WO2014141753A1 - Power cell module - Google Patents

Power cell module Download PDF

Info

Publication number
WO2014141753A1
WO2014141753A1 PCT/JP2014/051449 JP2014051449W WO2014141753A1 WO 2014141753 A1 WO2014141753 A1 WO 2014141753A1 JP 2014051449 W JP2014051449 W JP 2014051449W WO 2014141753 A1 WO2014141753 A1 WO 2014141753A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
negative electrode
positive electrode
module
Prior art date
Application number
PCT/JP2014/051449
Other languages
French (fr)
Japanese (ja)
Inventor
章一郎 白石
育央 小嶋
正孝 厚木
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2015505315A priority Critical patent/JPWO2014141753A1/en
Publication of WO2014141753A1 publication Critical patent/WO2014141753A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module such as a secondary battery including a chargeable / dischargeable battery cell.
  • the main structure of a battery module is a set in which a plurality of battery cells in which a battery element (laminated structure) in which positive electrodes and negative electrodes are alternately stacked with separators interposed between them are sealed together with an electrolyte solution in a laminate exterior.
  • a battery is provided inside the module case (battery pack).
  • the battery module having such a configuration, when a voltage exceeding the rating is applied due to overcharging of the battery module, the temperature in the battery cell becomes high. When the temperature in the battery cell becomes high and reaches the melting temperature of the separator, the separator is locally broken, a short circuit occurs between the positive electrode and the negative electrode, and the electrolytic solution is decomposed and evaporated. As a result, gas is generated in the battery cell. Thus, the battery cell itself may expand due to the gas generated in the battery cell. Conventionally, since a battery module has a module case adapted to the shape of the battery cell when not expanded, the module case may be pressed from the inside and damaged when the battery cell expand
  • Patent Document 1 discloses a battery module having a structure in which a deformation preventing member included in a deformation preventing means for preventing deformation of the entire assembled battery is inserted between battery cells. By suppressing the expansion of the battery cell itself by the deformation preventing member or the deformation preventing means, it is possible to suppress changes in the shapes of the positive electrode, the negative electrode, and the separator accommodated in the battery cell.
  • Patent Document 2 discloses a battery module having a structure for interrupting current. The deformable material is elastically deformed until it is pressurized to a predetermined pressure, so that the battery cell can expand to a predetermined size, so that the inside of the battery cell can be prevented from becoming a high pressure.
  • the deformable member is not deformed at a predetermined pressure or higher, so that the battery cell cannot expand beyond a predetermined size.
  • the current can be cut off by detecting that the deformable material is no longer deformed, the gas generation does not stop immediately, so the gas continues to be generated even after the current is cut off. Therefore, when the gas generated after the current interruption is filled in the battery cell, the pressure in the battery cell rapidly increases.
  • the deformable material since the deformable material is laminated together with the plurality of battery cells, the deformable material presses the central area of the main surface of the battery cell that is most easily expanded during expansion. For this reason, there is a problem in that the state in which the distance between the positive electrode and the negative electrode arranged in the vicinity of the central region of the main surface of the battery cell is kept short, and the short circuit is difficult to be solved.
  • an object of the present invention is to solve the above-described problem, and even if a short circuit occurs between the electrodes in the battery cell of the battery module due to overcharge or the like, the pressure in the battery cell is such that the pressure may burst. Is to provide a battery module having means for eliminating the short circuit.
  • a battery module of the present invention includes a battery element and an electrolyte solution in which positive electrodes and negative electrodes are alternately stacked with a separator interposed inside a flexible outer package. It has a battery cell and a module case for accommodating the battery cell, and the module case has a space part that allows expansion of the battery cell in the stacking direction of the positive electrode and the negative electrode.
  • gas is generated in the battery cell and the battery cell expands, so that the distance between the positive electrode and the negative electrode stacked in the battery cell via the separator is increased, and the gap between both electrodes is increased. Increased electrical resistance.
  • This makes it difficult for a short-circuit current to flow between the two electrodes, so that it is difficult for gas to be generated in the battery cell from the time when the short-circuit between the two electrodes is suppressed, and the possibility that the battery cell expands too much and bursts is reduced.
  • the battery cell module case is provided with the space portion that allows the battery cell to expand, the battery cell is not suppressed when the battery cell expands, and thus the pressure in the battery cell does not easily increase. .
  • the short circuit between the two electrodes is suppressed, the expansion of the battery cell is suppressed, and the battery cell may expand and burst. Lower.
  • the generation of thermal energy due to the short circuit is suppressed from the time when the short circuit between the two electrodes is suppressed, and the temperature rise of the battery cell can be suppressed.
  • FIG. 1a It is a top view which shows the battery module of the 1st Embodiment of this invention. It is AA 'sectional drawing of FIG. 1a. It is sectional drawing which shows the state which the battery cell in a battery module expanded. It is sectional drawing which shows the battery module of the modification of the 1st Embodiment of this invention. It is sectional drawing which shows the structure of the battery module of the 2nd Embodiment of this invention. It is sectional drawing which shows the structure of the battery module of the 3rd Embodiment of this invention. It is sectional drawing which shows the structure of the battery module of the 4th Embodiment of this invention. It is sectional drawing which shows the modification of the 4th Embodiment of this invention.
  • FIG. 1 It is a figure which shows the process of producing a battery element by laminating
  • FIG. 1a is a plan view showing a battery module including at least one battery cell
  • FIG. 1b is a cross-sectional view taken along line AA ′ of FIG. 1a.
  • the battery module 1 is mainly composed of at least one battery cell 3 and a module case 2 containing the battery cell.
  • the battery cell 3 includes a battery element 6 from which a positive electrode terminal 16 and a negative electrode terminal 17 are drawn, a laminate film 7 that accommodates the battery element 6 therein, and the like. And have.
  • the battery element 6 includes a positive electrode 14 formed by applying a positive electrode mixture to a flexible metal such as aluminum with an insulating separator 13 interposed therebetween, A negative electrode 15 formed by applying a negative electrode mixture is laminated and formed.
  • the module case 2 includes a space portion 4 between the main surface of the battery cell 3 and the inner wall of the module case 2 in a state where the plurality of battery cells 3 are housed in the battery cell housing portion. ing.
  • the space 4 is an area for allowing the battery cell 3 to expand when the battery cell 3 expands due to overcharging of the battery module 1 or the like.
  • the space 4 has a thickness of 10% or more of the thickness of the battery cell 3 in the non-expanded state when viewed in the stacking direction of the positive electrode 14 and the negative electrode 15 of the battery cell 3.
  • the thickness of the space part 4 of this embodiment is 10% or more of the thickness of the non-expanded battery cell 3, it is 15% or more of the thickness of the non-expanded battery cell 3. You may be comprised, or it may be comprised about 20% of the thickness of the battery cell 3 of a non-expanded state.
  • the space portion 4 since the space portion 4 is provided, expansion of the central region of the main surface of the battery cell 3 is not suppressed when the battery cell 3 is expanded. The risk of the cell 3 bursting is reduced. Further, when the battery cell 3 expands without being suppressed, gas enters between the positive electrode 14, the separator 13, and the negative electrode 15 stacked in the battery cell 3, and the positive electrode 14, the separator 13, and the negative electrode The distance between each electrode 15 is increased. Thus, since the gap between the positive electrode 14 and the negative electrode 15 is widened by the gas entering, the electrical resistance between the positive electrode 14 and the negative electrode 15 increases, and the short-circuit current between the two electrodes decreases. .
  • the thickness of the space portion 4 of the present embodiment is configured to be 10% or more of the thickness of the non-expanded battery cell 3, but is 15% or more of the thickness of the non-expanded battery cell 3
  • the above effect can be obtained more satisfactorily, and the best effect can be obtained at about 20% of the thickness of the battery cell 3 in the non-expanded state.
  • 1A and 1B exemplify the case where two battery cells or two assembled batteries are arranged in a module case, but only one battery cell is shown for convenience.
  • the module case can be roughly half the area.
  • the bus bar 27 for connecting with an adjacent battery cell or an assembled battery is not necessarily required.
  • FIGS. 7a to 7c show a process of creating a positive electrode.
  • a strip-shaped positive electrode current collector 9 made of aluminum is set on the unwinding roller 21 and the winding roller 22.
  • a positive electrode mixture application unit 19 for applying a positive electrode mixture is provided adjacent to the unwinding roller 21.
  • the positive electrode mixture appears from the positive electrode mixture application part 19 to the positive electrode current collector 9, and the application part and the non-application part appear alternately. It is applied as follows.
  • the positive electrode current collector 9 coated with the positive electrode mixture is sent to a drying zone (not shown) and dried. As shown in FIG.
  • the electrode body 14b is applied from the application part, and the positive electrode current collecting tab 14a is applied from the non-application part. Is punched out to form.
  • a positive electrode 14 as shown in FIG. 7d is formed.
  • the positive electrode current collecting tab 14a of the positive electrode 14 is provided on one of a pair of sides constituting the electrode body 14b at a position close to one end portion from the center of the side.
  • the positive electrode mixture can be formed on both surfaces of the positive electrode current collector.
  • FIGS. 8a to 8c show a process of forming a negative electrode.
  • the strip-shaped negative electrode current collector 10 made of copper is set on the unwinding roller 21 and the winding roller 22.
  • a negative electrode mixture application unit 20 for applying a negative electrode mixture is provided adjacent to the unwinding roller 21.
  • the unwinding roller 21 and the winding roller 22 are driven to rotate, as shown in FIG. 8B, the negative electrode mixture is applied from the negative electrode mixture application part 20 to the negative electrode current collector 10, and the application part and the non-application part are alternately arranged.
  • the negative electrode current collector 10 coated with the negative electrode mixture is sent to a drying zone (not shown) and dried. As shown in FIG.
  • the electrode body 15b is applied from the application part, and the negative electrode current collecting tab 15a is applied from the non-application part. Is punched out to form.
  • a negative electrode 15 as shown in FIG. 8d is formed.
  • the negative electrode current collecting tab 15a of the negative electrode 15 is provided on one of a pair of sides constituting the electrode body 15b at a position close to one end portion from the center of the short side.
  • the positive electrode current collecting tab 14a and the negative electrode current collecting tab 15a are formed at positions that do not overlap each other when the positive electrode 14 and the negative electrode 15 are laminated.
  • the negative electrode mixture can be formed on both surfaces of the negative electrode current collector.
  • the positive electrode 14 and the negative electrode 15 are made of an insulating material such as polyolefin, and are alternately sandwiched with separators 13 having the same shape as the electrode body of the positive electrode 14 or the negative electrode 15.
  • the positive electrode current collecting tab 14a of the positive electrode 14 and the negative electrode current collecting tab 15a of the negative electrode 15 are drawn from one side of the battery element 6 in plan view as shown in FIG. Is laminated.
  • the battery element 6 has the separator 13, the positive electrode 14 and the negative electrode 15 stacked on a pair of sides from which the positive current collecting tab 14a and the negative current collecting tab 15a are not drawn.
  • a tape or the like is used for the battery element fixing member 8.
  • the main surface of the battery element 6 has a size of 220 mm in length and 200 mm in width.
  • a plurality of positive current collecting tabs 14a drawn from one side of the battery element 6 are bundled together, and the plurality of bundled positive current collecting tabs 14a and one end of the positive electrode terminal 16 are connected. Is done.
  • the plurality of negative electrode current collecting tabs 15 a are bundled together and connected to one end of the negative electrode terminal 17.
  • the connection between each current collecting tab and each terminal may be supplementarily made through a conductive member.
  • resin is applied to the positive electrode terminal 16 and the negative electrode terminal 17 or a part of the conductive member. It may be formed.
  • the positive electrode terminal 16 and the negative electrode terminal 17 are configured to have a width of 80 mm, and the distance between the positive electrode terminal 16 and the negative electrode terminal 17 is configured to be 10 mm.
  • the produced battery element 6 is accommodated in an exterior body 7 made of flexible aluminum or the like whose front and back surfaces are coated with a resin, as shown in FIG. 11a.
  • the exterior body 7 is formed in a shape having a battery element accommodating portion that accommodates the battery element 6 by pressing or the like, or a can shape having a battery element accommodating portion inside by drawing or the like of an aluminum plate.
  • the battery element 6 is disposed in the battery element housing portion of the exterior body 7 such that the other end of the positive electrode terminal 16 and the other end of the negative electrode terminal 17 are exposed to the outside of the exterior body 7.
  • the other end of the positive electrode terminal 16 and the other end of the negative electrode terminal 17 exposed to the outside of the exterior body 7 form a positive electrode terminal exposed portion 23 and a negative electrode terminal exposed portion 24.
  • the periphery of the exterior body 7 which accommodated the battery element 6 is sealed by heat welding, leaving the opening part for inject
  • an electrolytic solution is injected into the exterior body 7 from the opening, and the opening is bonded to form the battery cell 3 as shown in FIG. 11b.
  • the main surface of the battery cell 3 is configured to have dimensions of 270 mm in length and 230 mm in width.
  • the battery cell 3 is accommodated in the battery cell accommodating portion of the module case 2 as shown in FIG.
  • a fastening member 25 such as a screw passes through the holes of the positive terminal exposed portion 23 and the negative terminal exposed portion 24 and is fastened at the fastening member receiving portion 26 of the module case 2, and the battery cell 3 and the module case 2 are fixed.
  • the fastening member receiving portion 26 of the module case 2 is electrically connected to the connector 28 via a bus bar 27 or the like.
  • the module case 2 is configured such that the space portion 4 is formed between the main surface of the battery cell 3 and the inner wall surface of the module case 2 in a state where the battery cell 3 and the module case 2 are fixed. .
  • the battery module 1 is completed through such steps.
  • the laminated separator 13 may be a bag shape that can accommodate the positive electrode 14. In this case, by making the size of the separator 13 the same as the size of the negative electrode 15, the separator 13 and the negative electrode 15 are not easily misaligned.
  • the positive electrode current collecting tab 14a and the negative electrode current collecting tab 15a are not drawn out from the same side of the battery element 6 in a plan view, but from the side facing the one side from which the positive electrode current collecting tab 14a is drawn out.
  • the electric tab 15a may be pulled out. In this case, the width of the positive electrode current collecting tab 14a and the negative electrode current collecting tab 15a can be increased.
  • a plurality of battery cells 3 are stacked in the same direction to form a rectangular assembled battery 5, and at least one assembled battery 5 is attached to the module case 2 as shown in FIG. It may be accommodated.
  • the assembled battery 5 is configured so that the stacked battery cells 3 are not displaced on a pair of sides where the positive electrode terminal exposed portions 23 and the negative electrode terminal exposed portions 24 of the battery cells 3 are not drawn. You may have the assembled battery fixing member 18 to hold
  • the battery module 1 has the space portion 4 that allows expansion of the central region of the main surface of the battery cell 3, the expansion of the battery cell 3 is not suppressed, and the pressure in the battery cell 3 is reduced. It becomes difficult to rise, and the risk of the battery cell 3 bursting is reduced. Further, when the battery cell 3 expands without being suppressed, gas enters between the positive electrode 14 and the negative electrode 15, and the gap becomes wider, so that the electrical connection between the positive electrode 14 and the negative electrode 15 is increased. The resistance increases and the short circuit current between the two electrodes decreases.
  • FIG. 4 is a cross-sectional view showing a battery module including at least one battery cell according to the second embodiment of the present invention.
  • the battery module 1 of the present embodiment has a cushion member (contact member) 11 for applying pressure to the end of the battery cell 3 in the module case 2.
  • the cushion member 11 is an end of the main surface of the battery cell 3 having a small expansion coefficient excluding the inner wall of the module case 2 and the central region of the main surface of the battery cell 3 having the largest expansion coefficient when the battery cell 3 expands. In contact with the part.
  • a space 4 that allows the battery cell 3 to expand when the battery cell 3 expands is formed in a region surrounded by the cushion members 11.
  • the space 4 has a thickness of 10% or more of the thickness of the battery cell 3 in the non-expanded state when viewed in the stacking direction of the positive electrode 14 and the negative electrode 15 of the battery cell 3.
  • the battery cell 3 expands in the central region of the main surface of the battery cell 3 where the internal structure is not pressed against the cushion member 11. It becomes easy to do. Therefore, the space 4 surrounded by the cushion member 11 is easily allowed to expand the battery cell 3. Since the expansion of the battery cell 3 is not suppressed, the battery cell 3 can expand, and as a result, the pressure in the battery cell 3 is hardly increased, and the risk of the battery cell 3 bursting is reduced. In addition, the battery cell 3 expands, gas enters between the positive electrode 14 and the negative electrode 15, and the gap becomes wider, thereby increasing the electrical resistance between the positive electrode 14 and the negative electrode 15, Short circuit current between the two electrodes is reduced.
  • FIG. 5 is a cross-sectional view showing a battery module including at least two battery cells according to the third embodiment of the present invention.
  • the battery module 1 of the present embodiment has at least two battery cells 3 provided on the inner wall of the module case 2 at positions where the battery cells 3 face each other, in addition to the structure of the first embodiment. At this time, a space 4 for allowing expansion of the battery cell 3 is formed between the main surfaces of the battery cells 3 facing each other.
  • the space 4 has a thickness of 10% or more of the total thickness of all the non-expanded battery cells 3 in the stacking direction of the positive electrode 14 and the negative electrode 15 of the battery cell 3. Have.
  • the cushion member 11 used in the second embodiment may be provided in the module case so as to press the end of the main surface of each battery cell 3. .
  • the battery cells 3 that can be arranged in one module case 2 by being provided on the inner wall of the module case 2 at positions where the battery cells 3 face each other. Therefore, the amount of electricity stored in the battery module 1 is increased.
  • FIG. 6a is a cross-sectional view showing a battery module including at least two battery cells according to the fourth embodiment of the present invention.
  • the battery module 1 of this embodiment has at least one middle plate 12 in the module case 2 in addition to the structure of the first embodiment.
  • the middle plate 12 divides the battery cell housing portion of the module case 2 in the thickness direction, so that a plurality of compartments are provided, and the battery cells 3 and the space portions 4 are provided in each compartment. Yes.
  • the battery cell 3 is disposed on at least one surface of the intermediate plate 12.
  • the space 4 for allowing the battery cell 3 to expand is a module facing the main surface of the battery cell 3 disposed on the intermediate plate 12 and the surface of the intermediate plate 12 on which the battery cell 3 is disposed. It is provided between the inner wall of the case 2.
  • a space portion 4 is formed between the surface of the intermediate plate 12 where the battery cell 3 is not disposed and the inner wall of the module case 2 facing the surface of the intermediate plate 12 where the battery cell 3 is not disposed.
  • Each space 4 has a thickness of 10% or more of the thickness of each non-expanded battery cell 3 accommodated in the direction in which the positive electrode 14 and the negative electrode 15 of the battery cell 3 are stacked.
  • FIG. 6 b is a cross-sectional view showing a battery module according to a modification of the fourth embodiment.
  • the battery cells 3 are provided on both surfaces of the intermediate plate 12 provided in the module case 2.
  • a space 4 for allowing expansion of the battery cell 3 is formed between the main surface of each battery cell 3 and the inner wall of the module case 2.
  • Each space portion 4 has a thickness of 10% or more of the thickness of each battery cell 3 accommodated in the stacking direction of the positive electrode 14 and the negative electrode 15 of the battery cell 3.
  • the cushion member 11 used in the second embodiment is provided in the module case 2 so as to press the end of the main surface of each battery cell 3. It may be.
  • the other configuration and the method for manufacturing the battery module 1 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the middle plate 12 for partitioning the battery cell housing portion is provided in the module case 2, thereby expanding each battery cell 3.
  • Space portions 4 for allowing each can be provided.
  • each battery cell 3 does not contact, each battery cell 3 which expand
  • the number of battery cells 3 that can be arranged in one module case 2 increases, the amount of power stored in the battery module 1 increases.

Abstract

A power cell module (1) has the following positioned inside an outer body (7): a power cell (3) comprising a cell element (6) obtained by alternatingly layering a positive electrode (14) and a negative electrode (15) on one another with a separator (13) sandwiched therebetween; and a module case (2) for housing the power cell (3). Furthermore, the module case (2) has a space (4) which allows expansion of the power cell (3) in the layering direction of the positive electrode (14) and the negative electrode (15).

Description

電池モジュールBattery module
 本発明は、充放電可能な電池セルを備えた二次電池等の電池モジュールに関する。 The present invention relates to a battery module such as a secondary battery including a chargeable / dischargeable battery cell.
 近年の電子機器、特に携帯電話、ノート型パーソナルコンピュータ、ビデオカメラなどの携帯用情報機器の発達や普及に伴い、小型、軽量で、かつエネルギー密度が高い電池モジュール(二次電池)の需要が大きく伸張し、さらなる高性能化の検討がなされている。 With the development and popularization of portable information devices such as mobile phones, notebook personal computers and video cameras in recent years, the demand for small, lightweight and high energy density battery modules (secondary batteries) has increased. It has been expanded and studies are underway for higher performance.
 電池モジュールの主な構成は、セパレータを挟んで正極電極と負極電極とが交互に積層された電池要素(積層構造体)を電解液と共にラミネート外装で封止した電池セルを複数個積層させた組電池をモジュールケース(電池パック)内部に有している。このような構成の電池モジュールにおいては、電池モジュールの過充電等により定格以上の電圧が印加されると、電池セル内の温度が高温になる。電池セル内の温度が高温になり、セパレータの溶解温度に達すると、セパレータが局所的に破断し、正極電極と負極電極との間で短絡が発生して、電解液が分解されて蒸発することにより、電池セル内にガスが発生する。このように、電池セル内で発生したガスによって、電池セル自体が膨張することがある。従来は、電池モジュールが、非膨張時の電池セルの形状にあわせたモジュールケースを有する構成であるため、電池セルが膨張した場合に、モジュールケースが内部から押圧されて破損するおそれがあった。 The main structure of a battery module is a set in which a plurality of battery cells in which a battery element (laminated structure) in which positive electrodes and negative electrodes are alternately stacked with separators interposed between them are sealed together with an electrolyte solution in a laminate exterior. A battery is provided inside the module case (battery pack). In the battery module having such a configuration, when a voltage exceeding the rating is applied due to overcharging of the battery module, the temperature in the battery cell becomes high. When the temperature in the battery cell becomes high and reaches the melting temperature of the separator, the separator is locally broken, a short circuit occurs between the positive electrode and the negative electrode, and the electrolytic solution is decomposed and evaporated. As a result, gas is generated in the battery cell. Thus, the battery cell itself may expand due to the gas generated in the battery cell. Conventionally, since a battery module has a module case adapted to the shape of the battery cell when not expanded, the module case may be pressed from the inside and damaged when the battery cell expands.
 そこで、組電池全体の変形を防止するための変形防止手段に含まれる変形防止部材が電池セル同士の間に挿入された構造を有する電池モジュールが、特許文献1に開示されている。変形防止部材や変形防止手段によって電池セル自体の膨張を抑制することによって、電池セル内に収容されている正極電極と負極電極とセパレータのそれぞれの形状が変化することを抑制することができる。 Therefore, Patent Document 1 discloses a battery module having a structure in which a deformation preventing member included in a deformation preventing means for preventing deformation of the entire assembled battery is inserted between battery cells. By suppressing the expansion of the battery cell itself by the deformation preventing member or the deformation preventing means, it is possible to suppress changes in the shapes of the positive electrode, the negative electrode, and the separator accommodated in the battery cell.
 複数の電池セルと共に、所定の圧力以下で加圧されると弾性変形し、所定の圧力を超えるとそれ以上は変形しなくなる変形部材が積層され、変形部材が変形しなくなったことを感知したときに電流を遮断する構造を有する電池モジュールが、特許文献2に開示されている。変形材料は、所定の圧力まで加圧されるまでは弾性変形することで、電池セルが所定の大きさまで膨張することができるため、電池セルの内部が高圧力になるのを抑えることができる。 When a plurality of battery cells are elastically deformed when pressed below a predetermined pressure, and deformed members that do not deform further when the predetermined pressure is exceeded are stacked, and it is detected that the deformed members are no longer deformed Patent Document 2 discloses a battery module having a structure for interrupting current. The deformable material is elastically deformed until it is pressurized to a predetermined pressure, so that the battery cell can expand to a predetermined size, so that the inside of the battery cell can be prevented from becoming a high pressure.
国際公開2007/043392号公報International Publication No. 2007/043392 特開2007-173030号公報JP 2007-173030 A
 しかしながら、特許文献1に開示された発明では、機械的に電池セルの膨張を抑制している間も電池セル内部には短絡によるガスが発生し続けているため、充満するガスの量が増えることで、電池セル内の圧力が急激に高まる。電池セル内が高圧の状態で、機械的に電池セルの膨張を抑制し続けると、電池セル内が所定の圧力を超えた時点で電池セルの外装体が破裂してモジュールケースが破損するおそれがあった。或いは、電池セルの外装体の一部が破損して、破損部からガスが外部へ漏れて、電池モジュールのモジュールケースから放出されるおそれがあった。 However, in the invention disclosed in Patent Document 1, gas due to a short circuit continues to be generated inside the battery cell even while the expansion of the battery cell is mechanically suppressed, so that the amount of gas to be filled increases. Thus, the pressure in the battery cell rapidly increases. If the expansion of the battery cell is continued to be suppressed mechanically in a state where the battery cell is at a high pressure, the battery cell outer case may burst and the module case may be damaged when the inside of the battery cell exceeds a predetermined pressure. there were. Or there was a possibility that a part of the outer casing of the battery cell was damaged, gas was leaked from the damaged portion to the outside, and released from the module case of the battery module.
 また、特許文献2に開示された発明では、所定の圧力以上では変形部材が変形しなくなるため、電池セルが所定の大きさ以上に膨張することができない。変形材料が変形しなくなったことを感知して電流を遮断することができるが、ガスの発生はすぐには止まらないため、電流が遮断された後もガスは発生し続ける。そのため、電流遮断後に発生するガスが電池セル内に充満することで、電池セル内の圧力が急激に高まる。さらには、変形材料が複数の電池セルと共に積層されているため、変形材料が電池セルの最も膨張しやすい主面の中央領域を膨張時に押さえつける。そのため、電池セルの主面の中央領域付近に配置されている正極電極と負極電極との距離が近い状態が保たれ、短絡が解消されにくいという課題があった。 In addition, in the invention disclosed in Patent Document 2, the deformable member is not deformed at a predetermined pressure or higher, so that the battery cell cannot expand beyond a predetermined size. Although the current can be cut off by detecting that the deformable material is no longer deformed, the gas generation does not stop immediately, so the gas continues to be generated even after the current is cut off. Therefore, when the gas generated after the current interruption is filled in the battery cell, the pressure in the battery cell rapidly increases. Furthermore, since the deformable material is laminated together with the plurality of battery cells, the deformable material presses the central area of the main surface of the battery cell that is most easily expanded during expansion. For this reason, there is a problem in that the state in which the distance between the positive electrode and the negative electrode arranged in the vicinity of the central region of the main surface of the battery cell is kept short, and the short circuit is difficult to be solved.
 そこで本発明の目的は、前記した問題を解決して、過充電等による電池モジュールの電池セル内の電極同士の間に短絡が発生しても、破裂するおそれのある圧力まで電池セル内の圧力が高まらず、短絡を解消する手段を有する電池モジュールを提供することにある。 Therefore, an object of the present invention is to solve the above-described problem, and even if a short circuit occurs between the electrodes in the battery cell of the battery module due to overcharge or the like, the pressure in the battery cell is such that the pressure may burst. Is to provide a battery module having means for eliminating the short circuit.
 前記した目的を達成するために、本発明の電池モジュールは、可撓性を有する外装体の内部に、セパレータを挟んで正極電極と負極電極とが交互に積層された電池要素及び電解液を有する電池セルと、電池セルを収容するモジュールケースと、を有し、モジュールケースは、電池セルの、正極電極と負極電極との積層方向の膨張を許容する空間部を有することを特徴とする。 In order to achieve the above-described object, a battery module of the present invention includes a battery element and an electrolyte solution in which positive electrodes and negative electrodes are alternately stacked with a separator interposed inside a flexible outer package. It has a battery cell and a module case for accommodating the battery cell, and the module case has a space part that allows expansion of the battery cell in the stacking direction of the positive electrode and the negative electrode.
 本発明によれば、電池セル内にガスが発生して電池セルが膨張することによって、電池セル内にセパレータを介して積層されている正極電極と負極電極との間の距離が広がり、両極間の電気的抵抗が高まる。これにより、両極間に短絡電流が流れにくくなるため、両極間の短絡が抑制された時点から、電池セル内でガスが発生しにくくなり、電池セルが膨張しすぎて破裂する可能性が低くなる。このように、電池モジュールのモジュールケースに電池セルの膨張を許容する空間部が設けられていることで、電池セルが膨張した際に電池セルが抑制されないため、電池セル内の圧力が高くなりにくい。 According to the present invention, gas is generated in the battery cell and the battery cell expands, so that the distance between the positive electrode and the negative electrode stacked in the battery cell via the separator is increased, and the gap between both electrodes is increased. Increased electrical resistance. This makes it difficult for a short-circuit current to flow between the two electrodes, so that it is difficult for gas to be generated in the battery cell from the time when the short-circuit between the two electrodes is suppressed, and the possibility that the battery cell expands too much and bursts is reduced. . As described above, since the battery cell module case is provided with the space portion that allows the battery cell to expand, the battery cell is not suppressed when the battery cell expands, and thus the pressure in the battery cell does not easily increase. .
 また、電池セルが膨張することによって、両極間の電気的抵抗が高まることで、両極間の短絡が抑制されて、電池セルの膨張が抑制され、電池セルが膨張しすぎて破裂する可能性が低くなる。同時に、両極間の短絡が抑制された時点から、短絡による熱エネルギーの発生が抑えられ、電池セルの温度上昇を抑制することができる。 In addition, since the electrical resistance between the two electrodes increases due to the expansion of the battery cell, the short circuit between the two electrodes is suppressed, the expansion of the battery cell is suppressed, and the battery cell may expand and burst. Lower. At the same time, the generation of thermal energy due to the short circuit is suppressed from the time when the short circuit between the two electrodes is suppressed, and the temperature rise of the battery cell can be suppressed.
本発明の第1の実施形態の電池モジュールを示す平面図である。It is a top view which shows the battery module of the 1st Embodiment of this invention. 図1aのA-A’断面図である。It is AA 'sectional drawing of FIG. 1a. 電池モジュール内の電池セルが膨張した状態を示す断面図である。It is sectional drawing which shows the state which the battery cell in a battery module expanded. 本発明の第1の実施形態の変形例の電池モジュールを示す断面図である。It is sectional drawing which shows the battery module of the modification of the 1st Embodiment of this invention. 本発明の第2の実施形態の電池モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the battery module of the 2nd Embodiment of this invention. 本発明の第3の実施形態の電池モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the battery module of the 3rd Embodiment of this invention. 本発明の第4の実施形態の電池モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the battery module of the 4th Embodiment of this invention. 本発明の第4の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of the 4th Embodiment of this invention. 正極電極を作成する工程を示す図である。It is a figure which shows the process of producing a positive electrode. 正極電極を作成する工程を示す図である。It is a figure which shows the process of producing a positive electrode. 正極電極を作成する工程を示す図である。It is a figure which shows the process of producing a positive electrode. 正極電極を作成する工程を示す図である。It is a figure which shows the process of producing a positive electrode. 負極電極を作成する工程を示す図である。It is a figure which shows the process of producing a negative electrode. 負極電極を作成する工程を示す図である。It is a figure which shows the process of producing a negative electrode. 負極電極を作成する工程を示す図である。It is a figure which shows the process of producing a negative electrode. 負極電極を作成する工程を示す図である。It is a figure which shows the process of producing a negative electrode. 正極電極と負極電極とを積層して電池要素を作成する工程を示す図である。It is a figure which shows the process of producing a battery element by laminating | stacking a positive electrode and a negative electrode. 正極電極と負極電極とを積層して電池要素を作成する工程を示す図である。It is a figure which shows the process of producing a battery element by laminating | stacking a positive electrode and a negative electrode. 正極電極と負極電極とを積層して電池要素を作成する工程を示す図である。It is a figure which shows the process of producing a battery element by laminating | stacking a positive electrode and a negative electrode. 電池要素に正極端子及び負極端子が取り付けられた状態を示す斜視図である。It is a perspective view which shows the state in which the positive electrode terminal and the negative electrode terminal were attached to the battery element. 電池要素を外装体に収めて電池セルを作成する工程を示す斜視図である。It is a perspective view which shows the process of accommodating a battery element in an exterior body and creating a battery cell. 電池セルを示す平面図である。It is a top view which shows a battery cell. 電池セルが積層された組電池を示す斜視図である。It is a perspective view which shows the assembled battery with which the battery cell was laminated | stacked. 固定部材によって固定された組電池を示す斜視図である。It is a perspective view which shows the assembled battery fixed by the fixing member.
 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1aは、電池セルを少なくとも一つ備えている電池モジュールを示す平面図であり、図1bは、図1aのA-A’断面図である。
(First embodiment)
FIG. 1a is a plan view showing a battery module including at least one battery cell, and FIG. 1b is a cross-sectional view taken along line AA ′ of FIG. 1a.
 電池モジュール1は、主に、少なくとも一つの電池セル3と、その電池セルを内蔵したモジュールケース2と、から構成されている。電池セル3は、図11a,11bに示すように、正極端子16と負極端子17とが引き出されている電池要素6と、電池要素6を内部に収容するラミネートフィルム等から構成される外装体7とを有する。電池要素6は、図9a~9cに示すように、絶縁性を有するセパレータ13を挟んで、アルミニウム等の可撓性を有する金属に、正極合剤が塗布されて形成される正極電極14と、負極合剤が塗布されて形成される負極電極15とが積層されて形成されている。 The battery module 1 is mainly composed of at least one battery cell 3 and a module case 2 containing the battery cell. As shown in FIGS. 11a and 11b, the battery cell 3 includes a battery element 6 from which a positive electrode terminal 16 and a negative electrode terminal 17 are drawn, a laminate film 7 that accommodates the battery element 6 therein, and the like. And have. As shown in FIGS. 9a to 9c, the battery element 6 includes a positive electrode 14 formed by applying a positive electrode mixture to a flexible metal such as aluminum with an insulating separator 13 interposed therebetween, A negative electrode 15 formed by applying a negative electrode mixture is laminated and formed.
 図1bに示すように、モジュールケース2は、複数の電池セル3が電池セル収容部に収められた状態で、電池セル3の主面とモジュールケース2の内壁との間に空間部4を備えている。この空間部4は、図2に示すように、電池モジュール1の過充電等によって電池セル3が膨張した際に、電池セル3の膨張を許容するための領域である。この空間部4は、電池セル3の正極電極14と負極電極15との積層方向にみて、非膨張状態の電池セル3の厚さの10%以上の厚さを有している。尚、本実施形態の空間部4の厚さは、非膨張状態の電池セル3の厚さの10%以上に構成されているが、非膨張状態の電池セル3の厚さの15%以上に構成されてもよく、或いは、非膨張状態の電池セル3の厚さの20%程度に構成されてもよい。 As shown in FIG. 1 b, the module case 2 includes a space portion 4 between the main surface of the battery cell 3 and the inner wall of the module case 2 in a state where the plurality of battery cells 3 are housed in the battery cell housing portion. ing. As shown in FIG. 2, the space 4 is an area for allowing the battery cell 3 to expand when the battery cell 3 expands due to overcharging of the battery module 1 or the like. The space 4 has a thickness of 10% or more of the thickness of the battery cell 3 in the non-expanded state when viewed in the stacking direction of the positive electrode 14 and the negative electrode 15 of the battery cell 3. In addition, although the thickness of the space part 4 of this embodiment is 10% or more of the thickness of the non-expanded battery cell 3, it is 15% or more of the thickness of the non-expanded battery cell 3. You may be comprised, or it may be comprised about 20% of the thickness of the battery cell 3 of a non-expanded state.
 このように、空間部4が設けられていることによって、電池セル3の膨張時に電池セル3の主面の中央領域の膨張が抑制されないため、電池セル3内の圧力が上昇しにくくなり、電池セル3が破裂するおそれが低くなる。また、電池セル3が抑制されずに膨張することによって、電池セル3内に積層されている正極電極14とセパレータ13と負極電極15との間にガスが入り込み、正極電極14とセパレータ13と負極電極15とのそれぞれの間の間隔が広くなる。こうして、ガスが入り込むことによって正極電極14と負極電極15との間の間隔が広くなるため、正極電極14と負極電極15との間の電気的抵抗が増加し、両極間の短絡電流が減少する。両極間の短絡電流が減少した時点より、電池セル3内部のガス発生が抑えられるため、電池セル3が膨張しすぎて破裂する可能性が低くなる。同時に、両極間の短絡電流が減少した時点より、短絡による熱エネルギーの発生が抑えられるため、電池セル3の温度上昇を抑制することができる。 As described above, since the space portion 4 is provided, expansion of the central region of the main surface of the battery cell 3 is not suppressed when the battery cell 3 is expanded. The risk of the cell 3 bursting is reduced. Further, when the battery cell 3 expands without being suppressed, gas enters between the positive electrode 14, the separator 13, and the negative electrode 15 stacked in the battery cell 3, and the positive electrode 14, the separator 13, and the negative electrode The distance between each electrode 15 is increased. Thus, since the gap between the positive electrode 14 and the negative electrode 15 is widened by the gas entering, the electrical resistance between the positive electrode 14 and the negative electrode 15 increases, and the short-circuit current between the two electrodes decreases. . Since the generation of gas inside the battery cell 3 is suppressed from the time when the short-circuit current between the two electrodes is reduced, the possibility that the battery cell 3 expands too much and bursts is reduced. At the same time, since the generation of thermal energy due to the short circuit is suppressed from the time when the short circuit current between the two electrodes decreases, the temperature increase of the battery cell 3 can be suppressed.
 本実施形態の空間部4の厚さは、非膨張状態の電池セル3の厚さの10%以上に構成されているが、非膨張状態の電池セル3の厚さの15%以上であると上記の効果がさらに良好に得られ、非膨張状態の電池セル3の厚さの20%程度で最も良好な効果が得られる。 The thickness of the space portion 4 of the present embodiment is configured to be 10% or more of the thickness of the non-expanded battery cell 3, but is 15% or more of the thickness of the non-expanded battery cell 3 The above effect can be obtained more satisfactorily, and the best effect can be obtained at about 20% of the thickness of the battery cell 3 in the non-expanded state.
 以上の構成の電池モジュール1を製造する工程を説明する。 A process for manufacturing the battery module 1 having the above configuration will be described.
 尚、図1a,1bでは、モジュールケースに二個の電池セルまたは二個の組電池を並べられるものを例示しているが、便宜上一つの電池セルのみを図示している。 1A and 1B exemplify the case where two battery cells or two assembled batteries are arranged in a module case, but only one battery cell is shown for convenience.
 電池セルまたは組電池を一つだけ配置する場合には、モジュールケースは概ね半分の面積にすることができる。また、隣り合う電池セルまたは組電池と接続するためのバスバー27は必ずしも必要ない。 When only one battery cell or battery pack is placed, the module case can be roughly half the area. Moreover, the bus bar 27 for connecting with an adjacent battery cell or an assembled battery is not necessarily required.
 図7a~7cは、正極電極を作成する工程を示している。 FIGS. 7a to 7c show a process of creating a positive electrode.
 初めに、図7aに示すように、アルミニウムからなる帯状の正極集電体9が、巻出ローラ21と巻取ローラ22とにセットされる。巻出ローラ21に隣接するように、正極合剤を塗布する正極合剤塗布部19が設けられている。巻出ローラ21と巻取ローラ22とが回転駆動すると、図7bに示すように、正極合剤塗布部19から正極集電体9へ正極合剤が、塗布部と非塗布部が交互に現れるように塗布される。正極合剤が塗布された正極集電体9は、不図示の乾燥ゾーンに送られて乾燥され、図7cに示すように、塗布部から電極本体14bが、非塗布部から正極集電タブ14aが形成されるように打ち抜かれる。正極集電体9が打ち抜かれると、図7dに示すような正極電極14が形成される。正極電極14の正極集電タブ14aは、電極本体14bを構成する一対の辺のいずれか一方に、辺の中心から一方の端部に近接した位置に設けられている。正極合剤は、正極集電体の両面に形成することができる。 First, as shown in FIG. 7 a, a strip-shaped positive electrode current collector 9 made of aluminum is set on the unwinding roller 21 and the winding roller 22. A positive electrode mixture application unit 19 for applying a positive electrode mixture is provided adjacent to the unwinding roller 21. When the unwinding roller 21 and the take-up roller 22 are rotationally driven, as shown in FIG. 7b, the positive electrode mixture appears from the positive electrode mixture application part 19 to the positive electrode current collector 9, and the application part and the non-application part appear alternately. It is applied as follows. The positive electrode current collector 9 coated with the positive electrode mixture is sent to a drying zone (not shown) and dried. As shown in FIG. 7c, the electrode body 14b is applied from the application part, and the positive electrode current collecting tab 14a is applied from the non-application part. Is punched out to form. When the positive electrode current collector 9 is punched, a positive electrode 14 as shown in FIG. 7d is formed. The positive electrode current collecting tab 14a of the positive electrode 14 is provided on one of a pair of sides constituting the electrode body 14b at a position close to one end portion from the center of the side. The positive electrode mixture can be formed on both surfaces of the positive electrode current collector.
 図8a~8cは、負極電極を作成する工程を示している。 FIGS. 8a to 8c show a process of forming a negative electrode.
 図8aに示すように、銅からなる帯状の負極集電体10が、巻出ローラ21と巻取ローラ22とにセットされる。巻出ローラ21に隣接するように、負極合剤を塗布する負極合剤塗布部20が設けられている。巻出ローラ21と巻取ローラ22とが回転駆動されると、図8bに示すように、負極合剤塗布部20から負極集電体10へ負極合剤が、塗布部と非塗布部が交互に現れるように塗布される。負極合剤が塗布された負極集電体10は、不図示の乾燥ゾーンに送られて乾燥され、図8cに示すように、塗布部から電極本体15bが、非塗布部から負極集電タブ15aが形成されるように打ち抜かれる。負極集電体10が打ち抜かれると、図8dに示すような負極電極15が形成される。負極電極15の負極集電タブ15aは、電極本体15bを構成する一対の辺のいずれか一方に、短辺の中心から一方の端部に近接した位置に設けられている。このとき、正極集電タブ14aと負極集電タブ15aとは、正極電極14と負極電極15とが積層された際にそれぞれ重ならない位置に形成されている。負極合剤は、負極集電体の両面に形成することができる。 As shown in FIG. 8 a, the strip-shaped negative electrode current collector 10 made of copper is set on the unwinding roller 21 and the winding roller 22. A negative electrode mixture application unit 20 for applying a negative electrode mixture is provided adjacent to the unwinding roller 21. When the unwinding roller 21 and the winding roller 22 are driven to rotate, as shown in FIG. 8B, the negative electrode mixture is applied from the negative electrode mixture application part 20 to the negative electrode current collector 10, and the application part and the non-application part are alternately arranged. Applied to appear in The negative electrode current collector 10 coated with the negative electrode mixture is sent to a drying zone (not shown) and dried. As shown in FIG. 8c, the electrode body 15b is applied from the application part, and the negative electrode current collecting tab 15a is applied from the non-application part. Is punched out to form. When the negative electrode current collector 10 is punched, a negative electrode 15 as shown in FIG. 8d is formed. The negative electrode current collecting tab 15a of the negative electrode 15 is provided on one of a pair of sides constituting the electrode body 15b at a position close to one end portion from the center of the short side. At this time, the positive electrode current collecting tab 14a and the negative electrode current collecting tab 15a are formed at positions that do not overlap each other when the positive electrode 14 and the negative electrode 15 are laminated. The negative electrode mixture can be formed on both surfaces of the negative electrode current collector.
 次に、図9aに示すように、正極電極14と負極電極15とが、ポリオレフィン等の絶縁性を有する材料から成り正極電極14または負極電極15の電極本体と同じ形状のセパレータ13を挟んで交互に積層されて、扁平状の電池要素6が形成される。このとき、正極電極14の正極集電タブ14aと負極電極15の負極集電タブ15aとが、図9bに示すように、平面的にみて、電池要素6の一辺から引き出され、それぞれ干渉しないように積層される。電池要素6は、図9cに示すように、正極集電タブ14a及び負極集電タブ15aが引き出されていない一対の辺に、積層されたセパレータ13と正極電極14と負極電極15とがずれないように保持する電池要素固定部材8を有していてもよい。この電池要素固定部材8には、テープ等が用いられる。一例として、電池要素6の主面は、縦220mm、横200mmの寸法に構成されている。 Next, as shown in FIG. 9 a, the positive electrode 14 and the negative electrode 15 are made of an insulating material such as polyolefin, and are alternately sandwiched with separators 13 having the same shape as the electrode body of the positive electrode 14 or the negative electrode 15. To form a flat battery element 6. At this time, the positive electrode current collecting tab 14a of the positive electrode 14 and the negative electrode current collecting tab 15a of the negative electrode 15 are drawn from one side of the battery element 6 in plan view as shown in FIG. Is laminated. As shown in FIG. 9c, the battery element 6 has the separator 13, the positive electrode 14 and the negative electrode 15 stacked on a pair of sides from which the positive current collecting tab 14a and the negative current collecting tab 15a are not drawn. You may have the battery element fixing member 8 hold | maintained like this. A tape or the like is used for the battery element fixing member 8. As an example, the main surface of the battery element 6 has a size of 220 mm in length and 200 mm in width.
 図10に示すように、電池要素6の一辺から引き出されている複数の正極集電タブ14aを一つに束ねて、束ねられた複数の正極集電タブ14aと正極端子16の一端とが接続される。同様にして、複数の負極集電タブ15aが、一つに束ねられて負極端子17の一端と接続される。各集電タブと各端子との接続は、補助的に導電性の部材を介して行われてもよく、その際、正極端子16及び負極端子17、または導電性の部材の一部に樹脂が形成されていてもよい。一例として、正極端子16及び負極端子17の幅は80mmに構成され、正極端子16と負極端子17との間の距離は10mmになるように構成されている。 As shown in FIG. 10, a plurality of positive current collecting tabs 14a drawn from one side of the battery element 6 are bundled together, and the plurality of bundled positive current collecting tabs 14a and one end of the positive electrode terminal 16 are connected. Is done. Similarly, the plurality of negative electrode current collecting tabs 15 a are bundled together and connected to one end of the negative electrode terminal 17. The connection between each current collecting tab and each terminal may be supplementarily made through a conductive member. In this case, resin is applied to the positive electrode terminal 16 and the negative electrode terminal 17 or a part of the conductive member. It may be formed. As an example, the positive electrode terminal 16 and the negative electrode terminal 17 are configured to have a width of 80 mm, and the distance between the positive electrode terminal 16 and the negative electrode terminal 17 is configured to be 10 mm.
 作成された電池要素6は、図11aに示すように、表面及び裏面が樹脂でコーティングされ可撓性を有するアルミニウム等からなる外装体7に収容される。外装体7は、プレス加工等によって電池要素6を収容する電池要素収容部を有する形状や、アルミニウムの板の絞り加工等によって内部に電池要素収容部を有する缶形状等に形成されている。電池要素6は、正極端子16の他端及び負極端子17の他端が外装体7の外部に露出するように、外装体7の電池要素収容部に配置される。このとき、外装体7の外部に露出した正極端子16の他端及び負極端子17の他端は、正極端子露出部23及び負極端子露出部24を形成する。そして、電解液を注液するための開口部分を一部に残しつつその開口部分以外において、電池要素6を収容した外装体7の周囲が熱溶着によって封止される。その後、開口部分から電解液を外装体7の内部に注入し、開口部分が接着されることによって、図11bに示すような電池セル3が形成される。一例として、電池セル3の主面は、縦270mm、横230mmの寸法に構成されている。 The produced battery element 6 is accommodated in an exterior body 7 made of flexible aluminum or the like whose front and back surfaces are coated with a resin, as shown in FIG. 11a. The exterior body 7 is formed in a shape having a battery element accommodating portion that accommodates the battery element 6 by pressing or the like, or a can shape having a battery element accommodating portion inside by drawing or the like of an aluminum plate. The battery element 6 is disposed in the battery element housing portion of the exterior body 7 such that the other end of the positive electrode terminal 16 and the other end of the negative electrode terminal 17 are exposed to the outside of the exterior body 7. At this time, the other end of the positive electrode terminal 16 and the other end of the negative electrode terminal 17 exposed to the outside of the exterior body 7 form a positive electrode terminal exposed portion 23 and a negative electrode terminal exposed portion 24. And the periphery of the exterior body 7 which accommodated the battery element 6 is sealed by heat welding, leaving the opening part for inject | pouring electrolyte solution in part, except the opening part. Thereafter, an electrolytic solution is injected into the exterior body 7 from the opening, and the opening is bonded to form the battery cell 3 as shown in FIG. 11b. As an example, the main surface of the battery cell 3 is configured to have dimensions of 270 mm in length and 230 mm in width.
 電池セル3の正極端子露出部23及び負極端子露出部24に穴があけられた後に、図1aに示すように、電池セル3がモジュールケース2の電池セル収容部に収容される。ネジ等の締結部材25が、正極端子露出部23及び負極端子露出部24の穴を通り、モジュールケース2の締結部材受け部26にて締結され、電池セル3とモジュールケース2とが固定される。モジュールケース2の締結部材受け部26は、バスバー27等を介してコネクタ28と電気的に接続されている。電池セル3とモジュールケース2とが固定された状態で、電池セル3の主面とモジュールケース2の内壁面との間に空間部4が形成されるように、モジュールケース2は構成されている。 After the holes are formed in the positive electrode terminal exposed portion 23 and the negative electrode terminal exposed portion 24 of the battery cell 3, the battery cell 3 is accommodated in the battery cell accommodating portion of the module case 2 as shown in FIG. A fastening member 25 such as a screw passes through the holes of the positive terminal exposed portion 23 and the negative terminal exposed portion 24 and is fastened at the fastening member receiving portion 26 of the module case 2, and the battery cell 3 and the module case 2 are fixed. . The fastening member receiving portion 26 of the module case 2 is electrically connected to the connector 28 via a bus bar 27 or the like. The module case 2 is configured such that the space portion 4 is formed between the main surface of the battery cell 3 and the inner wall surface of the module case 2 in a state where the battery cell 3 and the module case 2 are fixed. .
 このような工程を経て、電池モジュール1が完成する。 The battery module 1 is completed through such steps.
 尚、積層されるセパレータ13は、正極電極14を収容することができる袋状であってもよい。この場合には、セパレータ13の形状の寸法を負極電極15の形状の寸法と同じにすることで、セパレータ13と負極電極15とを積層した際に、ずれが発生しにくい。 In addition, the laminated separator 13 may be a bag shape that can accommodate the positive electrode 14. In this case, by making the size of the separator 13 the same as the size of the negative electrode 15, the separator 13 and the negative electrode 15 are not easily misaligned.
 また、正極集電タブ14aと負極集電タブ15aとは、平面的にみて、電池要素6の同じ辺から引き出されずに、正極集電タブ14aが引き出されている一辺と対向する辺から負極集電タブ15aが引き出されていてもよい。この場合には、正極集電タブ14a及び負極集電タブ15aの幅を広くすることができる。 Further, the positive electrode current collecting tab 14a and the negative electrode current collecting tab 15a are not drawn out from the same side of the battery element 6 in a plan view, but from the side facing the one side from which the positive electrode current collecting tab 14a is drawn out. The electric tab 15a may be pulled out. In this case, the width of the positive electrode current collecting tab 14a and the negative electrode current collecting tab 15a can be increased.
 さらには、図12aに示すように、複数の電池セル3を同じ向きに積層して矩形状の組電池5を形成し、図3に示すように、少なくとも一つの組電池5がモジュールケース2に収容されてもよい。組電池5は、図12bに示すように、電池セル3のそれぞれの正極端子露出部23及び負極端子露出部24が引き出されていない一対の辺に、積層された電池セル3がずれないように保持する組電池固定部材18を有していてもよい。この組電池固定部材18には、テープ等が用いられる。 Furthermore, as shown in FIG. 12a, a plurality of battery cells 3 are stacked in the same direction to form a rectangular assembled battery 5, and at least one assembled battery 5 is attached to the module case 2 as shown in FIG. It may be accommodated. As shown in FIG. 12 b, the assembled battery 5 is configured so that the stacked battery cells 3 are not displaced on a pair of sides where the positive electrode terminal exposed portions 23 and the negative electrode terminal exposed portions 24 of the battery cells 3 are not drawn. You may have the assembled battery fixing member 18 to hold | maintain. A tape or the like is used for the assembled battery fixing member 18.
 以上のように、電池モジュール1が電池セル3主面の中央領域の膨張を許容する空間部4を有していることによって、電池セル3の膨張が抑制されず、電池セル3内の圧力が上昇しにくくなり、電池セル3が破裂するおそれが低くなる。また、電池セル3が抑制されずに膨張することによって、正極電極14と負極電極15との間にガスが入り込み、間隔が広くなることで、正極電極14と負極電極15との間の電気的抵抗が増加し、両極間の短絡電流が減少する。両極間の短絡電流が減少した時点より、電池セル3内部のガス発生が抑えられるのと同時に、短絡による熱エネルギーの発生が抑えられ、電池セル3の温度上昇を抑制することができる。 As described above, since the battery module 1 has the space portion 4 that allows expansion of the central region of the main surface of the battery cell 3, the expansion of the battery cell 3 is not suppressed, and the pressure in the battery cell 3 is reduced. It becomes difficult to rise, and the risk of the battery cell 3 bursting is reduced. Further, when the battery cell 3 expands without being suppressed, gas enters between the positive electrode 14 and the negative electrode 15, and the gap becomes wider, so that the electrical connection between the positive electrode 14 and the negative electrode 15 is increased. The resistance increases and the short circuit current between the two electrodes decreases. From the time when the short circuit current between the two electrodes decreases, the generation of gas inside the battery cell 3 is suppressed, and at the same time, the generation of thermal energy due to the short circuit is suppressed, and the temperature rise of the battery cell 3 can be suppressed.
 (第2の実施形態)
 図4は、本発明の第2の実施形態の、電池セルを少なくとも一つ備えている電池モジュールを示す断面図である。
(Second Embodiment)
FIG. 4 is a cross-sectional view showing a battery module including at least one battery cell according to the second embodiment of the present invention.
 本実施形態の電池モジュール1は、第1の実施形態の構造に加えて、モジュールケース2内に電池セル3の端部に圧力を与えるためのクッション部材(当接部材)11を有している。クッション部材11は、モジュールケース2の内壁と、電池セル3が膨張する際に最も膨張率の大きい電池セル3の主面の中央領域を除いた、膨張率の小さい電池セル3の主面の端部とに接触している。また、このクッション部材11同士に囲まれた領域に、電池セル3の膨張時に電池セル3の膨張を許容する空間部4が形成されている。この空間部4は、電池セル3の正極電極14と負極電極15との積層方向にみて、非膨張状態の電池セル3の厚さの10%以上の厚さを有している。 In addition to the structure of the first embodiment, the battery module 1 of the present embodiment has a cushion member (contact member) 11 for applying pressure to the end of the battery cell 3 in the module case 2. . The cushion member 11 is an end of the main surface of the battery cell 3 having a small expansion coefficient excluding the inner wall of the module case 2 and the central region of the main surface of the battery cell 3 having the largest expansion coefficient when the battery cell 3 expands. In contact with the part. In addition, a space 4 that allows the battery cell 3 to expand when the battery cell 3 expands is formed in a region surrounded by the cushion members 11. The space 4 has a thickness of 10% or more of the thickness of the battery cell 3 in the non-expanded state when viewed in the stacking direction of the positive electrode 14 and the negative electrode 15 of the battery cell 3.
 尚、その他の構成と電池モジュール1の製造方法は、第1の実施形態と同様であるため説明を省略する。 In addition, since the other structure and the manufacturing method of the battery module 1 are the same as that of 1st Embodiment, description is abbreviate | omitted.
 以上のように、モジュールケース2のクッション部材11が電池セル3の端部を押圧することによって、クッション部材11に内部の構造が押圧されない電池セル3の主面の中央領域で電池セル3が膨張しやすくなる。そのため、電池セル3の膨張をクッション部材11に囲まれた空間部4が許容しやすくなる。電池セル3の膨張が抑制されないため、電池セル3が膨張することができ、その結果として電池セル3内の圧力が上昇しにくくなり、電池セル3が破裂するおそれが低くなる。また、電池セル3が膨張して、正極電極14と負極電極15との間にガスが入り込み、間隔が広くなることで、正極電極14と負極電極15との間の電気的抵抗が増加し、両極間の短絡電流が減少する。両極間の短絡電流が減少した時点より、電池セル3内部のガス発生が抑えられるのと同時に、短絡による熱エネルギーの発生が抑えられ、電池セル3の温度上昇を抑制することができる。 As described above, when the cushion member 11 of the module case 2 presses the end of the battery cell 3, the battery cell 3 expands in the central region of the main surface of the battery cell 3 where the internal structure is not pressed against the cushion member 11. It becomes easy to do. Therefore, the space 4 surrounded by the cushion member 11 is easily allowed to expand the battery cell 3. Since the expansion of the battery cell 3 is not suppressed, the battery cell 3 can expand, and as a result, the pressure in the battery cell 3 is hardly increased, and the risk of the battery cell 3 bursting is reduced. In addition, the battery cell 3 expands, gas enters between the positive electrode 14 and the negative electrode 15, and the gap becomes wider, thereby increasing the electrical resistance between the positive electrode 14 and the negative electrode 15, Short circuit current between the two electrodes is reduced. From the time when the short circuit current between the two electrodes decreases, the generation of gas inside the battery cell 3 is suppressed, and at the same time, the generation of thermal energy due to the short circuit is suppressed, and the temperature rise of the battery cell 3 can be suppressed.
 (第3の実施形態)
 図5は、本発明の第3の実施形態の、電池セルを少なくとも二つ備えている電池モジュールを示す断面図である。
(Third embodiment)
FIG. 5 is a cross-sectional view showing a battery module including at least two battery cells according to the third embodiment of the present invention.
 本実施形態の電池モジュール1は、第1の実施形態の構造に加えて、モジュールケース2の内壁に、電池セル3同士が向かい合う位置に設けられた少なくとも二つの電池セル3を有している。このとき、電池セル3の膨張を許容するための空間部4が、互いに向かい合う電池セル3の主面同士の間に形成されている。この空間部4は、電池セル3の正極電極14と負極電極15との積層方向にみて、収容されている全ての非膨張状態の電池セル3の厚さの合計の10%以上の厚さを有している。 The battery module 1 of the present embodiment has at least two battery cells 3 provided on the inner wall of the module case 2 at positions where the battery cells 3 face each other, in addition to the structure of the first embodiment. At this time, a space 4 for allowing expansion of the battery cell 3 is formed between the main surfaces of the battery cells 3 facing each other. The space 4 has a thickness of 10% or more of the total thickness of all the non-expanded battery cells 3 in the stacking direction of the positive electrode 14 and the negative electrode 15 of the battery cell 3. Have.
 また、本実施形態においても、第2の実施形態で用いられているクッション部材11が、それぞれの電池セル3の主面の端部を押圧するように、モジュールケース内に設けられていてもよい。 Also in this embodiment, the cushion member 11 used in the second embodiment may be provided in the module case so as to press the end of the main surface of each battery cell 3. .
 尚、その他の構成と電池モジュール1の製造方法は、第1の実施形態と同様であるため説明を省略する。 In addition, since the other structure and the manufacturing method of the battery module 1 are the same as that of 1st Embodiment, description is abbreviate | omitted.
 以上のように、第1の実施形態で得られる効果に加えて、モジュールケース2の内壁に、電池セル3同士が向き合う位置に設けられることによって、一つのモジュールケース2内に配置できる電池セル3の数が増えるため、電池モジュール1の蓄電量が高くなる。 As described above, in addition to the effects obtained in the first embodiment, the battery cells 3 that can be arranged in one module case 2 by being provided on the inner wall of the module case 2 at positions where the battery cells 3 face each other. Therefore, the amount of electricity stored in the battery module 1 is increased.
 (第4の実施形態)
 図6aは、本発明の第4の実施形態の、電池セルを少なくとも二つ以上備えている電池モジュールを示す断面図である。
(Fourth embodiment)
FIG. 6a is a cross-sectional view showing a battery module including at least two battery cells according to the fourth embodiment of the present invention.
 本実施形態の電池モジュール1は、第1の実施形態の構造に加えて、モジュールケース2内に少なくとも一つの中板12を有している。この中板12が、モジュールケース2の電池セル収容部を厚さ方向に分割することで、複数の区画が設けられており、各区画内に電池セル3と空間部4とがそれぞれ設けられている。中板12の少なくとも一方の面には電池セル3が配置されている。このとき、電池セル3の膨張を許容するための空間部4が、中板12に配置された電池セル3の主面と、中板12の電池セル3が配置されている面と対向するモジュールケース2の内壁との間に設けられている。加えて、中板12の電池セル3が配置されていない面と、中板12の電池セル3が配置されていない面と対向するモジュールケース2の内壁との間に、空間部4が形成されている。それぞれの空間部4は、電池セル3の正極電極14と負極電極15とが積層されている方向にみて、収容されているそれぞれの非膨張状態の電池セル3の厚さの10%以上の厚さを有している。 The battery module 1 of this embodiment has at least one middle plate 12 in the module case 2 in addition to the structure of the first embodiment. The middle plate 12 divides the battery cell housing portion of the module case 2 in the thickness direction, so that a plurality of compartments are provided, and the battery cells 3 and the space portions 4 are provided in each compartment. Yes. The battery cell 3 is disposed on at least one surface of the intermediate plate 12. At this time, the space 4 for allowing the battery cell 3 to expand is a module facing the main surface of the battery cell 3 disposed on the intermediate plate 12 and the surface of the intermediate plate 12 on which the battery cell 3 is disposed. It is provided between the inner wall of the case 2. In addition, a space portion 4 is formed between the surface of the intermediate plate 12 where the battery cell 3 is not disposed and the inner wall of the module case 2 facing the surface of the intermediate plate 12 where the battery cell 3 is not disposed. ing. Each space 4 has a thickness of 10% or more of the thickness of each non-expanded battery cell 3 accommodated in the direction in which the positive electrode 14 and the negative electrode 15 of the battery cell 3 are stacked. Have
 図6bは、第4の実施形態の変形例の電池モジュールを示す断面図である。 FIG. 6 b is a cross-sectional view showing a battery module according to a modification of the fourth embodiment.
 本変形例の電池モジュール1においては、モジュールケース2に設けられた中板12の両面に電池セル3が設けられている。この場合においては、電池セル3の膨張を許容するための空間部4が、それぞれの電池セル3の主面とモジュールケース2の内壁との間に形成されている。それぞれの空間部4は、電池セル3の正極電極14と負極電極15と積層方向にみて、収容されているそれぞれの電池セル3の厚さの10%以上の厚さを有している。 In the battery module 1 of this modification, the battery cells 3 are provided on both surfaces of the intermediate plate 12 provided in the module case 2. In this case, a space 4 for allowing expansion of the battery cell 3 is formed between the main surface of each battery cell 3 and the inner wall of the module case 2. Each space portion 4 has a thickness of 10% or more of the thickness of each battery cell 3 accommodated in the stacking direction of the positive electrode 14 and the negative electrode 15 of the battery cell 3.
 また、本実施形態及び変形例においても、第2の実施形態で用いられているクッション部材11が、それぞれの電池セル3の主面の端部を押圧するように、モジュールケース2内に設けられていてもよい。尚、その他の構成と電池モジュール1の製造方法は、第1の実施形態と同様であるため説明を省略する。 Also in this embodiment and the modification, the cushion member 11 used in the second embodiment is provided in the module case 2 so as to press the end of the main surface of each battery cell 3. It may be. The other configuration and the method for manufacturing the battery module 1 are the same as those in the first embodiment, and thus the description thereof is omitted.
 以上のように、第1の実施形態で得られる効果に加えて、モジュールケース2内に電池セル収容部を区画するための中板12が設けられていることによって、各電池セル3の膨張を許容するための空間部4をそれぞれ設けることができる。また、それぞれの電池セル3同士が接触することがないため、膨張する各電池セル3同士が干渉してしまうことがなくなる。さらに、一つのモジュールケース2内に配置できる電池セル3の数が増えるため、電池モジュール1の蓄電量が高くなる。 As described above, in addition to the effects obtained in the first embodiment, the middle plate 12 for partitioning the battery cell housing portion is provided in the module case 2, thereby expanding each battery cell 3. Space portions 4 for allowing each can be provided. Moreover, since each battery cell 3 does not contact, each battery cell 3 which expand | swells will not interfere. Furthermore, since the number of battery cells 3 that can be arranged in one module case 2 increases, the amount of power stored in the battery module 1 increases.
 本出願は、2013年3月12日に出願された日本特許出願2013-48752号を基礎とする優先権を主張し、日本特許出願2013-48752号の開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-48752 filed on Mar. 12, 2013, the entire disclosure of Japanese Patent Application No. 2013-48752 is incorporated herein.
1       電池モジュール
2       モジュールケース
3       電池セル
4       空間部
5       組電池
6       電池要素
7       外装体
8       電池要素固定部材
9       正極集電体
10      負極集電体
11      クッション部材
12      中板
13      セパレータ
14      正極電極
15      負極電極
16      正極端子
17      負極端子
DESCRIPTION OF SYMBOLS 1 Battery module 2 Module case 3 Battery cell 4 Space part 5 Battery assembly 6 Battery element 7 Exterior body 8 Battery element fixing member 9 Positive electrode collector 10 Negative electrode collector 11 Cushion member 12 Middle plate 13 Separator 14 Positive electrode 15 Negative electrode 16 Positive terminal 17 Negative terminal

Claims (12)

  1.  可撓性を有する外装体の内部に、セパレータを挟んで正極電極と負極電極とが交互に積層された電池要素及び電解液を有する電池セルと、前記電池セルを収容するモジュールケースと、を有し、
     前記モジュールケースは、前記電池セルの、前記正極電極と前記負極電極との積層方向の膨張を許容する空間部を有することを特徴とする電池モジュール。
    A battery case having a battery element and an electrolytic solution in which a positive electrode and a negative electrode are alternately stacked with a separator interposed therebetween and a module case for housing the battery cell are provided inside a flexible outer package. And
    The module case has a space portion that allows expansion of the battery cell in the stacking direction of the positive electrode and the negative electrode.
  2.  前記積層方向にみて、前記空間部の厚さは、非膨張状態の前記電池セルの厚さの10%以上であることを特徴とする請求項1に記載の電池モジュール。 The battery module according to claim 1, wherein the thickness of the space portion is 10% or more of the thickness of the battery cell in a non-expanded state when viewed in the stacking direction.
  3.  前記モジュールケースは、2つ以上の前記電池セルを収容できることを特徴とする請求項1または2に記載の電池モジュール。 The battery module according to claim 1 or 2, wherein the module case can accommodate two or more battery cells.
  4.  前記モジュールケースは、前記モジュールケースを厚さ方向に分割するための少なくとも一つの中板を備え、前記中板によって分割された複数の区画のそれぞれに前記電池セルと前記空間部が設けられていることを特徴とする請求項3に記載の電池モジュール。 The module case includes at least one intermediate plate for dividing the module case in the thickness direction, and the battery cell and the space are provided in each of a plurality of sections divided by the intermediate plate. The battery module according to claim 3.
  5.  前記中板の少なくとも一方の面に前記電池セルが配置されていることを特徴とする請求項4に記載の電池モジュール。 The battery module according to claim 4, wherein the battery cell is disposed on at least one surface of the intermediate plate.
  6.  前記積層方向にみて、各区画内の前記空間部の厚さは、該区画内に配置されている非膨張状態の前記電池セルの厚さの10%以上であることを特徴とする請求項4または5に記載の電池モジュール。 5. The thickness of the space portion in each compartment as viewed in the stacking direction is 10% or more of the thickness of the non-expanded battery cell disposed in the compartment. Or the battery module of 5.
  7.  前記モジュールケースは、平面的にみて、前記電池セルの端部と接触する当接部材を有していることを特徴とする請求項1から6のいずれか1項に記載の電池モジュール。 The battery module according to any one of claims 1 to 6, wherein the module case includes a contact member that comes into contact with an end of the battery cell in a plan view.
  8.  前記空間部は、前記当接部材に囲まれた領域に設けられていることを特徴とする請求項7に記載の電池モジュール。 The battery module according to claim 7, wherein the space portion is provided in a region surrounded by the contact member.
  9.  前記空間部は、前記モジュールケース内に収容された前記電池セルの主面同士の間に設けられていることを特徴とする請求項3に記載の電池モジュール。 4. The battery module according to claim 3, wherein the space portion is provided between main surfaces of the battery cells accommodated in the module case.
  10.  前記空間部は、前記電池セルの主面と前記モジュールケースの内壁との間に設けられていることを特徴とする請求項1から8のいずれか1項に記載の電池モジュール。 The battery module according to any one of claims 1 to 8, wherein the space portion is provided between a main surface of the battery cell and an inner wall of the module case.
  11.  前記空間部は、前記中板に配置されている前記電池セルの主面と、前記中板の前記電池セルが配置されている面と対向する前記モジュールケースの内壁との間と、前記中板の前記電池セルが配置されていない面と、前記中板の前記電池セルが配置されていない面と対向する前記モジュールケースの内壁との間と、にそれぞれ設けられていることを特徴とする請求項4から6のいずれか1項に記載の電池モジュール。 The space portion is formed between a main surface of the battery cell disposed on the intermediate plate and an inner wall of the module case facing the surface of the intermediate plate on which the battery cell is disposed. The battery cell is provided on a surface where the battery cell is not disposed, and an inner wall of the module case facing the surface where the battery cell is not disposed on the intermediate plate. Item 7. The battery module according to any one of Items 4 to 6.
  12.  前記電池セルは、一端が前記正極電極と電気的に接続されている正極端子と、一端が前記負極電極と電気的に接続されている負極端子とを有し、複数の前記電池セルが積層されることで組電池が形成されており、
     平面的にみて、前記組電池は、矩形状であり、前記組電池の対向する一対の辺の少なくとも一辺から前記正極端子及び前記負極端子のそれぞれの他端が引き出されており、前記正極端子及び前記負極端子が引き出されていない、前記組電池の対向する一対の辺を固定する固定部材を有していることを特徴とする請求項1から11のいずれか1項に記載の電池モジュール。
    The battery cell has a positive electrode terminal having one end electrically connected to the positive electrode and a negative electrode terminal having one end electrically connected to the negative electrode, and the plurality of battery cells are stacked. As a result, an assembled battery is formed.
    In plan view, the assembled battery has a rectangular shape, and the other end of each of the positive electrode terminal and the negative electrode terminal is drawn from at least one of a pair of opposing sides of the assembled battery, and the positive electrode terminal and 12. The battery module according to claim 1, further comprising: a fixing member that fixes a pair of opposing sides of the assembled battery from which the negative electrode terminal is not pulled out.
PCT/JP2014/051449 2013-03-12 2014-01-24 Power cell module WO2014141753A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015505315A JPWO2014141753A1 (en) 2013-03-12 2014-01-24 Battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-048752 2013-03-12
JP2013048752 2013-03-12

Publications (1)

Publication Number Publication Date
WO2014141753A1 true WO2014141753A1 (en) 2014-09-18

Family

ID=51536430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051449 WO2014141753A1 (en) 2013-03-12 2014-01-24 Power cell module

Country Status (2)

Country Link
JP (1) JPWO2014141753A1 (en)
WO (1) WO2014141753A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110395A1 (en) * 2016-12-15 2018-06-21 ヤマハ発動機株式会社 Battery pack
JP2018519625A (en) * 2015-10-05 2018-07-19 エルジー・ケム・リミテッド Battery module and battery pack including the same
CN115149158A (en) * 2021-03-31 2022-10-04 丰田自动车株式会社 Electricity storage device
WO2024000246A1 (en) * 2022-06-29 2024-01-04 宁德时代新能源科技股份有限公司 Battery cell, battery, and electric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059471A (en) * 2001-08-20 2003-02-28 Sony Corp Housing for battery
JP2012069408A (en) * 2010-09-24 2012-04-05 Hitachi Maxell Energy Ltd Modularized electrochemical element
JP2012113995A (en) * 2010-11-25 2012-06-14 Sony Corp Nonaqueous electrolyte battery
JP2012142144A (en) * 2010-12-28 2012-07-26 Automotive Energy Supply Corp Film exterior battery, battery module, module assembly, film exterior battery selecting method and electric automobile
JP2013048054A (en) * 2011-08-29 2013-03-07 Sanyo Electric Co Ltd Nonaqueous secondary battery and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059471A (en) * 2001-08-20 2003-02-28 Sony Corp Housing for battery
JP2012069408A (en) * 2010-09-24 2012-04-05 Hitachi Maxell Energy Ltd Modularized electrochemical element
JP2012113995A (en) * 2010-11-25 2012-06-14 Sony Corp Nonaqueous electrolyte battery
JP2012142144A (en) * 2010-12-28 2012-07-26 Automotive Energy Supply Corp Film exterior battery, battery module, module assembly, film exterior battery selecting method and electric automobile
JP2013048054A (en) * 2011-08-29 2013-03-07 Sanyo Electric Co Ltd Nonaqueous secondary battery and manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519625A (en) * 2015-10-05 2018-07-19 エルジー・ケム・リミテッド Battery module and battery pack including the same
US10608218B2 (en) 2015-10-05 2020-03-31 Lg Chem, Ltd. Battery module and battery pack comprising same
WO2018110395A1 (en) * 2016-12-15 2018-06-21 ヤマハ発動機株式会社 Battery pack
TWI672848B (en) * 2016-12-15 2019-09-21 日商山葉發動機股份有限公司 Battery
CN115149158A (en) * 2021-03-31 2022-10-04 丰田自动车株式会社 Electricity storage device
WO2024000246A1 (en) * 2022-06-29 2024-01-04 宁德时代新能源科技股份有限公司 Battery cell, battery, and electric device

Also Published As

Publication number Publication date
JPWO2014141753A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP7041810B2 (en) Battery module with a structure that breaks the connector using venting gas
EP3242346B1 (en) Electrode assembly
EP2940753B1 (en) Battery cell having rounded corner
KR102303827B1 (en) Complex electrode assembly including a plurality of electrode assemblies and electrochemical device comprising the complex electrode assembly
KR102303828B1 (en) Flexible electrochemical device including electrode assemblies electrically connected to each other
KR100496305B1 (en) Pouched-type lithium secondary battery and the fabrication method thereof
EP2779269B1 (en) Battery cell having a novel structure
JP5541514B2 (en) Multilayer secondary battery
CN107851852B (en) Electricity storage device
US20130029201A1 (en) Cell module
EP2654102B1 (en) Battery stack
JP6109957B2 (en) Electrode assembly including round corners
JP2006253060A (en) Film coated electric device assembly
KR101367751B1 (en) secondary battery and manufacturing method thereof
CN113178656B (en) battery module
JP2016171063A (en) Battery pack
KR20180091324A (en) Battery cell and Secondary battery assembly comprising the same
WO2015002094A1 (en) Cell
WO2014141753A1 (en) Power cell module
JP2005222884A (en) Electrode lamination type battery
JP5366176B2 (en) Battery module
KR20150040437A (en) Jelly-Roll Type Electrode Assembly of Low Resistance And Secondary Battery Comprising the Same
KR102179687B1 (en) Battery pack and method for manufacturing the same
JP2015056257A (en) Secondary battery
EP2830140B1 (en) Electrode assembly for a secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762495

Country of ref document: EP

Kind code of ref document: A1