WO2014147939A1 - 生体信号計測システム、装置、方法およびそのプログラム - Google Patents

生体信号計測システム、装置、方法およびそのプログラム Download PDF

Info

Publication number
WO2014147939A1
WO2014147939A1 PCT/JP2014/000587 JP2014000587W WO2014147939A1 WO 2014147939 A1 WO2014147939 A1 WO 2014147939A1 JP 2014000587 W JP2014000587 W JP 2014000587W WO 2014147939 A1 WO2014147939 A1 WO 2014147939A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
biological information
respiration
wave
impedance
Prior art date
Application number
PCT/JP2014/000587
Other languages
English (en)
French (fr)
Inventor
ジェッフリー ボナル フェルナンド
幸治 森川
小澤 順
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014533734A priority Critical patent/JP5632570B1/ja
Publication of WO2014147939A1 publication Critical patent/WO2014147939A1/ja
Priority to US14/618,520 priority patent/US9980664B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0809Detecting, measuring or recording devices for evaluating the respiratory organs by impedance pneumography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/091Measuring volume of inspired or expired gases, e.g. to determine lung capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/355Detecting T-waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals

Definitions

  • This application relates to a technique for extracting respiration. More specifically, the present application relates to a technique for measuring the impedance of a living body using a plurality of electrodes attached to a user's body and extracting information related to respiration.
  • Basic electrical information representing the physical state of the user includes an electroencephalogram (EEG) related to the brain and an electrocardiogram (ECG) related to the motion of the heart.
  • EEG electroencephalogram
  • ECG electrocardiogram
  • the electrocardiogram is acquired as basic biological information (vital sign) at a hospital, for example.
  • the electrocardiogram can also be obtained by using a portable electrocardiograph called a Holter-type electrocardiograph when a cardiac disease is suspected.
  • a Holter type electrocardiograph it is possible to record an electrocardiogram at a place other than a hospital such as a home for a long time, for example, 24 hours.
  • miniaturization of this Holter type electrocardiograph has progressed, and a user can measure an electrocardiogram more easily.
  • Patent Document 1 discloses a method for removing a respiratory component from chest impedance.
  • Fig. 1 (a) shows the basic components of an electrocardiogram. Each wave portion of QRS in FIG. 1A represents ventricular excitement.
  • FIG. 1B shows an example of a waveform obtained as an electrocardiogram.
  • an electrocardiogram component is estimated by a linear combination model of a harmonic cosine component and a sine wave component having an RR interval of the electrocardiogram as a fundamental wave. This method is called the SFLC (Scaled Fourier Linear Combiner) method.
  • SFLC Seled Fourier Linear Combiner
  • Non-Patent Document 1 discloses a technique for acquiring a respiratory component by subtracting an electrocardiogram component estimated by the SFLC method from a chest impedance using the method described in Patent Document 1.
  • FIG. 2 shows a concept of a technique for extracting a respiratory component (c) by subtracting a component (b) derived from an electrocardiogram from a chest impedance (a), which has been conventionally used. Even if there is a change in respiration, it is reflected in the waveform of the extracted respiration component.
  • FIG. 3 (a) and 3 (b) show impedance changes when there is a change in respiration.
  • FIG. 3A shows a change in impedance when normal breathing occurs after normal breathing and normal breathing occurs thereafter. It can be seen that the amplitude itself decreases in the hypopnea interval.
  • FIG.3 (b) shows the impedance change at the time of making the state of obstructive apnea after normal breathing. In this case, it can be seen that the impedance amplitude itself disappears in the apnea section.
  • the impedance change reflects not only the respiration rate but also the expiratory volume.
  • Non-Patent Document 2 discloses a technique for extracting a respiratory component by taking an envelope of an R wave on the time axis.
  • Yoshifumi Yasuda et.al. “Modified thoracic impedance plethysmography to monitor sleep apnea syndromes”, SleepMedicine, Vol.6, pp.215-224 (2005) Ciara O'Brien, Conor Heneghan, “A comparison of algorithms for estimation of a respiratory signal from the surface electrocardiogram”, ComputersinBiologyandMedicine, Vol.37, Issue 3, pp.305-314 (2007)
  • the exemplary embodiment of the present disclosure provides a technique for acquiring biological information related to respiration.
  • an aspect of the present disclosure includes a plurality of electrodes, a current source connected to the plurality of electrodes to supply current, and a measurement unit that measures impedance from a potential difference between the plurality of electrodes.
  • a detection unit for detecting a specific peak value from the time series data of the impedance, an envelope generation unit for generating an envelope of the specific peak value, and outputting the envelope information as biological information
  • a biological information measurement system comprising: an output unit configured to output a component derived from an electrocardiogram based on the impedance time-series data when the plurality of electrodes are provided on the chest of the user. The T-wave peak value is detected, and the output unit includes a biological information measurement system that outputs the envelope information as biological information related to the respiratory component of the user.
  • the respiratory component can be extracted from the chest impedance, the electrocardiogram and the respiratory component can be easily measured.
  • the user's respiration rate and respiration rate can be estimated from the measured respiration components and presented to the user.
  • the chest impedance is measured with a low current of the order of several nA, thereby extracting a respiratory component. Therefore, current consumption can be reduced, and it is possible to operate a battery-driven mobile device for a long time and acquire biological information.
  • (A) shows the basic component of an electrocardiogram
  • (b) is a figure which shows the example of the waveform obtained as an electrocardiogram. It is a figure which shows the concept of the method of extracting the respiratory component from the chest impedance conventionally used.
  • (A) And (b) is a figure which shows an impedance change when there exists a change in respiration.
  • (A) And (b) is a figure which shows the result of applying the method of a nonpatent literature 1 with respect to the chest impedance measured by the electric current of 10 nA.
  • (A)-(d) is a figure which shows the result of applying the method of a nonpatent literature 2 to measured ECG.
  • FIG. 6A is a diagram illustrating a schematic circuit configuration of the two-terminal method
  • FIG. 6B is a diagram illustrating a schematic circuit configuration of the four-terminal method.
  • 1 is a diagram illustrating a configuration of a biological information measurement system 100 according to Embodiment 1.
  • FIG. (A)-(c) is a figure which shows the implementation example of the biological signal measuring device 200 of this embodiment. It is a figure which shows the relationship of a user's chest, the electrodes 2a and 2b for electric potential measurement, the electrodes 3a and 3b for electric current application, and the mounting position of a chest. It is a figure which shows a user's chest. It is a flowchart which shows the whole processing flow of the biometric information measurement system 100 of embodiment.
  • (A)-(d) is a figure which shows the result of having calculated
  • (A)-(d) is a figure which shows the example of a display on the screen by the respiration output part 9.
  • FIG. (A) And (b) is a figure which shows the example of a display on the screen by the respiration output part 9.
  • FIG. It is a figure which shows the ratio of the respiratory component in the chest impedance when measuring with various electric current values, and an electrocardiogram component.
  • FIG. 1 It is a figure which shows the electric current value in case the respiration component / electrocardiographic component becomes 1 calculated
  • FIG. It is a flowchart which shows the processing flow of the respiration rate estimation for every estimation time. It is a figure which shows the estimation result of a respiration rate. It is a figure which shows the structure of the biometric information measurement system 600 by Embodiment 3.
  • FIG. 10 is a flowchart illustrating a processing flow of the entire biological information measurement system 600 according to the third embodiment. It is a flowchart which shows the processing flow of the respiration rate estimation for every estimation time. It is a figure which shows the result of having estimated the respiration rate with respect to the extraction result shown by FIG.17 (b).
  • (A) shows the measurement result of a T wave
  • (b) is a figure which shows the result of having calibrated the T wave with respect to the waveform shown by (a).
  • FIG. 10 is a flowchart showing an overall processing flow of a biological information measuring system 700 according to Embodiment 4. It is a flowchart which shows the processing flow of T wave calibration. It is a figure which shows a calibration result. It is a figure which shows the example of the hardware constitutions of a biosignal measurement system. It is a figure which shows the structural example of another hardware.
  • the inventors of the present application have examined the problems existing in the method of separating respiratory information from the information of ECG so far.
  • Non-Patent Document 1 a current of several hundred microamperes ( ⁇ A), for example, 350 ⁇ A is passed in order to measure the chest impedance. If a power source can be secured stably at all times, there is no problem in continuing to flow such a current. On the other hand, if a current of such a magnitude is applied to a mobile measuring instrument driven by a battery, the lifetime cannot be sufficiently secured due to the problem of battery capacity. In order to ensure the life of the battery, it is necessary to measure the impedance with a lower current (for example, a current of several nanoamperes (nA)).
  • a lower current for example, a current of several nanoamperes (nA)
  • FIG. 4 (a) and 4 (b) show the results of applying the method of Non-Patent Document 1 to the chest impedance measured with a current of 10 nA.
  • 4A shows the measured chest impedance
  • FIG. 4B shows the extracted respiratory component.
  • the subjects were asked to take four breathing modes continuously during the measurement: Phase 1: 15 breaths with a period of 2 seconds (normal breathing) Phase 2: 8 breaths with a period of 4 seconds (deep breath) Phase 3: Stop breathing Phase 4: 14 breaths with a period of 2 seconds (normal breathing)
  • the inventors of the present application focused on the magnitude relationship between the electrocardiogram component and the respiratory component as the reason why the respiratory component cannot be correctly extracted.
  • FIG. 2 when the chest impedance (a) was measured with a current of several hundred ⁇ A (350 ⁇ A), a respiratory component (c) larger than the electrocardiogram component (b) could be acquired.
  • FIG. 4A when measured with a current of several nA (10 nA), the electrocardiogram component becomes larger than the respiratory component. In that case, even if the electrocardiogram component estimated by the SFLC method is subtracted from the chest impedance, the periodicity of the electrocardiogram remains and the respiratory component is not correctly extracted.
  • FIGS. 5A to 5D show the results of applying the method of Non-Patent Document 2 to the measured ECG.
  • FIG. 5A shows the measured ECG
  • FIG. 5B shows the extracted respiratory component.
  • FIG. 5C shows a bar graph showing the average and standard deviation of the amplitude in each phase
  • FIG. 5D shows the average and standard deviation values of the amplitude in each phase.
  • Phase 1 and Phase 2 the same peak number as the actual respiratory rate was detected. However, in Phase 3 and Phase 4, a peak number different from the actual respiration rate appeared. As shown in FIGS. 5C and 5D, the average of the amplitude in each phase is correlated with the actual respiratory volume. However, since the standard deviation is large, it is difficult to estimate the respiration rate with the amplitude.
  • the present inventors examined a method for separating respiratory information from electrocardiogram information, and as a result, developed a technology that makes this possible.
  • a method for separating respiratory information from electrocardiogram information by correctly separating respiration information from electrocardiogram information, it becomes possible to simultaneously measure an electrocardiogram and respiration (respiration rate, respiration rate) using the same electrode.
  • respiration information by correctly separating respiration information from electrocardiogram information, it becomes possible to simultaneously measure an electrocardiogram and respiration (respiration rate, respiration rate) using the same electrode.
  • respiration information from electrocardiogram information only by passing a low current of the order of several nA. Therefore, it is possible to use a battery-powered mobile device with limited power for a long time. Biometric information can be continuously acquired.
  • Non-Patent Document 1 a current of several hundred ⁇ A (350 ⁇ A) is passed in order to measure the chest impedance.
  • a current of several hundred ⁇ A 350 ⁇ A
  • the battery life cannot be sufficiently secured. Therefore, it is necessary to measure the impedance with a low current (for example, a current of several nA).
  • the peak number of respiratory components extracted from the chest impedance (FIG. 4A) measured at a low current must match the actual respiratory rate.
  • the peak number of respiratory components was different from the actual respiratory rate.
  • the inventors of the present application determined that the reason why the respiratory component cannot be correctly extracted is the magnitude relationship between the electrocardiogram component and the respiratory component.
  • an electrocardiogram and respiration can be measured simultaneously even if the same electrode is used. Further, even when the chest impedance is measured with a current as low as several nA (10 nA), respiration information can be correctly separated from the electrocardiogram information. Thereby, it is possible to continue to acquire biometric information for a long time in a mobile device that is battery-powered and has limited power available.
  • Chest impedance measurement As a method for measuring the impedance of the chest, a two-terminal method and a four-terminal method are known.
  • two electrodes are bonded to the skin.
  • the potential difference is measured while a current is passed through the two electrodes. That is, in the two-terminal method, the electrode through which current flows is the same as the electrode through which impedance is measured.
  • the 4-terminal method 4 electrodes are bonded to the skin. A current is passed through the two electrodes, and a potential difference between two points in the current path flowing in the body is measured using the other two electrodes. In other words, in the four-terminal method, the electrode through which current flows is different from the electrode through which impedance is measured. As a measurement condition of the four-terminal method, the two electrodes for measuring the potential difference need to be in the path of the current flowing in the body.
  • FIG. 6A shows a schematic circuit configuration of the two-terminal method
  • FIG. 6B shows a schematic circuit configuration of the four-terminal method
  • Z represents the impedance of the object to be measured
  • R1 to R4 represent the contact impedance between the electrode and the skin.
  • “ ⁇ ” on the drawing corresponds to an electrode.
  • the change in chest impedance depends on heart activity (heartbeat) and lung activity (breathing).
  • heart activity heartbeat
  • lung activity breathing
  • the reason why the impedance changes due to the heart activity (heartbeat) is that when the heart performs mechanical activities such as contraction and expansion, the cardiomyocytes are electrically excited (depolarized) and reverted (repolarized). is there.
  • This electrical change in cardiomyocytes causes a change in impedance.
  • the reason why the impedance changes due to lung activity (respiration) is as follows. That is, during inspiration, air is taken into the alveoli, making it difficult for current to flow. As a result, the impedance is increased. On the other hand, at the time of exhalation, air is discharged, and the current easily flows. As a result, the impedance is lowered. When the impedance is measured with electrodes attached to both hands, a change due to heartbeat and a change due to breathing appear in the impedance between both hands.
  • the inventors of the present application have detected a T-wave peak value of a component derived from an electrocardiogram from time series data of chest impedance, and have made a technique for correctly separating respiration information.
  • the biological information measurement system includes a plurality of electrodes, a current source connected to the plurality of electrodes to supply a current, a measurement unit that measures impedance from a potential difference between the plurality of electrodes, A detection unit for detecting a specific peak value from the impedance time-series data, an envelope generation unit for generating an envelope of the specific peak value, and an output for outputting the envelope information as biological information Department.
  • the detection unit detects a T wave of a component derived from an electrocardiogram as the specific peak value from the time series data of the impedance.
  • the peak value is detected, and the output unit outputs the envelope information as biological information related to the respiratory component of the user.
  • the impedance measured by the measurement unit includes an electrocardiogram-derived component and a respiratory-derived component, and in the impedance, the electrocardiogram-derived component is larger than a respiratory-derived component. .
  • the current source supplies a current of 1 nA or more and 107.62 ⁇ A or less.
  • the current source provides a current less than 350 ⁇ A.
  • the detection unit uses the time value of the impedance time-series data and the period from the time when the peak value is reached until the time when the impedance returns to a preset baseline to the T wave. The peak value of is detected.
  • the detection unit detects an R wave peak of a component derived from an electrocardiogram and sets a peak having the largest amplitude included between adjacent R wave peaks as a T wave peak.
  • the envelope generator generates an envelope by interpolating between detected peaks of the T wave with a spline curve.
  • the biological information measurement system further includes a respiration rate estimation unit that estimates a respiration rate from information of a respiration component output from the respiration output unit.
  • the respiration rate estimator calculates the last cycle using the extreme value of the respiratory component at the time of estimation, and estimates the respiration rate using the last cycle.
  • the respiration rate estimation unit estimates a respiration rate at regular time intervals.
  • the respiratory rate estimation unit determines that the respiratory rate is stopped when the last amplitude of the respiratory component is equal to or less than a specific threshold, and estimates the respiratory rate as zero.
  • the living body information measurement system further includes a respiration rate estimation unit that estimates a respiration rate from the respiration component information output by the respiration output unit.
  • the respiration rate estimation unit estimates a respiration rate at regular time intervals.
  • the respiration rate estimation unit estimates the respiration rate per time based on the magnitude of the last amplitude of the respiration component.
  • the respiration rate estimation unit determines that the respiration is stopped when the last amplitude of the respiration component is equal to or less than a specific threshold at the time of estimation, and estimates the respiration rate as 0.
  • the biological information measurement system further includes a calibration unit that calibrates the value of the specific peak when the value of the specific peak of the electrocardiographic component detected by the detection unit is smaller than a predetermined threshold value. ing.
  • the calibration unit obtains the last period in the respiratory component from the group of specific peaks at the previous time, and most at the time obtained by subtracting the last period from the time at the specific peak smaller than a predetermined threshold.
  • the value of the near specific peak is input as the calibration value to the value of the specific peak smaller than the predetermined threshold value.
  • a biological information calculation device receives time-series data of impedance measured from a potential difference between a plurality of electrodes provided on a user's chest using a current supplied from a current source.
  • a detection unit that detects a T-wave peak value of a component derived from electrocardiogram from the time series data, an envelope generation unit that generates an envelope of the T-wave peak value, and And an output unit that outputs information as biological information related to the respiratory component of the user.
  • the detection unit detects, from the time series data of the impedance, the T of a component derived from electrocardiogram as the value of the specific peak.
  • the wave peak value is detected, and the output unit outputs the envelope information as biological information related to the respiratory component of the user.
  • the biological information measurement method includes a step of supplying current to a plurality of electrodes provided on a user's chest, a step of measuring impedance from a potential difference between the plurality of electrodes, Detecting a T-wave peak value of a component derived from electrocardiogram from impedance time-series data; generating an envelope of the specific peak value; and information of the envelope And outputting as biological information related to the respiratory component of.
  • the step of detecting detects a peak value of a T wave of a component derived from an electrocardiogram from the time series data of the impedance.
  • the outputting step outputs the envelope information as biological information related to the user's respiratory components.
  • a computer program executed by a computer provided in a biological information measurement system which is still another aspect of the present disclosure, is provided on the chest of a user using current supplied from a current source to the computer.
  • Receiving impedance time-series data measured from potential differences between a plurality of electrodes, detecting a T-wave peak value of a component derived from an electrocardiogram from the time-series data, A step of generating an envelope of a peak value and a step of outputting the envelope information as biological information related to the respiratory component of the user are executed.
  • the computer program is derived from an electrocardiogram from the time series data of the impedance by the detecting step with respect to the computer.
  • the value of the T wave peak of the component is detected, and the outputting step causes the envelope information to be output as biological information relating to the user's respiratory component.
  • FIG. 7 shows a configuration of the biological information measuring system 100 according to the present embodiment.
  • the biological information measurement system 100 includes a data storage unit 6, a biological signal measurement device 200, and a biological information calculation device 300.
  • the biological signal measuring apparatus 200 includes at least the potential measuring electrodes 2a and 2b, the current applying electrodes 3a and 3b, the current applying unit 4, and the impedance measuring unit 5.
  • the biological information calculation apparatus 300 includes an electrocardiographic component feature detection unit 7, an envelope generation unit 8, and a respiration output unit 9.
  • the biological information calculation device 300 is connected to the biological signal measurement device 200 and the data storage unit 6 by wire or wirelessly, and transmits and receives information.
  • a biological signal measurement device 200 shown in FIG. 8A includes a measurement unit 200A and an electrode unit 200B that are separated from each other.
  • the measurement unit 200 ⁇ / b> A includes at least a current application unit 4 and an impedance measurement unit 5.
  • the electrode portion 200B corresponds to the potential measurement electrodes 2a and 2b and the current application electrodes 3a and 3b.
  • electrode parts 200B as necessary for measurement are prepared.
  • two electrodes may be used to measure a potential between two points, or three electrodes of a measurement electrode, a ground, and a reference electrode may be used.
  • the electrode part 200B is provided so as to directly contact the chest of the user (subject) so that the bioelectric potential can be measured.
  • the electrode part 200B and the measurement unit 200A are connected in such a manner that the electrical resistance is reduced.
  • FIG. 8B shows an example in which the electrode part 200B is configured by a medical disposable electrode.
  • the electrode part 200B is directly connected to the measurement unit 200A by a hook.
  • the disposable electrode includes an adhesive portion made of an adhesive and an electrode portion. The disposable electrode is fixed to the user's body by the adhesive force of the adhesive portion.
  • FIG. 8C also shows another example in which the electrode part 200 is configured by a medical disposable electrode.
  • the electrode part 200B shows the example connected to the measurement unit 200A via a cable. This example is suitable, for example, when a certain distance between the electrodes is necessary, or when a certain distance between the measurement unit 200A and the electrode part 200B is necessary.
  • the electrode unit 200B is connected to the measurement unit 200A via a cable for supplying current.
  • the biological signal measuring device 200 can be realized with a size that can be placed on the palm of the hand, for example.
  • the potential measuring electrodes 2a and 2b and the current applying electrodes 3a and 3b are bonded to the body surface of the user.
  • the potential measuring electrodes 2a and 2b are electrically connected to an impedance measuring unit 5 described later to form an electric circuit.
  • the potential measuring electrodes 2a and 2b are electrically connected to a current applying unit 4 described later to form an electric circuit.
  • FIG. 9 shows the positional relationship among the user's chest, potential measurement electrodes 2a and 2b, current application electrodes 3a and 3b, and the chest mounting position.
  • the potential measuring electrodes 2a and 2b are arranged on the chest of the user.
  • FIG. 10 shows the user's chest by broken lines.
  • the electrocardiogram of the user is measured by the 4-terminal method.
  • the current application electrodes 3a and 3b and the potential measurement electrodes 2a and 2b are installed at positions that satisfy the measurement conditions of the four-terminal method. That is, the potential measuring electrodes 2a and 2b are disposed within a range through which a current flowing from the current applying electrode 3a to the current applying electrode 3b passes, for example.
  • the positive (+) current application electrode 3a is installed on the forehead, and the negative ( ⁇ ) current application electrode 3b is installed below the navel.
  • the positive and negative potential measuring electrodes 2 are installed at a location close to the heart of the chest.
  • a negative ( ⁇ ) potential measurement electrode 2b is installed at the lower end of the sternum, and a positive (+) potential measurement electrode 2a is installed. Place on the left abdomen near the chest.
  • a positive (+) potential measurement electrode 2a and a negative ( ⁇ ) potential measurement electrode 2b are used.
  • the negative ( ⁇ ) potential measurement electrode 2b may be installed at the lower end of the sternum, and the positive (+) potential measurement electrode 2a may be installed on the left abdomen near the chest.
  • the current application unit 4 is a so-called current source, and supplies current to the first current application electrode unit 3a and the second current application electrode unit 3b arranged on the chest of the user. In this specification, supplying current may be expressed as applying current.
  • the current application unit 4 is, for example, a built-in battery (not shown) and a circuit provided for flowing current from the battery. In addition, you may comprise the electric current application part 4 in the aspect which does not include the built-in battery.
  • the current value applied by the current application unit 4 is set to a value (for example, several nA to several hundred ⁇ A) smaller than the current value (for example, 350 ⁇ A) applied conventionally. This is because the biological signal measuring apparatus 200 assumes that the capacity of the battery (not shown) must be reduced due to downsizing and the like. By measuring the impedance with a current value lower than the conventionally applied current value, the driving time of the biological signal measuring apparatus 200 can be extended.
  • the current application unit 4 applies a current having a value smaller than 350 ⁇ A. The advantages described later are realized with such a current value. However, more preferably, the current value applied by the current application unit 4 may be in the range of 1 nA to 107.62 ⁇ A.
  • the current application unit 4 applies a sine wave alternating current, and the current value is ⁇ 10 nA.
  • the impedance measurement unit 5 measures the value of the chest impedance of the user at a plurality of times using the potential difference between the first potential measurement electrode unit 2a and the second potential measurement electrode unit 2b. Specifically, the impedance measuring unit 5 measures the potential difference between the potential measuring electrodes 2a and 2b. The impedance measurement unit 5 acquires a value obtained by dividing the measured potential difference value by the current value applied by the current application unit 4 as a chest impedance value.
  • the data storage unit 6 is, for example, a recording medium and / or a recording device provided with a recording medium.
  • a recording medium a semiconductor recording medium, a magnetic recording medium, an optical recording medium, and the like can be considered.
  • the data storage unit 6 stores time-series impedance data.
  • the electrocardiographic component feature detection unit 7 detects a specific peak included in the electrocardiographic component by using impedance data.
  • the “specific peak” is a so-called T wave peak. The principle of detecting the peak of the T wave will be described with reference to FIG.
  • the envelope generation unit 8 receives a detection result of a specific peak by the electrocardiographic component feature detection unit 7. And the envelope generation part 8 produces
  • the respiration output unit 9 outputs the envelope generated by the envelope generation unit 8 as a respiration component.
  • the output form may be, for example, a visual output on a screen or the like, or may be an output by writing data specifying a respiratory component on a recording medium.
  • FIG. 11 shows an overall processing flow of the biological information measuring system 100 of the present embodiment.
  • the current application unit 4 applies a current (10 nA) for impedance measurement via the current application electrodes 3 a and 3 b attached to the user 1.
  • the chest impedance includes the potential of the electrocardiogram-derived component and the potential of the respiratory-derived component. If the current value at the time of measurement has a sufficiently large value such as 350 ⁇ A, for example, the potential of the respiratory-derived component is sufficiently larger than the potential of the electrocardiographic component, so that it is easy to extract. .
  • the current value applied by the current application unit 4 is much smaller than the current value (for example, 350 ⁇ A) applied conventionally.
  • the electrocardiogram-derived component is larger than the respiratory-derived component.
  • the current application unit 4 transmits information on the applied current value to the impedance measurement unit 5.
  • the impedance measuring unit 5 measures the chest impedance using the potential difference between the potential measuring electrodes 2a and 2b attached to the chest of the user 1.
  • the impedance measuring unit 5 obtains the chest impedance by dividing the potential difference measured between the potential measuring electrodes 2a and 2b by the current value applied by the current applying unit 4.
  • the potential difference is sampled at, for example, 1024 Hz or 512 Hz. Data for each sampling point is sent to the next step.
  • the impedance measurement unit 5 stores the measured chest impedance in the data storage unit 6.
  • the accumulated data format is the measured time and the measured potential difference or impedance value.
  • the impedance measuring unit 5 sequentially accumulates the data in the data accumulating unit 6 from the data after a predetermined period.
  • Step S40> The electrocardiographic component feature detection unit 7 detects a specific peak in the electrocardiographic component using the impedance data accumulated so far in step S30 and the impedance data measured in step S20.
  • the electrocardiogram includes peaks of P wave, Q wave, R wave, S wave, and T wave as basic components.
  • the peak of the T wave is used. Details of the method of detecting the peak of the T wave will be described later.
  • the envelope generation unit 8 creates an envelope of the specific peak (T wave peak) detected in step S40.
  • the envelope generator 8 of the present embodiment interpolates between T wave peaks with a spline curve.
  • the envelope generation unit 8 obtains an envelope that smoothly connects the peaks using, for example, a cubic spline curve.
  • the nth-order spline curve is a curve in which derivatives from the 0th order to the (n ⁇ 1) th order are continuous at all points.
  • FIG. 12 shows an example of a T-wave peak envelope.
  • the respiration output unit 9 outputs the envelope information created in step S50 as a respiration component. As an output form, it may be displayed on a screen or recorded on a recording medium.
  • the peaks of the P wave, R wave, and T wave are minimal values, The peaks of the Q wave and the S wave are maximum values. Although the magnitudes of these peaks may vary somewhat, in general, among the P wave, R wave, and T wave peaks, the P wave peak is relatively small, and the R wave and T wave peaks are It can be said that it is larger than the peak of the P wave. Therefore, a plurality of local minimum values of the waveform are processed with a threshold value.
  • the local minimum value indicates either an R wave peak or a T wave peak.
  • the predetermined threshold is set to ⁇ 16 ⁇ V. Note that what value the predetermined threshold is set is closely related to the chest impedance measurement method. The specific predetermined threshold described above is an example.
  • the inventors of the present application used the following method.
  • FIG. 13 shows a method of discriminating between the T wave peak and the R wave peak.
  • the minimum value is assumed to be a T wave.
  • the baseline is set to ⁇ 16 ⁇ V
  • the predetermined value is set to 0.02 seconds.
  • FIG. 14 shows a processing flow of T wave peak detection.
  • the electrocardiographic component feature detection unit 7 calculates the magnitude relationship of the impedance data measured at times t, t ⁇ 1, and t ⁇ 2.
  • Step S402> The electrocardiogram component feature detection unit 7 determines the presence or absence of a minimum value from the magnitude relationship calculated in step S401. If the minimum value exists, the process proceeds to step S403. If there is no minimum value, the electrocardiogram component feature detection unit 7 determines that the minimum value is not a T wave peak, and ends the process.
  • Step S403> If it is determined in step S402 that the minimum value exists, the electrocardiographic component feature detection unit 7 determines whether or not the peak value is equal to or less than a predetermined threshold value (Vth). If the peak value is less than or equal to the predetermined threshold, the process proceeds to step S404. If it is not less than or equal to the predetermined threshold, the electrocardiogram component feature detection unit 7 determines that the minimum value is not a T wave peak, and ends the process.
  • Vth a predetermined threshold value
  • Step S404> When it is determined in step S403 that the peak value is equal to or less than the predetermined threshold value, the electrocardiographic component feature detection unit 7 calculates a time T from the time at the minimum value to the return to the predetermined baseline.
  • Step S405 The electrocardiogram component feature detection unit 7 determines whether or not the time T calculated in step S404 is equal to or greater than a predetermined value (Tth). If the time T is equal to or greater than the predetermined threshold value, the electrocardiogram component feature detection unit 7 determines that the minimum value is a T wave peak, and ends the process. If it is not equal to or greater than the predetermined threshold, the electrocardiogram component feature detection unit 7 determines that the minimum value is the peak of the R wave, that is, not the peak of the T wave, and ends the process.
  • Tth a predetermined value
  • the standard deviation of the impedance measured in the last 5 seconds is set as the predetermined threshold (Vth).
  • Vth the predetermined threshold
  • a predetermined fixed value may be used as the threshold value.
  • the minimum value is a T wave peak or an R wave peak.
  • the detection of the peak of the T wave may be performed by the method shown in steps S411 to S413 in FIG.
  • the processing flow is as follows.
  • the electrocardiogram component feature detection unit 7 detects the peak of the R wave by using impedance data.
  • the method for detecting the peak of the R wave uses the process shown in FIG. 14, that is, the process leading to “No” in step S405 shown in FIG.
  • the electrocardiographic component feature detection unit 7 sets a T wave detection range between two adjacent R wave peaks detected in step S411.
  • FIG. 16 shows a T-wave detection range between two adjacent R-wave peaks.
  • the time t R1 at the R wave peak detected first (the first R wave peak) and the R wave peak detected after the second R wave peak (the second R wave peak) are set.
  • Time t R2 at is used.
  • the T wave detection range t is set by the following mathematical formula (2). (Equation 2) t R1 + 0.1 ⁇ t ⁇ t R2 ⁇ 0.1
  • the electrocardiographic component feature detection unit 7 obtains a peak having a minimum value in the T wave detection range set in step S412 and sets the minimum value as a T wave peak. In this process, it can also be said that the electrocardiographic component feature detection unit 7 acquires a peak having the largest amplitude included between adjacent R wave peaks as a T wave peak.
  • FIG. 17A shows the measured chest impedance
  • FIG. 17B shows the extracted respiratory component.
  • the subject continuously had four breathing methods: Phase 1: 15 breaths with a period of 2 seconds (normal breathing) Phase 2: 8 breaths with a period of 4 seconds (deep breath) Phase 3: Respiration stop Phase 4: 14 breaths with a period of 2 seconds (normal breathing).
  • FIG. 17 (c) shows a bar graph representing the average and standard deviation of the amplitude in each phase.
  • FIG. 17D shows the average amplitude and standard deviation values in each phase.
  • the actual respiration rate and the peak number are the same except in phase 3.
  • the amplitude is small, it can be determined that the amplitude equal to or smaller than the predetermined threshold is the respiratory stop state.
  • the standard deviation of the amplitude is small. Therefore, it has been shown that if a T-wave envelope is used for chest impedance measured with a current of 10 nA, a respiratory component can be extracted correctly.
  • FIG. 18 shows the result of determining the respiratory component using the envelope of the R wave for the chest impedance measured with a current of 10 nA.
  • FIG. 18B it is understood that the actual respiratory rate and the peak number do not match.
  • FIG. 19 and FIG. 20 show the output result (example of display on the screen) by the respiratory output unit 9.
  • FIG. 19A shows a display example in a graph format. Three graphs are displayed. In each case, the horizontal axis indicates time, and the vertical axis indicates heart rate, respiration rate, and respiration rate, respectively.
  • FIG. 19B shows a display example in the form of a graph. The horizontal axis indicates time. The vertical axis shows the waveform of the electrocardiogram and the waveform of respiration, respectively.
  • FIG. 19C shows a display example of a numerical value format. Heart rate, respiration rate, and respiration volume are shown.
  • FIG. 19D shows an example in which a bar (Respiration bar) representing the state of breathing is displayed. As the user inhales, the length of the rod increases ("Inhale"). As the user exhales, the length of the rod shrinks ("Exhale").
  • a bar Respiration bar
  • FIG. 20 (a) shows a display example by a character representing a breathing state.
  • the character's facial expression changes depending on whether the user inhales, exhales, or is not breathing (apnea).
  • FIG. 20B shows a display example of an alert when apnea is detected. The time when apnea was detected and the period during which apnea occurred are displayed.
  • the applied current value is 10 nA.
  • the range of the applied current value in which the above-described extraction process of the respiratory component is effective will be described with reference to FIGS. 21 and 22.
  • FIG. 21 shows the ratio between the respiratory component and the electrocardiographic component in the chest impedance when measured at various current values.
  • FIG. 21 shows measured values and the like.
  • FIG. 22 shows current values when the value of (respiratory component / electrocardiographic component) is 1, which is obtained by linear approximation based on the above-described examples of 10 nA and 10 ⁇ A.
  • the current value at this time was 107.62 ⁇ A.
  • the respiratory component extraction processing according to the present embodiment is considered to be particularly effective when it is at least 10 nA or more and the current value of the applied current is 107.62 ⁇ A or less.
  • respiration can be extracted from the chest impedance measured with a low current on the order of several nA, electrocardiogram and respiration can be easily measured even with a battery-driven mobile device that can be used for a long time.
  • the respiratory rate of the user 1 is estimated for the respiratory component output by the respiratory output unit 9.
  • FIG. 23 shows a configuration of a biological information measuring system 500 according to the present embodiment.
  • the difference between the biological information measurement system 500 according to the present embodiment and the biological information measurement system 100 according to the first embodiment is that the biological information measurement system 500 is newly provided with a respiration rate estimation unit 10.
  • the data storage unit 6, the biological signal measuring device 200, and the biological information calculation device 300 are not clearly divided as shown in FIG. It is the same structure as FIG.
  • the respiratory rate estimation unit 10 is provided in the biological information calculation device 300.
  • FIG. 24 shows a processing flow of the entire biological information measuring system 500 in the present embodiment. Steps S10 to S60 are the same processing flow as that of the first embodiment, and thus description thereof is omitted here.
  • the respiration rate estimation unit 10 estimates the respiration rate of the user 1 from the respiration component output in step S60. Details of the processing will be described with reference to FIG.
  • the respiration rate estimation unit 10 estimates the respiration rate at regular time intervals.
  • the respiratory rate is estimated at a time interval of 1 second.
  • FIG. 25 shows a processing flow of respiratory rate estimation at each estimated time.
  • peak and base represent a local maximum and a local minimum in the respiratory component, respectively.
  • Respiration rate estimating unit 10 in the estimation time t now and the predetermined time interv, reads the respiratory component from t now -Interv to t now from the recording medium. That is, the respiratory component data in the following formula (3) is read out. (Equation 3) t now -interv ⁇ t ⁇ t now In this embodiment, the predetermined time interval is 10 seconds.
  • Step S702> The respiration rate estimation unit 10 determines whether or not there are two or more peaks in the respiration component read out in step S701. If there are two or more peaks, the process proceeds to step S703. Otherwise, the process proceeds to step S711.
  • the respiration rate estimation unit 10 calculates the final amplitude amp in the respiration component.
  • the “last amplitude” refers to a potential (impedance) difference between the latest peak and the latest bottom.
  • Step S704 The respiration rate estimation unit 10 determines whether or not the last amplitude amp calculated in step S703 is greater than or equal to a predetermined threshold amp th . If it is greater than or equal to the predetermined threshold amp th , the process proceeds to step S708. Otherwise, the process proceeds to step S705. In the present embodiment, amp th is set to 6.88 ⁇ V.
  • the respiration rate estimation unit 10 increments the number of counts that do not satisfy the condition amp ⁇ amp th in step S704 by one.
  • Step S706> The respiration rate estimating unit 10 determines whether or not the number of times count that does not satisfy the condition amp ⁇ amp th in step S704 exceeds a predetermined threshold count th .
  • count th is 1. If it exceeds the predetermined threshold count th , the process proceeds to step S711. Otherwise, the process proceeds to step S707.
  • the respiratory rate estimating unit 10 sets the respiratory rate estimated at the previous estimated time t now ⁇ 1 as the respiratory rate at the estimated time t now .
  • the process of estimating the respiratory rate ends here.
  • the respiration rate estimation unit 10 calculates the time interval T AC in the last two peaks A and C.
  • the respiration rate estimation unit 10 estimates the respiration rate per minute using the following formula (4) using the T AC calculated in step S708.
  • Step S710 The respiration rate estimation unit 10 resets the count “count” that does not satisfy the condition amp ⁇ amp th in step S704. The process of estimating the respiratory rate ends here.
  • Step S711> The respiratory rate estimation unit 10 sets the respiratory rate to 0, and then resets the count that does not satisfy the condition amp ⁇ amp th in step S704.
  • the processing for estimating the respiratory rate ends with this processing.
  • FIG. 26 shows the estimation result of the respiration rate. This result is obtained using the extraction result shown in FIG. In the case of respiration with a period of 2 seconds and 4 seconds, the respiration rate is ideally 30 [times / minute] and 15 [times / minute]. As can be seen from FIG. 26, values close to those values were obtained in each phase.
  • the biological signal measurement system estimates the respiration rate of the user 1 from the information on the respiratory component output by the respiratory output unit 9.
  • FIG. 27 shows a configuration of a biological information measurement system 600 according to this embodiment.
  • the biological information measurement system 600 newly includes a respiration rate estimation unit 11.
  • the data storage unit 6, the biological signal measuring device 200, and the biological information calculation device 300 are not clearly divided as shown in FIG. It is the same structure as FIG.
  • the respiration rate estimation unit 11 is provided in the biological information calculation device 300.
  • FIG. 28 shows a processing flow of the entire biological information measurement system 600 according to the present embodiment. Steps S10 to S60 are the same processing flow as that of the first embodiment, and thus description thereof is omitted here.
  • the respiration rate estimation unit 11 estimates the respiration rate of the user 1 from the respiration component output in step S60. Details of the processing will be described with reference to FIG.
  • the respiration rate estimation unit 11 estimates the respiration rate at regular time intervals. In this embodiment, the respiration rate is estimated at a time interval of 1 second.
  • FIG. 29 shows a processing flow of respiratory volume estimation at each estimated time.
  • peak and base represent a local maximum and a local minimum in the respiratory component, respectively.
  • Respiration rate estimating unit 11 in the estimation time t now and the predetermined time interv, reads the respiratory component from t now -Interv to t now from the recording medium. That is, the respiratory component data in the following formula (5) is read out. (Equation 5) t now -interv ⁇ t ⁇ t now In this embodiment, the predetermined time interval is 10 seconds.
  • Step S802 The respiration rate estimation unit 11 determines whether the respiration component read out in step S801 has one or more peaks and one or more bases. If there are one or more peaks and one or more bases, the process proceeds to step S803. Otherwise, the process proceeds to step S810.
  • the respiration rate estimation unit 11 calculates the final amplitude amp in the respiration component.
  • the last amplitude refers to a potential (impedance) difference between the latest peak and the latest bottom.
  • Step S804 The respiration rate estimation unit 11 determines whether or not the last amplitude amp calculated in step S803 is greater than or equal to a predetermined threshold amp th . If it is greater than or equal to the predetermined threshold amp th , the process proceeds to step S808. Otherwise, the process proceeds to step S805. In the second embodiment, amp th is set to 6.88 ⁇ V.
  • the respiration rate estimation unit 11 increases the number of times count that does not satisfy the condition amp ⁇ amp th in step S804 by one.
  • Step S806 The respiration rate estimation unit 11 determines whether or not the number of times count that does not satisfy the condition amp ⁇ amp th in step S804 exceeds a predetermined threshold count th .
  • count th is 1. If it exceeds the predetermined threshold count th , the process proceeds to step S810. Otherwise, the process proceeds to step S807.
  • the respiration rate estimation unit 11 sets the respiration rate estimated at the previous estimation time t now ⁇ 1 as the respiration rate at the estimation time t now . This is the end of the processing for estimating the respiration rate.
  • Step S809 The respiration rate estimation unit 11 resets the number of counts that do not satisfy the condition amp ⁇ amp th in step S804. This is the end of the processing for estimating the respiration rate.
  • the respiration rate estimation unit 11 sets the respiration rate to 0, and resets the count that does not satisfy the condition amp ⁇ amp th in step S804. This is the end of the processing for estimating the respiration rate.
  • FIG. 30 shows the result of estimating the respiration rate with respect to the extraction result shown in FIG. It can be seen that the estimated respiratory volume is different in each phase.
  • the respiratory volume of Phase 2 (Deep Breathing) is greater than the volume of Phase 1 (Normal Breathing) and Phase 4 (Normal Breathing). Phase 3 respiration is almost zero.
  • FIG. 31A shows the measurement result of the T wave.
  • a T wave sometimes does not occur or the amplitude of the T peak is very small from the measured chest impedance. It is assumed that such a measured value is treated as a T wave and an envelope is created. Then, the amplitude of the respiratory component suddenly increases, and an incorrect respiratory component is generated. Therefore, if that happens, it is necessary to calibrate the T wave.
  • the biological signal measurement system calibrates the peak value of the T wave if the T wave detected by the electrocardiographic component feature detection unit 7 is smaller than the predetermined threshold imp th1 .
  • FIG. 32 shows a configuration of a biological information measuring system 700 according to this embodiment.
  • the biological information measuring system 700 newly includes an electrocardiographic component feature calibrating unit 12.
  • the data storage unit 6, the biological signal measurement device 200, and the biological information calculation device 300 are not clearly divided as shown in FIG. It is the same structure as FIG.
  • the electrocardiographic component feature calibration unit 12 is provided in the biological information arithmetic apparatus 300.
  • FIG. 33 shows a processing flow of the entire biological information measuring system 700 according to this embodiment. Steps S10 to S40 and Steps S50 to S60 are the same processing flow as in the first embodiment, and thus the description thereof is omitted here.
  • Step S40A> The electrocardiographic component feature detection unit 7 determines whether or not the peak value of the T wave detected in step S40 is smaller than the threshold imp th1 . If it is smaller, the process proceeds to step S40B. Otherwise, the process proceeds to step S50.
  • the threshold imp th1 is set to 5.00 ⁇ V.
  • Step S40B When determining that the T-wave peak value detected in step S40 is smaller than the threshold imp th1, the electrocardiographic component feature calibration unit 12 calibrates the T-wave peak value. Details of the calibration will be described in the following “T-wave calibration processing flow”. After calibration, the process proceeds to step S50.
  • FIG. 34 shows a processing flow of T-wave calibration.
  • a time in a T wave whose peak amplitude is smaller than imp th1 is t 1 .
  • the electrocardiographic component feature calibration unit 12 obtains the last period T last in the respiratory component from the group of T waves at the previous time.
  • Step S40B2> The electrocardiographic component feature calibrating unit 12 subtracts the period T last from the time t 1 and searches for the T wave closest to (t 1 ⁇ T last ).
  • Step S40B3> The electrocardiographic component feature calibration unit 12 inputs the T wave peak value closest to (t 1 ⁇ T last ) as the calibration value to the T wave peak value at time t 1 .
  • FIG. 35 shows the calibration result. “ ⁇ ” indicates the peak of the detected T wave. On the other hand, “ ⁇ ” indicates the result of calibrating the peak of the T wave. According to the present embodiment, the peak (“ ⁇ ”) of the T wave detected at time t 1 is calibrated to “ ⁇ ”.
  • FIG.31 (b) shows the result of having calibrated T wave contained in the waveform shown by Fig.31 (a). Even if the T wave does not occur or the amplitude of the T peak is very small, the sudden amplitude change in the respiratory component does not occur due to the calibration.
  • the T-wave peak is calibrated and the correct respiratory component is extracted from the measured chest impedance. it can.
  • FIG. 36 shows an example of the hardware configuration of the biological signal measurement system 100.
  • the data storage unit 6, the biological signal measurement device 200, and the biological information calculation device 300 of the biological information measurement system 100 are connected to each other via a bus 201 and can exchange data with each other.
  • power is supplied from the battery unit 202 to each circuit.
  • These hardware are stored in the housing of the biological signal measuring apparatus 200A as shown in FIG.
  • the biological signal measuring apparatus 200 includes a measurement electrode 2a, a reference electrode 2b, a ground 2c, a biological amplifier 211, an AD conversion unit 212, and a current application unit 8.
  • the biological amplifier 211 measures a potential difference or impedance between the measurement electrode 2a and the reference electrode 2b.
  • the biological amplifier 211 is measured while passing a weak current from the current applying unit 8. Switching between potential measurement and impedance measurement is switched by control from the signal processing unit 220.
  • the measured data is converted from an analog signal to a digital signal by the AD conversion unit 212 and sent to the CPU 221 of the signal processing unit 220 via the bus 201.
  • the biological information arithmetic apparatus 300 includes a CPU 221, a RAM 222, a program 223 stored in the RAM, and a ROM 224.
  • the program 223 is stored in the RAM 222 or the ROM 224.
  • the CPU 221 executes the program 223 stored in the RAM 222 or the ROM 224.
  • the program 223 describes the processing procedure shown in any of the flowcharts described above.
  • the biological information arithmetic device 300 analyzes the signal of the biological signal measuring device 200 according to the computer program 223 and stores the measurement data and the analysis result in the data storage unit 6.
  • the data storage unit 6 includes a storage circuit 231, a recording medium A, and a recording medium B.
  • the data storage unit 6 records the data received from the signal processing unit 22 on the recording medium A or the recording medium B via the storage circuit.
  • the recording medium A and the recording medium B are built-in flash memories, for example. In FIG. 36, two types of recording media are described, but this is an example. Two different areas in the same recording medium may be allocated as two types of recording media.
  • FIG. 37 shows a configuration example of other hardware.
  • the measured data is transmitted as it is to the PC or smartphone by the transmission unit 240.
  • the PC or smartphone that has received the data functions as the data storage unit 6 in FIG. Note that data transmission may be performed wirelessly or by wire.
  • the transmission unit 240 includes a transmission circuit 241 and an antenna 242. Measurement data and measurement results analyzed by the biological information arithmetic apparatus 300 are converted into a data format suitable for the transmission protocol by the transmission circuit 241 and transmitted from the antenna 242. Data transmitted from the antenna 242 is received by a receiving device (not shown) mounted on the PC or smartphone and used for subsequent processing.
  • signal processing such as the above-described impedance time-series data accumulation, electrocardiographic component feature detection, envelope creation, and the like is performed by the CPU 221 of the biological information arithmetic apparatus 300. Also good.
  • data may be transmitted first from the transmission unit 240 to a data receiving PC or the like, and signal processing may be performed by the receiving PC.
  • the power consumption of the CPU or the like increases, and the data transmission amount and the power consumption are also proportional in the transmission unit 240. Therefore, in order to perform monitoring for a long time, it is only necessary to make a setting suitable for the application as to whether the signal processing is performed on the PC side or the biological signal measuring apparatus 200 and how much data is transmitted.
  • the biological information recording apparatus it is possible to measure an electrocardiogram and respiration (respiration rate, respiration rate) only by passing a low current of the order of several nA. Therefore, the biological information monitoring apparatus can be easily configured. . As a result, information on both the electrocardiogram and the respiration (respiration rate and respiration rate), which has been conventionally grasped only by hospitalization or the like at a hospital or the like, can be evaluated at home, and evaluation over a long period of time becomes possible. Specifically, it can be applied to fields that measure both heartbeat and respiration, such as simplification of measurements in hospitals, confirmation of health conditions at home and the like, and grasping of exercise load conditions during sports.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Dermatology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 胸部に設置した同一の電極で計測した心電図と呼吸の情報から呼吸の情報を抽出する。 生体情報計測システムは、複数の電極と、複数の電極に接続されて電流を供給する電流源と、複数の電極間の電位差からインピーダンスを計測する計測部と、インピーダンスの時系列データから、特定のピークの値を検出する検出部と、特定のピークの値の包絡線を生成する包絡線生成部と、包絡線の情報を生体情報として出力する出力部とを備えている。

Description

生体信号計測システム、装置、方法およびそのプログラム
 本願は、呼吸を抽出する技術に関する。より具体的には、本願はユーザの身体に装着された複数の電極を利用して生体のインピーダンスを計測し、呼吸に関する情報を抽出する技術に関する。
 近年、長時間にわたってユーザの身体状態を電気的および機械的に計測し、記録する方法が普及しつつある。ユーザの身体状態を表す基本的な電気的情報としては、脳に関連した脳波(EEG)や心臓の動きに関連した心電図(ECG)が挙げられる。このうち心電図はたとえば病院で基礎的な生体情報(バイタルサイン)として取得される。また、心電図は、心疾患の疑いがある場合にホルター型心電計と呼ばれる携帯型の心電計を用いても取得され得る。ホルター型心電計を用いることで、長時間、例えば24時間にわたって、自宅等の病院以外の場所で心電図を記録することが可能である。近年、このホルター型心電計の小型化が進み、ユーザはより簡易に心電図を計測可能になってきている。
 ホルター型心電計を用いて長時間にわたり心電図を記録することで、病院の短時間の検査では検出できない不整脈等の症状を発見できる。しかしながら、心電図以外にも長時間検査を行うことができれば明らかになる検査項目(症例)がある。例えば、睡眠時無呼吸症候群である。睡眠時無呼吸症候群は、不整脈と関連の深い呼吸器系の疾患である。
 睡眠時無呼吸症候群の評価は心電図のみでは行えず、呼吸に関する情報も必要である。現在、睡眠時無呼吸症候群の評価には、心電図や呼吸や脳波を同時に計測する終夜睡眠ポリグラフィー検査が必要である。この検査は病院内に宿泊して実施する必要があり、病院にとっても患者にとっても負担が大きかった。このため、疾患の可能性が疑われるという段階では、このような負担の大きな検査を行うのは現実的ではなかった。
 仮に、ホルター型心電計を利用して心電図を取得する程度の簡便さで呼吸器系の疾患に関する情報、具体的には呼吸数に関する情報が得られれば、さらに疾患の早期発見、診断の迅速化につながると考えられる。
 これまで簡易に呼吸を計測したい場合には、主にパルスオキシメータという医療機器が用いられてきた。これは動脈血酸素飽和度を調べるための測定器である。動脈血酸素飽和度は指先にプローブと呼ばれるセンサを装着して計測される。この測定器は、赤色の光源(LED)を有しており、LEDから赤色光を放射し、センサで指の透過光を計測することによって、指の内部の動脈に含まれる酸素の含有量をリアルタイムに計測する。このように、心電図と呼吸の情報の両方が必要な場合には、胸部に心電計のための電極を装着し、指先にパルスオキシメータのプローブを指先に装着する必要があった。
 これまで、一つの装置で心電図と呼吸の情報を同時に取得し、心電図の情報を用いて取得したデータから呼吸の情報を分離する取組がなされてきた。一つのアプローチとして、インピーダンス法がある。インピーダンス法では、ユーザの身体に電流を流し、胸部に設置した電極で心電図や呼吸によるインピーダンス変化を計測する。たとえば特許文献1には、胸部インピーダンスから呼吸成分を除去する方法が示されている。
 図1(a)は、心電図の基本成分を示す。図1(a)の、QRSの各波の部分が心室興奮を表す。
 図1(b)は、心電図として得られた波形の例を示す。特許文献1では、心電図のR-R間隔を基本波とする高調波の余弦派成分と正弦波成分の線形結合モデルとによって、心電図成分を推定する。この方法をSFLC(Scaled Fourier Linear Combiner)法と呼ぶ。
 非特許文献1は、特許文献1で記載された方法を利用し、胸部インピーダンスから、SFLC法で推定された心電図成分を減算して呼吸成分を取得する技術を開示する。図2は、従来用いられてきた、胸部インピーダンス(a)から心電由来の成分(b)を減算して呼吸成分(c)を抽出する手法の概念を示す。呼吸に変化があっても、抽出された呼吸成分の波形に反映される。
 図3(a)および(b)は、呼吸に変化があった場合のインピーダンス変化を示す。図3(a)は、通常呼吸の後に低呼吸の状態があって、その後に通常呼吸が発生した場合のインピーダンス変化を示す。低呼吸の区間においては、振幅自体が減少していることがわかる。また、図3(b)は、通常呼吸の後に閉塞性無呼吸の状態を作った場合のインピーダンス変化を示す。この場合には無呼吸の区間においては、インピーダンスの振幅自体が消失していることがわかる。このようにインピーダンス変化は、呼吸数だけでなく、呼気量までも反映していることがわかる。
 他のアプローチとして、ECG(Electrocardiogram)法がある。ECG法では、胸部に設置した電極で、電流を流さずに心電図や呼吸による電位変化を計測する。非特許文献2は、時間軸におけるR波の包絡線を取ることで、呼吸成分を抽出する技術を開示する。
特許第3735774号明細書
Yoshifumi Yasuda、et.al."Modified thoracic impedance plethysmography to monitor sleep apnea syndromes"、SleepMedicine、Vol.6、pp.215-224 (2005) Ciara O'Brien、Conor Heneghan、"A comparison of algorithms for estimation of a respiratory signal from the surface electrocardiogram"、ComputersinBiologyandMedicine、Vol.37、Issue 3、pp.305-314(2007)
 実際に生体情報を計測するに当たっては、患者の症状の程度、必要とする生体情報の精度、患者にかかる負担などの種々の条件が存在する。したがって、選択可能な計測方法がより多く存在することが好ましい。すなわち、生体情報の計測に関し、新たな計測方法の開発が必要とされていた。
 本開示の例示的な実施形態は、呼吸に関する生体情報を取得するための技術を提供する。
 上記課題を解決するために、本開示の一態様は、複数の電極と、前記複数の電極に接続されて電流を供給する電流源と、前記複数の電極間の電位差からインピーダンスを計測する計測部と、前記インピーダンスの時系列データから、特定のピークの値を検出する検出部と、前記特定のピークの値の包絡線を生成する包絡線生成部と、前記包絡線の情報を生体情報として出力する出力部とを備えた生体情報計測システムであって、前記複数の電極がユーザの胸部に設けられたときにおいて、前記検出部は、前記インピーダンスの時系列データから、心電に由来する成分のT波のピークの値を検出し、前記出力部は、前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力する生体情報計測システムを含む。
 上述の一般的かつ特定の態様は、システム、方法およびコンピュータプログラムを用いて実装され、またはシステム、方法およびコンピュータプログラムの組み合わせを用いて実現され得る。
 本開示の一態様にかかる生体信号計測システムによれば、胸部インピーダンスから呼吸成分を抽出できるため、心電図と呼吸成分を簡易に計測できる。その上、計測された呼吸成分からユーザの呼吸数と呼吸量を推定し、ユーザに提示できる。
 また本開示のある実施形態による生体信号計測システムによれば、胸部インピーダンスを、数nAオーダーの低電流で計測し、それにより呼吸成分を抽出する。そのため、電流の消費が少なくてすみ、バッテリー駆動のモバイル型機器を長時間にわたって動作させ、生体情報を取得することが可能となる。
(a)は心電図の基本成分を示し、(b)は心電図として得られた波形の例を示す図である。 従来用いられてきた、胸部インピーダンスから呼吸成分を抽出する手法の概念を示す図である。 (a)および(b)は、呼吸に変化があった場合のインピーダンス変化を示す図である。 (a)および(b)は、10nAの電流で計測した胸部インピーダンスに対して、非特許文献1の方法を適用した結果を示す図である。 (a)~(d)は、計測したECGに非特許文献2の方法を適用した結果を示す図である。 (a)は2端子法の概略的な回路構成を示す図であり、図6(b)は4端子法の概略的な回路構成を示す図である。 実施形態1による生体情報計測システム100の構成を示す図である。 (a)~(c)は、本実施形態の生体信号計測装置200の実現例を示す図である。 ユーザの胸部と、電位計測用電極2a及び2b及び電流印加用電極3a及び3bと、胸部の装着位置との関係を示す図である。 ユーザの胸部を示す図である。 実施形態の生体情報計測システム100の全体の処理フローを示すフローチャートである。 T波のピークの包絡線の例を示す図である。 T波のピークとR波のピークとの識別方法を示す図である。 T波のピーク検出の処理フローを示すフローチャートである。 T波のピーク検出の他の処理フローを示すフローチャートである。 隣接する2つのR波のピークの間にT波検出範囲示す図である。 (a)~(d)は、正弦波±10nAの電流で計測した胸部インピーダンスに関して、T波の包絡線を利用して呼吸成分を求めた結果を示す図である。 (a)~(d)は、10nAの電流で計測した胸部インピーダンスに関して、R波の包絡線を利用して呼吸成分を求めた結果を示す図である。 (a)~(d)は、呼吸出力部9による画面への表示例を示す図である。 (a)および(b)は、呼吸出力部9による画面への表示例を示す図である。 様々な電流値で計測したときの、胸部インピーダンスにおける呼吸成分と心電成分の比率を示す図である。 10nAおよび10μAの例をもとに直線近似によって求めた、呼吸成分/心電成分が1になる場合の電流値を示す図である。 実施形態2による生体情報計測システム500の構成を示す図である。 実施形態2における生体情報計測システム500全体の処理フローを示すフローチャートである。 推定時刻ごとにおける呼吸数推定の処理フローを示すフローチャートである。 呼吸数の推定結果を示す図である。 実施形態3による生体情報計測システム600の構成を示す図である。 実施形態3における生体情報計測システム600全体の処理フローを示すフローチャートである。 推定時刻ごとにおける呼吸量推定の処理フローを示すフローチャートである。 図17(b)で示された抽出結果に対して、呼吸量を推定した結果を示す図である。 (a)は、T波の計測結果を示し、(b)は(a)で示された波形に対して、T波を校正した結果を示す図である。 実施形態4による生体情報計測システム700の構成を示す図である。 実施形態4による生体情報計測システム700の全体の処理フローを示すフローチャートである。 T波校正の処理フローを示すフローチャートである。 校正結果を示す図である。 生体信号計測システムのハードウェア構成の例を示す図である。 他のハードウェアの構成例を示す図である。
 本願発明者らは、これまでの心電図の情報から呼吸の情報を分離する方法に存在する課題を検討した。
 非特許文献1の方法では、胸部インピーダンスを計測するために、数百マイクロアンペア(μA)の電流、たとえば350μAの電流を流す。電源を常時安定して確保できる場合には、このような大きさの電流を流し続けることには問題はない。一方、バッテリーによって駆動するモバイル型計測機器でそのような大きさの電流を流すとすると、バッテリー容量の問題から、その寿命を十分に確保できない。バッテリーの寿命を確保するためには、より低電流(例えば数ナノアンペア(nA)の電流)でインピーダンスを計測する必要がある。
 図4(a)および(b)は、10nAの電流で計測した胸部インピーダンスに、非特許文献1の方法を適用した結果を示す。図4(a)は計測した胸部インピーダンスを示し、図4(b)は抽出された呼吸成分を示す。被験者には計測時に、連続的に4種類の呼吸の仕方をしてもらった:
フェーズ1:周期2秒の呼吸を15回(普通の呼吸)
フェーズ2:周期4秒の呼吸を8回(深呼吸)
フェーズ3:呼吸停止
フェーズ4:周期2秒の呼吸を14回(普通の呼吸)
 抽出された呼吸成分から、実際の呼吸数と同じピーク数が検出されることが必要である。しかしながら、図4(b)から理解されるように、実験条件として示される実際の呼吸数と、検出されたピーク数とは相違していた。
 呼吸成分を正しく抽出できない理由として、本願発明者らは、心電図成分と呼吸成分との大小関係に着目した。図2で示したように、数百μA(350μA)の電流で胸部インピーダンス(a)を計測すると、心電図成分(b)より大きな呼吸成分(c)が取得可能であった。しかしながら、図4(a)で示したように、数nA(10nA)の電流で計測すると、心電図成分が呼吸成分より大きくなる。その場合、胸部インピーダンスに対してSFLC法で推定した心電図成分を減算しても、心電図の周期性が残り、呼吸成分が正しく抽出されない。
 図5(a)~(d)は、計測したECGに非特許文献2の方法を適用した結果を示す。図5(a)は計測したECGを示し、図5(b)は抽出された呼吸成分を示す。図5(c)はそれぞれのフェーズにおける振幅の平均と標準偏差を表す棒グラフを示し、図5(d)はそれぞれのフェーズにおける振幅の平均と標準偏差の値を示す。
 フェーズ1およびフェーズ2では実際の呼吸数と同じピーク数が検出できた。しかしながら、フェーズ3およびフェーズ4では、実際の呼吸数とは異なるピーク数が出た。図5(c)および(d)に示されるように、各フェーズにおける振幅の平均が、実際の呼吸量との相関性がある。しかしながら、標準偏差が大きいため、振幅では呼吸量を推定しにくい。
 そこで本願発明者らは、心電図の情報から呼吸の情報を分離する方法を検討し、その結果、それを可能にする技術を開発した。以下に詳細に説明するように、心電図の情報から呼吸の情報を正しく分離することによって、同じ電極を用いても心電図と呼吸(呼吸数、呼吸量)を同時に計測することが可能になった。この技術によれば、数nAのオーダー低電流を流すだけでも心電図の情報から呼吸の情報を正しく分離できるため、バッテリー駆動され、利用可能な電力に制限があるモバイル型機器を用いて長時間にわたって生体情報を取得し続けることができる。
 以下、本願発明者らが得た知見を説明し、その後、本開示に係る生体信号計測システムの各実施形態を説明する。
 (本開示の基礎となる知見)
 本願発明者らは、これまでの心電図の情報から呼吸の情報を分離する方法は以下の課題を有していると判断した。
 非特許文献1の方法では、胸部インピーダンスを計測するために、数百μA(350μA)の電流を流す。一方、モバイル型計測機器においては、数百μAの電流を流すと、バッテリーの寿命を十分に確保できない。そのため、低電流(例えば数nAの電流)でインピーダンスを計測する必要がある。
 呼吸成分を正確に検出できたと言えるためには、低電流で計測された胸部インピーダンス(図4(a))から抽出された呼吸成分のピーク数と、実際の呼吸数とが一致しなければならない。しかしながら、図4(b)で示したように、呼吸成分のピーク数は実際の呼吸数とは異なっていた。
 本願発明者らは、呼吸成分を正しく抽出できない理由は、心電図成分と呼吸成分との大小関係にあると判断した。
 その理由として、上述したように、数nA(10nA)の電流で計測すると、図4(a)に示すように、心電図成分が呼吸成分より大きくなること、および、その場合、胸部インピーダンスに対してSFLC法で推定した心電図成分を減算しても、心電図の周期性が残り、呼吸成分が正しく抽出されないこと、が挙げられる。
 そして図5(c)、(d)で示したように、各フェーズにおける振幅の平均と、実際の呼吸量との間には相関があるが、振幅については標準偏差が大きいため、振幅から呼吸量を推定しにくい、という結果が得られた。そこで本願発明者らは、振幅以外の情報から呼吸量を推定する必要があるという結論を得た。そして後述するように、図1(a)に示すT波を利用すれば、心電図の情報から呼吸の情報を正しく分離できることを見出した。
 この手法によれば、同じ電極を用いても心電図と呼吸(呼吸数、呼吸量)を同時に計測することができる。また数nA(10nA)程度の低い電流で胸部インピーダンスを計測した場合であっても、心電図の情報から呼吸の情報を正しく分離できる。これにより、バッテリー駆動され、利用可能な電力に制限があるモバイル型機器において長時間にわたって生体情報を取得し続けることができる。
  (胸部インピーダンス計測)
 胸部のインピーダンスを計測する方法として、2端子法と4端子法が知られている。
 2端子法では、2つの電極が皮膚に接着される。2つの電極を通して電流を流しながら、電位差が計測される。つまり2端子法では、電流を流す電極と、インピーダンスを計測する電極とが同じである。
 4端子法では、4つの電極が皮膚に接着される。2つの電極を通して電流を流し、体内に流れる電流経路内の2点間の電位差が、他の2つの電極を用いて計測される。つまり、4端子法では、電流を流す電極と、インピーダンスを計測する電極とが異なっている。4端子法の計測条件として、電位差を計測している2電極が体内に流れる電流の経路内にある必要がある。
 図6(a)は2端子法の概略的な回路構成を示し、図6(b)は4端子法の概略的な回路構成を示す。Zは計測する対象のインピーダンス、R1~R4は電極と皮膚との接触インピーダンスを表す。図面上の「○」が電極に相当する。
 図6(a)の2端子法では、Z+R1+R2が計測される。一方、図6(b)の4端子法では、Zのみが計測される。そのため、胸部インピーダンスを計測する際に、電極と皮膚との接触インピーダンスの影響を排除したい場合には、4端子法が用いられる。つまり、4端子法の方で計測したインピーダンスの方が2端子法で計測したそれよりも精度が高いと言える。
 胸部インピーダンスの変化は、心臓の活動(心拍)と肺の活動(呼吸)に依拠している。心臓の活動(心拍)によってインピーダンスが変化する理由は、心臓が収縮と拡張という機械的な活動を行う際に、心筋細胞が電気的に興奮(脱分極)し、復帰(再分極)するためである。この心筋細胞の電気的な変化が、インピーダンスの変化を引き起こす。一方、肺の活動(呼吸)によってインピーダンスが変化する理由は以下のとおりである。すなわち、吸気時には肺胞内に空気が取り込まれて、電流が流れにくくなる。その結果、インピーダンスが高くなる。一方、呼気時には空気が排出されて、電流が流れやすくなる。その結果、インピーダンスが低くなる。両手に電極を接着させてインピーダンスを計測した場合、両手間のインピーダンスには、心拍による変化と呼吸による変化が現れる。
 本願発明者らは、胸部インピーダンスの時系列データから、心電に由来する成分のT波のピークの値を検出し、呼吸の情報を正しく分離する技術をなすに至った。
 本開示の一態様の概要は以下のとおりである。
 本開示の一態様である生体情報計測システムは、複数の電極と、前記複数の電極に接続されて電流を供給する電流源と、前記複数の電極間の電位差からインピーダンスを計測する計測部と、前記インピーダンスの時系列データから、特定のピークの値を検出する検出部と、前記特定のピークの値の包絡線を生成する包絡線生成部と、前記包絡線の情報を生体情報として出力する出力部とを備えている。
 ある実施形態において、前記複数の電極がユーザの胸部に設けられたときにおいて、前記検出部は、前記インピーダンスの時系列データから、前記特定のピークの値として、心電に由来する成分のT波のピークの値を検出し、前記出力部は、前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力する。
 ある実施形態において、前記計測部によって計測された前記インピーダンスは、心電由来の成分と、呼吸由来の成分とを含み、前記インピーダンスでは、前記心電由来の成分が、呼吸由来の成分よりも大きい。
 ある実施形態において、前記電流源は、1nA以上で、107.62μA以下の電流を供給する。
 ある実施形態において、前記電流源は、350μAよりも小さい電流を供給する。
 ある実施形態において、前記検出部は、前記インピーダンスの時系列データのピークの値、およびピーク値に至った時刻から、予め設定されたベースラインに戻った時刻までの期間を用いて、前記T波のピークの値を検出する。
 ある実施形態において、前記検出部は、心電に由来する成分のR波のピークを検出し、隣接するR波のピーク間に含まれる最も振幅が大きいピークをT波のピークとする。
 ある実施形態において、前記包絡線生成部は、検出された複数の前記T波のピーク間をスプライン曲線で補間し、包絡線を生成する。
 ある実施形態において、前記生体情報計測システムは、前記呼吸出力部で出力された呼吸成分の情報から、呼吸数を推定する呼吸数推定部をさらに備えている。
 ある実施形態において、前記呼吸数推定部は、推定時における呼吸成分の極値を用いて最後の周期を算出し、最後の周期を用いて呼吸数を推定する。
 ある実施形態において、前記呼吸数推定部は、一定時間間隔ごとに呼吸数を推定する。
 ある実施形態において、前記呼吸数推定部は、呼吸成分の最後の振幅が特定の閾値以下の場合には呼吸停止と判断し、呼吸数を0と推定する。
 ある実施形態において、前記生体情報計測システムは、前記呼吸出力部で出力された呼吸成分の情報から、呼吸量を推定する呼吸量推定部をさらに備えている。
 ある実施形態において、前記呼吸量推定部は、一定時間間隔ごとに呼吸量を推定する。
 ある実施形態において、前記呼吸量推定部は、呼吸成分の最後の振幅の大きさに基づいて、一回あたりの呼吸量を推定する。
 ある実施形態において、前記呼吸量推定部は、推定時に、呼吸成分の最後の振幅が特定の閾値以下の場合には呼吸停止と判断し、呼吸量を0と推定する。
 ある実施形態において、前記生体情報計測システムは、前記検出部によって検出された心電成分の特定のピークの値が所定閾値より小さい場合に、前記特定のピークの値を校正する校正部をさらに備えている。
 ある実施形態において、前記校正部は、前の時刻における特定のピークの群から、呼吸成分における最後の周期を求め、所定閾値より小さい特定のピークにおける時刻から前記最後の周期を引いた時刻に最も近い特定のピークの値を、校正値として、所定閾値より小さい特定のピークの値に入力する。
 本開示の他の一態様である生体情報演算装置は、電流源から供給された電流を用いて、ユーザの胸部に設けられた複数の電極間の電位差から計測されたインピーダンスの時系列データを受け取り、前記時系列データから、心電に由来する成分のT波のピークの値を検出する検出部と、前記T波のピークの値の包絡線を生成する包絡線生成部と、前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力する出力部とを備えている。
 ある実施形態において、前記複数の電極がユーザの胸部に設けられているときにおいて、前記検出部は、前記インピーダンスの時系列データから、前記特定のピークの値として、心電に由来する成分のT波のピークの値を検出し、前記出力部は、前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力する。
 本開示のさらに他の一態様である生体情報計測方法は、ユーザの胸部に設けられた複数の電極に電流を供給するステップと、前記複数の電極間の電位差からインピーダンスを計測するステップと、前記インピーダンスの時系列データから、心電に由来する成分のT波のピークの値を検出するステップと、前記特定のピークの値の包絡線を生成するステップと、前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力するステップとを包含する。
 ある実施形態においては、前記複数の電極がユーザの胸部に設けられたときにおいて、検出する前記ステップは、前記インピーダンスの時系列データから、心電に由来する成分のT波のピーク値を検出し、出力する前記ステップは、前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力する。
 本開示のさらに他の一態様である、生体情報計測システムに設けられたコンピュータによって実行されるコンピュータプログラムは、前記コンピュータに対し、電流源から供給された電流を用いて、ユーザの胸部に設けられた複数の電極間の電位差から計測されたインピーダンスの時系列データを受け取るステップと、前記時系列データから、心電に由来する成分のT波のピークの値を検出するステップと、前記T波のピークの値の包絡線を生成するステップと、前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力するステップとを実行させる。
 ある実施形態において、前記複数の電極がユーザの胸部に設けられているときにおいて、前記コンピュータプログラムは、前記コンピュータに対し、前記検出するステップにより、前記インピーダンスの時系列データから、心電に由来する成分のT波のピークの値を検出させ、前記出力するステップにより、前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力させる。
 以下、添付の図面を参照しながら、本開示による実施形態を説明する。
 (実施形態1)
 図7は、本実施形態による生体情報計測システム100の構成を示す。生体情報計測システム100は、データ蓄積部6と、生体信号計測装置200と、生体情報演算装置300とを備えている。
 生体信号計測装置200は、少なくとも電位計測用電極2a及び2bと、電流印加用電極3a及び3bと、電流印加部4と、インピーダンス計測部5とを備える。
 生体情報演算装置300は、心電成分特徴検出部7と、包絡線生成部8と、呼吸出力部9とを備える。生体情報演算装置300は、生体信号計測装置200及びデータ蓄積部6と有線又は無線で接続されており、情報を送受信する。
 以下、生体信号計測装置200および生体情報演算装置300の構成を説明する。
 (生体信号計測装置200の実現形態)
 図8(a)~(c)は、本実施形態の生体信号計測装置200の実現例を示す。図8(a)に示す生体信号計測装置200は、互いに分離した計測ユニット200Aと電極部200Bとを備える。計測ユニット200Aは、少なくとも電流印加部4と、インピーダンス計測部5とを含む。電極部200Bは、電位計測用電極2a及び2bと、電流印加用電極3a及び3bとに相当する。
 電極部200Bは、計測に必要な個数だけ準備される。例えば、2点間の電位を計測するのに2本の電極を用いてもよいし、計測極、アース、参照極の3本を用いてもよい。
 電流を供給するために、さらに2本の電極を用いる。材質は導電性の高いものであれば良く、医療用の金属電極やディスポーザブル電極等が使用可能である。電極部200Bは、生体電位が計測できるようにユーザ(被験者)の胸部に直接接触するよう設けられる。電極部200Bと計測ユニット200Aとは、電気的抵抗が少なくなるような態様で接続される。
 例えば、図8(b)は、医療用ディスポーザブル電極で電極部200Bを構成した例を示す。ホック式の電極であれば、電極部200Bはホックによって計測ユニット200Aと直接接続される。ディスポーザブル電極は、粘着剤によって作られた接着部と電極部を含む。ディスポーザブル電極は、接着部の接着力によってユーザの身体に固定される。
 図8(c)もまた、医療用ディスポーザブル電極で電極部200を構成した他の例を示す。電極部200Bはケーブルを介して計測ユニット200Aに接続される例を示す。この例は、たとえば電極間の距離がある程度必要な場合や、計測ユニット200Aが電極部200Bとの間に距離がある程度必要な場合に好適である。電流を供給するためのケーブルを介して、電極部200Bは計測ユニット200Aと接続される。
 上述した図8(a)~(c)のいずれにおいても、生体信号計測装置200は、たとえば手のひらに載置できる程度の大きさで実現され得る。
 次に、生体信号計測装置200および生体情報演算装置300の各構成要素を詳細に説明する。以下の説明は主として機能に関しているが、生体信号計測システム100のハードウェア構成に関しては後に図36を参照しながら詳細に説明する。
 (電位計測用電極2a及び2b、電流印加用電極3a及び3b)
 再び図7を参照する。
 電位計測用電極2a及び2b、および電流印加用電極3a及び3bは、ユーザの体表に接着される。電位計測用電極2a及び2bは、後述するインピーダンス計測部5と電気的に接続され、電気回路を形成する。電位計測用電極2a及び2bは、後述する電流印加部4と電気的に接続され、電気回路を形成する。
 (電極位置)
 図9は、ユーザの胸部と、電位計測用電極2a及び2bと、電流印加用電極3a及び3bと、胸部の装着位置との位置関係を示す。電位計測用電極2a及び2bはユーザの胸部に配置される。図10は、破線によってユーザの胸部を示す。
 本実施形態では、4端子法によりユーザの心電図を計測する。電流印加用電極3a、3bおよび電位計測用電極2a、2bは、4端子法の計測条件を満たす位置に設置されている。つまり、電位計測用電極2a、2bは、たとえば電流印加用電極3aから電流印加用電極3bに流れる電流が通過する範囲以内に設置されている。
 本実施形態では、非特許文献1を参考にし、正(+)の電流印加用電極3aを額に、負(-)の電流印加用電極3bをへその下に設置する。また、正および負の電位計測用電極2を胸部の心臓に近い場所に設置する。図1(b)に示した生体信号計測装置200の構成を考慮すると、例えば、負の(-)の電位計測用電極2bを胸骨下端に設置し、正(+)の電位計測用電極2aを胸部に近い左側の腹部に設置する。
 なお、2端子法によりユーザの心電図を計測することも可能である。2端子法を採用する場合には、正(+)の電位計測用電極2aと負の(-)の電位計測用電極2bとを利用する。図9に示されるように、負の(-)の電位計測用電極2bを胸骨下端に設置し、正(+)の電位計測用電極2aを胸部に近い左側の腹部に設置すればよい。
 (電流印加部4)
 再び図7を参照する。
 電流印加部4は、いわゆる電流源であり、ユーザの胸部に配置された第1の電流印加用電極部3a及び第2の電流印加用電極部3bに、電流を供給する。本明細書では、電流を供給することを、電流を印加する、と表現することもある。電流印加部4は、たとえば内蔵されたバッテリー(図示せず)および、そのバッテリーから電流を流すために設けられた回路である。なお、内蔵されたバッテリーを含まない態様で電流印加部4を構成してもよい。
 本実施形態では、電流印加部4が印加する電流値は、従来印加されていた電流値(たとえば350μA)よりも小さい値(たとえば数nA~数百μA)としている。これは、生体信号計測装置200が、小型化等に起因して、そのバッテリー(図示せず)の容量も小さくせざるを得ないことを想定しているためである。従来印加されていた電流値よりも低い電流値でインピーダンスを計測することにより、生体信号計測装置200の駆動時間を延ばすことが可能となる。上述のとおり、本実施形態では、電流印加部4は350μAよりも小さい値の電流を印加する。後述する利点は、そのような電流値であれば実現される。ただし、より好適には、電流印加部4が印加する電流値は、1nAから107.62μAの範囲であればよい。
 本実施形態では、電流印加部4は、正弦波の交流を印加し、その電流値は±10nAであるとする。
 (インピーダンス計測部5)
 インピーダンス計測部5は、第1の電位計測用電極部2a及び第2の電位計測用電極部2bの電位差を用いて、複数の時刻におけるユーザの胸部インピーダンスの値を計測する。具体的には、インピーダンス計測部5は、電位計測用電極2a及び2bの間の電位差を計測する。インピーダンス計測部5は、計測した電位差の値から、電流印加部4で印加した電流値を除した値を、胸部インピーダンス値として取得する。
 (データ蓄積部6)
 データ蓄積部6は、たとえば記録媒体および/または記録媒体を備えた記録装置である。記録媒体は、半導体記録媒体、磁気記録媒体、光学式記録媒体などが考えられる。データ蓄積部6は、時系列のインピーダンスデータを蓄積する。
 (心電成分特徴検出部7)
 心電成分特徴検出部7は、インピーダンスのデータを利用して、心電成分に含まれる特定のピークを検出する。本実施形態において、「特定のピーク」とは、いわゆるT波のピークである。T波のピークを検出する原理については、図13を参照しながら説明する。
 (包絡線生成部8)
 包絡線生成部8は、心電成分特徴検出部7による、特定のピークの検出結果を受け取る。そして包絡線生成部8は、特定のピーク同士の間を結ぶ包絡線を生成する。より具体的には、包絡線生成部8は、T波のピーク同士の間をスプライン曲線で補間することによって、包絡線を生成する。
 (呼吸出力部9)
 呼吸出力部9は、包絡線生成部8によって生成された包絡線を呼吸成分として出力する。出力の形態は、たとえば画面等への視覚的な出力であってもよいし、記録媒体に呼吸成分を特定するデータを書き込むことによる出力であってもよい。
 (全体の処理フロー)
 図11は、本実施形態の生体情報計測システム100の全体の処理フローを示す。
 <ステップS10>
 電流印加部4は、ユーザ1に装着された電流印加用電極3a、3bを介して、インピーダンス計測のための電流(10nA)を印加する。
 胸部インピーダンスは、心電由来成分の電位と呼吸由来成分の電位を含む。計測時の電流値が、たとえば350μAのような十分な大きさを有していれば、呼吸由来成分の電位は、心電由来成分の電位よりも十分大きくなるため、抽出することが容易である。
 一方、本実施形態では、電流印加部4が印加する電流値は、従来印加されていた電流値(たとえば350μA)よりもはるかに小さい。これにより、計測される胸部インピーダンスにおいては、心電由来成分が呼吸由来成分より大きくなる。
 電流印加部4は、インピーダンス計測部5に、印加した電流値の情報を送信する。
 <ステップS20>
 インピーダンス計測部5は、ユーザ1の胸部に装着された電位計測用電極2a及び2bの電位差を用いて、胸部インピーダンスを計測する。インピーダンス計測部5は、電位計測用電極2a、2bの間に計測された電位差を、電流印加部4が印加した電流値で除算することによって、胸部インピーダンスを求める。電位差は例えば、1024Hzや512Hzでサンプリングされる。サンプリング点ごとのデータが次のステップに送られる。
 <ステップS30>
 インピーダンス計測部5は、データ蓄積部6に、計測した胸部インピーダンスを蓄積する。本実施形態では、インピーダンス計測部5の内部メモリ(図示せず)の容量を考慮し、インピーダンスのデータは、所定期間、例えば過去の10秒間、におけるデータのみ内部メモリに蓄積されるとする。蓄積されるデータ形式は計測した時刻及び計測された電位差あるいはインピーダンスの値である。インピーダンス計測部5は、所定期間を経過したデータから順次データ蓄積部6に蓄積する。
 <ステップS40>
 心電成分特徴検出部7は、ステップS30で蓄積されたこれまでのインピーダンスのデータおよびステップS20で計測されたインピーダンスのデータを利用して、心電成分における特定のピークを検出する。
 図1(a)で示したように、心電にはP波、Q波、R波、S波、T波というピークが基本成分として含まれている。本開示では、T波のピークを用いる。T波のピークの検出方法の詳細は後に詳述する。
 <ステップS50>
 包絡線生成部8は、ステップS40において検出された特定のピーク(T波のピーク)の包絡線を作成する。包絡線を求めるために、本実施形態の包絡線生成部8はT波のピーク同士の間をスプライン曲線で補間する。包絡線生成部8は、たとえば3次のスプライン曲線を用いてピーク間を滑らかに接続する包絡線を求める。なお、n次スプライン曲線は、0次からn-1次までの導関数が全ての点において連続な曲線を言う。図12は、T波のピークの包絡線の例を示す。
<ステップS60>
 呼吸出力部9は、ステップS50で作成された包絡線の情報を呼吸成分として出力する。出力形態として、画面等に表示してもよいし、記録媒体に記録してもよい。
 次に、上述のステップS40にかかる、T波のピークの検出処理を詳細に説明する。
 図1(a)に示すように、心電基本成分であるP波、Q波、R波、S波、T波の中で、P波、R波、T波のピークは極小値であり、Q波、S波のピークは極大値である。これらのピークの大きさは多少変動することはあるものの、一般には、P波、R波、T波のピークの中で、P波のピークは相対的に小さく、R波とT波のピークはP波のピークより大きいと言える。そのため、波形の複数の極小値を閾値によって処理する。具体的には、波形の複数の極小値が所定閾値以下であれば、その極小値はR波のピーク、T波のピークのどちらかを示す。本実施形態では、所定閾値は、-16μVとした。なお所定閾値をどのような値にするかは胸部インピーダンスの計測方法と密接に関連する。上述の具体的な所定閾値は一例である。
 極小値が、R波のピークであるのか、T波のピークであるのかを識別するために、本願発明者らは以下の方法を用いた。
 図13はT波のピークとR波のピークとの識別方法を示す。まず、極小値における時刻からインピーダンスのデータが所定ベースラインに戻るまでの時間を算出する。R波の場合、その時間をTRとし、T波の場合、その時間をTTとする。T波の時間的な広がりはR波より大きいため、下記数式(1)が成り立つ。
(数1)
T>TR
 そのため、ある極小値が得られた時刻からインピーダンスのデータが所定ベースラインに戻るまでの期間が予め定められた値以上であれば、その極小値はT波であるとする。本実施形態では、ベースラインを-16μVとし、予め定められた値を0.02秒とした。
 なお、T波のピークとなる極小値を検出する際に用いられる閾値について、電流印加部4が印加する電流値によって閾値を変えてもよい。
 図14はT波のピーク検出の処理フローを示す。
 <ステップS401>
 心電成分特徴検出部7は、時刻t、t-1、t-2において計測されたインピーダンスのデータの大小関係を算出する。
 <ステップS402>
 心電成分特徴検出部7は、ステップS401で算出された大小関係から、極小値の有無を判断する。極小値が存在する場合、処理はステップS403に進む。極小値が存在しない場合、心電成分特徴検出部7は、その極小値はT波のピークではないと判断し、処理を終了する。
 <ステップS403>
 ステップS402で極小値が存在すると判断された場合、心電成分特徴検出部7は、そのピークの値が所定閾値(Vth)以下か否かを判断する。ピークの値が所定閾値以下ならば、ステップS404に進む。所定閾値以下でなければ、心電成分特徴検出部7は、その極小値はT波のピークではないと判断し、処理を終了する。
 <ステップS404>
 ステップS403でピークの値が所定閾値以下と判断された場合、心電成分特徴検出部7は、極小値における時刻から所定ベースラインに戻るまでの時間Tを算出する。
 <ステップS405>
 心電成分特徴検出部7は、ステップS404で算出された時間Tが予め定められた値(Tth)以上か否かを判断する。時間Tが所定閾値以上ならば、心電成分特徴検出部7は、その極小値はT波のピークであると判断し、処理を終了する。所定閾値以上でなければ、心電成分特徴検出部7は、その極小値はR波のピークである、つまりT波のピークではない、と判断し、処理を終了する。
 本実施形態では、直近5秒で計測されたインピーダンスの標準偏差を所定閾値(Vth)としている。しかしながらこれは一例である。予め定めた固定値を閾値としてもよい。または、電流印加部4が印加する電流値によって閾値を変えてもよい。
 上述の処理により、極小値がT波のピークであるのか、R波のピークであるのかが判断される。これにより、T波のピークとR波のピークとを適切に峻別できるため、上述した「特定のピーク」としてのT波のピークを適切に検出できる。
 なお、T波のピークの検出を、図15のステップS411~S413で示される方法で行ってもよい。その処理フローは以下のとおりである。
 <ステップS411>
 心電成分特徴検出部7は、インピーダンスのデータを利用して、R波のピークを検出する。R波のピークの検出方法は、図14で示される処理、つまり図14に示すステップS405の「No」に至る処理を用いる。
 <ステップS412>
 心電成分特徴検出部7は、ステップS411で検出された隣接する2つのR波のピークの間にT波検出範囲を設定する。図16は、隣接する2つのR波のピークの間のT波検出範囲を示す。T波検出範囲を設定するには、先に検出されたR波のピーク(1番目のR波のピーク)における時刻tR1と後に検出されたR波のピーク(2番目のR波のピーク)における時刻tR2を用いる。例えば、T波検出範囲tは下記数式(2)で設定される。
(数2)
R1+0.1≦t≦tR2-0.1
 <ステップS413>
 心電成分特徴検出部7は、ステップS412で設定されたT波検出範囲において、最小値を取るピークを求め、その最小値をT波のピークとする。この処理は、心電成分特徴検出部7が、隣接するR波のピーク間に含まれる最も振幅が大きいピークをT波のピークとして取得する、ということもできる。
 (呼吸成分の抽出結果)
 図17(a)~(d)は、正弦波±10nAの電流で計測した胸部インピーダンスに関して、T波の包絡線を利用して呼吸成分を求めた結果を示す。図17(a)は計測した胸部インピーダンス、図17(b)は抽出された呼吸成分を示す。計測時に、被験者に連続的に4種類の呼吸の仕方をしてもらった:
フェーズ1:周期2秒の呼吸を15回(普通の呼吸)
フェーズ2:周期4秒の呼吸を8回(深呼吸)
フェーズ3:呼吸停止
フェーズ4:周期2秒の呼吸を14回(普通の呼吸)。
 図17(c)はそれぞれのフェーズにおける振幅の平均と標準偏差を表す棒グラフを示す。図17(d)はそれぞれのフェーズにおける振幅の平均と標準偏差の値を示す。図17(b)で示したように、フェーズ3以外では、実際の呼吸数とピーク数とが一致する。フェーズ3においても、振幅が小さいため、所定閾値以下の振幅が呼吸停止状態という判断もできる。振幅と実際の呼吸量との間には相関があり、振幅の標準偏差も小さい。そのため、10nAの電流で計測した胸部インピーダンスに対して、T波の包絡線を用いれば、正しく呼吸成分が抽出できることが示されている。
 比較例を図18に示す。図18は、10nAの電流で計測した胸部インピーダンスに関して、R波の包絡線を利用して呼吸成分を求めた結果を示す。図18(b)に示されるように、実際の呼吸数とピーク数とが一致しないことが理解される。また、振幅と実際の呼吸量との間には相関があるが、標準偏差が大きく信頼性を欠く。
 図19および図20は、呼吸出力部9による出力結果(画面への表示例)を示す。図19(a)は、グラフ形式の表示例を示す。3つのグラフが表示されている。いずれも横軸は時間を示しており、縦軸はそれぞれ心拍数、呼吸数、および呼吸量を示している。図19(b)は、グラフの形式の表示例を示す。横軸は時間を示す。縦軸はそれぞれ、心電図の波形と呼吸の波形を示している。図19(c)は、数値の形式の表示例を示す。心拍数、呼吸数、および呼吸量が示されている。図19(d)は、呼吸の状態を表す棒(Respiration bar)を表示する例を示す。ユーザが息を吸い込むと、棒の長さが伸びる(“Inhale”)。ユーザが息を吐き出すと、棒の長さが縮む(“Exhale”)。
 図20(a)は、呼吸の状態を表すキャラクターによる表示例を示す。ユーザが息を吸い込むか、息を吐き出すか、呼吸をしていないか(無呼吸か)によって、キャラクターの表情が変わる。図20(b)は、無呼吸が検出された場合のアラートの表示例を示す。無呼吸が検出された時刻と無呼吸が発生した期間が表示される。
 上述の例では、印加する電流値は10nAであるとした。以下では、図21および図22を参照しながら、上述した呼吸成分の抽出処理が有効な、印加する電流値の範囲を説明する。
 図21は、様々な電流値で計測したときの、胸部インピーダンスにおける呼吸成分と心電成分の比率を示す。
 電流値が10nAおよび10μAの場合には、呼吸成分が心電成分よりも小さくなった。呼吸成分/心電成分が1以下であることを意味している。図21には計測値等が示されている。
 一方、これまでにも言及したとおり、電流値が350μAの場合には、呼吸成分は心電成分よりも大きい。したがって、(呼吸成分/心電成分)の値は2.80である。
 上述した呼吸成分の抽出処理は、(呼吸成分/心電成分)の値が1以下であれば十分有効であると考えられる。
 図22は、上述した10nAおよび10μAの例をもとに直線近似によって求めた、(呼吸成分/心電成分)の値が1になる場合の電流値を示す。このときの電流値は、107.62μAであった。本実施形態にかかる呼吸成分の抽出処理は、少なくとも、10nA以上で、かつ、印加電流の電流値が107.62μA以下であれば特に有効であると考えられる。
 上述の構成および処理によれば、数nAオーダーの低電流で計測した胸部インピーダンスから呼吸を抽出できるため、長時間利用可能なバッテリー駆動のモバイル型機器でも、心電と呼吸を簡易に計測できる。
 (実施形態2)
 本実施形態では、呼吸出力部9が出力した呼吸成分に対して、ユーザ1の呼吸数を推定する。
 (生体信号計測システム構成)
 図23は本実施形態による生体情報計測システム500の構成を示す。
 本実施形態による生体情報計測システム500と、実施形態1による生体情報計測システム100との相違点は、生体情報計測システム500が、新たに呼吸数推定部10を備えている点である。なお記載の便宜のため、図23では、図7のように、データ蓄積部6と、生体信号計測装置200と、生体情報演算装置300とを明確に分けていないが、本システム500もまた、図7と同じ構成である。たとえば呼吸数推定部10は生体情報演算装置300に設けられる。
 (全体の処理フロー)
 図24は本実施形態における生体情報計測システム500全体の処理フローを示す。ステップS10~ステップS60は、実施形態1と同じ処理フローのため、ここでは説明を省略する。
 <ステップS70>
 呼吸数推定部10は、ステップS60で出力された呼吸成分から、ユーザ1の呼吸数を推定する。その処理の詳細を、図25を参照しながら説明する。
 (呼吸数推定の処理フロー)
 ユーザ1の呼吸の変化に対応するために、呼吸数推定部10は、一定時間間隔ごとに呼吸数を推定する。本実施形態では、1秒の時間間隔で呼吸数を推定する。
 図25は推定時刻ごとにおける呼吸数推定の処理フローを示す。下記の説明では、「ピーク」と「底辺」はそれぞれ呼吸成分における極大値と極小値を表す。
 <ステップS701>
 呼吸数推定部10が、推定時刻tnowと所定時間intervにおいて、tnow-intervからtnowまでの呼吸成分を記録媒体から読み出す。即ち、下記数式(3)における呼吸成分のデータを読み出す。
(数3)
now-interv≦t≦tnow
本実施形態では、所定時間intervを10秒としている。
 <ステップS702>
 呼吸数推定部10は、ステップS701で読み出された呼吸成分において、ピークが2つ以上存在するか否かを判断する。ピークが2つ以上存在すれば、ステップS703に進む。そうでなければ、ステップS711に進む。
 <ステップS703>
 呼吸数推定部10は、呼吸成分における最後の振幅ampを計算する。「最後の振幅」とは、最新のピークと最新の底辺との電位(インピーダンス)差を指す。
 <ステップS704>
 呼吸数推定部10は、ステップS703で計算した最後の振幅ampが所定閾値ampth以上か否かを判断する。所定閾値ampth以上ならば、ステップS708に進む。そうでなければ、ステップS705に進む。本実施形態では、ampthを6.88μVとする。
 <ステップS705>
 呼吸数推定部10は、ステップS704における条件amp≧ampthを満たさない回数countを1つ増やす。
 <ステップS706>
 呼吸数推定部10は、ステップS704における条件amp≧ampthを満たさない回数countが所定閾値countthを超えるか否かを判断する。本実施形態では、countthを1とする。所定閾値countthを超えれば、ステップS711に進む。そうでなければ、ステップS707に進む。
 <ステップS707>
 呼吸数推定部10は、前回の推定時刻tnow-1で推定された呼吸数を推定時刻tnowの呼吸数とする。呼吸数推定の処理がここで終わる。
 <ステップS708>
 呼吸数推定部10は、最後の2つのピークA、Cにおける時間間隔TACを計算する。
 <ステップS709>
 呼吸数推定部10は、ステップS708で計算したTACを用いて、下記数式(4)で1分間当たりの呼吸数を推定する。
Figure JPOXMLDOC01-appb-M000001
 <ステップS710>
 呼吸数推定部10は、ステップS704における条件amp≧ampthを満たさない回数countをリセットする。呼吸数推定の処理がここで終わる。
 <ステップS711>
 呼吸数推定部10は、呼吸数を0と設定した上で、ステップS704における条件amp≧ampthを満たさない回数countをリセットする。呼吸数推定の処理はこの処理で終了する。
 (呼吸数の推定結果)
 図26は、呼吸数の推定結果を示す。この結果は、図17(b)で示された抽出結果を利用して得られている。周期2秒と4秒の呼吸の場合、理想的にそれぞれの呼吸数が30[times/minute]と15[times/minute]となる。図26によれば、各フェーズにおいて、それらの値に近い値が求められたことがわかる。
 このような構成および処理によって、数nAオーダーの低電流で計測した胸部インピーダンスから呼吸を抽出でき、抽出された呼吸成分に対してユーザの呼吸数を推定し、推定された呼吸数をユーザに提示できる。
 (実施形態3)
 本実施形態の生体信号計測システムは、呼吸出力部9が出力した呼吸成分の情報から、ユーザ1の呼吸量を推定する。
 (生体信号計測システム構成)
 図27は本実施形態による生体情報計測システム600の構成を示す。
 本実施形態による生体情報計測システム600と、実施形態1による生体情報計測システム100との相違点は、生体情報計測システム600が、新たに呼吸量推定部11を備えている点である。なお記載の便宜のため、図27では、図7のように、データ蓄積部6と、生体信号計測装置200と、生体情報演算装置300とを明確に分けていないが、本システム600もまた、図7と同じ構成である。たとえば呼吸量推定部11は生体情報演算装置300に設けられる。
 (全体の処理フロー)
 図28は、本実施形態による生体情報計測システム600全体の処理フローを示す。ステップS10~ステップS60は、実施形態1と同じ処理フローのため、ここでは説明を省略する。
 <ステップS80>
 呼吸量推定部11が、ステップS60で出力された呼吸成分から、ユーザ1の呼吸量を推定する。その処理の詳細を、図29を参照しながら説明する。
 (呼吸量推定の処理フロー)
 ユーザ1の呼吸の変化に対応するために、呼吸量推定部11が、一定時間間隔ごとに呼吸量を推定する。本実施形態では、1秒の時間間隔で呼吸量を推定する。
 図29は推定時刻ごとにおける呼吸量推定の処理フローを示す。下記の説明では、「ピーク」と「底辺」はそれぞれ呼吸成分における極大値と極小値を表す。
 <ステップS801>
 呼吸量推定部11は、推定時刻tnowと所定時間intervにおいて、tnow-intervからtnowまでの呼吸成分を記録媒体から読み出す。即ち、下記数式(5)における呼吸成分のデータを読み出す。
(数5)
now-interv≦t≦tnow
本実施形態では、所定時間intervを10秒としている。
 <ステップS802>
 呼吸量推定部11は、ステップS801で読み出された呼吸成分において、ピークが1つ以上かつ底辺が1つ以上あるか否かを判断する。ピークが1つ以上かつ底辺が1つ以上あれば、ステップS803に進む。そうでなければ、ステップS810に進む。
 <ステップS803>
 呼吸量推定部11は、呼吸成分における最後の振幅ampを計算する。最後の振幅とは、最新のピークと最新の底辺との電位(インピーダンス)差を指す。
 <ステップS804>
 呼吸量推定部11は、ステップS803で計算した最後の振幅ampが所定閾値ampth以上か否かを判断する。所定閾値ampth以上ならば、ステップS808に進む。そうでなければ、ステップS805に進む。実施形態2では、ampthを6.88μVとする。
 <ステップS805>
 呼吸量推定部11は、ステップS804における条件amp≧ampthを満たさない回数countを1つ増やす。
 <ステップS806>
 呼吸量推定部11は、ステップS804における条件amp≧ampthを満たさない回数countが所定閾値countthを超えるか否かを判断する。本実施形態では、countthを1とする。所定閾値countthを超えれば、ステップS810に進む。そうでなければ、ステップS807に進む。
 <ステップS807>
 呼吸量推定部11は、前回の推定時刻tnow-1で推定された呼吸量を推定時刻tnowの呼吸量とする。呼吸量推定の処理がここで終わる。
 <ステップS808>
 呼吸量推定部11は、最後の振幅ampを用いて、下記数式(6)で呼吸量を推定する。
(数6)
呼吸量=α×(amp-ampth
αは定数であり、本実施形態では1とする。
 <ステップS809>
 呼吸量推定部11は、ステップS804における条件amp≧ampthを満たさない回数countをリセットする。呼吸量推定の処理がここで終わる。
 <ステップS810>
 呼吸量推定部11は、呼吸量を0と設定した上で、ステップS804における条件amp≧ampthを満たさない回数countをリセットする。呼吸量推定の処理がここで終わる。
 (呼吸量の推定結果)
 図30は、図17(b)で示された抽出結果に対して、呼吸量を推定した結果を示す。各フェーズにおいて、推定された呼吸量が異なることがわかる。フェーズ2(深呼吸)の呼吸量がフェーズ1(普通の呼吸)とフェーズ4(普通の呼吸)の呼吸量より大きい。フェーズ3の呼吸量がほとんど0である。
 このような構成および処理によって、数nAオーダーの低電流で計測した胸部インピーダンスから呼吸を抽出でき、抽出された呼吸成分に対してユーザの呼吸量を推定し、推定された呼吸量をユーザに提示できる。
 (実施形態4)
 図31(a)は、T波の計測結果を示す。図31(a)に示すように、計測された胸部インピーダンスから、時々T波が発生しない、もしくはTピークの振幅が非常に小さい場合がある。そのような計測値をT波として扱い、包絡線を作成するとする。そうすると、呼吸成分における振幅が急に大きくなり、間違った呼吸成分が生成されてしまう。そのため、その場合が発生すれば、T波を校正する必要がある。
 本実施形態による生体信号計測システムは、心電成分特徴検出部7が検出したT波が所定閾値impth1より小さければ、T波のピークの値を校正する。
 (生体信号計測システム構成)
 図32は本実施形態による生体情報計測システム700の構成を示す。
 本実施形態による生体情報計測システム700と、実施形態1による生体情報計測システム100との相違点は、生体情報計測システム700が、新たに心電成分特徴校正部12を備えている点である。なお記載の便宜のため、図32では、図7のように、データ蓄積部6と、生体信号計測装置200と、生体情報演算装置300とを明確に分けていないが、本システム700もまた、図7と同じ構成である。たとえば心電成分特徴校正部12は生体情報演算装置300に設けられる。
 (全体の処理フロー)
 図33は本実施形態による生体情報計測システム700全体の処理フローを示す。ステップS10~ステップS40、ステップS50~ステップS60は、実施形態1と同じ処理フローのため、ここでは説明を省略する。
 <ステップS40A>
 心電成分特徴検出部7が、ステップS40で検出されたT波のピークの値が閾値impth1より小さいか否かを判断する。小さければ、ステップS40Bに進む。そうでなければ、ステップS50に進む。本実施形態では、閾値impth1を5.00μVとする。
 <ステップS40B>
 心電成分特徴校正部12は、ステップS40で検出されたT波のピークの値が閾値impth1より小さいと判断すると、T波のピークの値を校正する。校正の詳細を下記の「T波校正の処理フロー」において説明する。校正後、ステップS50に進む。
 (T波校正の処理フロー)
 図34は、T波校正の処理フローを示す。ピークの振幅がよりimpth1より小さいT波における時刻をt1とする。
 <ステップS40B1>
 心電成分特徴校正部12が、前の時刻におけるT波の群から、呼吸成分における最後の周期Tlastを求める。
 <ステップS40B2>
 心電成分特徴校正部12が、時刻t1から周期Tlastを減算し、(t1-Tlast)に最も近いT波を探索する。
 <ステップS40B3>
 心電成分特徴校正部12が、(t1-Tlast)に最も近いT波のピークの値を、校正値として、時刻t1におけるT波のピークの値に入力する。
 図35は、校正結果を示す。「●」は検出されたT波のピークを示す。一方、「○」は、T波のピークを校正した結果を示す。本実施形態によれば、時刻t1において検出されたT波のピーク(「●」)が「○」に校正される。
 (T波校正結果)
 図31(b)は、図31(a)で示された波形に含まれるT波を校正した結果を示す。T波が発生しない、もしくはTピークの振幅が非常に小さい場合があっても、校正によって呼吸成分における急な振幅変化が発生しない。
 このような構成および処理によって、計測した胸部インピーダンスから、時々T波が発生しない、もしくはTピークの振幅が非常に小さい場合が発生しても、T波のピークを校正し、正しい呼吸成分を抽出できる。
 以上、本開示による実施形態1~4を説明した。
 以下、各実施形態に生体情報計測システムに共通するハードウェア構成例を説明する。なお、以下の説明では実施形態1に係る生体情報計測システム100に関する構成例を説明する。
 図36は、生体信号計測システム100のハードウェア構成の例を示す。生体情報計測システム100のデータ蓄積部6、生体信号計測装置200、および生体情報演算装置300は、互いにバス201で接続され、相互にデータの授受が可能である。また、それぞれの回路にはバッテリ部202から電力が供給されている。これらのハードウェアが、図8に示されるように、生体信号計測装置200Aの筐体の中に格納される。
 生体信号計測装置200は、計測電極2aと、参照電極2bと、アース2cと、生体アンプ211と、AD変換部212と、電流印加部8とを含む。生体アンプ211は、計測電極2aと参照電極2bの間の電位差やインピーダンスを計測する。インピーダンスを計測する場合には、生体アンプ211は、電流印加部8から微弱な電流を流しながら計測がなされる。電位計測かインピーダンス計測かの切り替えは信号処理部220からの制御によって切り替えられる。計測されたデータは、AD変換部212でアナログ信号からデジタル信号に変換され、バス201を経由して信号処理部220のCPU221に送られる。
 生体情報演算装置300は、CPU221とRAM222とRAMに格納されたプログラム223とROM224を有する。プログラム223は、RAM222もしくはROM224に記憶される。CPU221は、RAM222もしくはROM224に記憶されたプログラム223を実行する。プログラム223には、上述したいずれかのフローチャートに示される処理手順が記述されている。生体情報演算装置300は、このコンピュータプログラム223にしたがって、生体信号計測装置200の信号を解析し、計測データや解析結果をデータ蓄積部6に蓄える。
 データ蓄積部6は、蓄積回路231と記録媒体Aと記録媒体Bを有する。データ蓄積部6は、信号処理部22から受け取ったデータを蓄積回路経由で記録媒体Aまたは記録媒体Bに記録する。記録媒体Aと記録媒体Bは、たとえば内蔵されたフラッシュメモリである。図36では、2種類の記録媒体が記載されているが、これは一例である。同一の記録媒体内の異なる2領域を2種類の記録媒体として割り当ててもよい。
 図37は、他のハードウェアの構成例を示す。この構成例では、計測されたデータはそのまま送信部240によってPCやスマートフォンに送信される。データを受信したPCやスマートフォンが、図36におけるデータ蓄積部6として機能することになる。なお、データの送信は、無線によって行われてもよいし、有線によって行われてもよい。
 以下では、基本的な構成は図36と同様であるため、生体信号計測装置200と生体情報演算装置300の重複する説明は省略し、送信部240のみ説明を行う。
 送信部240は、送信回路241とアンテナ242とを有する。生体情報演算装置300によって解析された計測データや計測結果は、送信回路241によって送信プロトコルに適したデータフォーマットに変換され、アンテナ242から送信される。アンテナ242から送信されたデータはPCやスマートフォンに搭載された受信装置(図示せず)によって受信され、その後の処理に使用される。
 尚、図37の一例のように無線化した場合には、前述のインピーダンス時系列データ蓄積、心電成分特徴検出、包絡線作成等の信号処理は、生体情報演算装置300のCPU221によって行われてもよい。あるいは、信号処理部分を処理せずに、送信部240からデータ受信側のPC等にデータを先に送信し、受信側のPCで信号処理を行ってもよい。生体信号計測装置内の信号処理部220で複雑な信号処理を実施した場合にはCPU等の消費電力が増加するし、送信部240においてもデータ送信量と消費電力は比例関係にある。そのため、長時間のモニタリングを実施するためには、PC側と生体信号計測装置200のどちらで信号処理を行うか、どれだけのデータを送信するかについてアプリケーションに適した設定をすればよい。
 本開示にかかる生体情報記録装置によれば、数nAオーダーの低電流を流すだけで、心電図と呼吸(呼吸数、呼吸量)の計測が可能になるため、生体情報モニタリング装置を簡易に構成できる。これにより従来は病院等で入院等によってしか把握できなかった心電図と呼吸(呼吸数、呼吸量)の両方の情報が自宅でも評価でき、長時間、長期間にわたる評価が可能になる。具体的には、病院内での計測の簡素化、自宅等での健康状態の確認、スポーツ時の運動負荷状態の把握等、心拍と呼吸の両方を計測する分野に応用可能である。
 1 ユーザ
 2 電位計測用電極部
 2a 電位計測用電極+
 2b 電位計測用電極-
 3 電流印加用電極部
 3a 電流印加用電極+
 3b 電流印加用電極-
 4 電流印加部
 5 インピーダンス計測部
 6 インピーダンス時系列データ蓄積部
 7 心電成分特徴検出部
 8 包絡線生成部
 9 呼吸出力部
 10 呼吸数推定部
 11 呼吸量推定部
 12 心電成分特徴校正部
 100、500、600、700 生体情報計測システム
 200 生体信号計測装置
 200A 生体信号計測装置
 200B ディスポーザブル電極
 300 生体情報演算装置

Claims (20)

  1.  ユーザの胸部に設けられる複数の電極と、
     前記複数の電極と電気的に接続され、前記複数の電極に電流を供給する電流源と、
     前記複数の電極間の電位差からインピーダンスを計測する計測部と、
     前記インピーダンスの時系列データから、心電に由来する成分のT波のピークの値を検出する検出部と、
     前記T波のピークの値の包絡線を生成する包絡線生成部と、
     前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力する出力部とを備える、
    生体情報計測システム。
  2.  前記計測部によって計測された前記インピーダンスは、心電由来の成分と、呼吸由来の成分とを含み、
     前記インピーダンスでは、前記心電由来の成分が、呼吸由来の成分よりも大きい、請求項1に記載の生体情報計測システム。
  3.  前記電流源は、1nA以上で、107.62μA以下の電流を供給する、請求項2に記載の生体情報計測システム。
  4.  前記電流源は、350μAよりも小さい電流を供給する、請求項1に記載の生体情報計測システム。
  5.  前記検出部は、前記インピーダンスの時系列データのピークの値、およびピークに至った時刻から、予め設定されたベースラインに戻った時刻までの期間を用いて、前記T波のピークの値を検出する、請求項1に記載の生体情報計測システム。
  6.  前記検出部は、心電に由来する成分のR波のピークを検出し、隣接するR波のピーク間に含まれる最も振幅が大きいピークをT波のピークとする、請求項1に記載の生体情報計測システム。
  7.  前記包絡線生成部は、検出された複数の前記T波のピーク間をスプライン曲線で補間し、包絡線を生成する、請求項1に記載の生体情報計測システム。
  8.  前記呼吸出力部で出力された呼吸成分の情報から、呼吸数を推定する呼吸数推定部をさらに備えた、請求項1に記載の生体情報計測システム。
  9.  前記呼吸数推定部は、推定時における呼吸成分の極値を用いて最後の周期を算出し、最後の周期を用いて呼吸数を推定する、請求項8に記載の生体情報計測システム。
  10.  前記呼吸数推定部は、一定時間間隔ごとに呼吸数を推定する、請求項9に記載の生体情報計測システム。
  11.  前記呼吸数推定部は、呼吸成分の最後の振幅が特定の閾値以下の場合には呼吸停止と判断し、呼吸数を0と推定する、請求項9に記載の生体情報計測システム。
  12.  前記呼吸出力部で出力された呼吸成分の情報から、呼吸量を推定する呼吸量推定部をさらに備えた、請求項1に記載の生体情報計測システム。
  13.  前記呼吸量推定部は、一定時間間隔ごとに呼吸量を推定する、請求項12に記載の生体情報計測システム。
  14.  前記呼吸量推定部は、呼吸成分の最後の振幅の大きさに基づいて、一回あたりの呼吸量を推定する、請求項12に記載の生体情報計測システム。
  15.  前記呼吸量推定部は、推定時に、呼吸成分の最後の振幅が特定の閾値以下の場合には呼吸停止と判断し、呼吸量を0と推定する、請求項12に記載の生体情報計測システム。
  16.  前記検出部によって検出された心電成分の特定のピークの値が所定閾値より小さい場合に、前記特定のピークの値を校正する校正部をさらに備える、請求項1に記載の生体情報計測システム。
  17.  前記校正部は、前の時刻における特定のピークの群から、呼吸成分における最後の周期を求め、所定閾値より小さい特定のピークにおける時刻から前記最後の周期を引いた時刻に最も近い特定のピークの値を、校正値として、所定閾値より小さい特定のピークの値に入力する、請求項16に記載の生体情報計測システム。
  18.  電流源から供給された電流を用いて、ユーザの胸部に設けられた複数の電極間の電位差から計測されたインピーダンスの時系列データを受け取り、前記時系列データから、心電に由来する成分のT波のピークの値を検出する検出部と、
     前記T波のピークの値の包絡線を生成する包絡線生成部と、
     前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力する出力部と
     を備えた、生体情報演算装置。
  19.  ユーザの胸部に設けられた複数の電極に電流を供給するステップと、
     前記複数の電極間の電位差からインピーダンスを計測するステップと、
     前記インピーダンスの時系列データから、心電に由来する成分のT波のピークの値を検出するステップと、
     前記特定のピークの値の包絡線を生成するステップと、
     前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力するステップと
     を包含する、生体情報計測方法。
  20.  生体情報計測システムに設けられたコンピュータによって実行されるコンピュータプログラムであって、
     前記コンピュータプログラムは、前記コンピュータに対し、
     電流源から供給された電流を用いて、ユーザの胸部に設けられた複数の電極間の電位差から計測されたインピーダンスの時系列データを受け取るステップと、
     前記時系列データから、心電に由来する成分のT波のピークの値を検出するステップと、
     前記T波のピークの値の包絡線を生成するステップと、
     前記包絡線の情報を、前記ユーザの呼吸成分に関する生体情報として出力するステップと
     を実行させる、コンピュータプログラム。
PCT/JP2014/000587 2013-03-22 2014-02-04 生体信号計測システム、装置、方法およびそのプログラム WO2014147939A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014533734A JP5632570B1 (ja) 2013-03-22 2014-02-04 生体信号計測システム、装置、方法およびそのプログラム
US14/618,520 US9980664B2 (en) 2013-03-22 2015-02-10 Biological signal measurement system, apparatus, method, and computer program thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013060214 2013-03-22
JP2013-060214 2013-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/618,520 Continuation US9980664B2 (en) 2013-03-22 2015-02-10 Biological signal measurement system, apparatus, method, and computer program thereof

Publications (1)

Publication Number Publication Date
WO2014147939A1 true WO2014147939A1 (ja) 2014-09-25

Family

ID=51579645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000587 WO2014147939A1 (ja) 2013-03-22 2014-02-04 生体信号計測システム、装置、方法およびそのプログラム

Country Status (3)

Country Link
US (1) US9980664B2 (ja)
JP (1) JP5632570B1 (ja)
WO (1) WO2014147939A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016026548A (ja) * 2014-06-24 2016-02-18 パナソニックIpマネジメント株式会社 生体情報モニタリングシステム、装置、方法およびそのプログラム
JP2016159096A (ja) * 2015-03-05 2016-09-05 シャープ株式会社 食事支援装置、食事支援システム、コンピュータプログラム及び食事支援方法
US11229381B2 (en) 2017-10-19 2022-01-25 Socionext Inc. Semiconductor integrated circuit and respiratory motion testing apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108601546B (zh) 2016-02-04 2021-03-26 日本电信电话株式会社 生物信号处理方法和生物信号处理设备
GB2549306B (en) * 2016-04-13 2020-07-29 Gen Electric Method and apparatus for giving a measurement of quality for impedance based respiration monitoring
CN110325110B (zh) 2016-11-10 2022-08-09 纽约州立大学研究基金会 用于气道阻塞的***、方法和生物标记

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253414A (ja) * 1998-03-13 1999-09-21 Nec Corp 呼吸計測装置及び方法
JP2001190510A (ja) * 2000-01-13 2001-07-17 Nippon Colin Co Ltd 周期性生体情報測定装置
JP2002518077A (ja) * 1998-06-19 2002-06-25 マリンクロット・インコーポレイテッド アーチファクトを排除した無呼吸検出器
JP2014050626A (ja) * 2012-09-10 2014-03-20 Panasonic Corp 情報処理装置、方法およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433217A (en) * 1965-09-30 1969-03-18 Gen Electric Respiration monitor
JP2820169B2 (ja) 1991-05-13 1998-11-05 三菱電機株式会社 心電図を用いた呼吸波形推定方法
JP3735774B2 (ja) 2001-08-27 2006-01-18 株式会社中日電子 生体信号処理方法
US7391257B1 (en) * 2007-01-31 2008-06-24 Medtronic, Inc. Chopper-stabilized instrumentation amplifier for impedance measurement
AU2008307127A1 (en) * 2007-10-02 2009-04-09 Compumedics Medical Innovation Pty Ltd Electrocardiogram derived apnoea/hypopnea index
US8444570B2 (en) * 2009-06-09 2013-05-21 Nellcor Puritan Bennett Ireland Signal processing techniques for aiding the interpretation of respiration signals
US20140073863A1 (en) * 2012-09-11 2014-03-13 Nellcor Puritan Bennett Llc Methods and systems for determining physiological information using modulated signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253414A (ja) * 1998-03-13 1999-09-21 Nec Corp 呼吸計測装置及び方法
JP2002518077A (ja) * 1998-06-19 2002-06-25 マリンクロット・インコーポレイテッド アーチファクトを排除した無呼吸検出器
JP2001190510A (ja) * 2000-01-13 2001-07-17 Nippon Colin Co Ltd 周期性生体情報測定装置
JP2014050626A (ja) * 2012-09-10 2014-03-20 Panasonic Corp 情報処理装置、方法およびプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016026548A (ja) * 2014-06-24 2016-02-18 パナソニックIpマネジメント株式会社 生体情報モニタリングシステム、装置、方法およびそのプログラム
JP2016159096A (ja) * 2015-03-05 2016-09-05 シャープ株式会社 食事支援装置、食事支援システム、コンピュータプログラム及び食事支援方法
US11229381B2 (en) 2017-10-19 2022-01-25 Socionext Inc. Semiconductor integrated circuit and respiratory motion testing apparatus

Also Published As

Publication number Publication date
JP5632570B1 (ja) 2014-11-26
US20150150485A1 (en) 2015-06-04
JPWO2014147939A1 (ja) 2017-02-16
US9980664B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
EP3474739B1 (en) A method and apparatus for determining respiratory information for a subject
JP5587524B2 (ja) 生体信号計測装置、および、生体信号計測方法
CN108135535B (zh) 用于处理与呼吸活动有关的肌电图信号的装置和方法
Cybulski et al. Ambulatory impedance cardiography
O’Brien et al. A comparison of algorithms for estimation of a respiratory signal from the surface electrocardiogram
JP5632570B1 (ja) 生体信号計測システム、装置、方法およびそのプログラム
JP5175834B2 (ja) 呼吸でゲーティングされた心拍記録
US20090024044A1 (en) Data recording for patient status analysis
WO2017220526A1 (en) A method and apparatus for determining respiratory information for a subject
Hernandez et al. Simple heart rate monitoring system with a MEMS gyroscope for sleep studies
JP2022068177A (ja) 非侵襲的な呼吸器モニタリング
Qiu et al. A wearable bioimpedance chest patch for IoHT-connected respiration monitoring
Ahmad et al. A prototype of an integrated blood pressure and electrocardiogram device for multi-parameter physiologic monitoring
Ahmad et al. Multiparameter physiological analysis in obstructive sleep apnea simulated with Mueller maneuver
Paukkunen et al. A system for detection of three-dimensional precordial vibrations
JP2016022293A (ja) 生体情報モニタリング装置、方法およびそのプログラム
US20230009478A1 (en) Estimation of tidal volume using load cells on a hospital bed
JP6512406B2 (ja) 生体情報モニタリングシステム、装置、方法およびそのプログラム
Fadhil et al. A DEPENDABILITY PERSPECTIVE TO MONITOR EXERCISES USING A MOBILE ECG SENSOR
Trobec et al. Two proximal skin electrodes–a body sensor for respiration rate
Kantele-Mesimäki Patient on the move: feasibility of a multi-parameter respiratory rate measurement
Pinheiro et al. Calibration and validation of homeostasis parameters estimates produced by a DSP embedded in a wheelchair

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014533734

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769213

Country of ref document: EP

Kind code of ref document: A1