WO2014141928A1 - Delivery path planning system - Google Patents

Delivery path planning system Download PDF

Info

Publication number
WO2014141928A1
WO2014141928A1 PCT/JP2014/055327 JP2014055327W WO2014141928A1 WO 2014141928 A1 WO2014141928 A1 WO 2014141928A1 JP 2014055327 W JP2014055327 W JP 2014055327W WO 2014141928 A1 WO2014141928 A1 WO 2014141928A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
dimensional
path
state
interference
Prior art date
Application number
PCT/JP2014/055327
Other languages
French (fr)
Japanese (ja)
Inventor
紀輔 藤井
洋一 野中
敦子 榎本
順一 金子
司 一條
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2014141928A1 publication Critical patent/WO2014141928A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a computer information processing technique, and more particularly, to a technique for planning a route for carrying in or carrying out an object such as a part, material, or equipment from a space and a structure such as a building.
  • Patent Document 1 JP-A 06-168303 (Patent Document 1) is given as an example of prior art relating to route planning.
  • Patent Document 1 describes that an installation plan that can easily examine an optimal installation procedure for a large number of minimum installation units is described.
  • Patent Document 1 is obtained from dividing arrangement graphic information into minimum installable units, associating work steps of installation minimum units, carrying-in route, interference confirmation, calculation of work time, etc., and animation display, and these examination results. It describes that the optimization of the installation procedure is output by a computer.
  • Patent Document 1 describes that an installation procedure plan in which installation work is performed efficiently and safely can be efficiently created.
  • the route planning function uses the object data, the structure data, the carry-in device data, etc. to plan a plurality of route candidates that connect the start point and the end point, and the position of the object on the route.
  • Targets that do not interfere with the target object and the surrounding structure based on the result of determining the interference state between the target object and the surrounding structure for the path candidate and the posture candidate. It describes outputting one or more efficient route information including the posture of an object.
  • the technology of this application is to calculate a posture that does not interfere by simultaneously processing interference judgments in a large number of posture candidates of an object by parallel arithmetic processing using GPGPU (General-purpose computing-on graphics-processing units). Is described.
  • GPGPU General-purpose computing-on graphics-processing units
  • the three-dimensional shape data of the object and the three-dimensional shape of the structure such as a plant are used.
  • a process of determining and checking the state of interference is performed by calculating an overlapping area between the two.
  • a structure such as a plant has a large or enormous number of elements such as a three-dimensional CAD object constituting the structure. Since the process of interference determination using the three-dimensional shape data and the path generation including the interference determination according to the prior art needs to perform the interference determination process on a large number of objects of the three-dimensional structure, As the number of objects of the three-dimensional structure increases, there is a problem that the calculation amount of the computer increases and the calculation time increases.
  • FIG. 29 shows a problem of increase in calculation time in the above-described conventional technology.
  • the calculation time required for the interference determination process increases in proportion to the number of three-dimensional structure objects to be calculated. Therefore, it is required that this calculation time can be shortened to 2902, for example.
  • An object of the present invention relates to a state of interference between an object and a structure on the route, for a carry-in route planning system, that is, a system for generating or planning a route for loading and unloading an object in a space inside the structure. It is an object of the present invention to provide a technique capable of shortening the calculation time of the entire process including the process of determining whether or not.
  • a representative form of the present invention is a carry-in route planning system or the like, and has the following configuration.
  • a carry-in route planning system is a route for moving a three-dimensional object for carry-in / out in a space inside a three-dimensional structure as a processing unit realized by a program process using a computer.
  • a path generation unit for generating a plurality of states including a posture state or a translational state of the three-dimensional object, and a state of the three-dimensional object as a tangential direction of the path
  • a first projection processing unit which obtains data of a two-dimensional object by projecting onto a first projection plane which is a plane perpendicular to the plane, and the three-dimensional structure is perpendicular to the tangential direction of the path
  • a second projection processing unit that obtains data of a two-dimensional structure by projecting onto a second projection plane that is a flat surface, the data of the two-dimensional object, and the data of the two-dimensional structure are superimposed.
  • the interference determination unit obtains interference determination result data by determining a state of interference between the object and the structure by calculating a region where the region of the object and the region of the structure overlap or approach each other. And an output unit that outputs information including the interference determination result data.
  • the output unit stores information including the route including the state of the object in which the object and the structure do not interfere with each other in a storage unit, and displays the information on a screen of a user interface.
  • the output unit stores information including the route including the state of the object in which the object and the structure interfere with each other in a storage unit and displays the information on a screen of a user interface.
  • the carry-in route planning system includes a coordinate conversion unit that performs coordinate conversion processing on the shape of the structure and the object so that a curved route included in the route is converted into a straight route.
  • the first projection processing unit projects the state of the three-dimensional object after the coordinate conversion processing onto the first projection plane
  • the second projection processing unit is configured to project the three-dimensional object after the coordinate conversion processing. Are projected onto the second projection plane.
  • the state planning unit plans a state in which the object is rotated by a predetermined angle unit around a rotation axis of a coordinate system that defines the posture of the object at a point on the path as the state of the object.
  • the state planning unit translates the object in a unit of a predetermined distance within a plane perpendicular to the tangential direction of the path at a point on the path as a state of translation of the object.
  • an object and structure on a route are related to a carry-in route planning system, that is, a system for generating or planning a route for carrying in and out an object in a space inside the structure.
  • the calculation time of the whole process including the process which determines the state of interference with an object can be shortened.
  • FIG. 2 is a diagram illustrating a configuration example of hardware and software of a main calculation device and a terminal device of the carry-in route planning system of FIG. 1. It is a figure which shows the form at the time of comprising the carrying-in route planning system of FIG. 1 with one apparatus. It is a figure which shows the block configuration of the interference determination processing function which is one of the processing functions which the route planning function of a carrying-in route planning system has. It is a figure which shows the example of a flow of the whole process by the route planning function of a carrying-in route planning system. It is a figure which shows the example of a display of the user interface screen in a terminal device.
  • (A)-(d) is a figure which shows the example and coordinate system of a target object.
  • (A)-(c) is a figure which shows the example of the setting of the margin space of a target object.
  • position of a target object is shown. It is a figure which shows 1st examples, such as a structure and a path
  • FIG. 18 is a diagram illustrating a configuration example of a YZ plane of each projection plane in FIGS.
  • (A) is a figure which shows the example of a coordinate transformation process. It is a figure which shows the example which performs a parallel projection process with respect to the path
  • FIG. 1 It is a figure which shows the example which uses the movement of a diagonal direction with respect to the direction of the original path
  • (A)-(c) is a figure which shows the example of the plan of the state of the attitude
  • (A)-(d) is a figure which shows the example which searches a path
  • (A)-(d) is a figure which shows the example which projects the state of the attitude
  • the system according to the present embodiment is a carry-in route planning system used for applications such as the design, construction, and preventive maintenance of structures such as plants, and the start and end points of carry-in / out of objects such as materials.
  • this function includes a function of automatically generating a route in which an object that is a moving object does not interfere with a structure in the middle of the route.
  • This function also includes a function that allows the user to check whether the object interferes with a structure in the middle of the route and output the result to the screen.
  • this function includes a function for generating an efficient path including a state due to rotation and translation of a three-dimensional object.
  • this function includes a function for generating the path in consideration of the characteristics of the loading means used for loading and unloading the object.
  • the path planning function of the system determines or confirms a state including an angle that defines the position and posture of an object in an arbitrary path for loading and unloading the object within the structure.
  • Two-dimensional image data obtained by projecting the shapes of the three-dimensional objects of the target object and the surrounding structures onto a plane perpendicular to the tangential direction of the path is obtained. It can be said that the amount of processing data is compressed from three dimensions to two dimensions during this projection.
  • the path planning function performs a process of determining the state of interference between the object region and the surrounding structure region in the projection plane in the two-dimensional image data.
  • the interference determination process requires a smaller amount of processing data and speeds up the calculation than the process of determining the state of interference by comparing three-dimensional data as in the prior art. Therefore, the overall calculation time for the route plan is shortened.
  • FIG. 1 shows a configuration example of a system according to an embodiment of the present invention.
  • the entire system according to an embodiment includes a carry-in route planning system 1, an object 31, a structure 32, a carry-in device 33, a design device 50, and the like.
  • the carry-in route planning system 1 has a configuration in which the main computing device 10 and the terminal device 20 are connected via a communication network.
  • the main computing device 10 and the terminal device 20 include a route planning function F1 and a GUI display function F2, and these functions are realized as, for example, a known client server system.
  • the main computer 10 is in charge of the main calculation processing and control processing of this system.
  • the main computing device 10 performs main processing related to the route planning function F1 and the GUI display function F2.
  • the terminal device 20 transmits a processing request to the main computing device 10 as necessary, and the main computing device 10 responds to the terminal device 20 with processing result data corresponding thereto.
  • the main computing device 10 and the terminal device 20 are integrated into one device is possible.
  • the route planning function F1 includes an interference determination processing function (FIG. 4), which will be described later, and performs processing such as that shown in FIG.
  • the GUI display function F2 has a function of controlling a display screen serving as a graphical user interface (GUI).
  • GUI graphical user interface
  • a carry-in worker UA and a route planner UB are included.
  • the carry-in worker UA is a person who carries out a work in / out, a person who gives a work instruction, or the like.
  • the route planner UB is a person who plans a route for carry-in / out, or a person who instructs the plan or work remotely.
  • the carry-in worker UA is, for example, near the object 31 and the carry-in device 33 in the space inside the structure 32 and carries the terminal device 20 for use.
  • the route planner UB operates the main computing device 10, the terminal device 20, and the design device 50, for example.
  • the object 31 is a moving object to be carried in and out, and includes parts, materials, equipment, and the like, for example, piping.
  • the structure 32 is a space, a building, or the like into which the object 31 is carried in and out, for example, a plant to be constructed. It should be noted that the structure 32 may change the state of the overall shape of the structure 32 by moving a part of the structure 32 according to the progress of the construction. For example, by setting the object 31 as a part of the structure 32 at the end point of the route, the shape of the structure 32 is updated.
  • the carry-in device 33 is a device for carrying in / out and moving the object 31 inside the structure 32 as one of the carry-in means, and examples thereof include a carriage, a crane, a hoist, and a chain. In addition, a person is included as a carrying-in means.
  • the carry-in device 33 moves the object 31 or changes the angle of the posture of the object 31 by operating, for example, rotation of a crane or expansion and contraction of a chain. In addition, when a person carries the target object 31 directly, the carrying-in apparatus 33 is not necessary.
  • the carry-in device 33 has a unique three-dimensional shape and characteristics relating to movement and the like.
  • the present system may set an object in which the three-dimensional shape of the carry-in device 33 is integrated with the three-dimensional shape of the object 31. Thereby, calculation time can be shortened by simplification of calculation.
  • the carry-in device 33 the user U can select and set a carry-in means to be used for a moving object on the screen of the system.
  • the design device 50 includes a design SW (software) 51 corresponding to a known CAD or CAM.
  • the design device 50 is used by the route planner UB or another designer.
  • the design device 50 creates or acquires data information including moving object data D1, structure data D2, and carry-in means data D3 using the design SW 51, and manages it in a design DB (database) 55 that is a storage means.
  • the design device 50 and the main computing device 10 may be integrated.
  • the moving object data D1 includes data such as a three-dimensional CAD object of the object 31, and two-dimensional image data.
  • the structure data D2 includes data such as a three-dimensional CAD object of the structure 32, two-dimensional image data, and the like.
  • the structure data D2 includes design drawing data of a building such as a plant to be designed and constructed, for example.
  • the carry-in means data D3 includes data such as a three-dimensional CAD object of the carry-in means such as the carry-in device 33, data of characteristics of the carry-in device 33 described later, and the like.
  • the usage example of this system is as follows.
  • the carry-in worker UA displays information on the screen of the terminal device 20 such as a route for carrying in / out the object 31 inside the structure 32.
  • the terminal device 20 displays the state of the traveling direction on the route from the current position of the target object 31 and the carry-in worker UA on the screen in three dimensions or two dimensions.
  • the carry-in worker UA designates the structure 32 on the screen, and the structure 32 and the object Request a check on the state of interference with the object 31.
  • the terminal device 20 requests the main computing device 10 to check the interference state.
  • the main computing device 10 If the requested interference state has already been calculated, the main computing device 10 reads out and responds to the interference determination result data. If not, the main computing device 10 performs interference determination processing for the requested interference state. Is executed, and the interference determination result data is returned. Then, on the screen of the terminal device 20, the carry-in worker UA indicates whether or not the interference occurs, and if the interference occurs, information such as the location of the occurrence is two-dimensional or three-dimensional. It can be confirmed as information. Similarly to the above usage example, the route planner UB displays various information similar to the above usage example on the screen of the main computing device 10 or the terminal device for the route planner UB connected thereto. It is possible to plan routes and check the state of interference.
  • FIG. 2 shows a configuration example of hardware and software of the main computer 10 and the terminal device 20 of the carry-in route planning system 1 of FIG.
  • the main computing device 10 is a server computer equipped with a GPGPU 219 that is a parallel computing unit.
  • the main computing device 10 is a single server, but may be configured by connecting a plurality of servers. Further, the main computing device 10 may implement a similar parallel computing function by accessing a cloud computing service on the communication network 90 instead of the parallel computing by the GPGPU 219.
  • the terminal device 20 is a tablet PC equipped with a touch sensor and a liquid crystal display.
  • the terminal device 20 communicates with the main computer 10 via the communication network 90 and uses functions of the main computer 10.
  • the terminal device 20 displays various information such as the object 31, the structure 32, and the route on the display screen serving as the graphical user interface (GUI) as described later.
  • GUI graphical user interface
  • the route planning function F1 of the main computing device 10 plans the route of carry-in / out using the processing of the CPU 211 and the parallel calculation processing of the GPGPU 219 in response to an instruction input from the user U or a request from the terminal device 20. Perform calculation processing.
  • the route planning function F ⁇ b> 1 of the main computing device 10 uses the GPGPU 219 based on an instruction from the CPU 211 to perform parallel arithmetic processing on a number of routes related to the route plan.
  • the main computer 10 acquires each data including moving object data D1, structure data D2, and carry-in means data D3 necessary for the route plan from the design device 50, and is stored in the storage means inside the main computer 10. It is managed by a certain storage device 217.
  • the moving object data D1 includes the position and state set for each individual object 31 and various attribute information.
  • the structure data D2 includes positions and states set for each structure 32 and various attribute information.
  • the carrying-in means data D3 includes the position and state set for each structure 32 and various attribute information.
  • the user U uses a function of a known laser scanner or the like provided in the terminal device 20 or another device to image the internal space of the structure 32, so that the three-dimensional structure 32 at that point in time is captured.
  • the situation may be acquired as data.
  • the captured data is transmitted from the terminal device 20 to the main computer 10, and the main computer 10 reflects the data in the structure data D2.
  • the main computing device 10 includes a CPU 211, a RAM 212, a ROM 213, an input device 214, an output device 215, a communication I / F (interface) device 216, a storage device 217, a display computing unit 218, a GPGPU 219, and a bus. Composed.
  • the CPU 211 loads the program and data of this embodiment from the ROM 213 and the storage device 217 to the RAM 212 and executes the processing, thereby realizing the server side route planning function F1 and the like.
  • the input device 214 and the output device 215 include a keyboard, a display, and its input / output interface control processing unit.
  • the communication I / F device 216 performs interface processing for the communication network 90.
  • the storage device 217 is a secondary storage device such as a disk or a card.
  • the GPGPU 219 is configured by a GPGPU board or the like.
  • the display computing unit 218 is configured by a graphic board or the like.
  • the terminal device 20 includes a CPU 221, a RAM 222, a ROM 223, an input device 224, an output device 225, a communication I / F device 226, a storage device 227, a display computing unit 228, a bus, and the like.
  • the CPU 221 loads the program and data of this embodiment from the ROM 223, the storage device 227, and the like to the RAM 222 and executes the processing, thereby realizing the path planning function F1 on the client side.
  • the input device 224 and the output device 225 include a touch panel and its input / output interface control processing unit.
  • the communication I / F device 226 performs interface processing for the communication network 90.
  • the storage device 227 is a secondary storage device such as a disk or a card.
  • the display computing unit 228 is configured by a graphic board or the like.
  • FIG. 3 shows an embodiment in which the carry-in route planning system 1 is configured by a single device.
  • the computing device 300 includes a control unit 310, a storage unit 320, an input unit 330, a display unit 340, a communication unit 350, and a bus.
  • the control unit 310 includes a projection plane calculation unit 311, a two-dimensional image calculation unit 312, an interference region calculation unit 313, a movement distance calculation unit 314, an attitude change point calculation unit 315, and a screen output unit 316.
  • the storage unit 320 includes a moving object three-dimensional shape information storage unit 321, a structure three-dimensional shape information storage unit 322, a carry-in means information storage unit 323, a route information storage unit 324, a moving object two-dimensional image information storage unit 325, and a structure.
  • a two-dimensional image information storage unit 326, an interference area storage unit 327, a movement distance storage unit 328, and a posture change point storage unit 329 are included.
  • the moving object three-dimensional shape information storage unit 321 stores information corresponding to the moving object data D1.
  • the structure three-dimensional shape information storage unit 322 stores information corresponding to the structure data D2.
  • the carry-in means information storage unit 323 stores information corresponding to the carry-in means data D3.
  • the route information storage unit 324 stores information corresponding to route data D4 described later.
  • the moving object two-dimensional image information storage unit 325 stores information corresponding to moving object two-dimensional data D5 described later.
  • the structure two-dimensional image information storage unit 326 stores information corresponding to structure two-dimensional data D6 described later.
  • the projection plane calculation unit 311 performs a process of calculating a plane perpendicular to the tangential direction of the path, for example, as a process of calculating a projection plane related to a projection process from 3D data to 2D data.
  • the two-dimensional image calculation unit 312 performs processing for calculating image data of a two-dimensional projection plane by projection processing from three-dimensional data to two-dimensional data.
  • the interference region calculation unit 313 calculates a region where the region of the moving object and the region of the object overlap or approach each other within the two-dimensional projection plane as an interference region, and stores the interference region in the interference region storage unit 327. .
  • the movement distance calculation unit 314 calculates a distance that the moving object on the route can move without interference with the structure, and stores the movement distance in the movement distance storage unit 328.
  • the posture change point calculation unit 315 calculates a position for changing the posture of the moving object on the route, and stores it in the posture change point storage unit 329.
  • the screen output unit 316 performs a process of displaying the various data information managed in the storage unit 320 on the user interface screen according to the operation of the user U.
  • FIG. 4 shows a block configuration of an interference determination processing function which is one of the processing functions of the route planning function F1 of the carry-in route planning system 1.
  • the interference determination processing function is a processing unit realized by computer program processing, such as a path generation unit 11, a coordinate conversion unit 12, a moving object projection processing unit 13, a structure projection processing unit 14, an interference determination unit 15, and an output unit 16.
  • the posture changing unit 17 is included.
  • the interference determination processing function includes moving object data D1, structure data D2, carry-in means data D3, route data D4, moving object two-dimensional data D5, structure two-dimensional data D6, and interference determination result data as handled data information. D7, etc.
  • the moving object data D1 includes three-dimensional shape data of an object to be carried in and out that is a moving object, and includes, for example, three-dimensional CAD object data.
  • the structure data D2 includes three-dimensional shape data of a structure such as a plant, and includes, for example, three-dimensional CAD object data.
  • the carry-in means data D3 includes three-dimensional shape data of carry-in means such as a carry-in device, and includes, for example, three-dimensional CAD object data.
  • the route data D4 includes data information of a plurality of routes including at least points and lines. When each route includes a plurality of partial routes, the route data D4 also includes information of the partial routes.
  • the moving object two-dimensional data D5 includes projection plane image data including information on the shape of the moving object on the two-dimensional projection plane.
  • the structure two-dimensional data D6 includes projection plane image data including information on the shape of the structure on the two-dimensional projection plane.
  • the interference determination result data D7 includes information such as the presence / absence of interference between the state of the moving object and the surrounding structure on the route and the position where the interference occurs as interference determination result data.
  • the route generation unit 11 receives the moving object data D1, the structure data D2, and the carry-in means data D3, generates a plurality of routes, and outputs them as route data D4.
  • the coordinate conversion unit 12 performs a coordinate conversion process on the three-dimensional structure of the structure data D2 and the corresponding three-dimensional moving object of the moving object data D1 with respect to the partial route including the curve based on the route data D4.
  • the moving object projection processing unit 13 uses a three-dimensional object of the moving object of the moving object data D1 as a projection plane on a plane perpendicular to the tangential direction of the route, and parallel from three dimensions to two dimensions. Perform projection processing. Thereby, the moving object two-dimensional data D5 including the projection plane image data is obtained.
  • the structure projection processing unit 14 performs parallel projection processing from 3D to 2D using the 3D structure of the structure data D2 as a projection plane based on the path of the path data D4 and a plane perpendicular to the tangential direction of the path. I do. Thereby, the structure two-dimensional data D6 including the projection plane image data is obtained. In the projection plane image data, when there are a plurality of structures on the path, their shapes are projected onto one projection plane all at once.
  • the interference determination unit 15 uses the moving object two-dimensional data D5 and the structure two-dimensional data D6 to superimpose the two-dimensional moving object projection plane image and the two-dimensional structure projection plane image. In the two-dimensional plane, a process of determining the state of interference between the two-dimensional moving object and the two-dimensional structure is performed, for example, by calculating a region where the region overlaps the region of the two-dimensional structure. Thereby, the interference determination unit 15 obtains interference determination result data D7 including information on the location where the interference has occurred.
  • the interference determination result data D7 includes information on a path 401 without interference and information on a path 402 with interference.
  • the output unit 16 performs processing for saving the interference determination result data D7 in the storage unit, processing for displaying various information including interference occurrence location information on the user interface screen based on the interference determination result data D7, and the like.
  • the output unit 16 displays, for example, information on the interference-free route 401 and / or the interference-caused route 402 on the user interface screen. Note that the information on the interference-free route 401 and the interference-caused route 402 is reflected as a part of the route data D4.
  • the output unit 16 when displaying the information of the path without interference 401 or the path with interference 402 on the screen, the output unit 16 three-dimensionally displays each piece of information such as the structure, the path, the position and orientation of the target object, the presence / absence of interference, and the location where the interference occurs.
  • screen data collected in a two-dimensional format is generated and displayed.
  • the posture changing unit 17 refers to the interference determination result data D7, and when there is interference with a structure in the posture of the moving object on the route, the posture changing unit 17 uses the moving object data D1 to change the posture state of the moving object. Perform the change process.
  • the posture changing unit 17 is a state planning unit, and performs a process of planning a change state of the posture of the moving object as a candidate in order to search for a route that can avoid the interference.
  • the posture of the moving object is defined by the angle around each rotation axis ( ⁇ , ⁇ , ⁇ ) of the coordinate system of the object. In changing the posture angle, the posture changing unit 17 may plan the posture angle state of the moving object using a predetermined minimum angle unit such as 30 degrees, 45 degrees, or 90 degrees.
  • the posture changing unit 17 not only changes the posture angle but also changes the state of the moving object, while maintaining the posture angle, while moving the moving object in a plane perpendicular to the tangential direction of the path. It is possible to change or plan the state of moving the object in parallel. In this case, the posture changing unit 17 drafts the state of translation of the moving object using a predetermined minimum translation unit such as 10 pixels in the Y direction and 10 pixels in the Z direction when planning the state of translation. May be.
  • the posture changing unit 17 stores the posture information 411 or the parallel movement information 412 representing the state of the three-dimensional moving object designed as described above, and passes it to the moving object projection processing unit 13.
  • the moving object projection processing unit 13 updates the contents of the moving object two-dimensional data D5 by projecting the drafted state of the three-dimensional moving object onto a two-dimensional plane in the same manner as described above.
  • the interference determination unit 15 performs the interference determination on the proposed moving object state in the same manner as described above.
  • FIG. 5 shows an example of a flow of overall processing by the route planning function F1 of the carry-in route planning system 1.
  • S1 etc. represent processing steps. Details of each process will be described later.
  • (S1) Condition setting and data input process S1 sets condition information related to the route planning function F1 based on the operation of the user U in the terminal device 20 or the like, and also includes the above-mentioned moving object data D1, structure data D2, Data such as carry-in means data D3 is input.
  • the main computer 10 manages the set condition information as the condition setting data D0.
  • the user U wants to execute route planning or interference determination, the user U selects and executes route planning or interference determination from a menu or the like on the screen.
  • the route generation processing S2 is performed by the route generation unit 11.
  • the route generation processing S2 automatically uses a plurality of routes connecting the start point and the end point as candidates using information on the start point and the end point selected by the operation of the user U or set by an automatic process. Generate the process.
  • the data thus generated is stored as route data D4. Note that the interference between the route and the structure is not determined at the time of S2, and the detailed route is determined in a later step. Therefore, the route generated at the time of S2 is a simple data structure composed of points and lines. The route is acceptable.
  • the route selection process S3 selects any one route from the plurality of routes generated in S2. At this time, if necessary, one route may be divided into a plurality of partial routes, and the same processing may be performed for each partial route so as to facilitate calculation.
  • a partial route is also composed of dots and lines, as is the case with the higher-level route. In the following description, the partial route is also simply referred to as a route.
  • the end point of the partial route is matched with the start point of the next partial route. If the match is impossible, a partial route connecting the end point of the partial route and the start point of the next partial route is added.
  • S4 to S17 are steps in which the processing for each route selected in S3 is similarly repeated.
  • the coordinate conversion process S5 is performed by the coordinate conversion unit 12.
  • the coordinate transformation process S5 is an absolute coordinate system (X, Y, X, Y) so that when a route or a partial route thereof has a curved route such as an arc, the curved route portion becomes a straight route.
  • the coordinate system is converted from Z) to a polar coordinate system ( ⁇ , Y, Z) or the like.
  • the coordinate conversion process S5 obtains converted three-dimensional shape data by performing a coordinate conversion process on the three-dimensional structure corresponding to the curve path portion and the corresponding three-dimensional moving object.
  • the coordinate conversion processing S5 needs to perform coordinate conversion of the corresponding three-dimensional moving object in accordance with the coordinate conversion of the three-dimensional structure.
  • (S6) Three-dimensional to two-dimensional projection processing S6 of the structure is performed by converting the three-dimensional shape of the structure in front of the moving object on the path into a two-dimensional plane that is perpendicular to the tangential direction of the path.
  • structure two-dimensional data D5 that is a projection plane image is obtained.
  • the projection processing of S6 constitutes the projection plane at the position of the end point in the linear route or the partial route. Since the curved path has already been converted to the straight path by the process of S5, the projection process of S6 is a linear parallel projection process, so that the calculation time is short. Further, in the projection process of S6, as described later, even when there are a plurality of structures on the path, the plurality of structures can be projected onto one projection plane at a time by one projection process. This can contribute to shortening the calculation time.
  • the planning process S7 of the three-dimensional state of the object includes the posture changing process by the posture changing unit 17 described above.
  • the above-described posture or parallel movement state is planned as the three-dimensional state of the target object that is a moving object.
  • the planning process S7 plans the rotation axis and the rotation angle for changing the posture, or the direction and distance of the translation.
  • the planning process S7 manages the planned posture information 411 or the parallel movement information 412 in association with the structure data D2.
  • the posture of the three-dimensional object at the position of the start point of the given route is maintained around each rotation axis ( ⁇ , ⁇ , ⁇ ) in the local coordinate system while maintaining the position.
  • a state in which the rotation is performed every predetermined angle unit is planned.
  • a three-dimensional object at the position of the start point of a given route is maintained in a predetermined direction and a predetermined direction within a plane perpendicular to the tangential direction of the route in the absolute coordinate system while maintaining the posture.
  • both the posture and the parallel movement are planned in the process of S7, but a mode in which only one of them is planned is also possible.
  • the object state selection process S8 selects an arbitrary one from the plurality of states planned in S7.
  • S9 to S13 are steps in which the process for each state selected in S8 is similarly repeated.
  • processing related to a plurality of states may be executed in parallel by using the above-described parallel calculation by the GPGPU 219.
  • a well-known parallel projection process can be used for the projection process of S6 and the projection process of S10.
  • S10 a form in which the projection plane of the moving object is the same as the projection plane of the structure created in S6 is also possible.
  • one projection plane image is obtained in which the moving object of S10 is superimposed on the projection plane image of the structure of S6.
  • information is added to the data after the projection processing or the association information is set so that it can be understood later which structure or which object state is projected. Keep it in control.
  • the two-dimensional projection plane interference determination process S11 In the two-dimensional projection plane interference determination process S11, the projection plane image data of the structure two-dimensional data D6 created in S6 and the projection plane image data of the moving object two-dimensional data D5 created in S10 are used. A process of determining the state of interference in a two-dimensional projection plane superimposed on one is performed. That is, the interference determination process S11 determines the presence / absence of interference and the location where interference occurs by calculating a region where the region of the moving object and the region of the target object overlap within the two-dimensional projection plane. In the process of S11, if there is an overlapping area, the result is that there is interference, and the position of the structure corresponding to the location is obtained.
  • processing of S11 is not limited to calculating a region where the region of the moving object and the region of the structure overlap in the plane, as described later, and the region of the moving object and the region of the structure are predetermined in the surface. It is also possible to determine that there is interference when the distance is within the distance.
  • the processing of S11 can be realized by publicly known image processing inside a two-dimensional plane, and comparison processing between three-dimensional objects is not necessary, so that it can be realized at high speed.
  • the interference determination unit 15 When there is interference in S11, the interference determination unit 15 easily obtains the distance from the position of the target object on the path to the position of the structure where the interference occurs using the path data D4 and the like. Can do. Therefore, the interference determination unit 15 may store the distance in the interference determination result data D7 as carry-in distance information.
  • the carry-in distance indicates how far the object can be carried in without being interfered with the surrounding structure in the same posture on the given route.
  • the output unit 16 stores information including the interference determination result of S11 as interference determination result data D7.
  • the interference determination result data D7 there is information on the no-interference path 401 when there is no interference between the state of the moving object and the structure, and when there is interference between the state of the moving object and the structure. Both of the information of the path 402 with interference are stored as snapshots. Thereby, information on each state can be read and referenced later from the interference determination result data D7. For example, when the inside of the structure is being carried in, the interference state can be immediately displayed on the screen of the terminal device 20 and confirmed.
  • the interference-free path 401 may be stored as the interference determination result data D7. Only the information may be stored.
  • S14 determines whether all the processes for the plurality of states of the moving object planned for a certain route have been completed for the processes of S9 to S13. If not (N), the process returns to S8. If completed (Y), the process proceeds to S15. When returning to S8, another state that has not yet been selected is selected.
  • Interference-free result output processing S15 is the first output processing by the output unit 16. If the interference-free route 401 is obtained as a result of S9 to S13, the information is used as part of the route data D4. reflect.
  • the interference-free path 401 indicates that the moving object can be moved on the path without interference by changing the moving object to the posture or the parallel movement state at the starting point of the path.
  • Interference result output processing S16 is the second output processing by the output unit 16.
  • the information is used as part of the route data D4. reflect.
  • the path with interference 402 indicates that interference occurs on the path when the moving object is changed to the posture or the parallel movement state at the starting point of the path.
  • output processing of S15 and S16 may display the information on the user interface screen in real time.
  • S18 The process of S18 determines whether all the processes for a plurality of routes in the processes of S4 to S17 are completed. If not completed (N), the process returns to S3, and is completed (Y) Advances to S19. When returning to S3, another unselected route is selected.
  • the route evaluation process S19 which will be described in detail later, is performed by performing an evaluation process from a predetermined viewpoint on a plurality of route candidates including the interference-free route 401 in the route data D4 obtained up to S18. Ranking multiple route candidates. In the route evaluation process S19, ranking is performed by assigning evaluation points to each of a plurality of routes by an algorithm corresponding to a predetermined viewpoint that is set in advance or specified by the user U, for example.
  • the route evaluation processing S19 determines which route is efficient among the plurality of interference-free routes 401 by the above-described evaluation processing, and outputs the recommendation as a recommendation in order from the efficient route to the user U based on the ranking of the result. can do.
  • the viewpoint of the evaluation process a route that can move without changing the posture of the object as much as possible on the route from the start point to the end point is regarded as high evaluation.
  • the viewpoint of the said evaluation process may be previously incorporated in the program which comprises the route planning function F1 as a predetermined algorithm, and may be selectable from several viewpoints by the user U setting operation.
  • a mode in which the route evaluation process S19 is not performed is also possible.
  • the process of assigning evaluation points in the route evaluation process S19 may be executed during each of the above-described processing steps. For example, it is possible to count the corresponding evaluation points at the time of the change of the angle of the posture or the parallel movement.
  • the output unit 16 performs a process for storing the final result information up to S19 in the storage unit and a process for displaying the information on the user interface screen.
  • the final result information is collectively configured as the route plan data D8 based on the route data D4, and stored in the storage unit.
  • the result output process S20 generates screen data for displaying information corresponding to the route plan data D8 on the user interface screen of the main computing device 10 or the terminal device 20, and displays the screen data on the user interface screen. Process.
  • the route plan data D8 is, for example, a plan for moving a target object in a state including each posture from the start point to the end point of the route using a carrying-in means within the structure for each of a plurality of routes. Contains information expressed in a three-dimensional format.
  • the user U can refer to and confirm the contents of the route plan data D8 on the screen, which can be effectively used for selecting and changing the route for actual use, changing the design of the structure, and the like.
  • the route plan data D8 may be data that summarizes the information of the route 401 without interference, may be data that summarizes the information of the route 402 with interference, or may be data that summarizes both pieces of information.
  • the route plan data D8 includes the ranking information of the plurality of routes when there is a ranking of the plurality of routes in S19.
  • the result output process S20 outputs a plurality of routes to the screen in order from the highest evaluation route.
  • the user U can confirm on the screen the path with the highest evaluation among the plurality of path candidates.
  • the user U can easily select an efficient route and can easily realize a low-cost plan.
  • the user U can check the stored route plan data D8 at any point in time by referring to the screen.
  • the result output process S20 may display information such as the presence / absence of interference, the location where the interference occurred, and a candidate route that can avoid the interference as information on the interference determination result on the screen.
  • the route planning function F1 prompts the user U to try changing the condition setting and the selection of the start point and the end point.
  • the user U moves the object to the position of the arrival point of the carry-in distance on the path, and moves the position to the new path. Can be set as the starting point. Accordingly, a route without interference can be searched by performing the process of FIG. 5 in the same manner for the route based on the new start point.
  • a route without interference cannot be obtained even if the setting of the start point and the end point is changed as described above, the result of the change is used as a design change by the user U. It is also possible to change the arrangement and change the size and type of the object or structure. For example, a path without interference can be searched for by a design change such as reducing the size of a pipe that is a moving object or reducing the size of a wall or a column that is a structure.
  • FIG. 6 shows a display example of a graphical user interface screen on the terminal device 20.
  • This screen displays information such as menu g1, carry-in route g2, posture g3, interference occurrence point g4, and carry-in possible distance g5 as application software corresponding to route planning function F1 of carry-in route planning system 1 An example is shown. From the menu g1, the user U can select and execute functions such as route generation, route confirmation, and interference check.
  • a structure, a moving object, a route, and the like are displayed in a three-dimensional or two-dimensional format.
  • the example of g2 is an example in which a certain selected route, that is, the route R1 from the point p1 to the point p5 is displayed including the related information.
  • the state of interference between the structure and the object may be displayed in another area or the like.
  • the state of the posture of the object associated with each route is displayed corresponding to the display of the carry-in route g2.
  • the posture state for example, information on an angle defining the posture may be displayed, or the posture state may be displayed as a three-dimensional or two-dimensional image.
  • g3 indicates that the posture at the time of movement in the partial path r1 from the point p1 to the point p2, for example, is ( ⁇ 1, ⁇ 1, ⁇ 1).
  • the interference state between the object and the structure is displayed on the two-dimensional projection plane for each partial route in the route of the carry-in route g2.
  • the two-dimensional region of the target object and the two-dimensional region of each structure existing on the path are superimposed and displayed within the two-dimensional projection plane, and the target object and the structure interfere with each other.
  • the example of g4 shows the display for each of the partial route r1, the partial route r2, and the partial route r3.
  • an image obtained by projecting the object is displayed on the path including the structure after the conversion by the coordinate conversion process.
  • the display of the interference occurrence location g4 the display of the structure and the target object on the two-dimensional projection plane is not only easy to understand not only the shape of each object but also the distance and thickness difference in the depth direction (for example, the X direction).
  • Information such as colors and coordinates may be added and displayed. For example, an object having a larger distance or thickness in the depth direction may be displayed with a gradation closer to black.
  • the display of the carry-in distance g5 displays the above-described information on the carry-in distance for each partial route in the route of the carry-in route g2. For example, in the partial route r1 from the start point p1 to the point p2, when there is interference with a structure in the middle of the route, the distance from the start point p1 to the point corresponding to the position of the structure is displayed as the carry-in distance. .
  • the present system is not limited to the screen example of FIG. 6 and can display various types of information on the screen as in the following example.
  • FIG. 7 shows an example of an object 31 that is a moving object, and a coordinate system.
  • A shows the case of piping bent in L shape as a three-dimensional object.
  • X, Y, Z indicates an absolute coordinate system or a worldwide coordinate system.
  • X, y, z indicates a relative coordinate system or a local coordinate system.
  • P or p indicates a point of the position coordinate of the object, for example, a point of the current position of the object on the route, a representative point of the object, or the like.
  • route is similarly shown by P thru
  • an arbitrary point in the three-dimensional object of the target object can be set.
  • one point on the surface of the three-dimensional object, the center point of the inscribed sphere inside the three-dimensional object, the center point of the circumscribed sphere outside the three-dimensional object, or The center of gravity of the object can be taken.
  • (B) shows the shape on the YZ plane corresponding to the object of (a).
  • (C) shows the shape of the XY plane corresponding to the object of (a).
  • (D) shows the shape of the XZ plane corresponding to the object of (a).
  • FIG. 8 shows an example of setting the margin space of the object 31.
  • the setting can be made on the screen by the user U in the above-described condition setting and data input processing S1 or the like.
  • FIG. 1 shows an example in which a margin space 801 is secured by performing an expansion process on the shape of the three-dimensional object of the object 31 (here, simply shown in two dimensions).
  • this expansion process at an arbitrary point on each surface (which may be a flat surface or a curved surface) constituting the object of the object 31, the surface is offset by taking a predetermined distance outside the normal line.
  • the three-dimensional shape obtained as a result is taken as the outer shape of the margin space 801.
  • the shape is an object that is expanded with a spatial margin.
  • a space between the original object 31 and the outer shape is referred to as a margin space 801.
  • the example of (b) takes a first sphere that is inscribed inside the object 31, takes a second sphere outside the object 31 and has the same center point as the center point of the first sphere, An example in which the sphere of 2 is used as the outer shape of the margin space 801 is shown.
  • the absolute coordinate system (X, Y, Z) with respect to the object 31 or the local coordinate system (x, y, z) fixedly attached to the object 31 is parallel to each axis.
  • An example is shown in which a rectangular parallelepiped having sides is taken, the rectangular parallelepiped is circumscribed to the object 31, and the rectangular parallelepiped is used as the outer shape of the margin space 801.
  • the calculation is performed using a three-dimensional object in which the margin space 801 is set in the above-described interference determination process.
  • interference is determined by setting a predetermined margin distance in a two-dimensional projection plane.
  • FIG. 9 shows an example of a coordinate system that expresses the angle of rotation that defines the posture of the object 31.
  • the first posture angle is ⁇ , which is a rotation angle (roll angle) around the X axis
  • the second posture angle is a rotation angle (pitch angle) around the Y axis.
  • the third posture angle is ⁇ which is a rotation angle (yaw angle) around the Z axis.
  • the angle ⁇ may be set in accordance with the longitudinal direction or the traveling direction of the object.
  • the angle ⁇ may be adjusted according to the short direction of the object.
  • the form representing the posture of the object is not limited to Euler angles ( ⁇ , ⁇ , ⁇ ), and other forms can be similarly applied.
  • FIG. 10 shows a first example of the structure 32 and the route.
  • the structure 32 is a plant to be constructed, for example, and is composed of a large amount of parts such as piping, and has a complicated structure in which parts such as piping are complicated.
  • a route R1 is planned in which the target object 31 starting from the point p1 is the end point and the installation position is the point p5.
  • the route R1 includes points p1 to p5 and routes r1 to r4 which are partial routes.
  • the system performs interference determination on the posture state when the object 31 is carried in on the route R1, and plans a route in which no interference occurs.
  • the system changes the posture of the start point p1 to a posture in which interference does not occur in the middle, and changes the changed posture.
  • the path that contains it is output as a candidate.
  • FIG. 11 shows a second example of the structure 32 and the route.
  • a route is composed of connections between points and lines as basic information management.
  • a point has a start point, an end point, an intermediate point, and the like as types.
  • the line has a curve such as a straight line or an arc as a type.
  • the points and lines of the route are each managed with attribute information. When the line constituting the route is only a straight line, the route is a broken line.
  • the actual path has a three-dimensional shape for loading and unloading the object 31, and has a shape in which a three-dimensional area is secured around a point and a line.
  • the route planning function F1 of the present system for example, when processing an interference determination for the route R1 in FIG. 11, for example, includes a plurality of partial routes r1 to r1 between the start point P1 and the end point P2 of the original route R1. It may be divided into r4 and processed in the same manner. When dividing a route, the start point and the end point of each partial route are basically matched. Exceptionally, depending on the interference state, a point passing through the route may be changed and a new partial route may be added.
  • Reference numeral 1101 denotes an example of a point that passes along the route r1 from the point p1 to the point p2.
  • Reference numeral 1102 denotes a moving distance from the point p1 to the point 1101.
  • the loadable distance of the path r1 is a distance from the point p1 to a position before the structure 1103. .
  • FIG. 12 shows a third example of the structure 32 and the route.
  • This example shows an example of a part of a plurality of routes connecting between a predetermined start point P1 and an end point P2.
  • the above-described route generation unit 11 automatically generates a plurality of routes connecting the start point P1 and the end point P2 designated by the user U according to a known algorithm or the like. It should be noted that at this time of generation, since interference determination is not performed, a simple route using points and lines may be generated.
  • the user U can set a route by arbitrarily specifying a point or a line on the screen.
  • FIG. 13 shows an example of a path 1300 having a three-dimensional shape including a margin space.
  • a route R1 by points p1 to p3 as a basic route by points and lines.
  • the marginal space 1301 of the object 31 on the route R1 is secured including the carry-in device 33.
  • a three-dimensional three-dimensional route 1300 is formed by moving the object 31 including the margin space 1301 on the model of the route R1 by points and lines.
  • FIG. 14 shows a configuration example of a projection plane from three dimensions to two dimensions on a path with respect to the object 31 and the structure 32.
  • the projection plane from 3D to 2D is basically composed of the position of the start point or end point of the partial path.
  • a two-dimensional projection plane is constructed in a direction perpendicular to the tangential direction of the points on the path.
  • the projection plane J0 of the object 31 is formed at the start point p1.
  • the tangential direction of the path r1 is the X direction, and the projection plane J0 is configured in the vertical YZ plane.
  • the projection plane J1 of the structure 32 is formed at the end point p2 of the route r1.
  • the projection plane J2a or J2b of the structure 31 is formed at the midpoint point pa or the end point p3.
  • the projection plane J2a is a case where the projection plane is constituted by a point pa in the middle of the arc of the path r2.
  • the projection plane J2b is a case where the projection plane is configured by the point p3 at the end of the arc of the path r2.
  • a projection plane J3 of the structure 32 is formed at the end point p4 in the linear path r3 from the point p3 to the point p4.
  • FIG. 15 shows examples of the object 31, the structure 32, the partial path, the projection plane, and the like.
  • the route r1 in FIG. 15 corresponds to the partial route r1 in the route R1 in FIG.
  • the route r1 is a linear route in the X direction from the start point P1 to the end point P2.
  • the example of the structure 32 shows an example of a straight path in the X direction in which the cross section of the YZ plane is a quadrangle.
  • An example in which two rectangular structures 1501 and 1502 exist as the structure 32 in the middle of the passage will be described.
  • the depth direction of the passage and the traveling direction of the object 31 are defined as the X direction, and the directions that form a plane perpendicular to the X direction are the Y direction and the Z direction.
  • J01 represents the YZ plane that constitutes the projection plane of the object 31 at the position X1 of the point P1.
  • J02 indicates a YZ plane constituting the projection plane of the structure 32 on the path r1 at the position X4 of the point P2.
  • FIG. 16 shows a configuration example of the projection plane J01 corresponding to the configuration example of FIG. 15 by parallel projection processing of the object 31 from three dimensions to two dimensions.
  • the projection process of S10 described above the three-dimensional shape of the target 31 at the start point P1 and the position X1 is subjected to a parallel projection process on the YZ plane which is the projection plane J01b of the position X1b where there is no surrounding object.
  • the projection processing in S10 virtually constitutes the projection plane J01b at the position X1b.
  • This projection plane J01b is defined as the projection plane J01 of the object 31 at the start point P1 and the position X1.
  • reference numeral 1601 denotes an area where the object 31 is projected.
  • FIG. 17 shows a configuration example of the projection plane J02 corresponding to the configuration example of FIG. 15 by the parallel projection processing from the three-dimensional structure to the two-dimensional structure 32.
  • the three-dimensional shape of the first structure 1501 at the position X2 and the second structure 1502 at the position X3 is a YZ plane corresponding to the position X4 of the end point P2 of the path r1.
  • Parallel projection processing is performed on the surface J02.
  • 1701 indicates a region where the first structure 1501 is projected
  • 1702 indicates a region where the second structure 1502 is projected.
  • FIG. 18 shows a configuration example of the YZ plane of each projection plane in FIGS.
  • FIG. 18 shows the projection plane J01 of the object 31 at the position X1, the projection plane J02 of the structure 32 at the position X4, and the projection plane J03 for interference determination in which the projection plane J01 and the projection plane J02 are overlapped.
  • the shape of the projection plane is square here, and the shape is combined with the shape of the cross section of the passage.
  • other configurations are possible for setting the size and center point of the projection plane.
  • the projection plane is set with a predetermined size around the object 31, the structure 32, and the center point of the route.
  • the center point of the projection plane is indicated by Q.
  • the projection plane J01 of the object 31 for example, there is an L-shaped area 1601 of the object 31 in the vicinity of the center point Q and in the vicinity of the position (Y1, Z1) of the point P1, and has coordinate information of the area.
  • the projection plane J02 of the structure 32 there are rectangular areas 1701 and 1702 of the structure 32 at, for example, the lower right and upper left positions, and each has coordinate information and the like.
  • the L-shaped region 1601 of the object 31 and the rectangular region 1702 of the first structure 1501 partially overlap.
  • the above-described interference determination processing S11 determines that there is interference, and outputs this overlapping area as an interference area 1800.
  • the interference determination for example, the interference determination unit 15 determines that the smaller the overlapping area in the projection plane, the more effective the route candidate. Further, the interference determination unit 15 determines, as the interference determination, a route with a small overlap area and a small change in posture as an effective route candidate. In addition, for example, the interference determination unit 15 may determine the degree of interference based on the size of the overlapping area, and may output the information.
  • FIG. 19 shows a screen example corresponding to the process of determining the interference state using the margin distance during the interference determination process on the projection plane J03.
  • the region 1901 of the target object 31 is a region obtained by the projection process on the two-dimensional projection plane J01 from the object of the three-dimensional target object 31 in which the above-described margin space 801 is not set.
  • the region 1902 of the structure 32 is also a region obtained by the projection processing on the two-dimensional projection plane J02 from the object of the three-dimensional structure 32 in which the margin space 801 is not set.
  • a margin distance L is set in the projection plane J03.
  • the margin distance L can be set by the operation of the user U on the screen.
  • the above-described interference determination process S11 determines that there is no interference when the margin distance L can be secured between the area 1901 of the object 31 and the area 1902 of the structure 32 in the projection plane J03. Is determined as having interference.
  • the route generation unit 11 and the route generation processing S2 described above generate a route including a curved route corresponding to, for example, the characteristics of the carry-in device 33 of the object 31.
  • a curved route such as an arc is possible as the path of the object 31.
  • the coordinate conversion unit 12 and the coordinate conversion process S5 perform the coordinate conversion process from the orthogonal coordinate system to the polar coordinate system for the curved path when the partial path constituting the path is a curved path such as an arc as described above. Execute. As a result, the curved path is converted into a straight path. As a result, the subsequent projection processing S6 becomes a linear parallel projection processing, so that the projection processing is facilitated and speeded up.
  • FIG. 20 shows an example of the coordinate conversion process S5.
  • A has, for example, a cylindrical object 31 and a linear structure 32 having a square cross section.
  • Reference numeral 2000 denotes the YZ cross section of the structure 32 and the projection plane. 2000b shows an image corresponding to the YZ section 2000.
  • Reference numeral 2001 denotes an example of a partial path having an arc shape. The starting point of the partial path of this arc is p1, the end point is p2, the center point of the arc is pa, the radius is r, and the angle is ⁇ (note that ⁇ used here is ⁇ indicating one of the rotation angles) Aside). It has an arc in the XY plane.
  • the coordinate conversion unit 12 performs a known polar coordinate conversion process on the curved path 2001, the portion of the structure 32 associated with the path 2001, and the object 31.
  • the curved path 2001 becomes a linear partial path 2002 as shown in FIG.
  • Parameter X is converted to parameter ⁇ .
  • the coordinate system after conversion is represented by ( ⁇ , Y, Z).
  • the three-dimensional shape of the linear structure 32 in (a) is transformed into a curved structure 2003 as shown in (b).
  • the three-dimensional shape of the object 31 is deformed as 2004.
  • the structure 2003 has a shape in which flat plates corresponding to the floor and ceiling of the passage are bent downward in the Z direction.
  • a cylindrical coordinate system ( ⁇ , r, Z) or the like can be applied as an expression of the polar coordinate system for the orthogonal coordinate system (X, Y, Z) in the coordinate conversion process S5.
  • X r ⁇ cos ⁇
  • Y r ⁇ sin ⁇
  • Z Z.
  • the present invention is not limited to this, and other known formats can be applied to the representation of the polar coordinate system and the conversion process between the orthogonal coordinate system and the polar coordinate system.
  • FIG. 21 shows an example in which the parallel projection process which is the above-described projection process S6 is performed on the path 2002 and the structure 2003 in FIG.
  • a projection plane 2005 corresponding to the YZ section of the structure 2003 is formed on the YZ plane perpendicular to the X direction that is the tangential direction in the path 2002.
  • the curved structure 2003 is subjected to parallel projection processing on the projection plane 2005.
  • a projection plane image 2005b shown below is obtained.
  • the thicknesses h1 and h3 in the Z direction of the area corresponding to the floor and ceiling of the passage of the structure 32 are larger than the image 2000b of FIG.
  • the path planning function F1 of the present system can search for a path that can avoid interference by changing the posture of the object 31 or planning the state of parallel movement for one partial path between the start point and the end point.
  • a given start point and end point are temporarily determined, and changing the posture of the object 31 between the start point and the end point is avoided. That is, one posture is associated with one partial route. The posture is changed at the position of a point between the partial paths. If the posture of the object is changed or translated at the start point of the partial path, and there is no interference with the structure on the path in the planning state, the object is moved toward the end point in that state.
  • the start point and end point of the partial route may be reset. For example, a new end point or start point may be reset at a position where interference occurs. As a result, another partial route is set, so that the same search can be performed for the partial route.
  • FIG. 22 shows a pattern example of a route corresponding to the parallel movement process on the XY plane.
  • the object 31 is a cube.
  • the structure 32 is substantially the same as the example of FIG. 15 described above, and is a straight path in the X direction.
  • the route r1, which is a partial route, is the position (X1, Y1, Z1) of the start point P1 and the position (X4, Y1, Z1) of the end point P2, and is a straight path in the X direction.
  • the position X2 is the position of the front surface of the structure 1501. In the drawing, “NG” indicates that there is interference, and “OK” indicates that there is no interference.
  • K1 is a carry-in distance in the route r1, and is a distance from the position X1 of the point P1 to the position X2b.
  • FIG. 23 shows an example of searching for a path without interference by planning a parallel movement state in the YZ plane with respect to the path r1 of FIG.
  • Reference numeral 2301 denotes a plan example of the state of translation, and shows a case where the translation is performed at a predetermined distance s in the Y direction from the position (X1, Y1, Z1) of the starting point P1. This is the position (X1, Y1 + s, Z1) of the point pa after translation.
  • this parallel movement state by performing the interference determination on the projection plane J03 described above, for example, there is no interference with the structure 1501.
  • the new route r1a translates in the Y direction from the start point P1 to the point pa, goes straight from the point pa to the point pd in the X direction, and translates in the Y direction from the point pd to the original end point P2. It becomes a route.
  • the new route r1a is not limited to this, and the point pd may be set as a new end point as a route in the order of the points P1, pa, and pd.
  • FIG. 24 further uses the movement in the oblique direction between the YZ plane at the position of the start point P1 of the path r1 and the YZ plane at the position of the end point P2 with respect to the X direction that is the direction of the original path r1.
  • An example is shown.
  • a path 2401 indicates a path that goes straight from the start point P1 to the point Pf at the position X4 in a straight line in the Y direction with respect to the X direction so as to pass through the point pb that does not interfere with the structure 1501.
  • a path that moves obliquely in this way using the result of the interference determination is also possible as a candidate.
  • the route 2402 is an example of another route that moves obliquely with respect to the initial route r1, and moves in parallel in the Y direction from the start point P1 at a distance s2, and from the point ph toward the original end point P2 obliquely. This is an example of going straight. However, in this case, it is necessary to determine the translation point ph according to the position X2c of the rear surface of the structure 1501.
  • FIG. 25 shows a pattern example of a route corresponding to the posture change process on the XY plane.
  • the object 31 is the aforementioned L-shape.
  • the structure 32 is substantially the same as the example of FIG. 15 described above, and is a straight path in the X direction.
  • the route r1, which is a partial route, is the position (X1, Y1, Z1) of the start point P1 and the position (X4, Y1, Z1) of the end point P2, and is a straight path in the X direction.
  • the path r1 between the start point P1 and the end point P2 is like the object 2503 when the interference determination process is performed on the projection surface J03 in which the projection surface J01 and the projection surface J02 are overlapped as described above.
  • Reference numeral 2511 simply indicates a region where the structure 1501 is projected onto the projection plane J02.
  • Reference numeral 2512 denotes a region where the object 2501 is projected onto the projection plane J02.
  • Reference numeral 2513 denotes a region where the object 2502 is projected onto the projection plane J02.
  • FIG. 26 shows an example of the drafting of the posture state in the case of rotation at each angle ( ⁇ , ⁇ , ⁇ ).
  • FIG. 26 (a) shows an example of planning of four posture states corresponding to the example of FIG. 25, in the case of rotation at an angle ⁇ about the Z-axis when the minimum rotation unit is 90 °. Show.
  • the rotation axis indicates a case where the rotation axis is located at a position including the representative point of the object 31.
  • FIG. 26 (b) shows four postures with respect to the object 31 in the same initial state as (a) when the minimum rotation unit is 90 ° in the case of rotation at an angle ⁇ around the X axis.
  • FIG. 26 (c) shows four postures with respect to the object 31 in the same initial state as in (a) when the minimum rotation unit is 90 ° in the case of rotation at an angle ⁇ around the Y axis.
  • FIG. 27 shows an example of searching for a path without interference while determining the state of interference with the structure 32 while translating the object 31 within the projection plane J03 during the above-described interference determination processing S11.
  • Show. (A) is based on the position (X1, Y1, Z1) of the starting point P1 of the path r1 as described above, and the L-shaped first object 31 and the structure 32 on the path r1 are moved to the YZ plane.
  • a state in which the projection processing is performed so as to be superimposed on the projection plane J03 is shown. It has the area
  • the interference state in the first state is interference (NG) with respect to the region 1701 of the first structure. Note that coordinate values in the X direction are omitted from the projection.
  • (B) shows a state in which the object is moved in parallel in the Y direction by a distance s from the position of the object in (a). This is the position (Y1 + s, Z1) of the point p2 after the movement.
  • the interference state in the second state is no interference (OK).
  • rb indicates a partial path added corresponding to the parallel movement of the distance s.
  • (C) shows a state in which the object has been translated from the position of the object (a) by a distance s in the Z direction. This is the position (Y1, Z1 + s) of the point p3 after the movement.
  • the interference state in the third state is interference (NG) with respect to the region 1702 of the second structure. rc indicates a partial path added corresponding to the parallel movement of the distance s.
  • (D) shows a state in which the object has been translated from the position of (a) by a distance s in the negative direction of the Y direction and the Z direction. This is the position (Y1-s, Z1 + s) of the point p4 after the movement.
  • the interference state in the fourth state is no interference (OK). rd indicates a partial path added corresponding to the parallel movement of the distance s.
  • the minimum unit of the parallel movement distance s can be appropriately set on the screen by the user U in consideration of the calculation time. If you want to shorten the calculation time, you can set this minimum unit larger.
  • (B) shows a second state in which the position of the object in the first state in (a) is rotated by ⁇ 90 ° with respect to an angle ⁇ around the X axis.
  • the angle after rotation is ( ⁇ 1-90 °, ⁇ 1, ⁇ 1).
  • the interference state in the second state is no interference (OK).
  • (C) shows a third state in which the position of the object in the first state in (a) is rotated by + 90 ° with respect to an angle ⁇ around the Y axis.
  • the angle after rotation is ( ⁇ 1, ⁇ 1 + 90 °, ⁇ 1).
  • the interference state in the third state is interference (NG) with respect to the first structure 1701.
  • (D) shows the fourth state rotated by + 90 ° with respect to the angle ⁇ around the Z axis at the position of the object in the first state of (a).
  • the angle after rotation is ( ⁇ 1, ⁇ 1, ⁇ 1 + 90 °).
  • the interference state in the fourth state is no interference (OK).
  • the axis of rotation is the axis including the point P1, but it may be an axis including another point.
  • a rotation axis including the center point in the margin space 801 may be set.
  • the minimum unit of the rotation angle is not limited to the above 90 °.
  • the minimum unit of the rotation angle can be appropriately set on the screen by the user U in consideration of the calculation time. If you want to shorten the calculation time, you can set this minimum unit larger.
  • This system calculates the route plan in consideration of the characteristics of the loading means such as the loading device 33 used for loading and unloading the target object 31 that is a moving object, particularly the anisotropy.
  • This system considers, for example, the characteristics of movement in each direction (X, Y, Z) and the characteristics of rotation of each angle ( ⁇ , ⁇ , ⁇ ) in the loading means.
  • the present system may calculate the route plan in consideration of the characteristics of the object 31 and the characteristics of the structure 32.
  • This system may generate a route including only a point and a straight line when generating a route by the route generation unit 11, or may further generate a route including a curve.
  • the carry-in device 33 is, for example, a straight crane
  • the device has a characteristic of moving along a linear track or a characteristic of moving the object 31 linearly.
  • the route generation unit 11 generates a route including a straight partial route.
  • the carrying-in apparatus 33 is a trolley
  • the said apparatus has the characteristic to move the target object 31 on a circular track, or to move the target object 31 on a circular track.
  • the route generation unit 11 generates a route including a circular partial route.
  • This system has an algorithm for prioritizing the state of the object 31 such as the posture and parallel movement when generating, searching, or evaluating a route.
  • This system demonstrates using the above-mentioned coordinate system (X, Y, Z) and angle ((phi), (theta), (psi)) as a parameter.
  • the X direction is the position in the traveling direction of the object 31 and the path
  • the Y direction and the Z direction are the directions constituting the projection plane and the direction of planning the parallel movement
  • the X direction and the Y direction are the horizontal direction
  • the Z direction is the vertical direction.
  • This system sets priorities for each loading means used and for each parameter.
  • the priority order may be incorporated in advance as a program algorithm, or may be selectable by a user U setting operation.
  • the characteristics of the first carrying-in means are good at movement in the (X, Y, Z) direction and poor at rotation at angles ( ⁇ , ⁇ , ⁇ ).
  • a route with less change in posture angle ( ⁇ , ⁇ , ⁇ ) in the entire route is generated.
  • the system prioritizes a state based on parallel movement in the (Y, Z) direction, not a change in posture. Further, as a viewpoint of the evaluation processing corresponding to this, a high evaluation score is given to a route with a small change in posture angle ( ⁇ , ⁇ , ⁇ ) in the entire route.
  • the characteristics of the second carrying-in means are good at rotation of angles ( ⁇ , ⁇ , ⁇ ), and poor at movement in the (X, Y, Z) direction.
  • a route with a short parallel movement distance or a route with a short total distance is generated in the whole route.
  • the system prioritizes a state based on rotation of angles ( ⁇ , ⁇ , ⁇ ), not translation. Further, as a viewpoint of the evaluation processing corresponding to this, a high evaluation score is given to a route having a short parallel movement distance or a route having a short total distance in the whole route.
  • the characteristic of the third carrying-in means is that only movement in the (X, Y, Z) direction is possible, and rotation of the angles ( ⁇ , ⁇ , ⁇ ) is impossible.
  • As a third algorithm corresponding to this only a state due to translation in the (Y, Z) direction is planned when searching for a path that avoids interference.
  • the characteristic of the fourth carrying-in means is that only rotation of angles ( ⁇ , ⁇ , ⁇ ) is possible, and movement in the (X, Y, Z) direction is impossible.
  • a fourth algorithm corresponding to this when planning a path to avoid interference, only a state due to rotation of angles ( ⁇ , ⁇ , ⁇ ) is planned.
  • the characteristics of the fifth carry-in means are that translation in the (Y, Z) direction is possible, and rotation of the angle ( ⁇ , ⁇ ) is possible. For example, rotation of the angle ⁇ around the Z axis is the easiest.
  • the priority order of parameters is set in the order of ( ⁇ , ⁇ , Y, Z).
  • the characteristics of the sixth carry-in means are that the movement in the (X, Y) direction and the rotation of the angles ( ⁇ , ⁇ , ⁇ ) are possible. For example, movement in the Z direction is the least good and expensive, so it is not used.
  • the priority order of the parameters is set in the order of ( ⁇ , Y, ⁇ , ⁇ ).
  • the calculation time for the entire process including the interference determination process for determining the state of interference between the object and the structure on the route with respect to the route for loading / unloading. Can be shortened.
  • calculation processing including interference determination can be accelerated by projection processing and coordinate conversion processing.
  • the user U can easily check various information including the interference state between the object and the structure on the screen, and the system can support efficient work and planning.
  • an efficient route in which an object and a structure do not interfere can be output in a short time in applications such as plant construction including preventive work, preventive maintenance, or plant design.
  • cost reduction by the period shortening in the said use is realizable.
  • a route plan without interference can be output in a short time, and even if there is an interference location, it can be confirmed in a short time, so that a plant design plan can be created in a short time Become.
  • the structure and the object are not fixed at the design stage, and can be varied to some extent within the range desired by the customer.
  • the user can assume a structure or an object within the range of the conditions, and can simulate a design including a route plan by the system of the present embodiment. Thereby, the user can determine a structure and an object according to an efficient route plan, and can create a design estimate plan. Since this system enables route planning in a short time, an estimate plan can be created in a short time.
  • the design desired by the customer can be confirmed in a short time, including the examination of the estimate plan and the design change, and the construction can be realized at a low cost.
  • FIG. 30 shows a comparison between the effects of the prior art and the present embodiment.
  • the horizontal axis indicates the number of three-dimensional objects representing the plant structure.
  • the vertical axis indicates the calculation time of the overall processing including interference determination.
  • a line 3001 indicates a case where the resolution is 10 mm as the calculation time in the prior art.
  • a line 3002 indicates a case where the resolution is 50 mm as the calculation time in the prior art.
  • the resolution here refers to the minimum unit length in the coordinate system of the three-dimensional object.
  • One pixel is 10 mm.
  • the calculation time increases in proportion to the number of three-dimensional objects of the structure.
  • a line 3003 indicates a case where the number of divisions is 212 as the calculation time according to the present embodiment.
  • a line 3004 indicates a case where the number of divisions is 42 as the calculation time according to the present embodiment.
  • the number of divisions here refers to the minimum unit length in the coordinate system of the three-dimensional object and the two-dimensional projection plane. 3003 and 3004 are suppressed to a substantially constant calculation time, and most of the time is the offset time required for the above-described projection processing from the three dimensions to the two dimensions. The time required for interference determination in the two-dimensional projection plane is extremely short if a computer with a certain degree of performance is used.
  • the above-described projection processing is not limited to projection processing from three-dimensional data to two-dimensional data, and projection processing from two-dimensional data to two-dimensional data may be performed. For example, when there is two-dimensional image data of an object or structure photographed at a certain position and direction, this two-dimensional image or a two-dimensional region thereof is converted into a two-dimensional plane by the above-described projection processing. Perform projection processing.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Processing Or Creating Images (AREA)

Abstract

Provided is a technique capable of shortening the overall planning time for processes, including a process for assessing the interference state between an object and a structure in a path, in regard to a delivery path planning system and the like. A delivery path planning system has: a path generation unit (11) for generating a path for causing a three-dimensional object to move in order to be brought in or out of the space inside a three-dimensional structure; a posture change unit (17) for formulating a plurality of states including a posture state for the three-dimensional object; a moving object projection process unit (13) for projecting the state of the three-dimensional object on a surface perpendicular to the path, and obtaining data on a two-dimensional object; a structure projection process unit (14) for projecting the three-dimensional structure on a surface perpendicular to the path, and obtaining data on a two-dimensional structure; an interference assessment unit (15) for assessing the state of interference between the area of the object and the area of the structure in a two-dimensional plane superimposing the two-dimensional object and the two-dimensional structure; and an output unit (16) for outputting the interference assessment result data.

Description

搬入経路計画システムCarry-in route planning system
 本発明は、コンピュータ情報処理の技術に関し、特に、建物などの空間及び構造物に対して部品や資材や機器などの対象物を搬入または搬出する経路を計算により計画する技術に関する。 The present invention relates to a computer information processing technique, and more particularly, to a technique for planning a route for carrying in or carrying out an object such as a part, material, or equipment from a space and a structure such as a building.
 例えばプラント等の施工や予防保全などにおいては、旧部品の搬出や新部品の搬入、及び所定の位置への据付などの作業が行われる。その際、部品などの搬出入の対象物と、その搬出入される対象の空間及び周囲構造物とにおける接触などの干渉が多く生じ得る。そのため、その干渉の結果の輻輳などにより、施工などの上での隘路となり得る。即ち搬出入の非効率による高コストや期間増加などの問題につながる。 For example, in plant construction and preventive maintenance, operations such as carrying out old parts, carrying in new parts, and installing them at predetermined positions are performed. In that case, many interferences, such as contact in the objects carried in / out, such as components, and the space and surrounding structures of the object carried in / out may occur. Therefore, it can be a bottleneck in construction due to congestion as a result of the interference. In other words, it leads to problems such as high cost and increased period due to inefficiency of loading and unloading.
 経路計画に関する先行技術例としては、特開平06-168303号公報(特許文献1)が挙げられる。特許文献1は、膨大な据付最小ユニットの最適な据付手順を容易に検討できる据付け計画の支援を行うことが記載されている。特許文献1は、配置図形情報を据付可能な最小ユニットに分割し、据付最小ユニットの作業ステップの関連付け、搬入経路、干渉確認、作業時間等の計算とアニメーション表示、及びこれらの検討結果から得られる据付手順の最適化等を、計算機により出力することが記載されている。特許文献1は、据付作業が効率良く安全に行われる据付手順計画を効率良く作成できることが記載されている。 JP-A 06-168303 (Patent Document 1) is given as an example of prior art relating to route planning. Patent Document 1 describes that an installation plan that can easily examine an optimal installation procedure for a large number of minimum installation units is described. Patent Document 1 is obtained from dividing arrangement graphic information into minimum installable units, associating work steps of installation minimum units, carrying-in route, interference confirmation, calculation of work time, etc., and animation display, and these examination results. It describes that the optimization of the installation procedure is output by a computer. Patent Document 1 describes that an installation procedure plan in which installation work is performed efficiently and safely can be efficiently created.
 なお経路計画に関連する技術として、本願発明者による出願である、特願2012-6155号がある。この出願は、対象物と周囲構造物が干渉しない経路を自動的に計算する技術を記載している。この出願の技術において、経路計画機能は、対象物データ、構造物データ、及び搬入機器データ等を用いて、始点と終点とを結ぶ複数の経路候補を立案し、当該経路上の対象物の位置に応じた複数の姿勢候補を立案し、経路候補及び姿勢候補について、対象物とその周囲構造物との干渉状態を判定し、その結果に基づき、対象物とその周囲構造物とが干渉しない対象物の姿勢を含む1つ以上の効率的な経路の情報を出力することを記載している。この出願の技術は、GPGPU(General-purpose computing on graphics processing units)等を用いた並列演算処理により、対象物の多数の姿勢候補における干渉判定を同時処理することにより、干渉しない姿勢を算出することを記載している。 As a technology related to route planning, there is Japanese Patent Application No. 2012-6155, which is an application by the present inventor. This application describes a technique for automatically calculating a path in which an object and surrounding structures do not interfere. In the technology of this application, the route planning function uses the object data, the structure data, the carry-in device data, etc. to plan a plurality of route candidates that connect the start point and the end point, and the position of the object on the route. Targets that do not interfere with the target object and the surrounding structure based on the result of determining the interference state between the target object and the surrounding structure for the path candidate and the posture candidate. It describes outputting one or more efficient route information including the posture of an object. The technology of this application is to calculate a posture that does not interfere by simultaneously processing interference judgments in a large number of posture candidates of an object by parallel arithmetic processing using GPGPU (General-purpose computing-on graphics-processing units). Is described.
特開平06-168303号公報Japanese Patent Laid-Open No. 06-168303
 経路計画に関する従来技術は、前述の経路上の対象物と構造物との干渉の状態を判定及びチェックする際には、対象物の3次元形状データと、例えばプラント等の構造物の3次元形状データとを用いて、両者の重複する領域を算出すること等により、干渉の状態を判定及びチェックする処理を行う。 In the prior art related to path planning, when determining and checking the state of interference between an object and a structure on the path, the three-dimensional shape data of the object and the three-dimensional shape of the structure such as a plant are used. Using the data, a process of determining and checking the state of interference is performed by calculating an overlapping area between the two.
 しかしながら、例えばプラント等の構造物は、当該構造物を構成する3次元CADオブジェクト等の要素の数が多数あるいは膨大である。従来技術による、3次元形状データを用いた干渉判定の処理、及び干渉判定を含む経路生成などの処理は、多数の3次元構造物のオブジェクトに対して干渉判定処理などを行う必要があるため、3次元構造物のオブジェクトの数が増えるほど、計算機の計算量が多大になり、計算時間が増加してしまう課題がある。 However, for example, a structure such as a plant has a large or enormous number of elements such as a three-dimensional CAD object constituting the structure. Since the process of interference determination using the three-dimensional shape data and the path generation including the interference determination according to the prior art needs to perform the interference determination process on a large number of objects of the three-dimensional structure, As the number of objects of the three-dimensional structure increases, there is a problem that the calculation amount of the computer increases and the calculation time increases.
 図29は、上記従来技術における計算時間の増加の課題について示す。2901の線に示すように、上記干渉判定処理に要する計算時間は、計算対象となる3次元構造物オブジェクトの数に比例して増加してしまう。従って、この計算時間を例えば2902のように短縮できることが要求される。 FIG. 29 shows a problem of increase in calculation time in the above-described conventional technology. As indicated by the line 2901, the calculation time required for the interference determination process increases in proportion to the number of three-dimensional structure objects to be calculated. Therefore, it is required that this calculation time can be shortened to 2902, for example.
 本発明の目的は、搬入経路計画システム、即ち構造物の内部の空間において対象物を搬入出するための経路を生成または計画するシステム等に関して、経路上における対象物と構造物との干渉の状態を判定する処理を含む処理全体の計算時間を短縮することができる技術を提供することである。 An object of the present invention relates to a state of interference between an object and a structure on the route, for a carry-in route planning system, that is, a system for generating or planning a route for loading and unloading an object in a space inside the structure. It is an object of the present invention to provide a technique capable of shortening the calculation time of the entire process including the process of determining whether or not.
 本発明のうち代表的な形態は、搬入経路計画システム等であって、以下に示す構成を有することを特徴とする。 A representative form of the present invention is a carry-in route planning system or the like, and has the following configuration.
 一実施の形態の搬入経路計画システムは、計算機を用いたプログラム処理により実現される処理部として、3次元の構造物の内部の空間において3次元の物体を搬入出のために移動させるための経路を生成する、経路生成部と、前記3次元の物体の姿勢の状態または平行移動の状態を含む複数の状態を立案する、状態立案部と、前記3次元の物体の状態を前記経路の接線方向に対して垂直な平面である第1投影面に投影することにより2次元の物体のデータを得る、第1投影処理部と、前記3次元の構造物を前記経路の接線方向に対して垂直な平面である第2投影面に投影することにより2次元の構造物のデータを得る、第2投影処理部と、前記2次元の物体のデータと、前記2次元の構造物のデータとを重ね合わせた、2次元の平面において、前記物体の領域と前記構造物の領域とが重複または近接する領域を算出することにより、前記物体と前記構造物との干渉の状態を判定して干渉判定結果データを得る、干渉判定部と、前記干渉判定結果データを含む情報を出力する、出力部と、を有する。 A carry-in route planning system according to an embodiment is a route for moving a three-dimensional object for carry-in / out in a space inside a three-dimensional structure as a processing unit realized by a program process using a computer. A path generation unit for generating a plurality of states including a posture state or a translational state of the three-dimensional object, and a state of the three-dimensional object as a tangential direction of the path A first projection processing unit which obtains data of a two-dimensional object by projecting onto a first projection plane which is a plane perpendicular to the plane, and the three-dimensional structure is perpendicular to the tangential direction of the path A second projection processing unit that obtains data of a two-dimensional structure by projecting onto a second projection plane that is a flat surface, the data of the two-dimensional object, and the data of the two-dimensional structure are superimposed. In a two-dimensional plane The interference determination unit obtains interference determination result data by determining a state of interference between the object and the structure by calculating a region where the region of the object and the region of the structure overlap or approach each other. And an output unit that outputs information including the interference determination result data.
 前記出力部は、前記物体と前記構造物とが干渉しない前記物体の状態を含んで構成される前記経路を含む情報を、記憶手段に保存し、ユーザインタフェースの画面に表示する。また、前記出力部は、前記物体と前記構造物とが干渉する前記物体の状態を含んで構成される前記経路を含む情報を、記憶手段に保存し、ユーザインタフェースの画面に表示する。 The output unit stores information including the route including the state of the object in which the object and the structure do not interfere with each other in a storage unit, and displays the information on a screen of a user interface. The output unit stores information including the route including the state of the object in which the object and the structure interfere with each other in a storage unit and displays the information on a screen of a user interface.
 一実施の形態の搬入経路計画システムは、前記経路に含まれている曲線の経路が直線の経路に変換されるように前記構造物及び前記物体の形状を座標変換処理する、座標変換部を有し、前記第1投影処理部は、前記座標変換処理後の前記3次元の物体の状態を前記第1投影面に投影し、前記第2投影処理部は、前記座標変換処理後の前記3次元の構造物を前記第2投影面に投影する。 The carry-in route planning system according to an embodiment includes a coordinate conversion unit that performs coordinate conversion processing on the shape of the structure and the object so that a curved route included in the route is converted into a straight route. The first projection processing unit projects the state of the three-dimensional object after the coordinate conversion processing onto the first projection plane, and the second projection processing unit is configured to project the three-dimensional object after the coordinate conversion processing. Are projected onto the second projection plane.
 前記状態立案部は、前記物体の姿勢の状態として、前記経路上の点において前記物体の姿勢を規定する座標系の回転軸の周りに所定の角度の単位で回転させた状態を立案する。また、前記状態立案部は、前記物体の平行移動の状態として、前記経路上の点において当該経路の接線方向に対して垂直な平面の内部において前記物体を所定の距離の単位で平行移動させた状態を立案する。 The state planning unit plans a state in which the object is rotated by a predetermined angle unit around a rotation axis of a coordinate system that defines the posture of the object at a point on the path as the state of the object. In addition, the state planning unit translates the object in a unit of a predetermined distance within a plane perpendicular to the tangential direction of the path at a point on the path as a state of translation of the object. Develop a state.
 本発明のうち代表的な形態によれば、搬入経路計画システム、即ち構造物の内部の空間において対象物を搬入出するための経路を生成または計画するシステム等に関して、経路上における対象物と構造物との干渉の状態を判定する処理を含む処理全体の計算時間を短縮することができる。本発明のうち代表的な形態によれば、干渉判定処理を含む処理全体の計算時間が、3次元構造物のオブジェクトの数に比例して増加しないように抑制することができる。 According to a typical embodiment of the present invention, an object and structure on a route are related to a carry-in route planning system, that is, a system for generating or planning a route for carrying in and out an object in a space inside the structure. The calculation time of the whole process including the process which determines the state of interference with an object can be shortened. According to the representative embodiment of the present invention, it is possible to suppress the calculation time of the entire process including the interference determination process from increasing in proportion to the number of objects of the three-dimensional structure.
本発明の一実施の形態のシステムの構成を示す図である。It is a figure which shows the structure of the system of one embodiment of this invention. 図1の搬入経路計画システムの主計算装置及び端末装置のハードウェア及びソフトウェアの構成例などを示す図である。FIG. 2 is a diagram illustrating a configuration example of hardware and software of a main calculation device and a terminal device of the carry-in route planning system of FIG. 1. 図1の搬入経路計画システムを1つの装置で構成した場合の形態を示す図である。It is a figure which shows the form at the time of comprising the carrying-in route planning system of FIG. 1 with one apparatus. 搬入経路計画システムの経路計画機能の持つ処理機能の1つである干渉判定処理機能のブロック構成を示す図である。It is a figure which shows the block configuration of the interference determination processing function which is one of the processing functions which the route planning function of a carrying-in route planning system has. 搬入経路計画システムの経路計画機能による全体的な処理のフロー例を示す図である。It is a figure which shows the example of a flow of the whole process by the route planning function of a carrying-in route planning system. 端末装置におけるユーザインタフェース画面の表示例を示す図である。It is a figure which shows the example of a display of the user interface screen in a terminal device. (a)~(d)は、対象物の例及び座標系を示す図である。(A)-(d) is a figure which shows the example and coordinate system of a target object. (a)~(c)は、対象物の余裕空間の設定の例を示す図である。(A)-(c) is a figure which shows the example of the setting of the margin space of a target object. 対象物の姿勢を規定する回転の角度を表現する座標系の例を示す。The example of the coordinate system expressing the angle of rotation which prescribes | regulates the attitude | position of a target object is shown. 構造物及び経路などの第1の例を示す図である。It is a figure which shows 1st examples, such as a structure and a path | route. 構造物及び経路などの第2の例を示す図である。It is a figure which shows 2nd examples, such as a structure and a path | route. 構造物及び経路などの第3の例を示す図である。It is a figure which shows 3rd examples, such as a structure and a path | route. 余裕空間を含んだ3次元の形状の経路の例を示す。An example of a path having a three-dimensional shape including a margin space is shown. 対象物及び構造物に対する経路上における3次元から2次元への投影面の構成例を示す図である。It is a figure which shows the structural example of the projection surface from 3 dimensions to 2 dimensions on the path | route with respect to a target object and a structure. 対象物、構造物、部分経路、及び投影面などの例を示す図である。It is a figure which shows examples, such as a target object, a structure, a partial path | route, and a projection surface. 図15の構成例に対応した、対象物の3次元から2次元への平行投影処理による投影面の構成例を示す図である。It is a figure which shows the structural example of the projection surface by the parallel projection process from the three-dimensional of a target object corresponding to the structural example of FIG. 図15の構成例に対応した、構造物の3次元から2次元への平行投影処理による投影面の構成例を示す図である。It is a figure which shows the structural example of the projection surface by the parallel projection process from the three-dimensional of a structure corresponding to the structural example of FIG. 図15~図17の各投影面のYZ平面の構成例を示す図である。FIG. 18 is a diagram illustrating a configuration example of a YZ plane of each projection plane in FIGS. 15 to 17; 投影面における干渉判定処理の際に、余裕距離を用いて、干渉の状態を判定する処理に対応した画面例を示す図である。It is a figure which shows the example of a screen corresponding to the process which determines the state of interference using a margin distance in the case of the interference determination process in a projection surface. (a),(b)は、座標変換処理の例を示す図である。(A), (b) is a figure which shows the example of a coordinate transformation process. 図20(b)の経路及び構造物に対して平行投影処理を施す例を示す図である。It is a figure which shows the example which performs a parallel projection process with respect to the path | route and structure of FIG.20 (b). 平行移動処理に対応する経路のパターン例をXY平面で示す図である。It is a figure which shows the example of a pattern of the path | route corresponding to a parallel movement process on XY plane. 図22の経路に関して、YZ平面における平行移動の状態の立案により、干渉無しの経路を探索した例を示す図である。It is a figure which shows the example which searched the path | route without an interference by planning the state of the parallel movement in a YZ plane regarding the path | route of FIG. 当初の経路の方向に対して斜め方向の移動を使用する例を示す図である。It is a figure which shows the example which uses the movement of a diagonal direction with respect to the direction of the original path | route. 姿勢変更処理に対応する経路のパターン例をXY平面で示す図である。It is a figure which shows the example of a pattern of the path | route corresponding to an attitude | position change process on XY plane. (a)~(c)は、各角度の回転の場合における姿勢の状態の立案の例を示す図である。(A)-(c) is a figure which shows the example of the plan of the state of the attitude | position in the case of rotation of each angle. (a)~(d)は、干渉判定処理の際に、投影面内において対象物を平行移動させながら、干渉無しの経路を探索する例を示す図である。(A)-(d) is a figure which shows the example which searches a path | route without an interference, moving a target object in a projection surface in the case of an interference determination process. (a)~(d)は、干渉判定処理の際に、各投影面に対象物の姿勢の状態を投影し、干渉無しの経路を探索する例を示す図である。(A)-(d) is a figure which shows the example which projects the state of the attitude | position of a target object on each projection surface in the case of an interference determination process, and searches for a path | route without interference. 従来技術における計算時間の増加の課題について示す図である。It is a figure shown about the subject of the increase in the calculation time in a prior art. 従来技術と本実施の形態との効果を比較して示す図である。It is a figure which compares and shows the effect of a prior art and this Embodiment.
 以下、図面に基づいて、本発明の一実施の形態のシステムについて詳細に説明する。なお実施の形態を説明するための全図において同一部には原則として同一符号を付し、その繰り返しの説明は省略する。なお本明細書では主に構造物の内部に対象物を搬入する例を用いて説明するが、構造物の内部から外部へ対象物を搬出する場合にも同様に適用可能である。 Hereinafter, a system according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. In this specification, the description will be made mainly using an example in which an object is carried into the structure. However, the present invention can be similarly applied to the case where the object is carried out from the inside of the structure to the outside.
 [概要等]
 本実施の形態のシステムは、プラント等の構造物の設計、施工、及び予防保全などの用途に使用される搬入経路計画システムであり、資材等の搬入出の対象物における搬入出の始点と終点とを結ぶ経路を自動的に生成及び計画する機能を有する。またこの機能は、移動物体である対象物が経路の途中にある構造物と干渉しないような経路を自動的に生成する機能を含む。またこの機能は、対象物が経路の途中にある構造物と干渉するかどうかを判定してその結果を画面に出力してユーザが確認できる機能を含む。またこの機能は、3次元の対象物の回転や平行移動による状態を含めた効率的な経路を生成する機能を含む。またこの機能は、対象物を搬入出するために用いる搬入手段の特性を考慮して上記経路を生成する機能を含む。
[Summary]
The system according to the present embodiment is a carry-in route planning system used for applications such as the design, construction, and preventive maintenance of structures such as plants, and the start and end points of carry-in / out of objects such as materials. A function for automatically generating and planning a route connecting the two. In addition, this function includes a function of automatically generating a route in which an object that is a moving object does not interfere with a structure in the middle of the route. This function also includes a function that allows the user to check whether the object interferes with a structure in the middle of the route and output the result to the screen. In addition, this function includes a function for generating an efficient path including a state due to rotation and translation of a three-dimensional object. In addition, this function includes a function for generating the path in consideration of the characteristics of the loading means used for loading and unloading the object.
 本実施の形態のシステムの経路計画機能は、構造物の内部における対象物の搬入出のための任意の経路における対象物の位置及び姿勢を規定する角度を含む状態を決定または確認する際に、対象物及びその周囲の構造物の3次元オブジェクトの形状を、経路の接線方向に垂直な平面へ投影した2次元画像データを得る。この投影の際、処理データ量が3次元から2次元へ圧縮されていると言える。そして本経路計画機能は、上記2次元画像データにおける投影平面の内部において、対象物の領域とその周囲の構造物の領域との干渉の状態を判定する処理を一挙に行う。これにより、この干渉判定処理は、従来技術のように3次元データ同士の比較によって干渉の状態を判定する処理の場合に比べて、処理データ量が少なく計算が高速化される。従って、経路計画に関する全体的な計算時間が短縮される。 The path planning function of the system according to the present embodiment determines or confirms a state including an angle that defines the position and posture of an object in an arbitrary path for loading and unloading the object within the structure. Two-dimensional image data obtained by projecting the shapes of the three-dimensional objects of the target object and the surrounding structures onto a plane perpendicular to the tangential direction of the path is obtained. It can be said that the amount of processing data is compressed from three dimensions to two dimensions during this projection. The path planning function performs a process of determining the state of interference between the object region and the surrounding structure region in the projection plane in the two-dimensional image data. As a result, the interference determination process requires a smaller amount of processing data and speeds up the calculation than the process of determining the state of interference by comparing three-dimensional data as in the prior art. Therefore, the overall calculation time for the route plan is shortened.
 [システム構成(1)]
 図1は、本発明の一実施の形態のシステムの構成例を示す。一実施の形態のシステムの全体は、搬入経路計画システム1、対象物31、構造物32、搬入機器33、及び設計装置50等を有する。搬入経路計画システム1は、主計算装置10と端末装置20とが通信ネットワークで接続される構成である。主計算装置10及び端末装置20は、経路計画機能F1とGUI表示機能F2とを含み、これらの機能は例えば公知のクライアントサーバシステムとして実現される。主計算装置10は、本システムの主要な計算処理や制御処理などを担当する。主計算装置10は、経路計画機能F1及びGUI表示機能F2に関する主な処理を行う。端末装置20は、必要に応じて主計算装置10に対し処理要求を送信し、主計算装置10は、それに対する処理結果データを端末装置20へ応答する。なお主計算装置10と端末装置20に分けずに1つの装置に統合した形態も勿論可能である。
[System configuration (1)]
FIG. 1 shows a configuration example of a system according to an embodiment of the present invention. The entire system according to an embodiment includes a carry-in route planning system 1, an object 31, a structure 32, a carry-in device 33, a design device 50, and the like. The carry-in route planning system 1 has a configuration in which the main computing device 10 and the terminal device 20 are connected via a communication network. The main computing device 10 and the terminal device 20 include a route planning function F1 and a GUI display function F2, and these functions are realized as, for example, a known client server system. The main computer 10 is in charge of the main calculation processing and control processing of this system. The main computing device 10 performs main processing related to the route planning function F1 and the GUI display function F2. The terminal device 20 transmits a processing request to the main computing device 10 as necessary, and the main computing device 10 responds to the terminal device 20 with processing result data corresponding thereto. Of course, a configuration in which the main computing device 10 and the terminal device 20 are integrated into one device is possible.
 経路計画機能F1は、後述の干渉判定処理機能(図4)を含み、例えば後述の図5のような処理を行う。GUI表示機能F2は、グラフィカルユーザインタフェース(GUI)となる表示画面を制御する機能を有する。 The route planning function F1 includes an interference determination processing function (FIG. 4), which will be described later, and performs processing such as that shown in FIG. The GUI display function F2 has a function of controlling a display screen serving as a graphical user interface (GUI).
 一実施の形態のシステムのユーザUとして、搬入作業者UA、経路計画者UBを有する。搬入作業者UAは、搬出入の作業を実施する人や、その作業指示を行う人などである。経路計画者UBは、搬出入の経路を計画する人や、その計画や作業を遠隔から指示する人などである。搬入作業者UAは、例えば構造物32の内部の空間において対象物31及び搬入機器33の傍におり、端末装置20を携帯して使用する。経路計画者UBは、例えば主計算装置10や端末装置20や設計装置50を操作する。 As a user U of the system according to the embodiment, a carry-in worker UA and a route planner UB are included. The carry-in worker UA is a person who carries out a work in / out, a person who gives a work instruction, or the like. The route planner UB is a person who plans a route for carry-in / out, or a person who instructs the plan or work remotely. The carry-in worker UA is, for example, near the object 31 and the carry-in device 33 in the space inside the structure 32 and carries the terminal device 20 for use. The route planner UB operates the main computing device 10, the terminal device 20, and the design device 50, for example.
 対象物31は、搬出入の対象となる移動物体であり、部品、資材、機器などを含み、例えば配管などである。 The object 31 is a moving object to be carried in and out, and includes parts, materials, equipment, and the like, for example, piping.
 構造物32は、対象物31が搬出入される対象となる空間及び建物などであり、例えば施工対象のプラントである。なお構造物32は、施工の進捗などに応じて、その一部である構造物が移動されることにより、構造物32の全体の形状の状態が変動し得る。例えば経路の終点で対象物31を構造物32の一部として据え付けることにより、構造物32の形状が更新される。 The structure 32 is a space, a building, or the like into which the object 31 is carried in and out, for example, a plant to be constructed. It should be noted that the structure 32 may change the state of the overall shape of the structure 32 by moving a part of the structure 32 according to the progress of the construction. For example, by setting the object 31 as a part of the structure 32 at the end point of the route, the shape of the structure 32 is updated.
 搬入機器33は、搬入手段の1つとして、構造物32の内部で対象物31を搬出入及び移動させるための機器であり、例えば台車、クレーン、ホイスト、チェーンなどが挙げられる。なお搬入手段として人を含む。搬入機器33は、例えば、クレーンの回転やチェーンの伸縮を操作することにより、対象物31を移動させたり、対象物31の姿勢の角度を変化させる。なお人が直接的に対象物31を運ぶ場合、搬入機器33は必要無い。搬入機器33は、それぞれ固有の3次元形状、及び、移動等に関する特性を有する。 The carry-in device 33 is a device for carrying in / out and moving the object 31 inside the structure 32 as one of the carry-in means, and examples thereof include a carriage, a crane, a hoist, and a chain. In addition, a person is included as a carrying-in means. The carry-in device 33 moves the object 31 or changes the angle of the posture of the object 31 by operating, for example, rotation of a crane or expansion and contraction of a chain. In addition, when a person carries the target object 31 directly, the carrying-in apparatus 33 is not necessary. The carry-in device 33 has a unique three-dimensional shape and characteristics relating to movement and the like.
 構造物32の内部で移動物体である対象物31を搬入出する作業のために搬入機器33を使用する場合、対象物31だけでなく搬入機器33についても構造物32との干渉の可能性がある。本システムは、経路を計画する際、搬入機器33の3次元形状を、対象物31の3次元形状に一体化したオブジェクトを設定してもよい。これにより、計算の簡略化による計算時間の短縮ができる。また搬入機器33を用いる場合、ユーザUは本システムの画面で移動物体に対して使用する搬入手段を複数の中から選択して設定することができる。 When the loading device 33 is used for loading and unloading the target object 31 that is a moving object inside the structure 32, there is a possibility that not only the target object 31 but also the loading device 33 may interfere with the structure 32. is there. When planning a route, the present system may set an object in which the three-dimensional shape of the carry-in device 33 is integrated with the three-dimensional shape of the object 31. Thereby, calculation time can be shortened by simplification of calculation. When the carry-in device 33 is used, the user U can select and set a carry-in means to be used for a moving object on the screen of the system.
 設計装置50は、公知のCADやCAM等に対応した設計SW(ソフトウェア)51を備える。設計装置50は、経路計画者UBまたは別の設計者により使用される。設計装置50は、設計SW51を用いて、移動物体データD1、構造物データD2、及び搬入手段データD3を含むデータ情報を作成または取得し、記憶手段である設計DB(データベース)55に管理する。なお設計装置50と主計算装置10が一体化された形態としてもよい。 The design device 50 includes a design SW (software) 51 corresponding to a known CAD or CAM. The design device 50 is used by the route planner UB or another designer. The design device 50 creates or acquires data information including moving object data D1, structure data D2, and carry-in means data D3 using the design SW 51, and manages it in a design DB (database) 55 that is a storage means. The design device 50 and the main computing device 10 may be integrated.
 移動物体データD1は、対象物31の3次元CADオブジェクト等のデータ、及び2次元の画像データ等を含む。 The moving object data D1 includes data such as a three-dimensional CAD object of the object 31, and two-dimensional image data.
 構造物データD2は、構造物32の3次元CADオブジェクト等のデータ、及び2次元の画像データ等を含む。構造物データD2は、例えば設計及び施工の対象となるプラント等の建物の設計図データを含む。 The structure data D2 includes data such as a three-dimensional CAD object of the structure 32, two-dimensional image data, and the like. The structure data D2 includes design drawing data of a building such as a plant to be designed and constructed, for example.
 搬入手段データD3は、搬入機器33等の搬入手段の3次元CADオブジェクト等のデータ、及び後述の搬入機器33の特性のデータ等を含む。 The carry-in means data D3 includes data such as a three-dimensional CAD object of the carry-in means such as the carry-in device 33, data of characteristics of the carry-in device 33 described later, and the like.
 本システムの利用例は以下である。搬入作業者UAは、端末装置20の画面に、構造物32の内部での対象物31の搬入出の作業のための経路などの情報を表示する。例えば、端末装置20は、現在の対象物31及び搬入作業者UAの位置から経路上の進行方向の様子を3次元または2次元で画面に表示する。そして例えば、当該経路上、対象物31の前方に、搬入の障害となりそうな構造物32が存在する場合、搬入作業者UAは、画面でその構造物32を指定し、その構造物32と対象物31との干渉の状態に関するチェックを依頼する。すると、端末装置20は、主計算装置10に対して、その干渉の状態のチェックを依頼する。主計算装置10は、依頼された干渉の状態が、既に計算済みである場合は、その干渉判定結果データを読み出して応答し、計算済みでない場合は、依頼された干渉の状態について、干渉判定処理を実行し、その干渉判定結果データを応答する。そして搬入作業者UAは、端末装置20の画面において、上記の干渉の状態として、干渉が発生するか否か、及び干渉が発生する場合はその発生の箇所などの情報を、2次元または3次元の情報として確認することができる。また上記利用例と同様に、経路計画者UBは、主計算装置10またはそれに接続される経路計画者UB用の端末装置において、その画面に、上記の利用例と同様の各種の情報を表示し、経路の計画や、干渉の状態のチェックなどが可能である。 The usage example of this system is as follows. The carry-in worker UA displays information on the screen of the terminal device 20 such as a route for carrying in / out the object 31 inside the structure 32. For example, the terminal device 20 displays the state of the traveling direction on the route from the current position of the target object 31 and the carry-in worker UA on the screen in three dimensions or two dimensions. And, for example, when there is a structure 32 that is likely to be an obstacle to carry-in in front of the object 31 on the route, the carry-in worker UA designates the structure 32 on the screen, and the structure 32 and the object Request a check on the state of interference with the object 31. Then, the terminal device 20 requests the main computing device 10 to check the interference state. If the requested interference state has already been calculated, the main computing device 10 reads out and responds to the interference determination result data. If not, the main computing device 10 performs interference determination processing for the requested interference state. Is executed, and the interference determination result data is returned. Then, on the screen of the terminal device 20, the carry-in worker UA indicates whether or not the interference occurs, and if the interference occurs, information such as the location of the occurrence is two-dimensional or three-dimensional. It can be confirmed as information. Similarly to the above usage example, the route planner UB displays various information similar to the above usage example on the screen of the main computing device 10 or the terminal device for the route planner UB connected thereto. It is possible to plan routes and check the state of interference.
 [システム構成(2)]
 図2は、図1の搬入経路計画システム1の主計算装置10及び端末装置20のハードウェア及びソフトウェアの構成例などを示す。本実施の形態では、主計算装置10は、並列演算器であるGPGPU219を搭載したサーバコンピュータである。主計算装置10は、1台のサーバとするが、複数台のサーバの連結による構成としてもよい。また主計算装置10は、GPGPU219による並列演算ではなく、通信ネットワーク90上のクラウドコンピューティングサービスへアクセスして同様の並列演算の機能を実現してもよい。
[System configuration (2)]
FIG. 2 shows a configuration example of hardware and software of the main computer 10 and the terminal device 20 of the carry-in route planning system 1 of FIG. In the present embodiment, the main computing device 10 is a server computer equipped with a GPGPU 219 that is a parallel computing unit. The main computing device 10 is a single server, but may be configured by connecting a plurality of servers. Further, the main computing device 10 may implement a similar parallel computing function by accessing a cloud computing service on the communication network 90 instead of the parallel computing by the GPGPU 219.
 本実施の形態では、端末装置20は、タッチセンサ及び液晶ディスプレイなどを搭載したタブレットPCである。端末装置20は、通信ネットワーク90を介して主計算装置10と通信して主計算装置10の機能を利用する。端末装置20は、そのグラフィカルユーザインタフェース(GUI)となる表示画面において、後述のように対象物31、構造物32、及び経路などの各種の情報を表示する。 In the present embodiment, the terminal device 20 is a tablet PC equipped with a touch sensor and a liquid crystal display. The terminal device 20 communicates with the main computer 10 via the communication network 90 and uses functions of the main computer 10. The terminal device 20 displays various information such as the object 31, the structure 32, and the route on the display screen serving as the graphical user interface (GUI) as described later.
 主計算装置10の経路計画機能F1は、ユーザUの指示入力や、端末装置20からの要求などに応じて、CPU211の処理及びGPGPU219の並列演算処理を利用しつつ、搬出入の経路を計画する計算処理などを行う。主計算装置10の経路計画機能F1は、CPU211からの指示に基づきGPGPU219を用いて、経路計画に関する多数の経路に関する並列演算処理を行う。 The route planning function F1 of the main computing device 10 plans the route of carry-in / out using the processing of the CPU 211 and the parallel calculation processing of the GPGPU 219 in response to an instruction input from the user U or a request from the terminal device 20. Perform calculation processing. The route planning function F <b> 1 of the main computing device 10 uses the GPGPU 219 based on an instruction from the CPU 211 to perform parallel arithmetic processing on a number of routes related to the route plan.
 主計算装置10は、設計装置50から、経路計画に必要な、移動物体データD1、構造物データD2、及び搬入手段データD3を含む各データを取得し、主計算装置10の内部の記憶手段である記憶装置217に管理する。 The main computer 10 acquires each data including moving object data D1, structure data D2, and carry-in means data D3 necessary for the route plan from the design device 50, and is stored in the storage means inside the main computer 10. It is managed by a certain storage device 217.
 主計算装置10で管理及び参照されるデータ情報として、移動物体データD1は、個々の対象物31ごとに設定される位置や状態や各種の属性情報を含む。同様に、構造物データD2は、個々の構造物32ごとに設定される位置や状態や各種の属性情報を含む。同様に、搬入手段データD3は、個々の構造物32ごとに設定される位置や状態や各種の属性情報を含む。 As data information managed and referred to by the main computing device 10, the moving object data D1 includes the position and state set for each individual object 31 and various attribute information. Similarly, the structure data D2 includes positions and states set for each structure 32 and various attribute information. Similarly, the carrying-in means data D3 includes the position and state set for each structure 32 and various attribute information.
 なお、ユーザUは、端末装置20や他の装置に備える公知のレーザスキャナ等の機能を使用して、構造物32の内部の空間を撮像することにより、その時点の構造物32の3次元の状況をデータとして取得してもよい。この場合は、例えば端末装置20からその撮像したデータを主計算装置10に送信し、主計算装置10は当該データを構造物データD2に反映する。 Note that the user U uses a function of a known laser scanner or the like provided in the terminal device 20 or another device to image the internal space of the structure 32, so that the three-dimensional structure 32 at that point in time is captured. The situation may be acquired as data. In this case, for example, the captured data is transmitted from the terminal device 20 to the main computer 10, and the main computer 10 reflects the data in the structure data D2.
 図2において、主計算装置10は、CPU211、RAM212、ROM213、入力装置214、出力装置215、通信I/F(インタフェース)装置216、記憶装置217、表示用演算器218、GPGPU219、及びバスなどで構成される。CPU211によりROM213や記憶装置217などから本実施の形態のプログラムやデータをRAM212へロードして処理を実行することにより、サーバ側の経路計画機能F1などを実現する。入力装置214、出力装置215は、キーボードやディスプレイ及びその入出力インタフェース制御処理部などを含む。通信I/F装置216は、通信ネットワーク90に対するインタフェース処理を行う。記憶装置217は、ディスクやカード等の二次記憶装置である。GPGPU219は、GPGPUボードなどで構成される。表示用演算器218は、グラフィックボードなどで構成される。 In FIG. 2, the main computing device 10 includes a CPU 211, a RAM 212, a ROM 213, an input device 214, an output device 215, a communication I / F (interface) device 216, a storage device 217, a display computing unit 218, a GPGPU 219, and a bus. Composed. The CPU 211 loads the program and data of this embodiment from the ROM 213 and the storage device 217 to the RAM 212 and executes the processing, thereby realizing the server side route planning function F1 and the like. The input device 214 and the output device 215 include a keyboard, a display, and its input / output interface control processing unit. The communication I / F device 216 performs interface processing for the communication network 90. The storage device 217 is a secondary storage device such as a disk or a card. The GPGPU 219 is configured by a GPGPU board or the like. The display computing unit 218 is configured by a graphic board or the like.
 端末装置20は、CPU221、RAM222、ROM223、入力装置224、出力装置225、通信I/F装置226、記憶装置227、表示用演算器228、及びバスなどで構成される。CPU221によりROM223や記憶装置227などから本実施の形態のプログラムやデータをRAM222へロードして処理を実行することにより、クライアント側の経路計画機能F1などを実現する。入力装置224、出力装置225は、タッチパネル及びその入出力インタフェース制御処理部などを含む。通信I/F装置226は、通信ネットワーク90に対するインタフェース処理を行う。記憶装置227は、ディスクやカード等の二次記憶装置である。表示用演算器228は、グラフィックボードなどで構成される。 The terminal device 20 includes a CPU 221, a RAM 222, a ROM 223, an input device 224, an output device 225, a communication I / F device 226, a storage device 227, a display computing unit 228, a bus, and the like. The CPU 221 loads the program and data of this embodiment from the ROM 223, the storage device 227, and the like to the RAM 222 and executes the processing, thereby realizing the path planning function F1 on the client side. The input device 224 and the output device 225 include a touch panel and its input / output interface control processing unit. The communication I / F device 226 performs interface processing for the communication network 90. The storage device 227 is a secondary storage device such as a disk or a card. The display computing unit 228 is configured by a graphic board or the like.
 [システム構成(3)]
 図3は、上記搬入経路計画システム1を1つの装置により構成した場合の形態を示す。特に、搬入経路計画システム1の経路計画機能F1のうちの干渉判定処理機能を含む計算装置300の構成例を示す。計算装置300は、制御部310、記憶部320、入力部330、表示部340、通信部350、及びバス等で構成される。制御部310は、投影平面算出部311、2次元画像算出部312、干渉領域算出部313、移動距離算出部314、姿勢変更点算出部315、画面出力部316を含む。記憶部320は、移動物体3次元形状情報記憶部321、構造物3次元形状情報記憶部322、搬入手段情報記憶部323、経路情報記憶部324、移動物体2次元画像情報記憶部325、構造物2次元画像情報記憶部326、干渉領域記憶部327、移動距離記憶部328、及び姿勢変更点記憶部329を有する。
[System configuration (3)]
FIG. 3 shows an embodiment in which the carry-in route planning system 1 is configured by a single device. In particular, a configuration example of the computing device 300 including the interference determination processing function of the route planning function F1 of the carry-in route planning system 1 is shown. The computing device 300 includes a control unit 310, a storage unit 320, an input unit 330, a display unit 340, a communication unit 350, and a bus. The control unit 310 includes a projection plane calculation unit 311, a two-dimensional image calculation unit 312, an interference region calculation unit 313, a movement distance calculation unit 314, an attitude change point calculation unit 315, and a screen output unit 316. The storage unit 320 includes a moving object three-dimensional shape information storage unit 321, a structure three-dimensional shape information storage unit 322, a carry-in means information storage unit 323, a route information storage unit 324, a moving object two-dimensional image information storage unit 325, and a structure. A two-dimensional image information storage unit 326, an interference area storage unit 327, a movement distance storage unit 328, and a posture change point storage unit 329 are included.
 移動物体3次元形状情報記憶部321は、移動物体データD1に対応した情報を記憶する。構造物3次元形状情報記憶部322は、構造物データD2に対応した情報を記憶する。搬入手段情報記憶部323は、搬入手段データD3に対応した情報を記憶する。経路情報記憶部324は、後述の経路データD4に対応した情報を記憶する。移動物体2次元画像情報記憶部325は、後述の移動物体2次元データD5に対応した情報を記憶する。構造物2次元画像情報記憶部326は、後述の構造物2次元データD6に対応した情報を記憶する。 The moving object three-dimensional shape information storage unit 321 stores information corresponding to the moving object data D1. The structure three-dimensional shape information storage unit 322 stores information corresponding to the structure data D2. The carry-in means information storage unit 323 stores information corresponding to the carry-in means data D3. The route information storage unit 324 stores information corresponding to route data D4 described later. The moving object two-dimensional image information storage unit 325 stores information corresponding to moving object two-dimensional data D5 described later. The structure two-dimensional image information storage unit 326 stores information corresponding to structure two-dimensional data D6 described later.
 投影平面算出部311は、3次元データから2次元データへの投影処理に係わる投影平面を算出する処理として、例えば経路の接線方向に対して垂直な平面を算出する処理を行う。2次元画像算出部312は、3次元データから2次元データへの投影処理による2次元の投影平面の画像データを算出する処理を行う。干渉領域算出部313は、2次元の投影平面の内部において移動物体の領域と対象物の領域とが重複または近接する領域を、干渉領域として算出し、干渉領域記憶部327に記憶する処理を行う。移動距離算出部314は、経路上における移動物体が構造物との干渉無しで移動することができる距離を算出し、移動距離記憶部328に記憶する処理などを行う。姿勢変更点算出部315は、経路上における移動物体の姿勢を変更する位置を算出し、姿勢変更点記憶部329に記憶する処理を行う。画面出力部316は、記憶部320に管理される上記の各種のデータ情報をユーザUの操作に応じてユーザインタフェース画面に表示する処理を行う。 The projection plane calculation unit 311 performs a process of calculating a plane perpendicular to the tangential direction of the path, for example, as a process of calculating a projection plane related to a projection process from 3D data to 2D data. The two-dimensional image calculation unit 312 performs processing for calculating image data of a two-dimensional projection plane by projection processing from three-dimensional data to two-dimensional data. The interference region calculation unit 313 calculates a region where the region of the moving object and the region of the object overlap or approach each other within the two-dimensional projection plane as an interference region, and stores the interference region in the interference region storage unit 327. . The movement distance calculation unit 314 calculates a distance that the moving object on the route can move without interference with the structure, and stores the movement distance in the movement distance storage unit 328. The posture change point calculation unit 315 calculates a position for changing the posture of the moving object on the route, and stores it in the posture change point storage unit 329. The screen output unit 316 performs a process of displaying the various data information managed in the storage unit 320 on the user interface screen according to the operation of the user U.
 [干渉判定処理機能]
 図4は、搬入経路計画システム1の経路計画機能F1の処理機能の1つである干渉判定処理機能のブロック構成を示す。干渉判定処理機能は、計算機のプログラム処理により実現される処理部として、経路生成部11、座標変換部12、移動物体投影処理部13、構造物投影処理部14、干渉判定部15、出力部16、姿勢変更部17を有する。また、干渉判定処理機能は、扱うデータ情報として、移動物体データD1、構造物データD2、搬入手段データD3、経路データD4、移動物体2次元データD5、構造物2次元データD6、干渉判定結果データD7、等を有する。
[Interference judgment processing function]
FIG. 4 shows a block configuration of an interference determination processing function which is one of the processing functions of the route planning function F1 of the carry-in route planning system 1. The interference determination processing function is a processing unit realized by computer program processing, such as a path generation unit 11, a coordinate conversion unit 12, a moving object projection processing unit 13, a structure projection processing unit 14, an interference determination unit 15, and an output unit 16. The posture changing unit 17 is included. The interference determination processing function includes moving object data D1, structure data D2, carry-in means data D3, route data D4, moving object two-dimensional data D5, structure two-dimensional data D6, and interference determination result data as handled data information. D7, etc.
 移動物体データD1は、移動物体である搬入出の対象物の3次元の形状データを含み、例えば3次元CADオブジェクトデータを含む。構造物データD2は、プラント等の構造物の3次元の形状データを含み、例えば3次元CADオブジェクトデータを含む。搬入手段データD3は、搬入機器などの搬入手段の3次元の形状データを含み、例えば3次元CADオブジェクトデータを含む。経路データD4は、少なくとも点と線とから成る、複数の経路のデータ情報を含み、各々の経路が複数の部分経路から成る場合はその部分経路の情報も含む。移動物体2次元データD5は、移動物体の2次元の投影面での形状の情報を含む投影面画像データ等を含む。構造物2次元データD6は、構造物の2次元の投影面での形状の情報を含む投影面画像データ等を含む。干渉判定結果データD7は、干渉判定の結果データとして経路における移動物体の状態と周囲構造物との干渉の有無や当該干渉の発生の位置などの情報を含む。 The moving object data D1 includes three-dimensional shape data of an object to be carried in and out that is a moving object, and includes, for example, three-dimensional CAD object data. The structure data D2 includes three-dimensional shape data of a structure such as a plant, and includes, for example, three-dimensional CAD object data. The carry-in means data D3 includes three-dimensional shape data of carry-in means such as a carry-in device, and includes, for example, three-dimensional CAD object data. The route data D4 includes data information of a plurality of routes including at least points and lines. When each route includes a plurality of partial routes, the route data D4 also includes information of the partial routes. The moving object two-dimensional data D5 includes projection plane image data including information on the shape of the moving object on the two-dimensional projection plane. The structure two-dimensional data D6 includes projection plane image data including information on the shape of the structure on the two-dimensional projection plane. The interference determination result data D7 includes information such as the presence / absence of interference between the state of the moving object and the surrounding structure on the route and the position where the interference occurs as interference determination result data.
 経路生成部11は、移動物体データD1、構造物データD2、搬入手段データD3を入力し、複数の経路を生成し、経路データD4として出力する。座標変換部12は、経路データD4に基づき、曲線を含む部分経路に関して、構造物データD2の3次元構造物及び対応する移動物体データD1の3次元移動物体について、座標変換処理を行う。 The route generation unit 11 receives the moving object data D1, the structure data D2, and the carry-in means data D3, generates a plurality of routes, and outputs them as route data D4. The coordinate conversion unit 12 performs a coordinate conversion process on the three-dimensional structure of the structure data D2 and the corresponding three-dimensional moving object of the moving object data D1 with respect to the partial route including the curve based on the route data D4.
 移動物体投影処理部13は、経路データD4の経路に基づき、移動物体データD1の移動物体の3次元オブジェクトを、経路の接線方向に垂直な平面を投影面として、3次元から2次元への平行投影処理を行う。これにより、投影面画像データを含んだ移動物体2次元データD5を得る。 Based on the route of the route data D4, the moving object projection processing unit 13 uses a three-dimensional object of the moving object of the moving object data D1 as a projection plane on a plane perpendicular to the tangential direction of the route, and parallel from three dimensions to two dimensions. Perform projection processing. Thereby, the moving object two-dimensional data D5 including the projection plane image data is obtained.
 構造物投影処理部14は、経路データD4の経路に基づき、構造物データD2の3次元構造物を、経路の接線方向に垂直な平面を投影面として、3次元から2次元への平行投影処理を行う。これにより、投影面画像データを含んだ構造物2次元データD6を得る。この投影面画像データは、経路上に複数の構造物が存在する場合はそれらの形状が1つの投影面の中に一挙に投影されている。 The structure projection processing unit 14 performs parallel projection processing from 3D to 2D using the 3D structure of the structure data D2 as a projection plane based on the path of the path data D4 and a plane perpendicular to the tangential direction of the path. I do. Thereby, the structure two-dimensional data D6 including the projection plane image data is obtained. In the projection plane image data, when there are a plurality of structures on the path, their shapes are projected onto one projection plane all at once.
 干渉判定部15は、移動物体2次元データD5と、構造物2次元データD6とを用いて、2次元移動物体の投影面画像と2次元構造物の投影面画像とを重ね合わせた1つの2次元平面において、2次元移動物体の領域と2次元構造物の領域とが重複する領域を算出する処理等により、両者の干渉の状態を判定する処理を行う。これにより、干渉判定部15は、干渉発生箇所の情報などを含む干渉判定結果データD7を得る。干渉判定結果データD7は、干渉無し経路401の情報と、干渉有り経路402の情報とを含む。 The interference determination unit 15 uses the moving object two-dimensional data D5 and the structure two-dimensional data D6 to superimpose the two-dimensional moving object projection plane image and the two-dimensional structure projection plane image. In the two-dimensional plane, a process of determining the state of interference between the two-dimensional moving object and the two-dimensional structure is performed, for example, by calculating a region where the region overlaps the region of the two-dimensional structure. Thereby, the interference determination unit 15 obtains interference determination result data D7 including information on the location where the interference has occurred. The interference determination result data D7 includes information on a path 401 without interference and information on a path 402 with interference.
 出力部16は、干渉判定結果データD7を記憶手段に保存する処理、並びに、干渉判定結果データD7に基づいて干渉発生箇所情報などを含む各種情報をユーザインタフェース画面に表示する処理などを行う。出力部16は、例えば、干渉無し経路401、または、干渉有り経路402、またはそれら両方の情報を、ユーザインタフェース画面において表示する。なお干渉無し経路401や干渉有り経路402の情報は、経路データD4の一部として反映される。出力部16は、例えば画面に干渉無し経路401や干渉有り経路402の情報を表示する場合は、構造物、経路、対象物の位置及び姿勢、干渉有無、干渉発生箇所などの各情報を3次元または2次元の形式でまとめた画面データを生成して表示する。 The output unit 16 performs processing for saving the interference determination result data D7 in the storage unit, processing for displaying various information including interference occurrence location information on the user interface screen based on the interference determination result data D7, and the like. The output unit 16 displays, for example, information on the interference-free route 401 and / or the interference-caused route 402 on the user interface screen. Note that the information on the interference-free route 401 and the interference-caused route 402 is reflected as a part of the route data D4. For example, when displaying the information of the path without interference 401 or the path with interference 402 on the screen, the output unit 16 three-dimensionally displays each piece of information such as the structure, the path, the position and orientation of the target object, the presence / absence of interference, and the location where the interference occurs. Alternatively, screen data collected in a two-dimensional format is generated and displayed.
 姿勢変更部17は、上記干渉判定結果データD7を参照し、経路上において当該移動物体の姿勢では構造物との干渉が発生する場合、移動物体データD1を用いて、移動物体の姿勢の状態を変更する処理を行う。姿勢変更部17は、言い換えると状態立案部であり、上記干渉を回避できる経路を探索するために、移動物体の姿勢の変更の状態を候補として立案する処理を行う。移動物体の姿勢は、対象物の座標系の各回転軸(φ,θ,ψ)の周りの角度などによって規定される。姿勢変更部17は、姿勢の角度を変更するにあたり、例えば30度や45度や90度といった所定の最小角度単位を用いて、移動物体の姿勢の角度の状態を立案してもよい。 The posture changing unit 17 refers to the interference determination result data D7, and when there is interference with a structure in the posture of the moving object on the route, the posture changing unit 17 uses the moving object data D1 to change the posture state of the moving object. Perform the change process. In other words, the posture changing unit 17 is a state planning unit, and performs a process of planning a change state of the posture of the moving object as a candidate in order to search for a route that can avoid the interference. The posture of the moving object is defined by the angle around each rotation axis (φ, θ, ψ) of the coordinate system of the object. In changing the posture angle, the posture changing unit 17 may plan the posture angle state of the moving object using a predetermined minimum angle unit such as 30 degrees, 45 degrees, or 90 degrees.
 なお後述するが、姿勢変更部17は、移動物体の状態の変更ないし立案として、姿勢の角度の変更だけでなく、姿勢の角度を維持したまま、経路の接線方向に垂直な平面内で移動物体を平行移動させる状態の変更ないし立案が可能である。この場合、姿勢変更部17は、平行移動の状態を立案するにあたり、例えばY方向の10画素、Z方向の10画素といった所定の最小平行移動単位を用いて、移動物体の平行移動の状態を立案してもよい。 As will be described later, the posture changing unit 17 not only changes the posture angle but also changes the state of the moving object, while maintaining the posture angle, while moving the moving object in a plane perpendicular to the tangential direction of the path. It is possible to change or plan the state of moving the object in parallel. In this case, the posture changing unit 17 drafts the state of translation of the moving object using a predetermined minimum translation unit such as 10 pixels in the Y direction and 10 pixels in the Z direction when planning the state of translation. May be.
 姿勢変更部17は、上記立案した3次元の移動物体の状態を表す、姿勢情報411または平行移動情報412を記憶し、移動物体投影処理部13に渡す。移動物体投影処理部13は、上記立案された3次元の移動物体の状態を、前述と同様に2次元の平面に投影処理することにより、移動物体2次元データD5の内容を更新する。その後、干渉判定部15により、上記立案された移動物体の状態についての干渉判定が前述と同様に行われる。 The posture changing unit 17 stores the posture information 411 or the parallel movement information 412 representing the state of the three-dimensional moving object designed as described above, and passes it to the moving object projection processing unit 13. The moving object projection processing unit 13 updates the contents of the moving object two-dimensional data D5 by projecting the drafted state of the three-dimensional moving object onto a two-dimensional plane in the same manner as described above. After that, the interference determination unit 15 performs the interference determination on the proposed moving object state in the same manner as described above.
 [搬入経路計画処理]
 図5は、搬入経路計画システム1の経路計画機能F1による全体的な処理のフロー例を示す。S1等は処理ステップを表す。各処理の詳細については後述する。
[Import route planning process]
FIG. 5 shows an example of a flow of overall processing by the route planning function F1 of the carry-in route planning system 1. S1 etc. represent processing steps. Details of each process will be described later.
 (S1) 条件設定及びデータ入力処理S1は、端末装置20等におけるユーザUの操作に基づき、経路計画機能F1に関する条件の情報を設定し、また、前述の移動物体データD1、構造物データD2、搬入手段データD3等のデータを入力する。主計算装置10は、設定された条件の情報を条件設定データD0として管理する。ユーザUは、経路計画や干渉判定などを実施したい場合は、画面においてメニュー等から経路計画や干渉判定などを選択して実行する。 (S1) Condition setting and data input process S1 sets condition information related to the route planning function F1 based on the operation of the user U in the terminal device 20 or the like, and also includes the above-mentioned moving object data D1, structure data D2, Data such as carry-in means data D3 is input. The main computer 10 manages the set condition information as the condition setting data D0. When the user U wants to execute route planning or interference determination, the user U selects and executes route planning or interference determination from a menu or the like on the screen.
 (S2) 経路生成処理S2は、経路生成部11により行われる。経路生成処理S2は、ユーザUの操作により選択される、または自動的な処理により設定される、始点と終点の情報を用いて、当該始点と終点とを結ぶ複数の経路を候補として自動的に生成する処理を行う。これにより生成したデータは、経路データD4として記憶される。なおS2の時点では経路と構造物との干渉判定はせず、詳細な経路は後のステップで決定されるので、S2の時点で生成する経路は、点と線とから成る簡略的なデータ構造の経路でよい。 (S2) The route generation processing S2 is performed by the route generation unit 11. The route generation processing S2 automatically uses a plurality of routes connecting the start point and the end point as candidates using information on the start point and the end point selected by the operation of the user U or set by an automatic process. Generate the process. The data thus generated is stored as route data D4. Note that the interference between the route and the structure is not determined at the time of S2, and the detailed route is determined in a later step. Therefore, the route generated at the time of S2 is a simple data structure composed of points and lines. The route is acceptable.
 (S3) 経路選択処理S3は、S2で生成された複数の経路から任意の1つの経路を選択する。またこの際、必要ならば、計算しやすいように、1つの経路を複数の部分経路に分割し、部分経路ごとに同様の処理を行うようにてもよい。部分経路も、その上位の階層の経路と同様に、点と線とから成る。なお以下の説明では、部分経路のことを単に経路ともいう。なお1つの経路を複数の部分経路に分割する場合は、部分経路の終点と次の部分経路の始点とを一致させるようにする。一致が無理な場合は、その部分経路の終点と次の部分経路の始点とを結ぶ部分経路を追加する。 (S3) The route selection process S3 selects any one route from the plurality of routes generated in S2. At this time, if necessary, one route may be divided into a plurality of partial routes, and the same processing may be performed for each partial route so as to facilitate calculation. A partial route is also composed of dots and lines, as is the case with the higher-level route. In the following description, the partial route is also simply referred to as a route. When one route is divided into a plurality of partial routes, the end point of the partial route is matched with the start point of the next partial route. If the match is impossible, a partial route connecting the end point of the partial route and the start point of the next partial route is added.
 (S4~S17) S4~S17は、S3で選択される経路ごとの処理を同様に繰り返すステップである。 (S4 to S17) S4 to S17 are steps in which the processing for each route selected in S3 is similarly repeated.
 (S5) 座標変換処理S5は、座標変換部12により行われる。座標変換処理S5は、経路またはその部分経路に関して、円弧のような曲線の経路を有している場合に、当該曲線経路部分が直線的な経路になるように、絶対座標系(X,Y,Z)から極座標系(θ,Y,Z)などへの座標系の変換処理を行う。座標変換処理S5は、当該曲線経路部分に対応した3次元構造物及び対応する3次元移動物体に対して、座標変換処理を施すことにより、変換後の3次元形状データを得る。なお座標変換処理S5は、3次元構造物の座標変換に合わせて、対応する3次元移動物体の座標変換を行う必要がある。座標変換処理S5により、曲線経路部分を直線的な経路部分へと変換することにより、次のS6の投影処理が容易化及び高速化される。 (S5) The coordinate conversion process S5 is performed by the coordinate conversion unit 12. The coordinate transformation process S5 is an absolute coordinate system (X, Y, X, Y) so that when a route or a partial route thereof has a curved route such as an arc, the curved route portion becomes a straight route. The coordinate system is converted from Z) to a polar coordinate system (θ, Y, Z) or the like. The coordinate conversion process S5 obtains converted three-dimensional shape data by performing a coordinate conversion process on the three-dimensional structure corresponding to the curve path portion and the corresponding three-dimensional moving object. The coordinate conversion processing S5 needs to perform coordinate conversion of the corresponding three-dimensional moving object in accordance with the coordinate conversion of the three-dimensional structure. By converting the curved path portion into the linear path portion by the coordinate conversion processing S5, the projection processing of the next S6 is facilitated and speeded up.
 (S6) 構造物の3次元-2次元の投影処理S6は、経路上における移動物体の前方にある構造物の3次元の形状を、経路の接線方向に対して垂直な平面である2次元の投影平面へと投影処理することにより、投影面画像である構造物2次元データD5を得る。本実施の形態では、特に、S6の投影処理は、直線的な経路ないし部分経路における終点の位置で投影面を構成する。上記S5の処理により曲線経路は直線経路に変換済みであるため、S6の投影処理は、直線的な平行投影処理になるので、計算時間が短くて済む。また、S6の投影処理は、後述のように、経路上に複数の構造物が存在する場合にも、1回の投影処理によって、複数の構造物を1つの投影平面へ一挙に投影することができるので、計算時間の短縮に寄与する。 (S6) Three-dimensional to two-dimensional projection processing S6 of the structure is performed by converting the three-dimensional shape of the structure in front of the moving object on the path into a two-dimensional plane that is perpendicular to the tangential direction of the path. By performing projection processing onto the projection plane, structure two-dimensional data D5 that is a projection plane image is obtained. In the present embodiment, in particular, the projection processing of S6 constitutes the projection plane at the position of the end point in the linear route or the partial route. Since the curved path has already been converted to the straight path by the process of S5, the projection process of S6 is a linear parallel projection process, so that the calculation time is short. Further, in the projection process of S6, as described later, even when there are a plurality of structures on the path, the plurality of structures can be projected onto one projection plane at a time by one projection process. This can contribute to shortening the calculation time.
 (S7) 対象物の3次元の状態の立案処理S7は、前述の姿勢変更部17による姿勢変更処理を含む。この立案処理S7は、移動物体である対象物の3次元の状態として、前述の姿勢または平行移動の状態を立案する。言い換えると、立案処理S7は、姿勢を変更するための回転軸とその回転の角度、あるいは、平行移動の方向とその距離を立案する。立案処理S7は、立案した姿勢情報411または平行移動情報412を、構造物データD2との関連付けで管理する。立案処理S7は、例えば、与えられた経路の始点の位置にある3次元の対象物の姿勢を、位置は維持したまま、そのローカル座標系における各回転軸(φ,θ,ψ)の周りに所定の角度単位ごとに回転させた状態を立案する。立案処理S7は、例えば、与えられた経路の始点の位置にある3次元の対象物を、姿勢は維持したまま、絶対座標系における経路の接線方向に垂直な平面の内部において所定の方向及び所定の距離単位ごとに平行移動させた状態を立案する。なお本実施の形態ではS7の処理で姿勢と平行移動との両方の状態を立案するが、一方のみを立案する形態も可能である。 (S7) The planning process S7 of the three-dimensional state of the object includes the posture changing process by the posture changing unit 17 described above. In the planning process S7, the above-described posture or parallel movement state is planned as the three-dimensional state of the target object that is a moving object. In other words, the planning process S7 plans the rotation axis and the rotation angle for changing the posture, or the direction and distance of the translation. The planning process S7 manages the planned posture information 411 or the parallel movement information 412 in association with the structure data D2. In the planning process S7, for example, the posture of the three-dimensional object at the position of the start point of the given route is maintained around each rotation axis (φ, θ, ψ) in the local coordinate system while maintaining the position. A state in which the rotation is performed every predetermined angle unit is planned. In the planning process S7, for example, a three-dimensional object at the position of the start point of a given route is maintained in a predetermined direction and a predetermined direction within a plane perpendicular to the tangential direction of the route in the absolute coordinate system while maintaining the posture. Develop a state where the distance is translated for each distance unit. In the present embodiment, both the posture and the parallel movement are planned in the process of S7, but a mode in which only one of them is planned is also possible.
 (S8) 対象物状態選択処理S8は、S7で立案された複数の状態から任意の1つを選択する。 (S8) The object state selection process S8 selects an arbitrary one from the plurality of states planned in S7.
 (S9~S13) S9~S13は、S8で選択された状態ごとの処理を同様に繰り返すステップである。なおS9~S13の処理の際には、前述のGPGPU219による並列演算を用いて、複数の状態に関する処理を並列に実行するようにしてもよい。 (S9 to S13) S9 to S13 are steps in which the process for each state selected in S8 is similarly repeated. In the processing of S9 to S13, processing related to a plurality of states may be executed in parallel by using the above-described parallel calculation by the GPGPU 219.
 (S10) 対象物の3次元-2次元の投影処理S10は、S8で選択した3次元の対象物の状態を、経路上における接線方向に対して垂直な平面である2次元の投影平面へと投影処理することにより、投影面画像である移動物体2次元データD5を得る。 (S10) Three-dimensional to two-dimensional projection processing S10 of the object converts the state of the three-dimensional object selected in S8 into a two-dimensional projection plane that is a plane perpendicular to the tangential direction on the path. By performing the projection processing, moving object two-dimensional data D5 which is a projection plane image is obtained.
 なおS6の投影処理及びS10の投影処理は、公知の平行投影処理を用いることができる。S10において、移動物体の投影平面を、S6で作成済みの構造物の投影平面と同じにする形態も可能である。これによりS6の構造物の投影面画像の中に、S10の移動物体を重ね合わせるようにした1つの投影面画像が得られる。S6やS10の投影処理の際には、どの位置の構造物やどの対象物の状態を投影したのかが後でもわかるように、投影処理後のデータに情報を付与しておくか、関連付け情報を管理しておく。 In addition, a well-known parallel projection process can be used for the projection process of S6 and the projection process of S10. In S10, a form in which the projection plane of the moving object is the same as the projection plane of the structure created in S6 is also possible. As a result, one projection plane image is obtained in which the moving object of S10 is superimposed on the projection plane image of the structure of S6. In the projection processing of S6 and S10, information is added to the data after the projection processing or the association information is set so that it can be understood later which structure or which object state is projected. Keep it in control.
 (S11) 2次元投影面での干渉判定処理S11は、上記S6で作成した構造物2次元データD6の投影面画像データと、S10で作成した移動物体2次元データD5の投影面画像データとを1つに重ね合わせた2次元の投影平面において干渉の状態を判定する処理を行う。即ち、干渉判定処理S11は、当該2次元の投影平面の内部において、移動物体の領域と対象物の領域とが重複する領域を算出することにより、干渉有無や干渉発生箇所を判定する。S11の処理は、上記重複する領域がある場合、結果を干渉有りとし、またその箇所に対応する構造物の位置などを求める。 (S11) In the two-dimensional projection plane interference determination process S11, the projection plane image data of the structure two-dimensional data D6 created in S6 and the projection plane image data of the moving object two-dimensional data D5 created in S10 are used. A process of determining the state of interference in a two-dimensional projection plane superimposed on one is performed. That is, the interference determination process S11 determines the presence / absence of interference and the location where interference occurs by calculating a region where the region of the moving object and the region of the target object overlap within the two-dimensional projection plane. In the process of S11, if there is an overlapping area, the result is that there is interference, and the position of the structure corresponding to the location is obtained.
 なおS11の処理は、後述するように、面内で移動物体の領域と構造物の領域とが重複する領域を算出する以外にも、面内で移動物体の領域と構造物の領域とが所定の距離以内になる場合に干渉有りとして判定するといった方式も可能である。 Note that the processing of S11 is not limited to calculating a region where the region of the moving object and the region of the structure overlap in the plane, as described later, and the region of the moving object and the region of the structure are predetermined in the surface. It is also possible to determine that there is interference when the distance is within the distance.
 S11の処理は、2次元の平面の内部での公知の画像処理により実現でき、3次元のオブジェクト同士の比較処理などは必要としないので、高速に実現できる。 The processing of S11 can be realized by publicly known image processing inside a two-dimensional plane, and comparison processing between three-dimensional objects is not necessary, so that it can be realized at high speed.
 またS11で上記干渉有りの場合、干渉判定部15は、経路データD4等を用いて、経路上の始点の対象物の位置から干渉発生箇所の構造物の位置までの距離などを簡単に求めることができる。よって、干渉判定部15は、その距離を、搬入可能距離情報として、干渉判定結果データD7内に保存してもよい。搬入可能距離は、与えられた経路上において対象物を同じ姿勢の状態のままどの位置まで周囲構造物との干渉無しで搬入が可能かを表している。 When there is interference in S11, the interference determination unit 15 easily obtains the distance from the position of the target object on the path to the position of the structure where the interference occurs using the path data D4 and the like. Can do. Therefore, the interference determination unit 15 may store the distance in the interference determination result data D7 as carry-in distance information. The carry-in distance indicates how far the object can be carried in without being interfered with the surrounding structure in the same posture on the given route.
 (S12) 干渉判定結果データ保存処理S12は、出力部16により、S11の干渉判定の結果を含む情報を、干渉判定結果データD7として記憶する。本実施の形態は、特に、干渉判定結果データD7として、移動物体の状態と構造物との干渉が無い場合の干渉無し経路401の情報と、移動物体の状態と構造物との干渉が有る場合の干渉有り経路402の情報との両方をスナップショットとして保存しておく。これにより後で、当該干渉判定結果データD7から各状態の情報を読み出し及び参照することができる。例えば構造物の内部での搬入作業中の場合、上記干渉状態をすぐにその場で端末装置20の画面で表示して確認することができる。また事前の設計案の検討の場合、上記干渉状態を適宜読み出して参照することで構造物や対象物の設計変更に有用である。他の形態として、例えば計算及び記憶のリソースを節約したいといった場合には、干渉判定結果データD7として、上記干渉無し経路401の情報のみを保存するようにしてもよいし、逆に干渉有り経路402の情報のみを保存するようにしてもよい。 (S12) In the interference determination result data storage process S12, the output unit 16 stores information including the interference determination result of S11 as interference determination result data D7. In the present embodiment, in particular, as the interference determination result data D7, there is information on the no-interference path 401 when there is no interference between the state of the moving object and the structure, and when there is interference between the state of the moving object and the structure. Both of the information of the path 402 with interference are stored as snapshots. Thereby, information on each state can be read and referenced later from the interference determination result data D7. For example, when the inside of the structure is being carried in, the interference state can be immediately displayed on the screen of the terminal device 20 and confirmed. Further, in the case of examining a design plan in advance, it is useful for design change of a structure or an object by appropriately reading and referring to the interference state. As another form, for example, when it is desired to save calculation and storage resources, only the information on the interference-free path 401 may be stored as the interference determination result data D7. Only the information may be stored.
 (S14) S14は、S9~S13の処理について、ある経路に関して立案された移動物体の複数の状態についてのすべての処理が完了したかを判断し、完了していない場合(N)はS8へ戻り、完了した場合(Y)はS15へ進む。S8へ戻った場合は、まだ選択されていない別の状態を選択する。 (S14) S14 determines whether all the processes for the plurality of states of the moving object planned for a certain route have been completed for the processes of S9 to S13. If not (N), the process returns to S8. If completed (Y), the process proceeds to S15. When returning to S8, another state that has not yet been selected is selected.
 (S15) 干渉無し結果出力処理S15は、出力部16により、第1の出力処理として、S9~S13の結果、干渉無し経路401が得られた場合は、その情報を経路データD4の一部として反映する。干渉無し経路401は、その経路の始点で移動物体をその姿勢や平行移動の状態に変更することにより、その経路上を干渉無しで移動できることを示している。 (S15) Interference-free result output processing S15 is the first output processing by the output unit 16. If the interference-free route 401 is obtained as a result of S9 to S13, the information is used as part of the route data D4. reflect. The interference-free path 401 indicates that the moving object can be moved on the path without interference by changing the moving object to the posture or the parallel movement state at the starting point of the path.
 (S16) 干渉有り結果出力処理S16は、出力部16により、第2の出力処理として、S9~S13の結果、干渉有り経路402が得られた場合は、その情報を経路データD4の一部として反映する。干渉有り経路402は、その経路の始点で移動物体をその姿勢や平行移動の状態に変更した場合に、その経路上で干渉が発生することを示している。 (S16) Interference result output processing S16 is the second output processing by the output unit 16. As a result of S9 to S13, when the path with interference 402 is obtained, the information is used as part of the route data D4. reflect. The path with interference 402 indicates that interference occurs on the path when the moving object is changed to the posture or the parallel movement state at the starting point of the path.
 なおS15やS16の出力処理は、リアルタイムにユーザインタフェース画面へ当該情報を表示するようにしてもよい。 Note that the output processing of S15 and S16 may display the information on the user interface screen in real time.
 (S18) S18の処理は、S4~S17の処理における、複数の経路についてのすべての処理が完了したかを判断し、完了していない場合(N)はS3へ戻り、完了した場合(Y)はS19へ進む。S3へ戻った場合、未選択の別の経路を選択する。 (S18) The process of S18 determines whether all the processes for a plurality of routes in the processes of S4 to S17 are completed. If not completed (N), the process returns to S3, and is completed (Y) Advances to S19. When returning to S3, another unselected route is selected.
 (S19) 経路評価処理S19は、詳細は後述するが、上記S18までに得られた経路データD4における、干渉無し経路401を含む複数の経路の候補について、所定の観点による評価処理を行うことにより、複数の経路の候補に順位付けをする。経路評価処理S19は、例えば予め設定された、またはユーザUにより指定された、所定の観点に対応したアルゴリズムにより、複数の各々の経路に評価点を付けることで、順位付けをする。経路評価処理S19は、複数の干渉無し経路401について、どの経路が効率的なのかを上記評価処理により判定し、その結果の順位に基づき、ユーザUに対して効率的な経路から順に推奨として出力することができる。上記評価処理の観点の一例は、始点から終点までの経路上において対象物の姿勢をなるべく変更せずに移動することができる経路を、高い評価とする。なお上記評価処理の観点は、予め所定のアルゴリズムとして経路計画機能F1を構成するプログラムに組み込まれていてもよいし、ユーザUの設定操作により複数の観点から選択可能としてもよい。また経路評価処理S19を行わない形態も勿論可能である。また経路評価処理S19のうちの評価点を付ける処理などは、前述の各処理ステップ中に併せて実行してしまってもよい。例えば前述の姿勢の角度の変更や平行移動の際に、それぞれ対応する評価点をカウントしておくこと等が可能である。 (S19) The route evaluation process S19, which will be described in detail later, is performed by performing an evaluation process from a predetermined viewpoint on a plurality of route candidates including the interference-free route 401 in the route data D4 obtained up to S18. Ranking multiple route candidates. In the route evaluation process S19, ranking is performed by assigning evaluation points to each of a plurality of routes by an algorithm corresponding to a predetermined viewpoint that is set in advance or specified by the user U, for example. The route evaluation processing S19 determines which route is efficient among the plurality of interference-free routes 401 by the above-described evaluation processing, and outputs the recommendation as a recommendation in order from the efficient route to the user U based on the ranking of the result. can do. As an example of the viewpoint of the evaluation process, a route that can move without changing the posture of the object as much as possible on the route from the start point to the end point is regarded as high evaluation. In addition, the viewpoint of the said evaluation process may be previously incorporated in the program which comprises the route planning function F1 as a predetermined algorithm, and may be selectable from several viewpoints by the user U setting operation. Of course, a mode in which the route evaluation process S19 is not performed is also possible. Further, the process of assigning evaluation points in the route evaluation process S19 may be executed during each of the above-described processing steps. For example, it is possible to count the corresponding evaluation points at the time of the change of the angle of the posture or the parallel movement.
 (S20) 結果出力処理S20は、出力部16により、上記S19までの最終的な結果の情報を記憶手段に保存する処理、並びにユーザインタフェース画面に表示する処理を行う。結果出力処理S20は、経路データD4に基づき、上記最終的な結果の情報をまとめて経路計画データD8として構成し、記憶手段に保存する。また結果出力処理S20は、経路計画データD8に対応する情報を、主計算装置10または端末装置20のユーザインタフェース画面に表示するための画面データを生成し、当該画面データをユーザインタフェース画面へ表示する処理を行う。経路計画データD8は、例えば、複数の各々の経路について、構造物の内部において搬入手段を用いて対象物を経路の始点から終点まで各姿勢を含む状態で移動させる場合の計画を、2次元または3次元の形式で表現する情報を含む。ユーザUは上記経路計画データD8の内容を画面で参照して確認することができ、これにより、実際に使用するための経路の選択や変更、構造物の設計の変更などに有効活用できる。 (S20) In the result output process S20, the output unit 16 performs a process for storing the final result information up to S19 in the storage unit and a process for displaying the information on the user interface screen. In the result output process S20, the final result information is collectively configured as the route plan data D8 based on the route data D4, and stored in the storage unit. The result output process S20 generates screen data for displaying information corresponding to the route plan data D8 on the user interface screen of the main computing device 10 or the terminal device 20, and displays the screen data on the user interface screen. Process. The route plan data D8 is, for example, a plan for moving a target object in a state including each posture from the start point to the end point of the route using a carrying-in means within the structure for each of a plurality of routes. Contains information expressed in a three-dimensional format. The user U can refer to and confirm the contents of the route plan data D8 on the screen, which can be effectively used for selecting and changing the route for actual use, changing the design of the structure, and the like.
 また経路計画データD8は、干渉無し経路401の情報をまとめたデータとしてもよいし、干渉有り経路402の情報をまとめたデータとしてもよいし、それら両方の情報をまとめたデータとしてもよい。また経路計画データD8は、S19による複数の経路の順位付けがある場合は、その複数の経路の順位付け情報を含む。その場合、結果出力処理S20は、複数の経路を、高い評価の経路から順に画面へ出力する。これによりユーザUは画面において複数の経路の候補のうち高い評価の経路から先に確認することができる。これにより、ユーザUは効率的な経路を選択しやすく、低コストな計画が実現しやすい。またユーザUはその後任意の時点で上記保存された経路計画データD8を画面で参照して確認することができる。 Further, the route plan data D8 may be data that summarizes the information of the route 401 without interference, may be data that summarizes the information of the route 402 with interference, or may be data that summarizes both pieces of information. Further, the route plan data D8 includes the ranking information of the plurality of routes when there is a ranking of the plurality of routes in S19. In this case, the result output process S20 outputs a plurality of routes to the screen in order from the highest evaluation route. As a result, the user U can confirm on the screen the path with the highest evaluation among the plurality of path candidates. As a result, the user U can easily select an efficient route and can easily realize a low-cost plan. Further, the user U can check the stored route plan data D8 at any point in time by referring to the screen.
 結果出力処理S20は、画面に、干渉判定結果の情報として、干渉有無、干渉発生箇所、及び干渉を回避できる経路の候補などの情報を表示してもよい。 The result output process S20 may display information such as the presence / absence of interference, the location where the interference occurred, and a candidate route that can avoid the interference as information on the interference determination result on the screen.
 なお上記経路計画機能F1の処理の結果、干渉無し経路401が得られない場合、言い換えるとすべての経路が干渉有り経路402となる場合も起こり得る。その場合、経路計画機能F1は、ユーザUに対し、条件設定や、始点及び終点の選択を変更して試行するように促す。また、干渉有り経路402については、前述の搬入可能距離の情報を出力することにより、ユーザUは経路上で対象物をその搬入可能距離の到達点の位置まで移動させ、その位置を新たな経路の始点として設定することができる。これにより、この新たな始点による経路を対象として、図5の処理を同様に行わせることで、干渉無しの経路を探索することができる。 It should be noted that, as a result of the process of the route planning function F1, if no interference-free route 401 is obtained, in other words, all routes may become the interference-caused route 402. In that case, the route planning function F1 prompts the user U to try changing the condition setting and the selection of the start point and the end point. For the path with interference 402, by outputting the information on the carry-in distance, the user U moves the object to the position of the arrival point of the carry-in distance on the path, and moves the position to the new path. Can be set as the starting point. Accordingly, a route without interference can be searched by performing the process of FIG. 5 in the same manner for the route based on the new start point.
 また設計などの用途の場合、上記のように始点と終点の設定を変更しても干渉無しの経路が得られない場合は、その結果を利用して、ユーザUにより設計変更として、構造物の配置を変更することや、対象物や構造物のサイズや種類などを変更することも可能である。例えば移動物体である配管のサイズを小さくしたり、構造物である壁や柱のサイズを小さくしたり、といった設計変更により、干渉無しの経路を探索することができる。 In addition, in the case of a design or the like, if a route without interference cannot be obtained even if the setting of the start point and the end point is changed as described above, the result of the change is used as a design change by the user U. It is also possible to change the arrangement and change the size and type of the object or structure. For example, a path without interference can be searched for by a design change such as reducing the size of a pipe that is a moving object or reducing the size of a wall or a column that is a structure.
 [ユーザインタフェース画面]
 図6は、端末装置20におけるグラフィカルユーザインタフェース画面の表示例を示す。本画面は、搬入経路計画システム1の経路計画機能F1に対応したアプリケーションソフトウェアとして、ウィンドウ内に、メニューg1、搬入経路g2、姿勢g3、干渉発生箇所g4、搬入可能距離g5、等の情報を表示した例を示す。メニューg1からは、経路生成、経路確認、干渉チェックといった各機能をユーザUが選択して実行可能である。
[User interface screen]
FIG. 6 shows a display example of a graphical user interface screen on the terminal device 20. This screen displays information such as menu g1, carry-in route g2, posture g3, interference occurrence point g4, and carry-in possible distance g5 as application software corresponding to route planning function F1 of carry-in route planning system 1 An example is shown. From the menu g1, the user U can select and execute functions such as route generation, route confirmation, and interference check.
 搬入経路g2の表示においては、構造物、移動物体である対象物、経路などを3次元または2次元の形式で表示する。g2の例は、選択したある1つの経路である、点p1から点p5までの経路R1に関して、その関連情報を含めて表示した例である。また例えば、ユーザUによる構造物の指定の操作、例えばクリックに応じて、その構造物と、対象物との干渉の状態を、別の領域などに表示するようにしてもよい。 In displaying the carry-in route g2, a structure, a moving object, a route, and the like are displayed in a three-dimensional or two-dimensional format. The example of g2 is an example in which a certain selected route, that is, the route R1 from the point p1 to the point p5 is displayed including the related information. Further, for example, in response to an operation of designating a structure by the user U, for example, a click, the state of interference between the structure and the object may be displayed in another area or the like.
 姿勢g3の表示においては、搬入経路g2の表示に対応して、経路ごとに対応付けられた対象物の姿勢の状態を表示する。姿勢の状態の表示は、例えば、姿勢を規定する角度の情報を表示してもよいし、3次元や2次元の画像で姿勢の状態を表示してもよい。g3は、例えば点p1から点p2までの部分経路r1における移動の際の姿勢が(φ1,θ1,ψ1)であることを示している。 In the display of the posture g3, the state of the posture of the object associated with each route is displayed corresponding to the display of the carry-in route g2. As the display of the posture state, for example, information on an angle defining the posture may be displayed, or the posture state may be displayed as a three-dimensional or two-dimensional image. g3 indicates that the posture at the time of movement in the partial path r1 from the point p1 to the point p2, for example, is (φ1, θ1, ψ1).
 干渉発生箇所g4の表示においては、搬入経路g2の経路における部分経路ごとに、対象物と構造物との干渉状態を2次元投影面で表示する。この表示は、2次元投影面の内部で、対象物の2次元の領域と、経路上に存在する各構造物の2次元の領域とを重ね合わせて表示し、対象物と構造物とが干渉する領域を強調表示する。g4の例は、部分経路r1、部分経路r2、部分経路r3ごとの表示を示している。また部分経路r2の例のように曲線の経路については、座標変換処理による変換後の構造物を含む経路上で、対象物を投影した画像を表示する。 In the display of the interference occurrence location g4, the interference state between the object and the structure is displayed on the two-dimensional projection plane for each partial route in the route of the carry-in route g2. In this display, the two-dimensional region of the target object and the two-dimensional region of each structure existing on the path are superimposed and displayed within the two-dimensional projection plane, and the target object and the structure interfere with each other. Highlight the area you want. The example of g4 shows the display for each of the partial route r1, the partial route r2, and the partial route r3. As for the curved path as in the example of the partial path r2, an image obtained by projecting the object is displayed on the path including the structure after the conversion by the coordinate conversion process.
 なお干渉発生箇所g4の表示において、2次元投影面における構造物や対象物の表示は、各オブジェクトの形状だけでなく、奥行き方向(例えばX方向)の距離や厚さの違いがわかりやすいように、色や座標などの情報を付与して表示してもよい。例えば奥行き方向の距離や厚さが大きいオブジェクトほど、黒に近い階調で表示してもよい。 In the display of the interference occurrence location g4, the display of the structure and the target object on the two-dimensional projection plane is not only easy to understand not only the shape of each object but also the distance and thickness difference in the depth direction (for example, the X direction). Information such as colors and coordinates may be added and displayed. For example, an object having a larger distance or thickness in the depth direction may be displayed with a gradation closer to black.
 搬入可能距離g5の表示は、搬入経路g2の経路における部分経路ごとに、前述の搬入可能距離の情報を表示する。例えば始点p1から点p2までの部分経路r1において、当該経路の途中の構造物と干渉有りの場合は、始点p1から当該構造物の位置に対応した点までの距離が搬入可能距離として表示される。 The display of the carry-in distance g5 displays the above-described information on the carry-in distance for each partial route in the route of the carry-in route g2. For example, in the partial route r1 from the start point p1 to the point p2, when there is interference with a structure in the middle of the route, the distance from the start point p1 to the point corresponding to the position of the structure is displayed as the carry-in distance. .
 本システムは、図6の画面例に限らず、後述の例のような各種の情報を画面に表示可能である。 The present system is not limited to the screen example of FIG. 6 and can display various types of information on the screen as in the following example.
 [対象物及び座標系]
 図7は、移動物体である対象物31の例、及び座標系を示す。(a)は、3次元の対象物として、L字形に曲がった配管の場合を示す。(X,Y,Z)は絶対座標系ないしワールドワイド座標系を示す。(x,y,z)は相対座標系ないしローカル座標系を示す。Pないしpは、対象物の位置座標の点を示し、例えば経路上の対象物の現在位置の点や、対象物の代表点などを示す。なお経路上の位置の点も同様にPないしpで示す。なお対象物の位置を示す代表点は、対象物の3次元のオブジェクトにおける任意の点を設定可能である。本明細書の例では、3次元の対象物の表面の1点、あるいは3次元の対象物の内部の内接球の中心点、あるいは3次元の対象物の外部の外接球の中心点、あるいは対象物の重心点などをとることができる。
[Object and coordinate system]
FIG. 7 shows an example of an object 31 that is a moving object, and a coordinate system. (A) shows the case of piping bent in L shape as a three-dimensional object. (X, Y, Z) indicates an absolute coordinate system or a worldwide coordinate system. (X, y, z) indicates a relative coordinate system or a local coordinate system. P or p indicates a point of the position coordinate of the object, for example, a point of the current position of the object on the route, a representative point of the object, or the like. In addition, the point of the position on a path | route is similarly shown by P thru | or p. As the representative point indicating the position of the target object, an arbitrary point in the three-dimensional object of the target object can be set. In the example of the present specification, one point on the surface of the three-dimensional object, the center point of the inscribed sphere inside the three-dimensional object, the center point of the circumscribed sphere outside the three-dimensional object, or The center of gravity of the object can be taken.
 (b)は、(a)の対象物に対応したYZ平面での形状を示す。(c)は(a)の対象物に対応したXY平面の形状を示す。(d)は(a)の対象物に対応したXZ平面の形状を示す。なお以下の説明において、対象物の位置などを示す場合、対象物のローカル座標系の位置から共通のワールドワイド座標系の位置に変換した後の位置として、P(X1,Y1,Z1)等の表現により示すが、これに限らず可能である。 (B) shows the shape on the YZ plane corresponding to the object of (a). (C) shows the shape of the XY plane corresponding to the object of (a). (D) shows the shape of the XZ plane corresponding to the object of (a). In the following description, when the position of an object is indicated, the position after conversion from the position of the object in the local coordinate system to the position of the common world wide coordinate system is P (X1, Y1, Z1) or the like. Although shown by expression, the present invention is not limited to this.
 なお経路計画機能F1による計算処理にあたり、対象物や構造物において複数の座標系が混在している場合、それぞれのローカル座標系などにおける対象物などの位置を、共通のワールドワイド座標系(X,Y,Z)における位置へと変換してから計算処理を行えばよい。 In the calculation process by the path planning function F1, when a plurality of coordinate systems are mixed in the object or structure, the position of the object in each local coordinate system is represented by a common worldwide coordinate system (X, Calculation processing may be performed after conversion to a position in Y, Z).
 [対象物の余裕空間]
 図8は、対象物31の余裕空間の設定の例を示す。経路計画の計算を簡略化及び高速化するために、また、実際の搬入出の作業を余裕化するために、対象物、構造物、及び経路等における3次元オブジェクトに余裕空間を設定してもよい。以下のいずれの例も適用可能である。なお設定は、前述の条件設定及びデータ入力処理S1等でユーザUにより画面で可能である。
[Reserved space for objects]
FIG. 8 shows an example of setting the margin space of the object 31. In order to simplify and speed up the calculation of the route plan, and in order to make the actual loading / unloading work easier, even if a margin space is set for the three-dimensional object in the object, the structure, the route, etc. Good. Any of the following examples is applicable. The setting can be made on the screen by the user U in the above-described condition setting and data input processing S1 or the like.
 (a)は、対象物31の3次元オブジェクトの形状(なおここでは簡略的に2次元で示す)に関して、膨張処理を施すことにより、余裕空間801を確保した例を示す。この膨張処理は、対象物31のオブジェクトを構成する各面(なお平面でも曲面でもよい)における任意の点において、その法線方向外側に所定の距離をとることで、当該面をオフセットする。これにより得られる3次元の形状を余裕空間801の外形とする。言い換えると当該形状を、空間的な余裕をとって拡張された対象物とする。元の対象物31と上記外形との間の空間を余裕空間801という。 (A) shows an example in which a margin space 801 is secured by performing an expansion process on the shape of the three-dimensional object of the object 31 (here, simply shown in two dimensions). In this expansion process, at an arbitrary point on each surface (which may be a flat surface or a curved surface) constituting the object of the object 31, the surface is offset by taking a predetermined distance outside the normal line. The three-dimensional shape obtained as a result is taken as the outer shape of the margin space 801. In other words, the shape is an object that is expanded with a spatial margin. A space between the original object 31 and the outer shape is referred to as a margin space 801.
 (b)の例は、対象物31の内部に内接する第1の球をとり、対象物31の外側に、第1の球の中心点と同じ中心点とした第2の球をとり、第2の球を、余裕空間801の外形とした例を示す。 The example of (b) takes a first sphere that is inscribed inside the object 31, takes a second sphere outside the object 31 and has the same center point as the center point of the first sphere, An example in which the sphere of 2 is used as the outer shape of the margin space 801 is shown.
 (c)の例は、対象物31に対する絶対座標系(X,Y,Z)、もしくは対象物31に固定的に付与されるローカル座標系(x,y,z)において、各軸に平行な辺を持つ直方体をとり、その直方体を対象物31に外接し、その直方体を余裕空間801の外形とした例を示す。 In the example of (c), the absolute coordinate system (X, Y, Z) with respect to the object 31 or the local coordinate system (x, y, z) fixedly attached to the object 31 is parallel to each axis. An example is shown in which a rectangular parallelepiped having sides is taken, the rectangular parallelepiped is circumscribed to the object 31, and the rectangular parallelepiped is used as the outer shape of the margin space 801.
 なお余裕空間801を用いる場合、前述の干渉判定処理の際、第1の手法としては、余裕空間801を設定した3次元オブジェクトを用いて計算を行う。第2の手法としては、後述のように、余裕空間801無しの3次元オブジェクトを用いて、2次元投影平面内において所定の余裕距離を設定して干渉判定を行う。 When the margin space 801 is used, as the first method, the calculation is performed using a three-dimensional object in which the margin space 801 is set in the above-described interference determination process. As a second method, as described later, using a three-dimensional object without a margin space 801, interference is determined by setting a predetermined margin distance in a two-dimensional projection plane.
 [姿勢及び座標系]
 図9は、対象物31の姿勢を規定する回転の角度を表現する座標系の例を示す。本座標系(φ,θ,ψ)は、第1姿勢角度として、X軸周りの回転角度(ロール角)であるφとし、第2姿勢角度として、Y軸周りの回転角度(ピッチ角)であるθとし、第3姿勢角度として、Z軸周りの回転角度(ヨー角)であるψとする。なお例えば、角度φは、対象物の長手方向や進行方向に合わせてとるとよい。角度ψは、対象物の短手方向に合わせてとるとよい。なお対象物の姿勢を表す形式として、オイラー角(φ,θ,ψ)に限らず、他の形式も同様に適用可能である。
[Attitude and coordinate system]
FIG. 9 shows an example of a coordinate system that expresses the angle of rotation that defines the posture of the object 31. In this coordinate system (φ, θ, ψ), the first posture angle is φ, which is a rotation angle (roll angle) around the X axis, and the second posture angle is a rotation angle (pitch angle) around the Y axis. A certain θ is assumed, and the third posture angle is ψ which is a rotation angle (yaw angle) around the Z axis. For example, the angle φ may be set in accordance with the longitudinal direction or the traveling direction of the object. The angle ψ may be adjusted according to the short direction of the object. Note that the form representing the posture of the object is not limited to Euler angles (φ, θ, ψ), and other forms can be similarly applied.
 [構造物及び経路(1)]
 図10は、構造物32及び経路などの第1の例を示す。構造物32は、例えば施工対象のプラントであり、大量の配管などの部品から構成され、配管などの部品が入り組む複雑な構造を有する。例えば、点p1を始点とする対象物31を、点p5を終点及び据付位置とした経路R1が計画される。経路R1は、点p1~p5、部分経路である経路r1~r4から成る。本システムは、例えばこの経路R1上で対象物31を搬入する際の姿勢の状態について干渉判定を行い、干渉が発生しない経路を立案する。本システムは、干渉判定の結果、始点p1での姿勢では途中の構造物32と干渉が発生する場合、始点p1の姿勢を、途中で干渉が発生しない姿勢へ変更し、当該変更された姿勢を含む経路を候補として出力する。
[Structure and route (1)]
FIG. 10 shows a first example of the structure 32 and the route. The structure 32 is a plant to be constructed, for example, and is composed of a large amount of parts such as piping, and has a complicated structure in which parts such as piping are complicated. For example, a route R1 is planned in which the target object 31 starting from the point p1 is the end point and the installation position is the point p5. The route R1 includes points p1 to p5 and routes r1 to r4 which are partial routes. For example, the system performs interference determination on the posture state when the object 31 is carried in on the route R1, and plans a route in which no interference occurs. As a result of the interference determination, when the interference with the intermediate structure 32 occurs in the posture at the start point p1, the system changes the posture of the start point p1 to a posture in which interference does not occur in the middle, and changes the changed posture. The path that contains it is output as a candidate.
 [構造物及び経路(2)]
 図11は、構造物32及び経路などの第2の例を示す。図11の経路R1は、搬入の始点P1=p1、及び搬入の終点P2=p5とし、点p1~p5、部分経路である経路r1~r4から成る。経路は、基本的な情報管理としては、点と線とのつながりから構成される。点は、種類として始点、終点、途中点などを有する。線は、種類として直線、円弧などの曲線を有する。経路の点と線は、それぞれ属性情報が付与されて管理される。経路を構成する線が直線のみである場合、当該経路は折れ線となる。なお実際の経路は、後述のように、対象物31を搬入出させるための3次元の形状を有し、点と線を中心としてその周りに3次元の領域を確保した形状となる。
[Structure and route (2)]
FIG. 11 shows a second example of the structure 32 and the route. The route R1 in FIG. 11 includes a carry-in start point P1 = p1 and a carry-in end point P2 = p5, and includes points p1 to p5 and partial routes r1 to r4. A route is composed of connections between points and lines as basic information management. A point has a start point, an end point, an intermediate point, and the like as types. The line has a curve such as a straight line or an arc as a type. The points and lines of the route are each managed with attribute information. When the line constituting the route is only a straight line, the route is a broken line. As will be described later, the actual path has a three-dimensional shape for loading and unloading the object 31, and has a shape in which a three-dimensional area is secured around a point and a line.
 本システムの経路計画機能F1は、例えば図11の経路R1を対象として干渉判定などを処理する際、当初の経路R1の始点P1と終点P2との間を、複数の部分経路である経路r1~r4に分割し、それぞれ同様に処理するようにしてもよい。なお経路の分割の際は、基本的に各部分経路の始点及び終点を一致させるようにする。例外的に、干渉状態によっては、経路の途中で経由する点を変更し、新たな部分経路を追加するようにしてもよい。また、1101は、点p1から点p2への経路r1における、途中に経由する点の例を示す。1102は、点p1から1101の点までの移動距離を示す。例えば点p1から点p2への経路r1において、その途中にある構造物1103との干渉が発生する場合、経路r1の搬入可能距離は、点p1から構造物1103の手前の位置までの距離になる。 The route planning function F1 of the present system, for example, when processing an interference determination for the route R1 in FIG. 11, for example, includes a plurality of partial routes r1 to r1 between the start point P1 and the end point P2 of the original route R1. It may be divided into r4 and processed in the same manner. When dividing a route, the start point and the end point of each partial route are basically matched. Exceptionally, depending on the interference state, a point passing through the route may be changed and a new partial route may be added. Reference numeral 1101 denotes an example of a point that passes along the route r1 from the point p1 to the point p2. Reference numeral 1102 denotes a moving distance from the point p1 to the point 1101. For example, when interference with a structure 1103 in the middle of the path r1 from the point p1 to the point p2 occurs, the loadable distance of the path r1 is a distance from the point p1 to a position before the structure 1103. .
 [構造物及び経路(3)]
 図12は、構造物32及び経路などの第3の例を示す。本例は、所定の始点P1と終点P2との間を結ぶ複数の経路の一部の例を示す。前述の経路生成部11は、ユーザUにより指定された始点P1と終点P2との間を結ぶ複数の経路を、公知のアルゴリズム等に従って自動的に生成する。なおこの生成の時点では、干渉判定はしないため、点と線による簡易な経路を生成すればよい。また、経路生成部11により自動的に経路を生成する以外にも、ユーザUにより画面で任意に点や線を指定して経路を設定することが可能である。
[Structure and route (3)]
FIG. 12 shows a third example of the structure 32 and the route. This example shows an example of a part of a plurality of routes connecting between a predetermined start point P1 and an end point P2. The above-described route generation unit 11 automatically generates a plurality of routes connecting the start point P1 and the end point P2 designated by the user U according to a known algorithm or the like. It should be noted that at this time of generation, since interference determination is not performed, a simple route using points and lines may be generated. In addition to automatically generating a route by the route generation unit 11, the user U can set a route by arbitrarily specifying a point or a line on the screen.
 [3次元の経路]
 図13は、余裕空間を含んだ3次元の形状の経路1300の例を示す。まず点と線による基本的な経路として点p1~p3による経路R1があるとする。この経路R1上における対象物31の余裕空間1301を搬入機器33の分も含めて確保する。これにより点と線による経路R1のモデル上で、当該余裕空間1301を含めた対象物31を動かすことにより、3次元の立体的な経路1300が構成される。
[3D path]
FIG. 13 shows an example of a path 1300 having a three-dimensional shape including a margin space. First, it is assumed that there is a route R1 by points p1 to p3 as a basic route by points and lines. The marginal space 1301 of the object 31 on the route R1 is secured including the carry-in device 33. Thus, a three-dimensional three-dimensional route 1300 is formed by moving the object 31 including the margin space 1301 on the model of the route R1 by points and lines.
 [投影面]
 図14は、対象物31及び構造物32に対する経路上における3次元から2次元への投影面の構成例を示す。経路の例として図11と同様の経路R1があるとする。3次元から2次元への投影面は、基本的には、部分経路の始点または終点の位置で構成される。経路上の点の接線方向に対して垂直な方向に2次元投影面が構成される。
[Projection plane]
FIG. 14 shows a configuration example of a projection plane from three dimensions to two dimensions on a path with respect to the object 31 and the structure 32. As an example of the route, it is assumed that there is a route R1 similar to FIG. The projection plane from 3D to 2D is basically composed of the position of the start point or end point of the partial path. A two-dimensional projection plane is constructed in a direction perpendicular to the tangential direction of the points on the path.
 まず点p1から点p2への直線的な部分経路である経路r1において、始点p1に、対象物31の投影面J0が構成される。経路r1の接線方向がX方向であり、その垂直なYZ平面において、投影面J0が構成される。また、経路r1の終点p2に、構造物32の投影面J1が構成される。次に点p2から点p3への曲線的な部分経路である経路r2において、途中の点paまたは終点p3に、構造物31の投影面J2aまたはJ2bが構成される。投影面J2aは、経路r2の円弧の途中の点paで投影面を構成した場合である。投影面J2bは、経路r2の円弧の終わりの点p3で投影面を構成した場合である。同様に、点p3から点p4への直線的な経路r3において、終点p4に、構造物32の投影面J3が構成される。 First, in the path r1 which is a linear partial path from the point p1 to the point p2, the projection plane J0 of the object 31 is formed at the start point p1. The tangential direction of the path r1 is the X direction, and the projection plane J0 is configured in the vertical YZ plane. Further, the projection plane J1 of the structure 32 is formed at the end point p2 of the route r1. Next, in a path r2 that is a curved partial path from the point p2 to the point p3, the projection plane J2a or J2b of the structure 31 is formed at the midpoint point pa or the end point p3. The projection plane J2a is a case where the projection plane is constituted by a point pa in the middle of the arc of the path r2. The projection plane J2b is a case where the projection plane is configured by the point p3 at the end of the arc of the path r2. Similarly, a projection plane J3 of the structure 32 is formed at the end point p4 in the linear path r3 from the point p3 to the point p4.
 [部分経路及び投影面]
 図15は、対象物31、構造物32、部分経路、及び投影面などの例を示す。図15の経路r1は、前述の図11の経路R1のうちの部分経路r1に対応する。経路r1は、始点P1から終点P2へのX方向への直線的な経路である。構造物32の例は、YZ平面の断面が四角形である、X方向への直線的な通路の例を示す。この通路の途中に、構造物32として、例えば2つの長方体の構造物1501,1502が存在する例を示す。通路の奥行き方向及び対象物31の進行方向をX方向とし、それに垂直な面を構成する方向がY方向及びZ方向である。X方向の位置X1に、対象物31の始点P1(X1,Y1,Z1)がある。位置X2に、第1の構造物1501の手前側の面がある。位置X3に、第2の構造物1502の手前側の面がある。位置X4に、経路r1の終点P2がある。J01は、点P1の位置X1における対象物31の投影面を構成するYZ平面を示す。J02は、点P2の位置X4における経路r1上の構造物32の投影面を構成するYZ平面を示す。
[Partial path and projection plane]
FIG. 15 shows examples of the object 31, the structure 32, the partial path, the projection plane, and the like. The route r1 in FIG. 15 corresponds to the partial route r1 in the route R1 in FIG. The route r1 is a linear route in the X direction from the start point P1 to the end point P2. The example of the structure 32 shows an example of a straight path in the X direction in which the cross section of the YZ plane is a quadrangle. An example in which two rectangular structures 1501 and 1502 exist as the structure 32 in the middle of the passage will be described. The depth direction of the passage and the traveling direction of the object 31 are defined as the X direction, and the directions that form a plane perpendicular to the X direction are the Y direction and the Z direction. There is a starting point P1 (X1, Y1, Z1) of the object 31 at a position X1 in the X direction. There is a surface on the near side of the first structure 1501 at the position X2. There is a surface on the near side of the second structure 1502 at the position X3. There is an end point P2 of the route r1 at the position X4. J01 represents the YZ plane that constitutes the projection plane of the object 31 at the position X1 of the point P1. J02 indicates a YZ plane constituting the projection plane of the structure 32 on the path r1 at the position X4 of the point P2.
 [対象物の投影面]
 図16は、図15の構成例に対応した、対象物31の3次元から2次元への平行投影処理による投影面J01の構成例を示す。前述のS10の投影処理により、始点P1及び位置X1の対象物31の3次元の形状を、周囲に構造物が無い位置X1bの投影面J01bであるYZ平面に平行投影処理する。S10の投影処理は、仮想的に位置X1bの投影面J01bを構成する。この投影面J01bを、始点P1及び位置X1の対象物31の投影面J01とする。この平行投影処理により、投影面J01内における対象物31の点Pの位置座標は、(X1,Y1,Z1)から(0,Y1,Z1)になる。投影面J01において、1601は、対象物31が投影された領域を示す。
[Projection plane of object]
FIG. 16 shows a configuration example of the projection plane J01 corresponding to the configuration example of FIG. 15 by parallel projection processing of the object 31 from three dimensions to two dimensions. By the projection process of S10 described above, the three-dimensional shape of the target 31 at the start point P1 and the position X1 is subjected to a parallel projection process on the YZ plane which is the projection plane J01b of the position X1b where there is no surrounding object. The projection processing in S10 virtually constitutes the projection plane J01b at the position X1b. This projection plane J01b is defined as the projection plane J01 of the object 31 at the start point P1 and the position X1. By this parallel projection processing, the position coordinates of the point P of the object 31 in the projection plane J01 are changed from (X1, Y1, Z1) to (0, Y1, Z1). In the projection plane J01, reference numeral 1601 denotes an area where the object 31 is projected.
 [構造物の投影面]
 図17は、図15の構成例に対応した、構造物32の3次元から2次元への平行投影処理による投影面J02の構成例を示す。前述のS6の投影処理は、位置X2の第1の構造物1501及び位置X3の第2の構造物1502の3次元の形状を、経路r1の終点P2の位置X4に対応したYZ平面である投影面J02に平行投影処理する。投影面J02において、1701は、第1の構造物1501が投影された領域を示し、1702は、第2の構造物1502が投影された領域を示す。
[Projection surface of structure]
FIG. 17 shows a configuration example of the projection plane J02 corresponding to the configuration example of FIG. 15 by the parallel projection processing from the three-dimensional structure to the two-dimensional structure 32. In the projection process of S6 described above, the three-dimensional shape of the first structure 1501 at the position X2 and the second structure 1502 at the position X3 is a YZ plane corresponding to the position X4 of the end point P2 of the path r1. Parallel projection processing is performed on the surface J02. In the projection plane J02, 1701 indicates a region where the first structure 1501 is projected, and 1702 indicates a region where the second structure 1502 is projected.
 [投影面]
 図18は、上記図15~図17の各投影面のYZ平面の構成例を示す。図18は、位置X1の対象物31の投影面J01、位置X4の構造物32の投影面J02、及び、投影面J01と投影面J02とを1つに重ね合わせた干渉判定用の投影面J03を有する。なお説明を簡単にするため、ここでは投影面の形状を正方形とし、通路の断面の形状と合わせた形状とするが、投影面の大きさや中心点などの設定は、他の形態も可能である。例えば対象物31や構造物32や経路の中心点の周りに所定の大きさで投影面が設定される。投影面の中心点をQで示す。対象物31の投影面J01内には、例えば中心点Qの付近、点P1の位置(Y1,Z1)の付近に対象物31のL字形の領域1601があり、当該領域の座標情報などを有する。構造物32の投影面J02内には、例えば右下及び左上の位置に、構造物32の四角形の領域1701,1702があり、それぞれ座標情報などを有する。
[Projection plane]
FIG. 18 shows a configuration example of the YZ plane of each projection plane in FIGS. FIG. 18 shows the projection plane J01 of the object 31 at the position X1, the projection plane J02 of the structure 32 at the position X4, and the projection plane J03 for interference determination in which the projection plane J01 and the projection plane J02 are overlapped. Have In order to simplify the explanation, the shape of the projection plane is square here, and the shape is combined with the shape of the cross section of the passage. However, other configurations are possible for setting the size and center point of the projection plane. . For example, the projection plane is set with a predetermined size around the object 31, the structure 32, and the center point of the route. The center point of the projection plane is indicated by Q. In the projection plane J01 of the object 31, for example, there is an L-shaped area 1601 of the object 31 in the vicinity of the center point Q and in the vicinity of the position (Y1, Z1) of the point P1, and has coordinate information of the area. . In the projection plane J02 of the structure 32, there are rectangular areas 1701 and 1702 of the structure 32 at, for example, the lower right and upper left positions, and each has coordinate information and the like.
 干渉判定用の投影面J03は、本例では、対象物31のL字形状の領域1601と、第1の構造物1501の四角形の領域1702とが一部重複している。これにより、前述の干渉判定処理S11は、干渉有りと判断し、この重複する領域を干渉領域1800として出力する。干渉判定部15は、干渉判定として、例えば上記投影面内での重複領域が少ないものほど、効率的な経路の候補として判定する。また干渉判定部15は、干渉判定として、上記重複領域が少なく、姿勢の変更が少ない経路を、効率的な経路の候補として判定する。また例えば、干渉判定部15は、上記重複領域の面積の大小などによって、干渉の度合いを判定し、その情報を出力してもよい。 In the projection surface J03 for interference determination, in this example, the L-shaped region 1601 of the object 31 and the rectangular region 1702 of the first structure 1501 partially overlap. Thereby, the above-described interference determination processing S11 determines that there is interference, and outputs this overlapping area as an interference area 1800. As the interference determination, for example, the interference determination unit 15 determines that the smaller the overlapping area in the projection plane, the more effective the route candidate. Further, the interference determination unit 15 determines, as the interference determination, a route with a small overlap area and a small change in posture as an effective route candidate. In addition, for example, the interference determination unit 15 may determine the degree of interference based on the size of the overlapping area, and may output the information.
 [余裕距離]
 図19は、上記投影面J03における干渉判定処理の際に、余裕距離を用いて、干渉の状態を判定する処理に対応した画面例を示す。投影面J03内において、対象物31の領域1901と、構造物32の領域1902とがある。この対象物31の領域1901は、前述の余裕空間801が設定されていない3次元の対象物31のオブジェクトから、2次元の投影面J01への投影処理により得られた領域とする。構造物32の領域1902も同様に、余裕空間801が設定されていない3次元の構造物32のオブジェクトから、2次元の投影面J02への投影処理により得られた領域とする。本処理例は、投影面J03内において、余裕距離Lを設定する。例えば図示のように画面でユーザUの操作により余裕距離Lを設定可能である。前述の干渉判定処理S11は、投影面J03内において、対象物31の領域1901と、構造物32の領域1902との間に、余裕距離Lを確保できる場合は干渉無しと判定し、余裕距離Lを確保できない場合は干渉有りと判定する。
[Margin]
FIG. 19 shows a screen example corresponding to the process of determining the interference state using the margin distance during the interference determination process on the projection plane J03. There are a region 1901 of the object 31 and a region 1902 of the structure 32 in the projection plane J03. The region 1901 of the target object 31 is a region obtained by the projection process on the two-dimensional projection plane J01 from the object of the three-dimensional target object 31 in which the above-described margin space 801 is not set. Similarly, the region 1902 of the structure 32 is also a region obtained by the projection processing on the two-dimensional projection plane J02 from the object of the three-dimensional structure 32 in which the margin space 801 is not set. In this processing example, a margin distance L is set in the projection plane J03. For example, as shown in the figure, the margin distance L can be set by the operation of the user U on the screen. The above-described interference determination process S11 determines that there is no interference when the margin distance L can be secured between the area 1901 of the object 31 and the area 1902 of the structure 32 in the projection plane J03. Is determined as having interference.
 [座標変換処理]
 前述のS5の座標変換処理の例について以下に説明する。まず前述の経路生成部11及び経路生成処理S2は、例えば対象物31の搬入機器33の特性に対応して、曲線経路を含んだ経路を生成する。例えばある搬入機器33の特性として、クレーンなどにより対象物31を移動させる場合、回転の軌道が含まれるため、対象物31の経路として円弧などの曲線経路が可能である。
[Coordinate conversion processing]
An example of the above-described coordinate conversion processing in S5 will be described below. First, the route generation unit 11 and the route generation processing S2 described above generate a route including a curved route corresponding to, for example, the characteristics of the carry-in device 33 of the object 31. For example, as a characteristic of a certain carry-in device 33, when the object 31 is moved by a crane or the like, since a rotation path is included, a curved path such as an arc is possible as the path of the object 31.
 座標変換部12及び座標変換処理S5は、経路を構成する部分経路が上記のように円弧などの曲線経路である場合に、当該曲線経路を対象として、直交座標系から極座標系への座標変換処理を実行する。これにより曲線経路を直線経路へ変換する。これにより、後の投影処理S6が、直線的な平行投影処理になるため、投影処理が容易化及び高速化される。 The coordinate conversion unit 12 and the coordinate conversion process S5 perform the coordinate conversion process from the orthogonal coordinate system to the polar coordinate system for the curved path when the partial path constituting the path is a curved path such as an arc as described above. Execute. As a result, the curved path is converted into a straight path. As a result, the subsequent projection processing S6 becomes a linear parallel projection processing, so that the projection processing is facilitated and speeded up.
 図20は、座標変換処理S5の例を示す。(a)は、例えば円柱状の対象物31と、断面が四角形の直線的な構造物32とを有する。2000は、構造物32のYZ断面及び投影面を示す。2000bは、YZ断面2000に対応した画像を示す。2001は、円弧の形状の部分経路の例を示す。この円弧の部分経路の始点がp1、終点がp2、円弧の中心点がpa、半径がr、角度がθである(なおここで使用しているθは回転の角度の1つを示すθとは別とする)。XY平面内に円弧を有する。座標変換部12は、上記曲線の経路2001及び当該経路2001に対応付けられた構造物32の部分及び対象物31に対して、公知の極座標変換処理を施す。これにより、曲線の経路2001を、(b)のように、直線的な部分経路2002となるようにする。パラメータXはパラメータθに変換されている。変換後の座標系は(θ,Y,Z)で表される。またこの座標変換処理に伴い、(a)の直線的な構造物32は、その3次元の形状が、(b)のように、曲線的な構造物2003へと変形される。またこれに併せて、対象物31の3次元の形状が2004のように変形される。構造物2003は、例として、通路の床及び天井に相当する平板がZ方向下方へたわんだ形状を有する。 FIG. 20 shows an example of the coordinate conversion process S5. (A) has, for example, a cylindrical object 31 and a linear structure 32 having a square cross section. Reference numeral 2000 denotes the YZ cross section of the structure 32 and the projection plane. 2000b shows an image corresponding to the YZ section 2000. Reference numeral 2001 denotes an example of a partial path having an arc shape. The starting point of the partial path of this arc is p1, the end point is p2, the center point of the arc is pa, the radius is r, and the angle is θ (note that θ used here is θ indicating one of the rotation angles) Aside). It has an arc in the XY plane. The coordinate conversion unit 12 performs a known polar coordinate conversion process on the curved path 2001, the portion of the structure 32 associated with the path 2001, and the object 31. As a result, the curved path 2001 becomes a linear partial path 2002 as shown in FIG. Parameter X is converted to parameter θ. The coordinate system after conversion is represented by (θ, Y, Z). Further, in accordance with this coordinate conversion process, the three-dimensional shape of the linear structure 32 in (a) is transformed into a curved structure 2003 as shown in (b). At the same time, the three-dimensional shape of the object 31 is deformed as 2004. As an example, the structure 2003 has a shape in which flat plates corresponding to the floor and ceiling of the passage are bent downward in the Z direction.
 なお上記座標変換処理S5における直交座標系(X,Y,Z)に対する極座標系の表現としては例えば円柱座標系(θ,r,Z)などが適用可能である。変換式としては、X=r×cosθ、Y=r×sinθ、Z=Zである。これに限らず、極座標系の表現、及び直交座標系と極座標系との変換処理は、公知の他の形式を適用可能である。 Note that, for example, a cylindrical coordinate system (θ, r, Z) or the like can be applied as an expression of the polar coordinate system for the orthogonal coordinate system (X, Y, Z) in the coordinate conversion process S5. As conversion equations, X = r × cos θ, Y = r × sin θ, and Z = Z. The present invention is not limited to this, and other known formats can be applied to the representation of the polar coordinate system and the conversion process between the orthogonal coordinate system and the polar coordinate system.
 図21は、図20(b)の経路2002、及び構造物2003に対して、前述の投影処理S6である平行投影処理を施す例を示す。投影処理S6は、経路2002における接線方向であるX方向に対して垂直なYZ平面に、構造物2003のYZ断面に対応した投影面2005を構成する。投影処理S6は、この投影面2005に対して、曲線的な構造物2003を平行投影処理する。これにより下に示す投影面画像2005bが得られる。図21の投影面画像2005bは、図20の画像2000bに比べて、構造物32の通路の床及び天井に相当する領域のZ方向の厚さh1,h3が大きくなっている。 FIG. 21 shows an example in which the parallel projection process which is the above-described projection process S6 is performed on the path 2002 and the structure 2003 in FIG. In the projection processing S6, a projection plane 2005 corresponding to the YZ section of the structure 2003 is formed on the YZ plane perpendicular to the X direction that is the tangential direction in the path 2002. In the projection processing S6, the curved structure 2003 is subjected to parallel projection processing on the projection plane 2005. Thereby, a projection plane image 2005b shown below is obtained. In the projection plane image 2005b of FIG. 21, the thicknesses h1 and h3 in the Z direction of the area corresponding to the floor and ceiling of the passage of the structure 32 are larger than the image 2000b of FIG.
 [経路方針]
 本システムの経路計画機能F1は、始点と終点との間の1つの部分経路に関して、対象物31の姿勢の変更や平行移動の状態の立案により、干渉を回避できる経路を探索することができる。その際、部分経路の構成の基本的な方針として、まず与えられた始点と終点とを一時的に確定とし、その始点と終点との間において対象物31の姿勢を変更することは避ける。即ち1つの部分経路は、1つの姿勢が対応付けられる。姿勢の変更は、部分経路と部分経路との間の点の位置で行われる。部分経路の始点において対象物の姿勢を変更し、または平行移動し、その立案の状態で経路上の構造物との干渉が発生しない場合は、当該状態のまま、対象物を終点の方向へ移動させる。
[Route policy]
The path planning function F1 of the present system can search for a path that can avoid interference by changing the posture of the object 31 or planning the state of parallel movement for one partial path between the start point and the end point. At that time, as a basic policy of the configuration of the partial path, first, a given start point and end point are temporarily determined, and changing the posture of the object 31 between the start point and the end point is avoided. That is, one posture is associated with one partial route. The posture is changed at the position of a point between the partial paths. If the posture of the object is changed or translated at the start point of the partial path, and there is no interference with the structure on the path in the planning state, the object is moved toward the end point in that state. Let
 なお上記基本的な方針では対応できない場合、即ち、対象物の姿勢の変更や平行移動を試行しても、当初の部分経路の途中にある構造物との干渉が回避できない場合、ユーザUの操作などに基づいて当該部分経路の始点と終点を再設定してもよい。例えば干渉が発生する位置に新たな終点や始点を再設定してもよい。これにより別の部分経路が設定されるので、当該部分経路に関して同様に探索を行うことができる。 If the above basic policy cannot be used, that is, if it is impossible to avoid interference with a structure in the middle of the original partial path even if a change in the posture of the object or a parallel movement is attempted, the operation of the user U Based on the above, the start point and end point of the partial route may be reset. For example, a new end point or start point may be reset at a position where interference occurs. As a result, another partial route is set, so that the same search can be performed for the partial route.
 [平行移動処理(1)]
 前述のS7の対象物の3次元の状態の立案処理に関する詳細な例を以下に示す。
[Translation (1)]
A detailed example regarding the planning process of the three-dimensional state of the object in S7 will be described below.
 まず、対象物31の平行移動の状態を立案して投影面内で干渉判定を行い、干渉しない経路を探索する場合の処理例を示す。この平行移動の処理の場合、対象物及び構造物を投影面J03に対して一度投影すれば、その投影面J03の内部において、対象物の領域をY方向及びZ方向に平行移動させることにより、干渉の状態の判定と、干渉しない状態及び経路の探索とが可能である。 First, an example of processing in a case where the state of parallel movement of the object 31 is planned and interference is determined in the projection plane to search for a path that does not interfere with the object 31 will be described. In the case of this parallel movement process, once the object and the structure are projected onto the projection plane J03, the area of the object is translated in the Y direction and the Z direction within the projection plane J03. It is possible to determine the state of interference and search for a state and route that do not interfere.
 図22は、上記平行移動処理に対応する経路のパターン例をXY平面で示す。本例は、対象物31を立方体とする。構造物32は前述の図15の例と概略同様であり、X方向への直線的な通路とする。その通路の進行方向の右手側に構造物1501がある。部分経路である経路r1は、始点P1の位置(X1,Y1,Z1)、終点P2の位置(X4,Y1,Z1)であり、X方向への直線的な経路である。位置X2は構造物1501の手前の面の位置である。なお図面中「NG」は干渉有りを示し、「OK」は干渉無しを示す。 FIG. 22 shows a pattern example of a route corresponding to the parallel movement process on the XY plane. In this example, the object 31 is a cube. The structure 32 is substantially the same as the example of FIG. 15 described above, and is a straight path in the X direction. There is a structure 1501 on the right hand side in the traveling direction of the passage. The route r1, which is a partial route, is the position (X1, Y1, Z1) of the start point P1 and the position (X4, Y1, Z1) of the end point P2, and is a straight path in the X direction. The position X2 is the position of the front surface of the structure 1501. In the drawing, “NG” indicates that there is interference, and “OK” indicates that there is no interference.
 上記の始点P1と終点P2との間の経路r1は、前述のように投影面J01と投影面J02との重ね合わせの投影面J03における干渉判定処理を行うと、構造物1501との干渉有りの結果となる。K1は、経路r1における搬入可能距離であり、点P1の位置X1から位置X2bまでの距離である。位置X2bは、経路r1上をX方向へ位置X2まで対象物31を進めた場合に干渉する位置で停止した位置を示す。なお簡略的にはX2=X2bとして取り扱い、K1をX1からX2までの距離としても構わない。 As described above, the path r1 between the start point P1 and the end point P2 has interference with the structure 1501 when the interference determination process is performed on the projection plane J03 which is an overlap of the projection plane J01 and the projection plane J02. Result. K1 is a carry-in distance in the route r1, and is a distance from the position X1 of the point P1 to the position X2b. A position X2b indicates a position where the object 31 is stopped at a position where interference occurs when the object 31 is advanced in the X direction to the position X2 on the route r1. For simplicity, it may be handled as X2 = X2b, and K1 may be a distance from X1 to X2.
 図23は、図22の経路r1に関して、YZ平面における平行移動の状態の立案により、干渉無しの経路を探索した例を示す。2301は平行移動の状態の立案例を示し、始点P1の位置(X1,Y1,Z1)から、Y方向へ所定の距離sで平行移動した場合を示す。平行移動後の点paの位置(X1,Y1+s,Z1)である。この平行移動の状態について、前述の投影面J03での干渉判定を行うことで、例えば構造物1501との干渉無しの結果となる。この場合、新たな経路r1aは、始点P1から点paへY方向へ平行移動し、点paからX方向へ点pdまで直進し、点pdから当初の終点P2へY方向へ平行移動する、といった経路となる。また新たな経路r1aは、これに限らず、点P1,pa,pdの順の経路として、点pdを新たな終点に設定してもよい。 FIG. 23 shows an example of searching for a path without interference by planning a parallel movement state in the YZ plane with respect to the path r1 of FIG. Reference numeral 2301 denotes a plan example of the state of translation, and shows a case where the translation is performed at a predetermined distance s in the Y direction from the position (X1, Y1, Z1) of the starting point P1. This is the position (X1, Y1 + s, Z1) of the point pa after translation. With respect to this parallel movement state, by performing the interference determination on the projection plane J03 described above, for example, there is no interference with the structure 1501. In this case, the new route r1a translates in the Y direction from the start point P1 to the point pa, goes straight from the point pa to the point pd in the X direction, and translates in the Y direction from the point pd to the original end point P2. It becomes a route. The new route r1a is not limited to this, and the point pd may be set as a new end point as a route in the order of the points P1, pa, and pd.
 図24は、更に、経路r1の始点P1の位置のYZ平面と、終点P2の位置のYZ平面との間において、当初の経路r1の方向であるX方向に対して斜め方向の移動を使用する例を示す。経路2401は、始点P1から、構造物1501と干渉しない点pbを経由するように、X方向に対してY方向へ斜めの方向へ直進し、位置X4の点Pfへ至る経路を示す。干渉判定の結果を利用してこのように斜めに移動する経路も候補として可能となる。経路2402は、当初の経路r1に対して斜めに移動する別の経路の例であり、始点P1からY方向へ距離s2で平行移動し、その点phから、当初の終点P2へ向かって斜めに直進する例である。ただしこの場合、構造物1501の後方の面の位置X2cに応じて平行移動の点phを決める必要はある。 FIG. 24 further uses the movement in the oblique direction between the YZ plane at the position of the start point P1 of the path r1 and the YZ plane at the position of the end point P2 with respect to the X direction that is the direction of the original path r1. An example is shown. A path 2401 indicates a path that goes straight from the start point P1 to the point Pf at the position X4 in a straight line in the Y direction with respect to the X direction so as to pass through the point pb that does not interfere with the structure 1501. A path that moves obliquely in this way using the result of the interference determination is also possible as a candidate. The route 2402 is an example of another route that moves obliquely with respect to the initial route r1, and moves in parallel in the Y direction from the start point P1 at a distance s2, and from the point ph toward the original end point P2 obliquely. This is an example of going straight. However, in this case, it is necessary to determine the translation point ph according to the position X2c of the rear surface of the structure 1501.
 [姿勢変更処理(1)]
 次に、対象物31の姿勢を規定する角度を変更する状態を立案し、投影面内で干渉判定を行い、干渉しない経路を探索する場合の処理例を示す。この姿勢変更の処理の場合、構造物32の投影処理は一度行えば繰り返す必要は無いが、対象物の姿勢の角度を変更すると、投影面内における対象物の領域の形状(射影画像)が変化してくる。よって、立案する姿勢の状態ごとに、3次元から2次元への投影処理が行われる。
[Posture change processing (1)]
Next, an example of processing in a case where a state in which an angle defining the posture of the object 31 is changed is planned, interference is determined in the projection plane, and a route that does not interfere is searched for will be described. In the case of this attitude change process, the projection process of the structure 32 need not be repeated once, but if the angle of the object's attitude is changed, the shape (projected image) of the area of the object in the projection plane changes. Come on. Therefore, projection processing from three dimensions to two dimensions is performed for each posture state to be planned.
 図25は、上記姿勢変更処理に対応する経路のパターン例をXY平面で示す。本例は、対象物31を前述のL字形とする。構造物32は前述の図15の例と概略同様であり、X方向への直線的な通路とする。その通路の進行方向の右手側に構造物1501がある。部分経路である経路r1は、始点P1の位置(X1,Y1,Z1)、終点P2の位置(X4,Y1,Z1)であり、X方向への直線的な経路である。 FIG. 25 shows a pattern example of a route corresponding to the posture change process on the XY plane. In this example, the object 31 is the aforementioned L-shape. The structure 32 is substantially the same as the example of FIG. 15 described above, and is a straight path in the X direction. There is a structure 1501 on the right hand side in the traveling direction of the passage. The route r1, which is a partial route, is the position (X1, Y1, Z1) of the start point P1 and the position (X4, Y1, Z1) of the end point P2, and is a straight path in the X direction.
 初期状態の例として、始点P1の位置X1における対象物2501の姿勢を表す角度がφ1,θ1,ψ1)とし、Z軸周りの角度φ1=0°とする。この初期状態で、始点P1と終点P2との間の経路r1は、前述のように投影面J01と投影面J02との重ね合わせの投影面J03における干渉判定処理を行うと、対象物2503のように、構造物1501との干渉有りの結果となる。2511は、投影面J02への構造物1501の投影の領域を簡易的に示す。2512は、投影面J02への対象物2501の投影の領域を示す。 As an example of the initial state, the angle representing the posture of the object 2501 at the position X1 of the starting point P1 is φ1, θ1, ψ1), and the angle around the Z axis is φ1 = 0 °. In this initial state, the path r1 between the start point P1 and the end point P2 is like the object 2503 when the interference determination process is performed on the projection surface J03 in which the projection surface J01 and the projection surface J02 are overlapped as described above. In addition, this results in interference with the structure 1501. Reference numeral 2511 simply indicates a region where the structure 1501 is projected onto the projection plane J02. Reference numeral 2512 denotes a region where the object 2501 is projected onto the projection plane J02.
 前述の姿勢の状態の立案の例として、位置X1bの対象物2502の姿勢は、Z軸周りに角度φ1を0°から例えば90°回転させてφ1=90°とした例を示す。この立案した状態で、同様に干渉判定処理を行うと、対象物2504のように、構造物1501との干渉無しの結果となる。2513は、投影面J02への対象物2502の投影の領域を示す。この場合、新たな経路r1bは、始点P1で角度ψ=0°から90°回転してψ=90°とし、その姿勢のまま、点P1からX方向へ終点P2まで直進する経路となる。 As an example of the planning of the state of the above-described posture, the posture of the object 2502 at the position X1b is an example in which the angle φ1 is rotated from 0 ° to 90 °, for example, by 90 ° around the Z axis, and φ1 = 90 °. If the interference determination process is performed in the same manner in the planned state, the result is that there is no interference with the structure 1501 like the object 2504. Reference numeral 2513 denotes a region where the object 2502 is projected onto the projection plane J02. In this case, the new route r1b is a route that rotates 90 ° from the angle ψ = 0 ° at the start point P1 to ψ = 90 °, and goes straight from the point P1 to the end point P2 in the X direction with the posture maintained.
 図26は、各角度(φ,θ,ψ)の回転の場合における姿勢の状態の立案の例を示す。図26(a)は、上記図25の例に対応した、Z軸周りの角度ψの回転の場合の、最小回転単位を90°とした場合の、4通りの姿勢の状態の立案の例を示す。それぞれの姿勢の状態の干渉判定結果は、例えば、ψ=0°はNG、ψ=90°はOK、ψ=180°はOK、ψ=270°(-90°)はNGとなる。なお回転軸は対象物31の代表点を含む位置にとった場合を示す。 FIG. 26 shows an example of the drafting of the posture state in the case of rotation at each angle (φ, θ, ψ). FIG. 26 (a) shows an example of planning of four posture states corresponding to the example of FIG. 25, in the case of rotation at an angle ψ about the Z-axis when the minimum rotation unit is 90 °. Show. The interference determination result in each posture state is, for example, NG when ψ = 0 °, OK when ψ = 90 °, OK when ψ = 180 °, and NG when ψ = 270 ° (−90 °). The rotation axis indicates a case where the rotation axis is located at a position including the representative point of the object 31.
 同様に、図26(b)は、(a)と同じ初期状態の対象物31に関して、X軸周りの角度φの回転の場合の、最小回転単位を90°とした場合の、4通りの姿勢の状態の立案の例を示す。それぞれの姿勢の状態の干渉判定結果は、例えば、φ=0°はNG、φ=90°はOK、φ=180°はNG、φ=270°(-90°)はOKとなる。 Similarly, FIG. 26 (b) shows four postures with respect to the object 31 in the same initial state as (a) when the minimum rotation unit is 90 ° in the case of rotation at an angle φ around the X axis. An example of planning the state of The interference determination result of each posture state is, for example, NG when φ = 0 °, OK when φ = 90 °, NG when φ = 180 °, and OK when φ = 270 ° (−90 °).
 同様に、図26(c)は、(a)と同じ初期状態の対象物31に関して、Y軸周りの角度θの回転の場合の、最小回転単位を90°とした場合の、4通りの姿勢の状態の立案の例を示す。それぞれの姿勢の状態の干渉判定結果は、例えば、θ=0°はNG、θ=90°はNG、θ=180°はNG、θ=270°(-90°)はNGとなる。 Similarly, FIG. 26 (c) shows four postures with respect to the object 31 in the same initial state as in (a) when the minimum rotation unit is 90 ° in the case of rotation at an angle θ around the Y axis. An example of planning the state of The interference determination result of each posture state is, for example, NG when θ = 0 °, NG when θ = 90 °, NG when θ = 180 °, and NG when θ = 270 ° (−90 °).
 [平行移動処理(2)]
 図27は、前述の干渉判定処理S11の際に、投影面J03内において対象物31を平行移動させながら、構造物32との干渉の状態を判定しつつ、干渉無しの経路を探索する例を示す。(a)は、前述と同様の経路r1の始点P1の位置(X1,Y1,Z1)に基づき、L字形である第1状態の対象物31、及び経路r1上の構造物32を、YZ平面である投影面J03に重ね合わせるようにして投影処理した様子を示す。対象物31の領域1601、構造物の領域1701,1702を有する。この第1状態の干渉状態は、第1の構造物の領域1701に対して干渉有り(NG)である。なお投影によりX方向の座標値は省略して示す。
[Translation (2)]
FIG. 27 shows an example of searching for a path without interference while determining the state of interference with the structure 32 while translating the object 31 within the projection plane J03 during the above-described interference determination processing S11. Show. (A) is based on the position (X1, Y1, Z1) of the starting point P1 of the path r1 as described above, and the L-shaped first object 31 and the structure 32 on the path r1 are moved to the YZ plane. A state in which the projection processing is performed so as to be superimposed on the projection plane J03 is shown. It has the area | region 1601 of the target object 31, and the area | regions 1701 and 1702 of a structure. The interference state in the first state is interference (NG) with respect to the region 1701 of the first structure. Note that coordinate values in the X direction are omitted from the projection.
 (b)は、(a)の対象物の位置からY方向へ距離sだけ平行移動した状態を示す。移動後の点p2の位置(Y1+s,Z1)である。この第2状態の干渉状態は、干渉無し(OK)である。rbは、距離sの平行移動に対応して追加される部分経路を示す。 (B) shows a state in which the object is moved in parallel in the Y direction by a distance s from the position of the object in (a). This is the position (Y1 + s, Z1) of the point p2 after the movement. The interference state in the second state is no interference (OK). rb indicates a partial path added corresponding to the parallel movement of the distance s.
 (c)は、(a)の対象物の位置からZ方向へ距離sだけ平行移動した状態を示す。移動後の点p3の位置(Y1,Z1+s)である。この第3状態の干渉状態は、第2の構造物の領域1702に対して干渉有り(NG)である。rcは、距離sの平行移動に対応して追加される部分経路を示す。 (C) shows a state in which the object has been translated from the position of the object (a) by a distance s in the Z direction. This is the position (Y1, Z1 + s) of the point p3 after the movement. The interference state in the third state is interference (NG) with respect to the region 1702 of the second structure. rc indicates a partial path added corresponding to the parallel movement of the distance s.
 (d)は、(a)の対象物の位置からY方向の負方向及びZ方向へそれぞれ距離sだけ平行移動した状態を示す。移動後の点p4の位置(Y1-s,Z1+s)である。この第4状態の干渉状態は、干渉無し(OK)である。rdは、距離sの平行移動に対応して追加される部分経路を示す。 (D) shows a state in which the object has been translated from the position of (a) by a distance s in the negative direction of the Y direction and the Z direction. This is the position (Y1-s, Z1 + s) of the point p4 after the movement. The interference state in the fourth state is no interference (OK). rd indicates a partial path added corresponding to the parallel movement of the distance s.
 なお上記平行移動の距離sの最小単位は、計算時間を考慮してユーザUにより画面で適宜設定可能である。計算時間を短くしたい場合は、この最小単位を大きめに設定すればよい。 The minimum unit of the parallel movement distance s can be appropriately set on the screen by the user U in consideration of the calculation time. If you want to shorten the calculation time, you can set this minimum unit larger.
 [姿勢変更処理(2)]
 図28は、前述の干渉判定処理S11の際に、それぞれの投影面J03に対象物31の姿勢の状態を投影し、構造物32との干渉の状態を判定し、干渉無しの経路を探索する例を示す。(a)は、前述と同様の経路r1の始点P1の位置(X1,Y1,Z1)及び姿勢の角度(φ1,θ1,ψ1)に基づき、L字形である第1状態の対象物31、及び経路r1上の構造物32を、YZ平面である投影面J03に重ね合わせるようにして投影処理した様子を示す。対象物31の領域1601、構造物の領域1701,1702を有する。なおこの第1状態は、前述の図26の初期状態例とは異なる。この第1状態の干渉状態は、第1の構造物の領域1701に対して干渉有り(NG)である。各角度(φ,θ,ψ)の回転は同じ点P1を通るとする。
[Posture change processing (2)]
In FIG. 28, during the above-described interference determination processing S11, the posture state of the object 31 is projected on each projection plane J03, the state of interference with the structure 32 is determined, and a path without interference is searched. An example is shown. (A) is based on the position (X1, Y1, Z1) of the starting point P1 of the path r1 and the attitude angle (φ1, θ1, ψ1) similar to the above, and the first state object 31 that is L-shaped, and A state in which the structure 32 on the path r1 is projected so as to be superimposed on the projection plane J03 that is the YZ plane is shown. It has the area | region 1601 of the target object 31, and the area | regions 1701 and 1702 of a structure. This first state is different from the initial state example shown in FIG. The interference state in the first state is interference (NG) with respect to the region 1701 of the first structure. The rotation of each angle (φ, θ, ψ) passes through the same point P1.
 (b)は、(a)の第1状態の対象物の位置で、X軸周りの角度φについて-90°回転させた第2状態を示す。回転後の角度が(φ1-90°,θ1,ψ1)である。この第2状態の干渉状態は、干渉無し(OK)である。 (B) shows a second state in which the position of the object in the first state in (a) is rotated by −90 ° with respect to an angle φ around the X axis. The angle after rotation is (φ1-90 °, θ1, ψ1). The interference state in the second state is no interference (OK).
 (c)は、(a)の第1状態の対象物の位置で、Y軸周りの角度θについて+90°回転させた第3状態を示す。回転後の角度が(φ1,θ1+90°,ψ1)である。この第3状態の干渉状態は、第1の構造物1701に対して干渉有り(NG)である。 (C) shows a third state in which the position of the object in the first state in (a) is rotated by + 90 ° with respect to an angle θ around the Y axis. The angle after rotation is (φ1, θ1 + 90 °, ψ1). The interference state in the third state is interference (NG) with respect to the first structure 1701.
 (d)は、(a)の第1状態の対象物の位置で、Z軸周りの角度ψについて+90°回転させた第4状態を示す。回転後の角度が(φ1,θ1,ψ1+90°)である。この第4状態の干渉状態は、干渉無し(OK)である。 (D) shows the fourth state rotated by + 90 ° with respect to the angle ψ around the Z axis at the position of the object in the first state of (a). The angle after rotation is (φ1, θ1, ψ1 + 90 °). The interference state in the fourth state is no interference (OK).
 なお上記回転の軸は点P1を含む軸としたが、他の点を含む軸としてもよい。例えば前述の余裕空間801を確保したオブジェクトの場合に、その余裕空間801内の中心点などを含む回転軸を設定してもよい。 The axis of rotation is the axis including the point P1, but it may be an axis including another point. For example, in the case of an object in which the margin space 801 is secured, a rotation axis including the center point in the margin space 801 may be set.
 なお上記回転の角度の最小単位は、上記90°に限らず可能である。回転の角度の最小単位は、計算時間を考慮してユーザUにより画面で適宜設定可能である。計算時間を短くしたい場合は、この最小単位を大きめに設定すればよい。 Note that the minimum unit of the rotation angle is not limited to the above 90 °. The minimum unit of the rotation angle can be appropriately set on the screen by the user U in consideration of the calculation time. If you want to shorten the calculation time, you can set this minimum unit larger.
 [搬入手段の特性]
 本システムは、移動物体である対象物31の搬入出に使用する搬入機器33等の搬入手段の特性、特に異方性を考慮して、経路計画の計算を行う。本システムは、例えば搬入手段における(X,Y,Z)の各方向の移動の特性と、(φ,θ,ψ)の各角度の回転の特性とを考慮する。同様に、本システムは、対象物31の特性、及び構造物32の特性を考慮して、経路計画の計算を行ってもよい。
[Characteristics of loading means]
This system calculates the route plan in consideration of the characteristics of the loading means such as the loading device 33 used for loading and unloading the target object 31 that is a moving object, particularly the anisotropy. This system considers, for example, the characteristics of movement in each direction (X, Y, Z) and the characteristics of rotation of each angle (φ, θ, ψ) in the loading means. Similarly, the present system may calculate the route plan in consideration of the characteristics of the object 31 and the characteristics of the structure 32.
 本システムは、経路生成部11により経路を生成する際、点と直線のみから成る経路を生成してもよいし、更に曲線を含む経路を生成してもよい。搬入機器33が例えば直線クレーン等である場合、当該機器は、直線的な軌道で移動する特性、あるいは直線的に対象物31を移動させる特性を有する。これに対応して、経路生成部11は、直線の部分経路を含む経路を生成する。また、搬入機器33が例えば台車や天井クレーン等である場合、当該機器は、円弧の軌道で移動する、あるいは円弧の軌道で対象物31を移動させる特性を有する。これに対応して、経路生成部11は、円弧の部分経路を含む経路を生成する。 This system may generate a route including only a point and a straight line when generating a route by the route generation unit 11, or may further generate a route including a curve. When the carry-in device 33 is, for example, a straight crane, the device has a characteristic of moving along a linear track or a characteristic of moving the object 31 linearly. In response to this, the route generation unit 11 generates a route including a straight partial route. Moreover, when the carrying-in apparatus 33 is a trolley | bogie, an overhead crane, etc., the said apparatus has the characteristic to move the target object 31 on a circular track, or to move the target object 31 on a circular track. In response to this, the route generation unit 11 generates a route including a circular partial route.
 以下に、本実施の形態のシステムにおける搬入手段の異方性を含む特性を考慮した経路の計算を行う場合の具体例を示す。本システムは、経路を生成、探索、あるいは評価する際、対象物31の姿勢や平行移動などの状態に関する、優先順位付けのアルゴリズムを有する。なおパラメータとして前述の座標系(X,Y,Z)、角度(φ,θ,ψ)を用いて説明する。X方向は対象物31や経路の進行方向の位置とし、Y方向及びZ方向は投影面を構成する方向及び平行移動の立案の方向とし、X方向及びY方向は水平方向、Z方向は垂直方向とする。本システムは、使用する搬入手段ごとに、及び上記パラメータごとに、優先順位を設定する。当該優先順位は、予めプログラムのアルゴリズムとして組み込まれていてもよいし、ユーザUの設定操作により選択可能としてもよい。 Hereinafter, a specific example in the case of calculating the route in consideration of the characteristics including the anisotropy of the loading means in the system of the present embodiment will be shown. This system has an algorithm for prioritizing the state of the object 31 such as the posture and parallel movement when generating, searching, or evaluating a route. In addition, it demonstrates using the above-mentioned coordinate system (X, Y, Z) and angle ((phi), (theta), (psi)) as a parameter. The X direction is the position in the traveling direction of the object 31 and the path, the Y direction and the Z direction are the directions constituting the projection plane and the direction of planning the parallel movement, the X direction and the Y direction are the horizontal direction, and the Z direction is the vertical direction. And This system sets priorities for each loading means used and for each parameter. The priority order may be incorporated in advance as a program algorithm, or may be selectable by a user U setting operation.
 (1)第1の搬入手段の特性は、(X,Y,Z)方向の移動が得意であり、角度(φ,θ,ψ)の回転が不得意である。これに対応した第1のアルゴリズムとして、経路の全体において姿勢の角度(φ,θ,ψ)の変更が少ない経路を生成する。本システムは、干渉を回避する経路を探索する際、姿勢の変更ではなく、(Y,Z)方向の平行移動による状態を優先して立案する。またこれに対応する評価処理の観点として、経路の全体において姿勢の角度(φ,θ,ψ)の変更が少ない経路に高い評価点を付ける。 (1) The characteristics of the first carrying-in means are good at movement in the (X, Y, Z) direction and poor at rotation at angles (φ, θ, ψ). As a first algorithm corresponding to this, a route with less change in posture angle (φ, θ, ψ) in the entire route is generated. When searching for a route that avoids interference, the system prioritizes a state based on parallel movement in the (Y, Z) direction, not a change in posture. Further, as a viewpoint of the evaluation processing corresponding to this, a high evaluation score is given to a route with a small change in posture angle (φ, θ, ψ) in the entire route.
 (2)第2の搬入手段の特性は、角度(φ,θ,ψ)の回転が得意であり、(X,Y,Z)方向の移動が不得意である。これに対応した第2のアルゴリズムとして、経路の全体において平行移動の距離が少ない経路、あるいは総距離が短い経路を生成する。本システムは、干渉を回避する経路を探索する際、平行移動ではなく、角度(φ,θ,ψ)の回転による状態を優先して立案する。またこれに対応する評価処理の観点として、経路の全体において平行移動の距離が少ない経路、あるいは総距離が短い経路に高い評価点を付ける。 (2) The characteristics of the second carrying-in means are good at rotation of angles (φ, θ, ψ), and poor at movement in the (X, Y, Z) direction. As a second algorithm corresponding to this, a route with a short parallel movement distance or a route with a short total distance is generated in the whole route. When searching for a path that avoids interference, the system prioritizes a state based on rotation of angles (φ, θ, ψ), not translation. Further, as a viewpoint of the evaluation processing corresponding to this, a high evaluation score is given to a route having a short parallel movement distance or a route having a short total distance in the whole route.
 (3)第3の搬入手段の特性は、(X,Y,Z)方向の移動のみが可能であり、角度(φ,θ,ψ)の回転は不可能である。これに対応した第3のアルゴリズムとして、干渉を回避する経路を探索する際、(Y,Z)方向の平行移動による状態のみを立案する。 (3) The characteristic of the third carrying-in means is that only movement in the (X, Y, Z) direction is possible, and rotation of the angles (φ, θ, ψ) is impossible. As a third algorithm corresponding to this, only a state due to translation in the (Y, Z) direction is planned when searching for a path that avoids interference.
 (4)第4の搬入手段の特性は、角度(φ,θ,ψ)の回転のみが可能であり、(X,Y,Z)方向の移動が不可能である。これに対応した第4のアルゴリズムとして、干渉を回避する経路を立案する際、角度(φ,θ,ψ)の回転による状態のみを立案する。 (4) The characteristic of the fourth carrying-in means is that only rotation of angles (φ, θ, ψ) is possible, and movement in the (X, Y, Z) direction is impossible. As a fourth algorithm corresponding to this, when planning a path to avoid interference, only a state due to rotation of angles (φ, θ, ψ) is planned.
 (5)第5の搬入手段の特性は、(Y,Z)方向の平行移動が可能であり、角度(θ,ψ)の回転が可能である。例えばZ軸周りの角度ψの回転が一番容易である。これに対応した第5のアルゴリズムとして、例えばパラメータの優先順位を(ψ,θ,Y,Z)の順とする。 (5) The characteristics of the fifth carry-in means are that translation in the (Y, Z) direction is possible, and rotation of the angle (θ, ψ) is possible. For example, rotation of the angle ψ around the Z axis is the easiest. As a fifth algorithm corresponding to this, for example, the priority order of parameters is set in the order of (ψ, θ, Y, Z).
 (6)第6の搬入手段の特性は、(X,Y)方向の移動、及び角度(φ,θ,ψ)の回転が可能である。例えばZ方向の移動が一番不得意であり高コストであるため使用しない。これに対応した第6のアルゴリズムとして、例えばパラメータの優先順位を(ψ,Y,φ,θ)の順とする。 (6) The characteristics of the sixth carry-in means are that the movement in the (X, Y) direction and the rotation of the angles (φ, θ, ψ) are possible. For example, movement in the Z direction is the least good and expensive, so it is not used. As a sixth algorithm corresponding to this, for example, the priority order of the parameters is set in the order of (ψ, Y, φ, θ).
 [効果等]
 以上説明したように、本実施の形態のシステムによれば、搬入出の経路の計画に関して、経路上における対象物と構造物との干渉の状態を判定する干渉判定処理を含む処理全体の計算時間を短縮することができる。本実施の形態によれば、3次元データから2次元データへの投影処理や、曲線経路の座標変換処理などの構成により、干渉判定処理を含む計算処理を高速化することができる。これにより本実施の形態によれば、干渉判定処理を含む処理全体の計算時間が、3次元構造物のオブジェクトの数に比例して増加しないように抑制することができる。特に、投影処理や座標変換処理により、干渉判定を含む計算処理を高速化することができる。ユーザUは画面で対象物と構造物との干渉状態などを含む各種の情報をわかりやすく確認でき、本システムは効率的な作業や計画を支援することができる。
[Effects]
As described above, according to the system of the present embodiment, the calculation time for the entire process including the interference determination process for determining the state of interference between the object and the structure on the route with respect to the route for loading / unloading. Can be shortened. According to the present embodiment, it is possible to speed up calculation processing including interference determination processing by a configuration such as projection processing from three-dimensional data to two-dimensional data, coordinate conversion processing of a curved path, and the like. Thus, according to the present embodiment, it is possible to suppress the calculation time of the entire process including the interference determination process from increasing in proportion to the number of objects of the three-dimensional structure. In particular, calculation processing including interference determination can be accelerated by projection processing and coordinate conversion processing. The user U can easily check various information including the interference state between the object and the structure on the screen, and the system can support efficient work and planning.
 本実施の形態によれば、搬出入の作業を含むプラント施工や予防保全、あるいはプラント設計等の用途において、対象物と構造物が干渉しない効率的な経路を短い時間で出力することができる。これにより上記用途における期間短縮による低コスト化を実現できる。例えば大規模なプラント等の設計ないし計画の場合、干渉無しの経路案を短時間で出力でき、干渉発生箇所がある場合も短時間で確認できるので、プラント設計案を短時間で作成できるようになる。これにより設計及び施工作業等を含む工数削減及び工期短縮による低コスト化が実現できる。 According to the present embodiment, an efficient route in which an object and a structure do not interfere can be output in a short time in applications such as plant construction including preventive work, preventive maintenance, or plant design. Thereby, cost reduction by the period shortening in the said use is realizable. For example, in the case of designing or planning a large-scale plant, a route plan without interference can be output in a short time, and even if there is an interference location, it can be confirmed in a short time, so that a plant design plan can be created in a short time Become. As a result, it is possible to reduce the number of man-hours including design and construction work and to reduce the cost by shortening the construction period.
 プラント等の構造物の設計の用途の場合、設計の段階では構造物及び対象物は確定しておらず、顧客の望む条件の範囲内である程度可変となる。ユーザは、構造物や対象物を当該条件の範囲内で仮定し、本実施の形態のシステムにより、経路計画を含む設計のシミュレーションができる。これによりユーザは、効率的な経路の計画に応じて、構造物及び対象物を決定し、設計の見積もり案を作成することができる。本システムにより短時間で経路計画が可能であるため、短時間で見積もり案を作成できる。見積もり案の検討及び設計変更などを含めて、顧客の望む設計を短時間で確定でき、低コストで施工を実現できる。 In the case of designing a structure such as a plant, the structure and the object are not fixed at the design stage, and can be varied to some extent within the range desired by the customer. The user can assume a structure or an object within the range of the conditions, and can simulate a design including a route plan by the system of the present embodiment. Thereby, the user can determine a structure and an object according to an efficient route plan, and can create a design estimate plan. Since this system enables route planning in a short time, an estimate plan can be created in a short time. The design desired by the customer can be confirmed in a short time, including the examination of the estimate plan and the design change, and the construction can be realized at a low cost.
 図30は、従来技術と本実施の形態との効果を比較して示す。横軸は、プラント構造物を表す3次元オブジェクトの数を示す。縦軸は、干渉判定を含む全体的な処理の計算時間を示す。3001の線は、従来技術における計算時間として分解能が10mmの場合を示す。3002の線は、従来技術における計算時間として分解能が50mmの場合を示す。ここでいう分解能は、3次元オブジェクトの座標系における最小単位の長さを指す。1画素が10mmとする。3001及び3002のように、従来技術では、図29と同様に、構造物の3次元オブジェクトの数に比例して計算時間が増大する。 FIG. 30 shows a comparison between the effects of the prior art and the present embodiment. The horizontal axis indicates the number of three-dimensional objects representing the plant structure. The vertical axis indicates the calculation time of the overall processing including interference determination. A line 3001 indicates a case where the resolution is 10 mm as the calculation time in the prior art. A line 3002 indicates a case where the resolution is 50 mm as the calculation time in the prior art. The resolution here refers to the minimum unit length in the coordinate system of the three-dimensional object. One pixel is 10 mm. Like 3001 and 3002, in the prior art, as in FIG. 29, the calculation time increases in proportion to the number of three-dimensional objects of the structure.
 一方、3003の線は、本実施の形態による計算時間として分割数が212の場合を示す。3004の線は、本実施の形態による計算時間として分割数が42の場合を示す。ここでいう分割数は、3次元のオブジェクト及び2次元の投影平面の座標系における最小単位の長さを指す。3003及び3004は、殆ど一定の計算時間に抑えられ、そのうちの殆どを占める時間は、前述の3次元から2次元への投影処理に要するオフセット時間である。2次元の投影平面内での干渉判定に要する時間は、ある程度高性能の計算機を使用すれば、ごく短い時間となる。構造物の3次元オブジェクトの数が比較的少ない場合には、従来技術のように3次元のオブジェクト同士で干渉判定を行ったとしても、短い計算時間で可能である。一方、構造物の3次元オブジェクトの数が多数に増加する場合、本実施の形態を用いることで、殆ど増加無く短い計算時間で可能である。 On the other hand, a line 3003 indicates a case where the number of divisions is 212 as the calculation time according to the present embodiment. A line 3004 indicates a case where the number of divisions is 42 as the calculation time according to the present embodiment. The number of divisions here refers to the minimum unit length in the coordinate system of the three-dimensional object and the two-dimensional projection plane. 3003 and 3004 are suppressed to a substantially constant calculation time, and most of the time is the offset time required for the above-described projection processing from the three dimensions to the two dimensions. The time required for interference determination in the two-dimensional projection plane is extremely short if a computer with a certain degree of performance is used. When the number of three-dimensional objects of the structure is relatively small, even if the interference determination is performed between the three-dimensional objects as in the prior art, it is possible in a short calculation time. On the other hand, when the number of three-dimensional objects of the structure increases to a large number, by using this embodiment, a short calculation time can be achieved with almost no increase.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 他の実施の形態として、前述の投影処理は、3次元データから2次元データへの投影処理に限らず、2次元データから2次元データへの投影処理を行うようにしてもよい。例えば、ある位置及び方向で撮影した対象物や構造物の2次元画像データが存在する場合に、この2次元画像ないしそのうちの2次元領域を、前述の投影処理により、2次元の平面に対して投影処理する。 As another embodiment, the above-described projection processing is not limited to projection processing from three-dimensional data to two-dimensional data, and projection processing from two-dimensional data to two-dimensional data may be performed. For example, when there is two-dimensional image data of an object or structure photographed at a certain position and direction, this two-dimensional image or a two-dimensional region thereof is converted into a two-dimensional plane by the above-described projection processing. Perform projection processing.
 1…搬入経路計画システム、10…主計算装置、11…経路生成部、12…座標変換部、13…移動物体投影処理部、14…構造物投影処理部、15…干渉判定部、16…出力部、17…姿勢変更部、20…端末装置、31…対象物(移動物体)、32…構造物、33…搬入機器、F1…経路計画機能、F2…GUI表示機能、401…干渉無し経路、402…干渉有り経路、411…姿勢情報、412…平行移動情報、D0…条件設定データ、D1…移動物体データ、D2…構造物データ、D3…搬入手段データ、D4…経路データ、D5…移動物体2次元データ、D6…構造物2次元データ、D7…干渉判定結果データ、D8…経路計画データ。 DESCRIPTION OF SYMBOLS 1 ... Carry-in route planning system, 10 ... Main computer, 11 ... Path | route production | generation part, 12 ... Coordinate conversion part, 13 ... Moving object projection processing part, 14 ... Structure projection processing part, 15 ... Interference determination part, 16 ... Output , 17 ... Posture change unit, 20 ... Terminal device, 31 ... Object (moving object), 32 ... Structure, 33 ... Carry-in device, F1 ... Route planning function, F2 ... GUI display function, 401 ... Route without interference, 402 ... Path with interference, 411 ... Attitude information, 412 ... Parallel movement information, D0 ... Condition setting data, D1 ... Moving object data, D2 ... Structure data, D3 ... Carry-in means data, D4 ... Path data, D5 ... Moving object Two-dimensional data, D6... Structure two-dimensional data, D7... Interference determination result data, D8.

Claims (15)

  1.  計算機を用いたプログラム処理により実現される処理部として、
     3次元の構造物の内部の空間において3次元の物体を搬入出のために移動させるための経路を生成する、経路生成部と、
     前記3次元の物体の姿勢の状態または平行移動の状態を含む複数の状態を立案する、状態立案部と、
     前記3次元の物体の状態を前記経路の接線方向に対して垂直な平面である第1投影面に投影することにより2次元の物体のデータを得る、第1投影処理部と、
     前記3次元の構造物を前記経路の接線方向に対して垂直な平面である第2投影面に投影することにより2次元の構造物のデータを得る、第2投影処理部と、
     前記2次元の物体のデータと、前記2次元の構造物のデータとを重ね合わせた、2次元の平面において、前記物体の領域と前記構造物の領域とが重複または近接する領域を算出することにより、前記物体と前記構造物との干渉の状態を判定して干渉判定結果データを得る、干渉判定部と、
     前記干渉判定結果データを含む情報を出力する、出力部と、を有する、搬入経路計画システム。
    As a processing unit realized by program processing using a computer,
    A path generation unit that generates a path for moving a three-dimensional object for loading and unloading in a space inside the three-dimensional structure;
    A state planning unit for planning a plurality of states including a posture state or a parallel movement state of the three-dimensional object;
    A first projection processing unit that obtains data of a two-dimensional object by projecting the state of the three-dimensional object onto a first projection plane that is a plane perpendicular to a tangential direction of the path;
    A second projection processing unit that obtains data of a two-dimensional structure by projecting the three-dimensional structure onto a second projection plane that is a plane perpendicular to a tangential direction of the path;
    Calculating a region where the region of the object overlaps or is close to the region of the structure in a two-dimensional plane obtained by superimposing the data of the two-dimensional object and the data of the two-dimensional structure. An interference determination unit that determines an interference state between the object and the structure to obtain interference determination result data;
    A delivery route planning system, comprising: an output unit that outputs information including the interference determination result data.
  2.  請求項1記載の搬入経路計画システムにおいて、
     前記出力部は、前記物体と前記構造物とが干渉しない前記物体の状態を含んで構成される前記経路を含む情報を、記憶手段に保存し、ユーザインタフェースの画面に表示する、搬入経路計画システム。
    The delivery route planning system according to claim 1,
    The output unit stores information including the route including the state of the object in which the object and the structure do not interfere with each other in a storage unit and displays the information on a screen of a user interface. .
  3.  請求項1または2に記載の搬入経路計画システムにおいて、
     前記出力部は、前記物体と前記構造物とが干渉する前記物体の状態を含んで構成される前記経路を含む情報を、記憶手段に保存し、ユーザインタフェースの画面に表示する、搬入経路計画システム。
    In the delivery route planning system according to claim 1 or 2,
    The output unit stores information including the route including the state of the object with which the object and the structure interfere with each other in a storage unit and displays the information on a screen of a user interface. .
  4.  請求項1記載の搬入経路計画システムにおいて、
     前記経路に含まれている曲線の経路が直線の経路に変換されるように前記構造物及び前記物体の形状を座標変換処理する、座標変換部を有し、
     前記第1投影処理部は、前記座標変換処理後の前記3次元の物体の状態を前記第1投影面に投影し、
     前記第2投影処理部は、前記座標変換処理後の前記3次元の構造物を前記第2投影面に投影する、搬入経路計画システム。
    The delivery route planning system according to claim 1,
    A coordinate conversion unit that performs coordinate conversion processing on the shape of the structure and the object so that a curved path included in the path is converted into a straight path;
    The first projection processing unit projects the state of the three-dimensional object after the coordinate transformation processing onto the first projection plane;
    The said 2nd projection process part is a carrying-in route planning system which projects the said three-dimensional structure after the said coordinate transformation process on the said 2nd projection surface.
  5.  請求項4記載の搬入経路計画システムにおいて、
     前記経路生成部は、前記物体または前記構造物または前記物体の搬入手段の特性に応じて、前記経路またはその部分的な経路として、直線の経路と、曲線の経路とを生成する、搬入経路計画システム。
    In the carrying-in route planning system according to claim 4,
    The route generation unit generates a route of a straight line and a route of a curve as the route or a partial route thereof according to the characteristics of the object, the structure, or the object carrying means. system.
  6.  請求項1記載の搬入経路計画システムにおいて、
     前記状態立案部は、前記物体の姿勢の状態として、前記経路上の点において前記物体の姿勢を規定する座標系の回転軸の周りに所定の角度の単位で回転させた状態を立案する、搬入経路計画システム。
    The delivery route planning system according to claim 1,
    The state drafting unit drafts a state in which the object is rotated in a unit of a predetermined angle around a rotation axis of a coordinate system that defines the posture of the object at a point on the path as the posture state of the object. Path planning system.
  7.  請求項1または6に記載の搬入経路計画システムにおいて、
     前記状態立案部は、前記物体の平行移動の状態として、前記経路上の点において当該経路の接線方向に対して垂直な平面の内部において前記物体を所定の距離の単位で平行移動させた状態を立案する、搬入経路計画システム。
    In the carrying-in route planning system according to claim 1 or 6,
    The state planning unit is a state in which the object is translated in units of a predetermined distance within a plane perpendicular to the tangential direction of the path at a point on the path as a state of translation of the object. Carry-in route planning system.
  8.  請求項3記載の搬入経路計画システムにおいて、
     前記出力部は、前記2次元の平面における前記経路上で前記物体と前記構造物とが干渉する箇所の情報を、当該2次元の平面の形式で前記ユーザインタフェースの画面に表示する、搬入経路計画システム。
    In the carrying-in route planning system according to claim 3,
    The output unit displays information on a location where the object and the structure interfere with each other on the route in the two-dimensional plane on the screen of the user interface in the form of the two-dimensional plane. system.
  9.  請求項3記載の搬入経路計画システムにおいて、
     前記出力部は、前記経路上における始点または前記物体の現在の位置から前記物体の状態と前記構造物とが干渉する位置までの当該物体が移動可能な距離の情報を、ユーザインタフェースの画面に表示する、搬入経路計画システム。
    In the carrying-in route planning system according to claim 3,
    The output unit displays information on a distance that the object can move from a starting point on the route or a current position of the object to a position where the state of the object and the structure interfere with each other on the screen of the user interface. Carry-in route planning system.
  10.  請求項1記載の搬入経路計画システムにおいて、
     前記物体または前記構造物の少なくとも一方の3次元のオブジェクトの形状の外側に所定の余裕空間を設定する設定部を有し、
     前記干渉判定部は、前記余裕空間を含んだオブジェクトの前記投影による2次元のデータを用いて、前記干渉の状態を判定する、搬入経路計画システム。
    The delivery route planning system according to claim 1,
    A setting unit that sets a predetermined margin space outside the shape of at least one three-dimensional object of the object or the structure;
    The said interference determination part is a carrying-in route planning system which determines the state of the said interference using the two-dimensional data by the said projection of the object containing the said margin space.
  11.  請求項1記載の搬入経路計画システムにおいて、
     前記投影による前記2次元の平面における前記物体または前記構造物の少なくとも一方の領域の外側に所定の余裕距離を設定する設定部を有し、
     前記干渉判定部は、前記2次元の平面において、前記物体の領域と前記構造物の領域との間に前記余裕距離が確保されるか否かを算出することにより、前記物体と前記構造物との干渉の状態を判定する、搬入経路計画システム。
    The delivery route planning system according to claim 1,
    A setting unit that sets a predetermined margin distance outside of at least one region of the object or the structure in the two-dimensional plane by the projection;
    The interference determination unit calculates whether or not the margin distance is ensured between the region of the object and the region of the structure on the two-dimensional plane. A delivery route planning system that determines the state of interference.
  12.  請求項1記載の搬入経路計画システムにおいて、
     設定された観点に基づいて前記複数の経路についての評価を行う評価部を有し、
     前記出力部は、前記評価部による評価が高い経路の順に優先的に情報を出力する、搬入経路計画システム。
    The delivery route planning system according to claim 1,
    Having an evaluation unit that evaluates the plurality of routes based on a set viewpoint;
    The said output part is a carrying-in route planning system which outputs information preferentially in order of a path | route with high evaluation by the said evaluation part.
  13.  請求項12記載の搬入経路計画システムにおいて、
     前記評価部は、前記経路上を移動する物体の姿勢の変更が少ない経路を高く評価する、搬入経路計画システム。
    In the carrying-in route planning system according to claim 12,
    The evaluation unit is a carry-in route planning system that highly evaluates a route with little change in the posture of an object moving on the route.
  14.  請求項12記載の搬入経路計画システムにおいて、
     前記評価部は、前記経路上を移動する物体の平行移動の距離、または前記経路の総距離が少ない経路を高く評価する、搬入経路計画システム。
    In the carrying-in route planning system according to claim 12,
    The evaluation unit is a carry-in route planning system that highly evaluates a parallel movement distance of an object moving on the route or a route having a small total distance of the route.
  15.  請求項1記載の搬入経路計画システムにおいて、
     ユーザインタフェースの画面におけるユーザの操作に基づき前記経路上の構造物または位置座標の指定を入力する入力部と、
     前記入力に応じて、前記物体と前記指定の構造物または位置座標との間の部分的な経路を特定する特定部と、を有し、
     前記干渉判定部は、前記部分的な経路における前記物体と前記構造物との干渉の状態を判定し、または、当該判定の結果を含む前記干渉判定結果データを読み出し、
     前記出力部は、前記干渉判定結果データを含む情報を前記ユーザインタフェース画面に表示する、搬入経路計画システム。
    The delivery route planning system according to claim 1,
    An input unit for inputting designation of structures or position coordinates on the route based on a user operation on a screen of a user interface;
    A specifying unit that specifies a partial path between the object and the designated structure or position coordinate in response to the input;
    The interference determination unit determines a state of interference between the object and the structure in the partial path, or reads the interference determination result data including a result of the determination;
    The said output part is a carrying-in route planning system which displays the information containing the said interference determination result data on the said user interface screen.
PCT/JP2014/055327 2013-03-14 2014-03-03 Delivery path planning system WO2014141928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-051207 2013-03-14
JP2013051207A JP2014178794A (en) 2013-03-14 2013-03-14 Carrying-in route planning system

Publications (1)

Publication Number Publication Date
WO2014141928A1 true WO2014141928A1 (en) 2014-09-18

Family

ID=51536598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055327 WO2014141928A1 (en) 2013-03-14 2014-03-03 Delivery path planning system

Country Status (2)

Country Link
JP (1) JP2014178794A (en)
WO (1) WO2014141928A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111612199A (en) * 2019-02-26 2020-09-01 北京京东尚科信息技术有限公司 Logistics network optimization method and device, computer equipment and storage medium
JP2021077167A (en) * 2019-11-11 2021-05-20 日立造船株式会社 Movement process presentation device, movement process presentation method, movement process presentation program and recording medium
JP2021532447A (en) * 2018-08-09 2021-11-25 北京微播視界科技有限公司Beijing Microlive Vision Technology Co., Ltd Augmented reality model video multi-planar interaction methods, devices, devices and storage media
WO2022143193A1 (en) * 2020-12-31 2022-07-07 广州市建筑科学研究院集团有限公司 Automatic hoisting method for tower crane

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6699894B2 (en) * 2016-09-13 2020-05-27 株式会社東芝 Construction support system and construction support method
JP6833460B2 (en) * 2016-11-08 2021-02-24 株式会社東芝 Work support system, work method, and processing equipment
JP6725432B2 (en) * 2017-01-11 2020-07-15 株式会社日立製作所 Piping work route creation device, piping work route creation method and program
JP7184001B2 (en) 2019-09-11 2022-12-06 コベルコ建機株式会社 simulation device
WO2021250734A1 (en) * 2020-06-08 2021-12-16 日本電信電話株式会社 Coordinate conversion device, coordinate conversion method, and coordinate conversion program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122467A (en) * 1983-12-05 1985-06-29 Fuji Electric Co Ltd Path retrieval system
JPH08315181A (en) * 1995-05-16 1996-11-29 Hitachi Ltd Method and device for judging collision
JP2012088778A (en) * 2010-10-15 2012-05-10 Hitachi Plant Technologies Ltd Design system and design method for electrical dust precipitator
JP2012141855A (en) * 2011-01-04 2012-07-26 Fujitsu Ltd Harness design support program, harness design support method and harness design support device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122467A (en) * 1983-12-05 1985-06-29 Fuji Electric Co Ltd Path retrieval system
JPH08315181A (en) * 1995-05-16 1996-11-29 Hitachi Ltd Method and device for judging collision
JP2012088778A (en) * 2010-10-15 2012-05-10 Hitachi Plant Technologies Ltd Design system and design method for electrical dust precipitator
JP2012141855A (en) * 2011-01-04 2012-07-26 Fujitsu Ltd Harness design support program, harness design support method and harness design support device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532447A (en) * 2018-08-09 2021-11-25 北京微播視界科技有限公司Beijing Microlive Vision Technology Co., Ltd Augmented reality model video multi-planar interaction methods, devices, devices and storage media
CN111612199A (en) * 2019-02-26 2020-09-01 北京京东尚科信息技术有限公司 Logistics network optimization method and device, computer equipment and storage medium
JP2021077167A (en) * 2019-11-11 2021-05-20 日立造船株式会社 Movement process presentation device, movement process presentation method, movement process presentation program and recording medium
JP7282656B2 (en) 2019-11-11 2023-05-29 日立造船株式会社 Movement process presentation device, movement process presentation method, movement process presentation program, and recording medium
WO2022143193A1 (en) * 2020-12-31 2022-07-07 广州市建筑科学研究院集团有限公司 Automatic hoisting method for tower crane

Also Published As

Publication number Publication date
JP2014178794A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
WO2014141928A1 (en) Delivery path planning system
JP5855469B2 (en) Carry-in route planning system
JP6551184B2 (en) Simulation apparatus, simulation method, and simulation program
Kayhani et al. Heavy mobile crane lift path planning in congested modular industrial plants using a robotics approach
JP4838079B2 (en) Part identification image creating apparatus, program, and computer-readable storage medium
JP2014021810A (en) Collision detection system, collision detection data generation device, robot system, robot, collision detection data generation method and program
JP2010108321A (en) Construction progress visualization system
US20160335578A1 (en) Program for creating work assistance data
US10950050B2 (en) Information processing device, information processing method, and program for planning and execution of work plan
Chung et al. Smart facility management systems utilizing open BIM and augmented/virtual reality
Vincke et al. Immersive visualisation of construction site point cloud data, meshes and BIM models in a VR environment using a gaming engine
Hermann et al. An integrated system to select, position, and simulate mobile cranes for complex industrial projects
Tsai et al. AR-based automatic pipeline planning coordination for on-site mechanical, electrical and plumbing system conflict resolution
JP4959518B2 (en) 3D CG object interference check program
TWI781511B (en) Multi-camera positioning and dispatching system, and method thereof
JP7192017B2 (en) Method and apparatus, electronic device, storage medium and computer program for three-dimensional modeling
US8756036B2 (en) Parallel navigation in a plurality of CAD models
CN115294283A (en) Digital twin factory construction method, device, equipment and storage medium
JP2009123076A (en) Three-dimensional cad system program
JP7413383B2 (en) Information display device, method and program
JP6256463B2 (en) Control support system, control support method and control support program
Jeanclos et al. Derivation of minimum required model for augmented reality based stepwise construction assembly control
US20160085427A1 (en) System and method of sharing spatial data
JPH08123835A (en) Shape design support device
Su et al. A 4D CPM-based graphic scheduling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765245

Country of ref document: EP

Kind code of ref document: A1