WO2014141821A1 - Electronic device and method for manufacturing electronic device - Google Patents

Electronic device and method for manufacturing electronic device Download PDF

Info

Publication number
WO2014141821A1
WO2014141821A1 PCT/JP2014/053700 JP2014053700W WO2014141821A1 WO 2014141821 A1 WO2014141821 A1 WO 2014141821A1 JP 2014053700 W JP2014053700 W JP 2014053700W WO 2014141821 A1 WO2014141821 A1 WO 2014141821A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
film
barrier layer
oxygen
Prior art date
Application number
PCT/JP2014/053700
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 一生
大石 清
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015505340A priority Critical patent/JPWO2014141821A1/en
Publication of WO2014141821A1 publication Critical patent/WO2014141821A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to an electronic device provided with a gas barrier film and a method for producing the same. More specifically, the present invention relates to an electronic device excellent in gas barrier properties, flatness, and failure resistance (dark spot resistance), and a method for manufacturing the same.
  • gas barrier films produced by laminating multiple thin films containing metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide on the surface of plastic substrates and films have blocked various gases such as water vapor and oxygen. It is widely used as a packaging material for preventing required alteration of the above-described various gases such as packaging of necessary articles, for example, foods, industrial articles, and pharmaceuticals.
  • an organic silicon compound typified by tetraethoxysilane (hereinafter abbreviated as TEOS) is used and formed on a substrate while being oxidized with oxygen plasma under reduced pressure.
  • Gas phase such as chemical deposition method (plasma CVD method: Chemical Vapor Deposition), and physical deposition method (vacuum deposition method or sputtering method) that deposits metal Si by vapor deposition on a substrate in the presence of oxygen using a semiconductor laser.
  • plasma CVD method Chemical Vapor Deposition
  • physical deposition method vacuum deposition method or sputtering method
  • Patent Document 1 discloses a manufacturing method for manufacturing a gas barrier laminated film having a 1 ⁇ 10 ⁇ 4 g / m 2 ⁇ day level (water vapor permeability) by a roll-to-roll method using a plasma CVD apparatus. .
  • the gas barrier film manufactured by the method described in Patent Document 1 has an adhesion property and flexibility with a base material by applying a plasma CVD method capable of orienting many carbon atoms in the vicinity of the base material. It is improving.
  • Patent Document 1 Among electronic devices equipped with a gas barrier film having an element distribution profile as disclosed in Patent Document 1, for example, those installed outdoors in the daytime or mounted on a moving body such as an automobile There are things. For example, a moving body such as an automobile is exposed to a high-temperature environment during a long-term movement in summer, and in such a high-temperature environment, the gas barrier as described above constituting an electronic device is used. It has been found that problems occur in flatness and failure resistance (dark spot resistance) in a conductive film.
  • the present invention has been made in view of the above problems, and a solution to the problem is to provide an electronic device excellent in gas barrier properties and durability (flatness and failure resistance (dark spot resistance)) and a method for manufacturing the same. That is.
  • the present inventor has laminated a gas barrier layer and a protective layer in this order on a resin substrate, and the gas barrier layer comprises carbon atoms, silicon atoms and oxygen. It contains atoms, the composition continuously changes in the layer thickness direction, has a content profile of each specific element, and the protective layer has a film hardness measured by the nanoindentation method of 2.0 to 8.
  • An electronic device having a gas barrier film within a range of 0 GPa has a gas barrier film excellent in gas barrier properties required for electronic device applications, and has durability (flatness (curl characteristics) ) And dark spot resistance) have been found, and the present invention has been found.
  • An electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on a resin substrate,
  • the gas barrier layer contains carbon atoms, silicon atoms and oxygen atoms, the composition continuously changes in the layer thickness direction, and satisfies the requirements defined in the following (1) and (2):
  • the protective layer is an electronic device having a film hardness measured by a nanoindentation method in a range of 2.0 to 8.0 GPa.
  • the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or ( It has the order of magnitude relationship represented by B).
  • Formula (A) Carbon average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (oxygen average atomic ratio)
  • Formula (B) (Oxygen average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (carbon average atomic ratio) 2.
  • the average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms in a region of 90% or more of the total thickness of the gas barrier layer has a hierarchical relationship represented by the formula (A).
  • a method for producing an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on a resin substrate,
  • the gas barrier film contains a carbon atom, a silicon atom, and an oxygen atom, and the composition continuously changes in the layer thickness direction to form a gas barrier layer that satisfies the requirements defined in (1) and (2) below.
  • the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or ( It has the order of magnitude relationship represented by B).
  • the gas barrier layer is formed by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied using a source gas containing an organic silicon compound and oxygen gas. The manufacturing method of the electronic device of description.
  • the surface modification treatment used for forming the protective layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less.
  • the gas barrier film according to the present invention mainly comprises a resin substrate, a gas barrier layer composed of a composition in which oxygen atoms and carbon atoms are continuously changed in the layer thickness direction, and a film hardness in a specific range. It is comprised from the protective layer provided with.
  • the barrier layer When a gas barrier layer having a composition (element composition) continuously changing in the layer thickness direction is formed on the resin base material, a gas that achieves both adhesion and flexibility and gas barrier properties Although the barrier layer can be formed, the elongation rate of the gas barrier layer is relatively large with respect to the resin base material due to the nonuniformity of the shrinkage rate in the layer, so that the gas barrier film is provided.
  • the electronic device had a problem in flatness. In particular, the problem of flatness is increased in a thin film substrate having a resin substrate thickness of 40 to 150 ⁇ m. Further, the disorder of flatness is prominent particularly when exposed to a high temperature and high humidity environment for a long period of time.
  • the present inventor suppresses disorder of flatness by laminating a protective layer having a film hardness in a specific range on the gas barrier layer constituting the gas barrier film. It has been found that an electronic device that is capable of achieving high reliability and fault tolerance can be realized.
  • the concentration gradient of the carbon atom component around the resin substrate continuously changes.
  • the gas barrier layer does not occur, and the entire layer is formed from a substantially uniform composition.
  • the present inventor has developed a gas barrier layer in which the film composition (constituent element composition) in the layer thickness direction is continuously changed, and a protective layer having a film hardness within a specific range. It is speculated that an electronic device having excellent flatness and failure tolerance could be realized by laminating and. In particular, excellent flatness and failure resistance (dark spot resistance) can be maintained even when stored for a long period of time in a high temperature and high humidity environment.
  • FIG. 1 Schematic sectional view showing an example of the basic configuration of the gas barrier film according to the present invention
  • Schematic which shows an example of the manufacturing method of the gas barrier film using the discharge plasma CVD apparatus between rollers which applied the magnetic field which concerns on this invention
  • the graph which shows an example of the silicon distribution curve of the gas barrier layer of this invention, an oxygen distribution curve, and a carbon distribution curve
  • the graph which shows an example of the silicon distribution curve, oxygen distribution curve, and carbon distribution curve of the gas barrier layer of a comparative example Schematic diagram showing an example of a film hardness measurement device using the nanoindentation method
  • the electronic device of the present invention is an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on at least one surface side of a resin base material, the gas barrier layer being , Containing carbon atoms, silicon atoms and oxygen atoms, the composition continuously changing in the layer thickness direction, satisfying the requirements specified in (1) and (2) above, and the protective layer is formed by a nanoindentation method.
  • the measured film hardness is in the range of 2.0 to 8.0 GPa.
  • the average atomic ratio of silicon atoms, oxygen atoms and carbon atoms in the region of 90% or more of the total thickness of the gas barrier layer is expressed by the formula (A ), Ie, the relationship of (carbon average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (oxygen average atomic ratio) is more excellent in flatness and desired gas barrier properties. It is possible to obtain an electronic device including a gas barrier film including
  • the film hardness measured by the nanoindentation method of the protective layer is in the range of 3.0 to 5.5 GPa, so that more excellent flatness, gas barrier property and failure resistance (dark spot resistance) are obtained. It is preferable because it can be obtained.
  • the film density of the protective layer having a specific film hardness is preferably in the range of 1.40 to 2.18 g / cm 3 .
  • the method for producing an electronic device of the present invention is a method for producing an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on a resin substrate, the gas barrier A step of forming a gas barrier layer containing a carbon atom, a silicon atom and an oxygen atom, the composition continuously changing in the layer thickness direction, and satisfying the requirements defined in the above (1) and (2);
  • the film is manufactured through a step of forming a protective layer having a film hardness measured by the nanoindentation method within a range of 2.0 to 8.0 GPa.
  • the gas barrier layer uses a source gas containing an organosilicon compound and an oxygen gas, and a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied. It is preferable from the viewpoint that a gas barrier layer having each desired element profile can be realized with higher accuracy.
  • the protective layer having a specific film hardness according to the present invention may be formed by applying a polysilazane-containing liquid on the gas barrier layer and drying, followed by a surface modification treatment to obtain a desired film hardness. It is preferable because the protective layer can be realized with high accuracy, and more excellent planarity, gas barrier properties and failure resistance (dark spot resistance) can be obtained.
  • the surface modification treatment used for forming the protective layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less, so that a higher quality protective layer can be efficiently formed. To preferred.
  • the “gas barrier property” as used in the present invention is a water vapor transmission rate (temperature: 60 ⁇ 0.5 ° C., relative humidity (RH): 90 ⁇ 2%) measured by a method according to JIS K 7129-1992. ) Is 3 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm or less. Means that.
  • vacuum ultraviolet light specifically mean light having a wavelength in the range of 100 to 200 nm.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the electronic device of the present invention is an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on at least one surface side of a resin base material, the gas barrier layer being , Containing carbon atoms, silicon atoms and oxygen atoms, the composition continuously changing in the layer thickness direction, satisfying the requirements specified in (1) and (2) above, and the protective layer is formed by a nanoindentation method.
  • the measured film hardness is in the range of 2.0 to 8.0 GPa.
  • FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of a gas barrier film according to the present invention.
  • a gas barrier film F As shown in FIG. 1, a gas barrier film F according to the present invention has a resin base material 1 as a support, a gas barrier layer 2 on the resin substrate 1, and a protective film on the gas barrier layer 2.
  • the layer 3 is stacked.
  • the gas barrier layer 2 according to the present invention contains carbon atoms, silicon atoms, and oxygen atoms, the composition continuously changes in the layer thickness direction, and simultaneously satisfies the requirements defined in the above (1) and (2) It has a distribution profile.
  • the protective layer 3 according to the present invention is characterized in that the film hardness measured by the nanoindentation method is in the range of 2.0 to 8.0 GPa.
  • Resin base material 1 constituting the gas barrier film F according to the present invention is formed of an organic material capable of holding the gas barrier layer 2 and the protective layer 3 having gas barrier properties. If it is a thing, it will not specifically limit.
  • Examples of the resin base material applicable to the present invention include methacrylate ester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polystyrene (PS), aromatic polyamide, and polyether.
  • Examples thereof include films composed of resins such as ether ketone, polysulfone, polyethersulfone, polyimide, and polyetherimide, and laminated films composed of two or more layers of the above resins.
  • films of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used.
  • the thickness of the resin base material is not particularly limited and can be selected within a range of 5 to 500 ⁇ m. However, from the viewpoint of further manifesting the effects of the present invention, it is within a range of 40 to 150 ⁇ m. It is preferable.
  • the resin base material according to the present invention is preferably transparent. Since the resin base material is transparent and the layer formed on the resin base material is also transparent, a transparent gas barrier film can be obtained, and a transparent substrate such as an electronic device (for example, an organic EL element). Can be applied as
  • the resin base material using the above-described resin or the like may be an unstretched film or a stretched film.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • a phase difference etc. can also be adjusted by extending
  • the resin substrate according to the present invention can be manufactured by a conventionally known general film forming method.
  • an unstretched film-like resin base material that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. it can.
  • the resin as a material is dissolved in a solvent, cast on an endless metal resin support, dried, and peeled to form an unstretched film that is substantially amorphous and not oriented.
  • a resin base material can also be manufactured.
  • the unstretched resin base material is transported in the resin substrate transport direction (longitudinal direction) by a known stretching method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, and tubular simultaneous biaxial stretching.
  • a stretched resin base material is produced by stretching in a direction perpendicular to the transport direction of the resin base material (also referred to as an axial direction, a longitudinal direction, or an MD direction) or a direction perpendicular to the transport direction of the resin base material (also referred to as a horizontal axis direction, a width direction, or a TD direction) can do.
  • the draw ratio in this case can be appropriately selected according to the resin used as the raw material of the resin base material, but within a range of 2 to 10 times in the vertical axis direction (MD direction) and the horizontal axis direction (TD direction). It is preferable to stretch.
  • the resin base material may be subjected to relaxation treatment or off-line heat treatment in terms of dimensional stability.
  • the relaxation treatment is preferably performed in the process from the heat setting in the stretching film forming step in the above-described film forming method to the winding in the transverse stretching tenter or after exiting the tenter.
  • the relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., and more preferably at a treatment temperature in the range of 100 to 180 ° C.
  • the method of off-line heat treatment is not particularly limited, but for example, a roller transport method using a plurality of heat roller groups, a method of transporting air by blowing air on a film, and the like (including heated air from a plurality of slits).
  • Examples thereof include a method of spraying on one or both sides of the film surface), a method of using radiant heat from an infrared heater, and a method of hanging the film under its own weight and winding it down while heating.
  • the treatment temperature is preferably within the temperature range of (Tg + 50 ° C.) to (Tg + 150 ° C.). Tg here refers to the glass transition temperature of the resin substrate.
  • the undercoat layer coating solution can be applied inline on one side or both sides in the course of film formation.
  • such an undercoat layer coating method in the film forming process is called inline undercoat.
  • the resin used for preparing the undercoat layer coating solution useful in the present invention include, for example, polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polyethyleneimine resins. , Polyvinyl alcohol resin, modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used.
  • a conventionally well-known additive can also be added to these undercoat layer coating liquids.
  • the undercoat layer can be formed using a known coating method such as roller coating, gravure coating, knife coating, dip coating, or spray coating.
  • the coating amount of the undercoat layer is preferably in the range of 0.01 to 2 g / m 2 (dry state).
  • Gas barrier layer contains carbon atoms, silicon atoms, and oxygen atoms, the composition continuously changes in the layer thickness direction, and is defined by the following requirements (1) and (2). It is the structure which satisfy
  • the average atomic ratio with respect to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or (B). It has the order of magnitude relationship.
  • Formula (A) Carbon average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (oxygen average atomic ratio)
  • Formula (B) Olygen average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (carbon average atomic ratio)
  • the region satisfying the relationship defined by the above formula (A) or formula (B) is a gas barrier. A region within the range of 90 to 95% of the total layer thickness is preferable.
  • the thickness of the gas barrier layer according to the present invention is in the range of 50 to 1000 nm.
  • the gas barrier layer forming method according to the present invention is not particularly limited as long as it is a thin film forming method capable of realizing the element profile defined in the present invention, but the gas barrier layer in which the element distribution is precisely controlled. From the viewpoint that can be formed, a method of forming by a discharge plasma chemical vapor deposition method using a source gas containing an organic silicon compound and an oxygen gas and having a discharge space between rollers to which a magnetic field is applied is preferable.
  • the average value of the content ratio of each atom in the gas barrier layer according to the present invention can be obtained by measuring an XPS depth profile described later.
  • the gas barrier layer according to the present invention contains carbon atoms, silicon atoms, and oxygen atoms as constituent elements of the gas barrier layer, and the composition continuously changes in the layer thickness direction.
  • carbon atom ratio (at%) The carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of atoms and carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”) has an extreme value, and the carbon
  • One of the characteristics is that the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the atomic ratio is 5.0 at% or more.
  • the gas barrier layer according to the present invention has a configuration in which the carbon atom ratio continuously changes with a concentration gradient in a specific region of the gas barrier layer, so that both gas barrier properties and flexibility are achieved. Therefore, this is a preferred embodiment.
  • the carbon distribution curve in the layer has at least one extreme value, and more preferably has at least two extreme values. It is particularly preferable to have at least three extreme values.
  • the gas barrier property becomes insufficient when the obtained gas barrier film is bent.
  • the gas barrier in the thickness direction of the gas barrier layer at one extreme value and the extreme value adjacent to the extreme value that the carbon distribution curve has.
  • the absolute value of the difference in distance from the surface of the layer is preferably 200 nm or less, and more preferably 100 nm or less.
  • the extreme value of the distribution curve in the present invention means a measured value of the maximum value or the minimum value of the atomic ratio of the element with respect to the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
  • the maximum value in the present invention is a point where the value of the atomic ratio of an element changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed, and from the value of the atomic ratio of the element at that point This also means that the atomic ratio value of the element at a position where the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer is further changed by 20 nm from that point is reduced by 3.0 at% or more.
  • the minimum value in the present invention is a point where the value of the atomic ratio of an element changes from decreasing to increasing when the distance from the surface of the gas barrier layer is changed, and the value of the atomic ratio of the element at that point Rather, the atomic ratio value of the element at a position where the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer is further changed by 20 nm from this point increases by 3.0 at% or more.
  • the gas barrier layer according to the present invention has an extreme value, and a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5.0 at% or more.
  • the gas barrier layer according to the present invention is characterized by containing carbon atoms, silicon atoms and oxygen atoms as constituent elements, and the ratio of each atom, Preferred embodiments for the maximum and minimum values are described below.
  • the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio in the carbon distribution curve. (Value) is 5.0 at% or more.
  • the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio is more preferably 6.0 at% or more, and particularly preferably 7.0 at% or more.
  • the absolute value of the difference between the maximum value and the minimum value in the oxygen distribution curve is 5.0 at% or more. It is preferably 6.0 at% or more, more preferably 7.0 at% or more.
  • the absolute value is 5.0 at% or more, when the obtained gas barrier film is bent, the film does not break and the gas barrier property is sufficient.
  • the absolute value of the difference between the maximum value and the minimum value in the silicon distribution curve is less than 5.0. Is preferable, and it is more preferable that it is less than 4.0 at%, and it is especially preferable that it is less than 3.0 at%. If the absolute value is less than 5.0 at%, the gas barrier property and mechanical strength of the resulting gas barrier film will be sufficient.
  • the oxygen-carbon total distribution curve also referred to as oxygen-carbon distribution curve
  • the absolute value of the difference between the maximum value and the minimum value of the ratio is preferably less than 5.0 at%, more preferably less than 4.0 at%, and particularly preferably less than 3.0 at%. If the absolute value is less than 5.0 at%, the resulting gas barrier film has sufficient gas barrier properties.
  • the total amount of silicon atoms, oxygen atoms and carbon atoms It means the total at% (number of atoms, also referred to as atomic ratio) of silicon atoms, oxygen atoms and carbon atoms, and “amount of carbon atoms” means the number of carbon atoms.
  • the term “at%” in the present invention means the atomic ratio of each atom when the total number of silicon atoms, oxygen atoms and carbon atoms is 100%. The same applies to “amount of silicon atoms” and “amount of oxygen atoms” in the silicon distribution curve, oxygen distribution curve, and oxygen carbon distribution curve as shown in FIGS.
  • the gas barrier layer according to the present invention in a region of 90% or more of the total layer thickness of the gas barrier layer, silicon atoms and oxygen atoms And the average atomic ratio of each atom with respect to the total amount of carbon atoms (100 at%) has one of the features of the order represented by the following formula (A) or (B), and more preferably, That is, the average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms in a region of 90% or more of the total thickness of the gas barrier layer has a hierarchical relationship represented by the following formula (A).
  • Formula (A) Carbon average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (oxygen average atomic ratio)
  • Formula (B) (Oxygen average atomic ratio) ⁇ (silicon average atomic ratio) ⁇ (carbon average atomic ratio) (2.3)
  • Element distribution measurement in depth direction by X-ray photoelectron spectroscopy Silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen-carbon total distribution in the layer thickness direction of the gas barrier layer according to the present invention
  • Curves and the like are so-called XPS depth profiles in which X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon are used in combination to perform surface composition analysis sequentially while exposing the inside of the sample.
  • XPS X-ray photoelectron spectroscopy
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance from the surface in the layer thickness direction of the gas barrier layer.
  • the distance from the surface of the barrier layer can be used as the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement.
  • etching rate is 0.05 nm / It is preferable to use sec (SiO 2 thermal oxide film equivalent value).
  • the gas barrier layer is in the film surface direction (direction parallel to the surface of the gas barrier layer). Is substantially uniform.
  • that the gas barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the carbon distribution curve at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement.
  • the oxygen-carbon total distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the atomic ratio of carbon in each carbon distribution curve is the same.
  • the absolute value of the difference between the maximum value and the minimum value is the same as each other or within 5.0 at%.
  • the gas barrier film according to the present invention must have at least one gas barrier layer that simultaneously satisfies the requirements defined in (1) and (2) according to the present invention on the resin base material. Although it is a requirement, two or more layers that satisfy such a condition may be included. Furthermore, when two or more such gas barrier layers are provided, the materials of the plurality of gas barrier layers may be the same or different. When two or more such gas barrier layers are formed, such a gas barrier layer may be formed on one surface of the resin base material, and both of the resin base materials It may be formed on the surface. Moreover, as such a some gas barrier layer, the gas barrier layer which does not necessarily have gas barrier property may be included in it.
  • the silicon atom ratio relative to the total amount of silicon atoms, oxygen atoms, and carbon atoms is preferably in the range of 19 to 40 at%, and 30 to More preferably, it is within the range of 40 at%.
  • the oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 33 to 67 at%, more preferably in the range of 41 to 62 at%. preferable.
  • the ratio of carbon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 1 to 19 at%, more preferably in the range of 3 to 19 at%. preferable.
  • the layer thickness of the gas barrier layer according to the present invention is preferably in the range of 50 to 1000 nm, more preferably in the range of 100 to 1000 nm, and more preferably in the range of 100 to 500 nm. It is particularly preferable that the value falls within the range.
  • the total thickness of the gas barrier layers is within the above range, desired flatness can be achieved, and gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties are sufficient, and bending causes gas The barrier property tends to be difficult to decrease.
  • the gas barrier layer forming method according to the present invention is not particularly limited as long as it is a thin film forming method capable of realizing the element profile in the layer defined by the present invention.
  • a discharge space is provided between rollers to which a magnetic field is applied using a source gas containing an organosilicon compound and an oxygen gas. It is preferable to use a method formed by a discharge plasma chemical vapor deposition method.
  • the gas barrier layer according to the present invention uses an inter-roller discharge plasma processing apparatus to which a magnetic field is applied, winds a resin base material around a pair of film forming rollers, and forms a film forming gas between the pair of film forming rollers. It is a layer formed by plasma chemical vapor deposition by plasma discharge while being supplied. Further, when discharging while applying a magnetic field between the pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately. Further, as a film forming gas used in such a plasma chemical vapor deposition method, a source gas containing an organosilicon compound and an oxygen gas are used, and the content of the oxygen gas in the film forming gas is within the film forming gas. It is preferable that the amount is less than the theoretical oxygen amount necessary for complete oxidation of the total amount of the organosilicon compound. In the gas barrier film according to the present invention, the gas barrier layer is preferably a layer formed by a continuous film forming process.
  • the gas barrier film according to the present invention uses an inter-roller discharge plasma treatment apparatus to which a magnetic field is applied, and the resin base surface (when a resin base provided with an intermediate layer such as a base layer is employed, the intermediate layer It is produced by forming a gas barrier layer on top).
  • an inter-roller discharge plasma chemical vapor deposition method using a magnetic field is performed. It is a preferable aspect to use.
  • the inter-roller discharge plasma chemical vapor deposition method (hereinafter also referred to as plasma CVD method or roller CVD method) to which a magnetic field is applied according to the present invention is used to generate a magnetic field between a plurality of film-forming rollers when generating plasma. It is preferable to generate a plasma discharge in the formed discharge space while applying the voltage.
  • a pair of film forming rollers is used, and a resin base material is wound around each of the pair of film forming rollers, and the pair of film forming rollers is used. It is preferable to generate plasma by discharging in a state where a magnetic field is applied between the film rollers.
  • a method for producing a gas barrier film according to the present invention a method for forming the gas barrier layer according to the present invention on the surface of the resin substrate by a roll-to-roll method from the viewpoint of imparting excellent production suitability. Is preferred.
  • an apparatus that can be used when producing a gas barrier film by such a plasma chemical vapor deposition method is not particularly limited, and a film forming roller including at least a pair of magnetic field applying apparatuses, And a plasma power source, and is preferably an apparatus capable of discharging between a pair of film forming rollers.
  • a gas barrier film having an element profile defined in the present invention can be obtained by a roll-to-roll method using a vapor phase growth method.
  • FIG. 2 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field that can be suitably used in the production of the gas barrier film according to the present invention is applied, and only the apparatus exemplified here. It is not limited.
  • An inter-roller discharge plasma CVD apparatus (hereinafter also referred to as a plasma CVD apparatus) to which a magnetic field shown in FIG. 2 is applied mainly includes a delivery roller 11, transport rollers 21, 22, 23 and 24, and a film formation roller 31. And 32, a film forming gas supply pipe 41, a plasma generation power source 51, magnetic field generators 61 and 62 installed inside the film forming rollers 31 and 32, and a winding roller 71. Further, in such a plasma CVD manufacturing apparatus, at least the film forming rollers 31 and 32, the film forming gas supply pipe 41, the plasma generating power source 51, and the magnetic field generating apparatuses 61 and 62 are not shown in a vacuum. Located in the chamber. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
  • each film forming roller generates plasma so that a pair of film forming rollers (the film forming roller 31 and the film forming roller 32) can function as a pair of counter electrodes. It is connected to the power source 51 for use. Discharging in a space between the film formation roller 31 and the film formation roller 32 by supplying electric power from a plasma generation power supply 51 to the pair of film formation rollers (the film formation roller 31 and the film formation roller 32). Accordingly, plasma can be generated in a space (also referred to as a discharge space) between the film formation roller 31 and the film formation roller 32.
  • the pair of film forming rollers (film forming roller 31 and film forming roller 32) have their central axes substantially parallel to each other as shown in FIG. It is preferable to arrange them as follows. Thus, by arranging a pair of film forming rollers (film forming roller 31 and film forming roller 32), the film forming rate can be doubled and a film having the same structure can be formed. It is possible to at least double the extreme value at.
  • a magnetic field generator 61 and a magnetic field generator 62 that are fixed so as not to rotate even when the respective film forming rollers rotate are provided inside the film forming roller 31 and the film forming roller 32, respectively. It is a preferable configuration.
  • the film forming roller 31 and the film forming roller 32 described above known rollers can be used as appropriate.
  • the film forming rollers 31 and 32 those having the same diameter are preferably used from the viewpoint of more efficiently forming a thin film.
  • the diameters of the film forming roller 31 and the film forming roller 32 are preferably in the range of 100 to 1000 mm ⁇ , particularly in the range of 100 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter is 100 mm ⁇ or more, the plasma discharge space does not become too small, so there is no deterioration in productivity, and it is possible to avoid applying the total amount of heat of the plasma discharge to the film in a short time, and the residual stress is difficult to increase. preferable.
  • the diameter is 1000 mm ⁇ or less, it is preferable in terms of device design, including the uniformity of the plasma discharge space, because it is possible to maintain precise gas barrier layer formation conditions.
  • the winding roller 71 is not particularly limited as long as it can wind the resin base material 1 on which the gas barrier layer is formed, and a known roller can be used as appropriate.
  • a gas barrier layer forming source gas and oxygen gas that can be supplied to or discharged from the discharge space at a predetermined rate can be appropriately used.
  • the plasma generating power source 51 a conventionally known power source for a plasma generating apparatus can be used.
  • Such a power source 51 for generating plasma supplies power to the film forming roller 31 and the film forming roller 32 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • an AC power source capable of alternately reversing the polarities of a pair of film forming rollers is used because the plasma CVD method can be performed more efficiently. It is preferable.
  • a power supply capable of setting the applied power in the range of 100 W to 10 kW and capable of setting the AC frequency in the range of 50 Hz to 500 kHz is more preferable.
  • a well-known magnetic field generator can be used suitably.
  • a gas barrier film having the element profile according to the present invention can be produced by appropriately adjusting the diameter and the conveying speed of the resin base material. That is, using the plasma CVD apparatus shown in FIG. 2, a film forming gas (raw material gas or the like) is supplied to the discharge space in the vacuum chamber while a pair of film forming rollers (film forming roller 31 and film forming roller 32) is interposed.
  • a film forming gas raw material gas or the like
  • the film forming gas (raw material gas or the like) is decomposed by the plasma, and the film forming roller 32 is formed on the surface of the resin substrate 1 held by the film forming roller 31.
  • the gas barrier layer according to the present invention can be formed on the surface of the resin base material 1 held by the plasma CVD method. In such film formation, the surface of the resin base material 1 is transferred by a roll-to-roll continuous film formation process by transporting the resin base material 1 by the delivery roller 11 or the film formation roller 31 or the like. The gas barrier layer is formed thereon.
  • Source gas It is preferable to use an organosilicon compound containing at least silicon as the source gas constituting the film forming gas used for forming the gas barrier layer according to the present invention.
  • organosilicon compound applicable to the present invention examples include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, and trimethyl.
  • examples thereof include silane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handleability in film formation and gas barrier properties of the obtained gas barrier layer. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the film forming gas preferably contains oxygen gas as a reaction gas in addition to the source gas.
  • Oxygen gas is a gas that reacts with the raw material gas to form an inorganic compound such as an oxide.
  • a carrier gas may be used as necessary in order to supply the source gas described above into the vacuum chamber.
  • a discharge gas may be used as the film forming gas, if necessary, in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
  • the ratio of the raw material gas to the oxygen gas is such that the raw material gas and the oxygen gas are completely reacted. It is preferable that the oxygen gas ratio is not excessively higher than the theoretically required oxygen gas ratio. If the ratio of oxygen gas is excessively increased, it is difficult to obtain a gas barrier layer having the target element profile in the present invention. Therefore, from the viewpoint of obtaining performance as a desired barrier film, it is preferable that the oxygen concentration be less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film-forming gas. .
  • HMDSO hexamethyldisiloxane
  • a film-forming gas containing hexamethyldisiloxane ((CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by a plasma CVD method to form a silicon-oxygen-based material.
  • the film forming gas undergoes a reaction represented by the following reaction formula (1) by plasma discharge treatment to form a thin film made of silicon dioxide SiO 2 .
  • Reaction formula (1) (CH 3 ) 6 Si 2 O + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2
  • the amount of oxygen necessary to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, when the film forming gas contains 12 moles or more of oxygen with respect to 1 mole of hexamethyldisiloxane and is completely reacted, a uniform silicon dioxide film is formed.
  • the ratio is controlled to a flow rate that is equal to or less than the theoretical reaction raw material ratio (1 mol: 12 mol), and the incomplete reaction is performed. That is, it is necessary to set the amount of oxygen to less than 12 moles of the stoichiometric ratio with respect to 1 mole of hexamethyldisiloxane.
  • the molar amount (flow rate) of oxygen may be about 20 times or more the molar amount (flow rate) of hexamethyldisiloxane as a raw material. Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material may be set to a stoichiometric ratio of 12 times or less (more preferably 10 times or less). preferable.
  • hexamethyldisiloxane and oxygen By including hexamethyldisiloxane and oxygen in such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the gas barrier layer and have a desired element profile.
  • a barrier layer can be formed, and excellent barrier properties and bending resistance can be imparted to the resulting gas barrier film. If the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is too small, unoxidized carbon atoms and hydrogen atoms will be excessively taken into the gas barrier layer. become.
  • the transparency of the barrier film is lowered, and such a gas barrier film is flexible for electronic devices that require transparency, such as electronic devices such as organic EL devices and organic thin film solar cells. It cannot be used as a substrate (gas barrier film).
  • the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane.
  • the amount is more than 0.5 times.
  • the pressure (vacuum degree) in the vacuum chamber of the plasma CVD apparatus can be adjusted as appropriate according to the type of source gas, but is within the range of 0.5 to 100 Pa. It is preferable.
  • a plasma generating power source 51 is used for discharging between the film formation roller 31 and the film formation roller 32.
  • the electric power applied to the electrode drum (installed in the film-forming roller 31 and the film-forming roller 32 in FIG. 2) connected to is appropriately determined according to the type of source gas, the pressure in the vacuum chamber, and the like. Although it can be adjusted and cannot be generally described, it is preferable to set it within a range of about 0.1 to 10 kW. If the applied power is in this range, no particles (illegal particles) are generated, and the amount of heat generated during film formation is within the control range.
  • the conveying speed of the resin substrate 1 (also referred to as a line speed, which is also related to the film forming speed) can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc. It is preferably within the range of 100 m / min, and more preferably within the range of 0.5 to 20 m / min. If the line speed is within the above range, wrinkles due to the heat of the resin base material are hardly generated, and the film thickness of the formed gas barrier layer is in a sufficiently controllable range.
  • FIG. 3 shows an example of each element profile with respect to the thickness direction of the layer measured according to the XPS depth profile for the gas barrier layer according to the present invention formed according to the above method.
  • FIG. 3 is a graph showing an example of a silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve of the gas barrier layer according to the present invention.
  • symbols A to D represent A as a carbon distribution curve, B as a silicon distribution curve, C as an oxygen distribution curve, and D as an oxygen / carbon distribution curve.
  • the gas barrier layer according to the present invention has an extreme value, the difference between the maximum maximum value and the minimum maximum value of the carbon atom ratio is 5.0 at% or more, and the gas In the region of 90% or more of the total thickness of the barrier layer, the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is the order magnitude relationship defined by the above formula (A) It can be seen that
  • FIG. 4 is a graph showing an example of the carbon distribution curve A, silicon distribution curve B, and oxygen distribution curve of the gas barrier layer having the elemental profile of the comparative example.
  • the gas barrier layer comprising the element profile shown in FIG. 4 is a carbon atom profile A, a silicon atom profile B, and an oxygen atom profile C in a gas barrier layer formed by a flat electrode (horizontal transport) type plasma CVD discharge method.
  • a flat electrode (horizontal transport) type plasma CVD discharge method it can be seen that the structure does not cause a continuous change in the concentration gradient of the carbon atom component A.
  • the film hardness measured by nanoindentation of the protective layer formed on the gas barrier layer is in the range of 2.0 to 8.0 GPa. And is preferably in the range of 3.0 to 5.5 GPa.
  • the film hardness measured by the nanoindentation method of the protective layer according to the present invention 2.0 GPa or more, it is of course possible to impart scratch resistance to the surface. It is possible to obtain a gas barrier film that exhibits characteristics excellent in failure resistance (dark spot resistance) when applied to a device. Further, by setting the film hardness to 10.0 GPa or less, flexibility can be imparted to the gas barrier film, and excellent flatness can be maintained.
  • the detailed nanoindentation method measures hardness by measuring the relationship between load and indentation depth (displacement) while pressing a small diamond indenter into a thin film (protective layer) and calculating the plastic deformation hardness from the measured value. It is a method to do.
  • this measurement method is characterized in that it is less susceptible to the physical properties of the base material when measuring a thin film of 1 ⁇ m or less, and that the thin film is less likely to crack when pressed.
  • this is a measuring method used for measuring physical properties of a very thin film.
  • FIG. 5 is a schematic diagram showing an example of a measuring apparatus using the nanoindentation method.
  • 101 is a transducer
  • 102 is a diamond Berkovich indenter having a regular triangle shape
  • F is a gas barrier film
  • 1 is a resin substrate
  • 2 is a gas barrier layer
  • 3 Indicates a protective layer.
  • This nanoindentation measuring apparatus N uses a transducer 101 and a diamond Berkovich indenter 102 having an equilateral triangle shape to measure a displacement amount with a nanometer (nm) accuracy while applying a load of ⁇ N order to the protective layer 3. can do.
  • a transducer 101 and a diamond Berkovich indenter 102 having an equilateral triangle shape to measure a displacement amount with a nanometer (nm) accuracy while applying a load of ⁇ N order to the protective layer 3. can do.
  • ⁇ N order to the protective layer 3.
  • commercially available “NANO Indenter XP / DCM” manufactured by MTS Systems / MST NANO Instruments
  • the film hardness of the protective layer 3 formed on the resin base material 1 is measured.
  • the measurement conditions in the present invention are as follows.
  • Measuring instrument NANO Indenter XP / DCM (manufactured by MTS Systems)
  • Measuring indenter Diamond Berkovich indenter with an equilateral triangular tip Measurement environment: 23 ° C., 55%
  • Measurement sample cut a gas barrier film to a size of 5 cm ⁇ 5 cm to prepare a measurement sample
  • Indentation speed A speed that reaches a maximum load of 25 ⁇ N in 5 seconds, and a load is applied in proportion to time.
  • the film hardness is measured at 10 points on the sample at random, and the average value is the film hardness measured by the nanoindentation method.
  • the method for forming the protective layer according to the present invention is not particularly limited, and examples of the dry film forming method using each metal compound described below include a star ion beam method, a vacuum deposition method, a sputtering method, and a reactive sputtering method.
  • wet coating methods such as spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, and die coating method are used as wet film forming methods with excellent productivity.
  • a sol-gel method in which a solution of a hydrolyzed polycondensate of a metal alkoxide is applied and dried to form a protective layer that is an inorganic oxide film, or described in JP2011-121298A
  • the type and amount of metal alkoxide, hydrolysis polycondensation catalyst, etc. are appropriately selected, applied and dried, and if necessary, energy irradiation treatment described later is performed.
  • a protective layer having a desired film hardness can be formed.
  • metal in the metal alkoxide generally refers to an element of “Transition Metals”, an element of “Lantanoid”, an element of “actinoid”, in addition to “Metals” defined in the periodic table, etc. , And boron as defined as "NonMetals", including silicon (silicon), preferred metal alkoxides that can be used in the sol-gel method include alkoxysilanes and Metal alkoxides other than alkoxysilanes can be used.
  • the metal alkoxide other than alkoxysilane for example, zirconium alkoxide, titanium alkoxide, aluminum alkoxide and the like are preferable.
  • alkoxysilanes examples include alkoxysilanes represented by the following general formula (Si).
  • R 1 is preferably an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, or an iso-propyl group. N-butyl group, sec-butyl group, tert-butyl group, acetyl group and the like.
  • R 2 is preferably an organic group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, or an n-hexyl group.
  • Silane iso-propyltriethoxysilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -chloropropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -methacryloyloxypropyl Trimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, 3,4-epoxy Hexyl triethoxysilane, CF 3 CH 2 CH 2 Si (OCH 3) 3, C 2 F 5 CH 2 CH 2 Si (OCH 3) 3, C 2 F 5 OCH 2 CH 2 CH 2 Si (OCH 3) 3 , C 3 F 7 OCH 2 CH 2 CH 2 Si (OC 2 H 5) 3,
  • zirconium alkoxides examples include zirconium ethoxide, zirconium isopropoxide, zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium 2-ethylhexyl oxide, zirconium 2-methyl-2-butoxide, tetrakis (trimethylsiloxy).
  • titanium alkoxides examples include titanium n-butoxide, titanium methoxide, titanium ethoxide, titanium n-propoxide, titanium isopropoxide, titanium t-butoxide, titanium n-nonyl oxide, titanium i-butoxide, titanium methoxypropoxide.
  • Titanium Chlorotriisopropoxide Titanium Dichloride Diethoxide, Titanium Iodoisopropoxide, Titanium Di n-Butoxide (Bis-2,4-Pentadionate), Titanium Di i-Propoxide (Bis-2,4-Pentadionate) Nate), titanium diisopropoxide bis (tetramethylheptanedionate), titanium diisopropoxide bis (ethyl acetoacetate), titanium 2-ethylhexoxide, titanium oxide bis (pentadione) G), titanium oxybis (tetramethylheptanedionate), tetrakis (trimethylsiloxy) titanium, titanium allyl acetoacetate triisopropoxide, titanium bis (triethanolamine) diisopropoxide, titanium methacrylate triisopropoxide, (2 -Methacryloxyethoxy) triisopropoxy titanate, titanium methacryloxyethyl acetoa
  • aluminum alkoxides examples include aluminum (III) n-butoxide, aluminum (III) s-butoxide, aluminum (III) t-butoxide, aluminum (III) ethoxide, aluminum (III) isopropoxide, aluminum (III ) S-butoxide bis (ethyl acetoacetate), aluminum (III) di-s-butoxide ethyl acetoacetate, aluminum (III) diisopropoxide ethyl acetoacetate, aluminum (III) ethoxyethoxy ethoxide, aluminum hexafluoropenta Dionate, aluminum (III) 3-hydroxy-2-methyl-4-pyronate, aluminum (III) 9-octadecenyl acetoacetate diisopropoxide, aluminum (III) 2,4- Examples of tin alkoxides include tin (II) methoxide, tin (II), and tantionate, aluminum (III) phenoxide, aluminum (III)
  • Etoxide tetraisopropoxytin, tetra-t-butoxytin, tetra-n-butoxytin, bis (2,4-pentandionate) diclos, tin (II) 2,4-pentandionate, sodium tin ethoxide, etc. Can be mentioned.
  • the metal alkoxide is hydrolyzed and polycondensed in water and an organic solvent.
  • a catalyst As a catalyst for hydrolysis, an acid is generally used.
  • the acid an inorganic acid or an organic acid is used.
  • Inorganic acids include hydrochloric acid, hydrogen bromide, hydrogen iodide, sulfuric acid, sulfurous acid, nitric acid, phosphoric acid, and organic acid compounds include carboxylic acids (eg, formic acid, acetic acid, propionic acid, butyric acid, succinic acid, trifluoroacetic acid) Perfluorooctanoic acid, benzoic acid, phthalic acid, etc.), sulfonic acids (eg methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid), p-toluenesulfonic acid, pentafluorobenzenesulfonic acid, etc.), phosphoric acid / Phosphonic acids (eg, phosphoric acid dimethyl ester, phenylphosphonic acid, etc.), Lewis acids (eg, boron trifluoride etherate, scandium triflate, alkyl titanic acid, aluminate
  • the amount of acid used is 0.0001 to 0.05 mol, preferably 0.001 to 0.01 mol, per mol of metal alkoxide.
  • a basic compound such as an inorganic base or an amine may be added to bring the pH of the solution to near neutrality to promote condensation polymerization.
  • inorganic bases include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, and ammonia.
  • organic base compounds include amines (eg, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylene). Pentamine, triethylamine, dibutylamine, N, N-dimethylbenzylamine, tetramethylethylenediamine, piperidine, piperazine, morpholine, ethanolamine, diazabicycloundecene, quinuclidine, aniline, pyridine, etc.), phosphines (eg, triphenyl) Phosphine, trimethylphosphine, and the like).
  • sol-gel catalysts can be used in combination, and examples that can be used in combination are given below.
  • metal chelate compounds such as tri-n-butoxyethyl acetoacetate zirconium, diisopropoxybis (acetylacetonato) titanium, diisopropoxyethyl acetoacetate aluminum, tris (ethyl acetoacetate) aluminum, (C 4 H 9 ) Carboxylic acid type organotin compounds such as 2 Sn (OCOC 11 H 23 ) 2 and Sn (OCOC 8 H 17 ) 2 , (C 4 H 9 ) 2 (C 4 H 9 ) 2 SnO, (C 8 H 17 ) 2 Examples thereof include organometallic compounds such as organotin compounds such as reaction products of organotin oxides such as SnO and ester compounds such as ethyl silicate dimethyl maleate, diethyl maleate and dioctyl phthalate.
  • metal salts such as sodium naphthenate, potassium naphthenate, sodium octoate, sodium 2-ethylhe
  • the proportion of the sol-gel catalyst compound in the composition is 0.01 to 50% by mass, preferably 0.1 to 50% by mass, more preferably 0.5 to 10%, based on the alkoxysilane that is the raw material of the sol liquid. % By mass.
  • the solvent uniformly mixes each component in the sol solution, adjusts the solid content of the composition of the present invention, and at the same time, can be applied to various coating methods to improve the dispersion stability and storage stability of the composition.
  • These solvents are not particularly limited as long as they can fulfill the above purpose.
  • Preferable examples of these solvents include water and organic solvents having high miscibility with water.
  • organic solvents examples include tetrahydrofuran, dimethoxyethane, formic acid, acetic acid, methyl acetate, alcohols (eg, methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, tert-butyl alcohol), ethylene glycol, diethylene glycol, Mention may be made of ethylene glycol, ethylene glycol monobutyl ether, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like.
  • alcohols eg, methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, tert-butyl alcohol
  • ethylene glycol diethylene glycol
  • Mention may be made of ethylene glycol, ethylene glycol monobutyl ether, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like.
  • an organic compound capable of multidentate coordination may be added to stabilize the metal alkoxide.
  • examples include ⁇ -diketones or ⁇ -ketoesters such as acetylacetone, methyl acetoacetate, ethyl acetoacetate, and alkanolamines.
  • the method for forming the protective layer by the sol-gel method is formed by using a wet method, and the sol liquid is a spray method, a spin coat method, a roll coat method, a die coat method, a blade coat method, You may apply
  • a sol solution prepared from a metal alkoxide is coated on a gas barrier layer of a resin film substrate and dried to form a protective layer.
  • Hydrolysis may be performed at any time during the production process.
  • a solution of the required composition is hydrolyzed and partially condensed to prepare the desired sol solution, which is applied and dried.
  • a solution of the required composition is prepared and dried while being partially hydrolyzed and condensed simultaneously with the application.
  • a method of applying a water-containing liquid necessary for hydrolysis and applying it to hydrolyze can be suitably employed.
  • the drying temperature after coating is not particularly limited as long as it does not cause deformation of the resin film substrate as a support, but is preferably 150 ° C. or less, more preferably in the range of 30 to 150 ° C. Preferably, it is in the range of 50 to 130 ° C.
  • These energy treatment temperatures can be employed without limitation between room temperature and the deformation temperature of the resin film substrate, preferably in the range of 30 to 150 ° C, particularly preferably in the range of 50 to 130 ° C. It is.
  • the resin film substrate when the temperature of the resin film substrate is increased by energy treatment, the resin film substrate may be kept in close contact with a backup roll or the like.
  • the polysilazane is particularly formed on the gas barrier layer.
  • a method of forming a protective layer by applying a surface modification treatment after applying and drying the containing liquid is preferable.
  • the surface modification treatment is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less.
  • the gas barrier film according to the present invention for example, by providing a protective layer on the gas barrier layer formed by the inter-roller discharge plasma CVD method to which a magnetic field is applied, it is excellent after being subjected to a high temperature and high humidity treatment. As well as being able to obtain flatness, it is possible to fill a minute defect portion generated during the formation of the already formed gas barrier layer with a protective layer component composed of polysilazane applied to the upper surface, and to perform gas purge etc. As a result, high gas barrier properties can be realized, and planarity and dark spot resistance can be improved.
  • the thickness of the protective layer according to the present invention is preferably in the range of 50 to 500 nm, more preferably in the range of 50 nm to 300 nm. If the thickness of the protective layer is 50 nm or more, desired planarity and dark spot resistance can be obtained, and if it is 500 nm or less, desired planarity can be achieved and a dense silicon oxynitride film can be obtained. Therefore, film quality deterioration such as generation of cracks can be prevented.
  • the method for controlling the film hardness of the protective layer within the range specified in the present invention includes the type of polysilazane (structure, molecular weight, etc.) described below, and the catalyst A desired film hardness can be obtained by appropriately selecting, setting and combining the type and addition amount, the illuminance of vacuum ultraviolet rays used in excimer treatment, the amount of irradiation energy, the irradiation time, and the like.
  • the gas barrier film according to the present invention may have at least one protective layer having a film hardness in the range of 2.0 to 8.0 GPa, but does not impair the object effects of the present invention.
  • two or more protective layers may be laminated, or a protective layer according to the present invention and another functional layer may be laminated.
  • polysilazane applied to the formation of the protective layer according to the present invention is a polymer having a silicon-nitrogen bond in the molecular structure and serving as a precursor of silicon oxynitride.
  • polysilazane it is preferable that it is a compound which has a structure represented by following General formula (1).
  • R 1 , R 2, and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane (abbreviation: PHPS) in which all of R 1 , R 2 and R 3 are composed of hydrogen atoms is particularly preferred.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6-membered and 8-membered rings, and its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance.
  • Mn number average molecular weight
  • the polysilazanes applicable to the protective layer according to the present invention include those having a chain, cyclic or cross-linked structure, or those having a plurality of structures in the molecule at the same time, and these can be used alone or in a mixture.
  • Typical examples of the polysilazane used include the following, but are not limited thereto.
  • a method for producing a polysilazane having a hydrogen atom in R 1 and R 2 and a methyl group in R 3 is described in D.C. See Seyferth et al., Polym. Prepr. , Am. Chem. Soc. , Div. Polym. Chem. 25, 10 (1984).
  • the polysilazane obtained by this method is a chain polymer having a repeating unit of — (SiH 2 NCH 3 ) — and a cyclic polymer, and neither has a crosslinked structure.
  • Polysilazanes obtained by these methods include those having a cyclic structure having a degree of polymerization of 3 to 5 with-(R 2 SiHNH)-as a repeating unit, and (R 2 SiHNH) X [(R 2 SiH) 1.5 N Some have a chain structure and a cyclic structure represented by the chemical formula 1-X (0.4 ⁇ x ⁇ 1) at the same time.
  • a hydrogen atom in R 1, polysilazane having an organic group in R 2 and R 3, also those having a hydrogen atom for R 1 and R 2 organic groups and R 3 is, - (R 1 R 2 SiNR 3 ) — as a repeating unit, mainly having a cyclic structure with a degree of polymerization of 3 to 5.
  • the polysilazane used has a main skeleton composed of the unit represented by the general formula (1) as described above, but the unit represented by the general formula (1) may be cyclized as is apparent from the above. Yes, in that case, the cyclic part becomes a terminal group, and when such cyclization is not performed, the terminal of the main skeleton can be a group similar to R 1 , R 2 , R 3 or a hydrogen atom. .
  • polysilazanes applicable to the present invention include repeating units such as [(SiH 2 ) n (NH) m ] and [(SiH 2 ) r O as reported in JP-A-62-195024. (In these formulas, n, m and r are 1, 2 or 3, respectively), and a boron compound is reacted with a polysilazane as reported in JP-A-2-84437.
  • polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is.
  • examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
  • the protective layer according to the present invention is obtained by applying and drying a coating liquid containing polysilazane by a wet coating method on a gas barrier layer formed by an inter-roller discharge plasma CVD method to which a magnetic field, which is a preferred embodiment of the present invention, is applied. It can be formed by irradiating with vacuum ultraviolet rays and performing a modification treatment.
  • organic solvent used for the preparation of the polysilazane-containing coating solution it is preferable to avoid the use of an alcohol or water-containing one that easily reacts with polysilazane.
  • organic solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of types of organic solvents may be mixed as necessary.
  • the polysilazane concentration in the protective layer-forming coating solution containing polysilazane varies depending on the thickness of the protective layer to be formed and the pot life of the coating solution, but is preferably in the range of 0.2 to 35% by mass.
  • the coating solution for forming the protective layer includes an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, and an Rh compound such as Rh acetylacetonate.
  • a metal catalyst such as can also be added. In the present invention, it is particularly preferable to use an amine catalyst.
  • Specific amine catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1 , 3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane and the like.
  • the amount of these catalysts added to the polysilazane is preferably in the range of 0.1 to 10% by mass, and preferably in the range of 0.2 to 5% by mass with respect to the total mass of the coating liquid for forming the protective layer. More preferably, it is more preferably in the range of 0.5 to 2% by mass.
  • Arbitrary appropriate wet coating methods can be employ
  • Specific examples include a slide hopper method, a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, a curtain coating method, and a gravure printing method.
  • a slide hopper method a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, a curtain coating method, and a gravure printing method.
  • the thickness of the coating film can be appropriately set according to the purpose.
  • the thickness of the coating after drying is preferably in the range of 50 nm to 2 ⁇ m, more preferably in the range of 70 nm to 1.5 ⁇ m, and in the range of 100 nm to 1 ⁇ m. More preferably it is.
  • Perhydropolysilazane can be represented by a composition of “— (SiH 2 —NH) n —”.
  • x and y are basically in the range of 2x + 3y ⁇ 4.
  • the coating film contains silanol groups, and there are cases where 2 ⁇ x ⁇ 2.5.
  • Si—H bonds and N—H bonds in perhydropolysilazane are relatively easily cleaved by excitation by vacuum ultraviolet irradiation and the like, and in an inert atmosphere It is considered that they are recombined as Si—N (an Si dangling bond may be formed). That is, it is cured as a SiN y composition without being oxidized. In this case, cleavage of the polymer main chain does not occur. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
  • Si—O—Si Bonds by Hydrolysis and Dehydration Condensation Si—N bonds in perhydropolysilazane are hydrolyzed by water, and the polymer main chain is cleaved to form Si—OH.
  • Two Si—OH are dehydrated and condensed to form a Si—O—Si bond and harden. This reaction occurs in the air, but during vacuum ultraviolet irradiation under an inert atmosphere, water vapor generated as outgas from the resin film substrate by the heat of irradiation is considered to be the main moisture source.
  • Si—OH that cannot be dehydrated and condensed remains, and a cured film having a low gas barrier property represented by the composition of SiO 2.1 to SiO 2.3 is obtained.
  • Adjustment of the composition of the silicon oxynitride in the protective layer obtained by subjecting the coating film containing polysilazane to vacuum ultraviolet irradiation is performed by appropriately controlling the oxidation state by appropriately combining the oxidation mechanisms (1) to (4) described above. Can do.
  • the illuminance of the vacuum ultraviolet ray on the coating surface received by the polysilazane layer coating film (protective layer) is preferably within the range of 30 to 200 mW / cm 2 , and 50 to 160 mW / cm 2. A range of 2 is more preferable. If it is 30 mW / cm 2 or more, there is no concern about the reduction of the reforming efficiency, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged.
  • Irradiation energy amount of the VUV in the polysilazane-containing coating film surface is preferably in the range of 200 ⁇ 10000mJ / cm 2, and more preferably in a range of 500 ⁇ 5000mJ / cm 2. If it is 200 mJ / cm 2 or more, the modification can be sufficiently performed, and if it is 10000 mJ / cm 2 or less, it does not cause over-reformation and can prevent generation of cracks and thermal deformation of the resin base material. it can.
  • the wavelength of the vacuum ultraviolet light according to the present invention is preferably 200 nm or less.
  • a rare gas excimer lamp is preferably used as the vacuum ultraviolet light source.
  • a rare gas atom such as Xe, Kr, Ar, Ne, etc. is called an inert gas because it does not form a molecule by chemically bonding.
  • excited atoms of rare gases that have gained energy by discharge or the like can form molecules by combining with other atoms.
  • the rare gas is xenon, e + Xe ⁇ Xe * Xe * + 2Xe ⁇ Xe 2 * + Xe Xe 2 * ⁇ Xe + Xe + h ⁇ (172 nm)
  • excimer light of 172 nm is emitted.
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • Dielectric barrier discharge is a gas space created by placing a gas space between both electrodes via a dielectric such as transparent quartz and applying a high frequency high voltage of several tens of kHz to the electrode. It is a discharge called a thin micro discharge. When the micro discharge streamer reaches the tube wall (derivative), the electric charge accumulates on the dielectric surface, and the micro discharge disappears.
  • Electrodeless electric field discharge by capacitive coupling, also called RF discharge.
  • the lamp and electrodes and their arrangement may be basically the same as those of dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
  • the outer electrode covers the entire outer surface and allows light to pass through in order to extract light to the outside in order to cause discharge in the entire discharge space. Must be a thing.
  • an electrode in which fine metal wires are meshed is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere. In order to prevent this, it is necessary to provide an atmosphere of an inert gas such as nitrogen around the lamp, that is, the inside of the irradiation apparatus, and provide a synthetic quartz window to extract the irradiation light.
  • This synthetic quartz window is not only an expensive consumable, but also causes light loss.
  • the outer diameter of the double cylindrical lamp is about 25 mm, the difference in the distance to the irradiation surface cannot be ignored between the position directly below the lamp axis and the side of the lamp, resulting in a large difference in illuminance. Therefore, even if the lamps are closely arranged, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
  • the biggest feature of the capillary excimer lamp is its simple structure.
  • the quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside.
  • the outer diameter of the tube of the thin tube lamp is about 6 to 12 mm, and if it is too thick, a high voltage is required for starting.
  • the electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
  • the Xe excimer lamp can emit ultraviolet light having a short wavelength of 172 nm at a single wavelength and has excellent luminous efficiency. Since this excimer light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane layer can be modified in a short time.
  • the Xe excimer lamp is a low-pressure mercury lamp that emits ultraviolet light with wavelengths of 185 nm and 254 nm and plasma cleaning, shortening the process time associated with high throughput, reducing the equipment area, and heat-damaged organic materials and plastic substrates Irradiation is possible.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature rise due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, a short wavelength, so that the rise in the surface temperature of the object to be fired is suppressed.
  • flexible film base materials such as a polyethylene terephthalate (PET) considered to be easy to be influenced by heat.
  • Oxygen is required for the reaction during UV irradiation, but since vacuum UV light is absorbed by oxygen, the presence of oxygen tends to reduce the efficiency of the UV irradiation process. It is preferable to carry out in a state of low oxygen concentration. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 10 to 10,000 ppm, more preferably in the range of 50 to 5000 ppm, and still more preferably in the range of 1000 to 4500 ppm.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the protective layer according to the present invention preferably has a film density in the range of 1.40 to 2.18 g / cm 3 .
  • the film density is 1.40 g / cm 3 or more, a desired film hardness can be obtained, and a protective layer having a dense structure and excellent flatness can be formed. Moreover, if the film density is 2.18 g / cm 3 or less, generation of cracks can be prevented and a protective layer having excellent hardness can be obtained.
  • Means for achieving the film density defined in the present invention include the types of polysilazane (structure, molecular weight, etc.), the type and amount of catalyst added, the illuminance of vacuum ultraviolet rays used in excimer treatment, the amount of irradiation energy, and the irradiation.
  • a desired film density can be obtained by appropriately selecting and setting time and the like.
  • the film density of the protective layer defined in the present invention can be determined using a known analysis means, but in the present invention, the value determined by the X-ray reflectance method is used.
  • X-ray diffraction handbook page 151 (edited by Rigaku Denki Co., Ltd., 2000, International Literature Printing Co., Ltd.) 22 can be performed.
  • the protective layer according to the present invention is obtained by applying a polysilazane-containing liquid by a wet coating method, drying it in a constant temperature and humidity atmosphere, and holding it in a constant low humidity atmosphere for a certain time. And dehumidifying.
  • a vacuum ultraviolet ray apparatus is installed in the vacuum chamber for the polysilazane layer formed above, and the pressure in the apparatus is adjusted to subject the polysilazane layer to a surface modification treatment.
  • a protective layer is formed by subjecting a resin base material having a gas barrier layer formed with a polysilazane layer fixed on an operation stage to shrinkage treatment under the following conditions.
  • Excimer lamp light intensity 130 mW / cm 2 (172 nm)
  • Distance between sample and light source 1mm
  • Stage heating temperature 70 ° C
  • Oxygen concentration in the irradiation device 1.0%
  • Excimer lamp irradiation time 5 seconds.
  • each functional layer In the gas barrier film according to the present invention, in addition to the above-described gas barrier layer and protective layer according to the present invention, each functional layer may be provided as necessary.
  • Overcoat layer may be formed on the protective layer according to the present invention for the purpose of further improving planarity and flexibility.
  • the organic material used for forming the overcoat layer is preferably an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group. Can be used.
  • These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary.
  • a method of curing by applying light irradiation treatment or heat treatment to a layer formed by coating using an organic resin composition coating solution is preferable.
  • Anchor layer In the gas barrier film according to the present invention, if necessary, between the resin base material and the gas barrier layer, for the purpose of improving the adhesion between the resin base material and the gas barrier layer, An anchor layer (also referred to as a clear hard coat layer (CHC layer) or a smooth layer) may be included.
  • CHC layer clear hard coat layer
  • smooth layer a clear hard coat layer
  • the anchor layer can also suppress a phenomenon (bleed out) that unreacted oligomers move from the resin base material to the surface and contaminate the contact surface.
  • the anchor layer is preferably smooth, and its arithmetic average roughness Ra value is preferably in the range of 0.3 to 3 nm, more preferably 0. Within the range of 5 to 1.5 nm. If the surface roughness Ra value is 0.3 nm or more, the surface has an appropriate smoothness, and the smoothness can be maintained in the roller transportability and gas barrier layer formation by the plasma CVD method.
  • the thickness is 3 nm or less, formation of minute defects in the gas barrier layer can be prevented at the time of forming the gas barrier layer, and high gas barrier properties and adhesion can be obtained.
  • the composition of the anchor layer is preferably a thermosetting resin or a photocurable resin because smoothness is required.
  • the thickness of the anchor layer is preferably in the range of 0.3 to 10 ⁇ m, more preferably in the range of 0.5 to 5 ⁇ m, from the viewpoint of adjusting the flatness.
  • the gas barrier film according to the present invention is provided as a film for an electronic device.
  • Examples of the electronic device of the present invention include an organic electroluminescence panel (hereinafter also referred to as an organic EL panel), an organic electroluminescence element (hereinafter also referred to as an organic EL element), an organic photoelectric conversion element, and a liquid crystal display element.
  • the gas barrier film F according to the present invention having the configuration shown in FIG. 1 is used as a sealing film for sealing, for example, an organic photoelectric conversion element (solar cell), a liquid crystal display element, an organic EL element, and the like. Can do.
  • Organic EL Panel An example of the configuration of an organic EL panel P which is an electronic device using the gas barrier film F as a sealing film is shown in FIG.
  • the organic EL panel P includes a gas barrier film F, a transparent electrode 4 such as ITO formed on the gas barrier film F, and the gas barrier film F via the transparent electrode 4.
  • the organic EL element 5 which is the electronic device body formed in the above, and the opposing film 7 disposed via the adhesive layer 6 so as to cover the organic EL element 5 are provided.
  • the transparent electrode 4 may form part of the organic EL element 5.
  • a transparent electrode 4 and an organic EL element 5 are formed on the surface of the gas barrier film F on the gas barrier layer 2 and protective layer 3 side.
  • the organic EL element 5 is sealed with the gas barrier film F according to the present invention so that the organic EL element 5 is not exposed to water vapor, and the organic EL element 5 has a structure that is not easily deteriorated. Therefore, the organic EL panel P can be used for a long time, and the life of the organic EL panel P is extended.
  • the counter film 7 may be a gas barrier film F according to the present invention in addition to a metal film such as an aluminum foil.
  • a gas barrier film F used as the counter film 7
  • the surface side on which the gas barrier layer 2 is formed may be attached to the organic EL element 5 with the adhesive layer 6.
  • Anode Organic EL device As the anode in 5 (transparent electrode 4), a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used.
  • electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • ITO indium tin oxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed as a thin film by a method such as vapor deposition or sputtering, and the thin film may be formed into a desired pattern by a photolithography method, or the pattern accuracy is not required so much (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually in the range of 10 to 1000 nm, preferably in the range of 10 to 200 nm.
  • Electrode As a cathode constituting the organic EL element 5, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof are used as an electrode material. Things are used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injection and oxidation for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable as the cathode.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the cathode is usually in the range of 10 nm to 5 ⁇ m, preferably in the range of 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element 5 is transparent or translucent, the light emission luminance is improved, which is convenient.
  • the cathode forming metal described in the above description with a film thickness in the range of 1 to 20 nm, the conductive transparent material described in the description of the anode is formed thereon, so that it is transparent or translucent.
  • the injection layer includes an electron injection layer and a hole injection layer.
  • the electron injection layer and the hole injection layer are provided as necessary, and between the anode and the light emitting layer or the hole transport layer, or It exists between a cathode and a light emitting layer or an electron carrying layer.
  • An injection layer is a layer provided between an electrode and an organic layer in order to lower drive voltage and improve light emission brightness.
  • Organic EL element and its forefront of industrialization (published by NTT Corporation on November 30, 1998) The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition of the above), and there are a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • Examples thereof include a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium Metal buffer layer typified by aluminum and aluminum, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. Is mentioned.
  • the buffer layer (injection layer) is preferably a very thin film, and although depending on the material, the layer thickness is preferably in the range of 0.1 nm to 5 ⁇ m.
  • the light-emitting layer in the organic EL element 5 is a layer that emits light by recombination of electrons and holes injected from the electrode (cathode, anode) or electron transport layer or hole transport layer.
  • the light emitting portion may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer of the organic EL element 5 preferably contains the following dopant compound (light emitting dopant) and host compound (light emitting host). Thereby, the luminous efficiency can be further increased.
  • Light-Emitting Dopant There are two types of light-emitting dopants: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
  • fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
  • a complex compound containing a metal of Group 8, Group 9, or Group 10 in the periodic table of elements is preferable, more preferably an iridium compound or an osmium compound. Preference is given to iridium compounds.
  • the light emitting dopant may be used by mixing a plurality of kinds of compounds.
  • Light-emitting host means a compound having the largest mixing ratio (mass) in a light-emitting layer composed of two or more compounds.
  • the other compounds are referred to as “dopant compounds (also simply referred to as dopants)”.
  • dopant compounds also simply referred to as dopants”.
  • the light emitting host is not particularly limited in terms of structure, but is typically a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, or an oligoarylene compound.
  • a carboline derivative or a diazacarbazole derivative herein, a diazacarbazole derivative is one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom
  • carboline derivatives, diazacarbazole derivatives and the like are preferably used.
  • the host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
  • host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002 -75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002 36 No. 227, No. 2002-231453, No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183. No. 2002, No. 2002-299060, No.
  • the light emitting layer is formed by forming the above compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir Brodgett method), an ink jet method or the like.
  • the thickness of the light emitting layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the host compound may be a single layer structure composed of one or more kinds, or may be a laminated structure composed of a plurality of layers having the same composition or different compositions.
  • the hole transport layer includes a hole transport material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material constituting the hole transport layer is a compound having any of the characteristics of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • the hole transport layer is formed by coating the hole transport material with a thin film by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. Can do.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer is made of an electron transport material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transporting material constituting the electron transporting layer may be any material as long as it has a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) ) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes Metal complexes replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
  • an inorganic semiconductor such as n-type-Si or n-type-SiC can also be used as the electron transport material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. .
  • the thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, preferably in the range of 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • organic EL element 5 a method for producing an organic EL element having a configuration of anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
  • a thin film made of a desired electrode material for example, an anode material
  • a desired electrode material for example, an anode material
  • the anode is formed by a method such as sputtering or plasma CVD.
  • an organic functional layer such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are constituent layers of the organic EL element.
  • an organic functional layer group such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are constituent layers of the organic EL element.
  • a method for forming the organic functional layer group there are a vapor deposition method, a wet process (for example, a spin coating method, a casting method, an ink jet method, a printing method, etc.). From the standpoint that holes are not easily generated, vacuum deposition, spin coating, ink jet, and printing are particularly preferable. Different film forming methods may be applied to each organic functional layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10. -2 Pa, deposition rate within the range of 0.01 to 50 nm / second, substrate temperature within the range of -50 to 300 ° C., layer thickness within the range of 0.1 nm to 5 ⁇ m, preferably Is preferably selected within the range of 5 to 200 nm.
  • a thin film made of a cathode-forming material is formed thereon so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, for example, by a method such as vapor deposition or sputtering.
  • a method such as vapor deposition or sputtering.
  • This organic EL element is preferably manufactured by a single vacuum evacuation process from the anode and each organic functional layer to the cathode. However, a different film formation method may be applied by taking it out halfway. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
  • the gas barrier film F in the electronic device (organic EL panel P) having the above-described configuration, by providing the gas barrier film F according to the present invention, excellent gas barrier properties and flexibilities that are essential effects of the gas barrier film are provided.
  • the flatness of the entire organic EL panel P is maintained by exhibiting excellent flatness as the gas barrier film F when stored for a long period of time in a high temperature and high humidity environment.
  • roller CVD method Formation of gas barrier layer 1: roller CVD method
  • roller CVD method the inter-roller discharge plasma CVD apparatus to which the magnetic field shown in FIG. 2 is applied.
  • the resin base material is mounted on the apparatus so as to be in contact with the rollers 31 and 32, and the gas barrier layer 1 is formed on the anchor layer under the condition that the layer thickness is 300 nm under the following film formation conditions (plasma CVD conditions).
  • plasma CVD conditions film formation conditions
  • ⁇ Plasma CVD conditions Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Resin substrate transport speed: 2 m / min ⁇ Measurement of element distribution profile> For the gas barrier layer 1 of the gas barrier film 1 formed as described above, XPS depth profile measurement is performed under the following conditions, and silicon element distribution, oxygen element distribution, carbon element distribution at a distance from the surface of the thin film layer in the layer thickness direction. And oxygen carbon distribution was obtained.
  • HMDSO hexamethyldisiloxane
  • Etching ion species Argon (Ar + ) Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation
  • X-ray Single crystal spectroscopy AlK ⁇ X-ray spot and its size: 800 ⁇ 400 ⁇ m ellipse From the silicon element distribution, oxygen element distribution, carbon element distribution and oxygen carbon distribution in the whole layer region measured as described above, the continuous change region in each element composition Presence / absence, presence / absence of extreme value, difference between maximum and minimum values of carbon atomic ratio, and average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms in a region of 90% or more of the total thickness.
  • Formation of gas barrier layer 2 vacuum deposition method
  • a resistance heating boat equipped with SiO 2 is energized and heated, and the thickness of 300 nm of SiO 2 is formed on the anchor layer surface of the resin base material 1 with an anchor layer at a deposition rate of 1 to 2 nm / second.
  • the gas barrier layer 2 was formed by a vacuum deposition method.
  • the average atomic ratio of silicon atoms and oxygen atoms satisfies the relationship defined by the formula (A) in a region of 90% or more of the total thickness.
  • a 10 mass% dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was used as a coating solution for forming a polysilazane layer.
  • the prepared polysilazane layer-forming coating solution is applied with a wireless bar so that the (average) layer thickness after drying is 300 nm, and treated for 1 minute in an atmosphere at a temperature of 85 ° C. and a relative humidity of 55%. It was dried, and further kept in an atmosphere of a temperature of 25 ° C. and a relative humidity of 10% (dew point temperature ⁇ 8 ° C.) for 10 minutes to perform dehumidification, thereby forming a polysilazane layer.
  • the gas barrier film 2 is formed from SiO 2 by the same vacuum vapor deposition method as that used for forming the gas barrier layer.
  • a gas barrier film 6 was produced in the same manner except that the protective layer 6 having a thickness of 300 nm was formed.
  • the gas barrier layer 1 was formed by the roller CVD method, and then the gas barrier film 1 was formed in the same manner except that the protective layer 7 having a thickness of 300 nm was formed by the following method (flat plate CVD method). A barrier film 7 was produced.
  • Formation of protective layer 7 flat plate type CVD
  • the protective layer 7 was formed on the gas barrier layer under the following film formation conditions (plasma CVD conditions) under a condition that the thickness was 300 nm.
  • ⁇ Plasma CVD conditions Feed rate of raw material gas (hexamethyldisiloxane, HMDSO): 20 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 100 sccm Degree of vacuum in the vacuum chamber: 10Pa Applied power from the power source for plasma generation: 0.5 kW Frequency of power source for plasma generation: 13.56 MHz Resin substrate transport speed: 1 m / min [Production of Gas Barrier Film 8: Comparative Example] A gas barrier film 8 was produced in the same manner as in the production of the gas barrier film 4 except that the protective layer 8 was formed using the same excimer method used for the production of the gas barrier film 3. However, the excimer lamp irradiation time in the excimer method was changed to 1 second (this method is referred to as excimer 2).
  • a gas barrier film 11 was produced in the same manner as in the production of the gas barrier film 4 except that the protective layer 11 was formed using the same excimer method used for the production of the gas barrier film 3. However, the excimer lamp irradiation time in the excimer method was changed to 10 seconds (this method is referred to as excimer 4).
  • a gas barrier film 13 was produced in the same manner as in the production of the gas barrier film 10 except that the thickness of the gas barrier layer was changed to 100 nm.
  • a gas barrier film 14 was produced in the same manner as in the production of the gas barrier film 10 except that the thickness of the gas barrier layer was changed to 600 nm.
  • Formation of gas barrier layer flat plate CVD
  • a gas barrier layer is formed on the anchor layer under the following film formation conditions (plasma CVD conditions) under the condition that the thickness is 300 nm. Film 17 was produced. A protective layer is not formed on the gas barrier film 17.
  • ⁇ Plasma CVD conditions Feed rate of raw material gas (hexamethyldisiloxane, HMDSO): 20 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 100 sccm Degree of vacuum in the vacuum chamber: 10Pa Applied power from the power source for plasma generation: 0.5 kW Frequency of power source for plasma generation: 13.56 MHz Resin substrate transport speed: 1 m / min
  • the average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms satisfies the relationship defined by the formula (A) in a region of 90% or more of the total layer thickness.
  • the following coating liquid for forming a hole transport layer was used, and was applied with an extrusion coater in an environment of 25 ° C. and a relative humidity of 50%. Drying and heat treatment were performed under conditions to form a hole transport layer.
  • the hole transport layer forming coating solution was applied under the condition that the thickness after drying was 50 nm.
  • a cleaning surface modification treatment and a charge removal treatment were performed on both surfaces of the gas barrier film 1.
  • a cleaning surface modification treatment a low pressure mercury lamp with a wavelength of 184.9 nm was used, and the irradiation intensity was 15 mW / cm 2 and the distance was 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • a solution obtained by diluting 30 parts by mass of polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with 65 parts by mass of pure water and 5 parts by mass of methanol Prepared as a coating solution.
  • ⁇ Drying and heat treatment conditions After coating the hole transport layer forming coating solution, after removing the solvent at a height of 100 mm, a discharge wind speed of 1 m / s, a width of a wide wind speed of 5%, and a drying temperature of 100 ° C. Then, using a heat treatment apparatus, heat treatment of the back surface heat transfer method was performed at a temperature of 150 ° C. to form a hole transport layer.
  • the following coating solution for forming a white light emitting layer is applied by an extrusion coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. did.
  • the white light emitting layer forming coating solution was applied under the condition that the layer thickness after drying was 40 nm.
  • a host material 1.0 g of the compound HA shown below, 100 mg of the following compound DA as the first dopant material, 0.2 mg of the following compound DB as the second dopant material, As a dopant material 3, 0.2 mg of the following compound DC was dissolved in 100 g of toluene to prepare a white light emitting layer forming coating solution.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more at a coating temperature of 25 ° C. and a coating speed of 1 m / min.
  • the white light emitting layer forming coating solution is applied onto the hole transport layer using an extrusion coater, and then directed toward the film forming surface, the height is 100 mm, the discharge wind speed is 1 m / s, and the wide wind speed distribution is 5%. After removing the solvent at a drying temperature of 60 ° C., heat treatment was subsequently performed at a temperature of 130 ° C. to form a light emitting layer.
  • the following electron transport layer forming coating solution was applied by an extrusion coater under the following conditions, followed by drying and heat treatment under the following conditions to form an electron transport layer.
  • the coating solution for forming an electron transport layer was applied under the condition that the layer thickness after drying was 30 nm.
  • the coating solution for forming an electron transport layer was prepared by dissolving the following compound EA in 2,2,3,3-tetrafluoro-1-propanol at a concentration of 0.5% by mass.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
  • An electron injection layer was formed on the formed electron transport layer according to the following method.
  • the gas barrier film 1 formed up to the electron transport layer was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • the cesium fluoride previously loaded in the tantalum vapor deposition boat in the vacuum chamber was heated to form an electron injection layer having a layer thickness of 3 nm.
  • Second electrode In the region excluding the portion to be the extraction electrode of the first electrode on the electron injection layer formed as described above, aluminum is used as the second electrode forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa so as to have the extraction electrode Then, a mask pattern was formed by vapor deposition so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
  • the laminate formed up to the second electrode was moved again to a nitrogen atmosphere and cut into a prescribed size using an ultraviolet laser, whereby the organic EL element 1 was produced.
  • ACF anisotropic conductive film
  • base film polyimide 12.5 ⁇ m, rolled copper foil 18 ⁇ m, coverlay: Polyimide 12.5 ⁇ m, surface-treated NiAu plating
  • crimping was performed at a crimping temperature of 170 ° C. (an anisotropic conductive film (ACF) temperature measured using a separate thermocouple: 140 ° C.), a pressure of 2 MPa, and a crimping time of 10 seconds.
  • ACF anisotropic conductive film
  • sealing As a sealing member, a 30 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a polyethylene terephthalate (PET) film (thickness 12 ⁇ m) and an adhesive for dry lamination (two-component reaction type urethane adhesive) A laminated product (adhesive layer thickness: 1.5 ⁇ m) was prepared.
  • thermosetting adhesive was uniformly applied to the aluminum surface of the prepared sealing member at a thickness of 20 ⁇ m along the adhesive surface (shiny surface) of the aluminum foil using a dispenser to form an adhesive layer.
  • thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used as the thermosetting adhesive.
  • a sealing member is closely attached and arranged so as to cover the joint between the extraction electrode and the electrode lead, and a pressure roller is used as a pressure condition.
  • the organic EL panel 1 having the configuration shown in FIG. 6 was manufactured by tightly sealing at 0.5 MPa and an apparatus speed of 0.3 m / min.
  • Organic EL panels 2 to 18 were produced in the same manner as in the production of the organic EL panel 1, except that the produced gas barrier films 2 to 18 were used in place of the gas barrier film 1.
  • the flatness of the light emitting surface was measured according to the following method, and the flatness was evaluated according to the following criteria.
  • the light emission state after light emission was photographed by enlarging a part of the organic EL panel using a 100 ⁇ optical microscope (MORITEX MS-804, lens MP-ZE25-200).
  • the photographed image was cut out in a 2 mm square, and the presence or absence of dark spots was observed for each image. From the observation results, the ratio of the dark spot generation area to the light emission area was determined, and the dark spot resistance was evaluated according to the following criteria.
  • the organic EL panel which is an example of an electronic device provided with a gas barrier film having the structure defined in the present invention, is higher temperature and humidity environment than the comparative example. It can be seen that the flatness after the heat deterioration treatment for a long period of time is excellent, and that the flatness is maintained, the stress on the light emitting layer is reduced, and an excellent effect on dark spot resistance can be exhibited.
  • the electronic device of the present invention has characteristics excellent in gas barrier properties and durability (flatness and failure resistance (dark spot resistance)), an organic electroluminescence panel, an organic electroluminescence device, an organic photoelectric conversion device, and a liquid crystal display device. Can be suitably used.

Abstract

The objective of the present invention is to provide an electronic device which has excellent gas barrier properties and durability (flatness and failure tolerance (dark spot resistance)). An electronic device of the present invention comprises a gas barrier film, wherein a gas barrier layer and a protective layer are laminated in this order, on a resin base. This electronic device is characterized in that: the gas barrier layer contains carbon atoms, silicon atoms and oxygen atoms and has a specific elemental profile; the composition of the gas barrier layer is continuously changed in the layer thickness direction; and the protective layer has a film hardness within the range of 2.0-8.0 GPa as measured by a nanoindentation method.

Description

電子デバイス及び電子デバイスの製造方法Electronic device and method for manufacturing electronic device
 本発明は、ガスバリアー性フィルムを具備した電子デバイス及びその製造方法に関するものである。さらに詳しくは、ガスバリアー性、平面性及び故障耐性(ダークスポット耐性)に優れた電子デバイス及びその製造方法に関するものである。 The present invention relates to an electronic device provided with a gas barrier film and a method for producing the same. More specifically, the present invention relates to an electronic device excellent in gas barrier properties, flatness, and failure resistance (dark spot resistance), and a method for manufacturing the same.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物を含む複数の薄膜を積層して作製したガスバリアー性フィルムが、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、例えば、食品や工業用品及び医薬品等の上記各種ガスによる変質を防止するための包装材料として広く用いられている。 Conventionally, gas barrier films produced by laminating multiple thin films containing metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide on the surface of plastic substrates and films have blocked various gases such as water vapor and oxygen. It is widely used as a packaging material for preventing required alteration of the above-described various gases such as packaging of necessary articles, for example, foods, industrial articles, and pharmaceuticals.
 上記の包装用途以外にも、太陽電池素子、有機エレクトロルミネッセンス(以下、有機ELともいう。)素子、液晶表示素子等のフレキシブル性が求められる電子デバイスへの展開が要望され、それに対する様々な検討がなされている。しかし、これらフレキシブル性を有する電子デバイスにガスバリアー性フィルムを適用する際には、従来用いられてきたガラス基材と同等の非常に高いガスバリアー性が要求されているが、現状では、十分なガスバリアー性を有するガスバリアー性フィルムはいまだ得られていないのが現状である。 In addition to the packaging applications described above, there is a demand for the development of electronic devices that require flexibility, such as solar cell elements, organic electroluminescence (hereinafter also referred to as organic EL) elements, and liquid crystal display elements, and various investigations therefor. Has been made. However, when applying a gas barrier film to these flexible electronic devices, a very high gas barrier property equivalent to a conventionally used glass substrate is required. At present, a gas barrier film having gas barrier properties has not yet been obtained.
 この様なガスバリアー性フィルムを作製する方法としては、テトラエトキシシラン(以下、TEOSと略記する。)に代表される有機ケイ素化合物を用いて、減圧下、酸素プラズマで酸化しながら基板上に成膜する化学堆積法(プラズマCVD法:Chemical Vapor Deposition)や、半導体レーザーを用いて金属Siを蒸発させ酸素の存在下で基板上に堆積する物理堆積法(真空蒸着法やスパッタ法)といった気相法が知られている。 As a method for producing such a gas barrier film, an organic silicon compound typified by tetraethoxysilane (hereinafter abbreviated as TEOS) is used and formed on a substrate while being oxidized with oxygen plasma under reduced pressure. Gas phase, such as chemical deposition method (plasma CVD method: Chemical Vapor Deposition), and physical deposition method (vacuum deposition method or sputtering method) that deposits metal Si by vapor deposition on a substrate in the presence of oxygen using a semiconductor laser. The law is known.
 特許文献1には、プラズマCVD装置を用い、ロールtoロール方式で1×10-4g/m2・dayレベル(水蒸気透過率)のガスバリアー性積層フィルムを製造する製造方法が開示されている。特許文献1に記載された方法で製造されたガスバリアー性フィルムは、炭素原子を基材近傍に多く配向させることができるプラズマCVD法を適用することにより、基材との密着性及び屈曲性を向上させている。 Patent Document 1 discloses a manufacturing method for manufacturing a gas barrier laminated film having a 1 × 10 −4 g / m 2 · day level (water vapor permeability) by a roll-to-roll method using a plasma CVD apparatus. . The gas barrier film manufactured by the method described in Patent Document 1 has an adhesion property and flexibility with a base material by applying a plasma CVD method capable of orienting many carbon atoms in the vicinity of the base material. It is improving.
 特許文献1で開示されているような元素分布プロファイルを有するガスバリアー性フィルムを装着した電子デバイスの中には、例えば、日中野外に設置されるものや、自動車などの移動体に搭載されるもの等がある。例えば、自動車などの移動体で、夏場の長時間にわたる移動中では、高温環境に曝されることになり、このような高温環境下の場合、電子デバイスを構成している上記のようなガスバリアー性フィルムにおいては、平面性及び故障耐性(ダークスポット耐性)に問題が発生することが分かった。 Among electronic devices equipped with a gas barrier film having an element distribution profile as disclosed in Patent Document 1, for example, those installed outdoors in the daytime or mounted on a moving body such as an automobile There are things. For example, a moving body such as an automobile is exposed to a high-temperature environment during a long-term movement in summer, and in such a high-temperature environment, the gas barrier as described above constituting an electronic device is used. It has been found that problems occur in flatness and failure resistance (dark spot resistance) in a conductive film.
国際公開第2012/046767号International Publication No. 2012/046767
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、ガスバリアー性、耐久性(平面性及び故障耐性(ダークスポット耐性))に優れた電子デバイス及びその製造方法を提供することである。 The present invention has been made in view of the above problems, and a solution to the problem is to provide an electronic device excellent in gas barrier properties and durability (flatness and failure resistance (dark spot resistance)) and a method for manufacturing the same. That is.
 本発明者は、上記課題を解決すべく、鋭意検討を進めた結果、樹脂基材上にガスバリアー層と保護層をこの順で積層し、前記ガスバリアー層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、特定の各元素の含有プロファイルを有し、前記保護層が、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内であるガスバリアー性フィルムを具備したことを特徴とする電子デバイスにより、電子デバイス用途に必要なガスバリアー性に優れたガスバリアー性フィルムを具備し、耐久性(平面性(カール特性)及びダークスポット耐性)に優れた電子デバイスを実現することができることを見出し本発明に至った。 As a result of diligent studies to solve the above problems, the present inventor has laminated a gas barrier layer and a protective layer in this order on a resin substrate, and the gas barrier layer comprises carbon atoms, silicon atoms and oxygen. It contains atoms, the composition continuously changes in the layer thickness direction, has a content profile of each specific element, and the protective layer has a film hardness measured by the nanoindentation method of 2.0 to 8. An electronic device having a gas barrier film within a range of 0 GPa has a gas barrier film excellent in gas barrier properties required for electronic device applications, and has durability (flatness (curl characteristics) ) And dark spot resistance) have been found, and the present invention has been found.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.樹脂基材上に、ガスバリアー層と保護層とがこの順で積層されたガスバリアー性フィルムを具備した電子デバイスであって、
 前記ガスバリアー層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記(1)及び(2)で規定する要件を満たし、
 かつ前記保護層は、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内であることを特徴とする電子デバイス。
1. An electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on a resin substrate,
The gas barrier layer contains carbon atoms, silicon atoms and oxygen atoms, the composition continuously changes in the layer thickness direction, and satisfies the requirements defined in the following (1) and (2):
The protective layer is an electronic device having a film hardness measured by a nanoindentation method in a range of 2.0 to 8.0 GPa.
 (1)前記ガスバリアー層のX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線において、当該ガスバリアー層の層厚方向における表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線が、極値を有し、かつ前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5.0at%以上である。 (1) In the distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer, the distance from the surface in the layer thickness direction of the gas barrier layer, silicon atoms, oxygen The carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of atoms and carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”) has an extreme value, and the carbon The difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the atomic ratio is 5.0 at% or more.
 (2)前記ガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。 (2) In a region of 90% or more of the total thickness of the gas barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or ( It has the order of magnitude relationship represented by B).
 式(A)
   (炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
 式(B)
   (酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
 2.前記ガスバリアー層の全層厚の90%以上の領域におけるケイ素原子、酸素原子及び炭素原子の平均原子比率が、前記式(A)で表される序列の大小関係を有することを特徴とする第1項に記載の電子デバイス。
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
2. The average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms in a region of 90% or more of the total thickness of the gas barrier layer has a hierarchical relationship represented by the formula (A). The electronic device according to Item 1.
 3.前記保護層のナノインデンテーション法で測定した膜硬度が、3.0~5.5GPaの範囲内であることを特徴とする第1項又は第2項に記載の電子デバイス。 3. 3. The electronic device according to item 1 or 2, wherein the protective layer has a film hardness measured by a nanoindentation method in a range of 3.0 to 5.5 GPa.
 4.前記保護層の膜密度が、1.40~2.18g/cm3の範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載の電子デバイス。 4). 4. The electronic device according to claim 1, wherein the protective layer has a film density in the range of 1.40 to 2.18 g / cm 3 .
 5.樹脂基材上に、ガスバリアー層と保護層とをこの順で積層したガスバリアー性フィルムを具備する電子デバイスの製造方法であって、
 前記ガスバリアー性フィルムが、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記(1)及び(2)で規定する要件を満たすガスバリアー層を形成する工程と、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内である保護層を形成する工程を経て製造されることを特徴とする電子デバイスの製造方法。
5. A method for producing an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on a resin substrate,
The gas barrier film contains a carbon atom, a silicon atom, and an oxygen atom, and the composition continuously changes in the layer thickness direction to form a gas barrier layer that satisfies the requirements defined in (1) and (2) below. And a step of forming a protective layer having a film hardness measured by a nanoindentation method within a range of 2.0 to 8.0 GPa.
 (1)前記ガスバリアー層のX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線において、当該ガスバリアー層の層厚方向における表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線が、極値を有し、かつ前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5.0at%以上である。 (1) In the distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer, the distance from the surface in the layer thickness direction of the gas barrier layer, silicon atoms, oxygen The carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of atoms and carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”) has an extreme value, and the carbon The difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the atomic ratio is 5.0 at% or more.
 (2)前記ガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。 (2) In a region of 90% or more of the total thickness of the gas barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or ( It has the order of magnitude relationship represented by B).
 式(A)
   (炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
 式(B)
   (酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
 6.前記ガスバリアー層が、有機ケイ素化合物を含む原料ガスと酸素ガスを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成されることを特徴とする第5項に記載の電子デバイスの製造方法。
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
6). Item 5. The gas barrier layer is formed by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied using a source gas containing an organic silicon compound and oxygen gas. The manufacturing method of the electronic device of description.
 7.前記保護層が、前記ガスバリアー層上にポリシラザン含有液を塗布、乾燥した後、表面改質処理を施して形成された層であることを特徴とする第5項又は第6項に記載の電子デバイスの製造方法。 7. 7. The electron according to item 5 or 6, wherein the protective layer is a layer formed by applying a polysilazane-containing liquid on the gas barrier layer, drying the surface, and then performing a surface modification treatment. Device manufacturing method.
 8.前記保護層の形成に用いる前記表面改質処理が、波長が200nm以下の真空紫外光を照射する方法であることを特徴とする第7項に記載の電子デバイスの製造方法。 8. 8. The method of manufacturing an electronic device according to claim 7, wherein the surface modification treatment used for forming the protective layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less.
 本発明の上記手段により、ガスバリアー性に優れたガスバリアー性フィルムを具備し、耐久性(平面性(カール特性)及びダークスポット耐性)に優れた電子デバイス及びその製造方法を提供することができる。 By the above means of the present invention, it is possible to provide an electronic device having a gas barrier film excellent in gas barrier properties and excellent in durability (flatness (curl characteristics) and dark spot resistance) and a method for producing the same. .
 本発明で規定する構成により、本発明の目的とする効果が得られる技術的理由に関しては、その機構の詳細の全てについて解明はされていないが、以下のように推測している。 The technical reason why the intended effect of the present invention can be obtained by the configuration defined in the present invention has not been clarified in all the details of the mechanism, but is presumed as follows.
 本発明に係るガスバリアー性フィルムは、主には、樹脂基材と、層厚方向で酸素原子と炭素原子が連続的に変化している組成からなるガスバリアー層と、特定の範囲の膜硬度を備えた保護層から構成されている。 The gas barrier film according to the present invention mainly comprises a resin substrate, a gas barrier layer composed of a composition in which oxygen atoms and carbon atoms are continuously changed in the layer thickness direction, and a film hardness in a specific range. It is comprised from the protective layer provided with.
 樹脂基材上に、層厚方向で組成(構成する元素組成)が連続的に変化しているガスバリアー層を形成した場合には、密着性及び屈曲性と、ガスバリアー性とを両立するガスバリアー層を形成することができるが、層内での収縮率の不均一性に伴い、樹脂基材に対し、ガスバリアー層の伸び率が相対的に大きくなるため、当該ガスバリアー性フィルムを具備した電子デバイスでは平面性に問題があった。特に、樹脂基材の膜厚が40~150μmという薄膜基材において平面性の問題が大きくなる。また、平面性の乱れは、特に、高温高湿環境下に長期間にわたり曝された際、顕著に発現する。さらに、当該ガスバリアー性フィルムを具備した電子デバイスとして、有機エレクトロルミネッセンス素子を例にとると、平面性の乱れによっては、ダークスポットが発生する場合があり、そのような場合、最終的には、有機エレクトロルミネッセンス素子として満足する機能が得られなくなるといった問題がある。 When a gas barrier layer having a composition (element composition) continuously changing in the layer thickness direction is formed on the resin base material, a gas that achieves both adhesion and flexibility and gas barrier properties Although the barrier layer can be formed, the elongation rate of the gas barrier layer is relatively large with respect to the resin base material due to the nonuniformity of the shrinkage rate in the layer, so that the gas barrier film is provided. The electronic device had a problem in flatness. In particular, the problem of flatness is increased in a thin film substrate having a resin substrate thickness of 40 to 150 μm. Further, the disorder of flatness is prominent particularly when exposed to a high temperature and high humidity environment for a long period of time. Furthermore, when an organic electroluminescence element is taken as an example of an electronic device provided with the gas barrier film, a dark spot may be generated depending on the disorder of flatness. In such a case, finally, There is a problem that a satisfactory function as an organic electroluminescence element cannot be obtained.
 このような問題に対し、本発明者は、当該ガスバリアー性フィルムを構成するガスバリアー層上に、特定の範囲の膜硬度を有する保護層を積層することによって、平面性の乱れを抑制することができ、かつ故障耐性に優れた電子デバイスを実現することができることを見出した。 With respect to such a problem, the present inventor suppresses disorder of flatness by laminating a protective layer having a film hardness in a specific range on the gas barrier layer constituting the gas barrier film. It has been found that an electronic device that is capable of achieving high reliability and fault tolerance can be realized.
 本発明で規定する構成に対し、例えば、平板電極(水平搬送)タイプのプラズマ放電装置を用いて製造されたガスバリアー層では、樹脂基材周辺の炭素原子成分の濃度勾配の連続的な変化が起こらず、ガスバリアー層としては、全層がほぼ均一の組成から形成される。このような均一の元素プロファイルを有するガスバリアー層を具備した電子デバイスでも、上記と同様、平面性に問題があり、有機エレクトロルミネッセンス素子に当該ガスバリアー層を適用した場合には、ダークスポットが発生してしまっていた。 In contrast to the configuration defined in the present invention, for example, in a gas barrier layer manufactured using a plate electrode (horizontal conveyance) type plasma discharge device, the concentration gradient of the carbon atom component around the resin substrate continuously changes. The gas barrier layer does not occur, and the entire layer is formed from a substantially uniform composition. Even in an electronic device equipped with such a gas barrier layer having a uniform element profile, there is a problem in flatness as described above, and when the gas barrier layer is applied to an organic electroluminescence element, a dark spot is generated. I was doing it.
 しかしながら、全層がほぼ均一の組成から形成されるガスバリアー層上に、上記と同様に特定の範囲内の膜硬度を有する保護層を積層したとしても、平面性の乱れを抑制するまでには至らず、平面性や故障耐性(ダークスポット耐性)が非常に低下した。 However, even if a protective layer having a film hardness within a specific range as described above is laminated on the gas barrier layer, which is formed from a substantially uniform composition in all layers, in order to suppress the disorder of flatness However, the flatness and failure resistance (dark spot resistance) were greatly reduced.
 本発明者は、上記のような状況を踏まえ、層厚方向での膜組成(構成する元素組成)が連続的に変化しているガスバリアー層と、特定の範囲内の膜硬度を有する保護層とを積層することにより、平面性の乱れを抑制でき、かつ故障耐性に優れた電子デバイスを実現できたものと推測している。特に、高温高湿環境下で長期間にわたり保存した際にも、優れた平面性及び故障耐性(ダークスポット耐性)を維持することができる。 In light of the above situation, the present inventor has developed a gas barrier layer in which the film composition (constituent element composition) in the layer thickness direction is continuously changed, and a protective layer having a film hardness within a specific range. It is speculated that an electronic device having excellent flatness and failure tolerance could be realized by laminating and. In particular, excellent flatness and failure resistance (dark spot resistance) can be maintained even when stored for a long period of time in a high temperature and high humidity environment.
本発明に係るガスバリアー性フィルムの基本構成の一例を示す概略断面図Schematic sectional view showing an example of the basic configuration of the gas barrier film according to the present invention 本発明に係る磁場を印加したローラー間放電プラズマCVD装置を用いたガスバリアー性フィルムの製造方法の一例を示す概略図Schematic which shows an example of the manufacturing method of the gas barrier film using the discharge plasma CVD apparatus between rollers which applied the magnetic field which concerns on this invention 本発明のガスバリアー層のケイ素分布曲線、酸素分布曲線及び炭素分布曲線の一例を示すグラフThe graph which shows an example of the silicon distribution curve of the gas barrier layer of this invention, an oxygen distribution curve, and a carbon distribution curve 比較例のガスバリアー層のケイ素分布曲線、酸素分布曲線及び炭素分布曲線の一例を示すグラフThe graph which shows an example of the silicon distribution curve, oxygen distribution curve, and carbon distribution curve of the gas barrier layer of a comparative example ナノインデンテーション法による膜硬度の測定装置の一例を示す模式図Schematic diagram showing an example of a film hardness measurement device using the nanoindentation method 本発明に係るガスバリアー性フィルムを具備した電子デバイスの模式図Schematic diagram of an electronic device equipped with a gas barrier film according to the present invention
 本発明の電子デバイスは、樹脂基材の少なくとも一方の面側に、ガスバリアー層と保護層とがこの順で積層されたガスバリアー性フィルムを具備した電子デバイスであって、前記ガスバリアー層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、前記(1)及び(2)で規定する要件を満たし、前記保護層は、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内であることを特徴とする。 The electronic device of the present invention is an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on at least one surface side of a resin base material, the gas barrier layer being , Containing carbon atoms, silicon atoms and oxygen atoms, the composition continuously changing in the layer thickness direction, satisfying the requirements specified in (1) and (2) above, and the protective layer is formed by a nanoindentation method. The measured film hardness is in the range of 2.0 to 8.0 GPa.
 この特徴は、請求項1から請求項8までの請求項に係る発明に共通する技術的特徴である。 This feature is a technical feature common to the inventions according to claims 1 to 8.
 本発明の実施態様としては、本発明の効果発現の観点から、前記ガスバリアー層の全層厚の90%以上の領域におけるケイ素原子、酸素原子及び炭素原子の平均原子比率が、前記式(A)で表される序列の大小関係、すなわち、(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)の関係を有することが、より平面性に優れ、所望のガスバリアー性を備えたガスバリアー性フィルムを具備した電子デバイスを得ることができる。 As an embodiment of the present invention, from the viewpoint of manifesting the effect of the present invention, the average atomic ratio of silicon atoms, oxygen atoms and carbon atoms in the region of 90% or more of the total thickness of the gas barrier layer is expressed by the formula (A ), Ie, the relationship of (carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio) is more excellent in flatness and desired gas barrier properties. It is possible to obtain an electronic device including a gas barrier film including
 また、前記保護層のナノインデンテーション法で測定した膜硬度が、3.0~5.5GPaの範囲内であることが、より優れた平面性、ガスバリアー性及び故障耐性(ダークスポット耐性)を得ることができる点から好ましい。 Further, the film hardness measured by the nanoindentation method of the protective layer is in the range of 3.0 to 5.5 GPa, so that more excellent flatness, gas barrier property and failure resistance (dark spot resistance) are obtained. It is preferable because it can be obtained.
 また、本発明においては、特定の膜硬度を備えた保護層の膜密度が、1.40~2.18g/cm3の範囲内であることが好ましい。 In the present invention, the film density of the protective layer having a specific film hardness is preferably in the range of 1.40 to 2.18 g / cm 3 .
 また、本発明の電子デバイスの製造方法は、樹脂基材上に、ガスバリアー層と保護層とをこの順で積層したガスバリアー性フィルムを具備する電子デバイスの製造方法であって、前記ガスバリアー性フィルムが、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、前記(1)及び(2)で規定する要件を満たすガスバリアー層を形成する工程と、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内である保護層を形成する工程を経て製造されることを特徴とする。 The method for producing an electronic device of the present invention is a method for producing an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on a resin substrate, the gas barrier A step of forming a gas barrier layer containing a carbon atom, a silicon atom and an oxygen atom, the composition continuously changing in the layer thickness direction, and satisfying the requirements defined in the above (1) and (2); The film is manufactured through a step of forming a protective layer having a film hardness measured by the nanoindentation method within a range of 2.0 to 8.0 GPa.
 更に、本発明の電子デバイスの製造方法においては、ガスバリアー層が、有機ケイ素化合物を含む原料ガスと酸素ガスを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成されることが、より高い精度で所望の各元素プロファイルを有するガスバリアー層を実現することができる観点から好ましい。 Furthermore, in the method for manufacturing an electronic device according to the present invention, the gas barrier layer uses a source gas containing an organosilicon compound and an oxygen gas, and a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied. It is preferable from the viewpoint that a gas barrier layer having each desired element profile can be realized with higher accuracy.
 また、本発明に係る特定の膜硬度を備えた保護層が、前記ガスバリアー層上にポリシラザン含有液を塗布、乾燥した後、表面改質処理を施して形成することが、所望の膜硬度を有する保護層を高精度で実現することができ、より優れた平面性、ガスバリアー性及び故障耐性(ダークスポット耐性)を得ることができる点から好ましい。 The protective layer having a specific film hardness according to the present invention may be formed by applying a polysilazane-containing liquid on the gas barrier layer and drying, followed by a surface modification treatment to obtain a desired film hardness. It is preferable because the protective layer can be realized with high accuracy, and more excellent planarity, gas barrier properties and failure resistance (dark spot resistance) can be obtained.
 また、上記保護層の形成に用いる前記表面改質処理が、波長が200nm以下の真空紫外光を照射する方法であることが、より高品位の保護層を、効率的に形成することができる観点から好ましい。 In addition, the surface modification treatment used for forming the protective layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less, so that a higher quality protective layer can be efficiently formed. To preferred.
 なお、本発明でいう「ガスバリアー性」とは、JIS K 7129-1992に準拠した方法で測定された水蒸気透過率(温度:60±0.5℃、相対湿度(RH):90±2%)が3×10-3g/m2・24h以下であり、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m2・24h・atm以下であることを意味する。 The “gas barrier property” as used in the present invention is a water vapor transmission rate (temperature: 60 ± 0.5 ° C., relative humidity (RH): 90 ± 2%) measured by a method according to JIS K 7129-1992. ) Is 3 × 10 −3 g / m 2 · 24 h or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 ml / m 2 · 24 h · atm or less. Means that.
 また、本発明において、「真空紫外線」、「真空紫外光」、「VUV」、「VUV光」とは、具体的には波長が100~200nmの範囲内にある光を意味する。 In the present invention, “vacuum ultraviolet light”, “vacuum ultraviolet light”, “VUV”, and “VUV light” specifically mean light having a wavelength in the range of 100 to 200 nm.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《電子デバイスの概要》
 本発明の電子デバイスは、樹脂基材の少なくとも一方の面側に、ガスバリアー層と保護層とがこの順で積層されたガスバリアー性フィルムを具備した電子デバイスであって、前記ガスバリアー層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、前記(1)及び(2)で規定する要件を満たし、前記保護層は、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内であることを特徴とする。
<Outline of electronic devices>
The electronic device of the present invention is an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on at least one surface side of a resin base material, the gas barrier layer being , Containing carbon atoms, silicon atoms and oxygen atoms, the composition continuously changing in the layer thickness direction, satisfying the requirements specified in (1) and (2) above, and the protective layer is formed by a nanoindentation method. The measured film hardness is in the range of 2.0 to 8.0 GPa.
 以下、本発明の電子デバイスを構成するガスバリアー性フィルムの詳細について説明する。 Hereinafter, details of the gas barrier film constituting the electronic device of the present invention will be described.
 《ガスバリアー性フィルム》
 図1は、本発明に係るガスバリアー性フィルムの基本構成の一例を示す概略断面図である。
<Gas barrier film>
FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of a gas barrier film according to the present invention.
 図1に示すように、本発明に係るガスバリアー性フィルムFは、支持体としての樹脂基材1と、樹脂基板1上に、ガスバリアー層2を有し、ガスバリアー層2上に、保護層3を積層した構成を有している。 As shown in FIG. 1, a gas barrier film F according to the present invention has a resin base material 1 as a support, a gas barrier layer 2 on the resin substrate 1, and a protective film on the gas barrier layer 2. The layer 3 is stacked.
 本発明に係るガスバリアー層2は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、前記(1)及び(2)で規定する要件を同時に満たす元素分布プロファイルを有していることを特徴とする。また、本発明に係る保護層3は、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内であることを特徴とする。 The gas barrier layer 2 according to the present invention contains carbon atoms, silicon atoms, and oxygen atoms, the composition continuously changes in the layer thickness direction, and simultaneously satisfies the requirements defined in the above (1) and (2) It has a distribution profile. The protective layer 3 according to the present invention is characterized in that the film hardness measured by the nanoindentation method is in the range of 2.0 to 8.0 GPa.
 〔1〕樹脂基材
 本発明に係るガスバリアー性フィルムFを構成する樹脂基材1としては、ガスバリアー性を有するガスバリアー層2及び保護層3を保持することができる有機材料で形成されたものであれば、特に限定されるものではない。
[1] Resin base material The resin base material 1 constituting the gas barrier film F according to the present invention is formed of an organic material capable of holding the gas barrier layer 2 and the protective layer 3 having gas barrier properties. If it is a thing, it will not specifically limit.
 本発明に適用可能な樹脂基材としては、例えば、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリスチレン(PS)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂から構成されるフィルム、更には上記樹脂を2層以上積層して構成される積層フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などのフィルムが好ましく用いられる。 Examples of the resin base material applicable to the present invention include methacrylate ester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polystyrene (PS), aromatic polyamide, and polyether. Examples thereof include films composed of resins such as ether ketone, polysulfone, polyethersulfone, polyimide, and polyetherimide, and laminated films composed of two or more layers of the above resins. In view of cost and availability, films of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used.
 樹脂基材の厚さは、特に制限はなく、5~500μmの範囲内で選択することができるが、本発明の効果をより発現することができる観点からは、40~150μmの範囲内であることが好ましい。 The thickness of the resin base material is not particularly limited and can be selected within a range of 5 to 500 μm. However, from the viewpoint of further manifesting the effects of the present invention, it is within a range of 40 to 150 μm. It is preferable.
 また、本発明に係る樹脂基材は、透明であることが好ましい。樹脂基材が透明であり、樹脂基材上に形成する層も透明であることにより、透明なガスバリアー性フィルムとすることが可能となり、電子デバイス(例えば、有機EL素子等)等の透明基板として適用することができる。 The resin base material according to the present invention is preferably transparent. Since the resin base material is transparent and the layer formed on the resin base material is also transparent, a transparent gas barrier film can be obtained, and a transparent substrate such as an electronic device (for example, an organic EL element). Can be applied as
 また、上記の樹脂等を用いた樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。また、延伸により位相差等を調整することもできる。 Further, the resin base material using the above-described resin or the like may be an unstretched film or a stretched film. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression. Moreover, a phase difference etc. can also be adjusted by extending | stretching.
 本発明に係る樹脂基材は、従来公知の一般的なフィルム成膜方法により製造することが可能である。例えば、材料となる樹脂を押出し機により溶融し、環状ダイやTダイにより押出して急冷することにより、実質的に無定形で配向していない未延伸のフィルム状の樹脂基材を製造することができる。また、材料となる樹脂を溶媒に溶解し、無端の金属樹脂支持体上に流延(キャスト)して乾燥、剥離することにより、実質的に無定形で配向していない未延伸のフィルム状の樹脂基材を製造することもができる。 The resin substrate according to the present invention can be manufactured by a conventionally known general film forming method. For example, an unstretched film-like resin base material that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. it can. In addition, the resin as a material is dissolved in a solvent, cast on an endless metal resin support, dried, and peeled to form an unstretched film that is substantially amorphous and not oriented. A resin base material can also be manufactured.
 更に、未延伸の樹脂基材を、一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の延伸方法により、樹脂基材の搬送方向(縦軸方向、長手方向あるいはMD方向ともいう。)、又は樹脂基材の搬送方向と直角方向(横軸方向、幅手方向あるいはTD方向ともいう。)に延伸することにより、延伸樹脂基材を製造することができる。この場合の延伸倍率は、樹脂基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向(MD方向)及び横軸方向(TD方向)にそれぞれ2~10倍の範囲内で延伸することが好ましい。 Further, the unstretched resin base material is transported in the resin substrate transport direction (longitudinal direction) by a known stretching method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, and tubular simultaneous biaxial stretching. A stretched resin base material is produced by stretching in a direction perpendicular to the transport direction of the resin base material (also referred to as an axial direction, a longitudinal direction, or an MD direction) or a direction perpendicular to the transport direction of the resin base material (also referred to as a horizontal axis direction, a width direction, or a TD direction) can do. The draw ratio in this case can be appropriately selected according to the resin used as the raw material of the resin base material, but within a range of 2 to 10 times in the vertical axis direction (MD direction) and the horizontal axis direction (TD direction). It is preferable to stretch.
 また、本発明において、樹脂基材は、寸法安定性の点で、弛緩処理、オフライン熱処理を行ってもよい。弛緩処理は、前述の成膜方法における延伸成膜工程中の熱固定した後、横延伸のテンター内、又はテンターを出た後の巻き取りまでの工程で行われるのが好ましい。弛緩処理は、処理温度が80~200℃の範囲内で行われることが好ましく、より好ましくは、処理温度が100~180℃の範囲内である。オフライン熱処理の方法としては、特に限定されないが、例えば、複数の熱ローラー群によるローラー搬送方法、空気をフィルムに吹き付けて浮揚させるエアー搬送などにより搬送させる方法(この時、複数のスリットから加熱空気をフィルム面の片面あるいは両面に吹き付ける方法)、赤外線ヒーターなどによる輻射熱を利用する方法、フィルムを自重で垂れ下がらせ、加熱させながら下方で巻きとる等の方法を挙げることができる。熱処理の搬送張力は、できるだけ低くし、熱収縮を促進することで、良好な寸法安定性を備えた樹脂基材となる。処理温度としては、(Tg+50℃)~(Tg+150℃)の温度範囲内が好ましい。ここでいうTgとは、樹脂基材のガラス転移温度をいう。 In the present invention, the resin base material may be subjected to relaxation treatment or off-line heat treatment in terms of dimensional stability. The relaxation treatment is preferably performed in the process from the heat setting in the stretching film forming step in the above-described film forming method to the winding in the transverse stretching tenter or after exiting the tenter. The relaxation treatment is preferably performed at a treatment temperature in the range of 80 to 200 ° C., and more preferably at a treatment temperature in the range of 100 to 180 ° C. The method of off-line heat treatment is not particularly limited, but for example, a roller transport method using a plurality of heat roller groups, a method of transporting air by blowing air on a film, and the like (including heated air from a plurality of slits). Examples thereof include a method of spraying on one or both sides of the film surface), a method of using radiant heat from an infrared heater, and a method of hanging the film under its own weight and winding it down while heating. By making the conveyance tension of the heat treatment as low as possible and promoting thermal shrinkage, a resin base material having good dimensional stability is obtained. The treatment temperature is preferably within the temperature range of (Tg + 50 ° C.) to (Tg + 150 ° C.). Tg here refers to the glass transition temperature of the resin substrate.
 本発明に係る樹脂基材は、フィルム成膜の過程で、片面又は両面にインラインで下引層塗布液を塗布することができる。本発明において、このような成膜工程中での下引層塗布方法をインライン下引という。本発明に有用な下引層塗布液の調製に使用する樹脂としては、例えば、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン樹脂、ポリビニルアルコール樹脂、変性ポリビニルアルコール樹脂及びゼラチン等を挙げることができ、いずれも好ましく用いることができる。これらの下引層塗布液には、従来公知の添加剤を加えることもできる。そして、上記下引層は、ローラーコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知のコーティング方法を用いて形成することができる。上記の下引層の塗布量としては、0.01~2g/m2(乾燥状態)の範囲内が好ましい。 In the resin base material according to the present invention, the undercoat layer coating solution can be applied inline on one side or both sides in the course of film formation. In the present invention, such an undercoat layer coating method in the film forming process is called inline undercoat. Examples of the resin used for preparing the undercoat layer coating solution useful in the present invention include, for example, polyester resins, acrylic-modified polyester resins, polyurethane resins, acrylic resins, vinyl resins, vinylidene chloride resins, polyethyleneimine vinylidene resins, polyethyleneimine resins. , Polyvinyl alcohol resin, modified polyvinyl alcohol resin, gelatin and the like, and any of them can be preferably used. A conventionally well-known additive can also be added to these undercoat layer coating liquids. The undercoat layer can be formed using a known coating method such as roller coating, gravure coating, knife coating, dip coating, or spray coating. The coating amount of the undercoat layer is preferably in the range of 0.01 to 2 g / m 2 (dry state).
 〔2〕ガスバリアー層
 本発明に係るガスバリアー層は、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)で規定する条件を満たす構成であることを特徴とする。
[2] Gas barrier layer The gas barrier layer according to the present invention contains carbon atoms, silicon atoms, and oxygen atoms, the composition continuously changes in the layer thickness direction, and is defined by the following requirements (1) and (2). It is the structure which satisfy | fills the conditions to satisfy | fill.
 すなわち、
 (1)ガスバリアー層についてのX線光電子分光法による深さ方向の元素分布測定に基づいて作成した各構成元素の分布曲線において、当該ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線が、極値を有し、かつ炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5.0at%以上である。
That is,
(1) In the distribution curve of each constituent element created based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the gas barrier layer, from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer The carbon distribution curve showing the relationship between the distance between the carbon atoms and the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”) And the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5.0 at% or more.
 (2)ガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。 (2) In the region of 90% or more of the total thickness of the gas barrier layer, the average atomic ratio with respect to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or (B). It has the order of magnitude relationship.
 式(A)
   (炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
 式(B)
   (酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
 なお、基材界面領域における測定精度は、樹脂基材の構成原子のノイズ等でやや精度が低下するため、上記式(A)又は式(B)で規定する関係を満たす領域としては、ガスバリアー層の全層厚のうち、90~95%の範囲内の領域であることが好ましい。
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
In addition, since the measurement accuracy in the base material interface region slightly decreases due to noise of constituent atoms of the resin base material, the region satisfying the relationship defined by the above formula (A) or formula (B) is a gas barrier. A region within the range of 90 to 95% of the total layer thickness is preferable.
 また、より好ましい態様としては、本発明に係るガスバリアー層の層厚が、50~1000nmの範囲内である。また、本発明に係るガスバリアー層の形成方法としては、本発明で規定する元素プロファイルを実現することができる薄膜形成方法であれば特に制限はないが、緻密に元素分布が制御したガスバリアー層を形成することができる観点からは、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成する方法が好ましい。 As a more preferred embodiment, the thickness of the gas barrier layer according to the present invention is in the range of 50 to 1000 nm. Further, the gas barrier layer forming method according to the present invention is not particularly limited as long as it is a thin film forming method capable of realizing the element profile defined in the present invention, but the gas barrier layer in which the element distribution is precisely controlled. From the viewpoint that can be formed, a method of forming by a discharge plasma chemical vapor deposition method using a source gas containing an organic silicon compound and an oxygen gas and having a discharge space between rollers to which a magnetic field is applied is preferable.
 以下、本発明に係るガスバリアー層の詳細について説明する。 Hereinafter, the details of the gas barrier layer according to the present invention will be described.
 本発明において、本発明に係るガスバリアー層内における各原子の含有比率の平均値は、後述するXPSデプスプロファイルの測定によって求めることができる。 In the present invention, the average value of the content ratio of each atom in the gas barrier layer according to the present invention can be obtained by measuring an XPS depth profile described later.
 (2.1)ガスバリアー層における炭素元素プロファイル
 本発明に係るガスバリアー層は、ガスバリアー層の構成元素として炭素原子、ケイ素原子及び酸素原子を含み、層厚方向に組成が連続的に変化し、X線光電子分光法による深さ方向の元素分布測定に基づき作成した各構成元素の分布曲線において、当該ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線が、極値を有し、かつ前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5.0at%以上であることを特徴の一つとする。
(2.1) Carbon Element Profile in Gas Barrier Layer The gas barrier layer according to the present invention contains carbon atoms, silicon atoms, and oxygen atoms as constituent elements of the gas barrier layer, and the composition continuously changes in the layer thickness direction. In the distribution curve of each constituent element prepared based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy, the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer, silicon atoms, oxygen The carbon distribution curve showing the relationship with the ratio of the amount of carbon atoms to the total amount of atoms and carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”) has an extreme value, and the carbon One of the characteristics is that the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the atomic ratio is 5.0 at% or more.
 また、本発明に係るガスバリアー層においては、炭素原子比率がガスバリアー層の特定の領域において、濃度勾配を有して連続的に変化する構成を有することが、ガスバリアー性と屈曲性を両立する観点から好ましい態様である。 In addition, the gas barrier layer according to the present invention has a configuration in which the carbon atom ratio continuously changes with a concentration gradient in a specific region of the gas barrier layer, so that both gas barrier properties and flexibility are achieved. Therefore, this is a preferred embodiment.
 このような炭素原子分布プロファイルを有する本発明に係るガスバリアー層においては、層内における炭素分布曲線が少なくとも一つの極値を有することを特徴とし、更に、少なくとも2つの極値を有することがより好ましく、特には、少なくとも三つの極値を有することが好ましい。炭素分布曲線において極値を有さない場合には、得られるガスバリアー性フィルムを屈曲させた場合、ガスバリアー性が不十分となる。また、このように少なくとも二つ又は三つの極値を有する場合は、前記炭素分布曲線が有する一つの極値及び該極値に隣接する極値における前記ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。 In the gas barrier layer according to the present invention having such a carbon atom distribution profile, the carbon distribution curve in the layer has at least one extreme value, and more preferably has at least two extreme values. It is particularly preferable to have at least three extreme values. When there is no extreme value in the carbon distribution curve, the gas barrier property becomes insufficient when the obtained gas barrier film is bent. Further, in the case of having at least two or three extreme values as described above, the gas barrier in the thickness direction of the gas barrier layer at one extreme value and the extreme value adjacent to the extreme value that the carbon distribution curve has. The absolute value of the difference in distance from the surface of the layer is preferably 200 nm or less, and more preferably 100 nm or less.
 なお、本発明における分布曲線の極値とは、ガスバリアー層の層厚方向における、ガスバリアー層の表面からの距離に対する元素の原子比率の極大値又は極小値の測定値のことをいう。 In addition, the extreme value of the distribution curve in the present invention means a measured value of the maximum value or the minimum value of the atomic ratio of the element with respect to the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
 本発明における極大値とは、ガスバリアー層の表面からの距離を変化させた場合に元素の原子比率の値が増加から減少に変わる点であって、かつその点の元素の原子比率の値よりも、該点からガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離を更に20nm変化させた位置の元素の原子比率の値が3.0at%以上減少する点のことをいう。 The maximum value in the present invention is a point where the value of the atomic ratio of an element changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed, and from the value of the atomic ratio of the element at that point This also means that the atomic ratio value of the element at a position where the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer is further changed by 20 nm from that point is reduced by 3.0 at% or more.
 また、本発明における極小値とは、ガスバリアー層の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる点であり、且つその点の元素の原子比率の値よりも、該点からガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離を更に20nm変化させた位置の元素の原子比の値が3.0at%以上増加する点のことをいう。 Further, the minimum value in the present invention is a point where the value of the atomic ratio of an element changes from decreasing to increasing when the distance from the surface of the gas barrier layer is changed, and the value of the atomic ratio of the element at that point Rather, the atomic ratio value of the element at a position where the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer is further changed by 20 nm from this point increases by 3.0 at% or more.
 本発明に係るガスバリアー層は、極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5.0at%以上であることを特徴とする。 The gas barrier layer according to the present invention has an extreme value, and a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5.0 at% or more. Features.
 (2.2)ガスバリアー層における各元素プロファイル
 本発明に係るガスバリアー層においては、構成元素として炭素原子、ケイ素原子及び酸素原子を含有することを特徴とするが、それぞれの原子の比率と、最大値及び最小値についての好ましい態様について、以下に説明する。
(2.2) Each element profile in the gas barrier layer The gas barrier layer according to the present invention is characterized by containing carbon atoms, silicon atoms and oxygen atoms as constituent elements, and the ratio of each atom, Preferred embodiments for the maximum and minimum values are described below.
 〈2.2.1〉炭素原子比率の最大値と最小値の関係
 本発明に係るガスバリアー層では、炭素分布曲線における炭素原子比率の最大の極値(極大値)と最小の極値(極小値)の差が5.0at%以上であることを特徴の一つとする。また、このようなガスバリアー層においては、炭素原子比率の最大値及び最小値の差の絶対値が6.0at%以上であることがより好ましく、7.0at%以上であることが特に好ましい。炭素原子比率の最大値及び最小値の差を5.0at%以上とすることにより、作製したガスバリアー性フィルムを屈曲させた際、膜の破断を生じることがなく、ガスバリアー性を十分に維持することができる。
<2.2.1> Relationship between Maximum Value and Minimum Value of Carbon Atom Ratio In the gas barrier layer according to the present invention, the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio in the carbon distribution curve. (Value) is 5.0 at% or more. In such a gas barrier layer, the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio is more preferably 6.0 at% or more, and particularly preferably 7.0 at% or more. By making the difference between the maximum value and the minimum value of the carbon atom ratio 5.0% or more, when the produced gas barrier film is bent, the film does not break and the gas barrier property is sufficiently maintained. can do.
 〈2.2.2〉酸素原子比率の最大値と最小値の関係
 本発明に係るガスバリアー層においては、酸素分布曲線における最大値及び最小値の差の絶対値が5.0at%以上であることが好ましく、6.0at%以上であることがより好ましく、7.0at%以上であることが特に好ましい。前記絶対値が5.0at%以上では、得られるガスバリアー性フィルムを屈曲させた際、膜の破断を生じることがなく、ガスバリアー性が十分となる。
<2.2.2> Relationship between maximum value and minimum value of oxygen atomic ratio In the gas barrier layer according to the present invention, the absolute value of the difference between the maximum value and the minimum value in the oxygen distribution curve is 5.0 at% or more. It is preferably 6.0 at% or more, more preferably 7.0 at% or more. When the absolute value is 5.0 at% or more, when the obtained gas barrier film is bent, the film does not break and the gas barrier property is sufficient.
 〈2.2.3〉ケイ素原子比率の最大値と最小値の関係
 本発明に係るガスバリアー層においては、ケイ素分布曲線における最大値及び最小値の差の絶対値が5.0未満であることが好ましく、4.0at%未満であることがより好ましく、3.0at%未満であることが特に好ましい。前記絶対値が5.0at%未満であれば、得られるガスバリアー性フィルムのガスバリアー性及び機械的強度が十分となる。
<2.2.3> Relationship between maximum value and minimum value of silicon atomic ratio In the gas barrier layer according to the present invention, the absolute value of the difference between the maximum value and the minimum value in the silicon distribution curve is less than 5.0. Is preferable, and it is more preferable that it is less than 4.0 at%, and it is especially preferable that it is less than 3.0 at%. If the absolute value is less than 5.0 at%, the gas barrier property and mechanical strength of the resulting gas barrier film will be sufficient.
 〈2.2.4〉酸素原子+炭素原子の合計量の比率
 本発明に係るガスバリアー層においては、層厚方向における該層の表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量に対する酸素原子及び炭素原子の合計量の比率(酸素-炭素合計の原子比率という。)である酸素-炭素合計の分布曲線(酸素炭素分布曲線ともいう。)において、前記酸素-炭素合計の原子比率の最大値及び最小値の差の絶対値が5.0at%未満であることが好ましく、4.0at%未満であることがより好ましく、3.0at%未満であることが特に好ましい。前記絶対値が5.0at%未満であれば、得られるガスバリアー性フィルムのガスバリアー性が十分となる。
<2.2.4> Ratio of the total amount of oxygen atoms + carbon atoms In the gas barrier layer according to the present invention, the distance from the surface of the layer in the layer thickness direction and the total of silicon atoms, oxygen atoms and carbon atoms In the oxygen-carbon total distribution curve (also referred to as oxygen-carbon distribution curve), which is the ratio of the total amount of oxygen atoms and carbon atoms to the amount (referred to as the atomic ratio of oxygen-carbon total), the oxygen-carbon total atoms The absolute value of the difference between the maximum value and the minimum value of the ratio is preferably less than 5.0 at%, more preferably less than 4.0 at%, and particularly preferably less than 3.0 at%. If the absolute value is less than 5.0 at%, the resulting gas barrier film has sufficient gas barrier properties.
 なお、後述する図3及び図4に示すような炭素原子分布プロファイル(ケイ素分布曲線、酸素分布曲線及び炭素分布曲線)に関する説明において、「ケイ素原子、酸素原子及び炭素原子の合計量」とは、ケイ素原子、酸素原子及び炭素原子の合計at%(原子数%、原子数比率ともいう。)を意味し、「炭素原子の量」とは、炭素原子数を意味する。本発明でいうat%とは、ケイ素原子、酸素原子及び炭素原子の総原子数を100%としたときの各原子の原子数比率を意味する。また、図3及び図4に示すようなケイ素分布曲線、酸素分布曲線及び酸素炭素分布曲線における「ケイ素原子の量」及び「酸素原子の量」についても同様である。 In the description of the carbon atom distribution profile (silicon distribution curve, oxygen distribution curve and carbon distribution curve) as shown in FIG. 3 and FIG. 4 described later, “the total amount of silicon atoms, oxygen atoms and carbon atoms” It means the total at% (number of atoms, also referred to as atomic ratio) of silicon atoms, oxygen atoms and carbon atoms, and “amount of carbon atoms” means the number of carbon atoms. The term “at%” in the present invention means the atomic ratio of each atom when the total number of silicon atoms, oxygen atoms and carbon atoms is 100%. The same applies to “amount of silicon atoms” and “amount of oxygen atoms” in the silicon distribution curve, oxygen distribution curve, and oxygen carbon distribution curve as shown in FIGS.
 〈2.2.5〉表面から層厚方向の全層厚領域における元素分布
 本発明に係るガスバリアー層においては、ガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有することを特徴の一つとし、更に好ましくは、ガスバリアー層の全層厚の90%以上の領域におけるケイ素原子、酸素原子及び炭素原子の平均原子比率が、下記式(A)で表される序列の大小関係を有することである。
<2.2.5> Element distribution in the entire layer thickness region from the surface to the layer thickness direction In the gas barrier layer according to the present invention, in a region of 90% or more of the total layer thickness of the gas barrier layer, silicon atoms and oxygen atoms And the average atomic ratio of each atom with respect to the total amount of carbon atoms (100 at%) has one of the features of the order represented by the following formula (A) or (B), and more preferably, That is, the average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms in a region of 90% or more of the total thickness of the gas barrier layer has a hierarchical relationship represented by the following formula (A).
 式(A)
   (炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
 式(B)
   (酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
 (2.3)X線光電子分光法による深さ方向の元素分布測定
 本発明に係るガスバリアー層の層厚方向におけるケイ素分布曲線、酸素分布曲線、及び炭素分布曲線、及び酸素-炭素合計の分布曲線等は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は、前記ガスバリアー層の層厚方向における表面からの距離におおむね相関することから、「ガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離」とすることができ、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層の表面からの距離として採用することができる。また、このようなXPSデプスプロファイル測定に採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar+)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO2熱酸化膜換算値)とすることが好ましい。
Formula (A)
(Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
Formula (B)
(Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
(2.3) Element distribution measurement in depth direction by X-ray photoelectron spectroscopy Silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen-carbon total distribution in the layer thickness direction of the gas barrier layer according to the present invention Curves and the like are so-called XPS depth profiles in which X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon are used in combination to perform surface composition analysis sequentially while exposing the inside of the sample. It can be created by measurement. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time, the etching time is generally correlated with the distance from the surface in the layer thickness direction of the gas barrier layer. The distance from the surface of the barrier layer ”can be used as the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. Further, as a sputtering method employed for such XPS depth profile measurement, a rare gas ion sputtering method using argon (Ar + ) as an etching ion species is employed, and the etching rate (etching rate) is 0.05 nm / It is preferable to use sec (SiO 2 thermal oxide film equivalent value).
 また、本発明においては、膜面全体において均一で、かつ優れたガスバリアー性を有するガスバリアー層を形成するという観点から、ガスバリアー層が膜面方向(ガスバリアー層の表面に平行な方向)において実質的に一様であることが好ましい。本発明において、ガスバリアー層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定によりガスバリアー層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線及び前記酸素-炭素合計の分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比率の最大値及び最小値の差の絶対値が、互いに同じであるか若しくは5.0at%以内の差であることをいう。 In the present invention, from the viewpoint of forming a gas barrier layer that is uniform over the entire film surface and has excellent gas barrier properties, the gas barrier layer is in the film surface direction (direction parallel to the surface of the gas barrier layer). Is substantially uniform. In the present invention, that the gas barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the carbon distribution curve at any two measurement points on the film surface of the gas barrier layer by XPS depth profile measurement. When the oxygen-carbon total distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the atomic ratio of carbon in each carbon distribution curve is the same. The absolute value of the difference between the maximum value and the minimum value is the same as each other or within 5.0 at%.
 本発明に係るガスバリアー性フィルムは、樹脂基材上に、本発明に係る前記(1)及び(2)で規定する要件を同時に満たすガスバリアー層を少なくとも1層有していることが必須の要件であるが、そのような条件を満たす層を、2層以上を有していてもよい。さらに、このようなガスバリアー層を2層以上有する場合には、複数のガスバリアー層の材質は、同一であってもよく、異なっていてもよい。また、このようなガスバリアー層を2層以上形成する場合には、このようなガスバリアー層は、前記樹脂基材の一方の表面上に形成されていてもよく、前記樹脂基材の両方の面上に形成されていてもよい。また、このような複数のガスバリアー層としては、その中には、ガスバリアー性を必ずしも有しないガスバリアー層を含んでいてもよい。 The gas barrier film according to the present invention must have at least one gas barrier layer that simultaneously satisfies the requirements defined in (1) and (2) according to the present invention on the resin base material. Although it is a requirement, two or more layers that satisfy such a condition may be included. Furthermore, when two or more such gas barrier layers are provided, the materials of the plurality of gas barrier layers may be the same or different. When two or more such gas barrier layers are formed, such a gas barrier layer may be formed on one surface of the resin base material, and both of the resin base materials It may be formed on the surface. Moreover, as such a some gas barrier layer, the gas barrier layer which does not necessarily have gas barrier property may be included in it.
 また、前記ケイ素分布曲線、前記酸素分布曲線及び前記炭素分布曲線において、ケイ素原子、酸素原子及び炭素原子の合計量に対するケイ素原子比率は、19~40at%の範囲内であることが好ましく、30~40at%の範囲内であることがより好ましい。また、前記ガスバリアー層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する酸素原子比率は、33~67at%の範囲内であることが好ましく、41~62at%の範囲内であることがより好ましい。さらに、前記ガスバリアー層中におけるケイ素原子、酸素原子及び炭素原子の合計量に対する炭素原子比率は、1~19at%の範囲内であることが好ましく、3~19at%の範囲内であることがより好ましい。 In the silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve, the silicon atom ratio relative to the total amount of silicon atoms, oxygen atoms, and carbon atoms is preferably in the range of 19 to 40 at%, and 30 to More preferably, it is within the range of 40 at%. The oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 33 to 67 at%, more preferably in the range of 41 to 62 at%. preferable. Further, the ratio of carbon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms in the gas barrier layer is preferably in the range of 1 to 19 at%, more preferably in the range of 3 to 19 at%. preferable.
 (2.4)ガスバリアー層の層厚
 本発明に係るガスバリアー層の層厚は、50~1000nmの範囲内であることが好ましく、100~1000nmの範囲内であることより好ましく、100~500nmの範囲内であることが特に好ましい。
(2.4) Layer thickness of gas barrier layer The layer thickness of the gas barrier layer according to the present invention is preferably in the range of 50 to 1000 nm, more preferably in the range of 100 to 1000 nm, and more preferably in the range of 100 to 500 nm. It is particularly preferable that the value falls within the range.
 ガスバリアー層の層厚の合計値が上記範囲内であれば、所望の平面性を実現することができるとともに、酸素ガスバリアー性、水蒸気バリアー性等のガスバリアー性が十分であり、屈曲によりガスバリアー性も低下しにくい傾向にある。 If the total thickness of the gas barrier layers is within the above range, desired flatness can be achieved, and gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties are sufficient, and bending causes gas The barrier property tends to be difficult to decrease.
 (2.5)ガスバリアー層の形成方法
 本発明に係るガスバリアー層の形成方法としては、本発明で規定する層内における元素プロファイルを実現することができる薄膜形成方法であれば特に制限はないが、緻密に各元素プロファイルが制御させたガスバリアー層を形成することができる観点からは、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成する方法を用いることが好ましい。
(2.5) Gas Barrier Layer Forming Method The gas barrier layer forming method according to the present invention is not particularly limited as long as it is a thin film forming method capable of realizing the element profile in the layer defined by the present invention. However, from the viewpoint that a gas barrier layer in which each element profile is precisely controlled can be formed, a discharge space is provided between rollers to which a magnetic field is applied using a source gas containing an organosilicon compound and an oxygen gas. It is preferable to use a method formed by a discharge plasma chemical vapor deposition method.
 より詳しくは、本発明に係るガスバリアー層は、磁場を印加したローラー間放電プラズマ処理装置を用い、樹脂基材を一対の成膜ローラーに巻き回し、一対の成膜ローラー間に成膜ガスを供給しながらプラズマ放電してプラズマ化学気相成長法により形成される層である。また、このように一対の成膜ローラー間に磁場を印加しながら放電する際には、一対の成膜ローラー間の極性を交互に反転させることが好ましい。更に、このようなプラズマ化学気相成長法に用いる成膜ガスとしては、有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、その成膜ガス中の酸素ガスの含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。また、本発明に係るガスバリアー性フィルムにおいては、ガスバリアー層が連続的な成膜プロセスにより形成された層であることが好ましい。 More specifically, the gas barrier layer according to the present invention uses an inter-roller discharge plasma processing apparatus to which a magnetic field is applied, winds a resin base material around a pair of film forming rollers, and forms a film forming gas between the pair of film forming rollers. It is a layer formed by plasma chemical vapor deposition by plasma discharge while being supplied. Further, when discharging while applying a magnetic field between the pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately. Further, as a film forming gas used in such a plasma chemical vapor deposition method, a source gas containing an organosilicon compound and an oxygen gas are used, and the content of the oxygen gas in the film forming gas is within the film forming gas. It is preferable that the amount is less than the theoretical oxygen amount necessary for complete oxidation of the total amount of the organosilicon compound. In the gas barrier film according to the present invention, the gas barrier layer is preferably a layer formed by a continuous film forming process.
 次に、本発明に係るガスバリアー層の具体的な形成方法について説明する。 Next, a specific method for forming the gas barrier layer according to the present invention will be described.
 本発明に係るガスバリアー性フィルムは、磁場を印加したローラー間放電プラズマ処理装置を用い、樹脂基材表面上(下地層等の中間層を設けた樹脂基材を採用する場合は、当該中間層上)に、ガスバリアー層を形成させることにより作製する。 The gas barrier film according to the present invention uses an inter-roller discharge plasma treatment apparatus to which a magnetic field is applied, and the resin base surface (when a resin base provided with an intermediate layer such as a base layer is employed, the intermediate layer It is produced by forming a gas barrier layer on top).
 本発明に係るガスバリアー層においては、炭素原子比率が濃度勾配を有し、かつ層内で連続的に変化する元素プロファイルを形成するため、磁場を印加したローラー間放電プラズマ化学気相成長法を用いることが好ましい態様である。 In the gas barrier layer according to the present invention, in order to form an element profile in which the carbon atomic ratio has a concentration gradient and continuously changes in the layer, an inter-roller discharge plasma chemical vapor deposition method using a magnetic field is performed. It is a preferable aspect to use.
 本発明に係る磁場を印加したローラー間放電プラズマ化学気相成長法(以下、プラズマCVD法、あるいはローラーCVD法ともいう。)は、プラズマを発生させる際に、複数の成膜ローラー間に磁場を印加しながら、形成した放電空間にプラズマ放電を発生させることが好ましく、本発明では一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに樹脂基材を巻き回して、当該一対の成膜ローラー間に、磁場を印加した状態で放電してプラズマを発生させることが好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に樹脂基材を巻き回して、かかる一対の成膜ローラー間にプラズマ放電することにより、樹脂基材と成膜ローラーとの間の距離が変化することによって、前記炭素原子比率が濃度勾配を有し、かつ層内で連続的に変化するようなガスバリアー層を形成することができる。 The inter-roller discharge plasma chemical vapor deposition method (hereinafter also referred to as plasma CVD method or roller CVD method) to which a magnetic field is applied according to the present invention is used to generate a magnetic field between a plurality of film-forming rollers when generating plasma. It is preferable to generate a plasma discharge in the formed discharge space while applying the voltage.In the present invention, a pair of film forming rollers is used, and a resin base material is wound around each of the pair of film forming rollers, and the pair of film forming rollers is used. It is preferable to generate plasma by discharging in a state where a magnetic field is applied between the film rollers. Thus, by using a pair of film forming rollers, winding the resin base material on the pair of film forming rollers, and performing plasma discharge between the pair of film forming rollers, the resin base material and the film forming roller By changing the distance between them, it is possible to form a gas barrier layer in which the carbon atom ratio has a concentration gradient and continuously changes in the layer.
 また、成膜時に一方の成膜ローラー上に存在する樹脂基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する樹脂基材の表面部分も同時に成膜することが可能となるため、効率よく薄膜を製造できるばかりか、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく本発明で規定する(1)及び(2)の要件を同時に満たすガスバリアー層を形成することが可能となる。 It is also possible to form a film on the surface part of the resin substrate that exists on the other film forming roller while forming a film on the surface part of the resin substrate that exists on one film formation roller. Therefore, not only can the thin film be produced efficiently, but also the film formation rate can be doubled, and the film having the same structure can be formed, so that the extreme value in the carbon distribution curve can be at least doubled, and the film can be efficiently produced. It is possible to form a gas barrier layer that simultaneously satisfies the requirements (1) and (2) defined in the present invention.
 また、本発明に係るガスバリアー性フィルムの製造方法としては、優れた生産適性を付与する観点から、ロールtoロール方式で前記樹脂基材の表面上に本発明に係るガスバリアー層を形成させる方法が好ましい。 Moreover, as a method for producing a gas barrier film according to the present invention, a method for forming the gas barrier layer according to the present invention on the surface of the resin substrate by a roll-to-roll method from the viewpoint of imparting excellent production suitability. Is preferred.
 また、このようなプラズマ化学気相成長法によりガスバリアー性フィルムを製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の磁場を印加する装置を具備した成膜ローラーと、プラズマ電源とを備え、かつ一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマ化学気相成長法を利用しながらロールtoロール方式で、本発明で規定する元素プロファイルを有するガスバリアー性フィルムを得ることができる。 Further, an apparatus that can be used when producing a gas barrier film by such a plasma chemical vapor deposition method is not particularly limited, and a film forming roller including at least a pair of magnetic field applying apparatuses, And a plasma power source, and is preferably an apparatus capable of discharging between a pair of film forming rollers. For example, when the manufacturing apparatus shown in FIG. A gas barrier film having an element profile defined in the present invention can be obtained by a roll-to-roll method using a vapor phase growth method.
 以下、図2を参照しながら、本発明に係るガスバリアー性フィルムのガスバリアー層の具体的な製造方法について、その詳細を説明する。なお、図2は、本発明に係るガスバリアー性フィルムの製造において好適に利用することができる磁場を印加したローラー間放電プラズマCVD装置の一例を示す模式図であり、ここで例示する装置にのみ限定されるものではない。 Hereinafter, with reference to FIG. 2, details of a specific method for producing the gas barrier layer of the gas barrier film according to the present invention will be described. FIG. 2 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field that can be suitably used in the production of the gas barrier film according to the present invention is applied, and only the apparatus exemplified here. It is not limited.
 図2に示す磁場を印加したローラー間放電プラズマCVD装置(以下、プラズマCVD装置ともいう。)は、主には、送り出しローラー11と、搬送ローラー21、22、23及び24と、成膜ローラー31及び32と、成膜ガス供給管41と、プラズマ発生用電源51と、成膜ローラー31及び32の内部に設置された磁場発生装置61及び62と、巻取りローラー71とを備えている。また、このようなプラズマCVD製造装置においては、少なくとも成膜ローラー31及び32と、成膜ガス供給管41と、プラズマ発生用電源51と、磁場発生装置61及び62とが、図示を省略した真空チャンバー内に配置されている。更に、このようなプラズマCVD製造装置において、真空チャンバー(不図示)は、真空ポンプ(不図示)に接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。 An inter-roller discharge plasma CVD apparatus (hereinafter also referred to as a plasma CVD apparatus) to which a magnetic field shown in FIG. 2 is applied mainly includes a delivery roller 11, transport rollers 21, 22, 23 and 24, and a film formation roller 31. And 32, a film forming gas supply pipe 41, a plasma generation power source 51, magnetic field generators 61 and 62 installed inside the film forming rollers 31 and 32, and a winding roller 71. Further, in such a plasma CVD manufacturing apparatus, at least the film forming rollers 31 and 32, the film forming gas supply pipe 41, the plasma generating power source 51, and the magnetic field generating apparatuses 61 and 62 are not shown in a vacuum. Located in the chamber. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
 このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー31と成膜ローラー32)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源51に接続されている。一対の成膜ローラー(成膜ローラー31と成膜ローラー32)に対し、プラズマ発生用電源51より電力を供給することにより、成膜ローラー31と成膜ローラー32との間の空間で放電することが可能となり、これにより成膜ローラー31と成膜ローラー32との間の空間(放電空間ともいう。)にプラズマを発生させることができる。なお、このように、成膜ローラー31と成膜ローラー32を電極として利用することになるため、電極として適用可能な材質の選択や、その構成を適宜変更すればよい。また、このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー31及び成膜ローラー32)は、図2に示すように、その中心軸が同一平面上にほぼ平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー31及び成膜ローラー32)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。 In such a plasma CVD manufacturing apparatus, each film forming roller generates plasma so that a pair of film forming rollers (the film forming roller 31 and the film forming roller 32) can function as a pair of counter electrodes. It is connected to the power source 51 for use. Discharging in a space between the film formation roller 31 and the film formation roller 32 by supplying electric power from a plasma generation power supply 51 to the pair of film formation rollers (the film formation roller 31 and the film formation roller 32). Accordingly, plasma can be generated in a space (also referred to as a discharge space) between the film formation roller 31 and the film formation roller 32. In addition, since the film-forming roller 31 and the film-forming roller 32 are used as electrodes in this way, the selection of materials applicable as electrodes and the configuration thereof may be changed as appropriate. Further, in such a plasma CVD manufacturing apparatus, the pair of film forming rollers (film forming roller 31 and film forming roller 32) have their central axes substantially parallel to each other as shown in FIG. It is preferable to arrange them as follows. Thus, by arranging a pair of film forming rollers (film forming roller 31 and film forming roller 32), the film forming rate can be doubled and a film having the same structure can be formed. It is possible to at least double the extreme value at.
 また、成膜ローラー31及び成膜ローラー32の内部には、それぞれの成膜ローラーが回転しても、それ自身は回転しないようにして固定された磁場発生装置61及び磁場発生装置62がそれぞれ設けられていることが好ましい構成である。 In addition, a magnetic field generator 61 and a magnetic field generator 62 that are fixed so as not to rotate even when the respective film forming rollers rotate are provided inside the film forming roller 31 and the film forming roller 32, respectively. It is a preferable configuration.
 上記説明した成膜ローラー31及び成膜ローラー32としては、適宜公知のローラーを用いることができる。成膜ローラー31及び32としては、より効率よく薄膜を形成することができる観点から、直径が同一のものを使うことが好ましい。また、成膜ローラー31及び成膜ローラー32の直径としては、放電条件、チャンバーのスペース等の観点から、直径として100~1000mmφの範囲内、特に100~700mmφの範囲内が好ましい。直径が100mmφ以上であれば、プラズマ放電空間が小さくなりすぎることがないため、生産性の劣化もなく、短時間でプラズマ放電の全熱量がフィルムにかかることを回避でき、残留応力が大きくなりにくく好ましい。一方、直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、精緻なガスバリアー層の形成条件を保持することができるため好ましい。 As the film forming roller 31 and the film forming roller 32 described above, known rollers can be used as appropriate. As the film forming rollers 31 and 32, those having the same diameter are preferably used from the viewpoint of more efficiently forming a thin film. Further, the diameters of the film forming roller 31 and the film forming roller 32 are preferably in the range of 100 to 1000 mmφ, particularly in the range of 100 to 700 mmφ, from the viewpoint of discharge conditions, chamber space, and the like. If the diameter is 100 mmφ or more, the plasma discharge space does not become too small, so there is no deterioration in productivity, and it is possible to avoid applying the total amount of heat of the plasma discharge to the film in a short time, and the residual stress is difficult to increase. preferable. On the other hand, if the diameter is 1000 mmφ or less, it is preferable in terms of device design, including the uniformity of the plasma discharge space, because it is possible to maintain precise gas barrier layer formation conditions.
 また、このようなプラズマCVD製造装置に用いる送り出しローラー11及び搬送ローラー21、22、23及び24としては、公知のローラーを適宜選択して用いることができる。また、巻取りローラー71としても、ガスバリアー層を形成した樹脂基材1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 Also, as the feed roller 11 and the transport rollers 21, 22, 23, and 24 used in such a plasma CVD manufacturing apparatus, known rollers can be appropriately selected and used. The winding roller 71 is not particularly limited as long as it can wind the resin base material 1 on which the gas barrier layer is formed, and a known roller can be used as appropriate.
 成膜ガス供給管41は、ガスバリアー層形成用の原料ガス及び酸素ガスを所定の速度で、放電空間に供給又は、放電空間より排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源51としては、従来公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源51は、これに接続された成膜ローラー31と成膜ローラー32に電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源51としては、より効率よくプラズマCVD法を実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能な交流電源などを利用することが好ましい。また、このようなプラズマ発生用電源51としては、印加電力を100W~10kWの範囲内とすることができ、かつ交流の周波数を50Hz~500kHzの範囲内とすることが可能な電源がより好ましい。また、磁場発生装置61及び磁場発生装置62としては、適宜公知の磁場発生装置を用いることができる。 As the film forming gas supply pipe 41, a gas barrier layer forming source gas and oxygen gas that can be supplied to or discharged from the discharge space at a predetermined rate can be appropriately used. Furthermore, as the plasma generating power source 51, a conventionally known power source for a plasma generating apparatus can be used. Such a power source 51 for generating plasma supplies power to the film forming roller 31 and the film forming roller 32 connected thereto, and makes it possible to use these as counter electrodes for discharge. As such a plasma generation power source 51, an AC power source capable of alternately reversing the polarities of a pair of film forming rollers is used because the plasma CVD method can be performed more efficiently. It is preferable. Further, as such a plasma generating power supply 51, a power supply capable of setting the applied power in the range of 100 W to 10 kW and capable of setting the AC frequency in the range of 50 Hz to 500 kHz is more preferable. Moreover, as the magnetic field generator 61 and the magnetic field generator 62, a well-known magnetic field generator can be used suitably.
 図2に示すようなプラズマCVD装置を用いて、例えば、原料ガスの種類、プラズマ発生装置の成膜ローラー(電極ドラム)の電力、磁場発生装置の強度、真空チャンバー内の圧力、成膜ローラーの直径、並びに、樹脂基材の搬送速度を適宜調整することにより、本発明に係る元素プロファイルを有するガスバリアー性フィルムを製造することができる。すなわち、図2に示すプラズマCVD装置を用いて、成膜ガス(原料ガス等)を真空チャンバー内の放電空間に供給しつつ、一対の成膜ローラー(成膜ローラー31及び成膜ローラー32)間に、磁場を発生させながらプラズマ放電を行うことにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー31が保持している樹脂基材1の表面上並びに成膜ローラー32が保持している樹脂基材1の表面上に、本発明に係るガスバリアー層をプラズマCVD法により形成することができる。なお、このような成膜に際しては、樹脂基材1が送り出しローラー11や成膜ローラー31等により搬送されることにより、ロールtoロール方式の連続的な成膜プロセスで、樹脂基材1の表面上に前記ガスバリアー層が形成される。 Using the plasma CVD apparatus as shown in FIG. 2, for example, the type of source gas, the power of the film forming roller (electrode drum) of the plasma generating apparatus, the strength of the magnetic field generating apparatus, the pressure in the vacuum chamber, A gas barrier film having the element profile according to the present invention can be produced by appropriately adjusting the diameter and the conveying speed of the resin base material. That is, using the plasma CVD apparatus shown in FIG. 2, a film forming gas (raw material gas or the like) is supplied to the discharge space in the vacuum chamber while a pair of film forming rollers (film forming roller 31 and film forming roller 32) is interposed. Further, by performing plasma discharge while generating a magnetic field, the film forming gas (raw material gas or the like) is decomposed by the plasma, and the film forming roller 32 is formed on the surface of the resin substrate 1 held by the film forming roller 31. The gas barrier layer according to the present invention can be formed on the surface of the resin base material 1 held by the plasma CVD method. In such film formation, the surface of the resin base material 1 is transferred by a roll-to-roll continuous film formation process by transporting the resin base material 1 by the delivery roller 11 or the film formation roller 31 or the like. The gas barrier layer is formed thereon.
 〈2.5.1〉原料ガス
 本発明に係るガスバリアー層の形成に用いる成膜ガスを構成する原料ガスは、少なくともケイ素を含む有機ケイ素化合物を用いることが好ましい。
<2.5.1> Source gas It is preferable to use an organosilicon compound containing at least silicon as the source gas constituting the film forming gas used for forming the gas barrier layer according to the present invention.
 本発明に適用可能な有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取扱い性及び得られるガスバリアー層のガスバリアー性等の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。 Examples of the organosilicon compound applicable to the present invention include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, and trimethyl. Examples thereof include silane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handleability in film formation and gas barrier properties of the obtained gas barrier layer. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
 また、前記成膜ガスは、原料ガスの他に反応ガスとして、酸素ガスを含有することが好ましい。酸素ガスは、前記原料ガスと反応して酸化物等の無機化合物を形成する役割を果たすガスである。 The film forming gas preferably contains oxygen gas as a reaction gas in addition to the source gas. Oxygen gas is a gas that reacts with the raw material gas to form an inorganic compound such as an oxide.
 前記成膜ガスには、上記説明した原料ガスを真空チャンバー内に供給するため、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスには、プラズマ放電を発生させるため、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素ガスを用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas described above into the vacuum chamber. Further, a discharge gas may be used as the film forming gas, if necessary, in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
 このような成膜ガスが、ケイ素を含有する有機ケイ素化合物を含む原料ガスと酸素ガスを含有する場合、原料ガスと酸素ガスの比率としては、原料ガスと酸素ガスとを完全に反応させるために理論上必要となる酸素ガスの量の比率よりも、酸素ガスの比率を過剰にし過ぎないことが好ましい。酸素ガスの比率を過剰にし過ぎてしまうと、本発明で目的とする元素プロファイルを備えたガスバリアー層が得られにくい。よって、所望のバリアー性フィルムとしての性能を得る観点からは、酸素濃度としては、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下とすることが好ましい。 When such a film forming gas contains a raw material gas containing an organosilicon compound containing silicon and an oxygen gas, the ratio of the raw material gas to the oxygen gas is such that the raw material gas and the oxygen gas are completely reacted. It is preferable that the oxygen gas ratio is not excessively higher than the theoretically required oxygen gas ratio. If the ratio of oxygen gas is excessively increased, it is difficult to obtain a gas barrier layer having the target element profile in the present invention. Therefore, from the viewpoint of obtaining performance as a desired barrier film, it is preferable that the oxygen concentration be less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film-forming gas. .
 以下、代表例として、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、略称:HMDSO、組成式:(CH36Si2:)と、反応ガスである酸素(O2)の系について説明する。 Hereinafter, as a representative example, a system of hexamethyldisiloxane (organosilicon compound, abbreviation: HMDSO, composition formula: (CH 3 ) 6 Si 2 :) as a source gas and oxygen (O 2 ) as a reaction gas will be described. To do.
 原料ガスとしてのヘキサメチルジシロキサン((CH36Si2O)と、反応ガスである酸素(O2)とを含有する成膜ガスを、プラズマCVD法により反応させてケイ素-酸素系の薄膜を形成する場合、その成膜ガスがプラズマ放電処理により、下記反応式(1)で示される反応が起こり、二酸化ケイ素SiO2からなる薄膜が形成される。 A film-forming gas containing hexamethyldisiloxane ((CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by a plasma CVD method to form a silicon-oxygen-based material. In the case of forming a thin film, the film forming gas undergoes a reaction represented by the following reaction formula (1) by plasma discharge treatment to form a thin film made of silicon dioxide SiO 2 .
 反応式(1)
   (CH36Si2O+12O2→6CO2+9H2O+2SiO2
 反応式(1)で示す反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対し、酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまうため、酸素のガス流量比を理論比である完全反応の原料比(1モル:12モル)以下の流量に制御して、非完全反応を遂行させる。すなわち、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なく設定する必要がある。
Reaction formula (1)
(CH 3 ) 6 Si 2 O + 12O 2 → 6CO 2 + 9H 2 O + 2SiO 2
In the reaction represented by the reaction formula (1), the amount of oxygen necessary to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, when the film forming gas contains 12 moles or more of oxygen with respect to 1 mole of hexamethyldisiloxane and is completely reacted, a uniform silicon dioxide film is formed. The ratio is controlled to a flow rate that is equal to or less than the theoretical reaction raw material ratio (1 mol: 12 mol), and the incomplete reaction is performed. That is, it is necessary to set the amount of oxygen to less than 12 moles of the stoichiometric ratio with respect to 1 mole of hexamethyldisiloxane.
 なお、実際のプラズマCVD装置のチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスである酸素は、ガス供給部から成膜領域(放電空間)へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる。例えば、CVD法により完全酸化させて酸化ケイ素を得るためには、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量に設定することが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がガスバリアー層中に取り込まれ、所望の元素プロファイルを有するガスバリアー層を形成することが可能となり、得られるガスバリアー性フィルムに優れたバリアー性及び屈曲耐性を付与させることが可能となる。なお、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)が少なすぎると、酸化されなかった炭素原子や水素原子がガスバリアー層中に過剰に取り込まれることになる。この場合、バリアー膜の透明性が低下し、このようなガスバリアー性フィルムは、電子デバイス、例えば、有機ELデバイスや有機薄膜太陽電池などのように、透明性を必要とする電子デバイス用のフレキシブル基板(ガスバリアー性フィルム)には利用できなくなってしまう。このような観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 In the actual reaction in the chamber of the plasma CVD apparatus, since the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region (discharge space), the film is formed. Even if the molar amount (flow rate) of gas oxygen is 12 times the molar amount (flow rate) of hexamethyldisiloxane as a raw material, the reaction cannot actually proceed completely. It is considered that the reaction is completed only when the oxygen content is supplied in a large excess compared to the stoichiometric ratio. For example, in order to obtain silicon oxide by complete oxidation by the CVD method, the molar amount (flow rate) of oxygen may be about 20 times or more the molar amount (flow rate) of hexamethyldisiloxane as a raw material. Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material may be set to a stoichiometric ratio of 12 times or less (more preferably 10 times or less). preferable. By including hexamethyldisiloxane and oxygen in such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the gas barrier layer and have a desired element profile. A barrier layer can be formed, and excellent barrier properties and bending resistance can be imparted to the resulting gas barrier film. If the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is too small, unoxidized carbon atoms and hydrogen atoms will be excessively taken into the gas barrier layer. become. In this case, the transparency of the barrier film is lowered, and such a gas barrier film is flexible for electronic devices that require transparency, such as electronic devices such as organic EL devices and organic thin film solar cells. It cannot be used as a substrate (gas barrier film). From such a viewpoint, the lower limit of the molar amount (flow rate) of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas is more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane. Preferably, the amount is more than 0.5 times.
 〈2.5.2〉真空度
 プラズマCVD装置の真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~100Paの範囲内とすることが好ましい。
<2.5.2> Degree of vacuum The pressure (vacuum degree) in the vacuum chamber of the plasma CVD apparatus can be adjusted as appropriate according to the type of source gas, but is within the range of 0.5 to 100 Pa. It is preferable.
 〈2.5.3〉ローラー成膜
 図2に示すようなプラズマCVD装置等を用いたプラズマCVD法においては、成膜ローラー31及び成膜ローラー32間に放電するために、プラズマ発生用電源51に接続された電極ドラム(図2においては、成膜ローラー31及び成膜ローラー32内に設置されている。)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり、一概にいえるものでないが、おおむね0.1~10kWの範囲内とすることが好ましい。このような範囲の印加電力であれば、パーティクル(不正粒子)の発生も見られず、成膜時に発生する熱量も制御範囲内となるため、成膜時の基材表面温度の上昇による、樹脂基材の熱変形、熱による性能劣化や成膜時の皺の発生も防止することができる。また、熱で樹脂基材が溶融し、露出した成膜ローラー間に大電流の放電が発生することによる成膜ローラーの損傷等を防止することができる。
<2.5.3> Roller Film Formation In the plasma CVD method using a plasma CVD apparatus or the like as shown in FIG. 2, a plasma generating power source 51 is used for discharging between the film formation roller 31 and the film formation roller 32. The electric power applied to the electrode drum (installed in the film-forming roller 31 and the film-forming roller 32 in FIG. 2) connected to is appropriately determined according to the type of source gas, the pressure in the vacuum chamber, and the like. Although it can be adjusted and cannot be generally described, it is preferable to set it within a range of about 0.1 to 10 kW. If the applied power is in this range, no particles (illegal particles) are generated, and the amount of heat generated during film formation is within the control range. It is also possible to prevent thermal deformation of the base material, performance deterioration due to heat, and generation of wrinkles during film formation. In addition, it is possible to prevent the film forming roller from being damaged due to the fact that the resin base material is melted by heat and a large current discharge is generated between the exposed film forming rollers.
 樹脂基材1の搬送速度(ライン速度ともいい、成膜速度にも関連する。)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲内とすることが好ましく、0.5~20m/minの範囲内とすることがより好ましい。ライン速度が上記範囲内であれば、樹脂基材の熱に起因する皺も発生し難く、形成されるガスバリアー層の膜厚も十分に制御可能な範囲となる。 The conveying speed of the resin substrate 1 (also referred to as a line speed, which is also related to the film forming speed) can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc. It is preferably within the range of 100 m / min, and more preferably within the range of 0.5 to 20 m / min. If the line speed is within the above range, wrinkles due to the heat of the resin base material are hardly generated, and the film thickness of the formed gas barrier layer is in a sufficiently controllable range.
 以上のような方法に従って形成した本発明に係るガスバリアー層について、XPSデプスプロファイルにより測定した層の厚さ方向に対する各元素プロファイルの一例を、図3に示す。 FIG. 3 shows an example of each element profile with respect to the thickness direction of the layer measured according to the XPS depth profile for the gas barrier layer according to the present invention formed according to the above method.
 図3は、本発明に係るガスバリアー層のケイ素分布曲線、酸素分布曲線及び炭素分布曲線の一例を示すグラフである。 FIG. 3 is a graph showing an example of a silicon distribution curve, an oxygen distribution curve, and a carbon distribution curve of the gas barrier layer according to the present invention.
 図3において、符号A~Dは、Aが炭素分布曲線、Bがケイ素分布曲線、Cが酸素分布曲線、Dが酸素・炭素分布曲線を表す。 In FIG. 3, symbols A to D represent A as a carbon distribution curve, B as a silicon distribution curve, C as an oxygen distribution curve, and D as an oxygen / carbon distribution curve.
 図3に示すグラフにおいては、本発明に係るガスバリアー層が、極値を有し、炭素原子比率の最大の極大値と最小の極大値との差が5.0at%以上であり、かつガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、前式(A)で規定する序列の大小関係を満たしていることが分かる。 In the graph shown in FIG. 3, the gas barrier layer according to the present invention has an extreme value, the difference between the maximum maximum value and the minimum maximum value of the carbon atom ratio is 5.0 at% or more, and the gas In the region of 90% or more of the total thickness of the barrier layer, the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is the order magnitude relationship defined by the above formula (A) It can be seen that
 図4は、比較例の元素プロファイルを有する、ガスバリアー層の炭素分布曲線A、ケイ素分布曲線B及び酸素分布曲線の一例を示すグラフである。 FIG. 4 is a graph showing an example of the carbon distribution curve A, silicon distribution curve B, and oxygen distribution curve of the gas barrier layer having the elemental profile of the comparative example.
 図4に示す元素プロファイルからなるガスバリアー層は、平型電極(水平搬送)タイプのプラズマCVD放電法で形成したガスバリアー層における炭素原子プロファイルA、ケイ素原子プロファイルB及び酸素原子プロファイルCであり、特に、炭素原子成分Aの濃度勾配の連続的な変化が生じていない構成であることが分かる。 The gas barrier layer comprising the element profile shown in FIG. 4 is a carbon atom profile A, a silicon atom profile B, and an oxygen atom profile C in a gas barrier layer formed by a flat electrode (horizontal transport) type plasma CVD discharge method. In particular, it can be seen that the structure does not cause a continuous change in the concentration gradient of the carbon atom component A.
 〔3〕保護層
 本発明に係るガスバリアー性フィルムにおいては、ガスバリアー層上に形成した保護層のナノインデンテーションにより測定される膜硬度が、2.0~8.0GPaの範囲内であることを特徴とし、好ましくは3.0~5.5GPaの範囲内である。
[3] Protective layer In the gas barrier film according to the present invention, the film hardness measured by nanoindentation of the protective layer formed on the gas barrier layer is in the range of 2.0 to 8.0 GPa. And is preferably in the range of 3.0 to 5.5 GPa.
 本発明に係る保護層のナノインデンテーション法により測定した膜硬度を2.0GPa以上とすることにより、表面に耐傷性を付与することはもちろんであるが、加えて、平面性に優れ、かつ電子デバイスに適用した際の故障耐性(ダークスポット耐性)に優れた特性を発現するガスバリアー性フィルムを得ることができる。また、膜硬度を10.0GPa以下とすることにより、ガスバリアー性フィルムにフレキシビリティー性を付与するとともに、優れた平面性に維持することができる。 By making the film hardness measured by the nanoindentation method of the protective layer according to the present invention 2.0 GPa or more, it is of course possible to impart scratch resistance to the surface. It is possible to obtain a gas barrier film that exhibits characteristics excellent in failure resistance (dark spot resistance) when applied to a device. Further, by setting the film hardness to 10.0 GPa or less, flexibility can be imparted to the gas barrier film, and excellent flatness can be maintained.
 (3.1)ナノインデンテーション法
 本発明に係る保護層の膜硬度は、ナノインデンテーション法によって測定するものであり、先端形状がダイヤモンドチップからなる圧子を薄膜である保護層表面に押し込み、その時の圧子にかかる荷重Pと圧子の下の射影面積Aから求められる硬さである。
(3.1) Nanoindentation Method The film hardness of the protective layer according to the present invention is measured by the nanoindentation method, and the indenter whose tip shape is a diamond tip is pushed into the surface of the protective layer, which is a thin film. Hardness obtained from the load P applied to the indenter and the projected area A under the indenter.
 詳細なナノインデンテーション法による硬度の測定方法は、微小なダイヤモンド圧子を薄膜(保護層)に押し込みながら荷重と押し込み深さ(変位量)の関係を測定し、測定値から塑性変形硬さを算出する方法である。 The detailed nanoindentation method measures hardness by measuring the relationship between load and indentation depth (displacement) while pressing a small diamond indenter into a thin film (protective layer) and calculating the plastic deformation hardness from the measured value. It is a method to do.
 特に、この測定方法は、1μm以下の薄膜の測定に対して、基材の物性の影響を受けにくく、また、押し込んだ際に薄膜に割れが発生しにくいという特徴を有している。一般に非常に薄い膜の物性測定に用いられている測定方法である。 In particular, this measurement method is characterized in that it is less susceptible to the physical properties of the base material when measuring a thin film of 1 μm or less, and that the thin film is less likely to crack when pressed. In general, this is a measuring method used for measuring physical properties of a very thin film.
 図5は、ナノインデンテーション法による測定装置の一例を示す模式図である。 FIG. 5 is a schematic diagram showing an example of a measuring apparatus using the nanoindentation method.
 図5に記載のナノインデンテーション測定装置Nにおいて、101はトランスデューサー、102は先端形状が正三角形のダイヤモンドBerkovich圧子、Fはガスバリアー性フィルム、1は樹脂基材、2はガスバリアー層、3は保護層を示す。 In the nanoindentation measuring apparatus N shown in FIG. 5, 101 is a transducer, 102 is a diamond Berkovich indenter having a regular triangle shape, F is a gas barrier film, 1 is a resin substrate, 2 is a gas barrier layer, 3 Indicates a protective layer.
 このナノインデンテーション測定装置Nは、トランスデューサー101と先端形状が正三角形のダイヤモンドBerkovich圧子102を用いて、保護層3にμNオーダーの荷重を加えながらナノメートル(nm)の精度で変位量を測定することができる。この測定には、例えば、市販の「NANO Indenter XP/DCM」(MTS Systems社/MST NANO Insturuments社製)を用いることができる。 This nanoindentation measuring apparatus N uses a transducer 101 and a diamond Berkovich indenter 102 having an equilateral triangle shape to measure a displacement amount with a nanometer (nm) accuracy while applying a load of μN order to the protective layer 3. can do. For this measurement, for example, commercially available “NANO Indenter XP / DCM” (manufactured by MTS Systems / MST NANO Instruments) can be used.
 上記ナノインデンテーション測定装置Nを用いて、樹脂基材1上に形成した保護層3の膜硬度を測定する。本発明における測定条件は、以下の通りである。 Using the nanoindentation measuring device N, the film hardness of the protective layer 3 formed on the resin base material 1 is measured. The measurement conditions in the present invention are as follows.
 〈測定条件〉
 測定機:NANO Indenter XP/DCM(MTS Systems社製)
 測定圧子:先端形状が正三角形のダイヤモンドBerkovich圧子
 測定環境:23℃、55%RH
 測定試料:5cm×5cmの大きさにガスバリアー性フィルムを切断して測定試料を作製
 最大荷重設定:25μN
 押し込み速度:最大荷重25μNに5secで達する速度で、時間に比例して加重を印加する。
<Measurement condition>
Measuring instrument: NANO Indenter XP / DCM (manufactured by MTS Systems)
Measuring indenter: Diamond Berkovich indenter with an equilateral triangular tip Measurement environment: 23 ° C., 55% RH
Measurement sample: cut a gas barrier film to a size of 5 cm × 5 cm to prepare a measurement sample Maximum load setting: 25 μN
Indentation speed: A speed that reaches a maximum load of 25 μN in 5 seconds, and a load is applied in proportion to time.
 なお、膜硬度の測定は、試料についてランダムに10点測定し、その平均値をナノインデンテーション法により測定した膜硬度とする。 The film hardness is measured at 10 points on the sample at random, and the average value is the film hardness measured by the nanoindentation method.
 (3.2)保護層の形成方法
 本発明に係るガスバリアー性フィルムにおいて、ナノインデンテーション法で測定した膜硬度が2.0~8.0GPaの範囲内である保護層を実現する手段としては、従来公知の金属酸化物薄膜の形成方法、あるいは従来から用いられているガスバリアー層の形成方法を適宜選択して適用することができる。
(3.2) Method for forming protective layer As a means for realizing a protective layer having a film hardness measured by the nanoindentation method in the range of 2.0 to 8.0 GPa in the gas barrier film according to the present invention. A conventionally known method for forming a metal oxide thin film or a conventionally used method for forming a gas barrier layer can be appropriately selected and applied.
 本発明に係る保護層の形成方法については、特に限定はなく、後述する各金属化合物を用いたドライ製膜法としては、例えば、スターイオンビーム法、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クライオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等、特開2004-68143号公報に記載されているような大気圧プラズマ重合法等を挙げることができる。一方で、生産性に優れるウェット製膜法としては、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法等のウェット塗布方式を用いた方法で、例えば、金属アルコキシド体の加水分解重縮合物の溶液を塗布、乾燥して無機酸化物膜である保護層を形成するゾル-ゲル法や、特開2011-121298号公報に記載されているような、ポリシラザン含有液を塗布、乾燥した後、エキシマ照射等の表面改質処理を施して保護層を形成する方法を挙げることができる。 The method for forming the protective layer according to the present invention is not particularly limited, and examples of the dry film forming method using each metal compound described below include a star ion beam method, a vacuum deposition method, a sputtering method, and a reactive sputtering method. Molecular beam epitaxy method, claion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method, plasma CVD method, laser CVD method, thermal CVD method, coating method, etc., as described in JP-A-2004-68143 And atmospheric pressure plasma polymerization. On the other hand, wet coating methods such as spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, and die coating method are used as wet film forming methods with excellent productivity. For example, a sol-gel method in which a solution of a hydrolyzed polycondensate of a metal alkoxide is applied and dried to form a protective layer that is an inorganic oxide film, or described in JP2011-121298A And a method of forming a protective layer by applying a surface modification treatment such as excimer irradiation after applying and drying a polysilazane-containing liquid.
 (3.3)ゾル-ゲル法による保護層形成
 以下、ゾル-ゲル法を用いた保護層の形成方法について説明する。
(3.3) Formation of Protective Layer by Sol-Gel Method Hereinafter, a method for forming a protective layer using the sol-gel method will be described.
 ゾル-ゲル法により保護層を形成する方法としては、金属アルコキシドや加水分解重縮合触媒等の種類や量を適宜選択して、塗布及び乾燥を行い、必要に応じ後述のエネルギー照射処理を行うことで、所望の膜硬度を有する保護層を形成することができる。 As a method for forming a protective layer by the sol-gel method, the type and amount of metal alkoxide, hydrolysis polycondensation catalyst, etc. are appropriately selected, applied and dried, and if necessary, energy irradiation treatment described later is performed. Thus, a protective layer having a desired film hardness can be formed.
 金属アルコキシドにおける「金属」とは、一般に周期律表等で定義されている「金属(Metals)」の他に、「遷移金属(TransitionMetals)」の元素、「ランタノイド」の元素、「アクチノイド」の元素、及び「非金属(NonMetals)」として定義されるホウ素、ケイ素(シリコン)を含んだものとして定義することができるが、ゾル-ゲル法で使用することができる好ましい金属アルコキシドとしては、アルコキシシランや、アルコキシシラン以外の金属アルコキシドを使用することができる。アルコキシシラン以外の金属アルコキシドとしては、例えば、ジルコニウムアルコキシド、チタンアルコキシド、アルミニウムアルコキシド等が好ましい。 The term “metal” in the metal alkoxide generally refers to an element of “Transition Metals”, an element of “Lantanoid”, an element of “actinoid”, in addition to “Metals” defined in the periodic table, etc. , And boron as defined as "NonMetals", including silicon (silicon), preferred metal alkoxides that can be used in the sol-gel method include alkoxysilanes and Metal alkoxides other than alkoxysilanes can be used. As the metal alkoxide other than alkoxysilane, for example, zirconium alkoxide, titanium alkoxide, aluminum alkoxide and the like are preferable.
 アルコキシシランの例としては、以下の一般式(Si)で表されるアルコキシシランを挙げることができる。 Examples of alkoxysilanes include alkoxysilanes represented by the following general formula (Si).
 一般式(Si)
   Si(OR1x(R24-x
 上記一般式(Si)において、R1としては、炭素数1~5のアルキル基又は炭素数1~4のアシル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、アセチル基等が挙げられる。また、R2としては、炭素数1~10の有機基が好ましく、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、n-オクチル基、tert-オクチル基、n-デシル基、フェニル基、ビニル基、アリル基などの無置換の炭化水素基、γ-クロロプロピル基、CF3CH2-、CF3CH2CH2-、C25CH2CH2-、C37CH2CH2CH2-、CF3OCH2CH2CH2-、C25OCH2CH2CH2-、C37OCH2CH2CH2-、(CF32CHOCH2CH2CH2-、C49CH2OCH2CH2CH2-、3-(パーフルオロシクロヘキシルオキシ)プロピル、(CF24CH2OCH2CH2CH2-、H(CF24CH2CH2CH2-、γ-グリシドキシプロピル基、γ-メルカプトプロピル基、3,4-エポキシシクロヘキシルエチル基、γ-メタクリロイルオキシプロピル基などの置換炭化水素基が挙げられる。xは2~4の整数のものが好ましい。
General formula (Si)
Si (OR 1 ) x (R 2 ) 4-x
In the general formula (Si), R 1 is preferably an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, or an iso-propyl group. N-butyl group, sec-butyl group, tert-butyl group, acetyl group and the like. R 2 is preferably an organic group having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a tert-butyl group, or an n-hexyl group. , Cyclohexyl group, n-octyl group, tert-octyl group, n-decyl group, phenyl group, vinyl group, unsubstituted hydrocarbon group such as allyl group, γ-chloropropyl group, CF 3 CH 2 —, CF 3 CH 2 CH 2 —, C 2 F 5 CH 2 CH 2 —, C 3 F 7 CH 2 CH 2 CH 2 —, CF 3 OCH 2 CH 2 CH 2 —, C 2 F 5 OCH 2 CH 2 CH 2 —, C 3 F 7 OCH 2 CH 2 CH 2 —, (CF 3 ) 2 CHOCH 2 CH 2 CH 2 —, C 4 F 9 CH 2 OCH 2 CH 2 CH 2 —, 3- (perfluorocyclohexyloxy) propyl, ( CF 2 ) 4 CH 2 OCH 2 CH 2 CH 2 Substituted hydrocarbons such as —, H (CF 2 ) 4 CH 2 CH 2 CH 2 —, γ-glycidoxypropyl group, γ-mercaptopropyl group, 3,4-epoxycyclohexylethyl group, γ-methacryloyloxypropyl group Groups. x is preferably an integer of 2 to 4.
 これらのアルコキシシランの具体例を以下に示す。 Specific examples of these alkoxysilanes are shown below.
 x=4のアルコキシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトラ-iso-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-アセトキシシランなどを挙げることができる。 Examples of the xoxysilane having x = 4 include tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetra-iso-propoxysilane, tetra-n-butoxysilane, and tetra-acetoxysilane.
 x=3のアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、フェニルトリメトキシシラン、ビニルトリエトキシシラン、3,4-エポキシシクロヘキシルエチルトリメトキシシラン、3,4-エポキシシクロヘキシルエチルトリエトキシシラン、CF3CH2CH2Si(OCH33、C25CH2CH2Si(OCH33、C25OCH2CH2CH2Si(OCH33、C37OCH2CH2CH2Si(OC253、(CF32CHOCH2CH2CH2Si(OCH33、C49CH2OCH2CH2CH2Si(OCH33、H(CF24CH2OCH2CH2CH2Si(OCH33、3-(パーフルオロシクロヘキシルオキシ)プロピルトリメトキシシラン等を挙げることができる。 Examples of the alkoxysilane having x = 3 include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, and iso-propyltrimethoxy. Silane, iso-propyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloyloxypropyl Trimethoxysilane, γ-mercaptopropyltriethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, 3,4-epoxy Hexyl triethoxysilane, CF 3 CH 2 CH 2 Si (OCH 3) 3, C 2 F 5 CH 2 CH 2 Si (OCH 3) 3, C 2 F 5 OCH 2 CH 2 CH 2 Si (OCH 3) 3 , C 3 F 7 OCH 2 CH 2 CH 2 Si (OC 2 H 5) 3, (CF 3) 2 CHOCH 2 CH 2 CH 2 Si (OCH 3) 3, C 4 F 9 CH 2 OCH 2 CH 2 CH 2 Si (OCH 3 ) 3 , H (CF 2 ) 4 CH 2 OCH 2 CH 2 CH 2 Si (OCH 3 ) 3 , 3- (perfluorocyclohexyloxy) propyltrimethoxysilane and the like can be mentioned.
 x=2のアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルフェニルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ-n-プロピルジメトキシシラン、ジ-n-プロピルジエトキシシラン、ジ-iso-プロピルジメトキシシラン、ジ-iso-プロピルジエトキシシラン、ジフェニルジメトキシシラン、ジビニルジエトキシシラン、(CF3CH2CH22Si(OCH32、(C37OCH2CH2CH22Si(OCH32、〔H(CF26CH2OCH2CH2CH22Si(OCH32、(C25CH2CH22Si(OCH32などを挙げることができる。 Examples of the alkoxysilane having x = 2 include dimethyldimethoxysilane, dimethyldiethoxysilane, methylphenyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, and di-n-propyldiethoxysilane. , Di-iso-propyldimethoxysilane, di-iso-propyldiethoxysilane, diphenyldimethoxysilane, divinyldiethoxysilane, (CF 3 CH 2 CH 2 ) 2 Si (OCH 3 ) 2 , (C 3 F 7 OCH 2 CH 2 CH 2 ) 2 Si (OCH 3 ) 2 , [H (CF 2 ) 6 CH 2 OCH 2 CH 2 CH 2 ] 2 Si (OCH 3 ) 2 , (C 2 F 5 CH 2 CH 2 ) 2 Si ( OCH 3 ) 2 and the like.
 ジルコニウムアルコキシドの例としては、ジルコニウムエトキサイド、ジルコニウムイソプロポキサイド、ジルコニウムn-プロポキサイド、ジルコニウムn-ブトキサイド、ジルコニウムt-ブトキサイド、ジルコニウム2-エチルヘキシルオキサイド、ジルコニウム2-メチル-2-ブトキサイド、テトラキス(トリメチルシロキシ)ジルコニウム、ジルコニウムジn-ブトキサイド(ビス-2,4-ペンタンジオネート)、ジルコニウムジイソプロポキサイドビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート、ジルコニウムジメタクリレートジブトキサイド、ジルコニウムヘキサフルオロペンタンジオネート、ジルコニウムメタクリルオキシエチルアセトアセテートトリn-プロポキサイド、ジルコニウム2,4-ペンタンジオネート、ジルコニウム2,2,6,6-テトラメチル-3,5-ヘプタンジオネート、ジルコニウムトリフルオロペンタンジオネート等が挙げられる。 Examples of zirconium alkoxides include zirconium ethoxide, zirconium isopropoxide, zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium 2-ethylhexyl oxide, zirconium 2-methyl-2-butoxide, tetrakis (trimethylsiloxy). ) Zirconium, zirconium di-n-butoxide (bis-2,4-pentanedionate), zirconium diisopropoxide bis (2,2,6,6-tetramethyl-3,5-heptanedionate, zirconium dimethacrylate dibu Toxide, zirconium hexafluoropentanedionate, zirconium methacryloxyethyl acetoacetate tri-n-propoxide, zirconium 2,4 Pentanedionate, zirconium 2,2,6,6-tetramethyl-3,5-heptanedionate, zirconium trifluoro pentanedionate, and the like.
 チタンアルコキシドの例としては、チタンn-ブトキサイド、チタンメトキサイド、チタンエトキサイド、チタンn-プロポキサイド、チタンイソプロポキサイド、チタンt-ブトキサイド、チタンn-ノニルオキサイド、チタンi-ブトキサイド、チタンメトキシプロポキサイド、チタンクロロトリイソプロポキサイド、チタンジクロライドジエトキサイド、チタンヨードイソプロポキシド、チタンジn-ブトキサイド(ビス-2,4-ペンタジオネート)、チタンジi-プロポキサイド(ビス-2,4-ペンタジオネート)、チタンジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタンジイソプロポキサイドビス(エチルアセトアセテート)、チタン2-エチルヘキシオキシド、チタンオキシドビス(ペンタジオネート)、チタンオキシビス(テトラメチルヘプタンジオネート)、テトラキス(トリメチルシロキシ)チタン、チタンアリルアセトアセテートトリイソプロポキシド、チタンビス(トリエタノールアミン)ジイソプロポキシド、チタンメタクリレートトリイソプロポキシド、(2-メタクリルオキシエトキシ)トリイソプロポキシチタネート、チタンメタクリルオキシエチルアセトアセテートトリイソプロキサイド、チタンメチルフェノキサイド等が挙げられる。 Examples of titanium alkoxides include titanium n-butoxide, titanium methoxide, titanium ethoxide, titanium n-propoxide, titanium isopropoxide, titanium t-butoxide, titanium n-nonyl oxide, titanium i-butoxide, titanium methoxypropoxide. Side, Titanium Chlorotriisopropoxide, Titanium Dichloride Diethoxide, Titanium Iodoisopropoxide, Titanium Di n-Butoxide (Bis-2,4-Pentadionate), Titanium Di i-Propoxide (Bis-2,4-Pentadionate) Nate), titanium diisopropoxide bis (tetramethylheptanedionate), titanium diisopropoxide bis (ethyl acetoacetate), titanium 2-ethylhexoxide, titanium oxide bis (pentadione) G), titanium oxybis (tetramethylheptanedionate), tetrakis (trimethylsiloxy) titanium, titanium allyl acetoacetate triisopropoxide, titanium bis (triethanolamine) diisopropoxide, titanium methacrylate triisopropoxide, (2 -Methacryloxyethoxy) triisopropoxy titanate, titanium methacryloxyethyl acetoacetate triisopropoxide, titanium methylphenoxide and the like.
 また、アルミニウムアルコキシドの例としては、アルミニウム(III)n-ブトキサイド、アルミニウム(III)s-ブトキサイド、アルミニウム(III)t-ブトキサイド、アルミニウム(III)エトキサイド、アルミニウム(III)イソプロポキサイド、アルミニウム(III)s-ブトキサイドビス(エチルアセトアセテート)、アルミニウム(III)ジ-s-ブトキサイドエチルアセトアセテート、アルミニウム(III)ジイソプポキサイドエチルアセトアセテート、アルミニウム(III)エトキシエトキシエトキサイド、アルミニウムヘキサフルオロペンタジオネート、アルミニウム(III)3-ヒドロキシ-2-メチル-4-ピロネート、アルミニウム(III)9-オクタデセニルアセトアセテートジイソプロポキサイド、アルミニウム(III)2,4-ペンタンジオネート、アルミニウム(III)フェノキサイド、アルミニウム(III)2,2,6,6-テトラメチル-3,5-ヘプタンジオネートが、チンアルコキシドの例としては、スズ(II)メトキサイド、スズ(II)エトキサイド、テトライソプロポキシスズ、テトラ-t-ブトキシスズ、テトラ-n-ブトキシスズ、ビス(2,4-ペンタンジオネート)ジクロスズ、スズ(II)2,4-ペンタンジオネート、ナトリウムスズエトキサイド、等が挙げられる。 Examples of aluminum alkoxides include aluminum (III) n-butoxide, aluminum (III) s-butoxide, aluminum (III) t-butoxide, aluminum (III) ethoxide, aluminum (III) isopropoxide, aluminum (III ) S-butoxide bis (ethyl acetoacetate), aluminum (III) di-s-butoxide ethyl acetoacetate, aluminum (III) diisopropoxide ethyl acetoacetate, aluminum (III) ethoxyethoxy ethoxide, aluminum hexafluoropenta Dionate, aluminum (III) 3-hydroxy-2-methyl-4-pyronate, aluminum (III) 9-octadecenyl acetoacetate diisopropoxide, aluminum (III) 2,4- Examples of tin alkoxides include tin (II) methoxide, tin (II), and tantionate, aluminum (III) phenoxide, aluminum (III) 2,2,6,6-tetramethyl-3,5-heptanedionate. Etoxide, tetraisopropoxytin, tetra-t-butoxytin, tetra-n-butoxytin, bis (2,4-pentandionate) diclos, tin (II) 2,4-pentandionate, sodium tin ethoxide, etc. Can be mentioned.
 ゾル-ゲル反応時には、水及び有機溶媒中で、前記金属アルコキシドを加水分解及び縮重合させるが、この時、触媒を用いることが好ましい。加水分解の触媒としては、一般に酸が用いられる。酸は、無機酸又は有機酸が用いられる。無機酸としては、塩酸、臭化水素、ヨウ化水素、硫酸、亜硫酸、硝酸、リン酸など、有機酸化合物としてはカルボン酸類(例えば、ギ酸、酢酸、プロピオン酸、酪酸、コハク酸、トリフルオロ酢酸、パーフルオロオクタン酸、安息香酸、フタル酸など)、スルホン酸類(例えば、メタンスルホン酸、エタンスルホン酸、トリフルオロメタンスルホン酸)、p-トルエンスルホン酸、ペンタフルオロベンゼンスルホン酸など)、リン酸・ホスホン酸類(例えば、リン酸ジメチルエステル、フェニルホスホン酸など)、ルイス酸類(例えば、三フッ化ホウ素エーテラート、スカンジウムトリフレート、アルキルチタン酸、アルミン酸など)、ヘテロポリ酸(例えば、リンモリブデン酸、リンタングステン酸など)などを挙げることができる。 During the sol-gel reaction, the metal alkoxide is hydrolyzed and polycondensed in water and an organic solvent. At this time, it is preferable to use a catalyst. As a catalyst for hydrolysis, an acid is generally used. As the acid, an inorganic acid or an organic acid is used. Inorganic acids include hydrochloric acid, hydrogen bromide, hydrogen iodide, sulfuric acid, sulfurous acid, nitric acid, phosphoric acid, and organic acid compounds include carboxylic acids (eg, formic acid, acetic acid, propionic acid, butyric acid, succinic acid, trifluoroacetic acid) Perfluorooctanoic acid, benzoic acid, phthalic acid, etc.), sulfonic acids (eg methanesulfonic acid, ethanesulfonic acid, trifluoromethanesulfonic acid), p-toluenesulfonic acid, pentafluorobenzenesulfonic acid, etc.), phosphoric acid / Phosphonic acids (eg, phosphoric acid dimethyl ester, phenylphosphonic acid, etc.), Lewis acids (eg, boron trifluoride etherate, scandium triflate, alkyl titanic acid, aluminate, etc.), heteropolyacids (eg, phosphomolybdic acid, phosphorus And tungstic acid).
 酸の使用量は、金属アルコキシド1モル当たり、0.0001~0.05モルであり、好ましくは0.001~0.01モルである。 The amount of acid used is 0.0001 to 0.05 mol, preferably 0.001 to 0.01 mol, per mol of metal alkoxide.
 加水分解後、無機塩基やアミンなどの塩基性化合物を添加して溶液のpHを中性付近にし、縮重合を促進してもよい。 After hydrolysis, a basic compound such as an inorganic base or an amine may be added to bring the pH of the solution to near neutrality to promote condensation polymerization.
 無機塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、アンモニアなど、有機塩基化合物としてはアミン類(例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、トリエチルアミン、ジブチルアミン、N,N-ジメチルベンジルアミン、テトラメチルエチレンジアミン、ピペリジン、ピペラジン、モルホリン、エタノールアミン、ジアザビシクロウンデセン、キヌクリジン、アニリン、ピリジンなど)、ホスフィン類(例えば、トリフェニルホスフィン、トリメチルホスフィンなど)を用いることができる。 Examples of inorganic bases include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, and ammonia. Examples of organic base compounds include amines (eg, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylene). Pentamine, triethylamine, dibutylamine, N, N-dimethylbenzylamine, tetramethylethylenediamine, piperidine, piperazine, morpholine, ethanolamine, diazabicycloundecene, quinuclidine, aniline, pyridine, etc.), phosphines (eg, triphenyl) Phosphine, trimethylphosphine, and the like).
 また、他のゾル-ゲル触媒も併用することができ、以下に併用可能な例を挙げる。 In addition, other sol-gel catalysts can be used in combination, and examples that can be used in combination are given below.
 例えば、トリ-n-ブトキシエチルアセトアセテートジルコニウム、ジイソプロポキシビス(アセチルアセトナート)チタニウム、ジイソプロポキシエチルアセトアセテートアルミニウム、トリス(エチルアセトアセテート)アルミニウム等の金属キレート化合物、(C492Sn(OCOC11232、Sn(OCOCC8172などのカルボン酸型有機スズ化合物、(C492(C492SnO、(C8172SnOなどの有機スズオキサイドとエチルシリケートマレイン酸ジメチル、マレイン酸ジエチル、フタル酸ジオクチルなどのエステル化合物との反応生成物などの有機スズ化合物等の有機金属化合物などを挙げることができる。また、例えばナフテン酸ナトリウム、ナフテン酸カリウム、オクタン酸ナトリウム、2-エチルヘキサン酸ナトリウム、ラウリル酸カリウムなどの金属塩類も好ましく用いられる。 For example, metal chelate compounds such as tri-n-butoxyethyl acetoacetate zirconium, diisopropoxybis (acetylacetonato) titanium, diisopropoxyethyl acetoacetate aluminum, tris (ethyl acetoacetate) aluminum, (C 4 H 9 ) Carboxylic acid type organotin compounds such as 2 Sn (OCOC 11 H 23 ) 2 and Sn (OCOC 8 H 17 ) 2 , (C 4 H 9 ) 2 (C 4 H 9 ) 2 SnO, (C 8 H 17 ) 2 Examples thereof include organometallic compounds such as organotin compounds such as reaction products of organotin oxides such as SnO and ester compounds such as ethyl silicate dimethyl maleate, diethyl maleate and dioctyl phthalate. In addition, metal salts such as sodium naphthenate, potassium naphthenate, sodium octoate, sodium 2-ethylhexanoate, potassium laurate and the like are also preferably used.
 ゾル-ゲル触媒化合物の組成物中の割合は、ゾル液の原料であるアルコキシシランに対し、0.01~50質量%、好ましくは0.1~50質量%、さらに好ましくは0.5~10質量%である。 The proportion of the sol-gel catalyst compound in the composition is 0.01 to 50% by mass, preferably 0.1 to 50% by mass, more preferably 0.5 to 10%, based on the alkoxysilane that is the raw material of the sol liquid. % By mass.
 次に、ゾル-ゲル反応に用いられる溶媒について述べる。 Next, the solvent used for the sol-gel reaction is described.
 溶媒はゾル液中の各成分を均一に混合させ、本発明の組成物の固形分を調整すると同時に、種々の塗布方法に適用できるようにし、組成物の分散安定性及び保存安定性を向上させるものである。これらの溶媒は上記目的の果たせるものであれば特に限定されない。これらの溶媒の好ましい例として、例えば、水や、水との混和性の高い有機溶媒が挙げられる。 The solvent uniformly mixes each component in the sol solution, adjusts the solid content of the composition of the present invention, and at the same time, can be applied to various coating methods to improve the dispersion stability and storage stability of the composition. Is. These solvents are not particularly limited as long as they can fulfill the above purpose. Preferable examples of these solvents include water and organic solvents having high miscibility with water.
 有機溶媒の例としては、テトラヒドロフラン、ジメトキシエタン、ギ酸、酢酸、酢酸メチル、アルコール類(例えば、メタノール、エタノール、n-プロピルアルコール、iso-プロピルアルコール、tert-ブチルアルコール)、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドなどを挙げることができる。 Examples of organic solvents include tetrahydrofuran, dimethoxyethane, formic acid, acetic acid, methyl acetate, alcohols (eg, methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, tert-butyl alcohol), ethylene glycol, diethylene glycol, Mention may be made of ethylene glycol, ethylene glycol monobutyl ether, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like.
 ゾル-ゲル反応の速度を調節する目的で、多座配位可能な有機化合物を添加して、金属アルコキシドを安定化してもよい。その例としては、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチルのようなβ-ジケトン又はβ-ケトエステル類、並びにアルカノールアミンが挙げられる。 For the purpose of adjusting the speed of the sol-gel reaction, an organic compound capable of multidentate coordination may be added to stabilize the metal alkoxide. Examples include β-diketones or β-ketoesters such as acetylacetone, methyl acetoacetate, ethyl acetoacetate, and alkanolamines.
 次に、ゾル-ゲル法による本発明に係る保護層の塗設方法について説明する。 Next, a method for coating the protective layer according to the present invention by the sol-gel method will be described.
 本発明において、ゾル-ゲル法による保護層の形成方法は、湿式法を用いて形成されるものであり、ゾル液は、スプレー法やスピンコート法、ロールコート法、ダイコート法、ブレードコート法、ディップコート法のいずれの湿式方式を用いて塗布してもよい。これらの塗布法により、金属アルコキシドより調製したゾル液を、樹脂フィルム基材のガスバリアー層上に塗布、乾燥して、保護層を形成する。 In the present invention, the method for forming the protective layer by the sol-gel method is formed by using a wet method, and the sol liquid is a spray method, a spin coat method, a roll coat method, a die coat method, a blade coat method, You may apply | coat using any wet system of a dip coat method. By these coating methods, a sol solution prepared from a metal alkoxide is coated on a gas barrier layer of a resin film substrate and dried to form a protective layer.
 加水分解のタイミングは製造工程中のいかなる時期であっても構わない。例えば、あらかじめ必要な組成の液を加水分解部分縮合して目的のゾル液を調製し、それを塗布-乾燥する方法、必要な組成の液を調製し塗布と同時に加水分解部分縮合させながら乾燥する方法、塗布及び一次乾燥後、加水分解に必要な水含有液を重ねて塗布し加水分解させる方法等を好適に採用できる。 Hydrolysis may be performed at any time during the production process. For example, a solution of the required composition is hydrolyzed and partially condensed to prepare the desired sol solution, which is applied and dried. A solution of the required composition is prepared and dried while being partially hydrolyzed and condensed simultaneously with the application. After the method, coating, and primary drying, a method of applying a water-containing liquid necessary for hydrolysis and applying it to hydrolyze can be suitably employed.
 塗布後の乾燥温度は、支持体である樹脂フィルム基材の変形を起こさない範囲であれば特に制限はないが、好ましくは150℃以下、より好ましくは30~150℃の範囲内であり、特に好ましくは50~130℃の範囲内である。 The drying temperature after coating is not particularly limited as long as it does not cause deformation of the resin film substrate as a support, but is preferably 150 ° C. or less, more preferably in the range of 30 to 150 ° C. Preferably, it is in the range of 50 to 130 ° C.
 塗布、乾燥後の樹脂フィルム基材をさらに高密度化し、緻密にするため、前記のようにエネルギー処理を施すことが好ましい。 In order to make the resin film substrate after coating and drying more dense and dense, it is preferable to apply energy treatment as described above.
 これらエネルギー処理温度は、室温から樹脂フィルム基材の変形温度の間を制限なく採用することが可能であり、好ましくは30~150℃の範囲内であり、特に好ましくは50~130℃の範囲内である。 These energy treatment temperatures can be employed without limitation between room temperature and the deformation temperature of the resin film substrate, preferably in the range of 30 to 150 ° C, particularly preferably in the range of 50 to 130 ° C. It is.
 特に、エネルギー処理により樹脂フィルム基材が高温化する場合、樹脂フィルム基材をバックアップロール等で密着保持して保温してもよい。 In particular, when the temperature of the resin film substrate is increased by energy treatment, the resin film substrate may be kept in close contact with a backup roll or the like.
 (3.4)ポリシラザン含有液を用いた保護層の形成方法
 本発明においては、本発明で規定する保護層の膜硬度を安定して得ることができる観点から、特に、ガスバリアー層上にポリシラザン含有液を塗布、乾燥した後、表面改質処理を施して保護層を形成する方法が好ましい。更には、表面改質処理が、波長が200nm以下の真空紫外光を照射する方法であることが好ましい態様である。
(3.4) Method for forming protective layer using polysilazane-containing liquid In the present invention, from the viewpoint that the film hardness of the protective layer defined in the present invention can be stably obtained, the polysilazane is particularly formed on the gas barrier layer. A method of forming a protective layer by applying a surface modification treatment after applying and drying the containing liquid is preferable. Furthermore, it is a preferable aspect that the surface modification treatment is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less.
 以下、ポリシラザン含有液を用いた本発明に係る保護層の形成方法について、その詳細を説明する。 Hereinafter, details of the method for forming a protective layer according to the present invention using a polysilazane-containing liquid will be described.
 本発明に係るガスバリアー性フィルムにおいては、例えば、磁場を印加したローラー間放電プラズマCVD法により形成したガスバリアー層上に保護層を設けることにより、高温高湿処理を施した後での優れた平面性を得ることができるとともに、既に形成されているガスバリアー層の形成時に生じた微小な欠陥部分を、その上面に付与するポリシラザンより構成される保護層成分で埋めることができ、ガスパージ等を効率的に防止することができ、その結果、高度のガスバリアー性を実現することができるとともに、平面性及びダークスポット耐性を向上できる。 In the gas barrier film according to the present invention, for example, by providing a protective layer on the gas barrier layer formed by the inter-roller discharge plasma CVD method to which a magnetic field is applied, it is excellent after being subjected to a high temperature and high humidity treatment. As well as being able to obtain flatness, it is possible to fill a minute defect portion generated during the formation of the already formed gas barrier layer with a protective layer component composed of polysilazane applied to the upper surface, and to perform gas purge etc. As a result, high gas barrier properties can be realized, and planarity and dark spot resistance can be improved.
 本発明に係る保護層の膜厚としては、50~500nmの範囲内であることが好ましく、より好ましくは50nm~300nmの範囲内である。保護層の厚さが50nm以上であれば、所望の平面性やダークスポット耐性を得ることができ、500nm以下であれば、所望の平面性を達成することができるとともに、緻密な酸窒化ケイ素膜により、クラックの発生等の膜質劣化を防止することができる。 The thickness of the protective layer according to the present invention is preferably in the range of 50 to 500 nm, more preferably in the range of 50 nm to 300 nm. If the thickness of the protective layer is 50 nm or more, desired planarity and dark spot resistance can be obtained, and if it is 500 nm or less, desired planarity can be achieved and a dense silicon oxynitride film can be obtained. Therefore, film quality deterioration such as generation of cracks can be prevented.
 ポリシラザン含有液を用いた本発明に係る保護層の形成方法において、保護層の膜硬度を本発明で規定する範囲に制御する方法としては、後述するポリシラザンの種類(構造、分子量等)、触媒の種類と添加量、エキシマ処理で使用する真空紫外線の照度、照射エネルギー量、照射時間等を適宜選択して設定及び組み合わせることにより、所望の膜硬度を得ることができる。 In the method for forming a protective layer according to the present invention using a polysilazane-containing liquid, the method for controlling the film hardness of the protective layer within the range specified in the present invention includes the type of polysilazane (structure, molecular weight, etc.) described below, and the catalyst A desired film hardness can be obtained by appropriately selecting, setting and combining the type and addition amount, the illuminance of vacuum ultraviolet rays used in excimer treatment, the amount of irradiation energy, the irradiation time, and the like.
 本発明に係るガスバリアー性フィルムにおいては、膜硬度が、2.0~8.0GPaの範囲内である保護層を少なくとも1層有していればよいが、本発明の目的効果を損なわない範囲で、2層以上保護層を積層してもよく、あるいは本発明に係る保護層と他の機能層とを積層した構成であってもよい。 The gas barrier film according to the present invention may have at least one protective layer having a film hardness in the range of 2.0 to 8.0 GPa, but does not impair the object effects of the present invention. Thus, two or more protective layers may be laminated, or a protective layer according to the present invention and another functional layer may be laminated.
 〈3.4.1〉ポリシラザン
 本発明に係る保護層の形成に適用するポリシラザンとは、分子構造内にケイ素-窒素結合を有するポリマーで、酸窒化ケイ素の前駆体となるポリマーであり、適用するポリシラザンとしては、特に制限はないが、下記一般式(1)で表される構造を有する化合物であることが好ましい。
<3.4.1> Polysilazane The polysilazane applied to the formation of the protective layer according to the present invention is a polymer having a silicon-nitrogen bond in the molecular structure and serving as a precursor of silicon oxynitride. Although there is no restriction | limiting in particular as polysilazane, It is preferable that it is a compound which has a structure represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R1、R2及びR3は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。 In the general formula (1), R 1 , R 2, and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
 本発明では、得られる保護層としての緻密性の観点からは、R1、R2及びR3の全てが水素原子で構成されているパーヒドロポリシラザン(略称:PHPS)が特に好ましい。 In the present invention, from the viewpoint of denseness as a protective layer to be obtained, perhydropolysilazane (abbreviation: PHPS) in which all of R 1 , R 2 and R 3 are composed of hydrogen atoms is particularly preferred.
 パーヒドロポリシラザンは、直鎖構造と6員環及び8員環を中心とする環構造が存在した構造と推定されており、その分子量は、数平均分子量(Mn)で約600~2000程度(ゲルパーミエーションクロマトグラフィによるポリスチレン換算)であり、液体又は固体の物質である。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6-membered and 8-membered rings, and its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance.
 本発明に係る保護層に適用可能なポリシラザンとしては、鎖状、環状、あるいは架橋構造を有するもの、あるいは分子内にこれら複数の構造を同時に有するものがあり、これら単独でもあるいは混合物でも利用できる。用いるポリシラザンの代表例としては、下記のようなものがあるが、これらに限定されるものではない。 The polysilazanes applicable to the protective layer according to the present invention include those having a chain, cyclic or cross-linked structure, or those having a plurality of structures in the molecule at the same time, and these can be used alone or in a mixture. Typical examples of the polysilazane used include the following, but are not limited thereto.
 上記一般式(1)において、R1、R2及びR3に水素原子を有するものは、パーヒドロポリシラザンであり、その製造法は、例えば、特公昭63-16325号公報、D.SeyferthらCommunication of Am.Cer.Soc.,C-13,January 1983.に報告されている。 In the above general formula (1), those having hydrogen atoms in R 1 , R 2 and R 3 are perhydropolysilazane, and the production method thereof is described in, for example, Japanese Patent Publication No. 63-16325, D.C. Seyferth et al. Communication of Am. Cer. Soc. , C-13, January 1983. Has been reported.
 上記一般式(1)において、R1及びR2に水素原子、R3にメチル基を有するポリシラザンの製造方法は、D.SeyferthらPolym.Prepr.,Am.Chem.Soc.,Div.Polym.Chem.,25,10(1984)に報告されている。この方法により得られるポリシラザンは、繰り返し単位が-(SiH2NCH3)-の鎖状ポリマーと環状ポリマーであり、いずれも架橋構造を有しない。 In the above general formula (1), a method for producing a polysilazane having a hydrogen atom in R 1 and R 2 and a methyl group in R 3 is described in D.C. See Seyferth et al., Polym. Prepr. , Am. Chem. Soc. , Div. Polym. Chem. 25, 10 (1984). The polysilazane obtained by this method is a chain polymer having a repeating unit of — (SiH 2 NCH 3 ) — and a cyclic polymer, and neither has a crosslinked structure.
 上記一般式(1)において、R1及びR3に水素原子、R2に有機基を有するポリオルガノ(ヒドロ)シラザンの製造方法は、D.SeyferthらPolym.Prepr.,Am.Chem.Soc.,Div.Polym.Chem.,25,10(1984)、特開昭61-89230号公報に報告されている。これらの方法により得られるポリシラザンには、-(R2SiHNH)-を繰り返し単位として、主として重合度が3~5の環状構造を有するものや(R2SiHNH)X〔(R2SiH)1.5N〕1-X(0.4<x<1)の化学式で表される鎖状構造と環状構造を同時に有するものがある。 In the above general formula (1), a method for producing a polyorgano (hydro) silazane having a hydrogen atom in R 1 and R 3 and an organic group in R 2 is described in D.C. See Seyferth et al., Polym. Prepr. , Am. Chem. Soc. , Div. Polym. Chem. 25, 10 (1984), and JP-A-61-89230. Polysilazanes obtained by these methods include those having a cyclic structure having a degree of polymerization of 3 to 5 with-(R 2 SiHNH)-as a repeating unit, and (R 2 SiHNH) X [(R 2 SiH) 1.5 N Some have a chain structure and a cyclic structure represented by the chemical formula 1-X (0.4 <x <1) at the same time.
 一般式(1)において、R1に水素原子、R2及びR3に有機基を有するポリシラザン、またR1及びR2に有機基、R3に水素原子を有するものは、-(R12SiNR3)-を繰り返し単位として、主に重合度が3~5の環状構造を有している。用いるポリシラザンは、上記のごとく、一般式(1)で表される単位からなる主骨格を有するが、一般式(1)で表される単位は、上記にも明らかなように環状化することがあり、その場合にはその環状部分が末端基となり、このような環状化がされない場合には、主骨格の末端はR1、R2、R3と同様の基又は水素原子であることができる。 In the general formula (1), a hydrogen atom in R 1, polysilazane having an organic group in R 2 and R 3, also those having a hydrogen atom for R 1 and R 2 organic groups and R 3 is, - (R 1 R 2 SiNR 3 ) — as a repeating unit, mainly having a cyclic structure with a degree of polymerization of 3 to 5. The polysilazane used has a main skeleton composed of the unit represented by the general formula (1) as described above, but the unit represented by the general formula (1) may be cyclized as is apparent from the above. Yes, in that case, the cyclic part becomes a terminal group, and when such cyclization is not performed, the terminal of the main skeleton can be a group similar to R 1 , R 2 , R 3 or a hydrogen atom. .
 本発明に適用可能なポリシラザンとしては、その他に、特開昭62-195024号公報に報告されているような繰り返し単位が〔(SiH2n(NH)m〕及び〔(SiH2rO〕(これらの式中、n、m、rはそれぞれ1,2又は3である)で表されるポリシロキサザン、特開平2-84437号公報に報告されているようなポリシラザンにボロン化合物を反応させて製造する耐熱性に優れたポリボロシラザン、特開昭63-81122号公報、同63-191832号公報、特開平2-77427号公報に報告されているようなポリシラザンとメタルアルコキシドとを反応させて製造するポリメタロシラザン、特開平1-138108号公報、同1-138107号公報、同1-203429号公報、同1-203430号公報、同4-63833号公報、同3-320167号公報に報告されているような分子量を増加させ(上記公報6件のうち、前4者)、耐加水分解性を向上させた(上記公報6件のうち、後2者)、無機シラザン高重合体や改質ポリシラザン、特開平2-175726号公報、同5-86200号公報、同5-331293号公報、同3-31326号公報に報告されているようなポリシラザンに有機成分を導入した厚膜化に有利な共重合シラザン、特開平5-238827号公報、特開平4-272020号公報、同5-93275号公報、同5-214268号公報、同5-30750号公報、同5-338524号公報に報告されているようなポリシラザンにセラミック化を促進するための触媒的化合物を付加又は添加したプラスチックスやアルミニウムなどの金属への施工が可能で、より低温でセラミックス化する低温硬化タイプポリシラザンなども同様に使用できる。 Other polysilazanes applicable to the present invention include repeating units such as [(SiH 2 ) n (NH) m ] and [(SiH 2 ) r O as reported in JP-A-62-195024. (In these formulas, n, m and r are 1, 2 or 3, respectively), and a boron compound is reacted with a polysilazane as reported in JP-A-2-84437. A polyborosilazane excellent in heat resistance produced by reacting a polysilazane with a metal alkoxide as reported in JP-A-63-81122, JP-A-63-191832 and JP-A-2-77427 Polymetallosilazane produced by the above, JP-A-1-138108, JP-A-1-138107, JP-A-1-203429, JP-A-1-203430, The molecular weight as reported in JP-A-4-63833 and JP-A-3-320167 was increased (among the above 6 publications, the former 4), and the hydrolysis resistance was improved (of the above 6 publications). Among them, the latter two) are reported in inorganic silazane high polymers and modified polysilazanes, JP-A-2-175726, JP-A-5-86200, JP-A-5-331293, and JP-A-3-31326. Copolysilazane advantageous for thickening by introducing an organic component into such a polysilazane, Japanese Patent Application Laid-Open Nos. 5-238827, 4-272020, 5-93275, 5-214268, Plastics with addition or addition of a catalytic compound for promoting ceramization to polysilazane as reported in JP-A-5-30750 and JP-A-5-338524 Possible application of the metal such as aluminum, may be used as well, such as low temperature curing type polysilazane more ceramics at low temperatures.
 また、ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、例えば、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20などが挙げられる。 In addition, polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as a polysilazane-containing coating solution as it is. Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
 本発明に係る保護層は、本発明の好ましい態様である磁場を印加したローラー間放電プラズマCVD法で形成したガスバリアー層上に、ポリシラザンを含む塗布液を、湿式塗布方法により塗布及び乾燥した後、真空紫外線を照射して改質処理を施すことにより形成することができる。 The protective layer according to the present invention is obtained by applying and drying a coating liquid containing polysilazane by a wet coating method on a gas barrier layer formed by an inter-roller discharge plasma CVD method to which a magnetic field, which is a preferred embodiment of the present invention, is applied. It can be formed by irradiating with vacuum ultraviolet rays and performing a modification treatment.
 ポリシラザン含有塗布液の調製に用いる有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものの使用は避けることが好ましい。適用可能な有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用でき、具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の目的にあわせて選択し、必要に応じ複数種の有機溶媒を混合しても良い。 As the organic solvent used for the preparation of the polysilazane-containing coating solution, it is preferable to avoid the use of an alcohol or water-containing one that easily reacts with polysilazane. Examples of applicable organic solvents include hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers, and alicyclic ethers. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. These organic solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of types of organic solvents may be mixed as necessary.
 ポリシラザンを含有する保護層形成用塗布液中のポリシラザン濃度は、形成する保護層の層厚や塗布液のポットライフによっても異なるが、好ましくは0.2~35質量%の範囲内である。 The polysilazane concentration in the protective layer-forming coating solution containing polysilazane varies depending on the thickness of the protective layer to be formed and the pot life of the coating solution, but is preferably in the range of 0.2 to 35% by mass.
 酸窒化ケイ素への変性を促進するために、保護層形成用塗布液には、アミン触媒や、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒を添加することもできる。本発明においては、アミン触媒を用いることが特に好ましい。具体的なアミン触媒としては、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-1,3-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等が挙げられる。 In order to promote the modification to silicon oxynitride, the coating solution for forming the protective layer includes an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, and an Rh compound such as Rh acetylacetonate. A metal catalyst such as can also be added. In the present invention, it is particularly preferable to use an amine catalyst. Specific amine catalysts include N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ′, N′-tetramethyl-1 , 3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane and the like.
 ポリシラザンに対するこれら触媒の添加量は、保護層形成用塗布液全質量に対して0.1~10質量%の範囲内であることが好ましく、0.2~5質量%の範囲内であることがより好ましく、0.5~2質量%の範囲内であることが更に好ましい。触媒添加量を上記に記載の範囲内とすることにより、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大のなどを避けることができる。 The amount of these catalysts added to the polysilazane is preferably in the range of 0.1 to 10% by mass, and preferably in the range of 0.2 to 5% by mass with respect to the total mass of the coating liquid for forming the protective layer. More preferably, it is more preferably in the range of 0.5 to 2% by mass. By making the addition amount of the catalyst within the range described above, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in the film density, increase in film defects, and the like.
 ポリシラザンを含有する保護層形成用塗布液を塗布する方法としては、任意の適切な湿式塗布方法を採用することができる。具体例としては、スライドホッパー法、ローラーコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、カーテンコート法、グラビア印刷法等が挙げられる。 Arbitrary appropriate wet coating methods can be employ | adopted as a method of apply | coating the coating liquid for protective layer formation containing polysilazane. Specific examples include a slide hopper method, a roller coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, a curtain coating method, and a gravure printing method. Can be mentioned.
 塗膜の厚さは、目的に応じて適宜設定することができる。例えば、塗膜の厚さは、乾燥後の厚さとしては、50nm~2μmの範囲内にあることが好ましく、より好ましくは70nm~1.5μmの範囲内にあり、100nm~1μmの範囲内にあることが更に好ましい。 The thickness of the coating film can be appropriately set according to the purpose. For example, the thickness of the coating after drying is preferably in the range of 50 nm to 2 μm, more preferably in the range of 70 nm to 1.5 μm, and in the range of 100 nm to 1 μm. More preferably it is.
 〈3.4.2〉エキシマ処理
 本発明に係る保護層は、形成したポリシラザンを含む層に真空紫外線(VUV)を照射する工程により、ポリシラザンの少なくとも一部が酸窒化ケイ素へと改質される。
<3.4.2> Excimer treatment In the protective layer according to the present invention, at least a part of the polysilazane is modified into silicon oxynitride by the step of irradiating the formed polysilazane layer with vacuum ultraviolet rays (VUV). .
 真空紫外線の照射処理により、ポリシラザンを含む塗膜が、SiOxyの特定組成に改質される推定メカニズムについて、パーヒドロポリシラザンを一例として説明する。 An estimation mechanism by which a coating film containing polysilazane is modified to a specific composition of SiO x N y by vacuum ultraviolet irradiation treatment will be described by taking perhydropolysilazane as an example.
 パーヒドロポリシラザンは、「-(SiH2-NH)n-」の組成で示すことができる。上記組成をSiOxyで示す場合、x=0、y=1となり、x>0とするためには外部からの酸素源の供給が必要となるが、
 (i)ポリシラザン塗布液に含まれる酸素や水分、
 (ii)塗布乾燥過程で、雰囲気中から塗膜に取り込まれる酸素や水分、
 (iii)真空紫外線照射工程で、雰囲気中から塗膜に取り込まれる酸素や水分、オゾン、一重項酸素、
 (iv)真空紫外線照射工程で印加される熱等により基材側からアウトガスとして塗膜中に移動してくる酸素や水分、
 (v)真空紫外線照射工程が非酸化性雰囲気で行われる場合には、その非酸化性雰囲気から酸化性雰囲気へと移動した際に、その雰囲気から塗膜に取り込まれる酸素や水分、
 などが酸素源となる。
Perhydropolysilazane can be represented by a composition of “— (SiH 2 —NH) n —”. When the composition is represented by SiO x N y , x = 0, y = 1, and in order to satisfy x> 0, an external oxygen source needs to be supplied.
(I) oxygen and moisture contained in the polysilazane coating solution,
(Ii) Oxygen and moisture taken into the coating film from the atmosphere during the coating and drying process,
(Iii) In the vacuum ultraviolet irradiation process, oxygen, moisture, ozone, singlet oxygen,
(Iv) Oxygen and moisture moving into the coating film as outgas from the substrate side by heat applied in the vacuum ultraviolet irradiation process,
(V) When the vacuum ultraviolet ray irradiation step is performed in a non-oxidizing atmosphere, when moving from the non-oxidizing atmosphere to the oxidizing atmosphere, oxygen and moisture taken into the coating film from the atmosphere,
Etc. become oxygen sources.
 一方、yについては、Siの酸化よりも窒化が進行する条件は非常に特殊であると考えられるため、基本的には1が上限である。 On the other hand, for y, the condition under which nitriding proceeds rather than the oxidation of Si is considered to be very special, so basically 1 is the upper limit.
 また、Si、O、Nの結合手の関係から、基本的には、x、yは2x+3y≦4の範囲にある。酸化が完全に進んだy=0の状態においては、塗膜中にシラノール基を含有するようになり、2<x<2.5の範囲となる場合もある。 Also, from the relationship of Si, O, N bond, x and y are basically in the range of 2x + 3y ≦ 4. In the state of y = 0 where the oxidation has progressed completely, the coating film contains silanol groups, and there are cases where 2 <x <2.5.
 真空紫外線照射工程でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。 The reaction mechanism presumed to produce silicon oxynitride and further silicon oxide from perhydropolysilazane in the vacuum ultraviolet irradiation process will be described below.
 (1)脱水素と、それに伴うSi-N結合の形成
 パーヒドロポリシラザン中のSi-H結合やN-H結合は、真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi-Nとして再結合すると考えられる(Siの未結合手が形成される場合もある)。すなわち、酸化することなくSiNy組成として硬化する。この場合、ポリマー主鎖の切断は生じない。Si-H結合やN-H結合の切断は、触媒の存在や加熱によって促進される。切断されたHは、H2として膜外に放出される。
(1) Dehydrogenation and accompanying Si—N bond formation Si—H bonds and N—H bonds in perhydropolysilazane are relatively easily cleaved by excitation by vacuum ultraviolet irradiation and the like, and in an inert atmosphere It is considered that they are recombined as Si—N (an Si dangling bond may be formed). That is, it is cured as a SiN y composition without being oxidized. In this case, cleavage of the polymer main chain does not occur. The breaking of Si—H bonds and N—H bonds is promoted by the presence of a catalyst and heating. The cut H is released out of the membrane as H 2 .
 (2)加水分解及び脱水縮合によるSi-O-Si結合の形成
 パーヒドロポリシラザン中のSi-N結合は水により加水分解され、ポリマー主鎖が切断されてSi-OHを形成する。二つのSi-OHが脱水縮合してSi-O-Si結合を形成して硬化する。この反応は大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって樹脂フィルム基材からアウトガスとして生じる水蒸気が主な水分源となると考えられる。水分が過剰になると、脱水縮合しきれないSi-OHが残存し、SiO2.1~SiO2.3の組成で示されるガスバリアー性の低い硬化膜となる。
(2) Formation of Si—O—Si Bonds by Hydrolysis and Dehydration Condensation Si—N bonds in perhydropolysilazane are hydrolyzed by water, and the polymer main chain is cleaved to form Si—OH. Two Si—OH are dehydrated and condensed to form a Si—O—Si bond and harden. This reaction occurs in the air, but during vacuum ultraviolet irradiation under an inert atmosphere, water vapor generated as outgas from the resin film substrate by the heat of irradiation is considered to be the main moisture source. When the water becomes excessive, Si—OH that cannot be dehydrated and condensed remains, and a cured film having a low gas barrier property represented by the composition of SiO 2.1 to SiO 2.3 is obtained.
 (3)一重項酸素の直接酸化によるSi-O-Si結合の形成
 真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNは、Oと置き換わってSi-O-Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えが生じる場合もあると考えられる。
(3) Formation of Si—O—Si bond by direct oxidation of singlet oxygen When a suitable amount of oxygen is present in the atmosphere during irradiation with vacuum ultraviolet rays, singlet oxygen having a very strong oxidizing power is formed. H or N in the perhydropolysilazane is replaced with O to form a Si—O—Si bond and is cured. It is considered that recombination of the bond may occur due to cleavage of the polymer main chain.
 (4)真空紫外線照射及び励起によるSi-N結合切断を伴う酸化
 真空紫外線のエネルギーは、パーヒドロポリシラザン中のSi-Nの結合エネルギーよりも高いため、Si-N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると、酸化されてSi-O-Si結合やSi-O-N結合が生じると考えられる。ポリマー主鎖の切断により、結合の組み換えが生じる場合もあると考えられる。
(4) Oxidation with Si-N bond cleavage by vacuum ultraviolet irradiation and excitation Since the energy of vacuum ultraviolet light is higher than the bond energy of Si-N in perhydropolysilazane, the Si-N bond is broken and oxygen is surrounded by oxygen. In the presence of an oxygen source such as ozone or water, it is considered that the Si—O—Si bond or Si—O—N bond is formed by oxidation. It is considered that recombination of the bond may occur due to the cleavage of the polymer main chain.
 ポリシラザンを含有する塗膜に真空紫外線照射を施した保護層における酸窒化ケイ素の組成の調整は、上述の(1)~(4)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。 Adjustment of the composition of the silicon oxynitride in the protective layer obtained by subjecting the coating film containing polysilazane to vacuum ultraviolet irradiation is performed by appropriately controlling the oxidation state by appropriately combining the oxidation mechanisms (1) to (4) described above. Can do.
 本発明における真空紫外線照射工程において、ポリシラザン層塗膜(保護層)が受ける塗膜面での真空紫外線の照度は、30~200mW/cm2の範囲内であることが好ましく、50~160mW/cm2の範囲内であることがより好ましい。30mW/cm2以上であれば、改質効率の低下の懸念がなく、200mW/cm2以下であれば、塗膜にアブレーションを生じることがなく、かつ基材にダメージを与えないため好ましい。 In the vacuum ultraviolet irradiation step of the present invention, the illuminance of the vacuum ultraviolet ray on the coating surface received by the polysilazane layer coating film (protective layer) is preferably within the range of 30 to 200 mW / cm 2 , and 50 to 160 mW / cm 2. A range of 2 is more preferable. If it is 30 mW / cm 2 or more, there is no concern about the reduction of the reforming efficiency, and if it is 200 mW / cm 2 or less, the coating film is not ablated and the substrate is not damaged.
 ポリシラザン含有塗膜面における真空紫外線の照射エネルギー量は、200~10000mJ/cm2の範囲内であることが好ましく、500~5000mJ/cm2の範囲内であることがより好ましい。200mJ/cm2以上であれば、改質を十分に行うことができ、10000mJ/cm2以下であれば、過剰改質にならずクラックの発生や、樹脂基材の熱変形を防止することができる。 Irradiation energy amount of the VUV in the polysilazane-containing coating film surface is preferably in the range of 200 ~ 10000mJ / cm 2, and more preferably in a range of 500 ~ 5000mJ / cm 2. If it is 200 mJ / cm 2 or more, the modification can be sufficiently performed, and if it is 10000 mJ / cm 2 or less, it does not cause over-reformation and can prevent generation of cracks and thermal deformation of the resin base material. it can.
 本発明に係る真空紫外光としては、波長が200nm以下であることが好ましい。 The wavelength of the vacuum ultraviolet light according to the present invention is preferably 200 nm or less.
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。Xe、Kr、Ar、Neなどの希ガスの原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。 As the vacuum ultraviolet light source, a rare gas excimer lamp is preferably used. A rare gas atom such as Xe, Kr, Ar, Ne, etc. is called an inert gas because it does not form a molecule by chemically bonding.
 しかし、放電などによりエネルギーを得た希ガスの励起原子は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
  e+Xe→Xe*
  Xe*+2Xe→Xe2 *+Xe
  Xe2 *→Xe+Xe+hν(172nm)
 となり、励起されたエキシマ分子であるXe2 *が基底状態に遷移するときに172nmのエキシマ光を発光する。
However, excited atoms of rare gases that have gained energy by discharge or the like can form molecules by combining with other atoms. When the rare gas is xenon,
e + Xe → Xe *
Xe * + 2Xe → Xe 2 * + Xe
Xe 2 * → Xe + Xe + hν (172 nm)
Then, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer light of 172 nm is emitted.
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動及び再始動に時間を要さないので、瞬時の点灯及び点滅が可能である。 ¡Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
 エキシマ発光を得るには、誘電体バリアー放電を用いる方法が知られている。誘電体バリアー放電とは、両電極間に透明石英などの誘電体を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じ、雷に似た非常に細いマイクロ ディスチャージ(micro discharge)と呼ばれる放電であり、マイクロ ディスチャージのストリーマが管壁(誘導体)に達すると誘電体表面に電荷が溜まるため、マイクロ ディスチャージは消滅する。 In order to obtain excimer light emission, a method using dielectric barrier discharge is known. Dielectric barrier discharge is a gas space created by placing a gas space between both electrodes via a dielectric such as transparent quartz and applying a high frequency high voltage of several tens of kHz to the electrode. It is a discharge called a thin micro discharge. When the micro discharge streamer reaches the tube wall (derivative), the electric charge accumulates on the dielectric surface, and the micro discharge disappears.
 このマイクロ ディスチャージが管壁全体に広がり、生成・消滅を繰り返している放電である。このため、肉眼でも確認できる光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。 This is a discharge in which this micro discharge spreads throughout the tube wall and is repeatedly generated and extinguished. For this reason, flickering of light that can be confirmed with the naked eye occurs. Moreover, since a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.
 効率よくエキシマ発光を得る方法としては、誘電体バリアー放電以外に、無電極電界放電でも可能である。容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は基本的には誘電体バリアー放電と同じで良いが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキがない長寿命のランプが得られる。 Efficient excimer emission can be achieved by electrodeless field discharge in addition to dielectric barrier discharge. Electrodeless electric field discharge by capacitive coupling, also called RF discharge. The lamp and electrodes and their arrangement may be basically the same as those of dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
 誘電体バリアー放電の場合は、マイクロ ディスチャージが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。 In the case of dielectric barrier discharge, since micro discharge occurs only between the electrodes, the outer electrode covers the entire outer surface and allows light to pass through in order to extract light to the outside in order to cause discharge in the entire discharge space. Must be a thing.
 このため、細い金属線を網状にした電極が用いられる。この電極は、光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾンなどにより損傷しやすい。これを防ぐためには、ランプの周囲、すなわち照射装置内を窒素などの不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。この合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。 For this reason, an electrode in which fine metal wires are meshed is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere. In order to prevent this, it is necessary to provide an atmosphere of an inert gas such as nitrogen around the lamp, that is, the inside of the irradiation apparatus, and provide a synthetic quartz window to extract the irradiation light. This synthetic quartz window is not only an expensive consumable, but also causes light loss.
 二重円筒型ランプは、外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。したがって、仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば、酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。 Since the outer diameter of the double cylindrical lamp is about 25 mm, the difference in the distance to the irradiation surface cannot be ignored between the position directly below the lamp axis and the side of the lamp, resulting in a large difference in illuminance. Therefore, even if the lamps are closely arranged, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
 無電極電界放電を用いた場合には、外部電極を網状にする必要はない。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリアー放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。 ¡When electrodeless field discharge is used, it is not necessary to make the external electrode mesh. The glow discharge spreads over the entire discharge space simply by providing an external electrode on a part of the outer surface of the lamp. As the external electrode, an electrode that also serves as a light reflector made of an aluminum block is usually used on the back of the lamp. However, since the outer diameter of the lamp is as large as in the case of the dielectric barrier discharge, synthetic quartz is required to obtain a uniform illuminance distribution.
 細管エキシマランプの最大の特徴は、構造がシンプルなことにある。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。 The biggest feature of the capillary excimer lamp is its simple structure. The quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside.
 細管ランプの管の外径は6~12mm程度であり、過度に太いと始動に高い電圧が必要になる。 The outer diameter of the tube of the thin tube lamp is about 6 to 12 mm, and if it is too thick, a high voltage is required for starting.
 放電の形態は、誘電体バリアー放電及び無電極電界放電のいずれも使用できる。電極の形状はランプに接する面が平面であっても良いが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。 As the form of discharge, either dielectric barrier discharge or electrodeless field discharge can be used. The electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
 Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することができ、発光効率に優れている。このエキシマ光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 The Xe excimer lamp can emit ultraviolet light having a short wavelength of 172 nm at a single wavelength and has excellent luminous efficiency. Since this excimer light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a small amount of oxygen.
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。 Also, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane layer can be modified in a short time.
 したがって、Xeエキシマランプは、波長185nm、254nmの紫外光を発する低圧水銀ランプやプラズマ洗浄と比べ、高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によりダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。 Therefore, the Xe excimer lamp is a low-pressure mercury lamp that emits ultraviolet light with wavelengths of 185 nm and 254 nm and plasma cleaning, shortening the process time associated with high throughput, reducing the equipment area, and heat-damaged organic materials and plastic substrates Irradiation is possible.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート(PET)などのフレシキブルフィルム基材に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature rise due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, a short wavelength, so that the rise in the surface temperature of the object to be fired is suppressed. For this reason, it is suitable for flexible film base materials, such as a polyethylene terephthalate (PET) considered to be easy to be influenced by heat.
 紫外線照射時の反応では酸素が必要となるが、真空紫外線では、酸素による吸収があるため、酸素が存在すると紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~10000ppmの範囲内とすることが好ましく、より好ましくは50~5000ppmの範囲内であり、更に好ましく1000~4500ppmの範囲内である。 Oxygen is required for the reaction during UV irradiation, but since vacuum UV light is absorbed by oxygen, the presence of oxygen tends to reduce the efficiency of the UV irradiation process. It is preferable to carry out in a state of low oxygen concentration. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably in the range of 10 to 10,000 ppm, more preferably in the range of 50 to 5000 ppm, and still more preferably in the range of 1000 to 4500 ppm.
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特に、コストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 The gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 (3.5)保護層の膜密度
 本発明に係る保護層は、膜密度が、1.40~2.18g/cm3の範囲内であることが好ましい。
(3.5) Film density of the protective layer The protective layer according to the present invention preferably has a film density in the range of 1.40 to 2.18 g / cm 3 .
 膜密度が1.40g/cm3以上であれば、所望の膜硬度を得ることができ、緻密な構造で、平面性に優れた保護層を構成することができる。また、膜密度が2.18g/cm3以下であれば、クラックの発生を防止でき、硬度に優れた保護層とすることができる。 When the film density is 1.40 g / cm 3 or more, a desired film hardness can be obtained, and a protective layer having a dense structure and excellent flatness can be formed. Moreover, if the film density is 2.18 g / cm 3 or less, generation of cracks can be prevented and a protective layer having excellent hardness can be obtained.
 本発明で規定する膜密度を達成するための手段としては、上述したポリシラザンの種類(構造、分子量等)、触媒の種類と添加量、エキシマ処理で使用する真空紫外線の照度、照射エネルギー量、照射時間等を適宜選択して設定及び組み合わせることにより、所望の膜密度を得ることができる。 Means for achieving the film density defined in the present invention include the types of polysilazane (structure, molecular weight, etc.), the type and amount of catalyst added, the illuminance of vacuum ultraviolet rays used in excimer treatment, the amount of irradiation energy, and the irradiation. A desired film density can be obtained by appropriately selecting and setting time and the like.
 本発明で規定する保護層の膜密度は、公知の分析手段を用いて求めることができるが、本発明においては、X線反射率法により求めた値を用いている。 The film density of the protective layer defined in the present invention can be determined using a known analysis means, but in the present invention, the value determined by the X-ray reflectance method is used.
 X線反射率法の概要は、例えば、X線回折ハンドブック 151ページ(理学電機株式会社編 2000年 国際文献印刷社)や化学工業1999年1月No.22を参照して行うことができる。 The outline of the X-ray reflectivity method is described in, for example, X-ray diffraction handbook page 151 (edited by Rigaku Denki Co., Ltd., 2000, International Literature Printing Co., Ltd.) 22 can be performed.
 本発明に有用な測定方法の具体例を以下に示す。 Specific examples of measurement methods useful in the present invention are shown below.
 測定装置としては、マックサイエンス社製のMXP21を用いて行う。X線源のターゲットには銅を用い、42kV、500mAで作動させる。インシデントモノクロメーターには多層膜パラボラミラーを用いる。入射スリットは0.05mm×5mm、受光スリットは0.03mm×20mmを用いる。2θ/θスキャン方式で0から5°をステップ幅0.005°、1ステップ10秒のFT法にて測定を行う。得られた反射率曲線に対し、マックサイエンス社製のReflectivity Analysis Program Ver.1を用いてカーブフィッティングを行い、実測値とカーブフッティングの残差平方和が最小になるように各パラメーターを求める。得られた各パラメーターから、保護層の厚さ及び膜密度を求めることができる。 Measured using MXP21 manufactured by Mac Science. Copper is used as the target of the X-ray source and it is operated at 42 kV and 500 mA. A multilayer parabolic mirror is used for the incident monochromator. The incident slit is 0.05 mm × 5 mm, and the light receiving slit is 0.03 mm × 20 mm. Measurement is performed by the FT method with a step width of 0.005 ° and a step of 10 seconds from 0 to 5 ° in the 2θ / θ scan method. With respect to the obtained reflectance curve, Reflectivity Analysis Program Ver. Curve fitting is performed using 1, and each parameter is determined so that the residual sum of squares of the actual measurement value and the curve fitting is minimized. From the obtained parameters, the thickness and film density of the protective layer can be determined.
 (3.6)保護層の形成方法
 本発明に係る保護層は、ポリシラザン含有液を湿式塗布方式により塗布し、一定の温湿度の雰囲気下で乾燥させ、更に一定の低湿雰囲気下で一定時間保持し、除湿処理を行う。
(3.6) Method for forming protective layer The protective layer according to the present invention is obtained by applying a polysilazane-containing liquid by a wet coating method, drying it in a constant temperature and humidity atmosphere, and holding it in a constant low humidity atmosphere for a certain time. And dehumidifying.
 次いで、上記形成したポリシラザン層に対し、真空紫外線装置を真空チャンバー内に設置して、装置内の圧力を調整して、ポリシラザン層に対し表面改質処理を施す。 Next, a vacuum ultraviolet ray apparatus is installed in the vacuum chamber for the polysilazane layer formed above, and the pressure in the apparatus is adjusted to subject the polysilazane layer to a surface modification treatment.
 代表的な真空紫外線照射装置及び表面改質処理条件の一例を、以下に示す。 An example of a typical vacuum ultraviolet irradiation apparatus and surface modification treatment conditions is shown below.
 〈3.6.1〉紫外線照射装置
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 照射波長:172nm
 ランプ封入ガス:Xe
 〈3.6.2〉表面改質処理条件
 稼動ステージ上に固定したポリシラザン層を形成したガスバリアー層を有する樹脂基材に対し、以下の条件で収縮処理を行って、保護層を形成する。
<3.6.1> Ultraviolet irradiation device Apparatus: Excimer irradiation apparatus MODEL manufactured by MCOM Co., Ltd .: MECL-M-1-200
Irradiation wavelength: 172 nm
Lamp filled gas: Xe
<3.6.2> Surface Modification Treatment Conditions A protective layer is formed by subjecting a resin base material having a gas barrier layer formed with a polysilazane layer fixed on an operation stage to shrinkage treatment under the following conditions.
 エキシマランプ光強度:130mW/cm2(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:1.0%
 エキシマランプ照射時間:5秒。
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 1.0%
Excimer lamp irradiation time: 5 seconds.
 〔4〕各機能層
 本発明に係るガスバリアー性フィルムにおいては、上記説明した本発明に係るガスバリアー層及び保護層のほかに、必要に応じて、各機能層を設けることができる。
[4] Each functional layer In the gas barrier film according to the present invention, in addition to the above-described gas barrier layer and protective layer according to the present invention, each functional layer may be provided as necessary.
 (4.1)オーバーコート層
 本発明に係る保護層の上には、平面性及び屈曲性を更に向上させる目的で、オーバーコート層を形成しても良い。オーバーコート層の形成に用いられる有機物としては、有機のモノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂を好ましく用いることができる。これらの有機樹脂又は有機無機複合樹脂は、重合性基や架橋性基を有することが好ましく、これらの有機樹脂又は有機無機複合樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液を用いて塗布により形成した層に、光照射処理や熱処理を加えて硬化させる方法が好ましい。
(4.1) Overcoat layer An overcoat layer may be formed on the protective layer according to the present invention for the purpose of further improving planarity and flexibility. The organic material used for forming the overcoat layer is preferably an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group. Can be used. These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary. A method of curing by applying light irradiation treatment or heat treatment to a layer formed by coating using an organic resin composition coating solution is preferable.
 (4.2)アンカー層
 本発明に係るガスバリアー性フィルムにおいては、必要に応じて、樹脂基材とガスバリアー層の間に、樹脂基材とガスバリアー層との密着性改良を目的として、アンカー層(クリアハードコート層(CHC層)、あるいは平滑層ともいう。)を有してもよい。
(4.2) Anchor layer In the gas barrier film according to the present invention, if necessary, between the resin base material and the gas barrier layer, for the purpose of improving the adhesion between the resin base material and the gas barrier layer, An anchor layer (also referred to as a clear hard coat layer (CHC layer) or a smooth layer) may be included.
 アンカー層には、樹脂基材を加熱した際に、樹脂基材中から未反応のオリゴマー等が表面に移動して、接触する面を汚染してしまう現象(ブリードアウト)を抑制することもできる。アンカー層は、その上にガスバリアー層を設置するため、平滑であることが好ましく、その算術平均粗さRa値としては、0.3~3nmの範囲内であることが好ましく、より好ましくは0.5~1.5nmの範囲内である。表面粗さRa値が0.3nm以上であれば、表面が適度な平滑性を有し、ローラー搬送性及びプラズマCVD法によるガスバリアー層形成に平滑性を維持することができる。一方、3nm以下であれば、ガスバリアー層形成時に、ガスバリアー層における微小な欠陥の形成を防止でき、高度なガスバリアー性や密着性等を得ることができる。 When the resin base material is heated, the anchor layer can also suppress a phenomenon (bleed out) that unreacted oligomers move from the resin base material to the surface and contaminate the contact surface. . Since the anchor layer is provided with a gas barrier layer thereon, the anchor layer is preferably smooth, and its arithmetic average roughness Ra value is preferably in the range of 0.3 to 3 nm, more preferably 0. Within the range of 5 to 1.5 nm. If the surface roughness Ra value is 0.3 nm or more, the surface has an appropriate smoothness, and the smoothness can be maintained in the roller transportability and gas barrier layer formation by the plasma CVD method. On the other hand, when the thickness is 3 nm or less, formation of minute defects in the gas barrier layer can be prevented at the time of forming the gas barrier layer, and high gas barrier properties and adhesion can be obtained.
 アンカー層の組成としては、平滑性が必要なことから熱硬化性樹脂あるいは光硬化性樹脂が好ましい。 The composition of the anchor layer is preferably a thermosetting resin or a photocurable resin because smoothness is required.
 アンカー層の厚さとしては、平面性を調整する観点から、0.3~10μmの範囲内が好ましく、さらに好ましくは、0.5~5μmの範囲内である。 The thickness of the anchor layer is preferably in the range of 0.3 to 10 μm, more preferably in the range of 0.5 to 5 μm, from the viewpoint of adjusting the flatness.
 《電子デバイス》
 本発明に係るガスバリアー性フィルムは、電子デバイス用のフィルムとして具備することを特徴とする。
《Electronic device》
The gas barrier film according to the present invention is provided as a film for an electronic device.
 本発明の電子デバイスとしては、例えば、有機エレクトロルミネッセンスパネル(以下、有機ELパネルともいう。)、有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)、有機光電変換素子、液晶表示素子等が挙げられ、図1に示す構成からなる本発明に係るガスバリアー性フィルムFは、例えば、有機光電変換素子(太陽電池)、液晶表示素子、有機EL素子等を封止する封止フィルムとして用いることができる。 Examples of the electronic device of the present invention include an organic electroluminescence panel (hereinafter also referred to as an organic EL panel), an organic electroluminescence element (hereinafter also referred to as an organic EL element), an organic photoelectric conversion element, and a liquid crystal display element. The gas barrier film F according to the present invention having the configuration shown in FIG. 1 is used as a sealing film for sealing, for example, an organic photoelectric conversion element (solar cell), a liquid crystal display element, an organic EL element, and the like. Can do.
 〔1〕有機ELパネル
 このガスバリアー性フィルムFを封止フィルムとして用いた電子デバイスである有機ELパネルPの構成の一例を図6に示す。
[1] Organic EL Panel An example of the configuration of an organic EL panel P which is an electronic device using the gas barrier film F as a sealing film is shown in FIG.
 有機ELパネルPは、図6に示すように、ガスバリアー性フィルムFと、ガスバリアー性フィルムF上に形成されたITOなどの透明電極4と、透明電極4を介してガスバリアー性フィルムF上に形成された電子デバイス本体である有機EL素子5と、その有機EL素子5を覆うように接着剤層6を介して配設された対向フィルム7等を備えている。なお、透明電極4は、有機EL素子5の一部を成すこともある。 As shown in FIG. 6, the organic EL panel P includes a gas barrier film F, a transparent electrode 4 such as ITO formed on the gas barrier film F, and the gas barrier film F via the transparent electrode 4. The organic EL element 5 which is the electronic device body formed in the above, and the opposing film 7 disposed via the adhesive layer 6 so as to cover the organic EL element 5 are provided. The transparent electrode 4 may form part of the organic EL element 5.
 このガスバリアー性フィルムFにおけるガスバリアー層2及び保護層3側の表面には、透明電極4と有機EL素子5が形成されるようになっている。 A transparent electrode 4 and an organic EL element 5 are formed on the surface of the gas barrier film F on the gas barrier layer 2 and protective layer 3 side.
 そして、有機ELパネルPにおいて、有機EL素子5は水蒸気に晒されないように、本発明に係るガスバリアー性フィルムFで封止されており、有機EL素子5は劣化し難くい構造になっているので、有機ELパネルPを長く使用することが可能になり、有機ELパネルPの寿命が延びる。 In the organic EL panel P, the organic EL element 5 is sealed with the gas barrier film F according to the present invention so that the organic EL element 5 is not exposed to water vapor, and the organic EL element 5 has a structure that is not easily deteriorated. Therefore, the organic EL panel P can be used for a long time, and the life of the organic EL panel P is extended.
 なお、対向フィルム7は、アルミ箔などの金属フィルムのほか、本発明に係るガスバリアー性フィルムFを用いてもよい。対向フィルム7としてガスバリアー性フィルムFを用いる場合、ガスバリアー層2が形成された面側を有機EL素子5に向けて、接着剤層6によって貼付するようにすればよい。 The counter film 7 may be a gas barrier film F according to the present invention in addition to a metal film such as an aluminum foil. When the gas barrier film F is used as the counter film 7, the surface side on which the gas barrier layer 2 is formed may be attached to the organic EL element 5 with the adhesive layer 6.
 〔2〕有機EL素子
 有機ELパネルPにおいて、本発明に係るガスバリアー性フィルムFで封止される有機EL素子5について説明する。
[2] Organic EL Element In the organic EL panel P, the organic EL element 5 sealed with the gas barrier film F according to the present invention will be described.
 以下に、有機EL素子5の構成の好ましい例を以下に示すが、本発明はこれらに限定されない。 Hereinafter, preferred examples of the configuration of the organic EL element 5 are shown below, but the present invention is not limited thereto.
 (1)陽極/発光層/陰極
 (2)陽極/正孔輸送層/発光層/陰極
 (3)陽極/発光層/電子輸送層/陰極
 (4)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (5)陽極/陽極バッファー層(正孔注入層)/正孔輸送層/発光層/電子輸送層/陰極バッファー層(電子注入層)/陰極
 (2.1)陽極
 有機EL素子5における陽極(透明電極4)としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23-ZnO)等非晶質で透明導電膜の作製が可能な材料を用いてもよい。
(1) Anode / light emitting layer / cathode (2) Anode / hole transport layer / light emitting layer / cathode (3) Anode / light emitting layer / electron transport layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) Anode / anode buffer layer (hole injection layer) / hole transport layer / light emitting layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode (2.1) Anode Organic EL device As the anode in 5 (transparent electrode 4), a material having a work function (4 eV or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
 陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜として形成し、その薄膜をフォトリソグラフィー法で所望のパターンに形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)には、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターン形成してもよい。 For the anode, these electrode materials may be formed as a thin film by a method such as vapor deposition or sputtering, and the thin film may be formed into a desired pattern by a photolithography method, or the pattern accuracy is not required so much (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 この陽極側より発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極のシート抵抗としては数百Ω/□以下が好ましい。また、陽極の膜厚は材料にもよるが、通常10~1000nmの範囲内であり、好ましくは10~200nmの範囲内で選ばれる。 When taking out light emission from the anode side, it is desirable to make the transmittance larger than 10%. The sheet resistance of the anode is preferably several hundred Ω / □ or less. The film thickness of the anode depends on the material, but is usually in the range of 10 to 1000 nm, preferably in the range of 10 to 200 nm.
 (2.2)陰極
 有機EL素子5を構成する陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第2金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が陰極として好適である。
(2.2) Cathode As a cathode constituting the organic EL element 5, a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof are used as an electrode material. Things are used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this from the viewpoint of durability against electron injection and oxidation, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable as the cathode.
 陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましい。また、陰極の膜厚は、通常10nm~5μmの範囲内であり、好ましくは50~200nmの範囲内で選ばれる。なお、発光した光を透過させるため、有機EL素子5の陽極又は陰極のいずれか一方が透明又は半透明であれば、発光輝度が向上し好都合である。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as a cathode is preferably several hundred Ω / □ or less. The film thickness of the cathode is usually in the range of 10 nm to 5 μm, preferably in the range of 50 to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element 5 is transparent or translucent, the light emission luminance is improved, which is convenient.
 また、上記説明で挙げた陰極形成用の金属を、1~20nmの範囲の膜厚で形成した後に、陽極の説明で挙げた導電性透明材料をその上に形成することで、透明又は半透明の陰極を作製することができ、これを応用することで、陽極と陰極の両方が透過性を有する有機EL素子を作製することができる。 In addition, after forming the cathode forming metal described in the above description with a film thickness in the range of 1 to 20 nm, the conductive transparent material described in the description of the anode is formed thereon, so that it is transparent or translucent. By applying this, it is possible to produce an organic EL device in which both the anode and the cathode are transparent.
 (2.3)注入層
 注入層には電子注入層と正孔注入層があり、電子注入層と正孔注入層を必要に応じて設け、陽極と発光層又は正孔輸送層の間、あるいは陰極と発光層又は電子輸送層との間に存在させる。
(2.3) Injection layer The injection layer includes an electron injection layer and a hole injection layer. The electron injection layer and the hole injection layer are provided as necessary, and between the anode and the light emitting layer or the hole transport layer, or It exists between a cathode and a light emitting layer or an electron carrying layer.
 注入層とは、駆動電圧低下や発光輝度向上のため、電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)にその詳細が記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to lower drive voltage and improve light emission brightness. “Organic EL element and its forefront of industrialization” (published by NTT Corporation on November 30, 1998) The details are described in Chapter 2, “Electrode Materials” (pages 123 to 166) of the second edition of the above), and there are a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、特開平9-260062号公報、特開平8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like. Examples thereof include a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、特開平9-17574号公報、特開平10-74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その層厚は0.1nm~5μmの範囲内が好ましい。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium Metal buffer layer typified by aluminum and aluminum, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. Is mentioned. The buffer layer (injection layer) is preferably a very thin film, and although depending on the material, the layer thickness is preferably in the range of 0.1 nm to 5 μm.
 (2.4)発光層
 有機EL素子5における発光層は、電極(陰極、陽極)又は電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
(2.4) Light-Emitting Layer The light-emitting layer in the organic EL element 5 is a layer that emits light by recombination of electrons and holes injected from the electrode (cathode, anode) or electron transport layer or hole transport layer. The light emitting portion may be in the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
 有機EL素子5の発光層には、以下に示すドーパント化合物(発光ドーパント)とホスト化合物(発光ホスト)が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。 The light emitting layer of the organic EL element 5 preferably contains the following dopant compound (light emitting dopant) and host compound (light emitting host). Thereby, the luminous efficiency can be further increased.
 〈2.4.1〉発光ドーパント
 発光ドーパントは、大きく分けて蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
<2.4.1> Light-Emitting Dopant There are two types of light-emitting dopants: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
 蛍光性ドーパントの代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。 Representative examples of fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.
 リン光性ドーパントの代表例としては、元素の周期表で8属、9属、10属の金属を含有する錯体系化合物であることが好ましく、更に好ましくはイリジウム化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。 As a typical example of the phosphorescent dopant, a complex compound containing a metal of Group 8, Group 9, or Group 10 in the periodic table of elements is preferable, more preferably an iridium compound or an osmium compound. Preference is given to iridium compounds.
 本発明に使用できる公知のリン光性ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。 Specific examples of known phosphorescent dopants that can be used in the present invention include compounds described in the following documents.
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater.17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号明細書、米国特許公開第2006/0202194号明細書、米国特許公開第2007/0087321号明細書、米国特許公開第2005/0244673号明細書等に記載の化合物を挙げることができる。 Nature 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. 19, 739 (2007), Chem. Mater. 17, 3532 (2005), Adv. Mater. 17, 1059 (2005), International Publication No. 2009/100991, International Publication No. 2008/101842, International Publication No. 2003/040257, US Patent Publication No. 2006/835469, US Patent Publication No. 2006/020202194. The compounds described in the specification, US Patent Publication No. 2007/0087321, US Patent Publication No. 2005/0244673, and the like can be mentioned.
 また、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許公開第2009/0108737号明細書、米国特許公開第2009/0039776号、米国特許第6921915号、米国特許第6687266号明細書、米国特許公開第2007/0190359号明細書、米国特許公開第2006/0008670号明細書、米国特許公開第2009/0165846号明細書、米国特許公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許公開第2006/0263635号明細書、米国特許公開第2003/0138657号明細書、米国特許公開第2003/0152802号明細書、米国特許第7090928号明細書等に記載の化合物を挙げることができる。 Also, Inorg. Chem. 40, 1704 (2001), Chem. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chem. lnt. Ed. 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chem. Lett. 34, 592 (2005), Chem. Commun. 2906 (2005), Inorg. Chem. 42, 1248 (2003), International Publication No. 2009/050290, International Publication No. 2002/015645, International Publication No. 2009/000673, US Patent Publication No. 2002/0034656, US Pat. No. 7,332,232, US Patent Publication No. 2009/0108737, US Patent Publication No. 2009/0039776, US Patent No. 6921915, US Patent No. 6,687,266, US Patent Publication No. 2007/0190359, US Patent Publication No. 2006 No./0008670, U.S. Patent Publication No. 2009/0165846, U.S. Patent Publication No. 2008/0015355, U.S. Pat. No. 7,250,226, U.S. Pat. No. 7,396,598, U.S. Patent Publication No. 2006 / 026363 Pat, U.S. Patent Publication No. 2003/0138657, U.S. Patent Publication No. 2003/0152802, may be mentioned compounds described in U.S. Patent No. 7,090,928 Pat like.
 また、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics
23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許公開第2006/0251923号明細書、米国特許公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許公開第2007/0190359号明細書、米国特許公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許公開第2006/098120号明細書、米国特許公開第2006/103874号明細書等に記載の化合物も挙げることができる。
Also, Angew. Chem. lnt. Ed. 47, 1 (2008), Chem. Mater. 18, 5119 (2006), Inorg. Chem. 46, 4308 (2007), Organometallics
23, 3745 (2004), Appl. Phys. Lett. 74, 1361 (1999), International Publication No. 2002/002714, International Publication No. 2006/009024, International Publication No. 2006/056418, International Publication No. 2005/019373, International Publication No. 2005/123873, International Publication No. 2005/123873, International Publication No. 2007/004380, International Publication No. 2006/082742, US Patent Publication No. 2006/0251923, US Publication No. 2005/0260441, US Pat. No. 7,393,599. U.S. Pat. No. 7,534,505, U.S. Pat. No. 7,445,855, U.S. Patent Publication No. 2007/0190359, U.S. Patent Publication No. 2008/0297033, U.S. Pat. No. 7,338,722, U.S. Pat. No. 2002 0134984 Pat, U.S. Pat. No. 7279704, U.S. Patent Publication No. 2006/098120, compounds described in U.S. Patent Publication No. 2006/103874 Pat like can be mentioned.
 さらには、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、特開2012-069737号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。 Furthermore, International Publication No. 2005/076380, International Publication No. 2010/032663, International Publication No. 2008/140115, International Publication No. 2007/052431, International Publication No. 2011/134013, International Publication No. 2011/157339. No., International Publication No. 2010/086089, International Publication No. 2009/113646, International Publication No. 2012/020327, International Publication No. 2011/051404, International Publication No. 2011/004639, International Publication No. 2011/073149, JP2012-069737, JP2009-114086, JP2003-81988, JP2002-302671, JP2002-363552, and the like.
 発光ドーパントは複数種の化合物を混合して用いてもよい。 The light emitting dopant may be used by mixing a plurality of kinds of compounds.
 〈2.4.2〉発光ホスト
 発光ホスト(単にホストともいう)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントともいう)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。
<2.4.2> Light-emitting host A light-emitting host (also simply referred to as a host) means a compound having the largest mixing ratio (mass) in a light-emitting layer composed of two or more compounds. The other compounds are referred to as “dopant compounds (also simply referred to as dopants)”. For example, if the light emitting layer is composed of two types of compound A and compound B and the mixing ratio is A: B = 10: 90, compound A is a dopant compound and compound B is a host compound. Further, if the light emitting layer is composed of three types of compound A, compound B and compound C and the mixing ratio is A: B: C = 5: 10: 85, compound A and compound B are dopant compounds, and compound C is a host compound.
 発光ホストとしては構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又はカルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。中でも、カルボリン誘導体、ジアザカルバゾール誘導体等が好ましく用いられる。 The light emitting host is not particularly limited in terms of structure, but is typically a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, or an oligoarylene compound. Or a carboline derivative or a diazacarbazole derivative (herein, a diazacarbazole derivative is one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom) And the like). Of these, carboline derivatives, diazacarbazole derivatives and the like are preferably used.
 発光層に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。 The host compound used in the light emitting layer may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )
 本発明に適用可能なホスト化合物としては、例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第2003/0175553号明細書、米国特許公開第2006/0280965号明細書、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0017330号明細書、米国特許公開第2009/0030202号明細書、米国特許公開第2005/238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、EP第2034538号明細書等に記載されている化合物を挙げることができる。 Examples of host compounds applicable to the present invention include, for example, JP-A Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002 -75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002 36 No. 227, No. 2002-231453, No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183. No. 2002, No. 2002-299060, No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, US Patent Publication No. 2003/0175553, US Patent Publication No. 2006/0280965, United States Patent Publication No. 2005/0112407, United States Patent Publication No. 2009/0017330, United States Patent Publication No. 2009/0030202, United States Patent Publication No. 2005/2389. No. 9, International Publication No. 2001/039234, International Publication No. 2009/021126, International Publication No. 2008/056746, International Publication No. 2004/093207, International Publication No. 2005/089025, International Publication No. 2007 / No. 063796, International Publication No. 2007/063754, International Publication No. 2004/107822, International Publication No. 2005/030900, International Publication No. 2006/114966, International Publication No. 2009/086028, International Publication No. 2009/003898 And compounds described in International Publication No. 2012/023947, JP 2008-074939 A, JP 2007-254297 A, EP 2034538, and the like.
 発光層は、上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)、インクジェット法等の公知の薄膜形成法により成膜して作製することができる。発光層としての層厚は、特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内で設定される。この発光層は、ドーパント化合物やホスト化合物が1種又は2種以上からなる単層構造であってもよいし、あるいは同一組成又は異種組成の複数層からなる積層構造であってもよい。 The light emitting layer is formed by forming the above compound by a known thin film forming method such as a vacuum deposition method, a spin coating method, a casting method, an LB method (Langmuir Brodgett method), an ink jet method or the like. The thickness of the light emitting layer is not particularly limited, but is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm. The host compound may be a single layer structure composed of one or more kinds, or may be a laminated structure composed of a plurality of layers having the same composition or different compositions.
 (2.5)正孔輸送層
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料を含み、広い意味で正孔注入層、電子阻止層も正孔輸送層に包含される。正孔輸送層は、単層又は複数層設けることができる。
(2.5) Hole transport layer The hole transport layer includes a hole transport material having a function of transporting holes. In a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送層を構成する正孔輸送材料は、正孔の注入又は輸送、電子の障壁性のいずれかの特性を備えた化合物であり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 The hole transport material constituting the hole transport layer is a compound having any of the characteristics of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜塗布することにより形成することができる。正孔輸送層の層厚については、特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内である。この正孔輸送層は、上記材料の1種又は2種以上からなる1層構造であってもよい。 The hole transport layer is formed by coating the hole transport material with a thin film by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. Can do. The layer thickness of the hole transport layer is not particularly limited, but is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 (2.6)電子輸送層
 電子輸送層とは電子を輸送する機能を有する電子輸送材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に包含される。電子輸送層は、単層又は複数層設けることができる。
(2.6) Electron Transport Layer The electron transport layer is made of an electron transport material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 電子輸送層を構成する電子輸送材料としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(略称:Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(略称:Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、正孔注入層、正孔輸送層と同様に、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 The electron transporting material constituting the electron transporting layer may be any material as long as it has a function of transmitting electrons injected from the cathode to the light emitting layer. Examples thereof include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (abbreviation: Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) ) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (abbreviation: Znq), etc., and the central metal of these metal complexes Metal complexes replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material. Similarly to the hole injection layer and the hole transport layer, an inorganic semiconductor such as n-type-Si or n-type-SiC can also be used as the electron transport material.
 電子輸送層は、上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の層厚については特に制限はないが、通常は5nm~5μmの範囲内であり、好ましくは5~200nmの範囲内である。電子輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. . The thickness of the electron transport layer is not particularly limited, but is usually in the range of 5 nm to 5 μm, preferably in the range of 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 (2.7)有機EL素子の作製方法
 次いで、有機EL素子5の作製方法について説明する。
(2.7) Manufacturing Method of Organic EL Element Next, a manufacturing method of the organic EL element 5 will be described.
 ここでは、有機EL素子5の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極の構成からなる有機EL素子の作製方法について説明する。 Here, as an example of the organic EL element 5, a method for producing an organic EL element having a configuration of anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
 まず、本発明に係るバリアー性フィルムF上に、所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの範囲内の膜厚になるように、例えば、蒸着やスパッタリング、プラズマCVD法等の方法により陽極を形成する。 First, on the barrier film F according to the present invention, a thin film made of a desired electrode material, for example, an anode material, is deposited to a thickness of 1 μm or less, preferably in the range of 10 to 200 nm. The anode is formed by a method such as sputtering or plasma CVD.
 次に、その上に有機EL素子の構成層である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等の有機機能層(以下、有機機能層群ともいう。)を形成させる。この有機機能層群の成膜方法としては、蒸着法、ウェットプロセス(例えば、スピンコート法、キャスト法、インクジェット法、印刷法等。)等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。また、有機機能層毎に異なる成膜法を適用してもよい。成膜に蒸着法を適用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度としては50~450℃の範囲、真空度としては1×10-6~1×10-2Paの範囲内、蒸着速度としては0.01~50nm/秒の範囲内、基材温度としては-50~300℃の範囲内、層厚としては0.1nm~5μmの範囲内、好ましくは5~200nmの範囲内で適宜選択することが好ましい。 Next, an organic functional layer (hereinafter also referred to as an organic functional layer group) such as a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are constituent layers of the organic EL element. To form. As a method for forming the organic functional layer group, there are a vapor deposition method, a wet process (for example, a spin coating method, a casting method, an ink jet method, a printing method, etc.). From the standpoint that holes are not easily generated, vacuum deposition, spin coating, ink jet, and printing are particularly preferable. Different film forming methods may be applied to each organic functional layer. When vapor deposition is applied to film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is in the range of 50 to 450 ° C., and the degree of vacuum is 1 × 10 −6 to 1 × 10. -2 Pa, deposition rate within the range of 0.01 to 50 nm / second, substrate temperature within the range of -50 to 300 ° C., layer thickness within the range of 0.1 nm to 5 μm, preferably Is preferably selected within the range of 5 to 200 nm.
 これらの各有機機能層を形成した後、その上に陰極形成用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により陰極を形成することにより、所望の構成からなる有機EL素子が得られる。 After forming each of these organic functional layers, a thin film made of a cathode-forming material is formed thereon so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, for example, by a method such as vapor deposition or sputtering. By forming, an organic EL element having a desired configuration can be obtained.
 この有機EL素子の作製は、一回の真空引きで一貫して陽極、各有機機能層から陰極まで作製するプロセスが好ましいが、途中で取り出して異なる成膜法を適用してもよい。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順で作製することも可能である。 This organic EL element is preferably manufactured by a single vacuum evacuation process from the anode and each organic functional layer to the cathode. However, a different film formation method may be applied by taking it out halfway. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.
 以上のような構成からなる電子デバイス(有機ELパネルP)において、本発明に係るガスバリアー性フィルムFを具備させることにより、ガスバリアー性フィルムの本質的な効果である優れたガスバリアー性やフレキシビリティー性を発現するとともに、高温高湿環境下で長期間にわたり保存された際に、ガスバリアー性フィルムFとして優れた平面性を発揮することにより、有機ELパネルP全体の平面性を維持することができ、その結果、平面性の乱れに伴う悪影響、例えば、膜剥がれ、振動による劣化、平面性の劣化、あるいはダークスポットの発生等を効率的に防止することができ、高品位の電子デバイスを得ることができる。 In the electronic device (organic EL panel P) having the above-described configuration, by providing the gas barrier film F according to the present invention, excellent gas barrier properties and flexibilities that are essential effects of the gas barrier film are provided. The flatness of the entire organic EL panel P is maintained by exhibiting excellent flatness as the gas barrier film F when stored for a long period of time in a high temperature and high humidity environment. As a result, it is possible to efficiently prevent adverse effects caused by disturbance of flatness, such as film peeling, deterioration due to vibration, deterioration of flatness, or generation of dark spots. Can be obtained.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。なお、下記に記載のガスバリアー性フィルムの本発明及び比較例の分類は、電子デバイスとして具備したときの分類で表示してある。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented. In addition, the classification | category of this invention and the comparative example of the gas barrier film described below is displayed by the classification | category when it comprises as an electronic device.
 《ガスバリアー性フィルムの作製》
 〔ガスバリアー性フィルム1の作製:比較例〕
 (樹脂基材1の準備)
 二軸延伸のポリエチレンナフタレートフィルム(PENフィルム、厚さ:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を、樹脂基材1として用いた。
<< Production of gas barrier film >>
[Production of Gas Barrier Film 1: Comparative Example]
(Preparation of resin substrate 1)
A biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 μm, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) was used as the resin substrate 1.
 (アンカー層の形成)
 上記樹脂基材の易接着面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501を、乾燥後の層厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件として、80℃で3分間の乾燥を行った。次いで、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm2硬化を行い、アンカー層を形成し、アンカー層付樹脂基材1を作製した。
(Formation of anchor layer)
After the UV curable organic / inorganic hybrid hard coating material OPSTARZ7501 manufactured by JSR Corporation was applied to the easy-adhesion surface of the resin base material with a wire bar so that the layer thickness after drying was 4 μm, the drying condition was 80 Drying was carried out at 3 ° C. for 3 minutes. Next, using a high-pressure mercury lamp in an air atmosphere, curing conditions: 1.0 J / cm 2 curing was performed to form an anchor layer, and a resin base material 1 with an anchor layer was produced.
 (ガスバリアー層1の形成:ローラーCVD法)
 図2に記載の磁場を印加したローラー間放電プラズマCVD装置(以下、この方法をローラーCVD法と称す。)を用い、樹脂基材のアンカー層を形成した面とは反対側の面が成膜ローラー31、32と接触するようにして、樹脂基材を装置に装着し、下記の成膜条件(プラズマCVD条件)により、アンカー層上にガスバリアー層1を、層厚が300nmとなる条件で成膜して、ガスバリアー層のみを有するガスバリアー性フィルム1を作製した。
(Formation of gas barrier layer 1: roller CVD method)
Using the inter-roller discharge plasma CVD apparatus to which the magnetic field shown in FIG. 2 is applied (hereinafter, this method is referred to as “roller CVD method”), the surface opposite to the surface on which the anchor layer of the resin substrate is formed is formed. The resin base material is mounted on the apparatus so as to be in contact with the rollers 31 and 32, and the gas barrier layer 1 is formed on the anchor layer under the condition that the layer thickness is 300 nm under the following film formation conditions (plasma CVD conditions). A gas barrier film 1 having only a gas barrier layer was formed by film formation.
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O2)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:2m/min
 〈元素分布プロファイルの測定〉
 上記形成したガスバリアー性フィルム1のガスバリアー層1について、下記条件にてXPSデプスプロファイル測定を行い、層厚方向の薄膜層の表面からの距離における、ケイ素元素分布、酸素元素分布、炭素元素分布及び酸素炭素分布を得た。
<Plasma CVD conditions>
Feed rate of source gas (hexamethyldisiloxane, HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Resin substrate transport speed: 2 m / min
<Measurement of element distribution profile>
For the gas barrier layer 1 of the gas barrier film 1 formed as described above, XPS depth profile measurement is performed under the following conditions, and silicon element distribution, oxygen element distribution, carbon element distribution at a distance from the surface of the thin film layer in the layer thickness direction. And oxygen carbon distribution was obtained.
 エッチングイオン種:アルゴン(Ar+
 エッチングレート(SiO2熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO2換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形
 以上のようにして測定した全層領域におけるケイ素元素分布、酸素元素分布、炭素元素分布及び酸素炭素分布より、各元素組成における連続変化領域の有無、極値の有無、炭素の原子比率の最大値と最小値の差、全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の平均原子比率を求めた。
Etching ion species: Argon (Ar + )
Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and its size: 800 × 400 μm ellipse From the silicon element distribution, oxygen element distribution, carbon element distribution and oxygen carbon distribution in the whole layer region measured as described above, the continuous change region in each element composition Presence / absence, presence / absence of extreme value, difference between maximum and minimum values of carbon atomic ratio, and average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms in a region of 90% or more of the total thickness.
 その結果、図3に示すように、各原子組成における連続変化領域及び極値があり、炭素の原子比率の最大値と最小値の差が16at%で、ケイ素原子、酸素原子及び炭素原子の平均原子比率が、全層厚の90%以上の領域で、式(A)で規定する関係、すなわち(炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)の関係を満たしていることを確認した。 As a result, as shown in FIG. 3, there are continuously changing regions and extreme values in each atomic composition, the difference between the maximum value and the minimum value of the atomic ratio of carbon is 16 at%, and the average of silicon atoms, oxygen atoms and carbon atoms In the region where the atomic ratio is 90% or more of the total layer thickness, the relationship defined by the formula (A), that is, the relationship of (carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio) is satisfied. I confirmed.
 〔ガスバリアー性フィルム2の作製:比較例〕
 (樹脂基材の準備)
 上記ガスバリアー性フィルム1の作製に用いたアンカー層付樹脂基材1を使用した。
[Production of Gas Barrier Film 2: Comparative Example]
(Preparation of resin base material)
The resin substrate 1 with an anchor layer used for the production of the gas barrier film 1 was used.
 (ガスバリアー層2の形成:真空蒸着法)
 真空蒸着装置を用いて、SiO2を装着した抵抗加熱ボートを通電及び加熱し、蒸着速度1~2nm/秒で、アンカー層付樹脂基材1のアンカー層表面に、SiO2からなる厚さ300nmのガスバリアー層2を、真空蒸着法により形成した。
(Formation of gas barrier layer 2: vacuum deposition method)
Using a vacuum evaporation apparatus, a resistance heating boat equipped with SiO 2 is energized and heated, and the thickness of 300 nm of SiO 2 is formed on the anchor layer surface of the resin base material 1 with an anchor layer at a deposition rate of 1 to 2 nm / second. The gas barrier layer 2 was formed by a vacuum deposition method.
 形成したガスバリアー層2の元素分布プロファイルを、上記と同様の方法で測定した結果、組成における連続変化領域及び極値が存在しなかった。ただし、ケイ素原子と酸素原子の平均原子比率は、全層厚の90%以上の領域で、式(A)で規定する関係を満たしている。 As a result of measuring the element distribution profile of the formed gas barrier layer 2 by the same method as described above, there was no continuous change region and no extreme value in the composition. However, the average atomic ratio of silicon atoms and oxygen atoms satisfies the relationship defined by the formula (A) in a region of 90% or more of the total thickness.
 (保護層2の形成)
 上記形成したガスバリアー層2上に、テトラエトキシシラン加水分解物(エタノールと塩酸水溶液から調製)を、ワイヤレスバーを用いて、乾燥後の平均層厚が300nmとなる条件で塗布し、60℃で24時間乾燥して、ゾルゲル法により保護層2を形成して、ガスバリアー性フィルム2を作製した。
(Formation of protective layer 2)
On the gas barrier layer 2 formed above, a tetraethoxysilane hydrolyzate (prepared from ethanol and aqueous hydrochloric acid) was applied using a wireless bar under the condition that the average layer thickness after drying was 300 nm, at 60 ° C. It dried for 24 hours, the protective layer 2 was formed by the sol-gel method, and the gas barrier film 2 was produced.
 〔ガスバリアー性フィルム3の作製:比較例〕
 上記ガスバリアー性フィルム2の作製において、保護層2の形成方法を、ゾルゲル法から下記に示すポリシラザンを用いたエキシマ1に変更し、厚さ300nmの保護層3を形成した以外は同様にして、ガスバリアー性フィルム3を作製した。
[Production of Gas Barrier Film 3: Comparative Example]
In the production of the gas barrier film 2, the method for forming the protective layer 2 was changed from the sol-gel method to the excimer 1 using polysilazane shown below, and similarly, except that the protective layer 3 having a thickness of 300 nm was formed. A gas barrier film 3 was produced.
 (エキシマ1)
 次いで、下記エキシマ法に従って、ガスバリアー層2上に、厚さ300nmの保護層3を形成した。
(Excimer 1)
Next, a protective layer 3 having a thickness of 300 nm was formed on the gas barrier layer 2 according to the following excimer method.
 〈ポリシラザン層形成用塗布液の調製〉
 パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液を、ポリシラザン層形成用塗布液として用いた。
<Preparation of coating solution for forming polysilazane layer>
A 10 mass% dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was used as a coating solution for forming a polysilazane layer.
 〈ポリシラザン層の形成〉
 上記調製したポリシラザン層形成用塗布液を、ワイヤレスバーにて、乾燥後の(平均)層厚が300nmとなるように塗布し、温度85℃、相対湿度55%の雰囲気下で1分間処理して乾燥させ、更に温度25℃、相対湿度10%(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン層を形成した。
<Formation of polysilazane layer>
The prepared polysilazane layer-forming coating solution is applied with a wireless bar so that the (average) layer thickness after drying is 300 nm, and treated for 1 minute in an atmosphere at a temperature of 85 ° C. and a relative humidity of 55%. It was dried, and further kept in an atmosphere of a temperature of 25 ° C. and a relative humidity of 10% (dew point temperature −8 ° C.) for 10 minutes to perform dehumidification, thereby forming a polysilazane layer.
 〈保護層3の形成:紫外光によるポリシラザン層の収縮処理〉
 次いで、上記形成したポリシラザン層に対し、下記紫外線装置を真空チャンバー内に設置して、装置内の圧力を調整して、収縮処理を実施した。
<Formation of Protective Layer 3: Shrinkage Treatment of Polysilazane Layer with Ultraviolet Light>
Subsequently, the following ultraviolet device was installed in the vacuum chamber with respect to the polysilazane layer formed above, and the shrinkage treatment was performed by adjusting the pressure in the device.
 〈紫外線照射装置〉
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 照射波長:172nm
 ランプ封入ガス:Xe
 〈改質処理条件〉
 稼動ステージ上に固定したポリシラザン層を形成した樹脂基材に対し、以下の条件で収縮処理を行って、保護層3を形成した。
<Ultraviolet irradiation device>
Equipment: Ex D irradiation system MODEL manufactured by M.D. Com: MECL-M-1-200
Irradiation wavelength: 172 nm
Lamp filled gas: Xe
<Reforming treatment conditions>
The protective layer 3 was formed by performing a shrinkage treatment on the resin base material on which the polysilazane layer fixed on the operation stage was formed under the following conditions.
 エキシマランプ光強度:130mW/cm2(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:1.0%
 エキシマランプ照射時間:5秒
 〔ガスバリアー性フィルム4の作製:本発明〕
 上記ガスバリアー性フィルム1の作製において、ローラーCVD法でガスバリアー層1を形成した後、下記のゾル-ゲル法により保護層4を形成した以外は同様にして、ガスバリアー性フィルム4を作製した。
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 1.0%
Excimer lamp irradiation time: 5 seconds [Production of gas barrier film 4: the present invention]
In the production of the gas barrier film 1, the gas barrier film 4 was produced in the same manner except that the gas barrier layer 1 was formed by the roller CVD method and then the protective layer 4 was formed by the following sol-gel method. .
 (ゾル-ゲル法)
 上記形成したガスバリアー層1上に、テトラエトキシシラン加水分解物(エタノールと塩酸水溶液から調製)を、ワイヤレスバーを用いて、乾燥後の平均層厚が300nmとなる条件で塗布し、60℃で2時間乾燥した後、下記の条件にてエキシマランプによる真空紫外光処理を行った。
(Sol-gel method)
On the gas barrier layer 1 formed above, a tetraethoxysilane hydrolyzate (prepared from ethanol and aqueous hydrochloric acid) was applied using a wireless bar under the condition that the average layer thickness after drying was 300 nm, at 60 ° C. After drying for 2 hours, vacuum ultraviolet light treatment with an excimer lamp was performed under the following conditions.
 エキシマランプ光強度:70mW/cm2(172nm)
 試料とエキシマランプの距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:1.0%
 エキシマランプ照射時間:10秒
 〔ガスバリアー性フィルム5の作製:比較例〕
 上記ガスバリアー性フィルム1の作製において、ローラーCVD法でガスバリアー層1を形成した後、下記の方法に従って、ハードコート剤を用いて保護層5を形成した以外は同様にして、ガスバリアー性フィルム5を作製した。
Excimer lamp light intensity: 70 mW / cm 2 (172 nm)
Distance between sample and excimer lamp: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 1.0%
Excimer lamp irradiation time: 10 seconds [Production of gas barrier film 5: Comparative example]
In the production of the gas barrier film 1, the gas barrier film was formed in the same manner except that after forming the gas barrier layer 1 by the roller CVD method, the protective layer 5 was formed using a hard coating agent according to the following method. 5 was produced.
 (保護層5の形成)
 下記のハードコート剤を含む保護層形成用塗布液を、ガスバリアー層1上に塗布し、80℃で乾燥した後、さらに紫外線を1.0J/cm2の条件で照射して硬化させ、厚さ300nmの保護層5を形成した。
(Formation of protective layer 5)
A coating solution for forming a protective layer containing the following hard coat agent is applied on the gas barrier layer 1 and dried at 80 ° C., and then cured by irradiation with ultraviolet rays under conditions of 1.0 J / cm 2. A protective layer 5 having a thickness of 300 nm was formed.
 〈保護層形成用塗布液の調製〉
 市販のハードコート剤(JSR製 オプスター(登録商標)Z7534)をメチルエチルケトンで固形分濃度が50質量%になるように希釈し、更に平均粒子径が1.5μmのアクリル系微粒子(綜研化学製 ケミスノー(登録商標)MXシリーズ)を上記ハードコート剤の固形分に対して1質量%添加して、保護層形成用塗布液を調製した。
<Preparation of protective layer coating solution>
A commercially available hard coat agent (Opstar (registered trademark) Z7534 manufactured by JSR) is diluted with methyl ethyl ketone so that the solid content concentration is 50% by mass, and acrylic fine particles having an average particle size of 1.5 μm (Chemisnow manufactured by Soken Chemical Co., Ltd.) (Registered trademark) MX series) was added in an amount of 1% by mass based on the solid content of the hard coating agent to prepare a coating solution for forming a protective layer.
 〔ガスバリアー性フィルム6の作製:本発明〕
 上記ガスバリアー性フィルム1の作製において、ローラーCVD法でガスバリアー層1を形成した後、ガスバリアー性フィルム2において、ガスバリアー層の形成に用いたのと同様の真空蒸着法により、SiO2からなる厚さ300nmの保護層6を形成した以外は同様にして、ガスバリアー性フィルム6を作製した。
[Production of Gas Barrier Film 6: Present Invention]
In the production of the gas barrier film 1, after the gas barrier layer 1 is formed by the roller CVD method, the gas barrier film 2 is formed from SiO 2 by the same vacuum vapor deposition method as that used for forming the gas barrier layer. A gas barrier film 6 was produced in the same manner except that the protective layer 6 having a thickness of 300 nm was formed.
 〔ガスバリアー性フィルム7の作製:本発明〕
 上記ガスバリアー性フィルム1の作製において、ローラーCVD法でガスバリアー層1を形成した後、下記の方法(平板CVD法)により、厚さ300nmの保護層7を形成した以外は同様にして、ガスバリアー性フィルム7を作製した。
[Production of Gas Barrier Film 7: Present Invention]
In the production of the gas barrier film 1, the gas barrier layer 1 was formed by the roller CVD method, and then the gas barrier film 1 was formed in the same manner except that the protective layer 7 having a thickness of 300 nm was formed by the following method (flat plate CVD method). A barrier film 7 was produced.
 (保護層7の形成:平板型CVD)
 市販されている平板電極タイプのCVD装置を用いて、下記の成膜条件(プラズマCVD条件)により、ガスバリアー層上に保護層7を、厚さが300nmとなる条件で成膜した。
(Formation of protective layer 7: flat plate type CVD)
Using a commercially available flat-plate type CVD apparatus, the protective layer 7 was formed on the gas barrier layer under the following film formation conditions (plasma CVD conditions) under a condition that the thickness was 300 nm.
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:20sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O2)の供給量:100sccm
 真空チャンバー内の真空度:10Pa
 プラズマ発生用電源からの印加電力:0.5kW
 プラズマ発生用電源の周波数:13.56MHz
 樹脂基材の搬送速度:1m/min
 〔ガスバリアー性フィルム8の作製:比較例〕
 上記ガスバリアー性フィルム4の作製において、ガスバリアー性フィルム3の作製に用いたのと同様のエキシマ法を用いて保護層8を形成した以外は同様にして、ガスバリアー性フィルム8を作製した。ただし、エキシマ法におけるエキシマランプ照射時間を、1秒に変更した(この方法を、エキシマ2と称す。)。
<Plasma CVD conditions>
Feed rate of raw material gas (hexamethyldisiloxane, HMDSO): 20 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 100 sccm
Degree of vacuum in the vacuum chamber: 10Pa
Applied power from the power source for plasma generation: 0.5 kW
Frequency of power source for plasma generation: 13.56 MHz
Resin substrate transport speed: 1 m / min
[Production of Gas Barrier Film 8: Comparative Example]
A gas barrier film 8 was produced in the same manner as in the production of the gas barrier film 4 except that the protective layer 8 was formed using the same excimer method used for the production of the gas barrier film 3. However, the excimer lamp irradiation time in the excimer method was changed to 1 second (this method is referred to as excimer 2).
 〔ガスバリアー性フィルム9の作製:本発明〕
 上記ガスバリアー性フィルム4の作製において、ガスバリアー性フィルム3の作製に用いたのと同様のエキシマ法を用いて保護層9を形成した以外は同様にして、ガスバリアー性フィルム9を作製した。ただし、エキシマ法におけるエキシマランプ照射時間は、3秒に変更した(この方法を、エキシマ3と称す。)。
[Production of Gas Barrier Film 9: Present Invention]
In the production of the gas barrier film 4, the gas barrier film 9 was produced in the same manner except that the protective layer 9 was formed using the same excimer method used for the production of the gas barrier film 3. However, the excimer lamp irradiation time in the excimer method was changed to 3 seconds (this method is referred to as excimer 3).
 〔ガスバリアー性フィルム10の作製:本発明〕
 上記ガスバリアー性フィルム4の作製において、ガスバリアー性フィルム3の作製に用いたのと同様のエキシマ法(エキシマ1)を用い、エキシマランプ照射時間が5秒とする条件で保護層10を形成した以外は同様にして、ガスバリアー性フィルム10を作製した。
[Production of Gas Barrier Film 10: Present Invention]
In the production of the gas barrier film 4, the same excimer method (Excimer 1) used for the production of the gas barrier film 3 was used, and the protective layer 10 was formed under the condition that the excimer lamp irradiation time was 5 seconds. Except for the above, a gas barrier film 10 was produced in the same manner.
 〔ガスバリアー性フィルム11の作製:本発明〕
 上記ガスバリアー性フィルム4の作製において、ガスバリアー性フィルム3の作製に用いたのと同様のエキシマ法を用いて保護層11を形成した以外は同様にして、ガスバリアー性フィルム11を作製した。ただし、エキシマ法におけるエキシマランプ照射時間は、10秒に変更した(この方法を、エキシマ4と称す。)。
[Production of Gas Barrier Film 11: Present Invention]
A gas barrier film 11 was produced in the same manner as in the production of the gas barrier film 4 except that the protective layer 11 was formed using the same excimer method used for the production of the gas barrier film 3. However, the excimer lamp irradiation time in the excimer method was changed to 10 seconds (this method is referred to as excimer 4).
 〔ガスバリアー性フィルム12の作製:本発明〕
 上記ガスバリアー性フィルム4の作製において、ガスバリアー性フィルム3の作製に用いたのと同様のエキシマ法を用いて保護層12を形成した以外は同様にして、ガスバリアー性フィルム12を作製した。ただし、エキシマ法におけるエキシマランプ照射時間は、20秒に変更した(この方法を、エキシマ5と称す。)。
[Production of Gas Barrier Film 12: Present Invention]
In the production of the gas barrier film 4, the gas barrier film 12 was produced in the same manner except that the protective layer 12 was formed using the same excimer method used for the production of the gas barrier film 3. However, the excimer lamp irradiation time in the excimer method was changed to 20 seconds (this method is referred to as excimer 5).
 〔ガスバリアー性フィルム13の作製:本発明〕
 上記ガスバリアー性フィルム10の作製において、ガスバリアー層の層厚を100nmに変更した以外は同様にして、ガスバリアー性フィルム13を作製した。
[Production of Gas Barrier Film 13: Present Invention]
A gas barrier film 13 was produced in the same manner as in the production of the gas barrier film 10 except that the thickness of the gas barrier layer was changed to 100 nm.
 〔ガスバリアー性フィルム14の作製:本発明〕
 上記ガスバリアー性フィルム10の作製において、ガスバリアー層の層厚を600nmに変更した以外は同様にして、ガスバリアー性フィルム14を作製した。
[Production of Gas Barrier Film 14: Present Invention]
A gas barrier film 14 was produced in the same manner as in the production of the gas barrier film 10 except that the thickness of the gas barrier layer was changed to 600 nm.
 〔ガスバリアー性フィルム15の作製:比較例〕
 上記ガスバリアー性フィルム10の作製において、ガスバリアー層のローラーCVD法による成膜条件として、原料ガスと酸素ガスの供給量及び印加電力を炭素原子の最大値と最小値の差が4.0at%となる条件に調整してガスバリアー層を成膜した以外は同様にして、ガスバリアー性フィルム15を作製した。
[Production of Gas Barrier Film 15: Comparative Example]
In the production of the gas barrier film 10, as a film deposition condition of the gas barrier layer by the roller CVD method, the difference between the maximum value and the minimum value of the carbon atom is 4.0 at% in terms of the supply amount of source gas and oxygen gas and the applied power. A gas barrier film 15 was produced in the same manner except that the gas barrier layer was formed under the conditions described above.
 〔ガスバリアー性フィルム16の作製:本発明〕
 上記ガスバリアー性フィルム10の作製において、ガスバリアー層のローラーCVD法による成膜条件として、原料ガスと酸素ガスの供給量及び印加電力を炭素原子の最大値と最小値の差が7.0at%となる条件に調整してガスバリアー層を成膜した以外は同様にして、ガスバリアー性フィルム16を作製した。
[Production of Gas Barrier Film 16: Present Invention]
In the production of the gas barrier film 10, as the film deposition conditions of the gas barrier layer by the roller CVD method, the difference between the maximum value and the minimum value of the carbon atoms is 7.0 at% for the supply amount of the source gas and the oxygen gas and the applied power. A gas barrier film 16 was produced in the same manner except that the gas barrier layer was formed under the conditions described above.
 〔ガスバリアー性フィルム17の作製:比較例〕
 (樹脂基材の準備)
 二軸延伸のポリエチレンナフタレートフィルム(PENフィルム、厚さ:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を、樹脂基材として用いた。
[Production of Gas Barrier Film 17: Comparative Example]
(Preparation of resin base material)
A biaxially stretched polyethylene naphthalate film (PEN film, thickness: 100 μm, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) was used as a resin substrate.
 (アンカー層の形成)
 上記樹脂基材の易接着面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501を乾燥後の層厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件として、80℃で3分間の乾燥を行った後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm2硬化を行い、アンカー層を形成した。
(Formation of anchor layer)
After applying UV curable organic / inorganic hybrid hard coat material OPSTARZ7501 manufactured by JSR Corporation with a wire bar on the easy-adhesion surface of the resin base material so that the layer thickness after drying becomes 4 μm, the drying condition is 80 ° C. After drying for 3 minutes, an high pressure mercury lamp was used in an air atmosphere, curing conditions: 1.0 J / cm 2 curing was performed to form an anchor layer.
 (ガスバリアー層の形成:平板型CVD)
 市販されている平板電極タイプのCVD装置を用いて、下記の成膜条件(プラズマCVD条件)により、アンカー層上にガスバリアー層を、厚さが300nmとなる条件で成膜して、ガスバリアー性フィルム17を作製した。ガスバリアー性フィルム17には、保護層は形成していない。
(Formation of gas barrier layer: flat plate CVD)
Using a commercially available plate electrode type CVD apparatus, a gas barrier layer is formed on the anchor layer under the following film formation conditions (plasma CVD conditions) under the condition that the thickness is 300 nm. Film 17 was produced. A protective layer is not formed on the gas barrier film 17.
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシロキサン、HMDSO)の供給量:20sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O2)の供給量:100sccm
 真空チャンバー内の真空度:10Pa
 プラズマ発生用電源からの印加電力:0.5kW
 プラズマ発生用電源の周波数:13.56MHz
 樹脂基材の搬送速度:1m/min
 形成したガスバリアー層の元素分布プロファイルを、上記と同様の方法で測定した結果、図4に示すように、膜組成における連続変化領域及び極値が存在せず、炭素の原子比率の最大値と最小値の差が1.0at%であった。ただし、ケイ素原子、酸素原子及び炭素原子の平均原子比率は、全層厚の90%以上の領域で、式(A)で規定する関係を満たしている。
<Plasma CVD conditions>
Feed rate of raw material gas (hexamethyldisiloxane, HMDSO): 20 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 100 sccm
Degree of vacuum in the vacuum chamber: 10Pa
Applied power from the power source for plasma generation: 0.5 kW
Frequency of power source for plasma generation: 13.56 MHz
Resin substrate transport speed: 1 m / min
As a result of measuring the element distribution profile of the formed gas barrier layer by the same method as described above, as shown in FIG. 4, there is no continuous change region and extreme value in the film composition, and the maximum value of the atomic ratio of carbon The difference between the minimum values was 1.0 at%. However, the average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms satisfies the relationship defined by the formula (A) in a region of 90% or more of the total layer thickness.
 〔ガスバリアー性フィルム18の作製:比較例〕
 上記ガスバリアー性フィルム17の作製において、ガスバリアー性フィルム3の作製に用いたのと同様の方法で、ガスバリアー層上にエキシマ法(エキシマ1)を用いて保護層18を形成した以外は同様にして、ガスバリアー性フィルム18を作製した。
[Production of Gas Barrier Film 18: Comparative Example]
The production of the gas barrier film 17 is the same as that used for the production of the gas barrier film 3 except that the protective layer 18 is formed on the gas barrier layer using the excimer method (excimer 1). Thus, a gas barrier film 18 was produced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 《電子デバイス:有機ELパネルの作製》
 〔有機ELパネル1の作製〕
 (第1電極層の形成)
 上記作製したガスバリアー性フィルム1のガスバリアー層上に、厚さ150nmのITO膜(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは、発光面積が50mm平方になるようなパターンとして形成した。
<< Electronic device: Preparation of organic EL panel >>
[Production of organic EL panel 1]
(Formation of first electrode layer)
An ITO film (indium tin oxide) having a thickness of 150 nm was formed by sputtering on the gas barrier layer of the produced gas barrier film 1 and patterned by photolithography to form a first electrode layer. The pattern was formed as a pattern having a light emitting area of 50 mm square.
 (正孔輸送層の形成)
 ガスバリアー性フィルム1の上記形成した第1電極層上に、下記の正孔輸送層形成用塗布液を用い、25℃、相対湿度50%の環境下で、押出し塗布機で塗布し、下記の条件で乾燥及び加熱処理を行って、正孔輸送層を形成した。なお、正孔輸送層形成用塗布液は、乾燥後の厚さが50nmとなる条件で塗布した。
(Formation of hole transport layer)
On the first electrode layer formed on the gas barrier film 1, the following coating liquid for forming a hole transport layer was used, and was applied with an extrusion coater in an environment of 25 ° C. and a relative humidity of 50%. Drying and heat treatment were performed under conditions to form a hole transport layer. The hole transport layer forming coating solution was applied under the condition that the thickness after drying was 50 nm.
 正孔輸送層形成用塗布液を塗布する前に、ガスバリアー性フィルム1の両面に対し洗浄表面改質処理及び帯電除去処理を行った。洗浄表面改質処理としては、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm2、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用して行った。 Before applying the hole transport layer forming coating solution, a cleaning surface modification treatment and a charge removal treatment were performed on both surfaces of the gas barrier film 1. As the cleaning surface modification treatment, a low pressure mercury lamp with a wavelength of 184.9 nm was used, and the irradiation intensity was 15 mW / cm 2 and the distance was 10 mm. The charge removal treatment was performed using a static eliminator with weak X-rays.
 〈正孔輸送層形成用塗布液の調製〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)の30質量部を、純水の65質量部及びメタノールの5質量部で希釈した溶液を、正孔輸送層形成用塗布液として準備した。
<Preparation of coating solution for hole transport layer formation>
For forming a hole transport layer, a solution obtained by diluting 30 parts by mass of polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with 65 parts by mass of pure water and 5 parts by mass of methanol Prepared as a coating solution.
 〈乾燥及び加熱処理条件〉
 正孔輸送層形成用塗布液を塗布した後、正孔輸送層形成面に対し、高さ100mm、吐出風速1m/s、幅手の風速分布5%、乾燥温度100℃で溶媒を除去した後、加熱処理装置を用い、温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
<Drying and heat treatment conditions>
After coating the hole transport layer forming coating solution, after removing the solvent at a height of 100 mm, a discharge wind speed of 1 m / s, a width of a wide wind speed of 5%, and a drying temperature of 100 ° C. Then, using a heat treatment apparatus, heat treatment of the back surface heat transfer method was performed at a temperature of 150 ° C. to form a hole transport layer.
 (発光層の形成)
 上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥及び加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は、乾燥後の層厚が40nmとなる条件で塗布した。
(Formation of light emitting layer)
On the hole transport layer formed above, the following coating solution for forming a white light emitting layer is applied by an extrusion coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. did. The white light emitting layer forming coating solution was applied under the condition that the layer thickness after drying was 40 nm.
 〈白色発光層形成用塗布液の調製〉
 ホスト材料として、下記に示す化合物H-Aを1.0gと、第1のドーパント材料として下記化合物D-Aを100mgと、第2のドーパント材料として下記化合物D-Bを0.2mgと、第3のドーパント材料として下記化合物D-Cを0.2mgとを、100gのトルエンに溶解して、白色発光層形成用塗布液を調製した。
<Preparation of white light emitting layer forming coating solution>
As a host material, 1.0 g of the compound HA shown below, 100 mg of the following compound DA as the first dopant material, 0.2 mg of the following compound DB as the second dopant material, As a dopant material 3, 0.2 mg of the following compound DC was dissolved in 100 g of toluene to prepare a white light emitting layer forming coating solution.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 〈塗布条件〉
 塗布工程は、窒素ガス濃度が99%以上の雰囲気下で、塗布温度を25℃、塗布速度1m/minで行った。
<Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more at a coating temperature of 25 ° C. and a coating speed of 1 m / min.
 〈乾燥及び加熱処理条件〉
 白色発光層形成用塗布液を、押出し塗布機を用いて、正孔輸送層上に塗布した後、成膜面に向け、高さ100mm、吐出風速1m/s、幅手の風速分布5%、乾燥温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
<Drying and heat treatment conditions>
The white light emitting layer forming coating solution is applied onto the hole transport layer using an extrusion coater, and then directed toward the film forming surface, the height is 100 mm, the discharge wind speed is 1 m / s, and the wide wind speed distribution is 5%. After removing the solvent at a drying temperature of 60 ° C., heat treatment was subsequently performed at a temperature of 130 ° C. to form a light emitting layer.
 (電子輸送層の形成)
 上記形成した発光層上に、以下に示す電子輸送層形成用塗布液を用い、下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥及び加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の層厚が30nmとなる条件で塗布した。
(Formation of electron transport layer)
On the light emitting layer thus formed, the following electron transport layer forming coating solution was applied by an extrusion coater under the following conditions, followed by drying and heat treatment under the following conditions to form an electron transport layer. The coating solution for forming an electron transport layer was applied under the condition that the layer thickness after drying was 30 nm.
 〈電子輸送層形成用塗布液の調製〉
 電子輸送層形成用塗布液は、下記化合物E-Aを、2,2,3,3-テトラフルオロ-1-プロパノール中に、濃度として0.5質量%となる条件で溶解して調製した。
<Preparation of electron transport layer forming coating solution>
The coating solution for forming an electron transport layer was prepared by dissolving the following compound EA in 2,2,3,3-tetrafluoro-1-propanol at a concentration of 0.5% by mass.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 〈塗布条件〉
 塗布工程は、窒素ガス濃度が99%以上の雰囲気下で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
<Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.
 〈乾燥及び加熱処理条件〉
 電子輸送層形成用塗布液を、発光層上に塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、乾燥温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
<Drying and heat treatment conditions>
After the electron transport layer forming coating solution is applied on the light emitting layer, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a drying temperature of 60 ° C. Subsequently, heat treatment was performed at a temperature of 200 ° C. in the heat treatment section to form an electron transport layer.
 (電子注入層の形成)
 上記形成した電子輸送層上に、下記の方法に従って、電子注入層を形成した。
(Formation of electron injection layer)
An electron injection layer was formed on the formed electron transport layer according to the following method.
 電子輸送層まで形成したガスバリアー性フィルム1を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバー内のタンタル製蒸着ボートに装填しておいたフッ化セシウムを加熱し、層厚が3nmの電子注入層を形成した。 The gas barrier film 1 formed up to the electron transport layer was put into a vacuum chamber and the pressure was reduced to 5 × 10 −4 Pa. The cesium fluoride previously loaded in the tantalum vapor deposition boat in the vacuum chamber was heated to form an electron injection layer having a layer thickness of 3 nm.
 (第2電極の形成)
 上記で形成した電子注入層上の第1電極の取り出し電極になる部分を除く領域に、5×10-4Paの真空下で、第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法により、発光面積が50mm平方になるようにマスクパターン成膜して、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
In the region excluding the portion to be the extraction electrode of the first electrode on the electron injection layer formed as described above, aluminum is used as the second electrode forming material under a vacuum of 5 × 10 −4 Pa so as to have the extraction electrode Then, a mask pattern was formed by vapor deposition so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
 (裁断)
 以上のように、第2電極まで形成した積層体を、再び窒素雰囲気に移動し、規定の大きさに、紫外線レーザーを用いて裁断し、有機EL素子1を作製した。
(Cutting)
As described above, the laminate formed up to the second electrode was moved again to a nitrogen atmosphere and cut into a prescribed size using an ultraviolet laser, whereby the organic EL element 1 was produced.
 (電極リード接続)
 作製した有機EL素子1に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルム(ACF) DP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
(Electrode lead connection)
An anisotropic conductive film (ACF) DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd. was used for the produced organic EL element 1, and a flexible printed circuit board (base film: polyimide 12.5 μm, rolled copper foil 18 μm, coverlay: Polyimide 12.5 μm, surface-treated NiAu plating) was connected.
 圧着条件としては、圧着温度:170℃(別途熱伝対を用いて測定した異方性導電フィルム(ACF)温度:140℃)、圧力:2MPa、圧着時間:10秒で圧着を行った。 As crimping conditions, crimping was performed at a crimping temperature of 170 ° C. (an anisotropic conductive film (ACF) temperature measured using a separate thermocouple: 140 ° C.), a pressure of 2 MPa, and a crimping time of 10 seconds.
 (封止)
 封止部材として、厚さ30μmのアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(厚さ12μm)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いてラミネートした(接着剤層の層厚:1.5μm)ものを用意した。
(Sealing)
As a sealing member, a 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a polyethylene terephthalate (PET) film (thickness 12 μm) and an adhesive for dry lamination (two-component reaction type urethane adhesive) A laminated product (adhesive layer thickness: 1.5 μm) was prepared.
 用意した封止部材のアルミニウム面に、熱硬化性接着剤を、ディスペンサーを使用してアルミ箔の接着面(つや面)に沿って厚さ20μmで均一に塗布し、接着剤層を形成した。 A thermosetting adhesive was uniformly applied to the aluminum surface of the prepared sealing member at a thickness of 20 μm along the adhesive surface (shiny surface) of the aluminum foil using a dispenser to form an adhesive layer.
 このとき、熱硬化性接着剤としては、下記の(A)~(C)を混合したエポキシ系接着剤を用いた。 At this time, an epoxy adhesive mixed with the following (A) to (C) was used as the thermosetting adhesive.
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
 封止部材を、取り出し電極及び電極リードの接合部を覆うようにして密着・配置して、圧着ローラーを用いて、圧着条件として、圧着ローラー温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止して、図6に記載の構成からなる有機ELパネル1を作製した。
(A) Bisphenol A diglycidyl ether (DGEBA)
(B) Dicyandiamide (DICY)
(C) Epoxy adduct-based curing accelerator A sealing member is closely attached and arranged so as to cover the joint between the extraction electrode and the electrode lead, and a pressure roller is used as a pressure condition. The organic EL panel 1 having the configuration shown in FIG. 6 was manufactured by tightly sealing at 0.5 MPa and an apparatus speed of 0.3 m / min.
 〔有機ELパネル2~18の作製〕
 上記有機ELパネル1の作製において、ガスバリアー性フィルム1に代えて、上記作製したガスバリアー性フィルム2~18を用いた以外は同様にして、有機ELパネル2~18を作製した。
[Production of organic EL panels 2 to 18]
Organic EL panels 2 to 18 were produced in the same manner as in the production of the organic EL panel 1, except that the produced gas barrier films 2 to 18 were used in place of the gas barrier film 1.
 《有機ELパネルの評価》
 上記作製した各ガスバリアーフィルム及び有機ELパネルについて、下記の方法に従って、水蒸気透過率の測定(ガスバリアーフィルム)及び耐久性(有機ELパネル)の評価を行った。
<< Evaluation of organic EL panel >>
About each produced said gas barrier film and organic electroluminescent panel, according to the following method, the water vapor transmission rate measurement (gas barrier film) and durability (organic electroluminescent panel) were evaluated.
 〔水蒸気透過率の測定〕
 各ガスバリアー性フィルムについて、JIS K 7129-1992に準拠した方法で水蒸気透過率を測定した結果、いずれのガスバリアー性フィルムも、水蒸気透過率(温度:60±0.5℃、相対湿度(RH):90±2%)は3×10-3g/(m2・24h)以下であった。
(Measurement of water vapor transmission rate)
As a result of measuring the water vapor transmission rate of each gas barrier film by a method in accordance with JIS K 7129-1992, all the gas barrier films had a water vapor transmission rate (temperature: 60 ± 0.5 ° C., relative humidity (RH). ): 90 ± 2%) was 3 × 10 −3 g / (m 2 · 24 h) or less.
 〔耐久性の評価〕
 (平面性の評価)
 各有機ELパネルについて、温度60℃、相対湿度90%の環境下で400時間の加速劣化処理を施した後、下記の方法に従って平面性の評価を行った。
[Evaluation of durability]
(Evaluation of flatness)
Each organic EL panel was subjected to accelerated deterioration treatment for 400 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%, and then the planarity was evaluated according to the following method.
 上記加速劣化処理を施した各有機ELパネルに対し、下記の方法に従って発光面の平面度を測定し、下記の基準に従って平面性を評価した。 For each organic EL panel subjected to the accelerated deterioration treatment, the flatness of the light emitting surface was measured according to the following method, and the flatness was evaluated according to the following criteria.
 〈平面度測定〉
 平面度測定機;CNC画像測定機クイックビジョンQVH404(ミツトヨ社製)
 〈評価ランク〉
 ◎:平面度が、0.05mm未満である
 ○:平面度が、0.05mm以上、0.10mm未満である
 △:平面度が、0.10mm以上、0.50mm未満である
 ×:平面度が、0.50mm以上、1.00mm未満である
 ××:平面度が、1.00mm以上である
 (ダークスポット耐性)
 各有機ELパネルに、1mA/cm2の電流を印加して発光させた。次いで、印加直後と、65℃、90%RHの環境下で発光時間として、300時間及び500時間で連続発光させた。次いで、発光後の発光状態について、100倍の光学顕微鏡(株式会社モリテックス製 MS-804、レンズMP-ZE25-200)を用い、有機ELパネルの一部分を拡大して撮影した。次いで、撮影画像を2mm四方に切り抜き、それぞれの画像について、ダークスポット発生の有無を観察した。観察結果より、発光面積に対するダークスポットの発生面積比率を求め、下記の基準に従って、ダークスポット耐性を評価した。
<Flatness measurement>
Flatness measuring machine: CNC image measuring machine Quick Vision QVH404 (Mitutoyo)
<Evaluation rank>
A: Flatness is less than 0.05 mm B: Flatness is 0.05 mm or more and less than 0.10 mm Δ: Flatness is 0.10 mm or more and less than 0.50 mm ×: Flatness Is 0.50 mm or more and less than 1.00 mm XX: Flatness is 1.00 mm or more (Dark spot resistance)
Each organic EL panel was made to emit light by applying a current of 1 mA / cm 2 . Next, light was emitted continuously for 300 hours and 500 hours immediately after application and in an environment of 65 ° C. and 90% RH as the light emission time. Next, the light emission state after light emission was photographed by enlarging a part of the organic EL panel using a 100 × optical microscope (MORITEX MS-804, lens MP-ZE25-200). Next, the photographed image was cut out in a 2 mm square, and the presence or absence of dark spots was observed for each image. From the observation results, the ratio of the dark spot generation area to the light emission area was determined, and the dark spot resistance was evaluated according to the following criteria.
 ◎:500時間発光後の試料でも、ダークスポットの発生は全く認められない
 ○:300時間発光後の試料では、ダークスポットの発生は全く認められないが、500時間発光後の試料において、僅かにダークスポットの発生が認められる(発生面積0.1%以上、3.0%未満)
 △:300時間発光後の試料で、僅かにダークスポットの発生が認められる(発生面積0.1%以上、3.0%未満)
 ×:300時間発光後の試料で、明らかなダークスポットの発生が認められる(発生面積3.0%以上、6.0%未満)
 ××:300時間発光後の試料で、多数のダークスポットの発生が認められる(発生面積6.0%以上)
 以上により得られた結果を、表2に示す。
A: Even after 500 hours of light emission, no dark spots are observed. ○: In a sample after 300 hours of light emission, no dark spots are observed. Generation of dark spots is observed (generation area 0.1% or more, less than 3.0%)
Δ: Slight dark spots are observed in the sample after 300 hours of light emission (generation area 0.1% or more and less than 3.0%)
X: Generation of clear dark spots is observed in the sample after 300 hours of light emission (generation area of 3.0% or more and less than 6.0%)
XX: Generation of many dark spots is observed in the sample after luminescence for 300 hours (generation area of 6.0% or more)
The results obtained as described above are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に記載の結果より明らかなように、本発明で規定する構成からなるガスバリアー性フィルムを具備した電子デバイスの一例である有機ELパネルは、比較例に対し、高温、高湿環境下で長期間にわたり加熱劣化処理を施した後の平面性に優れ、かつ平面性を維持することにより発光層へのストレスが低減され、ダークスポット耐性に対し優れた効果を発現することができることが分かる。 As is clear from the results shown in Table 2, the organic EL panel, which is an example of an electronic device provided with a gas barrier film having the structure defined in the present invention, is higher temperature and humidity environment than the comparative example. It can be seen that the flatness after the heat deterioration treatment for a long period of time is excellent, and that the flatness is maintained, the stress on the light emitting layer is reduced, and an excellent effect on dark spot resistance can be exhibited.
 本発明の電子デバイスは、ガスバリアー性、耐久性(平面性及び故障耐性(ダークスポット耐性))に優れた特性を備え、有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンス素子、有機光電変換素子、液晶表示素子に好適に利用できる。 The electronic device of the present invention has characteristics excellent in gas barrier properties and durability (flatness and failure resistance (dark spot resistance)), an organic electroluminescence panel, an organic electroluminescence device, an organic photoelectric conversion device, and a liquid crystal display device. Can be suitably used.
 1 樹脂基材
 2 ガスバリアー層
 3 保護層
 4 陽極(透明電極)
 5 有機EL素子(電子デバイス本体)
 6 接着剤層
 7 対向フィルム
 11 送り出しローラー
 21、22、23、24 搬送ローラー
 31、32 成膜ローラー
 41 ガス供給管
 51 プラズマ発生用電源
 61、62 磁場発生装置
 71 巻取りローラー
 101 トランスデューサー
 102 ダイヤモンドBerkovich圧子
 A 炭素分布曲線
 B ケイ素分布曲線
 C 酸素分布曲線
 D 酸素炭素分布曲線
 F ガスバリアー性フィルム
 N ナノインデンテーション測定装置
 P 有機ELパネル(電子デバイス)
DESCRIPTION OF SYMBOLS 1 Resin base material 2 Gas barrier layer 3 Protective layer 4 Anode (transparent electrode)
5 Organic EL elements (electronic device body)
6 Adhesive Layer 7 Opposite Film 11 Delivery Roller 21, 22, 23, 24 Transport Roller 31, 32 Film Formation Roller 41 Gas Supply Pipe 51 Power Source 61 for Plasma Generation 61, 62 Magnetic Field Generator 71 Winding Roller 101 Transducer 102 Diamond Berkovich Indenter A Carbon distribution curve B Silicon distribution curve C Oxygen distribution curve D Oxygen carbon distribution curve F Gas barrier film N Nanoindentation measuring device P Organic EL panel (electronic device)

Claims (8)

  1.  樹脂基材上に、ガスバリアー層と保護層とをこの順で積層したガスバリアー性フィルムを具備した電子デバイスであって、
     前記ガスバリアー層が、炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記(1)及び(2)で規定する要件を満たし、
     かつ前記保護層が、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内であることを特徴とする電子デバイス。
     (1)前記ガスバリアー層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5.0at%以上である。
     (2)前記ガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
     式(A)
       (炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
     式(B)
       (酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
    An electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on a resin substrate,
    The gas barrier layer contains carbon atoms, silicon atoms and oxygen atoms, the composition continuously changes in the layer thickness direction, and satisfies the requirements defined in the following (1) and (2):
    An electronic device wherein the protective layer has a film hardness measured by a nanoindentation method within a range of 2.0 to 8.0 GPa.
    (1) Among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by the X-ray photoelectron spectroscopy for the gas barrier layer, from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer In the carbon distribution curve showing the relationship between the distance and the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”), an extreme value And the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5.0 at% or more.
    (2) In a region of 90% or more of the total thickness of the gas barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or ( It has the order of magnitude relationship represented by B).
    Formula (A)
    (Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
    Formula (B)
    (Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
  2.  前記ガスバリアー層の全層厚の90%以上の領域におけるケイ素原子、酸素原子及び炭素原子の平均原子比率が、前記式(A)で表される序列の大小関係を有することを特徴とする請求項1に記載の電子デバイス。 The average atomic ratio of silicon atoms, oxygen atoms, and carbon atoms in a region of 90% or more of the total thickness of the gas barrier layer has an order magnitude relationship represented by the formula (A). Item 2. The electronic device according to Item 1.
  3.  前記保護層のナノインデンテーション法で測定した膜硬度が、3.0~5.5GPaの範囲内であることを特徴とする請求項1又は請求項2に記載の電子デバイス。 3. The electronic device according to claim 1, wherein a film hardness of the protective layer measured by a nanoindentation method is in a range of 3.0 to 5.5 GPa.
  4.  前記保護層の膜密度が、1.40~2.18g/cm3の範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載の電子デバイス。 4. The electronic device according to claim 1, wherein the protective layer has a film density in the range of 1.40 to 2.18 g / cm 3 .
  5.  樹脂基材上に、ガスバリアー層と保護層とをこの順に積層したガスバリアー性フィルムを具備した電子デバイスの製造方法であって、
     炭素原子、ケイ素原子及び酸素原子を含有し、層厚方向に組成が連続的に変化し、下記(1)及び(2)で規定する要件を満たすガスバリアー層を形成する工程と、ナノインデンテーション法で測定した膜硬度が、2.0~8.0GPaの範囲内である保護層を形成する工程を経て、製造することを特徴とする電子デバイスの製造方法。
     (1)前記ガスバリアー層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離と、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差が5.0at%以上である。
     (2)前記ガスバリアー層の全層厚の90%以上の領域において、ケイ素原子、酸素原子及び炭素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
     式(A)
       (炭素平均原子比率)<(ケイ素平均原子比率)<(酸素平均原子比率)
     式(B)
       (酸素平均原子比率)<(ケイ素平均原子比率)<(炭素平均原子比率)
    A method for producing an electronic device comprising a gas barrier film in which a gas barrier layer and a protective layer are laminated in this order on a resin substrate,
    Forming a gas barrier layer containing carbon atoms, silicon atoms and oxygen atoms, the composition of which continuously changes in the layer thickness direction and satisfying the requirements defined in (1) and (2) below, and nanoindentation A method for producing an electronic device, comprising producing a protective layer having a film hardness measured by a method of 2.0 to 8.0 GPa.
    (1) Among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by the X-ray photoelectron spectroscopy for the gas barrier layer, from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer In the carbon distribution curve showing the relationship between the distance and the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (100 at%) (referred to as “carbon atom ratio (at%)”), an extreme value And the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5.0 at% or more.
    (2) In a region of 90% or more of the total thickness of the gas barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of silicon atoms, oxygen atoms and carbon atoms is represented by the following formula (A) or ( It has the order of magnitude relationship represented by B).
    Formula (A)
    (Carbon average atomic ratio) <(silicon average atomic ratio) <(oxygen average atomic ratio)
    Formula (B)
    (Oxygen average atomic ratio) <(silicon average atomic ratio) <(carbon average atomic ratio)
  6.  有機ケイ素化合物を含む原料ガスと酸素ガスを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により、前記ガスバリアー層を形成することを特徴とする請求項5に記載の電子デバイスの製造方法。 6. The gas barrier layer is formed by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied using a source gas containing an organosilicon compound and oxygen gas. The manufacturing method of the electronic device of description.
  7.  前記ガスバリアー層上にポリシラザン含有液を塗布、乾燥した後、表面改質処理を施して、前記保護層を形成することを特徴とする請求項5又は請求項6に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 5, wherein the protective layer is formed by applying a polysilazane-containing liquid on the gas barrier layer and drying it, followed by surface modification treatment. .
  8.  前記保護層の形成に用いる前記表面改質処理が、波長が200nm以下の真空紫外光を照射する方法であることを特徴とする請求項7に記載の電子デバイスの製造方法。 The method for manufacturing an electronic device according to claim 7, wherein the surface modification treatment used for forming the protective layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less.
PCT/JP2014/053700 2013-03-12 2014-02-18 Electronic device and method for manufacturing electronic device WO2014141821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015505340A JPWO2014141821A1 (en) 2013-03-12 2014-02-18 Electronic device and method for manufacturing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-048679 2013-03-12
JP2013048679 2013-03-12

Publications (1)

Publication Number Publication Date
WO2014141821A1 true WO2014141821A1 (en) 2014-09-18

Family

ID=51536496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053700 WO2014141821A1 (en) 2013-03-12 2014-02-18 Electronic device and method for manufacturing electronic device

Country Status (2)

Country Link
JP (1) JPWO2014141821A1 (en)
WO (1) WO2014141821A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106476388A (en) * 2015-08-21 2017-03-08 汉能新材料科技有限公司 A kind of high-resistant diaphragm and composite membrane
US10535838B2 (en) 2016-03-31 2020-01-14 Sumitomo Chemical Company, Limited Laminated film and process for manufacturing the same
US11038145B2 (en) 2016-03-31 2021-06-15 Sumitomo Chemical Company, Limited Laminated film and process for manufacturing the same, as well as method for analyzing laminated film
US11157717B2 (en) * 2018-07-10 2021-10-26 Next Biometrics Group Asa Thermally conductive and protective coating for electronic device
US11283043B2 (en) 2016-03-31 2022-03-22 Sumitomo Chemical Company, Limited Laminated film and process for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035313A (en) * 2005-07-22 2007-02-08 Mitsubishi Chemicals Corp Light take-out film, translucent element with light take-out film, and electroluminescent element
JP2012084357A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Electronic device
WO2012173040A1 (en) * 2011-06-15 2012-12-20 コニカミノルタホールディングス株式会社 Water-vapor barrier film, process for producing same, and electronic appliance including same
JP2013048253A (en) * 2005-11-24 2013-03-07 Konica Minolta Holdings Inc Organic electroluminescent element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084307A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Organic el device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035313A (en) * 2005-07-22 2007-02-08 Mitsubishi Chemicals Corp Light take-out film, translucent element with light take-out film, and electroluminescent element
JP2013048253A (en) * 2005-11-24 2013-03-07 Konica Minolta Holdings Inc Organic electroluminescent element
JP2012084357A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Electronic device
WO2012173040A1 (en) * 2011-06-15 2012-12-20 コニカミノルタホールディングス株式会社 Water-vapor barrier film, process for producing same, and electronic appliance including same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106476388A (en) * 2015-08-21 2017-03-08 汉能新材料科技有限公司 A kind of high-resistant diaphragm and composite membrane
US10535838B2 (en) 2016-03-31 2020-01-14 Sumitomo Chemical Company, Limited Laminated film and process for manufacturing the same
US11038145B2 (en) 2016-03-31 2021-06-15 Sumitomo Chemical Company, Limited Laminated film and process for manufacturing the same, as well as method for analyzing laminated film
US11283043B2 (en) 2016-03-31 2022-03-22 Sumitomo Chemical Company, Limited Laminated film and process for manufacturing the same
US11157717B2 (en) * 2018-07-10 2021-10-26 Next Biometrics Group Asa Thermally conductive and protective coating for electronic device

Also Published As

Publication number Publication date
JPWO2014141821A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6156388B2 (en) Method for producing gas barrier film, gas barrier film and electronic device
WO2014073438A1 (en) Electronic device and gas barrier film fabrication method
JP5862707B2 (en) Gas barrier film, element device and method for producing gas barrier film
JP6274199B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
KR101885053B1 (en) Organic electroluminescence element
US9640780B2 (en) Gas barrier film, method for producing gas barrier film, and organic electroluminescent element
JP5895684B2 (en) Method for producing gas barrier film, and method for producing electronic device using gas barrier film
WO2014141821A1 (en) Electronic device and method for manufacturing electronic device
JP5949432B2 (en) Gas barrier film and method for producing gas barrier film
JP2006299145A (en) Gas barrier film, resin substrate using gas barrier film and used for organic electroluminescence and organic electroluminescent element
JP5892030B2 (en) Method for producing gas barrier film and gas barrier film
WO2014185392A1 (en) Organic electroluminescence element
JP2016046064A (en) Organic electroluminescent element
WO2015178245A1 (en) Organic electroluminescent element
WO2014148595A1 (en) Organic electroluminescent element and lighting device
WO2014126063A1 (en) Organic electroluminescent element and method for manufacturing organic electroluminescent element
JP2016054097A (en) Organic electroluminescent element and substrate
JP2016190442A (en) Gas barrier film, transparent conductive member, and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505340

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764520

Country of ref document: EP

Kind code of ref document: A1