半透膜ユニット19の濃縮水Bcと混合し、放流ライン26を通して、系外へ放流することで、有機物や微生物が多く含有した有機物/微生物除去ユニットの洗浄排水や濃縮排水を希釈できる共に、第2の半透膜ユニット19の高濃度の濃縮水Bcも希釈できることから、環境に優しく好ましい。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2013年3月22日出願の日本特許出願(特願2013-059548)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、海水と河川水、地下水または廃水処理水との組合せのような複数種の原水から淡水を製造する、半透膜ユニットを用いた淡水の製造方法および淡水製造方法、さらに詳しくは、濃縮排水中に含まれる有機物や微生物による半透膜の汚染を効率良く防止する淡水製造方法を提供する。
1:被処理水Aタンク
2:被処理水A供給ポンプ
3:第1の前処理ユニット
4:第1の前処理水タンク
5:第1の昇圧ポンプ
6:第1の半透膜ユニット
7:第1の透過水タンク
8、8a、8b、8c:水質センサー
9:第1の濃縮水タンク
10a:第1の濃縮水供給弁
10b:第2の濃縮水供給弁
11:第1の濃縮水ポンプ
12:有機物/微生物除去ユニット
12a:加圧ろ過ユニット
13:バイパスライン
14:混合水タンク
15:被処理水Bタンク
16:被処理水B供給ポンプ
17:第2の前処理ユニット
18:第2の昇圧ポンプ
19:第2の半透膜ユニット
20:第2の透過水タンク
21:圧力センサー
22a、22b:凝集剤タンクあるいは吸着剤タンク
23a、23b:凝集剤添加ポンプあるいは吸着剤添加ポンプ
24:微細気泡発生ユニット
25:有機物/微生物除去ユニット洗浄排水ラインあるいは濃縮排水ライン
26:放流ライン

Claims (16)

  1.  被処理水Aを第1の半透膜ユニットで処理して淡水を製造すると共に、前記第1の半透膜ユニットで処理した際に生じる第1の濃縮水Acを、溶質濃度が前記第1の濃縮水Acよりも高い被処理水Bに混合させ、その混合水を第2の半透膜ユニットで処理して淡水を製造する方法であって、
     前記第1の濃縮水Acを有機物/微生物除去ユニットに通し、前記第1の濃縮水Acの有機物濃度または微生物濃度を低減するとともに前記被処理水Bと混合する有機物/微生物除去ラインと、
     前記第1の濃縮水Acを前記有機物/微生物除去ユニットを経由せずに前記被処理水Bと混合するバイパスラインを有し、
     前記有機物/微生物除去ユニットの上流側における前記第1の濃縮水Ac中の有機物濃度または微生物濃度、および、前記第1の半透膜ユニットの供給水の圧力から前記第1の濃縮水Acの圧力を差し引いて算出される前記第1の半透膜ユニットの流入側と非透過側の差圧の変化の少なくとも1つに応じて、前記有機物/微生物除去ユニットへの前記第1の濃縮水Acの通水量を制御する淡水製造方法。
  2.  前記第1の半透膜ユニットの流入側と非透過側の差圧の変化が所定値を超えたときは、前記差圧の変化に応じて前記有機物/微生物除去ユニットへの前記第1の濃縮水Acの通水量を制御し、前記第1の半透膜ユニットの流入側と非透過側の差圧の変化が所定値以下のときは、前記第1の濃縮水Ac中の有機物濃度または微生物濃度に応じて前記有機物/微生物除去ユニットへの前記第1の濃縮水Acの通水量を制御する、請求項1に記載の淡水製造方法。
  3.  前記被処理水Aを、前記第1の半透膜ユニットで処理する前に、前処理ユニットで処理する、請求項1または請求項2に記載の淡水製造方法。
  4.  前記有機物/微生物除去ユニットを構成する処理プロセスが、前記被処理水Aにおける前記前処理ユニットを構成する処理プロセスと少なくとも1つは異なる処理プロセスを含む、請求項3に記載の淡水製造方法。
  5.  前記有機物/微生物除去ユニットの上流側に、前記第1の濃縮水Acを減圧することによって微細気泡を発生させる微細気泡発生ユニットを備え、前記第1の濃縮水Acに微細気泡を発生させる、請求項1~請求項4のいずれか1項に記載の淡水製造方法。
  6.  前記有機物/微生物除去ユニットが、前記第1の濃縮水Acの水圧を利用して分離する加圧ろ過ユニットである、請求項1~請求項5のいずれか1項に記載の淡水製造方法。
  7.  前記第2の半透膜ユニットのろ過材料と同素材のろ過材料を、前記有機物/微生物除去ユニットのろ過材料に使用する、請求項1~請求項6のいずれか1項に記載の淡水製造方法。
  8.  前記有機物/微生物除去ユニットの処理排水と、前記第2の半透膜ユニットの濃縮水を混合し、系外へ放流する、請求項1~請求項7のいずれか1項に記載の淡水製造方法。
  9.  被処理水Aを、溶質濃度が前記被処理水Aよりも高い被処理水Bを混合させ、その混合水を半透膜ユニットで処理して淡水を製造する方法であって、
     前記被処理水Aを有機物/微生物除去ユニットに通し、前記被処理水Aの有機物濃度または微生物濃度を低減するとともに前記被処理水Bと混合する有機物/微生物除去ラインと、
     前記被処理水Aを前記有機物/微生物除去ユニットを経由せずに前記被処理水Bと混合するバイパスラインを有し、
     前記有機物/微生物除去ユニットの上流側における前記被処理水Aの有機物濃度または微生物濃度に応じて、前記有機物/微生物除去ユニットへの前記被処理水Aの通水量を制御する淡水製造方法。
  10.  前記被処理水Aを、前記被処理水Bと混合する前に、前処理ユニットで処理する、請求項9に記載の淡水製造方法。
  11.  前記有機物/微生物除去ユニットを構成する処理プロセスが、前記被処理水Aにおける前記前処理ユニットを構成する処理プロセスと少なくとも1つは異なる処理プロセスを含む、請求項10に記載の淡水製造方法。
  12.  前記半透膜ユニットのろ過材料と同素材のろ過材料を、前記有機物/微生物除去ユニットのろ過材料に使用する、請求項9~請求項11のいずれか1項に記載の淡水製造方法。
  13.  前記有機物/微生物除去ユニットの処理排水と、前記半透膜ユニットの濃縮水を混合し、系外へ放流する、請求項9~請求項12のいずれか1項に記載の淡水製造方法。
  14.  前記有機物濃度または微生物濃度が、総有機炭素濃度(TOC)、同化可能有機炭素(AOC)、溶解性有機炭素濃度(DOC)、化学的酸素要求量(COD)、生物学的酸素要求量(BOD)、紫外線吸収量(UV)、透明細胞外高分子粒子(TEP)、アデノシン三リン酸(ATP)、バクテリアカウントおよびクロロフィルからなる群から選択される少なくとも1つを含む、請求項1~請求項13のいずれか1項に記載の淡水製造方法。
  15.  前記有機物/微生物除去ユニットが、浮上分離、沈殿分離、ラグーン処理、砂ろ過、精密ろ過、限外ろ過、ナノろ過、凝集処理、酸化処理および吸着処理からなる群から選択される少なくとも1つを含む、請求項1~請求項14のいずれか1項に記載の淡水製造方法。
  16.  前記有機物/微生物除去ユニットが、前記被処理水Bの前処理ユニットを兼用する、請求項1~請求項15のいずれか1項に記載の淡水製造方法。
PCT/JP2014/057615 2013-03-22 2014-03-19 淡水製造方法 WO2014148580A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201507830XA SG11201507830XA (en) 2013-03-22 2014-03-19 Fresh water production process
CN201480017159.2A CN105073652A (zh) 2013-03-22 2014-03-19 淡水生产方法
JP2014530045A JP6194887B2 (ja) 2013-03-22 2014-03-19 淡水製造方法
ZA2015/07065A ZA201507065B (en) 2013-03-22 2015-09-22 Fresh water production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-059548 2013-03-22
JP2013059548 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148580A1 true WO2014148580A1 (ja) 2014-09-25

Family

ID=51580252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057615 WO2014148580A1 (ja) 2013-03-22 2014-03-19 淡水製造方法

Country Status (5)

Country Link
JP (1) JP6194887B2 (ja)
CN (1) CN105073652A (ja)
SG (1) SG11201507830XA (ja)
WO (1) WO2014148580A1 (ja)
ZA (1) ZA201507065B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146670A (ja) * 2019-03-15 2020-09-17 栗田工業株式会社 排水処理装置
WO2021049621A1 (ja) * 2019-09-11 2021-03-18 東洋紡株式会社 濃縮システム
JP2021045736A (ja) * 2019-09-11 2021-03-25 東洋紡株式会社 濃縮システム
CN114349203A (zh) * 2021-12-02 2022-04-15 康沃胜鑫(广州)技术有限公司 一种微纳米旋流直饮水机
WO2022181047A1 (ja) * 2021-02-26 2022-09-01 横河電機株式会社 水処理方法、制御装置、及び水処理システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098009B1 (ko) * 2018-02-13 2020-04-07 한국산업기술시험원 농축수를 재활용하는 역삼투막 정수처리 시스템
CN114057356B (zh) * 2021-11-19 2023-11-07 福建省环境保护设计院有限公司 用生物技术和膜技术处理工业废水的装置及其处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149100A (ja) * 2008-11-28 2010-07-08 Kobelco Eco-Solutions Co Ltd 海水淡水化方法および海水淡水化装置
JP2010207805A (ja) * 2009-02-14 2010-09-24 Kobelco Eco-Solutions Co Ltd 淡水生成装置および淡水生成方法
WO2011077815A1 (ja) * 2009-12-25 2011-06-30 東レ株式会社 造水システムおよびその運転方法
JP4933679B1 (ja) * 2011-10-18 2012-05-16 株式会社神鋼環境ソリューション 海水淡水化方法および海水淡水化装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG170106A1 (en) * 2008-11-28 2011-04-29 Kobelco Eco Solutions Co Ltd Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
AU2011291837B2 (en) * 2010-08-17 2015-05-14 Toray Industries, Inc. Fresh water producing apparatus and method for operating same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149100A (ja) * 2008-11-28 2010-07-08 Kobelco Eco-Solutions Co Ltd 海水淡水化方法および海水淡水化装置
JP2010207805A (ja) * 2009-02-14 2010-09-24 Kobelco Eco-Solutions Co Ltd 淡水生成装置および淡水生成方法
WO2011077815A1 (ja) * 2009-12-25 2011-06-30 東レ株式会社 造水システムおよびその運転方法
JP4933679B1 (ja) * 2011-10-18 2012-05-16 株式会社神鋼環境ソリューション 海水淡水化方法および海水淡水化装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020146670A (ja) * 2019-03-15 2020-09-17 栗田工業株式会社 排水処理装置
WO2021049621A1 (ja) * 2019-09-11 2021-03-18 東洋紡株式会社 濃縮システム
JP2021045736A (ja) * 2019-09-11 2021-03-25 東洋紡株式会社 濃縮システム
WO2022181047A1 (ja) * 2021-02-26 2022-09-01 横河電機株式会社 水処理方法、制御装置、及び水処理システム
JP2022131800A (ja) * 2021-02-26 2022-09-07 横河電機株式会社 水処理方法、制御装置、及び水処理システム
JP7342901B2 (ja) 2021-02-26 2023-09-12 横河電機株式会社 水処理方法、制御装置、及び水処理システム
CN114349203A (zh) * 2021-12-02 2022-04-15 康沃胜鑫(广州)技术有限公司 一种微纳米旋流直饮水机

Also Published As

Publication number Publication date
ZA201507065B (en) 2016-12-21
JP6194887B2 (ja) 2017-09-13
CN105073652A (zh) 2015-11-18
SG11201507830XA (en) 2015-10-29
JPWO2014148580A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
Warsinger et al. A review of polymeric membranes and processes for potable water reuse
JP6194887B2 (ja) 淡水製造方法
Ang et al. A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants
Jamaly et al. A short review on reverse osmosis pretreatment technologies
Tansel New technologies for water and wastewater treatment: A survey of recent patents
Konvensional A review of oilfield wastewater treatment using membrane filtration over conventional technology
EP2276705B1 (en) Environmentally friendly hybrid microbiological control technologies for cooling towers
KR100876347B1 (ko) 막 모듈 및 수처리 시스템
Kim et al. Application of microfiltration systems coupled with powdered activated carbon to river water treatment
JP2009172462A (ja) 水質改質装置、及び水処理システム、並びに排水の再利用システム
US20190135671A1 (en) Systems and Methods for Multi-Stage Fluid Separation
Priyanka et al. Hybrid membrane technology: an alternative to industrial wastewater treatment
JP6210063B2 (ja) 造水方法および造水装置
JP5055746B2 (ja) 膜利用による水循環使用システム
KR100711259B1 (ko) 정화처리 장치
US20140076808A1 (en) Sanitary cold water treatment systems and methods
Huang et al. Pilot-plant study of a high recovery membrane filtration process for drinking water treatment
Cartwright Membrane Separation Technologies–Practical Applications
WO2011155282A1 (ja) 淡水生成装置および淡水生成方法
WO2013061057A1 (en) Water treatment methods and systems
Akinyemi et al. Advancements in sustainable membrane technologies for enhanced remediation and wastewater treatment: A comprehensive review
Pellegrin et al. Membrane processes
Adams et al. Operators Need to Know Advanced Treatment Processes.
Pellegrin et al. Membrane processes
Guo et al. Fouling Control of Membranes with Pretreatment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017159.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014530045

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770546

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201505887

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14770546

Country of ref document: EP

Kind code of ref document: A1