WO2014141699A1 - 熱発電素子、熱発電ユニットおよび熱発電システム - Google Patents

熱発電素子、熱発電ユニットおよび熱発電システム Download PDF

Info

Publication number
WO2014141699A1
WO2014141699A1 PCT/JP2014/001382 JP2014001382W WO2014141699A1 WO 2014141699 A1 WO2014141699 A1 WO 2014141699A1 JP 2014001382 W JP2014001382 W JP 2014001382W WO 2014141699 A1 WO2014141699 A1 WO 2014141699A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
thermoelectric generator
thermoelectric generation
peripheral surface
tube
Prior art date
Application number
PCT/JP2014/001382
Other languages
English (en)
French (fr)
Inventor
章裕 酒井
勉 菅野
宏平 高橋
洋正 玉置
草田 英夫
山田 由佳
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2015505298A priority Critical patent/JP5834256B2/ja
Publication of WO2014141699A1 publication Critical patent/WO2014141699A1/ja
Priority to US14/801,176 priority patent/US20150325768A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Definitions

  • thermoelectric generator that converts heat into electric power.
  • present invention also relates to a thermoelectric generator unit including a thermoelectric generator and a thermoelectric generator system including the thermoelectric generator unit.
  • thermoelectric conversion element is an element that can convert heat into electric power or electric power into heat.
  • a thermoelectric conversion element formed from a thermoelectric material exhibiting the Seebeck effect can obtain thermal energy from a heat source having a relatively low temperature (for example, 200 ° C. or less) and convert it into electric power. According to the thermoelectric generation technology using such a thermoelectric conversion element, it is possible to recover and effectively use the heat energy that has been discarded in the surrounding environment in the form of steam, hot water, exhaust gas, etc. Is possible.
  • thermoelectric generator a thermoelectric conversion element formed from a thermoelectric material
  • a general thermoelectric generator has a so-called “ ⁇ -type structure” in which a p-type semiconductor and an n-type semiconductor having different electrical polarities of carriers are combined (for example, Patent Document 1).
  • a “ ⁇ -type structure” thermoelectric generator a p-type semiconductor and an n-type semiconductor are electrically connected in series and thermally in parallel.
  • the direction of the temperature gradient and the direction in which the current flows are parallel or antiparallel to each other. For this reason, it is necessary to provide an output terminal on the electrode on the high temperature heat source side or the low temperature heat source side. Therefore, in order to electrically connect a plurality of thermoelectric generators each having a “ ⁇ -type structure” in series, a complicated wiring structure is required.
  • Patent Document 2 discloses a thermoelectric generator having a laminate in which a bismuth layer and a metal layer made of a metal different from bismuth are alternately laminated between a first electrode and a second electrode facing each other. Yes.
  • the laminated surface is inclined with respect to the direction of a straight line connecting the first electrode and the second electrode.
  • Patent Document 3 and Non-Patent Documents 1 and 2 disclose tube-type thermoelectric generators.
  • JP 2013-016685 A International Publication No. 2008/056466 International Publication No. 2012/014366
  • thermoelectric generators thermoelectric generator units and systems that use thermoelectric generation technology are desired.
  • thermoelectric generator includes a first electrode and a second electrode arranged to face each other, a first main surface and a second main surface, and the first main surface and the second main surface.
  • a laminated body having a first end face and a second end face electrically connected to each of the first electrode and the second electrode, wherein the laminated body has a relatively high Seebeck coefficient. It has a structure in which a first layer formed of a first material having a low thermal conductivity and a second layer formed of a second material having a relatively high Seebeck coefficient and a low thermal conductivity are alternately stacked.
  • the stacked surfaces of the plurality of first layers and the plurality of second layers are inclined with respect to the direction in which the first electrode and the second electrode face each other, and the stacked body includes the first main surface. And a carbon-containing layer containing carbon on at least one of the second main surface, and the first main surface and the second main surface A potential difference is generated between the first electrode and the second electrode by the temperature difference between the surfaces.
  • thermoelectric generator thermoelectric generator unit and system of the present disclosure, the practicality of thermoelectric generation is improved.
  • thermoelectric generator 10 is a cross-sectional view of a thermoelectric generator 10. It is a top view of the thermoelectric generator 10 of FIG. 1A. It is a figure which shows the state which made the high temperature heat source 120 contact the upper surface 10a of the thermoelectric generation element 10, and made the low temperature heat source 140 contact the lower surface 10b.
  • 2 is a perspective view showing a schematic configuration of a thermoelectric generation tube T.
  • FIG. It is sectional drawing which shows one Embodiment of the thermoelectric power generation element by this indication.
  • FIG. 6 is another cross-sectional view illustrating an embodiment of a thermoelectric generator according to the present disclosure. It is typical sectional drawing which shows the thermoelectric generator which equips the lower layer of a carbon containing layer with an intermediate
  • thermoelectric power generation element 10M It is a typical sectional view of thermoelectric power generation element 10M which has a rectangular parallelepiped shape.
  • (A) to (d) are a side view, a sectional view, a top view, and a perspective view showing the shape of a green compact for forming a laminate.
  • (A) And (b) is process drawing which shows the manufacturing process of a thermoelectric power generation element.
  • (A) is process drawing which shows the manufacturing process of a thermoelectric power generation element
  • (b) is the sectional drawing.
  • A) And (b) is process drawing which shows the manufacturing process of a thermoelectric power generation element.
  • (A) is process drawing which shows the manufacturing process of a thermoelectric power generation element
  • (b) is the sectional drawing.
  • thermoelectric generation element A is a figure which shows the electric power generation characteristic of the thermoelectric power generation element of an Example and a reference example
  • (b) is a figure which shows the electric power generation characteristic of the thermoelectric power generation element of a comparative example.
  • 1 is a perspective view illustrating a schematic configuration of an exemplary thermoelectric generator unit 100 included in a thermoelectric generator system according to the present disclosure.
  • 4 is a block diagram showing an example of a configuration for giving a temperature difference between an outer peripheral surface and an inner peripheral surface of a thermoelectric generation tube T.
  • FIG. It is a figure which shows typically the example of the electrical connection of the thermoelectric generation tubes T1-T10.
  • thermoelectric generation tube T1 is a perspective view which shows one (here thermoelectric generation tube T1) of the thermoelectric generation tubes T with which the thermoelectric generation unit 100 is provided
  • (b) is the axis
  • (A) is a front view which shows the one aspect
  • (b) is a figure (here right side surface) which shows one of the side surfaces of the thermoelectric generation unit 100 Figure). It is a figure which shows a part of MM cross section of FIG.16 (b).
  • (A) is a figure which shows the cross section of a part of plate 36
  • (b) is a figure which shows the external appearance of the electroconductive member J1 when it sees from the direction shown by arrow V1 in (a).
  • (A) is an exploded perspective view of the vicinity of the channel C61 that accommodates the conductive member J1, and (b) is an opening in the seal surface (the surface facing the first plate portion 36a) of the second plate portion 36b. It is a perspective view which shows the part corresponding to part A61 and A62.
  • (A) is a perspective view showing one exemplary shape of the conductive ring-shaped member 56
  • (b) is a perspective view showing the shape of another example of the conductive ring-shaped member 56.
  • thermoelectric generator unit 100 (A) is sectional drawing which shows the electroconductive ring-shaped member 56 and the thermoelectric generation tube T1
  • (b) is a cross section which shows the state by which the edge part of the thermoelectric generation tube T1 was inserted in the electroconductive ring-shaped member 56
  • (C) is a sectional view showing a state in which the end of the thermoelectric generator tube T1 is inserted into the conductive ring-shaped member 56 and the conductive member J1. It is a figure (left side view) which shows another one of the side surfaces of the thermoelectric generator unit 100 shown by Fig.16 (a).
  • FIG. 4 is a cross-sectional view showing an example of a structure for separating a medium in contact with an outer peripheral surface of a thermoelectric generation tube T and a medium in contact with an inner peripheral surface of each of the thermoelectric generation tubes T1 to T10 so as not to be mixed.
  • thermoelectric generation system of this indication (b) is a BB sectional drawing of (a)
  • thermoelectric generation shown to (a) It is a perspective view which shows the structural example of the buffer tank with which a system is provided.
  • (A) is a figure which shows other embodiment of the thermoelectric power generation system of this indication, (b) is the BB sectional drawing of (a), (c) is C of (a).
  • FIG. (A) is a figure which shows other embodiment of the thermoelectric power generation system of this indication, (b) is the BB sectional drawing of (a).
  • A) is a figure which shows other embodiment of the thermoelectric power generation system of this indication, (b) is the BB sectional drawing of (a).
  • (A) is a figure which shows other embodiment of the thermoelectric power generation system of this indication, (b) is the BB sectional drawing of (a).
  • thermoelectric power generation system of this indication It is a figure which shows other embodiment of the thermoelectric power generation system of this indication. It is a block diagram showing an example of composition of an electric circuit with which a thermoelectric generator system by this indication is provided. It is a block diagram which shows the structural example of the form by which the thermoelectric generation system by this indication is used. 3 is a diagram schematically showing an example of the flow direction of a high temperature medium and a low temperature medium introduced into the thermoelectric generator unit 100.
  • FIG. (A) is sectional drawing which shows a part of electroconductive ring-shaped member 56 and electroconductive member J1
  • (b) is the elastic part 56r of the electroconductive ring-shaped member 56 in the through-hole Jh1 of the electroconductive member J1. It is sectional drawing which shows the state by which was inserted.
  • thermoelectric generation tube T which has the chamfering part Cm in an edge part.
  • A) And (b) is a figure which shows typically the electric current which flows through the thermoelectric generation tube T electrically connected in series, respectively. It is a figure which shows typically the direction of the electric current in two opening part A61, A62 and its vicinity.
  • A) And (b) is a perspective view which respectively shows the thermoelectric generation tube which has a polar display on an electrode.
  • A) And (b) is sectional drawing which shows the other example of the structure for implement
  • thermoelectric generator having a laminate in which bismuth layers and metal layers made of a metal different from bismuth are alternately laminated. .
  • this thermoelectric generator is different from the conventional thermoelectric generator in that the laminated surface is inclined with respect to the direction of the straight line connecting the first electrode and the second electrode. Can be orthogonal to each other. As a result, it is possible to arrange a high-temperature heat source and a low-temperature heat source that were not easily realized in a conventional thermoelectric generator system using a thermoelectric generator, and provide a thermoelectric generator system that makes it easier to use the high-temperature heat source and the low-temperature heat source. Can do.
  • thermoelectric generator of the present disclosure has a tube shape, it may be easier to use a high-temperature heat source and a low-temperature heat source.
  • operation principle of the tubular thermoelectric generator can be explained for a thermoelectric generator having a simpler shape, which is easier to understand.
  • FIG. 1A is a cross-sectional view of a thermoelectric generator 10 having a substantially rectangular parallelepiped shape
  • FIG. 1B is a top view of the thermoelectric generator 10.
  • FIGS. 1A and 1B show an orthogonal X axis, Y axis, and Z axis.
  • the illustrated thermoelectric generator 10 has a structure (laminated body) in which metal layers 20 and thermoelectric material layers 22 are alternately stacked in an inclined state.
  • the shape of the laminate is a rectangular parallelepiped, but the operation principle is the same for other shapes.
  • the first electrode E ⁇ b> 1 and the second electrode E ⁇ b> 2 are provided so as to sandwich the above laminate from the left and right.
  • the laminated surface is inclined by an angle ⁇ (0 ⁇ ⁇ radians) with respect to the Z-axis direction.
  • thermoelectric generator 10 having such a configuration, when a temperature difference is given between the upper surface 10a and the lower surface 10b, heat is preferentially transmitted through the metal layer 20 having higher thermal conductivity than the thermoelectric material layer 22. Therefore, a Z-axis direction component is generated in the temperature gradient of each thermoelectric material layer 22. For this reason, an electromotive force in the Z-axis direction is generated in each thermoelectric material layer 22 by the Seebeck effect, and the electromotive force is superimposed in series in the stacked body. As a result, the first electrode E1 and the second electrode E2 as a whole A large potential difference occurs between them.
  • a thermoelectric generator having the laminate shown in FIGS. 1A and 1B is disclosed in Patent Document 2. The entire disclosure of Patent Document 2 is incorporated herein by reference.
  • FIG. 2 shows a state in which the high temperature heat source 120 is in contact with the upper surface 10a of the thermoelectric generator 10 and the low temperature heat source 140 is in contact with the lower surface 10b.
  • heat Q flows from the high-temperature heat source 120 to the low-temperature heat source 140 via the thermoelectric generator 10, and electric power P can be extracted from the thermoelectric generator 10 via the first electrode E1 and the second electrode E2.
  • the temperature gradient direction (Y-axis direction) and the current direction (Z-axis direction) are orthogonal to each other, and between the pair of electrodes E1 and E2 for taking out electric power. There is no need to give a temperature difference.
  • thermoelectric generator Tubular Thermoelectric Generator
  • tube is not distinguished from the term “pipe”, and is interpreted to include both “tube” and “pipe”.
  • FIG. 3 is a perspective view showing an example of the thermoelectric generation tube T.
  • the thermoelectric generation tube T includes a tube body Tb and a pair of electrodes E1 and E2 that are alternately stacked with the metal layer 20 having a through hole in the center and the thermoelectric material layer 22 inclined.
  • a method of manufacturing such a thermoelectric generation tube T is disclosed in Patent Document 3, for example. According to the method disclosed in Patent Document 3, by alternately superposing metal cups having holes at the bottom and thermoelectric material cups having holes at the bottom, and performing plasma sintering in that state, Combine both.
  • the entire disclosure of Patent Document 3 is incorporated herein by reference.
  • thermoelectric generation tube T in FIG. 3 is connected to an internal flow path (hereinafter, also referred to as “internal flow path”) defined by an inner peripheral surface of the thermoelectric generation tube T, for example, so that a high-temperature medium flows. .
  • internal flow path defined by an inner peripheral surface of the thermoelectric generation tube T, for example, so that a high-temperature medium flows.
  • the outer peripheral surface of the thermoelectric generator tube T is brought into contact with a low-temperature medium.
  • the terms “high temperature” and “low temperature” in “high temperature medium” or “low temperature medium” indicate not the specific temperature of each medium but the relative temperature between them.
  • the “medium” is typically a fluid composed of a gas, a liquid, or a mixture thereof.
  • the “medium” may include a solid such as a powder dispersed in a fluid.
  • the shape of the thermoelectric generation tube T may be a tube shape and is not limited to a cylinder. In other words, when the thermoelectric generation tube T is cut along a plane perpendicular to the axis of the thermoelectric generation tube T, the shape of the “outer peripheral surface” and the “inner peripheral surface” on the cut surface does not have to be a circle. Any closed curve such as a polygon may be used.
  • the axis of the thermoelectric generation tube T is typically a straight line, but is not limited to a straight line.
  • thermoelectric generation tube T the tube body Tb including the thermoelectric material layer 22 contacts the high-temperature medium or the low-temperature medium and uses heat, or the tube body Tb is hot. It can be a wall that separates the medium and the cold medium. For this reason, compared with the conventional thermoelectric generator, the utilization efficiency of heat can be improved.
  • the tube main body Tb when the tube main body Tb is in contact with a high-temperature medium or a low-temperature medium, if the medium is a fluid, the tube main body Tb receives shear stress (shear stress) from the medium, and the inner peripheral surface and the outer peripheral surface are shaved. Further, when impurities are contained in the high temperature medium or the low temperature medium, the impurities are deposited on the inner peripheral surface or the outer peripheral surface of the tube main body Tb, and the power generation characteristics of the thermoelectric generation tube T are affected. Problems such as blocking the flow path or disturbing the flow of the medium may occur.
  • thermoelectric generator and thermoelectric generator system in view of such problems.
  • the outline of one embodiment of the present invention is as follows.
  • thermoelectric generator includes a first electrode and a second electrode arranged to face each other, a first main surface and a second main surface, and the first main surface and the second main surface.
  • a laminated body having a first end face and a second end face electrically connected to each of the first electrode and the second electrode, wherein the laminated body has a relatively high Seebeck coefficient. It has a structure in which a first layer formed of a first material having a low thermal conductivity and a second layer formed of a second material having a relatively high Seebeck coefficient and a low thermal conductivity are alternately stacked.
  • the stacked surfaces of the plurality of first layers and the plurality of second layers are inclined with respect to the direction in which the first electrode and the second electrode face each other, and the stacked body includes the first main surface. And a carbon-containing layer containing carbon on at least one of the second main surface, and the first main surface and the second main surface A potential difference is generated between the first electrode and the second electrode by the temperature difference between the surfaces.
  • the first main surface and the second main surface may be flat, and the laminate may have a rectangular parallelepiped shape.
  • the laminate may have a tube shape, and the first main surface and the second main surface may be an outer peripheral surface and an inner peripheral surface of the tube, respectively.
  • the second material includes Bi, and the first material does not include Bi and may be a metal different from Bi.
  • the carbon-containing layer may have a first portion containing the first material and the carbon, and a second portion containing the second material and the carbon.
  • the laminate may be a sintered body, and the carbon-containing layer may be a part of the sintered body.
  • thermoelectric generation tube which is one embodiment of the present invention includes the thermoelectric generation element, and the laminated body has a tube shape.
  • the method for manufacturing a thermoelectric generator includes a raw material of a first material having a relatively low Seebeck coefficient and high thermal conductivity, and a gap between the pair of stacked surfaces and the pair of stacked surfaces. And a plurality of first green compacts having a first side surface and a second side surface that are non-perpendicular to the pair of laminated surfaces, and a second material having a relatively high Seebeck coefficient and low thermal conductivity. A plurality of second compacts made of a raw material and having a first side surface and a second side surface that are positioned between the pair of stacked surfaces and the pair of stacked surfaces and are not perpendicular to the pair of stacked surfaces.
  • the laminated green compact by alternately laminating the plurality of first green compacts and the plurality of second green compacts so that the laminated surfaces are in contact with each other. And each first side surface and each second of the plurality of first green compacts and the plurality of second green compacts.
  • the surfaces respectively constitute a first main surface and a second main surface of the laminated green compact, and at least one of the first main surface and the second main surface is selected from a carbon sheet, a carbon powder, and a graphite sheet.
  • the laminated green compact may be sintered while applying pressure to the laminated green compact.
  • the step of sintering (C) may be performed by a hot press method or a discharge plasma method.
  • Each of the plurality of first green compacts and the plurality of second green compacts has a tube shape having the first and second side surfaces as an outer peripheral surface and an inner peripheral surface, and the first side surface and the second side surface. Are connected by the pair of laminated surfaces, and the laminated surface may have a truncated cone side surface shape.
  • thermoelectric generator unit is a thermoelectric generator unit including the thermoelectric generator tube, and each of the plurality of thermoelectric generator tubes is partitioned by an outer peripheral surface and an inner peripheral surface and the inner peripheral surface. And is configured to generate an electromotive force in the axial direction of each thermoelectric generation tube due to a temperature difference between the inner peripheral surface and the outer peripheral surface.
  • a container that accommodates a plurality of thermoelectric generation tubes therein, and includes a fluid inlet and a fluid outlet for flowing a fluid therein, and a plurality of openings into which the flow paths of the respective thermoelectric generation tubes are inserted.
  • thermoelectric generation tubes that electrically connect the plurality of thermoelectric generation tubes, and the container is fixed to the body portion, the body portion surrounding the plurality of thermoelectric generation tubes,
  • the opening is provided A pair of plates, wherein a channel accommodating the plurality of conductive members includes a pair of plates formed so as to interconnect at least two of the plurality of openings, and the plurality of the plates.
  • the ends of the thermoelectric generation tubes are respectively inserted into the openings of the plate, the plurality of conductive members are accommodated in the channels of the plate, and the plurality of thermoelectric generation tubes are The plurality of conductive members housed in the channel are electrically connected in series.
  • thermoelectric generation system communicates with the thermoelectric generation unit, a first medium path communicating with the fluid inlet and the fluid outlet of the container, and the flow paths of the plurality of thermoelectric generation tubes.
  • thermoelectric generator thermoelectric generator unit
  • thermoelectric generator system thermoelectric generator system
  • FIG. 4A shows a cross section of the thermoelectric generator 10 of the present embodiment.
  • the thermoelectric generator 10 of this embodiment has a tube shape as shown in FIG. FIG. 4A shows a cross section including the axis of the tube.
  • the thermoelectric generator 10 includes a laminate 28, a first electrode E1, and a second electrode E2.
  • the laminated body 28 is located between the outer peripheral surface 24 that is the first main surface, the inner peripheral surface 26 that is the second main surface, and the outer peripheral surface 24 and the inner peripheral surface 26, and the first electrode E1 and the second electrode E2 has the 1st end surface 25 and the 2nd end surface 27 which were electrically connected, respectively.
  • the stacked body 28 includes a plurality of thermoelectric material layers 22 and a plurality of metal layers 20.
  • the plurality of thermoelectric material layers 22 and the plurality of metal layers 20 are alternately stacked.
  • each of the outer peripheral surface 24 and the inner peripheral surface 26 has a circular cross-sectional shape perpendicular to the axial direction.
  • these shapes are not limited to a circle, and may be an ellipse or It may be a polygon.
  • the size of the cross-sectional area of the flow path when cut along a plane perpendicular to the axial direction is not particularly limited.
  • the cross-sectional area of the flow path or the number of thermoelectric power generation elements may be appropriately set according to the flow rate of the medium supplied to the internal flow path of the thermoelectric generation element.
  • the first electrode E1 and the second electrode E2 each have a cylindrical shape, but the shapes of the first electrode E1 and the second electrode E2 are not limited thereto.
  • the first electrode E1 and the second electrode E2 are each electrically connected to at least one of the metal layer 20 and the thermoelectric material layer 22 at or near both ends of the laminate 28, and do not block the flow path F1. It can have the shape of In the example of FIG. 4A, the outer peripheral surfaces of the first electrode E1 and the second electrode E2 are aligned with the outer peripheral surface 24 of the multilayer body 28, but the outer peripheral surfaces of the first electrode E1 and the second electrode E2 and the multilayer body 28 The outer peripheral surface 24 does not need to be aligned.
  • the diameters (outer diameters) of the outer peripheral surfaces of the first electrode E1 and the second electrode E2 may be larger or smaller than the diameter (outer diameter) of the outer peripheral surface 24 of the stacked body 28.
  • the cross-sectional shapes of the first electrode E1 and the second electrode E2 cut along a plane perpendicular to the axial direction may be different from the cross-sectional shape of the outer peripheral surface 24 of the stacked body 28 cut along a plane perpendicular to the axial direction. .
  • the first electrode E1 and the second electrode E2 are made of a conductive material, typically a metal.
  • the 1st electrode E1 and the 2nd electrode E2 may be comprised from the one or several metal layer 20 located in the both ends of the laminated body 28, or its vicinity. In that case, a part of the laminated body 28 functions as the first electrode E1 and the second electrode E2.
  • the first electrode E1 and the second electrode E2 may be formed from a metal layer or a ring-shaped metal member provided so as to cover a part of the outer peripheral surface of the laminated body 28, and A pair of cylindrical metal members that are partially fitted into the flow path F1 from both ends of the laminated body 28 so as to contact the peripheral surface 26 may be used.
  • thermoelectric generator having such a configuration basically operates on the same principle as described with reference to FIGS. 1 and 2. Therefore, when a temperature difference is applied between the outer peripheral surface 24 and the inner peripheral surface 26 of the thermoelectric generator 10, a potential difference is generated between the first electrode E1 and the second electrode E2.
  • the general direction of the temperature gradient at this time is a direction perpendicular to the outer peripheral surface 24 and the inner peripheral surface 26.
  • the inclination angle (hereinafter simply referred to as “inclination angle”) ⁇ of the laminated surface of the laminated body 28 with respect to the direction in which the first electrode E1 and the second electrode E2 face each other is, for example, in the range of 5 ° to 60 °. Can be set within.
  • the inclination angle ⁇ may be 20 ° or more and 45 ° or less.
  • the appropriate range of the inclination angle ⁇ differs depending on the combination of the material constituting the metal layer 20 and the thermoelectric material constituting the thermoelectric material layer 22.
  • the ratio of the thickness of the metal layer 20 to the thickness of the thermoelectric material layer 22 in the laminate 28 can be set, for example, in the range of 20: 1 to 1: 9.
  • the thickness of the metal layer 20 means a thickness in a direction perpendicular to the laminated surface (thickness indicated by Th in FIG. 4A).
  • the thickness of the thermoelectric material layer 22 means a thickness in a direction perpendicular to the lamination surface.
  • stacking of the metal layer 20 and the thermoelectric material layer 22 can be set suitably.
  • the metal layer 20 can be formed of any metal material, for example, nickel or cobalt. Nickel and cobalt are examples of metallic materials that exhibit high thermoelectric generation characteristics.
  • the metal layer 20 may contain silver or gold.
  • the metal layer 20 may contain these exemplified metal materials alone or as an alloy. When the metal layer 20 is formed from an alloy, the alloy may include copper, chromium, or aluminum. Examples of such alloys are constantan, chromel or alumel.
  • thermoelectric material layer 22 can be formed of any thermoelectric material depending on the operating temperature.
  • thermoelectric materials that can be used for the thermoelectric material layer 22 include thermoelectric materials made of a single element such as Bi and Sb, alloy-based thermoelectric materials such as BiTe, PbTe, and SiGe, Ca x CoO 2 , and Na x CoO 2. And oxide-based thermoelectric materials such as SrTiO 3 .
  • the “thermoelectric material” in this specification means a material having an Seebeck coefficient of 30 ⁇ V / K or more and an electric resistivity of 10 m ⁇ cm or less. Such a thermoelectric material may be crystalline or amorphous. When the temperature of the high-temperature medium is about 200 ° C.
  • thermoelectric material layer 22 can be formed from, for example, a dense body of BiSbTe-based alloy.
  • a typical chemical composition of the BiSbTe alloy is Bi 0.5 Sb 1.5 Te 3 , but is not limited thereto.
  • BiSbTe may contain a dopant such as Se. The composition ratio of Bi and Sb can be adjusted as appropriate.
  • thermoelectric material constituting the thermoelectric material layer 22 examples include BiTe and PbTe.
  • the thermoelectric material layer 22 is composed of BiTe
  • 2 ⁇ X ⁇ 4 when the chemical composition of BiTe is expressed as Bi 2 Te X.
  • a typical chemical composition is Bi 2 Te 3 .
  • Bi 2 Te 3 may contain Sb or Se.
  • the chemical composition of BiTe containing Sb is expressed as (Bi 1-Y Sb Y ) 2 Te X. At this time, 0 ⁇ Y ⁇ 1 is sufficient, and 0.6 ⁇ Y ⁇ 0.9 is more preferable.
  • the material which comprises the 1st electrode E1 and the 2nd electrode E2 is arbitrary if it is a material excellent in electroconductivity.
  • the first electrode E1 and the second electrode E2 can be formed of a metal such as copper, silver, molybdenum, tungsten, aluminum, titanium, chromium, gold, platinum, and indium.
  • titanium nitride (TiN), indium tin oxide (ITO) may be formed from a nitride or oxide such as tin oxide (SnO 2).
  • the first electrode E1 or the second electrode E2 may be formed from solder, silver solder, conductive paste, or the like. When both ends of the tube body Tb1 are the metal layers 20, the first electrode E1 and the second electrode E2 can be substituted by the metal layer 20 as described above.
  • thermoelectric generation tube an element having a configuration in which metal layers and thermoelectric generation material layers are alternately stacked is described, but the structure of a laminate that can be used in the present disclosure is as follows. It is not limited to such an example. A first layer formed from a first material having a relatively low Seebeck coefficient and a high thermal conductivity is laminated with a second layer formed from a second material having a relatively high Seebeck coefficient and a low thermal conductivity.
  • thermoelectric generation is possible.
  • the metal layer 20 and the thermoelectric material layer 22 are examples of a first layer and a second layer, respectively.
  • the laminated body 28 of the thermoelectric generator 10 has a carbon-containing layer containing carbon on at least one of the outer peripheral surface 24 and the inner peripheral surface 26.
  • the laminated body 28 includes the carbon-containing layer 12 and the carbon-containing layer 14 on the outer peripheral surface 24 and the inner peripheral surface 26, respectively.
  • the carbon-containing layer 12 has a thickness t12 from the outer peripheral surface 24 to the inside of the laminate 28, and carbon is diffused in the laminate 28 in this range. More specifically, the carbon-containing layer 12 includes a portion 12 m in which carbon is diffused in the metal layer 20 and a portion 12 h in which carbon is diffused in the thermoelectric material layer 22.
  • the carbon-containing layer 14 has a thickness t14 from the inner peripheral surface 26 of the stacked body 28 to the inside, and carbon is diffused in the stacked body 28 within this range. More specifically, the carbon-containing layer 14 includes a portion 14 m in which carbon is diffused in the metal layer 20 and a portion 14 h in which carbon is diffused in the thermoelectric material layer 22. When the metal layer 20 or the thermoelectric material layer 22 contains carbon, the portions 12m, 12h, 14m, and 14h are defined as regions containing more carbon than the metal layer 20 and the thermoelectric material layer 22.
  • the carbon-containing layer 12 and the carbon-containing layer 14 have a higher hardness than the thermoelectric material layer 22 by containing carbon. Therefore, even if the fluid of a high temperature medium or a low temperature medium contacts, it can suppress that the outer peripheral surface 24 and the inner peripheral surface 26 are ground. Moreover, when the carbon concentration is high on the outer peripheral surface 24 and the inner peripheral surface 26 side of the carbon-containing layer 12 and the carbon-containing layer 14, the outer peripheral surface 24 and the inner peripheral surface 26 become smooth and are included in the high-temperature medium and the low-temperature medium. Accumulation and adhesion of the obtained impurities are suppressed.
  • the carbon concentration and the thicknesses t12 and t14 in the carbon-containing layer 12 and the carbon-containing layer 14 can affect the improvement in hardness and surface smoothness of the carbon-containing layer 12 and the carbon-containing layer 14. For this reason, these can be determined according to the durability with respect to grinding required for the thermoelectric generator 10 and the ability to suppress adhesion of impurities.
  • the durability against grinding increases as the thickness t12 of the carbon-containing layer 12 and the thickness t14 of the carbon-containing layer 14 increase.
  • the thickness t12 and the thickness t14 of the carbon-containing layer 14 are increased, the metal layer 20 and the thermoelectric material layer 22 are reduced in the portion exhibiting the designed characteristics, and the power generation capability of the thermoelectric generator 10 is decreased. obtain.
  • the thickness t12 and the thickness t14 can be determined in consideration of the power generation capability of the thermoelectric generator 10 and durability against grinding.
  • the thickness t12 and the thickness t14 can be set to about 100 ⁇ m to 300 ⁇ m. it can.
  • the outer peripheral surface 24 and the inner peripheral surface 26 become smoother as the carbon concentration on the outer peripheral surface 24 side and the inner peripheral surface 26 side of the carbon-containing layer 12 and the carbon-containing layer 14 is higher.
  • the outer peripheral surface 24 side and the inner peripheral surface 26 side of the carbon-containing layer 12 and the carbon-containing layer 14 may have portions that substantially contain only carbon.
  • the portion where the carbon concentration is high is thick, conductivity is generated in the carbon-containing layer 12 and the carbon-containing layer 14, particularly the portions 14 h and 12 h in which carbon is diffused in the thermoelectric material layer 22, and the power generation capability of the thermoelectric generator 10 is increased. Can be reduced.
  • the carbon-containing layer 12 and the carbon-containing layer 14 have no electrical conductivity and have insulating properties.
  • the carbon concentration in the carbon-containing layer 12 and the carbon-containing layer 14 may be uniform in the thickness direction, and the outer peripheral surface 24 and the inner peripheral surface 26 are higher than the inside. It may be.
  • the laminate 28 is a sintered body, and the carbon-containing layer 12 and the carbon-containing layer 14 are each a part of the sintered body.
  • the surface corresponding to the outer peripheral surface 24 and the inner peripheral surface 26 of the green compact of the laminate 28 will be described in detail below.
  • the carbon-containing layer is provided on at least one of the outer peripheral surface 24 and the inner peripheral surface 26. Since the carbon-containing layer has high hardness, it is possible to prevent at least one of the outer peripheral surface 24 and the inner peripheral surface 26 from being ground even when the fluid is in contact therewith. In addition, the smoothness of the carbon-containing layer suppresses the deposition and adhesion of impurities that can be contained in a high-temperature medium or a low-temperature medium.
  • thermoelectric generator is not limited to a tube shape, and may have a rectangular parallelepiped shape.
  • the thermoelectric generator may have a rectangular parallelepiped shape having a first main surface 24 ′′ and a second main surface 26 ′′ configured by a plane.
  • the carbon-containing layer 12 and the carbon-containing layer 14 are located on the first main surface 24 "and the second main surface 26", respectively.
  • FIG. 4C shows a thermoelectric generator having an intermediate layer below the carbon-containing layer.
  • a thermoelectric generator 10M shown in FIG. 4C has an intermediate layer 12M on the lower layer of the carbon-containing layer 12, that is, on the side farther from the outer peripheral surface 24 than the carbon-containing layer 12 in the stacked body 28.
  • the thermoelectric generator 10M has an intermediate layer 14M on the lower layer of the carbon-containing layer 14, that is, on the side farther from the inner peripheral surface 26 than the carbon-containing layer 14 in the stacked body 28.
  • the intermediate layers 12M and 14M are semiconductor layers or insulating layers.
  • thermoelectric generator when the carbon-containing layer has metallic properties, the power generation capability of the thermoelectric generator may be reduced. As will be described later with reference to the examples, by providing the intermediate layers 12M and 14M, it is possible to suppress a decrease in the power generation capability of the thermoelectric generator.
  • Such an intermediate layer can be provided on at least one of the outer peripheral surface 24 side or the inner peripheral surface 26 side of the laminate 28.
  • the material of the intermediate layers 12M and 14M is not particularly limited as long as a relatively high electric resistance value can be obtained.
  • the material of the intermediate layers 12M and 14M can be appropriately selected from oxides, carbides, nitrides, organics, and the like.
  • As a stable material alumina, boron nitride, or the like can be used.
  • the intermediate layers 12M and 14M may be amorphous without a regular crystal structure. If sufficient insulation is obtained, the thicknesses of the intermediate layers 12M and 14M do not need to be uniform, and may be about 1 nm to 100 ⁇ m.
  • the semiconductor layer or the insulator layer is sufficiently thin and has high thermal conductivity. As long as sufficient electric resistance is not impaired, diffusion of elements from the carbon sheet or the like for forming the carbon-containing layer to the intermediate layer and / or diffusion of elements from the laminate 28 to the intermediate layer is performed. May be acceptable.
  • the intermediate layer 12 ⁇ / b> M is insulated from a portion 12 ⁇ / b> Mm in which an insulating material or a semiconductor material is diffused in the metal layer 20 (hereinafter sometimes referred to as “first portion 12 ⁇ / b> Mm”) and a thermoelectric material layer 22. And a portion 12Mh in which the material or the semiconductor material is diffused (hereinafter also referred to as “second portion 12Mh”).
  • the intermediate layer 12M only needs to include at least one of the first portion 12Mm and the second portion 12Mh.
  • the intermediate layer 14M may include at least one of a portion 14Mm in which an insulating material or a semiconductor material is diffused in the metal layer 20, or a portion 14Mh in which an insulating material or a semiconductor material is diffused in the thermoelectric material layer 22. That's fine.
  • FIG. 4D shows a schematic cross section of a thermoelectric generator 10M having a rectangular parallelepiped shape.
  • the thermoelectric generator 10M illustrated in FIG. 4D has a rectangular parallelepiped shape having a first main surface 24 "and a second main surface 26" constituted by a plane.
  • the carbon-containing layer 12 and the carbon-containing layer 14 are positioned on the first main surface 24 ′′ and the second main surface 26 ′′, respectively.
  • the intermediate layer 12M is positioned below the carbon-containing layer 12, and the intermediate layer 14M is positioned below the carbon-containing layer 14.
  • thermoelectric generator 10 Next, an embodiment of a method for manufacturing the thermoelectric generator 10 will be described with reference to FIGS.
  • a green compact made of the raw material of the material constituting the metal layer 20 and the thermoelectric material layer 22 is prepared. More specifically, a raw material powder constituting the metal layer 20 and a raw material powder constituting the thermoelectric material layer 20 are prepared, and each powder is caulked by press molding or the like. And a green compact 22 'is formed.
  • FIGS. 5A to 5D are a side view, a cross-sectional view, a top view, and a perspective view showing the shapes of the green compact 20 ′ that becomes the metal layer 20 and the green compact 22 ′ that becomes the thermoelectric material layer 22, respectively. It is.
  • the green compact 20 'and the green compact 22' each have a tube shape having an inner peripheral surface 23a and an outer peripheral surface 23b.
  • the inner peripheral surface 23a and the outer peripheral surface 23b are connected by a truncated cone-shaped laminated surface 23c and a laminated surface 23d.
  • the diameters of the cylinders formed by the inner peripheral surface 23a and the outer peripheral surface 23b are din and dout, respectively.
  • the laminated surface 23c and the laminated surface 23d form an angle ⁇ with respect to the inner peripheral surface 23a.
  • an intermediate rod 71 having a diameter slightly smaller than the diameter din of the inner peripheral surface 23a is prepared.
  • the carbon sheet 14 ′ is wound around the outer peripheral surface of the middle rod 71.
  • a carbon sheet that can be obtained as a release agent used when a sintered body is manufactured can be used.
  • a sheet-like carbon or graphite sheet formed of carbon fiber or a composite material of carbon fiber and carbon can be used.
  • a resin sheet in which carbon powder is dispersed can also be used.
  • the thickness of the carbon sheet 14 ′ is, for example, 100 ⁇ m to 500 ⁇ m.
  • FIG. 7 (a) the green compact 20 'and the green compact 22' are alternately inserted and stacked on the intermediate rod 71 around which the carbon sheet 14 'is wound. Thereby, the laminated surface 23d or the laminated surface 23c of the green compact 20 'and the green compact 22' comes into contact with the laminated surface 23c or the laminated surface 23d of the adjacent green compact 20 'and green compact 22'.
  • FIG. 7B shows a cross section of the green compact 20 ′ and the green compact 22 ′ that are stacked. As shown in FIG. 7B, the inner peripheral surfaces 23a of the green compact 20 'and the green compact 22' are substantially in contact with or close to the carbon sheet 14 '.
  • FIG. 8A shows a laminated green compact 80 in which the lamination of the green compact 20 'and the green compact 22' has been completed.
  • Each outer peripheral surface 23 b of the green compact 20 ′ and the green compact 22 ′ constitutes an outer peripheral surface 24 ′ of the laminated green compact 80.
  • each inner peripheral surface 23a of the green compact 22 ' constitutes the inner peripheral surface of the laminated green compact 80, and the carbon sheet 14' is disposed on this inner peripheral surface.
  • the carbon sheet 12 ′ is wound around the outer peripheral surface 24 ′ of the laminated green compact 80.
  • the materials described above can also be used for the carbon sheet 12 '.
  • the laminated green compact 81 having a tubular shape in which the carbon sheet 12 ′ and the carbon sheet 14 ′ are arranged on the outer peripheral surface 24 ′ and the inner peripheral surface 26 ′ of the laminated green compact 80 is completed.
  • the laminated green compact 81 is inserted into the space of the firing die 72 as shown in FIG.
  • FIG. 9B shows a cross section of the laminated green compact 81 inserted into the firing die 72.
  • the carbon sheet 12 ' is disposed on the outer peripheral surface 24'
  • the carbon sheet 14 ' is disposed on the inner peripheral surface 26'.
  • the laminated green compact 81 is fired.
  • an appropriate temperature can be selected according to the material constituting the metal layer 20 and the thermoelectric material layer 22, the shape of the raw material powder, and the like.
  • an appropriate temperature can be selected in the range of 200 ° C. to 600 ° C.
  • pressure may be applied to the laminated green compact 81 during firing. Specifically, it may be fired by a hot press method or a discharge plasma sintering method.
  • the laminated green compact 81 receives pressure from three directions in the firing die 72 by applying pressure from both ends of the tube shape using the jigs 73U and 73L.
  • the jigs 73U and 73L apply a DC pulse voltage to the laminated green compact 81 and the firing die 72, and the laminated green compact 81 is heated by the pulse voltage.
  • the green compact 20 ′ and the green compact 22 ′ are sintered, and the green compact 20 ′ and the green compact 22 ′ of different materials are joined.
  • the carbon of the carbon sheet 12 ′ and the carbon sheet 14 ′ reacts with the green compact 20 ′ and the green compact 22 ′, and the carbon diffuses from the outer peripheral surface 24 ′ and the inner peripheral surface 26 ′ of the laminated green compact 80. Then, the green compact 20 ′ and the green compact 22 ′ containing carbon are sintered. Thereby, the laminated body 28 of the thermoelectric generator 10 shown in FIG. 4A is obtained. In the laminate 28, the carbon-containing layer 12 and the carbon-containing layer 14 are formed on the outer peripheral surface 24 and the inner peripheral surface 26. The formed carbon-containing layer 12 and carbon-containing layer 14 are not removed.
  • the carbon-containing layer 12 is used to further improve the smoothness of the outer peripheral surface 24 and the inner peripheral surface 26 or to remove unnecessary irregularities.
  • a part of the carbon-containing layer 14 may be removed.
  • the carbon of the carbon sheet 12 ′ and the carbon sheet 14 ′ may not react with the green compact 20 ′ and the green compact 22 ′, and the layer containing only carbon is substantially the outer peripheral surface 24 ′ and the inner layer. You may remain in the surface layer part of surrounding surface 26 '.
  • first electrode E1 and the second electrode E2 are provided on the first end face 25 and the second end face 27 of the molded body 28 by the above-described method, and are electrically joined to complete the thermoelectric generator 10.
  • the intermediate layer 14M is formed by dispersing the semiconductor or insulator powder on the surface of the carbon sheet 14 'that contacts the inner peripheral surface of the laminated green compact 80, and facing the laminated green compact 80. can do.
  • the intermediate layer 12M is formed by dispersing the semiconductor or insulator powder on the surface of the carbon sheet 12 ′ wound around the outer peripheral surface 24 ′ of the laminated green compact 80 on the surface facing the laminated green compact 80. can do.
  • the intermediate layers 12M and 14M can be a part of a sintered body. In this way, the laminate 28 of the thermoelectric generator 10M shown in FIG. 4C can be obtained.
  • the method for forming the intermediate layer is not limited to a specific one as long as the above-described configuration is achieved.
  • semiconductor or insulator powder may be dispersed on the inner peripheral surface and / or outer peripheral surface of the laminated green compact 80 before sintering.
  • the simplest method for dispersing the semiconductor or insulator powder includes application by spraying.
  • thermoelectric generator of this embodiment was manufactured under the following conditions and the characteristics were examined. Further, for comparison, a laminate is formed without using the carbon sheet 12 ′ and the carbon sheet 14 ′, and the outer peripheral surface and the inner peripheral surface of the thermoelectric generator having no carbon-containing layer and the thermoelectric generator having no carbon-containing layer are formed.
  • Thermoelectric power generation elements provided with a non-conductive epoxy resin were produced as reference examples and comparative examples, respectively, and power generation characteristics and the like were evaluated.
  • thermoelectric power generation element BiSbTe powder and nickel powder are pressurized with a hydraulic press and compressed into a powder.
  • each material is weighed, and the size of one green compact is an inner diameter of 10 mm, an outer diameter of 14 mm, a height of 6.4 mm, and an angle ⁇ of the taper portion is 20.
  • the respective powder masses were adjusted to be °.
  • FIGS. 5 (a) to 5 (d) 17 and 18 green compacts 22 ′ and 20 ′ of BiSbTe and nickel powder obtained in the above steps were produced, respectively.
  • the green compacts 20 and 22 are alternately stacked on the middle rod 71 around which the carbon sheet 14 ′ having a thickness of 200 ⁇ m is wound. Formed. A carbon sheet 12 ′ having a thickness of 200 ⁇ m was wound around the outer peripheral surface 24 ′ of the laminated green compact 80 to obtain a laminated green compact 81 around which the carbon sheets 12 ′ and 14 ′ were wound.
  • a discharge plasma sintering method was used for pressure sintering and bonding of the laminated green compact 81. Bonding was performed at about 500 ° C. under a pressure of 50 MPa. The firing atmosphere was a vacuum of 5 ⁇ 10 ⁇ 3 Pa. After joining in a high temperature / pressure environment, the laminate was cooled to room temperature in a vacuum and the joined laminate was taken out. The green compact laminate was sintered and joined with different materials simultaneously by the above-described sintering process. Moreover, the carbon containing layers 12 and 14 were formed simultaneously. The length of the obtained tube was about 55 to 60 mm in the central axis direction. The above process was repeated twice, and the two obtained members were bonded with solder.
  • thermoelectric power generation device of about 110 mm.
  • copper tube was installed in the edge part as a both-ends electrode of a thermoelectric generation tube with the solder.
  • the obtained element was used as the thermoelectric generator of Example 1.
  • Example 2 In the same manner as in Example 1, 17 and 18 green compacts 22 ′ and 20 ′ of BiSbTe and nickel powder were produced, respectively. Next, a boron nitride film (insulating film) was formed on the inner and outer peripheral surfaces of the green compact by applying boron nitride to the inner and outer peripheral surfaces of these green compacts using a spray. . Thereafter, in the same manner as in Example 1, the green compacts 20 and 22 were alternately laminated on the middle rod 71 around which the carbon sheet 14 ′ having a thickness of 200 ⁇ m was wound, thereby forming a laminated green compact 80.
  • a boron nitride film insulating film
  • Example 2 a carbon sheet 12 ′ having a thickness of 200 ⁇ m was wound around the outer peripheral surface 24 ′ of the laminated green compact 80 to obtain a laminated green compact 81 around which the carbon sheets 12 ′ and 14 ′ were wound. Furthermore, pressure sintering and joining, electrode installation, and the like were performed in the same manner as in Example 1 to obtain a thermoelectric generator of Example 2.
  • thermoelectric generator was produced by the same method as in Example 1. Thereafter, the carbon-containing layer 12 and the carbon-containing layer 14 were removed by polishing the outer peripheral surface and the inner peripheral surface of the thermoelectric generator. The aforementioned oxide layer was also removed by further polishing the outer peripheral surface and inner peripheral surface of the thermoelectric generator. Thereafter, a conductive carbon paste was applied to the outer peripheral surface and inner peripheral surface of the thermoelectric generator and dried to form a carbon-containing layer. As a result, the thermoelectric generator of Example 3 was obtained.
  • thermoelectric generator of Example 1 The heat of the reference example is the same as that of the thermoelectric generator of Example 1 except that no carbon sheet is wound around the intermediate rod 71 and no carbon sheet is wound around the outer peripheral surface 24 ′ of the laminated green compact 80. A power generation element was produced. As is clear from the method for producing the thermoelectric generator of the reference example, the thermoelectric generator of the reference example does not have a carbon-containing layer.
  • thermoelectric generator After the thermoelectric generator was manufactured by the same procedure as that of the thermoelectric generator of Example 1, the carbon-containing layers 12 and 14 were completely removed with a router, and an element in which an epoxy resin was applied to the inner and outer peripheral surfaces was obtained. A thermoelectric generator of a comparative example was obtained.
  • 11A and 11B show the power generation characteristics of the produced thermoelectric generator of Example 1, the thermoelectric generator of the reference example, and the thermoelectric generator of the comparative example.
  • the open circuit voltage of the thermoelectric generator of Example 1 is slightly lower than that of the thermoelectric generator of the reference example (no carbon-containing layer). However, the voltage drop is about 10%. For this reason, the maximum power obtained is only about 90% lower.
  • thermoelectric generator of the comparative example in the thermoelectric generator of the comparative example, the open-circuit voltage greatly decreased. Specifically, the open circuit voltage decreased by 30% or more. The maximum power obtained is also reduced by 30% or more compared to the reference example.
  • thermoelectric generator of Example 1 the partial volume of the thermoelectric material layer having the power generation characteristics as designed is reduced by providing the carbon-containing layer, or the carbon-containing layer has conductivity. it is conceivable that.
  • Table 1 shows the measurement results of the generated power of the thermoelectric generators of Examples 1 to 3.
  • thermoelectric generator of Example 3 high power generation is also obtained in the thermoelectric generator of Example 3, but the thermoelectric generators of Example 1 and Example 2 are higher than the thermoelectric generator of Example 3. Generated power is obtained. From this, it was found that higher generated power can be obtained by forming a semiconductor layer containing nickel oxide or an insulating layer containing boron nitride or the like under the carbon-containing layer.
  • thermoelectric generator Long-term operation test of thermoelectric generator and results thereof Regarding grinding of outer peripheral surface and inner peripheral surface and accumulation of impurities when thermoelectric generators of Examples 1 to 3, Reference Example and Comparative Example are used for a long time Experimented. Specifically, 90 ° C. hot water is flowed at a flow rate of 10 L / min inside the pipes of the thermoelectric generators of Examples 1 to 3, Reference Examples and Comparative Examples, and 10 ° C. cold water is flowed at 10 L / min outside the pipes. The measurement was continued for 30 days at a flow rate. As a result, in the thermoelectric generator of the reference example, clear discoloration and material peeling due to adhesion of impurities were observed on the tube surface. On the other hand, in the thermoelectric generators of Examples 1 to 3, no significant changes in appearance and performance were observed.
  • thermoelectric generator of the present embodiment it is confirmed that by providing the carbon-containing layer, it is possible to suppress the scraping of the laminated body and the adhesion of impurities due to the contact of the fluid without substantially reducing the power generation characteristics. did it.
  • a semiconductor layer or an insulator layer under the carbon-containing layer, it is possible to suppress the deterioration of the power generation characteristics, and to suppress the scraping of the laminated body and the adhesion of impurities due to the contact of the fluid, and the higher power generation power It turns out that you can get.
  • the laminate including the thermoelectric material layer that is, the main body tube is brought into contact with the high-temperature heat source medium or the low-temperature heat source medium, and functions as a tube or a wall that defines these flow paths. Therefore, heat loss can be reduced, and a temperature difference can be formed in the thermoelectric material layer with high efficiency. Therefore, a thermoelectric generator capable of generating power with high efficiency is realized. Further, the carbon-containing layer can suppress the scraping of the laminated body and the adhesion of impurities, thereby realizing a thermoelectric generator having excellent durability.
  • FIG. 12 is a perspective view illustrating a schematic configuration of an exemplary thermoelectric generator unit 100 included in the thermoelectric generator system according to the present disclosure.
  • the thermoelectric generator unit 100 shown in FIG. 12 includes a plurality of thermoelectric generation tubes T, a container 30 that accommodates these thermoelectric generation tubes T, and a plurality of conductive members J that electrically connect the thermoelectric generation tubes T. And.
  • ten thermoelectric generation tubes T1 to T10 are housed inside the container 30.
  • the ten thermoelectric generation tubes T1 to T10 are typically arranged substantially parallel to each other, but the manner of arrangement is not limited to this.
  • the thermoelectric generator of the first embodiment is used for the thermoelectric generator tubes T1 to T10.
  • each of the thermoelectric generation tubes T1 to T10 has an outer peripheral surface and an inner peripheral surface, and an internal flow path defined by the inner peripheral surface.
  • Each of the thermoelectric generation tubes T1 to T10 is configured to generate an electromotive force in the axial direction due to a temperature difference between the inner peripheral surface and the outer peripheral surface. That is, in each of the thermoelectric generation tubes T1 to T10, electric power is taken out from the thermoelectric generation tubes T1 to T10 by giving a temperature difference between the outer peripheral surface and the inner peripheral surface.
  • thermoelectric generation tubes T1 to T10 For example, by bringing a high temperature medium into contact with the internal flow path in each of the thermoelectric generation tubes T1 to T10 and bringing the low temperature medium into contact with the outer peripheral surface of each of the thermoelectric generation tubes T1 to T10, Electric power can be taken out. Conversely, the low temperature medium may be brought into contact with the inner peripheral surface of each of the thermoelectric generation tubes T1 to T10, and the high temperature medium may be brought into contact with the outer peripheral surface.
  • the medium in contact with each other is supplied through separate pipes (not shown) and separated so as not to mix.
  • FIG. 13 is a block diagram showing an example of a configuration for giving a temperature difference between the outer peripheral surface and the inner peripheral surface of the thermoelectric generation tube T.
  • An arrow H indicated by a broken line in FIG. 13 schematically indicates the flow of the high-temperature medium
  • an arrow L indicated by a solid line schematically indicates the flow of the low-temperature medium.
  • the hot medium and the cold medium are circulated by the pumps P1 and P2, respectively.
  • a high temperature medium is supplied to the internal flow paths of the thermoelectric generation tubes T1 to T10, and a low temperature medium is supplied to the inside of the container 30.
  • heat is supplied from a high-temperature heat source (not shown) to the high-temperature medium, and heat is supplied from a low-temperature medium to a low-temperature heat source (not shown).
  • a high-temperature heat source it is possible to use steam, hot water, exhaust gas, or the like, which has been conventionally unused and discarded in the surrounding environment at a relatively low temperature (eg, 200 ° C. or less).
  • a relatively low temperature eg, 200 ° C. or less.
  • a higher temperature heat source may be used.
  • the hot medium and the cold medium are circulated by the pumps P1 and P2, respectively, but the thermoelectric generation system of the present disclosure is not limited to such an example.
  • One or both of the hot medium and the cold medium may be discarded from the respective heat sources to the surrounding environment without constituting a circulation system.
  • high-temperature hot spring water that springs out of the ground may be given to the thermoelectric generator unit 100 as a high-temperature medium, and then used as a hot spring water having a lowered temperature for purposes other than power generation or may be discarded as it is.
  • groundwater, river water, and seawater may be pumped and given to the thermoelectric generator unit 100. After being used as a low-temperature medium, these may be lowered to an appropriate temperature as necessary and returned to the original water source or discarded to the surrounding environment.
  • thermoelectric generator unit 100 a plurality of thermoelectric generator tubes T are electrically connected via the conductive member J.
  • two thermoelectric generation tubes T arranged adjacent to each other are connected by individual conductive members J.
  • the plurality of thermoelectric generation tubes T are electrically connected in series.
  • the right end portions of the two thermoelectric generation tubes T3 and the thermoelectric generation tube T4 that are visible in the foreground in FIG. 12 are connected to each other by the conductive member J3.
  • the left ends of these two thermoelectric generation tubes T3, T4 are connected to other thermoelectric generation tubes T2, T5 by conductive members J2, J4, respectively.
  • FIG. 15A shows a perspective view of one of the thermoelectric generation tubes T provided in the thermoelectric generation unit 100 (here, the thermoelectric generation tube T1).
  • the thermoelectric generation tube T1 includes a tube body Tb1 in which metal layers 20 and thermoelectric material layers 22 are alternately stacked, and a pair of electrodes E1 and E2.
  • FIG. 15B shows a cross section when the thermoelectric generation tube T1 is cut along a plane including the axis (central axis) of the thermoelectric generation tube T1.
  • FIG. 14 schematically shows an example of electrical connection of the thermoelectric generation tubes T1 to T10.
  • each of the conductive members J1 to J9 electrically connects two thermoelectric generation tubes.
  • the conductive members J1 to J9 are arranged so that the thermoelectric generation tubes T1 to T10 are electrically connected in series as a whole.
  • the circuit formed from the thermoelectric generation tubes T1 to T10 and the conductive members J1 to J9 is traversable.
  • the circuit may include a thermoelectric generator tube connected in part to the circuit, and it is not essential that the circuit be a single stroke.
  • thermoelectric generation tube T1 flows from the thermoelectric generation tube T1 to the thermoelectric generation tube T10.
  • the current may flow from the thermoelectric generation tube T10 to the thermoelectric generation tube T1.
  • the direction of this current is the type of thermoelectric material used for the thermoelectric generation tube T, the direction of the heat flow generated between the inner and outer peripheral surfaces of the thermoelectric generation tube T, the direction of the inclination of the laminated surface in the thermoelectric generation tube T, etc.
  • the connection of the thermoelectric generation tubes T1 to T10 is determined so that the electromotive forces generated in each of the thermoelectric generation tubes T1 to T10 are not offset but are superimposed.
  • thermoelectric generation tubes T1 to T10 and the flow direction of the medium (high temperature medium or low temperature medium) flowing through the internal flow paths of the thermoelectric generation tubes T1 to T10 are independent of each other.
  • the flow direction of the medium flowing through the internal flow paths of the thermoelectric generation tubes T1 to T10 may be common to all, for example, from the left side to the right side in the drawing.
  • FIG. 16A is a front view illustrating one embodiment of a thermoelectric generator unit included in the thermoelectric generator system of the present disclosure
  • FIG. 16B is a diagram illustrating one of the side surfaces of the thermoelectric generator unit 100.
  • the thermoelectric generator unit 100 in this aspect includes a plurality of thermoelectric generator tubes T and a container 30 that houses the plurality of thermoelectric generator tubes T therein.
  • the plurality of tubes merely function as conduits through which fluid flows, and no electrical connection is necessary.
  • it is required to achieve a stable electrical connection between tubes that is not required for a heat exchanger in practice.
  • the thermoelectric generator unit 100 is supplied with a high temperature medium and a low temperature medium.
  • the high temperature medium is supplied to the internal flow paths of the thermoelectric generation tubes T1 to T10 through the plurality of openings A.
  • a low-temperature medium is supplied into the container 30 through a fluid inlet 38a described later. Thereby, a temperature difference is given between the outer peripheral surface and inner peripheral surface of the thermoelectric generation tube T.
  • heat is exchanged between the high temperature medium and the low temperature medium, and electromotive force is generated in each axial direction in each of the thermoelectric generator tubes T1 to T10.
  • the container 30 in the present embodiment includes a cylindrical body portion (shell) 32 that surrounds the thermoelectric generation tube T, and a pair of plates 34 and 36 that are provided so as to close both open ends of the body portion 32. ing. More specifically, the plate 34 is fixed to the left end of the body portion 32, and the plate 36 is fixed to the right end of the body portion 32. Each of the plates 34 and 36 is provided with a plurality of openings A into which the respective thermoelectric generation tubes T are inserted, and the corresponding pair of openings A of the plates 34 and 36 are respectively provided with the thermoelectric generation tubes T. Are inserted at both ends.
  • the plates 34 and 36 have a function of supporting a plurality of tubes (thermoelectric generation tubes T) in a spatially separated state, similar to a tube plate (tube sheet) in a shell-and-tube heat exchanger. ing. However, as will be described in detail later, the plates 34 and 36 in the present embodiment have an electrical connection function that is not provided in the tube plate of the heat exchanger.
  • the plate 34 includes a first plate portion 34a fixed to the body portion 32, and a second plate portion 34b removably attached to the first plate portion 34a. And have.
  • the plate 36 includes a first plate portion 36a fixed to the body portion 32, and a second plate portion 36b attached to the first plate portion 36a so as to be detachable.
  • the openings A provided in the plates 34 and 36 penetrate the first plate portions 34a and 36a and the second plate portions 34b and 36b, respectively, and open the flow paths of the respective thermoelectric generation tubes T to the outside of the container 30. ing.
  • Examples of the material constituting the container 30 are metals such as stainless steel, Hastelloy (registered trademark), and Inconel (registered trademark). Other examples of the material constituting the container 30 include vinyl chloride resin and acrylic resin.
  • drum 32 and the plates 34 and 36 may be formed from the same material, and may be formed from a different material. When the trunk
  • a fluid low temperature medium or high temperature medium
  • a fluid low temperature medium or high temperature medium
  • the inside of the container 30 needs to be kept airtight or watertight.
  • a seal for maintaining airtightness or watertightness in a state where the end of the thermoelectric generation tube T is inserted is realized.
  • the plate 36 is provided with ten openings A.
  • ten openings A are provided in the plate 34.
  • the opening A of the plate 34 and the opening A of the plate 36 are in a mirror-symmetric arrangement, and ten straight lines connecting the center points of the corresponding pair of openings A are parallel to each other. It is.
  • the thermoelectric generation tubes T can be supported in parallel by the corresponding pair of openings A.
  • the plurality of thermoelectric generation tubes T need not be in a parallel relationship, and may be in a “non-parallel” or “twisted” relationship.
  • the plate 36 is a channel (hereinafter referred to as a “connection groove”) formed to connect at least two of the openings A provided in the plate 36 to each other.
  • a connection groove formed to connect at least two of the openings A provided in the plate 36 to each other.
  • Have C the channel C61 connects the opening A61 and the opening A62 to each other.
  • two of the openings A provided in the plate 36 are connected to each other.
  • a conductive member is accommodated in each of the channels C61 to C65.
  • FIG. 17 shows a part of the MM cross section of FIG. In addition, in FIG. 17, the cross section in the lower half of the container 30 is not shown, but the front is shown.
  • the container 30 has a fluid inlet 38a and a fluid outlet 38b for flowing a fluid therein.
  • the fluid inlet 38 a and the fluid outlet 38 b are disposed on the upper portion of the container 30.
  • the arrangement of the fluid inlet 38 a is not limited to the upper part of the container 30, and the fluid inlet 38 a may be arranged, for example, at the lower part of the container 30. The same applies to the fluid outlet 38b.
  • the fluid inlet 38a and the fluid outlet 38b do not need to be used as fixed fluid inlets and outlets, respectively, and the fluid inlets and outlets may be used by reversing regularly or irregularly.
  • the flow direction of the fluid need not be fixed.
  • the number of each of the fluid inlet 38a and the fluid outlet 38b is not limited to one, and one or both of the fluid inlet 38a and the fluid outlet 38b may be plural.
  • FIG. 33 is a diagram schematically showing an example of the flow directions of the high-temperature medium and the low-temperature medium introduced into the thermoelectric generator unit 100.
  • the high temperature medium HM is supplied to the internal flow paths of the thermoelectric generation tubes T1 to T10, and the low temperature medium LM is supplied to the inside of the container 30.
  • the high temperature medium HM is introduced into the internal flow path of each thermoelectric generation tube through the opening A provided in the plate 34.
  • the high temperature medium HM introduced into the internal flow path of each thermoelectric generation tube comes into contact with the inner peripheral surface of each thermoelectric generation tube.
  • the low temperature medium LM is introduced into the container 30 from the fluid inlet 38a.
  • the low temperature medium LM introduced into the container 30 contacts the outer peripheral surface of each thermoelectric generation tube.
  • the high temperature medium HM exchanges heat with the low temperature medium LM while flowing through the internal flow path of each thermoelectric generation tube.
  • Heat exchange with the low-temperature medium LM is performed, and the high-temperature medium HM whose temperature has decreased is discharged to the outside of the thermoelectric generator unit 100 through the opening A provided in the plate 36.
  • the low temperature medium LM exchanges heat with the high temperature medium HM while flowing inside the container 30. The heat exchange with the high temperature medium HM is performed, and the low temperature medium LM whose temperature has risen is discharged from the fluid outlet 38b to the outside of the thermoelectric generator unit 100.
  • the flow direction of the high-temperature medium HM and the flow direction of the low-temperature medium LM shown in FIG. 33 are merely examples. Either one or both of the high temperature medium HM and the low temperature medium LM may flow from the right side to the left side of the drawing.
  • a high-temperature medium HM for example, hot water
  • a low-temperature medium LM for example, cooling water
  • a high-temperature medium HM for example, hot water
  • a high-temperature medium HM for example, hot water
  • a temperature difference necessary for power generation can be given between the outer peripheral surface 24 and the inner peripheral surface 26 of each thermoelectric generation tube T.
  • FIG. 18A is a view showing a cross section of a part of the plate 36.
  • FIG. 18 (a) schematically shows a cross section when cut by a plane including the central axes of both the thermoelectric generation tube T1 and the thermoelectric generation tube T2.
  • FIG. 18A shows two openings A61 and A62 and a structure in the vicinity thereof among the plurality of openings A of the plate 36.
  • FIG. FIG. 18B shows the appearance of the conductive member J1 when viewed from the direction indicated by the arrow V1 in FIG.
  • the conductive member J1 has two through holes Jh1 and Jh2. More specifically, the conductive member J1 includes a first ring portion Jr1 having a through hole Jh1, a second ring portion Jr2 having a through hole Jh2, and a connecting portion Jc that connects these ring portions Jr1 and Jr2. have.
  • thermoelectric generation tube T1 As shown in FIG. 18A, the end (second electrode side) of the thermoelectric generation tube T1 is inserted into the opening A61 of the plate 36, and the opening A62 includes the end of the thermoelectric generation tube T2. An end (first electrode side) is inserted. In this state, the end of the thermoelectric generator tube T1 and the end of the thermoelectric generator tube T2 are inserted into the through holes Jh1 and Jh2 of the conductive member J1, respectively. The end portion (second electrode side) of the thermoelectric generation tube T1 and the thermoelectric generation tube T2 (first electrode side) are electrically connected by the conductive member J1.
  • a conductive member that electrically connects two thermoelectric generation tubes may be referred to as a “connection plate”.
  • the shapes of the first ring portion Jr1 and the second ring portion Jr2 are not limited to an annular shape. If the electrical connection with the thermoelectric generation tube can be ensured, the shape of the through hole Jh1 or Jh2 may be a circle, an ellipse, or a polygon. For example, the shape of the through hole Jh1 or Jh2 may be different from the cross-sectional shape of the first electrode E1 or the second electrode E2 when cut through a plane perpendicular to the axial direction. In the present specification, the term “ring” includes shapes other than an annular shape.
  • the first plate portion 36a is provided with a recess R36 corresponding to the openings A61 and A62.
  • the recess R36 includes a groove portion R36c that connects the opening A61 and the opening A62.
  • the connecting portion Jc of the conductive member J1 is located in the groove portion R36c.
  • the second plate portion 36b is provided with a recess R61 corresponding to the opening A61 and a recess R62 corresponding to the opening A62.
  • various members for realizing sealing and electrical connection are arranged in a space formed by the recess R36 and the recesses R61 and R62.
  • the space forms a channel C61 that accommodates the conductive member J1, and the opening A61 and the opening A62 are connected by the channel C61.
  • the first O-ring 52a, the washer 54, the conductive ring-shaped member 56, and the second O-ring 52b are accommodated in the channel C61.
  • the ends of the thermoelectric generation tube T1 and the thermoelectric generation tube T2 pass through the holes of these members.
  • the first O-ring 52a disposed on the side close to the body 32 of the container 30 is in contact with the seating surface Bsa formed on the first plate portion 36a, and the fluid supplied to the inside of the body 32 is in the channel C61.
  • the seal is realized so as not to enter the interior.
  • the second O-ring 52b disposed on the side far from the body portion 32 of the container 30 is in contact with the seating surface Bsb formed on the second plate portion 36b and exists outside the second plate portion 36b.
  • the seal is realized so that the fluid does not enter the inside of the channel C61.
  • the O-rings 52a and 52b are ring-shaped sealing parts having an O-shaped (circular) cross section.
  • the O-rings 52a and 52b are formed of rubber, metal, plastic, or the like, and have a function of preventing the outflow or inflow of fluid from the gap between components.
  • a space communicating with the flow path of each thermoelectric generation tube T is located on the right side of the second plate portion 36b, and a fluid constituting a high temperature medium or a low temperature medium exists in the space. ing.
  • the member shown in FIG. 18 it is possible to realize electrical connection of the thermoelectric generation tube T and sealing against the fluid constituting the high temperature medium and the low temperature medium.
  • the details of the structure and function of the conductive ring member 56 will be described later.
  • a configuration similar to the configuration described for the plate 36 is also provided in the plate 34.
  • the relationship between the opening A of the plate 34 and the opening A of the plate 36 is mirror-symmetrical, but a groove that connects the two openings A is formed in the plate 34 and the plate 36. The position is not mirror symmetric. If the arrangement pattern of the conductive members that electrically connect the thermoelectric generation tubes T in the plate 34 and the arrangement pattern of the conductive members that electrically connect the thermoelectric generation tubes T in the plate 36 are mirror-symmetric, a plurality of Cannot be connected in series.
  • drum 32 contains the 1st plate part (36a) and the 2nd plate part (36b) like this embodiment, in the 1st plate part (36a)
  • Each of the plurality of openings A has a first seating surface (Bsa) that receives the first O-ring 52a
  • each of the plurality of openings A in the second plate portion (36b) has a second O A second bearing surface (Bsb) for receiving the ring is provided.
  • the plates 34 and 36 do not need to have the configuration shown in FIG. 18, and the plate 36 does not need to be divided into the first plate portion 36a and the second plate portion 36b, for example. If the conductive member J1 is pressed by another member instead of the second plate portion 36b, the first O-ring 52a presses the first seating surface (Bsa), thereby realizing a seal.
  • thermoelectric generator tube T1 a conductive ring member 56 is interposed between the thermoelectric generator tube T1 and the conductive member J1.
  • another conductive ring-shaped member 56 is interposed between the thermoelectric generator tube T2 and the conductive member J1.
  • the conductive member J1 is typically formed from metal.
  • Examples of the material constituting the conductive member J1 are copper (oxygen-free copper), brass, aluminum and the like. From the viewpoint of preventing corrosion, nickel plating or tin plating may be applied.
  • the conductive member J here J1
  • the thermoelectric generation tubes here T1 and T2
  • an insulating coating may be applied to a part of the conductive member J. That is, the conductive member J may have a main body formed of metal and an insulating coat that covers at least a part of the surface of the main body.
  • the insulating coat may be formed from a resin such as Teflon (registered trademark).
  • Teflon registered trademark
  • an insulating oxide film as an insulating coating may be formed on a part of the surface.
  • FIG. 19A is an exploded perspective view of the vicinity of the channel C61 that houses the conductive member J1.
  • the first O-ring 52a, the conductive ring-shaped member 56, the conductive member J1, and the second O-ring 52b are opened from the outside of the container 30 to the opening A61 and the opening A62. Inserted into each of the.
  • a washer 54 is disposed between the first O-ring 52a and the conductive ring-shaped member 56 as necessary.
  • the washer 54 can also be disposed between the conductive member J1 and the second O-ring 52b.
  • the washer 54 is inserted between a flat portion 56f of the conductive ring-shaped member 56 described later and the O-ring 52a (or 54b).
  • FIG. 19B shows a portion corresponding to the openings A61 and A62 in the sealing surface of the second plate portion 36b (the surface facing the first plate portion 36a).
  • the openings A61 and A62 in the second plate portion 36b have the seating surface Bsb that receives the second O-ring 52b. Accordingly, when the sealing surface of the first plate portion 36a and the sealing surface of the second plate portion 36b are opposed to each other and the first plate portion 36a and the second plate portion 36b are joined by flange joining or the like, the inside of the first plate portion 36a The first O-ring 52a can be pressed against the seating surface Bsa.
  • the second seating surface Bsb presses the first O-ring 52a against the seating surface Bsa via the second O-ring 52b, the conductive member J1, and the conductive ring-shaped member 56.
  • the electroconductive member J1 can be sealed from a high temperature medium and a low temperature medium.
  • first plate portion 36a and the second plate portion 36b are formed of a conductive material such as metal
  • the seal side surfaces of the first plate portion 36a and the second plate portion 36b can be coated with an insulating material.
  • the region that contacts the conductive member J during operation may be insulated so as to be electrically insulated from the conductive member J.
  • a fluororesin coat by fluorine spray may be formed on the seal-side surfaces of the first plate portion 36a and the second plate portion 36b.
  • FIG. 20A is a perspective view showing one exemplary shape of the conductive ring-shaped member 56.
  • the conductive ring-shaped member 56 in FIG. 20A includes a ring-shaped flat portion 56f and a plurality of elastic portions 56r.
  • the flat portion 56f has a through hole 56a.
  • Each of the plurality of elastic portions 56r protrudes from the periphery of the through hole 56a of the flat portion 56f and is urged by an elastic force toward the center of the through hole 56a.
  • Such a conductive ring-shaped member 56 can be easily manufactured by processing a single metal plate (having a thickness of, for example, 0.1 mm to several mm).
  • the conductive member J can be easily manufactured by processing one metal plate (thickness is, for example, 0.1 mm to several mm).
  • thermoelectric generator tube T The end (the first electrode or the second electrode) of the thermoelectric generator tube T is inserted into the through-hole 56a of the conductive ring-shaped member 56.
  • the shape and size of the through hole 56a of the ring-shaped flat portion 56f are designed to match the shape and size of the outer peripheral surface of the end portion (first electrode or second electrode) of the thermoelectric generator tube T. .
  • FIG. 21A is a cross-sectional view showing a part of the conductive ring-shaped member 56 and the thermoelectric generation tube T1.
  • FIG. 21B is a cross-sectional view showing a state in which the end portion of the thermoelectric generation tube T1 is inserted into the conductive ring-shaped member 56.
  • FIG. 21C is a cross-sectional view showing a state in which the end portion of the thermoelectric generation tube T1 is inserted into the through holes of the conductive ring member 56 and the conductive member J1.
  • 21A, 21B, and 21C show cross sections when the thermoelectric generation tube T1 is cut along a plane including the axis (central axis) of the thermoelectric generation tube T1.
  • the outer peripheral surface of the end portion (first electrode or second electrode) of the thermoelectric generation tube T1 is a cylindrical surface having a diameter D.
  • the through hole 56a of the conductive ring-shaped member 56 is formed to have a circular shape with a diameter of D + ⁇ 1 ( ⁇ 1> 0) so that the end of the thermoelectric generation tube T1 can pass through.
  • each of the plurality of elastic portions 56r is formed such that an elastic force is urged toward the center of the through hole 56a.
  • each of the plurality of elastic portions 56r is formed so as to be inclined toward the center of the through hole 56a, for example. That is, unless an external force is applied, the elastic portion 56r circumscribes the outer peripheral surface of a cylinder having a cross-sectional diameter smaller than D (the diameter of the outer peripheral surface is D ⁇ 2 ( ⁇ 2> 0)). Has been processed.
  • each of the plurality of elastic portions 56r has a thermoelectric generation tube as shown in FIG. It physically contacts the outer peripheral surface at the end of T1. At this time, since each of the plurality of elastic portions 56r is urged toward the center of the through hole 56a, each of the plurality of elastic portions 56r has an outer peripheral surface at the end of the thermoelectric generation tube T1. Press with elastic force. Thus, the outer peripheral surface of the thermoelectric generation tube T1 inserted into the through hole 56a realizes stable physical and electrical contact with the plurality of elastic portions 56r.
  • the conductive member J1 contacts the flat portion 56f of the conductive ring-shaped member 56 in the opening A provided in the plates 34 and 36. More specifically, when the conductive ring-shaped member 56 and the conductive member J1 are attached to the end portion of the thermoelectric generation tube T1, as shown in FIG. 21 (c), the flat portion of the conductive ring-shaped member 56 The surface of 56f and the surface of the ring-shaped portion Jr1 of the conductive member J1 are in contact with each other. Thus, in this embodiment, the electrical connection between the conductive ring-shaped member 56 and the conductive member J1 is performed by contact between planes.
  • the contact between the conductive ring-shaped member 56 and the conductive member J1 is a contact between flat surfaces, a contact area sufficient to flow the current generated in the thermoelectric generation tube T1 can be ensured.
  • the width W of the flat portion 56f can be set as appropriate so that a contact area sufficient to allow the current generated in the thermoelectric generation tube T1 to flow can be obtained.
  • the surface of the flat portion 56f or the surface of the ring-shaped portion Jr1 of the conductive member J1 has an uneven shape. Also good.
  • FIG. 34A is a cross-sectional view showing a part of the conductive ring-shaped member 56 and the conductive member J1.
  • FIG. 34B is a cross-sectional view showing a state in which the elastic portion 56r of the conductive ring member 56 is inserted into the through hole Jh1 of the conductive member J1.
  • FIGS. 34A and 34B show cross sections when the conductive ring-shaped member 56 and the conductive member J1 are cut along a plane including the axis (central axis) of the thermoelectric generation tube T1.
  • the through hole of the conductive member J satisfies D ⁇ 2Rr so that the end of the thermoelectric generation tube T1 can pass through.
  • the through hole of the conductive member J is configured so that the surface of the flat portion 56f and the surface of the ring-shaped portion Jr1 are surely in contact with each other. It is formed so as to satisfy 2Rr ⁇ 2Rf.
  • thermoelectric generation tube T a chamfered portion Cm may be formed at the end of the thermoelectric generator tube T.
  • the elastic portion 56r of the conductive ring-shaped member 56 and the end portion of the thermoelectric generation tube T come into contact with each other.
  • the end of T may be damaged. Since the thermoelectric generation tube T has the chamfered portion Cm at the end portion, damage to the end portion of the thermoelectric generation tube T due to contact between the elastic portion 56r and the end portion of the thermoelectric generation tube T is suppressed.
  • the chamfered portion Cm may have a curved surface shape as shown in FIG. 35 or a planar shape.
  • the conductive member J1 is electrically connected to the outer peripheral surface at the end of the thermoelectric generation tube T via the conductive ring-shaped member 56.
  • the conductive member J1 is electrically connected to the outer peripheral surface at the end of the thermoelectric generation tube T via the conductive ring-shaped member 56.
  • the conductive member J1 can be more reliably sealed.
  • the first O-ring 52a is pressed against the seating surface Bsa via the conductive member J1 and the conductive ring-shaped member 56.
  • the conductive ring-shaped member 56 has a flat portion 56f. That is, the pressing force with respect to the first O-ring 52 a is given to the first O-ring 52 a through the flat portion 56 f of the conductive ring-shaped member 56. That is, since the conductive ring-shaped member 56 has the flat portion 56f, it is possible to apply a pressing force evenly to the first O-ring 52a.
  • the first O-ring 52a can be reliably pressed against the seating surface Bsa, and the liquid in the container can be reliably sealed.
  • an appropriate pressing force can be similarly applied to the second O-ring 52b, the liquid outside the container can be reliably sealed.
  • thermoelectric generator tube T Next, an example of a method for fitting the conductive ring-shaped member 56 into the thermoelectric generator tube T will be described.
  • thermoelectric generation tubes T1 and T2 are inserted into the openings A61 and A62 of the first plate portion 36a, respectively. Thereafter, the first O-ring 52a and, if necessary, the washer 54 are fitted from the tip of the thermoelectric generation tube and moved to the back of the openings A61 and A62. Next, the conductive ring-shaped member 56 is fitted from the tip of the thermoelectric generation tube and moved to the back of the openings A61 and A62. Thereafter, the conductive member J1 and, if necessary, the washer 54 and the second O-ring 52b are fitted from the tip of the thermoelectric generation tube, and moved to the back of the openings A61 and A62.
  • the sealing surface of the second plate portion 36b is opposed to the first plate portion 36a, and the tip of the thermoelectric generation tube is inserted into the opening of the second plate portion 36b, so that the first plate portion 36b and the first plate portion 36b are inserted into the first plate portion 36b.
  • the plate portion 36a is coupled.
  • flange bonding can be applied.
  • the second plate portion 36b and the first plate portion 36a are coupled to each other by bolts and nuts through holes 36bh provided in the second plate portion 36b and holes provided in the first plate portion 36a shown in FIG. Can be done.
  • connection between the conductive ring-shaped member 56 and the thermoelectric generation tube T is not permanent, and the conductive ring-shaped member 56 can be attached to and detached from the thermoelectric generation tube T.
  • the thermoelectric generation tube T is replaced with a new thermoelectric generation tube T
  • an operation reverse to the operation of fitting the conductive ring-shaped member 56 into the thermoelectric generation tube T may be performed.
  • the conductive ring-shaped member 56 can be used repeatedly, or may be replaced with a new conductive ring-shaped member 56.
  • the shape of the conductive ring-shaped member 56 is not limited to the example shown in FIG.
  • the ratio between the width (the size in the radial direction) of the flat portion 56f and the radius of the through hole 56a is also arbitrary.
  • the individual elastic portions 56r can have various shapes, and the number of the plurality of elastic portions 56r is arbitrary.
  • FIG. 20B is a perspective view showing another example of the shape of the conductive ring-shaped member 56.
  • the conductive ring-shaped member 56 of FIG. 20B also includes a ring-shaped flat portion 56f and a plurality of elastic portions 56r.
  • the flat portion 56f has a through hole 56a.
  • Each of the plurality of elastic portions 56r protrudes from the periphery of the through hole 56a of the flat portion 56f and is urged by an elastic force toward the center of the through hole 56a.
  • the number of elastic portions 56r is four.
  • the number of elastic portions 56r may be two, but is preferably three or more.
  • the number of elastic portions 56r is set to 6 or more, for example.
  • thermoelectric generation tube inserted in this A gap is allowed between the two. For this reason, even when the thermoelectric generator tube is formed of a brittle material, the ring-shaped portion Jr1 of the conductive member J can realize a stable connection without damaging the thermoelectric generator tube.
  • the conductive member (connection plate) is accommodated in the channel C formed so as to connect at least two of the openings A provided in the plate 36 to each other.
  • the conductive ring member 56 in the channel C may be omitted.
  • the end portions of the two thermoelectric generation tubes can be electrically connected by, for example, a cord, a conductor rod, a conductive paste, or the like.
  • the end portions of the thermoelectric generation tubes T are electrically connected by electrically connecting the end portions of the two thermoelectric generation tubes with the conductive member housed in the channel C.
  • the conductive member J1 can be more reliably electrically connected.
  • the electrical resistance between the two thermoelectric generation tubes can be reduced as compared with the case where a cord or the like is used.
  • a terminal etc. are not fixed to the edge part of the thermoelectric generation tube T, replacement
  • the plate (34 or 36) is provided with a channel C formed so as to connect at least two of the openings A to each other. No electrical connection function is realized.
  • the first O-ring 52a and the second O-ring 52b can be configured to press the seating surfaces Bsa and Bsb, respectively, air or water tightness can be achieved with the end of the thermoelectric generation tube T inserted. A seal to maintain is realized.
  • the channel C in the plate (34 or 36) even if the conductive ring-shaped member 56 is omitted, the electrical connection between the ends of the two thermoelectric generation tubes and the high temperature It is possible to realize a seal against the fluid constituting the medium and the cold medium.
  • thermoelectric generation tube T ⁇ Relationship between direction of heat flow and direction of inclination of laminated surface>
  • FIG. 36 (a) is a diagram schematically showing the current flowing through the thermoelectric generation tubes T electrically connected in series.
  • FIG. 36A schematically shows a cross section of three (T1 to T3) of the thermoelectric generation tubes T1 to T10.
  • the conductive member K1 is connected to one end (for example, the end on the first electrode side) of the thermoelectric generation tube T1, and the other end (for example, the end on the second electrode side) of the thermoelectric generation tube T1. Part) is connected to a conductive member (connection plate) J1.
  • the conductive member J1 is also connected to one end (end portion on the first electrode side) of the thermoelectric generation tube T2, whereby the thermoelectric generation tube T1 and the thermoelectric generation tube T2 are electrically connected.
  • the other end (end on the second electrode side) of the thermoelectric generator tube T2 and one end (end on the first electrode side) of the thermoelectric generator tube T3 are electrically connected by the conductive member J2. .
  • thermoelectric generator unit 100 each of the thermoelectric generator tubes T1 to T10 is opposite to the thermoelectric generator tube connected to itself through the connecting plate in the direction of inclination of the laminated surface.
  • thermoelectric generation tube T1 for example, a current flows from the right side to the left side in the figure.
  • thermoelectric generation tube T2 the direction of inclination of the laminated surface is opposite to that of the thermoelectric generation tube T1, and thus current flows from the left side to the right side in the figure.
  • FIG. 37 is a diagram schematically showing the direction of current in the two openings A61 and A62 and in the vicinity thereof.
  • FIG. 37 is a diagram corresponding to FIG. In FIG. 37, the direction of current flow is schematically indicated by a broken-line arrow.
  • the current generated in the thermoelectric generation tube T1 passes through the ring-shaped conductive member 56 on the opening A61 side, the conductive member J1, and the ring-shaped conductive member 56 on the opening A62 side in this order. It flows toward the thermoelectric generation tube T2.
  • the current flowing into the thermoelectric generation tube T2 is superimposed on the current generated in the thermoelectric generation tube T2 and flows toward the thermoelectric generation tube T3.
  • FIG. 37 is a diagram schematically showing the direction of current in the two openings A61 and A62 and in the vicinity thereof.
  • FIG. 37 is a diagram corresponding to FIG. In FIG. 37, the direction of current flow is schematically indicated by a broken-line arrow.
  • the current generated in the thermoelectric generation tube T1
  • thermoelectric generation tube T3 is opposite to the thermoelectric generation tube T2 in the direction of inclination of the laminated surface. Therefore, in the thermoelectric generation tube T3, a current flows from the right side to the left side in FIG. Therefore, the electromotive force generated in each of the thermoelectric generation tubes T1 to T3 is superimposed without being canceled. Thus, a larger voltage can be taken out from the thermoelectric generator unit by connecting the plurality of thermoelectric generator tubes T in order so that the directions of inclination of the laminated surfaces are alternately opposite.
  • FIG. 36B schematically shows the current flowing through the thermoelectric generation tubes T electrically connected in series, as in FIG. Also in FIG. 36 (b), similar to the example shown in FIG. 36 (a), the thermoelectric generation tubes T1 to T3 are connected in order so that the inclination directions of the laminated surfaces are alternately opposite. Also in this case, since the directions of inclination of the laminated surfaces of the two thermoelectric generation tubes connected to each other are opposite to each other, the electromotive forces generated in each of the thermoelectric generation tubes T1 to T3 are superimposed without being canceled out. Is done.
  • each of the thermoelectric generation tubes T1 to T3 when the low temperature medium LM is brought into contact with the inner peripheral surface of each of the thermoelectric generation tubes T1 to T3 and the high temperature medium HM is brought into contact with the outer peripheral surface, each of the thermoelectric generation tubes T1.
  • the polarity of the voltage generated at T3 is opposite to that shown in FIG.
  • the polarity of the electromotive force in each thermoelectric generation tube (may be referred to as the direction of the current flowing through each thermoelectric generation tube) is inverted. . Therefore, for example, in order to allow current to flow from the conductive member K1 side to the conductive member J3 side as in the case shown in FIG.
  • the side and the second electrode side may be opposite to the case shown in FIG.
  • the current directions shown in FIGS. 36A and 36B are merely examples. Depending on the material constituting the metal layer 20 and the thermoelectric material constituting the thermoelectric material layer 22, the current direction may be opposite to the current direction shown in FIGS.
  • thermoelectric generation tube T the polarity of the voltage generated in the thermoelectric generation tube T depends on the direction of the inclination of the laminated surface in the thermoelectric generation tube T. Therefore, for example, when replacing the thermoelectric generation tube T, the thermoelectric generation tube T is appropriately arranged in consideration of the temperature gradient between the inner peripheral surface and the outer peripheral surface of the thermoelectric generation tube T in the thermoelectric generation unit 100. To do.
  • thermoelectric generation tube T shown in FIG. 38A
  • a mold (uneven shape) Mp for identifying the polarity of the voltage generated in the thermoelectric generation tube is formed on the first electrode E1a and the second electrode E2a.
  • the laminated surface of the thermoelectric generation tube T is inclined to either the first electrode E1b or the second electrode E2b on the first electrode E1b and the second electrode E2b.
  • Mark Mk indicating whether or not. Molds or marks may be combined with each other. The mold or mark may be applied to the tube body Tb, or may be applied to only one of the first electrode and the second electrode.
  • a mold or a mark can be given to the first electrode and the second electrode in order to identify the polarity of the voltage generated in the thermoelectric generation tube T. Thereby, it can be judged from the external appearance of the thermoelectric generation tube T whether the laminated surface in the thermoelectric generation tube T inclines to which side of the 1st electrode E1a and the 2nd electrode E2a.
  • the first electrode and the second electrode may have different shapes. For example, the length, thickness, or cross-sectional shape perpendicular to the axial direction may be different between the first electrode and the second electrode.
  • thermoelectric generator tubes T1 to T10 are electrically connected in series by conductive members J1 to J9.
  • the connection of the two thermoelectric generation tubes T by each of the conductive members J1 to J9 is as described above.
  • an example of an electrical connection structure for taking out electric power from the two power generation tubes T1 and T10 located at both ends of the series circuit to the outside of the thermoelectric generation unit 100 will be described.
  • FIG. 22 is a diagram (left side view) showing another one of the side surfaces of the thermoelectric generator unit 100 shown in FIG. FIG. 16B shows the configuration on the plate 36 side, while FIG. 22 shows the configuration on the plate 34 side.
  • the description of the configuration and operation common to the configuration and operation described for plate 36 will not be repeated.
  • the channels C42 to C45 connect at least two of the openings A provided in the plate 34 to each other.
  • a channel may be referred to as an “interconnect portion”.
  • the conductive member accommodated in each interconnection part has the same configuration as that of the conductive member J1.
  • the channel C41 provided in the plate 34 is provided so as to extend from the opening A41 in the plate 34 to the outer edge.
  • a channel provided so as to extend from an opening provided in a plate to an outer edge may be referred to as a “terminal connection portion”.
  • Channels C41 and C46 shown in FIG. 22 are terminal connection portions.
  • a conductive member that functions as a terminal for connecting to an external circuit is accommodated in the terminal connection portion.
  • FIG. 23A is a diagram showing a partial cross section of the plate 34.
  • FIG. 23 (a) schematically shows a cross section taken along a plane including the central axis of the thermoelectric generator tube T1, and corresponds to a cross-sectional view taken along the line RR in FIG.
  • FIG. 23A shows the structure of the opening A41 and the vicinity thereof among the plurality of openings A of the plate 34.
  • FIG. 23B shows the appearance of the conductive member K1 when viewed from the direction indicated by the arrow V2 in FIG.
  • the conductive member K1 has a through hole Kh at one end.
  • the conductive member K1 includes a ring portion Kr having a through hole Kh and a terminal portion Kt extending from the ring portion Kr toward the outside of the ring portion Kr.
  • the conductive member K1 is typically made of metal, like the conductive member J1.
  • the end portion (first electrode side) of the thermoelectric generation tube T1 is inserted into the opening A41 of the plate 34.
  • the end portion of the thermoelectric generator tube T1 is inserted into the through hole Kh of the conductive member K1.
  • the conductive member (J, K1) in the present embodiment is a conductive plate having at least one hole through which the thermoelectric generation tube T passes.
  • the structure of the opening A410 and the vicinity thereof is the same as the structure of the opening A41 and the vicinity thereof except that the end of the thermoelectric generation tube T10 is inserted into the opening A410 of the plate 34.
  • the first plate portion 34a is provided with a recess R34 corresponding to the opening A41.
  • the recess R34 includes a groove portion R34t that extends from the opening A41 to the outer edge of the first plate portion 34a.
  • the terminal portion Kt of the conductive member K1 is located in the groove portion R34t.
  • a space formed by the concave portion R34 and the concave portion R41 provided in the second plate portion 34b forms a channel that accommodates the conductive member K1.
  • FIG. 18A in the example of FIG.
  • the first O-ring 52a in addition to the conductive member K1, the first O-ring 52a, the washer 54, the conductive ring-shaped member 56, the second The O-ring 52b is accommodated in the channel C41, and the end of the thermoelectric generator tube T1 passes through the holes of these members.
  • the first O-ring 52a realizes a seal so that the fluid supplied into the body portion 32 does not enter the channel C41.
  • the second O-ring 52b realizes a seal so that the fluid existing outside the second plate portion 34b does not enter the channel C41.
  • FIG. 24 is an exploded perspective view of the vicinity of the channel C41 that houses the conductive member K1.
  • the first O-ring 52a, the washer 54, the conductive ring-shaped member 56, the conductive member K1, the washer 54, and the second O-ring 52b are inserted into the opening A41 from the outside of the container 30.
  • the sealing surface of the second plate portion 34b (the surface facing the first plate portion 34a) has substantially the same configuration as the sealing surface of the second plate portion 36b shown in FIG. That is, by joining the first plate portion 34a and the second plate portion 34b, the second seating surface Bsb of the second plate portion 34b becomes the second O-ring 52b, the conductive member K1, and the conductive ring shape.
  • the first O-ring 52a is pressed against the seating surface Bsa of the first plate portion 34a. Accordingly, the conductive member K1 can be sealed from the high temperature medium and the low temperature medium.
  • the ring portion Kr of the conductive member K1 contacts the flat portion 56f of the conductive ring-shaped member 56 in the opening A provided in the plate 34.
  • the conductive member K1 is electrically connected to the outer peripheral surface at the end of the thermoelectric generator tube T via the conductive ring-shaped member 56.
  • one end (terminal portion Kt) of the conductive member K1 protrudes to the outside of the plate 34 as shown in FIG. Therefore, the portion of the terminal portion Kt that protrudes outside the plate 34 can function as a terminal for connecting the thermoelectric generator unit and the external circuit.
  • a portion of the terminal portion Kt that protrudes outside the plate 34 may be formed in a ring shape.
  • a conductive member in which a thermoelectric generation tube is inserted at one end and the other end projects to the outside may be referred to as a “terminal plate”.
  • thermoelectric generator tube T1 and the thermoelectric generator tube T10 are respectively connected to the two terminal plates accommodated in the terminal connection portion. Further, the plurality of thermoelectric generation tubes T1 to T10 are electrically connected in series between the two terminal plates via a connecting plate accommodated in a channel interconnection portion. Therefore, the electric power generated by the plurality of thermoelectric generation tubes T1 to T10 can be taken out through the two terminal plates whose one ends protrude outside the plate.
  • the arrangement of the conductive ring-shaped member 56 and the conductive members (J, K1) can be appropriately changed in the channel C.
  • the conductive ring-shaped member 56 and the conductive member may be arranged so that the elastic portion 56r of the conductive ring-shaped member 56 is inserted into the through hole (Jh1, Jh2, or Kh) of the conductive member.
  • the end of the thermoelectric generator tube T and the conductive member K1 may be electrically connected in a manner in which the conductive ring-shaped member 56 is omitted.
  • a part of the flat portion 56f of the conductive ring member 56 can be extended to substitute for the terminal portion Kt of the conductive member K1. In this case, the conductive member K1 may be omitted.
  • the channel C is formed from the concave portion provided in the first plate portion and the concave portion provided in the second plate portion.
  • the channel C is formed in one of the first plate portion and the second plate portion.
  • the channel C may be formed from the provided recess.
  • an insulating coating may be applied to the inside of the channel C so that the conductive member (connection plate, terminal plate) and the container 30 do not conduct.
  • the plate 34 (34a and 34b) may have a main body formed of metal and an insulating coat that covers at least a part of the surface of the main body.
  • the plate 36 (36a and 36b) may have a main body formed of metal and an insulating coat covering at least a part of the surface of the main body.
  • an insulating coating is applied to the surface of the recess provided in the first plate portion and the surface of the recess provided in the second plate portion, the insulating coating on the surface of the conductive member can be omitted.
  • FIG. 25 is a cross-sectional view showing an example of a structure for separating the medium in contact with the outer peripheral surface of the thermoelectric generator tube T and the medium in contact with the inner peripheral surface of each of the thermoelectric generator tubes T1 to T10 so as not to be mixed.
  • the bushing 60 is inserted from the outside of the container 30, thereby realizing separation of the high temperature medium and the low temperature medium and electrical connection between the thermoelectric generation tube and the conductive member.
  • the opening A41 provided in the plate 34u has a female screw portion Th34. More specifically, a screw thread is formed on the wall surface of the recess R34 provided corresponding to the opening A41 of the plate 34u.
  • a bushing 60 having a male screw portion Th60 is inserted into the recess R34.
  • the bushing 60 has a through hole 60a along the axial direction.
  • the end of the thermoelectric generator tube T1 is inserted into the opening A41 of the plate 34u. Accordingly, the through hole 60a communicates with the internal flow path of the thermoelectric generation tube T1 in a state where the bushing 60 is inserted into the recess R34.
  • thermoelectric generation tube T1 is inserted into the holes of these members.
  • the O-ring 52 is in contact with the seating surface Bsa formed on the plate 34u and the outer peripheral surface of the end portion of the thermoelectric generation tube T1.
  • the male screw portion Th60 attaches the O-ring 52 to the seating surface Bsa via the flat portion 56f of the conductive ring-shaped member 56 and the conductive plate K1. Press. That is, the seal can be realized so that the fluid supplied to the inside of the trunk portion 32 does not mix with the fluid supplied to the internal flow path of the thermoelectric generation tube T1. Further, since the outer peripheral surface of the thermoelectric generation tube T1 is in contact with the plurality of elastic portions 56r of the conductive ring member 56, and the flat portion 56f of the conductive ring member 56 is in contact with the ring portion Kr of the conductive member K1, The thermoelectric generation tube and the conductive member can be electrically connected.
  • thermoelectric generation tube and the conductive member 25.
  • FIGS. 39A and 39B are cross-sectional views showing another example of a structure for realizing the separation of the high-temperature medium and the low-temperature medium and the electrical connection between the thermoelectric generation tube and the conductive member.
  • the first O-ring 52a, the washer 54, the ring-shaped conductive member 56, the conductive member K1, the washer 54, and the like from the seating surface Bsa formed on the plate 34u to the outside of the container 30.
  • Second O-rings 52b are arranged in order.
  • the male screw portion Th60 presses the O-ring 52a against the seating surface Bsa via the conductive plate K1 and the flat portion 56f of the conductive ring-shaped member 56.
  • FIG. 39A the male screw portion Th60 presses the O-ring 52a against the seating surface Bsa via the conductive plate K1 and the flat portion 56f of the conductive ring-shaped member 56.
  • the first O-ring 52a, the conductive member K1, the ring-shaped conductive member 56, and the second O-ring 52b from the seating surface Bsa formed on the plate 34u toward the outside of the container 30. are arranged in order.
  • a bushing 64 having a through hole 64 a is further inserted into the through hole 60 a formed in the bushing 60.
  • the through hole 64a communicates with the internal flow path of the thermoelectric generation tube T1.
  • the male screw portion Th64 of the bushing 64 presses the second O-ring 52b toward the seating surface Bsa.
  • the first O-ring 52a and the second O-ring 52b may be arranged to seal both the fluid constituting the high temperature medium and the fluid constituting the low temperature medium.
  • the first O-ring 52a and the second O-ring 52b may be arranged to seal both the fluid constituting the high temperature medium and the fluid constituting the low temperature medium.
  • one end of the terminal portion Kt of the conductive member K1 protrudes to the outside of the plate 34u and can function as a terminal for connecting the thermoelectric generator unit and an external circuit.
  • a connecting plate such as a conductive member J1 may be applied instead of the conductive member K1 (terminal plate).
  • the end of the thermoelectric generator tube T1 is inserted into the through hole Jh1.
  • a washer 54 may be disposed between the O-ring and the conductive member.
  • thermoelectric generation system of the present disclosure
  • FIG. 26A is a diagram illustrating an embodiment of a thermoelectric generation system according to the present disclosure.
  • FIG. 26B is a cross-sectional view taken along the line BB of FIG.
  • FIG.26 (c) is a perspective view which shows the structural example of the buffer tank with which the thermoelectric generation system shown to Fig.26 (a) is provided.
  • the thick solid arrow schematically shows the flow direction of the medium in contact with the outer peripheral surface of the thermoelectric generation tube, that is, the medium flowing in the container 30 (outside the thermoelectric generation tube).
  • the thick broken arrows indicate the flow direction of the medium in contact with the inner peripheral surface of the thermoelectric generation tube, that is, the medium flowing through the through hole (internal flow path) of the thermoelectric generation tube.
  • first medium path a pipe line communicating with the fluid inlet and the fluid outlet of each container 30
  • second medium path a pipe line communicating with the flow path of each thermoelectric generation tube
  • thermoelectric generation system 200A shown in FIG. 26A includes a first thermoelectric generation unit 100-1 and a second thermoelectric generation unit 100-2. Each of the first thermoelectric generator unit 100-1 and the second thermoelectric generator unit 100-2 has the same configuration as that of the thermoelectric generator unit 100 described above.
  • the thermoelectric generator system 200A further includes a thick cylindrical buffer tank 44 placed between the first thermoelectric generator unit 100-1 and the second thermoelectric generator unit 100-2.
  • the buffer tank 44 includes a first opening 44a1 communicating with the flow paths of the plurality of thermoelectric generation tubes in the first thermoelectric generation unit 100-1, and a flow of the plurality of thermoelectric generation tubes in the second thermoelectric generation unit 100-2. And a second opening 44a2 communicating with the road.
  • the medium introduced from the fluid inlet 38a1 of the first thermoelectric generator unit 100-1 is the container 30 of the first thermoelectric generator unit 100-1, the fluid of the first thermoelectric generator unit 100-1.
  • the outlet 38b1, the conduit 40 for relaying, the fluid inlet 38a2 of the second thermoelectric generator unit 100-2, and the container 30 of the second thermoelectric generator unit 100-2 sequentially flow to reach the fluid outlet 38b2 (first Medium path). That is, the medium supplied to the inside of the container 30 of the first thermoelectric generator unit 100-1 is supplied to the inside of the container 30 of the second thermoelectric generator unit 100-2 via the conduit 40.
  • the conduit 40 does not have to be straight and may be bent.
  • the internal flow paths of the plurality of thermoelectric generation tubes of the first thermoelectric generation unit 100-1 are connected to the second thermoelectric generation unit 100- through the first opening 44a1 and the second opening 44a2 of the buffer tank 44.
  • the two thermoelectric generation tubes communicate with the internal flow paths (second medium path).
  • the medium introduced into each of the internal flow paths of the plurality of thermoelectric generation tubes of the first thermoelectric generation unit 100-1 merges in the buffer tank 44, and then the plurality of thermoelectric generations of the second thermoelectric generation unit 100-2. It is introduced into each of the internal flow paths of the tube.
  • thermoelectric generation system including a plurality of thermoelectric generation units
  • the second medium path communicating with the flow path of each thermoelectric generation tube can be arbitrarily designed.
  • the degree of heat exchange performed through a plurality of thermoelectric generation tubes in one container 30 may vary depending on the position of the thermoelectric generation tubes. Therefore, for example, the internal flow path of each thermoelectric generation tube of one thermoelectric generation unit and the internal flow path of each thermoelectric generation tube of the other thermoelectric generation unit are connected in series between two adjacent thermoelectric generation units. Then, the variation in the temperature of the medium flowing through the internal flow path is expanded.
  • the power generation amount of each thermoelectric generation tube may vary.
  • thermoelectric generator system 200A the medium flowing into the buffer tank 44 from the internal flow paths of the plurality of thermoelectric generator tubes of the first thermoelectric generator unit 100-1 exchanges heat in the buffer tank 44, and the second Is supplied to the internal flow paths of the plurality of thermoelectric generation tubes of the thermoelectric generation unit 100-2.
  • the medium flowing into the buffer tank 44 from the internal flow paths of the plurality of thermoelectric generation tubes of the first thermoelectric generation unit 100-1 exchanges heat in the buffer tank 44, so that the medium temperature can be made uniform. .
  • the temperature of the medium flowing through the internal flow paths of the plurality of thermoelectric generation tubes can be reduced. The advantage of being uniform is obtained.
  • the second medium path is configured such that fluid flows in the same direction through the flow paths of the plurality of thermoelectric generation tubes T.
  • the flow direction of the fluid in the flow paths of the plurality of thermoelectric generation tubes T is not limited to the same direction.
  • the flow direction of the fluid in the flow paths of the plurality of thermoelectric generation tubes T can be variously set according to the design of the flow path of the high temperature medium and the low temperature medium.
  • the plurality of thermoelectric generator units in the thermoelectric generator system of the present disclosure can be connected in series or in parallel.
  • FIG. 27A is a diagram illustrating another embodiment of the thermoelectric generator system according to the present disclosure.
  • 27B is a cross-sectional view taken along line BB in FIG. 27A
  • FIG. 27C is a cross-sectional view taken along line CC in FIG.
  • the buffer tank 44 of the thermoelectric generation system 200B in this embodiment has two baffle plates 46a and 46b inside.
  • the two baffle plates 46a and 46b are respectively provided with rectangular openings at a plurality of different positions.
  • the medium flowing inside the buffer tank 44 passes through a plurality of openings provided in each of the baffle plates 46a and 46b. At this time, turbulent flow is generated, and the uniform temperature of the medium is promoted by the stirring effect.
  • the buffer tank 44 may have a structure that disturbs the flow of the fluid that has flowed into the buffer tank 44 from the flow paths of the plurality of thermoelectric generation tubes.
  • the baffle plates 46a and 46b only need to have a shape that partially changes the flow direction of the fluid. Accordingly, the shape, size, and position of the openings formed in the baffle plates 46a, 46b are not limited to the illustrated example, and can be set to any shape, size, and position.
  • Each baffle plate may be divided into a plurality of pieces, and the opening may be a slit.
  • the number of baffle plates 46a and 46b is also arbitrary, and even one baffle plate can exert the stirring effect.
  • the baffle plate does not need to be flat, and may be spiral, radial, or grid.
  • a configuration other than the baffle plate may be added to the inside of the buffer tank or the shape of the buffer tank itself.
  • irregularities may be provided on the inner wall of the buffer tank 44, or grooves or fins may be provided on the inner wall.
  • the buffer tank 44 may be narrowed in the middle.
  • FIG. 28 (a) is a diagram illustrating still another embodiment of the thermoelectric generator system according to the present disclosure.
  • FIG. 28B is a cross-sectional view taken along the line BB of FIG.
  • the structure disposed in the buffer tank 44 may have a movable part that partially changes the flow direction of the fluid that has flowed into the buffer tank 44.
  • the buffer tank 44 of the thermoelectric generator system 200C in this embodiment has blades 48 that rotate inside.
  • the blade 48 is rotatably supported by a support member (not shown), and is rotated by the flow of the medium.
  • the blades 48 may be rotated by an external power source such as a motor. By rotating the blades 48, turbulent flow is generated, and the medium temperature is made uniform by the stirring effect. Even if such blades 48 are fixed so as not to rotate, the flow of the medium is disturbed in the same manner as the baffle plate, so that the uniformity of the medium temperature is improved.
  • the number of blades 48 provided in the buffer tank 44 may be plural.
  • FIG. 29A is a diagram illustrating still another embodiment of the thermoelectric generator system according to the present disclosure.
  • FIG. 29B is a cross-sectional view taken along line BB in FIG.
  • the buffer tank 44 of the thermoelectric generation system 200D in this embodiment has a partition plate 46c inside. Thereby, the space inside the buffer tank 44 is divided into two spaces 44A and 44B. For example, as shown in FIG. 29B, the space 44A communicates with half of the opening A provided in the container of the second thermoelectric generator unit 100-2. The space 44B communicates with the remaining half of the opening A provided in the container of the second thermoelectric generator unit 100-2.
  • the medium flows into the space 44A formed inside the buffer tank 44 from half of the plurality of thermoelectric generation tubes in the first thermoelectric generation unit 100-1.
  • the medium flows into the space 44B from the remaining half of the plurality of thermoelectric generation tubes in the first thermoelectric generation unit 100-1.
  • heat exchange of the medium flowing from the internal flow paths of the plurality of thermoelectric generation tubes of the first thermoelectric generation unit 100-1 is performed.
  • the inside of the buffer tank 44 may be divided into a plurality of spaces, and heat exchange of the medium flowing into the buffer tank 44 may be performed for each of the divided spaces.
  • the shape, number and arrangement of the partition plates 44c are not limited to the illustrated example, and can be set to any shape, number and arrangement. When three or more power generation units are connected in series, the shape, number, or arrangement of the partition plates 44c may be different for each buffer tank inserted between two adjacent power generation units. By making the shape, number, or arrangement of the partition plates 44c different for each buffer tank, the medium temperature can be made uniform.
  • the baffle plate, the stirring mechanism, and the partition plate described with reference to FIGS. 27, 28, and 29 may be used in combination.
  • the buffer tank 44 may be inserted in all between two adjacent power generation units, or may be inserted in only a part thereof.
  • the baffle plate, the stirring mechanism, and the partition plate may be provided inside the container 30.
  • the low temperature medium flows inside the container 30.
  • the low-temperature medium is heated by the thermoelectric generation tube in the container 30 and partially rises in temperature, but the temperature of the portion away from the thermoelectric generation tube is relatively low. Therefore, if the flow of the low temperature medium is disturbed in the container 30 by the baffle plate or the stirring mechanism, the temperature distribution of the low temperature medium is leveled, and the temperature at the portion where the low temperature medium is in contact with the thermoelectric generation tube can be lowered.
  • FIG. 30 is a diagram illustrating still another embodiment of the thermoelectric generator system according to the present disclosure.
  • the thick solid arrow schematically indicates the flow direction of the medium in contact with the outer peripheral surface of the thermoelectric generation tube.
  • the thick arrow of a broken line has shown roughly the flow direction of the medium which contact
  • the flow direction of the fluid in the channel is configured to be antiparallel to each other.
  • thermoelectric generator system 200E the first thermoelectric generator unit 100-1 and the second thermoelectric generator unit 100-2 are spatially arranged in parallel.
  • the second thermoelectric generator unit 100-2 is disposed beside the first thermoelectric generator unit 100-1.
  • the first thermoelectric generator unit 100-1 and the second thermoelectric generator unit 100-2 may be stacked along the vertical direction. In this case, generally, the medium in the first medium path flows along the vertical direction.
  • the buffer tank 44 may have a bent shape.
  • the design of the flow path of the high temperature medium and the low temperature medium can be variously performed. For example, flexible design is possible according to the area of the place where the thermoelectric generation system is installed.
  • FIGS. 26 to 30 only show some examples.
  • the first medium path communicating with the fluid inlet and the fluid outlet of each container and the second medium path communicating with the channel of each thermoelectric generation tube are as follows. Can be arbitrarily designed.
  • the plurality of thermoelectric generator units can be electrically connected in series or electrically connected in parallel.
  • thermoelectric generation system ⁇ Configuration example of electric circuit provided in thermoelectric generation system>
  • thermoelectric generator system 200 in this embodiment includes an electric circuit 250 that receives electric power output from the thermoelectric generator units 100-1 and 100-2. That is, in an aspect, the plurality of conductive members may have an electric circuit electrically connected to the plurality of thermoelectric generation tubes.
  • the electric circuit 250 includes a booster circuit 252 that raises the voltage of the electric power output from the thermoelectric generator units 100-1 and 100-2, and direct current power output from the booster circuit 252 as alternating current power (frequency is 50/60 Hz, for example). Or an inverter (DC-AC inverter) circuit 254 for conversion into other frequencies).
  • the AC power output from the inverter circuit 254 can be supplied to the load 400.
  • the load 400 may be various electric devices or electronic devices that operate using AC power.
  • the load 400 may itself have a charging function, and need not be fixed to the electric circuit 250.
  • the AC power that is not consumed by the load 400 can be connected to the commercial system 410 and sold.
  • the electric circuit 250 in the example of FIG. 31 includes a charge / discharge control unit 262 and a power storage unit 264 for storing DC power obtained from the thermoelectric generator units 100-1 and 100-2.
  • the power storage unit 264 can be a chemical battery such as a lithium ion secondary battery or a capacitor such as an electric double layer capacitor.
  • the electric power stored in the power storage unit 264 can be given to the booster circuit 252 by the charge / discharge control unit 262 as needed, and can be used or sold as AC power via the inverter circuit 254.
  • the magnitude of electric power obtained from the thermoelectric generator units 100-1 and 100-2 may fluctuate periodically or irregularly depending on time.
  • the heat source of the high-temperature medium is factory waste heat
  • the temperature of the high-temperature medium may vary depending on the operation schedule of the factory.
  • the magnitude of the voltage and / or current of the electric power obtained from the thermoelectric generator units 100-1 and 100-2 varies. End up.
  • the thermoelectric generation system 200 shown in FIG. 31 if power is stored in the power storage unit 264 via the charge / discharge control circuit 262, the influence due to the variation in the power generation amount is suppressed. obtain.
  • the boost ratio of the booster circuit 252 may be adjusted according to fluctuations in the power generation state. Further, by detecting or predicting fluctuations in the power generation state, the flow rate and temperature of the high-temperature medium or low-temperature medium supplied to the thermoelectric generation units 100-1 and 100-2 are adjusted, thereby maintaining the power generation state in a steady state. Control may be performed.
  • the flow rate of the hot medium can be adjusted by the pump P1.
  • the flow rate of the cold medium can be adjusted by the pump P2.
  • the temperature of the high temperature medium can be controlled by adjusting the amount of heat supplied to the high temperature medium from a high temperature heat source (not shown).
  • the temperature of the low temperature medium can be controlled by adjusting the amount of heat released from the low temperature medium to a low temperature heat source (not shown).
  • a valve and a branch path may be provided in at least one of the hot medium flow path and the cold medium flow path, thereby adjusting the flow rate of each medium supplied to the power generation system.
  • thermoelectric generation system ⁇ Another embodiment of thermoelectric generation system>
  • another embodiment of the thermoelectric generator system according to the present disclosure will be described with reference to FIG. 32.
  • thermoelectric generator units for example, 100-1 and 100-2 are provided in a general waste disposal facility (so-called garbage disposal site or clean center).
  • garbage disposal site or clean center a general waste disposal facility
  • high-temperature and high-pressure steam for example, 400 to 500 ° C., several megapascals
  • thermal energy generated when burning garbage (waste) may be generated from thermal energy generated when burning garbage (waste).
  • Such water vapor energy is converted into electric power by turbine power generation and used for electric power in the facility.
  • the thermoelectric generator system 300 includes a plurality of thermoelectric generator units.
  • the high-temperature medium supplied to the thermoelectric generator units 100-1 and 100-2 is generated by obtaining the combustion heat of waste in the waste treatment facility.
  • this system includes an incinerator 310, a boiler 320 that generates high-temperature and high-pressure steam from combustion heat generated in the incinerator 310, and a turbine 330 that is rotated by the high-temperature and high-pressure steam generated in the boiler 320. ing.
  • the rotational energy of the turbine 330 is given to a synchronous generator (not shown) and is converted into AC power (for example, three-phase AC power) by the synchronous generator.
  • the water vapor used for the work rotating the turbine 330 is returned to liquid water by the condenser 360 and supplied to the boiler 320 by the pump 370.
  • This water is a working medium that circulates in a “thermal cycle” constituted by the boiler 320, the turbine 330, and the condenser 360.
  • a part of the heat given to the water in the boiler 320 is given to the cooling water in the condenser 360 after performing the work of rotating the turbine 330.
  • the cooling water circulates between the condenser 360 and the cooling tower 350.
  • low-temperature steam or hot water after working in such a turbine 330 can be effectively used as a heat source for the high-temperature medium.
  • heat is obtained from such low-temperature (for example, about 140 ° C.) water vapor by the heat exchanger 340 to obtain, for example, 99 ° C. hot water. Then, this hot water is supplied as a high-temperature medium to the thermoelectric generator units 100-1 and 100-2.
  • the low-temperature medium for example, a part of the cooling water used in the waste treatment facility can be used.
  • water of about 10 ° C. for example, can be obtained from the cooling tower 350 and used as a low-temperature medium.
  • the low-temperature medium does not need to be obtained by using a special cooling tower, and can be substituted by using well water or river water in or near the facility.
  • thermoelectric generator units 100-1 and 100-2 can be used in the facility or stored in the power storage unit 264.
  • the surplus power can be sold via the commercial system 410 after being converted into AC power.
  • thermoelectric generator 32 has a form in which a plurality of thermoelectric generator units are incorporated in a waste heat utilization system of a waste treatment facility including a boiler 320 and a turbine 330.
  • the boiler 320, the turbine 330, the condenser 360, and the heat exchanger 340 are not indispensable components for the operation of the thermoelectric generator units 100-1 and 100-2. If there is a relatively low temperature gas or hot water that has been thrown away in the past, it can be used directly as a high-temperature medium, and other gases or liquids can be heated through a heat exchanger. However, it can also be used as a high temperature medium.
  • the system of FIG. 32 is just one practical example.
  • thermoelectric generation system of the present disclosure it is possible to recover and effectively use thermal energy that has been unused and discarded in the surrounding environment.
  • thermal energy that has been unused and discarded in the surrounding environment.
  • the heat energy possessed by a relatively low temperature gas or hot water that was previously discarded can be used effectively. It becomes possible.
  • the manufacturing method of the thermoelectric generation system includes the step of preparing the plurality of thermoelectric generation tubes described above, and the plurality of thermoelectric generation tubes in the plurality of openings of the first and second containers having the above-described configuration. Inserting and holding a plurality of thermoelectric generation tubes inside each of the first and second containers, electrically connecting the plurality of thermoelectric generation tubes by a plurality of conductive members, A first opening communicating with the flow paths of the plurality of thermoelectric generation tubes held inside the container, and a second opening communicating with the flow paths of the plurality of thermoelectric generation tubes held inside the second container And a step of disposing a buffer tank having a space between the first container and the second container.
  • the first medium is caused to flow into each container through the fluid inlet and the fluid outlet of each container of the thermoelectric generation system described above, and the first medium is brought into contact with the outer peripheral surface of each thermoelectric generation tube.
  • a step a step of flowing a second medium having a temperature different from the temperature of the first medium into the flow path of each thermoelectric generation tube, and an electric power generated in the plurality of thermoelectric generation tubes via the plurality of conductive members And a step of taking out.
  • thermoelectric generator unit of the present disclosure may be used alone without being connected and used via the buffer tank.
  • the thermoelectric generator unit of the present disclosure includes a plurality of thermoelectric generator tubes, and each of the plurality of thermoelectric generator tubes has an outer peripheral surface and an inner peripheral surface, and a flow path defined by the inner peripheral surface, An electromotive force is generated in the axial direction of each thermoelectric generation tube due to a temperature difference between the surface and the outer peripheral surface.
  • the plurality of thermoelectric generation tubes are electrically connected in series by a plurality of plate-like conductive members.
  • the plurality of plate-like conductive members may be located inside or outside the container surrounding the thermoelectric generation tube as long as they are insulated from the heat medium.
  • thermoelectric generation system can be used as a generator that uses heat such as exhaust gas discharged from an automobile or a factory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本願に開示された熱発電素子は、互いに対向して配置された第1電極E1および第2電極E2と、第1主面および第2主面と、第1主面および第2主面の間に位置しており、第1電極および第2電極がそれぞれ電気的に接続された第1端面25および第2端面27とを有する積層体28とを備え、積層体は、相対的にゼーベック係数が低く熱伝導率が高い第1材料から形成された第1層と、相対的にゼーベック係数が高く熱伝導率が低い第2材料から形成された第2層とが交互に積層された構造を有し、複数の第1層と複数の第2層の積層面は、第1電極および第2電極が対向する方向に対して傾斜しており、積層体は、第1主面および第2主面の少なくとも一方に炭素を含む炭素含有層を有し、第1主面と第2主面との温度差によって第1電極および第2電極間に電位差が発生する。

Description

熱発電素子、熱発電ユニットおよび熱発電システム
 本願は、熱を電力に変換する熱発電素子に関する。また、熱発電素子を備える熱発電ユニットおよび熱発電ユニットを含む熱発電システムに関する。
 熱電変換素子(Thermoelectric conversion element)は、熱を電力に、あるいは電力を熱に変換することができる素子である。ゼーベック効果を示す熱電材料から形成した熱電変換素子は、比較的低温(例えば200℃以下)の熱源から熱エネルギーを得て電力に変換することができる。このような熱電変換素子を利用した熱発電技術によれば、従来、蒸気、温水、排気ガスなどの形態で未利用のまま周囲環境に捨てられていた熱エネルギーを回収して有効に活用することが可能になる。
 以下、熱電材料から形成した熱電変換素子を「熱発電素子(Thermoelectric generator)」と称する。一般の熱発電素子は、キャリアの電気的極性が互いに異なるp型半導体およびn型半導体が組み合わされた、いわゆる「π型構造」を有する(例えば、特許文献1)。「π型構造」の熱発電素子では、p型半導体とn型半導体とが電気的に直列に、かつ熱的に並列に接続される。「π型構造」では、温度勾配の方向と電流の流れる方向とは互いに平行または反平行である。このため、高温熱源側または低温熱源側の電極に出力端子を設ける必要がある。したがって、各々が「π型構造」を有する複数の熱発電素子を電気的に直列に接続するためには、複雑な配線構造が必要になる。
 特許文献2は、互いに対向する第1電極および第2電極の間に、ビスマス層と、ビスマスとは異なる金属からなる金属層とが交互に積層された積層体を有する熱発電素子を開示している。特許文献2に開示される熱発電素子では、第1電極と第2電極とを結ぶ直線の方向に対して積層面が傾斜している。また、特許文献3ならびに非特許文献1および2は、チューブ型熱発電素子を開示している。
特開2013-016685号公報 国際公開第2008/056466号 国際公開第2012/014366号
菅野他、第72回応用物理学会学術講演会 講演予稿集、30a-A-14「非対角熱電効果を用いたチューブ型発電デバイス」 (2011) A.Sakai et al., International conference on thermoelectrics 2012 "Enhancement in performance of the tubular thermoelectric generator (TTEG)" (2012)
 熱発電技術を利用した実用的な熱発電素子、熱発電ユニットおよびシステムが望まれている。
 本発明の一態様である熱発電素子は、互いに対向して配置された第1電極および第2電極と、第1主面および第2主面と、前記第1主面および第2主面の間に位置しており、前記第1電極および第2電極がそれぞれ電気的に接続された第1端面および第2端面とを有する積層体とを備え、前記積層体は、相対的にゼーベック係数が低く熱伝導率が高い第1材料から形成された第1層と、相対的にゼーベック係数が高く熱伝導率が低い第2材料から形成された第2層とが交互に積層された構造を有し、前記複数の第1層と前記複数の第2層の積層面は、前記第1電極および第2電極が対向する方向に対して傾斜しており、前記積層体は、前記第1主面および第2主面の少なくとも一方に炭素を含む炭素含有層を有し、前記第1主面と前記第2主面との温度差によって前記第1電極および第2電極間に電位差が発生する。
 本開示の熱発電素子、熱発電ユニットおよびシステムによれば、熱発電の実用性が向上する。
熱発電素子10の断面図である。 図1Aの熱発電素子10の上面図である。 熱発電素子10の上面10aに高温熱源120を接触させ、かつ、下面10bに低温熱源140を接触させた状態を示す図である。 熱発電チューブTの概略構成を示す斜視図である。 本開示による熱発電素子の一実施形態を示す断面図である。 本開示による熱発電素子の一実施形態を示す他の断面図である。 炭素含有層の下層に中間層を備える熱発電素子を示す模式的な断面図である。 直方体形状を有する熱発電素子10Mの模式的な断面図である。 (a)から(d)は、積層体を形成するための圧粉体の形状を示す側面図、断面図上面図および斜視図である。 (a)および(b)は、熱発電素子の製造工程を示す工程図である。 (a)は、熱発電素子の製造工程を示す工程図であり、(b)はその断面図である。 (a)および(b)は、熱発電素子の製造工程を示す工程図である。 (a)は、熱発電素子の製造工程を示す工程図であり、(b)はその断面図である。 熱発電素子の製造工程を示す工程図である。 (a)は、実施例および参考例の熱発電素子の発電特性を示す図であり、(b)は比較例の熱発電素子の発電特性を示す図である。 本開示による熱発電システムが備える例示的な熱発電ユニット100の概略構成を示す斜視図である。 熱発電チューブTの外周面と内周面との間に温度差を与えるための構成の例を示すブロック図である。 熱発電チューブT1~T10の電気的接続の例を模式的に示す図である。 (a)は、熱発電ユニット100が備える熱発電チューブTのうちの1つ(ここでは熱発電チューブT1)を示す斜視図であり、(b)は、熱発電チューブT1の軸(中心軸)を含む平面に沿って熱発電チューブT1を切断したときの断面を示す図である。 (a)は、本開示の熱発電システムが備える熱発電ユニットの一態様を示す正面図であり、(b)は、熱発電ユニット100の側面のうちの一つを示す図(ここでは右側面図)である。 図16(b)のM-M断面の一部を示す図である。 (a)は、プレート36の一部の断面を示す図であり、(b)は、(a)において矢印V1で示す方向から見たときの導電性部材J1の外観を示す図である。 (a)は、導電性部材J1を収容するチャネルC61近傍の分解斜視図であり、(b)は、第2プレート部分36bのシール面(第1プレート部分36aと対向する面)のうち、開口部A61およびA62に対応する部分を示す斜視図である。 (a)は、導電性リング状部材56の1つの例示的な形状を示す斜視図であり、(b)は、導電性リング状部材56の他の例の形状を示す斜視図である。 (a)は、導電性リング状部材56および熱発電チューブT1を示す断面図であり、(b)は、導電性リング状部材56に熱発電チューブT1の端部が挿入された状態を示す断面図であり、(c)は、導電性リング状部材56および導電性部材J1に熱発電チューブT1の端部が挿入された状態を示す断面図である。 図16(a)に示される熱発電ユニット100の側面のうちの他の一つを示す図(左側面図)である。 (a)は、プレート34の一部の断面を示す図であり、(b)は、(a)において矢印V2で示す方向から見たときの導電性部材K1の外観を示す図である。 導電性部材K1を収容するチャネルC41近傍の分解斜視図である。 熱発電チューブTの外周面に接する媒体と、各熱発電チューブT1~T10の内周面に接する媒体とが混ざり合わないように分離するための構造の例を示す断面図である。 (a)は、本開示の熱発電システムの実施形態を示す図であり、(b)は、(a)のB-B線断面図であり、(c)は、(a)に示す熱発電システムが備えるバッファ槽の構成例を示す斜視図である。 (a)は、本開示の熱発電システムの他の実施形態を示す図であり、(b)は、(a)のB-B線断面図であり、(c)は、(a)のC-C線断面図である。 (a)は、本開示の熱発電システムの更に他の実施形態を示す図であり、(b)は、(a)のB-B線断面図である。 (a)は、本開示の熱発電システムの更に他の実施形態を示す図であり、(b)は、(a)のB-B線断面図である。 本開示の熱発電システムの更に他の実施形態を示す図である。 本開示による熱発電システムが備える電気回路の構成例を示すブロック図である。 本開示による熱発電システムが使用される形態の構成例を示すブロック図である。 熱発電ユニット100に導入された高温媒体および低温媒体の流れ方向の例を模式的に示す図である。 (a)は、導電性リング状部材56および導電性部材J1の一部を示す断面図であり、(b)は、導電性部材J1の貫通孔Jh1に導電性リング状部材56の弾性部56rが挿入された状態を示す断面図である。 端部に面取り部Cmを有する熱発電チューブTの断面図である。 (a)および(b)は、それぞれ、電気的に直列に接続された熱発電チューブTを流れる電流を模式的に示す図である。 2個の開口部A61、A62およびその近傍における電流の向きを模式的に示す図である。 (a)および(b)は、それぞれ、電極に極性の表示を有する熱発電チューブを示す斜視図である。 (a)および(b)は、高温媒体と低温媒体との分離および熱発電チューブと導電性部材との間の電気的接続を実現するための構造の他の例を示す断面図である。
 本願の出願人は、上述したように、特許文献2、3において、ビスマス層と、ビスマスとは異なる金属からなる金属層とが交互に積層された積層体を有する熱発電素子を開示している。この熱発電素子は、第1電極と第2電極とを結ぶ直線の方向に対して積層面が傾斜していることによって、従来の熱発電素子とは異なり、温度勾配の方向と電流の流れる方向とを直交させることができる。これによって、従来の熱発電素子を用いた熱発電システムでは、実現が容易ではなかった高温熱源および低温熱源の配置を取ることができ、高温熱源および低温熱源をより利用しやすい熱発電システムを提供し得る。
 本開示による熱発素子の実施形態を説明する前に、この熱発電素子の基本構成と動作原理を説明する。後述するように、本開示の熱発電素子はチューブ状を有する場合、より高温熱源および低温熱源を利用しやすい場合がある。しかし、チューブ状の熱発電素子の動作原理は、より単純な形状を有する熱発電素子について説明することが可能であり、その方が理解しやすい。
 まず、図1Aおよび図1Bを参照する。図1Aは、概略的に直方体の形状を有する熱発電素子10の断面図であり、図1Bは熱発電素子10の上面図である。参考のため、図1Aおよび図1Bには、直交するX軸、Y軸、Z軸が示されている。図示されている熱発電素子10は、金属層20と熱電材料層22とが傾斜した状態で交互に積層された構造(積層体)を有している。この例において、積層体の形状は直方体であるが、他の形状であっても動作原理は同じである。
 図示されている熱発電素子10では、上記の積層体を左右から挟み込むように第1電極E1および第2電極E2が設けられている。図1Aに示される断面において、積層面はZ軸方向に対して角度θ(0<θ<πラジアン)だけ傾斜している。
 このような構成を有する熱発電素子10では、上面10aと下面10bとの間に温度差が与えられると、熱電材料層22よりも熱伝導性の高い金属層20を優先的に熱が伝達するため、各熱電材料層22の温度勾配にZ軸方向成分が生じる。このため、各熱電材料層22にはゼーベック効果によってZ軸方向の起電力が発生し、起電力が積層体内で直列的に重畳される結果、全体として第1電極E1と第2電極E2との間に大きな電位差が発生する。図1Aおよび図1Bに示される積層体を有する熱発電素子は、特許文献2に開示されている。特許文献2の開示内容の全体を本願に援用する。
 図2は、熱発電素子10の上面10aに高温熱源120を接触させ、かつ、下面10bに低温熱源140を接触させた状態を示している。この状態では、高温熱源120から低温熱源140に熱発電素子10を介して熱Qが流れ、熱発電素子10から第1電極E1および第2電極E2を介して電力Pを取り出すことができる。大局的に見た場合、熱発電素子10では、温度勾配の方向(Y軸方向)と電流の方向(Z軸方向)とは直交しており、電力を取り出すための一対の電極E1、E2間に温度差を与える必要がない。
 簡単のため、熱発電素子10の積層体の形状が直方体である場合を説明したが、以下の実施形態では、積層体がチューブ形状を有する熱発電素子を例に挙げる。このようなチューブ状の熱発電素子を本明細書では「熱発電チューブ(Tubular Thermoelectric Generator)」と称する。なお、本明細書において、「チューブ」の用語は「パイプ」の用語とは区別されず、「チューブ」および「パイプ」の両方を含むように解釈される。
 図3は、熱発電チューブTの一例を示す斜視図である。熱発電チューブTは、中央に貫通孔を有する金属層20および熱電材料層22が傾斜した状態で交互に積層されたチューブ本体Tbと、一対の電極E1、E2とを備えている。このような熱発電チューブTを製造する方法は、例えば特許文献3に開示されている。特許文献3に開示されている方法によれば、底部に孔を有する金属カップと、同様に底部に孔を有する熱電材料カップとを交互に重ね合わせ、その状態でプラズマ焼結を行うことにより、両者を結合する。特許文献3の開示内容の全体を本願に援用する。
 図3の熱発電チューブTは、その内周面によって規定される内部の流路(以下、「内部流路」と称することがある。)を、例えば高温媒体が流れるように配管に接続される。その場合、熱発電チューブTの外周面は低温媒体に接触させられる。こうして、熱発電チューブTの内周面と外周面との間に温度差が与えられることにより、一対の電極E1、E2の間に電位差が発生し、電力を取り出すことが可能になる。
 なお、本明細書では、「高温媒体」または「低温媒体」における「高温」および「低温」の語は、それぞれの媒体の具体的な温度ではなく、これらの間の相対的な温度の高低を表す。また、「媒体」は、典型的には、気体、液体、またはこれらの混合体からなる流体である。「媒体」は、流体中に分散した粉末などの固体を含んでいてもよい。
 熱発電チューブTの形状は、チューブ状であれば良く、円筒に限定されない。言い換えると、熱発電チューブTの軸に対して垂直な面で熱発電チューブTを切断したとき、「外周面」および「内周面」の切断面上における形状は円である必要は無く、楕円、多角形などの閉曲線であればよい。また、熱発電チューブTの軸は、典型的には直線であるが、直線に限定されない。これらのことは、図1A、図1Bおよび図2を参照しながら説明した熱発電の原理から明らかである。
 このように、特許文献3に開示された熱発電チューブTによれば、熱電材料層22を含むチューブ本体Tbが、高温媒体や低温媒体と接触して熱を利用したり、チューブ本体Tbが高温媒体と低温媒体とを区切る壁となり得る。このため、従来の熱発電素子と比べて、熱の利用効率を高めることができる。
 しかし、チューブ本体Tbが高温媒体や低温媒体と接触する場合、媒体が流体であれば、チューブ本体Tbが媒体からずり応力(せん断応力)を受け、内周面や外周面が削れてしまう。また、高温媒体や低温媒体中に不純物が含まれる場合、チューブ本体Tbの内周面や外周面に不純物が堆積し、熱発電チューブTの発電特性に影響を与えたり、高温媒体や低温媒体の流路を妨げる、あるいは、媒体の流れを乱すなどの課題が生じ得る。
 本願発明者は、このような課題に鑑み、新規な熱発電素子および熱発電システムを想到した。本発明の一態様の概要は以下の通りである。
 本発明の一態様である熱発電素子は、互いに対向して配置された第1電極および第2電極と、第1主面および第2主面と、前記第1主面および第2主面の間に位置しており、前記第1電極および第2電極がそれぞれ電気的に接続された第1端面および第2端面とを有する積層体とを備え、前記積層体は、相対的にゼーベック係数が低く熱伝導率が高い第1材料から形成された第1層と、相対的にゼーベック係数が高く熱伝導率が低い第2材料から形成された第2層とが交互に積層された構造を有し、前記複数の第1層と前記複数の第2層の積層面は、前記第1電極および第2電極が対向する方向に対して傾斜しており、前記積層体は、前記第1主面および第2主面の少なくとも一方に炭素を含む炭素含有層を有し、前記第1主面と前記第2主面との温度差によって前記第1電極および第2電極間に電位差が発生する。
 前記第1主面および前記第2主面は平面であり、前記積層体は直方体形状を有していてもよい。
 前記積層体は管形状を有し、前記第1主面および前記第2主面は、それぞれ、前記管の外周面および内周面であってよい。
 前記第2材料はBiを含み、前記第1材料は、Biを含まず、Biとは異なる金属であってよい。
 前記炭素含有層は、前記第1材料および前記炭素を含む第1部分と前記第2材料および前記炭素を含む第2部分とを有していてもよい。
 前記積層体は焼結体であり、前記炭素含有層は、前記焼結体の一部であってよい。
 本発明の一態様である熱発電チューブは上記熱発電素子を含み、前記積層体が管形状を有する。
 本発明の一態様である熱発電素子の製造方法は、相対的にゼーベック係数が低く熱伝導率が高い第1材料の原料からなり、一対の積層面と、前記一対の積層面との間に位置し、前記一対の積層面に対して非垂直な第1側面および第2側面とを有する複数の第1圧粉体、および、相対的にゼーベック係数が高く熱伝導率が低い第2材料の原料からなり、一対の積層面と、前記一対の積層面との間に位置し、前記一対の積層面に対して非垂直な第1側面および第2側面とを有する複数の第2圧粉体を用意する工程(A)と、前記複数の第1圧粉体および前記複数の第2圧粉体を、前記積層面が互いに接触するように交互に積層することにより、積層圧粉体を形成し、前記複数の第1圧粉体および前記複数の第2圧粉体の各第1側面および各第2側面が、それぞれ前記積層圧粉体の第1主面および第2主面を構成し、前記第1主面および第2主面の少なくとも一方に、カーボンシート、カーボンパウダーおよびグラファイトシートから選ばれる1つを配置する工程(B)と、前記カーボンシートが配置された前記積層圧粉体を焼結する工程(C)とを包含し、前記焼結する工程(C)の後、前記1つが配置されていた前記第1主面または前記第2主面から炭素を含む部分が実質的に除去されない。
 前記焼結する工程(C)において、前記積層圧粉体に圧力を加えながら前記前記積層圧粉体を焼結してもよい。
 前記焼結する工程(C)は、ホットプレス法または放電プラズマ法によって行われてもよい。
 前記複数の第1圧粉体および複数の第2圧粉体のそれぞれは、前記第1および第2側面を外周面および内周面とする管形状を有し、前記第1側面と第2側面は、前記一対の積層面によって接続されており、前記積層面は円錐台の側面形状を有していてもよい。
 本発明の一態様である熱発電ユニットは、上記熱発電チューブを備える熱発電ユニットであって、前記複数の熱発電チューブの各々は、外周面および内周面と、前記内周面によって区画される流路とを有し、前記内周面と前記外周面との間の温度差によって各熱発電チューブの軸方向に起電力を発生するように構成されており、前記熱発電ユニットは、前記複数の熱発電チューブを内部に収容する容器であって、前記内部に流体を流すための流体入口および流体出口と、各熱発電チューブの前記流路が挿入される複数の開口部とを有する容器と、前記複数の熱発電チューブを電気的に接続する複数の導電性部材と、を更に備え、前記容器は、前記複数の熱発電チューブを取り囲む胴部と、前記胴部に固定され、前記複数の開口部が設けられた一対のプレートであって、前記複数の導電性部材を収容するチャネルが前記複数の開口部の少なくとも2つを相互に連結するように形成された一対のプレートとを有し、各プレートの前記複数の開口部には、それぞれ、各熱発電チューブの端部が挿入されており、前記プレートにおける前記チャネルには、前記複数の導電性部材が収容されており、前記複数の熱発電チューブは、前記チャネルに収容された前記複数の導電性部材によって電気的に直列に接続されている。
 本発明の一態様である熱発電システムは、上記熱発電ユニットと、前記容器の前記流体入口および前記流体出口に連通した第1媒体路と、前記複数の熱発電チューブの前記流路に連通した第2媒体路と、前記複数の導電性部材に電気的に接続され、前記複数の熱発電チューブで発生した電力を取り出す電気回路とを備える。
 以下本発明による熱発電素子、熱発電ユニット、熱発電システムの実施の形態を詳細に説明する。
 (第1の実施形態)
 図4Aは、本実施形態の熱発電素子10の断面を示している。本実施形態の熱発電素子10は、図3に示すように管形状を有する。図4Aは管の軸を含む断面を示している。熱発電素子10は、積層体28と第1電極E1および第2電極E2とを備える。積層体28は、第1主面である外周面24と、第2主面である内周面26と、外周面24および内周面26の間に位置し、第1電極E1および第2電極E2がそれぞれ電気的に接続された第1端面25および第2端面27とを有する。積層体28は、複数の熱電材料層22と複数の金属層20とを含む。複数の熱電材料層22と複数の金属層20とは交互に積層されている。
 内周面26によって区画される領域が流路F1を形成している。図示されている例では、外周面24および内周面26は、それぞれ、軸方向に垂直な断面の形状が円であるが、これらの形状は前述したように、円に限定されず、楕円または多角形であってもよい。軸方向に垂直な面で切断したときの流路の断面積の大きさは、特に限定されない。熱発電素子の内部流路に供給される媒体の流量に応じて、流路の断面積または熱発電素子の本数が適宜設定されればよい。
 図示されている例において、第1電極E1および第2電極E2は、それぞれ、円筒形状を有しているが、第1電極E1および第2電極E2の形状はこれに限定されない。第1電極E1および第2電極E2は、それぞれ、積層体28の両端またはその近傍において、金属層20および熱電材料層22の少なくとも一方に電気的に接続され、かつ、流路F1を閉塞しない任意の形状を有し得る。図4Aの例では、第1電極E1および第2電極E2の外周面が積層体28の外周面24に整合しているが、第1電極E1および第2電極E2の外周面と積層体28の外周面24とが整合している必要はない。例えば、第1電極E1および第2電極E2の外周面の直径(外径)が積層体28の外周面24の直径(外径)よりも大きくてもよいし、小さくてもよい。また、軸方向に垂直な平面で切った第1電極E1および第2電極E2の断面形状が、軸方向に垂直な平面で切った積層体28の外周面24の断面形状と異なっていてもよい。
 第1電極E1および第2電極E2は、導電性を有する材料、典型的には金属から形成される。第1電極E1および第2電極E2は、積層体28の両端またはその近傍に位置する1個または複数の金属層20から構成されていてもよい。その場合、積層体28の一部が第1電極E1および第2電極E2として機能することになる。あるいは、第1電極E1および第2電極E2は、積層体28の外周面の一部を覆うように設けられた金属層または輪帯状金属部材から形成されていてもよいし、積層体28の内周面26と接触するように積層体28の両端から流路F1内に部分的に嵌め込まれた一対の円筒状金属部材であってもよい。
 金属層20および熱電材料層22は、図4Aに示されるように、傾斜した状態で交互に積層されている。このような構成を有する熱発電素子は、基本的には、図1および図2を参照しながら説明した原理と同様の原理で動作する。したがって、熱発電素子10の外周面24と内周面26との間に温度差を与えると、第1電極E1と第2電極E2との間に電位差が生じる。このときの温度勾配の概略的な方向は、外周面24と内周面26とに垂直な方向である。
 積層体28における積層面の、第1電極E1と第2電極E2とが対向する方向に対する傾斜角度(以下、単に「傾斜角度」と称する。)θは、例えば、5°以上60°以下の範囲内に設定され得る。傾斜角度θは、20°以上45°以下であってもよい。傾斜角度θの適切な範囲は、金属層20を構成する材料と熱電材料層22を構成する熱電材料との組み合わせに依存して異なる。
 積層体28における金属層20の厚さと熱電材料層22の厚さとの比(以下、単に「積層比」と称する。)は、例えば、20:1~1:9の範囲に設定され得る。ここで、金属層20の厚さは、積層面に垂直な方向における厚さ(図4A中、Thで示す厚さ)を意味する。同様に、熱電材料層22の厚さは、積層面に垂直な方向における厚さを意味する。なお、金属層20および熱電材料層22の積層の総数は適宜設定され得る。
 金属層20は、任意の金属材料から形成され得、例えばニッケルまたはコバルトから形成され得る。ニッケルおよびコバルトは、高い熱発電特性を示す金属材料の例である。金属層20は、銀または金を含んでいてもよい。金属層20は、これらの例示された金属材料を単独で含んでいてもよいし、合金として含んでいてもよい。金属層20が合金から形成される場合、この合金が、銅、クロムまたはアルミニウムを含んでいてもよい。このような合金の例は、コンスタンタン、クロメルまたはアルメルである。
 熱電材料層22は、使用温度に応じて任意の熱電材料から形成され得る。熱電材料層22に使用され得る熱電材料の例は、Bi、Sbなどの単元素からなる熱電材料、BiTe系、PbTe系、SiGe系などの合金系熱電材料、CaxCoO2、NaxCoO2、SrTiO3などの酸化物系熱電材料を含む。本明細書における「熱電材料」とは、絶対値が30μV/K以上のゼーベック係数を有し、かつ、電気抵抗率が10mΩcm以下の材料を意味する。このような熱電材料は、結晶でも、非晶質でもよい。高温媒体の温度が200℃程度またはそれ以下である場合、熱電材料層22は、例えばBiSbTe系合金の緻密体から形成され得る。BiSbTe系合金の代表的な化学組成は、Bi0.5Sb1.5Te3であるが、これに限定されない。BiSbTeはSeなどのドーパントを含んでいてもよい。BiとSbの組成比は、適宜調整され得る。
 熱電材料層22を構成する熱電材料の他の例としては、BiTe、PbTeなどが挙げられる。熱電材料層22がBiTeから構成される場合、BiTeの化学組成をBi2TeXと表記したとき、2<X<4であればよい。代表的な化学組成は、Bi2Te3である。Bi2Te3は、SbまたはSeを含有し得る。Sbを含有するBiTeの化学組成は(Bi1-YSbY2TeXのように表される。このとき、0<Y<1であれば良く、0.6<Y<0.9であるとより好ましい。
 第1電極E1および第2電極E2を構成する材料は、導電性に優れる材料であれば任意である。第1電極E1および第2電極E2は、銅、銀、モリブデン、タングステン、アルミニウム、チタン、クロム、金、白金、インジウムなどの金属から形成され得る。あるいは、窒化チタン(TiN)、スズ添加酸化インジウム(ITO)、酸化スズ(SnO2)などの窒化物または酸化物から形成されてもよい。ハンダ、銀ロウ、導電性ペーストなどから第1電極E1または第2電極E2を形成してもよい。なお、チューブ本体Tb1の両端が金属層20である場合、前述したように、第1電極E1および第2電極E2は、金属層20で代用され得る。
 本明細書では、熱発電チューブの典型例として、金属層と熱発電材料層とが交互に積層された構成を備える素子を説明しているが、本開示に使用され得る積層体の構造は、このような例に限定されない。相対的にゼーベック係数が低く熱伝導率が高い第1材料から形成された第1層と、相対的にゼーベック係数が高く熱伝導率が低い第2材料から形成された第2層とを積層すれば、上述した熱発電は可能である。金属層20および熱電材料層22は、それぞれ、第1層および第2層の例である。
 熱発電素子10の積層体28は、外周面24および内周面26の少なくとも一方に炭素を含む炭素含有層を有する。本実施形態では、積層体28は、外周面24および内周面26に、それぞれ、炭素含有層12および炭素含有層14を含んでいる。
 炭素含有層12は、積層体28の外周面24から内部にかけて、厚さt12を有し、この範囲で積層体28に炭素が拡散している。より具体的には、炭素含有層12は、金属層20に炭素が拡散している部分12mと熱電材料層22に炭素が拡散している部分12hとを含んでいる。
 同様に、炭素含有層14は、積層体28の内周面26から内部にかけて、厚さt14を有し、この範囲で積層体28に炭素が拡散している。より具体的には、炭素含有層14は、金属層20に炭素が拡散している部分14mと熱電材料層22に炭素が拡散している部分14hとを含んでいる。金属層20や熱電材料層22が炭素を含有している場合には、部分12m、12h、14m、14hは、金属層20や熱電材料層22よりも多く炭素を含有している領域として定義される。
 炭素含有層12および炭素含有層14は炭素を含んでいることによって、特に熱電材料層22よりも高い硬度を有する。したがって、高温媒体や低温媒体の流体が接しても、外周面24および内周面26が研削されるのを抑制することができる。また、炭素含有層12および炭素含有層14の外周面24および内周面26側で炭素の濃度が高い場合、外周面24および内周面26が平滑になり、高温媒体や低温媒体に含まれ得る不純物の堆積や付着が抑制される。
 炭素含有層12および炭素含有層14の硬度の向上および表面平滑性の向上に、炭素含有層12および炭素含有層14における炭素の濃度および厚さt12、t14は影響し得る。このため、熱発電素子10に求められる研削に対する耐久性や不純物付着の抑制の能力に応じてこれらを決定することができる。
 具体的には、炭素含有層12の厚さt12および炭素含有層14の厚さt14が大きいほど、研削に対する耐久性は高まる。しかし、厚さt12および炭素含有層14の厚さt14が大きくなると、金属層20および熱電材料層22において、設計された特性を発揮する部分が減少し、熱発電素子10の発電能力が低下し得る。このため、熱発電素子10の発電能力と研削に対する耐久性とを考慮し、厚さt12および厚さt14を決定することができる。例えば、積層体28の管形状の厚さ、つまり、外周面24および内周面26の間隔が1mm~3mm程度である場合、厚さt12および厚さt14は100μmから300μm程度に設定することができる。
 また、炭素含有層12および炭素含有層14の外周面24側および内周面26側における炭素濃度が高いほど、外周面24および内周面26が平滑になると考えられる。このため、炭素含有層12および炭素含有層14の外周面24側および内周面26側は実質的に炭素のみを含む部分があってもよい。ただし、炭素濃度が高い部分が厚いと、炭素含有層12および炭素含有層14、特に、熱電材料層22に炭素が拡散した部分14hおよび12hに導電性が生じ、熱発電素子10の発電能力が低下し得る。つまり、炭素含有層12および炭素含有層14は導電性を有さず、絶縁性を有すると有益である。この点を考慮する限り、炭素含有層12および炭素含有層14における炭素濃度は、厚さ方向に均一であってもよいし、外周面24および内周面26側の方が内部よりも高くなっていてもよい。
 典型的には積層体28は焼結体であり、炭素含有層12および炭素含有層14は、それぞれ焼結体の一部である。焼結体の一部として炭素含有層12および炭素含有層14を設ける場合、以下において詳細に説明するように、積層体28の圧粉体の外周面24および内周面26に対応する面にカーボンシート、カーボンパウダー、グラファイトシートなどを配置し、圧粉体を焼結することによって、炭素が圧粉体内に拡散し、焼結に伴って、炭素含有層12および炭素含有層14が、焼結した積層体28の外周面24および内周面26に形成される。
 このように本実施形態の熱発電素子10によれば、外周面24および内周面26の少なくとも一方に炭素含有層を有する。炭素含有層は、高い硬度を有するため、流体が接しても、外周面24および内周面26の少なくとも一方が研削されるのを抑制することができる。また、炭素含有層の平滑性によって、高温媒体や低温媒体に含まれ得る不純物の堆積や付着が抑制される。
 なお、上述したように熱発電素子はチューブ形状に限られず、直方体形状を有していてもよい。例えば図4Bに示すように熱発電素子は、平面によって構成される第1主面24’’、第2主面26’’を有する直方体形状を備えていてもよい。この場合、第1主面24’’および第2主面26’’に炭素含有層12および炭素含有層14がそれぞれ位置している。
 図4Cに、炭素含有層の下層に中間層を備える熱発電素子を示す。図4Cに示す熱発電素子10Mは、炭素含有層12の下層、すなわち積層体28内において炭素含有層12よりも外周面24から遠い側に中間層12Mを有している。また、熱発電素子10Mは、炭素含有層14の下層、すなわち積層体28内において炭素含有層14よりも内周面26から遠い側に中間層14Mを有している。中間層12M、14Mは、半導体層または絶縁層である。
 上述したように、炭素含有層が金属的な性質を有する場合には、熱発電素子の発電能力が低下することがある。後に実施例を参照して説明するように、中間層12M、14Mを設けることにより、熱発電素子の発電能力の低下を抑制し得る。なお、このような中間層は、積層体28の外周面24側または内周面26側の少なくとも一方に設けることができる。
 中間層12M、14Mの材料としては、比較的高い電気抵抗値が得られれば特に限定されない。例えば、中間層12M、14Mの材料は、酸化物、炭化物、窒化物、有機物等から適宜選択することができる。安定な材料として、アルミナ、窒化ホウ素等を用いることができる。中間層12M、14Mは、規則的な結晶構造を持たないアモルファス状であってもよい。また、十分な絶縁性がえられれば、中間層12M、14Mの厚さは均一である必要はなく、1nm~100μm程度の厚さであってもよい。熱発電素子の発電性能を低下させないという観点から、半導体層または絶縁体層は十分に薄く、また熱伝導性が高いと有益である。なお、十分な電気抵抗が損なわれない限りにおいて、炭素含有層を形成するためのカーボンシート等からの中間層への元素の拡散、および/または積層体28からの中間層への元素の拡散は許容され得る。
 図4Cに例示した構成では、中間層12Mは、金属層20に絶縁材料または半導体材料が拡散している部分12Mm(以下、「第1部分12Mm」ということがある)と熱電材料層22に絶縁材料または半導体材料が拡散している部分12Mh(以下、「第2部分12Mh」ということがある)とを含んでいる。しかしながら、中間層12Mは、第1部分12Mmまたは第2部分12Mhの少なくとも一方を含んでいればよい。同様に、中間層14Mは、金属層20に絶縁材料もしくは半導体材料が拡散している部分14Mm、または熱電材料層22に絶縁材料もしくは半導体材料が拡散している部分14Mhの少なくとも一方を含んでいればよい。
 図4Bを参照して説明したように、熱発電素子の形状はチューブ形状に限られない。図4Dは、直方体形状を有する熱発電素子10Mの模式的な断面を示す。図4Dに示す熱発電素子10Mは、平面によって構成される第1主面24’’、第2主面26’’を有する直方体形状を備える。図示する例では、第1主面24’’および第2主面26’’に炭素含有層12および炭素含有層14がそれぞれ位置している。さらに、炭素含有層12の下層に中間層12Mが、炭素含有層14の下層に中間層14Mがそれぞれ位置している。
 次に、図5から図9を参照しながら、熱発電素子10の製造方法の実施形態を説明する。
 まず、金属層20および熱電材料層22を構成する材料の原料からなる圧粉体を用意する。より具体的には、金属層20を構成する材料の原料の粉末および熱電材料層20を構成する材料の原料の粉末を用意し、それぞれの粉末をプレス成型などによってかため、圧粉体20’および圧粉体22’を形成する。
 図5(a)から(d)は、それぞれ、金属層20となる圧粉体20’および熱電材料層22となる圧粉体22’の形状を示す側面図、断面図、上面図および斜視図である。圧粉体20’および圧粉体22’は、それぞれ、内周面23aおよび外周面23bを有する管形状を備えている。内周面23aおよび外周面23bは、円錐台形状の積層面23cおよび積層面23dによって接続されている。内周面23aおよび外周面23bが形成する円筒の直径はそれぞれdinおよびdoutである。管形状の軸を通る断面を見た場合(図5(b))、内周面23aに対して、積層面23cおよび積層面23dはθの角度を成している。
 図6(a)に示すように、内周面23aの直径dinよりわずかに小さい直径を有する中棒71を用意する。図6(b)に示すように、中棒71の外周面にカーボンシート14’を巻きつける。カーボンシート14’には、例えば焼結体を製造する際に用いる離型剤として入手可能なカーボンシートを用いることができる。また、炭素繊維、あるいは、炭素繊維と炭素との複合材料等によって形成されたシート状のカーボン、グラファイトシートなどを用いることができる。カーボンパウダーが分散された樹脂シート等を用いることもできる。カーボンシート14’の厚さは、例えば、100μmから500μmである。
 図7(a)に示すように、カーボンシート14’を巻きつけた中棒71に圧粉体20’および圧粉体22’を交互に挿入し、積層する。これにより、圧粉体20’および圧粉体22’の積層面23dまたは積層面23cが、隣接する圧粉体20’および圧粉体22’の積層面23cまたは積層面23dと接触する。図7(b)は積層した圧粉体20’および圧粉体22’の断面を示している。図7(b)に示すように、圧粉体20’および圧粉体22’の各内周面23aはカーボンシート14’に概ね接するか、近接している。
 図8(a)は、圧粉体20’および圧粉体22’の積層が完了した積層圧粉体80を示している。圧粉体20’および圧粉体22’の各外周面23bが積層圧粉体80の外周面24’を構成する。図には示さないが、圧粉体22’の各内周面23aが積層圧粉体80の内周面を構成しており、この内周面にカーボンシート14’が配置される。
 次に図8(b)に示すように、積層圧粉体80の外周面24’にカーボンシート12’を巻きつける。カーボンシート12’にも上述した材料を用いることができる。これにより、積層圧粉体80の外周面24’および内周面26’にカーボンシート12’およびカーボンシート14’が配置された管形状を有する積層圧粉体81が完成する。
 図9(a)に示すように積層圧粉体81を焼成ダイ72の空間に挿入する。図9(b)は焼成ダイ72に挿入された積層圧粉体81の断面を示している。上述したように、積層圧粉体81において外周面24’にはカーボンシート12’が配置され、内周面26’はカーボンシート14’が配置されている。
 次に、積層圧粉体81を焼成する。焼成は、金属層20、熱電材料層22を構成する材料や、原料粉の形状等に応じて適切な温度を選択し得る。例えば、圧粉体20’にニッケル粉末を用い、圧粉体22’にBiSbTe系合金の粉末を用いる場合、200℃以上600℃以下の範囲で適切な温度を選択することができる。
 緻密な焼成体を得るために、焼成時に積層圧粉体81に圧力を加えてもよい。具体的には、ホットプレス法や放電プラズマ焼結法によって焼成してもよい。例えば、治具73Uおよび73Lを用いて管形状の両端から圧力を加えることによって、焼成ダイ72内で積層圧粉体81は3方向から圧力を受ける。
 また、治具73Uおよび73Lによって、矢印で示すように、積層圧粉体81および焼成ダイ72に直流パルス電圧を印加し、パルス電圧によって、積層圧粉体81を加熱する。これにより、圧粉体20’および圧粉体22’がそれぞれ焼結するとともに、材料が異なる圧粉体20’と圧粉体22’との接合が行われる。
 また、カーボンシート12’およびカーボンシート14’の炭素が、圧粉体20’および圧粉体22’と反応し、積層圧粉体80の外周面24’および内周面26’から炭素が拡散し、炭素を含んで圧粉体20’および圧粉体22’が焼結する。これにより、図4Aに示す熱発電素子10の積層体28が得られる。積層体28において、外周面24および内周面26には、炭素含有層12および炭素含有層14が形成されている。形成された炭素含有層12および炭素含有層14は除去しない。ただし、炭素含有層12および炭素含有層14を実質的に除去しない限り、外周面24および内周面26の表面の平滑性をより高めたり、不要な凹凸を除去するために、炭素含有層12および炭素含有層14の一部を除去してもよい。また、カーボンシート12’およびカーボンシート14’の炭素は、すべて圧粉体20’および圧粉体22’と反応しなくてもよく、実質的に炭素のみを含む層が外周面24’および内周面26’の表層部分に残っていてもよい。
 その後、成形体28の第1端面25および第2端面27に、上述した方法により、第1電極E1および第2電極E2を設け、電気的に接合することにより熱発電素子10が完成する。
 なお、例えば、積層圧粉体80の内周面に接触するカーボンシート14’の積層圧粉体80と対向する面に半導体または絶縁体の粉末を分散させておくことにより、中間層14Mを形成することができる。同様に、積層圧粉体80の外周面24’に巻きつけるカーボンシート12’の積層圧粉体80と対向する面に半導体または絶縁体の粉末を分散させておくことにより、中間層12Mを形成することができる。中間層12M、14Mは、焼結体の一部であり得る。このようにして、図4Cに示す熱発電素子10Mの積層体28を得ることができる。ただし、上述の構成が達成されれば、中間層の形成方法は特定のものに限定されるものではない。上述した方法の他、焼結前の積層圧粉体80の内周面および/または外周面に半導体または絶縁体の粉末を分散させておいてもよい。半導体または絶縁体の粉末を分散させる最も簡便な方法としては、スプレー法による塗布などが挙げられる。
 本実施形態の熱発電素子を下記条件で作製し、特性を調べた。また、比較のため、カーボンシート12’およびカーボンシート14’を用いずに積層体を形成し、炭素含有層のない熱発電素子および炭素含有層のない熱発電素子の外周面および内周面に導電性を有しないエポキシ樹脂を設けた熱発電素子をそれぞれ参考例および比較例として作製し、発電特性等の評価を行った。
 (実施例1)
(1)熱発電素子の作製
 BiSbTe粉末及びニッケル粉末を油圧プレスで加圧し、圧縮して圧粉化する。作製される圧粉体は均一な形状にするためにそれぞれの材料の秤量を行い、1つの圧粉体のサイズが内径10mm、外径14mm、高さ6.4mm及びテーパー部の角度θが20°となるようにそれぞれの粉末質量を調整した。図5(a)から(d)に示すように、上記工程で得られるBiSbTeおよびニッケル粉末の圧粉体22’、20’をそれぞれ17個および18個作製した。
 次に、図6から図9に示すように、厚さ200ミクロンのカーボンシート14’を巻きつけた中棒71に圧粉体20、’22’を交互に積層し、積層圧粉体80を形成した。積層圧粉体80の外周面24’に厚さ200ミクロンのカーボンシート12’を巻きつけ、カーボンシート12’、14’が巻きつけられた積層圧粉体81を得た。
 積層圧粉体81の加圧焼結・接合には放電プラズマ焼結法を用いた。接合は50MPaの加圧下において約500℃で行った。また焼成雰囲気は5×10-3Paの真空であった。高温・加圧環境下での接合後、真空中で室温まで冷却して接合後の積層体を取り出した。圧粉体の積層体は上記の焼結プロセスによって焼結・異種材料の接合が同時に行われた。また、炭素含有層12、14が同時に形成された。得られたチューブの長さは中心軸方向に約55~60mmであった。上記工程を2回繰り返し、得られた2個の部材を半田で接着した。その後、得られたチューブの端部を切断・平坦化処理することで110mm程度の熱発電デバイスが得られた。また熱発電チューブの両端電極として端部に銅チューブを半田で設置した。得られた素子を実施例1の熱発電素子とした。
 なお、上記の方法によって得られた金属層20および熱電材料層22の積層体の、チューブの軸方向を含む断面についてTEM(透過電子顕微鏡)による観察を行った。その結果、金属層20では、積層体28の外周面24から内部にかけて炭素が拡散している部分12mが形成されており(図4C参照)、さらにその内側(外周面24から遠い側)に、酸化ニッケルからなる厚さ10nm程度の酸化物層が存在していることが分かった。また、金属層20では、積層体28の内周面26から内部にかけて炭素が拡散している部分14mが形成されており(図4C参照)、さらにその内側(内周面26から遠い側)に、酸化ニッケルからなる厚さ10nm程度の酸化物層が存在していることが分かった。これらの酸化物層は、チューブ作製時の加熱によって生成されたものと考えられる。
 (実施例2)
 実施例1と同様の方法により、BiSbTe及びニッケル粉末の圧粉体22’、20’をそれぞれ17個および18個作製した。次に、これらの圧粉体の内周面及び外周面に、スプレーを用いて窒化ホウ素を付与することにより、圧粉体の内周面及び外周面に窒化ホウ素膜(絶縁膜)を形成した。その後、実施例1と同様に、厚さ200ミクロンのカーボンシート14’を巻きつけた中棒71に圧粉体20、’22’を交互に積層し、積層圧粉体80を形成した。また、積層圧粉体80の外周面24’に厚さ200ミクロンのカーボンシート12’を巻きつけ、カーボンシート12’、14’が巻きつけられた積層圧粉体81を得た。さらに、実施例1と同様にして、加圧焼結・接合、電極の設置等を行い、実施例2の熱発電素子を得た。
 (実施例3)
 実施例1と同様の方法により熱発電素子を作製した。その後、熱発電素子の外周面および内周面を研磨することにより、炭素含有層12及び炭素含有層14を除去した。熱発電素子の外周面および内周面を更に研磨することにより、前述の酸化物層も除去した。その後、導電性カーボンペーストを熱発電素子の外周面および内周面に塗布し、乾燥させることにより炭素含有層を形成した。これにより、実施例3の熱発電素子を得た。
 (参考例)
 中棒71にカーボンシートを巻きつけず、また積層圧粉体80の外周面24’にカーボンシートを巻きつけないことを除いては実施例1の熱発電素子と同様にして、参考例の熱発電素子を作製した。参考例の熱発電素子の作製方法から明らかなように、参考例の熱発電素子は、炭素含有層を有しない。
 (比較例)
 実施例1の熱発電素子の作製と同様の手順によって熱発電素子を作製した後、リューターで炭素含有層12、14を完全に除去し、内周面および外周面にエポキシ樹脂を塗布した素子を比較例の熱発電素子とした。
(2)発電特性の測定およびその結果
 実施例1、参考例および比較例の熱発電素子の管の内側に90℃の温水を20L/minの流量で、管の外側に10℃の冷水を20L/minの流量で流し、電圧を測定した。
 作製した実施例1の熱発電素子、参考例の熱発電素子および比較例の熱発電素子の発電特性を図11(a)および(b)に示す。
 図11(a)に示すように、実施例1の熱発電素子は参考例の熱発電素子(炭素含有層なし)と比べて、わずかに開放端電圧は低下する。しかし、電圧の低下は、約10%程度である。このため、得られる最大電力も90%程度の低下にとどまる。
 一方、図11(b)に示すように比較例の熱発電素子では、開放端電圧が大きく低下した。具体的には、開放端電圧が30%以上低下した。得られる最大電力も参考例に較べて30%以上低下している。
 これは、実施例1の熱発電素子において、炭素含有層を設けることによって設計通りの発電特性を有する熱電材料層の部分体積が減少したから、あるいは、炭素含有層が導電性を有するからであると考えられる。
 また、図11(b)に示すように、熱発電素子の外周面および内周面を保護する目的で、外周面および内周面にエポキジ樹脂を設けた場合、エポキシ樹脂の熱伝導性が悪いため、熱発電素子の外周面と内周面との間に大きな温度差を設けることができず、開放端電圧が大きく低下したと考えられる。
 実施例1~3の熱発電素子の発電電力の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例3の熱発電素子においても高い発電電力が得られているが、実施例1および実施例2の熱発電素子では、実施例3の熱発電素子よりもさらに高い発電電力が得られている。このことから、炭素含有層の下層に、酸化ニッケルなどを含有する半導体層、あるいは窒化ホウ素などを含有する絶縁層を形成することにより、より高い発電電力が得られることがわかった。
(3)熱発電素子の長時間動作試験およびその結果
 実施例1~3、参考例および比較例の熱発電素子を長時間使用した場合における、外周面および内周面の研削および不純物の堆積について実験をした。具体的には、実施例1~3、参考例および比較例の熱発電素子の管の内側に90℃の温水を10L/minの流量で、管の外側に10℃の冷水を10L/minの流量で30日間流し、測定を継続した。その結果、参考例の熱発電素子においてはチューブ表面に不純物の付着による明らかな変色・材料の剥離が見られた。一方、実施例1~3の熱発電素子では、大きな外見・性能上の変化は見られなかった。
 以上のことから、本実施形態の熱発電素子によれば、炭素含有層を設けることにより、発電特性をほとんど低下させることなく、流体の接触による積層体の削れや不純物の付着を抑制できることが確認できた。また、炭素含有層の下層に半導体層または絶縁体層を形成することにより、発電特性の低下を抑制して、流体の接触による積層体の削れや不純物の付着を抑制しながら、より高い発電電力を得ることができることがわかった。よって、本実施形態の熱発電素子によれば、熱電材料層を含む積層体、つまり、本体チューブを高温熱源媒体や低温熱源媒体と接し、これらの流路を規定する管や壁面として機能させることによって、熱のロスを小さくし、熱電材料層に高い効率で温度差を形成することができる。よって高効率で発電を行うことのできる熱発電素子が実現する。また、炭素含有層によって、積層体の削れや不純物の付着を抑制することができ、耐久性に優れる熱発電素子を実現することができる。
 (第2の実施形態)
 第1の実施形態の熱発電素子を用いた熱発電ユニットおよび熱発電システムの実施の形態を説明する。図12は、本開示による熱発電システムが備える例示的な熱発電ユニット100の概略構成を示す斜視図である。図12に示される熱発電ユニット100は、複数の熱発電チューブTと、これらの熱発電チューブTを内部に収容する容器30と、熱発電チューブTを電気的に接続する複数の導電性部材Jとを備えている。図12の例では、容器30の内側に10本の熱発電チューブT1~T10が収められている。10本の熱発電チューブT1~T10は、典型的には、互いに略平行に配置されるが、配置の態様はこれに限定されない。熱発電チューブT1~T10には第1の実施形態の熱発電素子が用いられる。
 熱発電チューブT1~T10の各々は、前述したように、外周面および内周面と、内周面によって区画される内部流路とを有する。熱発電チューブT1~T10の各々は、内周面と外周面との間の温度差によってそれぞれの軸方向に起電力を発生するように構成されている。すなわち、熱発電チューブT1~T10の各々において、外周面と内周面との間に温度差を与えることにより、熱発電チューブT1~T10から電力が取り出される。例えば、熱発電チューブT1~T10の各々における内部流路に高温媒体を接触させ、かつ、熱発電チューブT1~T10の各々の外周面に低温媒体を接触させることにより、熱発電チューブT1~T10から電力を取り出すことができる。また、逆に、熱発電チューブT1~T10の各々における内周面に低温媒体を接触させ、かつ、外周面に高温媒体を接触させてもよい。
 図12に示す例では、容器30の内部において熱発電チューブT1~T10の外周面に接する媒体と、各熱発電チューブT1~T10の内部流路において各熱発電チューブT1~T10の内周面に接する媒体とは、それぞれ別々の配管(不図示)を介して供給され、混ざり合わないように分離されている。
 図13は、熱発電チューブTの外周面と内周面との間に温度差を与えるための構成の例を示すブロック図である。図13に破線で示す矢印Hは、高温媒体の流れを模式的に示し、実線で示す矢印Lは、低温媒体の流れを模式的に示している。図13に示した例では、高温媒体および低温媒体が、ポンプP1およびP2によってそれぞれ循環する。例えば、熱発電チューブT1~T10の各々の内部流路に高温媒体が供給され、容器30の内部に低温媒体が供給される。図13では記載が省略されているが、高温媒体には不図示の高温熱源(例えば熱交換器)から熱が供給され、低温媒体からは不図示の低温熱源に熱が供給される。高温熱源としては、従来、未利用のまま周囲環境に捨てられていた比較的低温(例えば200℃以下)の蒸気、温水、排気ガスなどを使用することができる。もちろん、より高温の熱源を用いてもよい。
 図13に示す例では、高温媒体および低温媒体が、それぞれ、ポンプP1およびP2によって循環しているが、本開示の熱発電システムは、そのような例に限定されない。高温媒体および低温媒体の一方または両方が、循環系を構成することなく、各々の熱源から周囲環境に捨てられてもよい。例えば、地中から湧き出した高温の温泉水が高温媒体として熱発電ユニット100に与えられ、その後、温度が低下した温泉水として発電以外の用途に利用されたり、そのまま捨てられたりしてもよい。低温媒体についても、地下水、川の水、海水が汲み上げられて熱発電ユニット100に与えられてもよい。これらは、低温媒体として利用された後、必要に応じて適当な温度に低下され、元の水源に返されたり、周囲環境に捨てられたりしてもよい。
 再び図12を参照する。本開示における熱発電ユニット100では、導電性部材Jを介して複数の熱発電チューブTが電気的に接続される。図12の例では、隣接して配置されている2本の熱発電チューブTが個々の導電性部材Jによって接続されている。全体として、複数の熱発電チューブTは電気的に直列に接続されている。例えば、図12において最も手前に見える2本の熱発電チューブT3および熱発電チューブT4の右端部は、導電性部材J3によって相互に接続されている。一方、これら2本の熱発電チューブT3、T4の左端部は、それぞれ、導電性部材J2、J4によって他の熱発電チューブT2、T5に接続されている。
 図15(a)に、熱発電ユニット100が備える熱発電チューブTのうちの1つ(ここでは熱発電チューブT1)の斜視図を示す。図示するように、熱発電チューブT1は、金属層20および熱電材料層22が交互に積層されたチューブ本体Tb1と、一対の電極E1、E2とを備えている。図15(b)は、熱発電チューブT1の軸(中心軸)を含む平面に沿って熱発電チューブT1を切断したときの断面を示す。
 図14は、熱発電チューブT1~T10の電気的接続の例を模式的に示している。図14に示すように、導電性部材J1~J9の各々は、2本の熱発電チューブを電気的に接続している。導電性部材J1~J9は、全体として熱発電チューブT1~T10を電気的に直列に接続するように配列されている。この例では、熱発電チューブT1~T10および導電性部材J1~J9から形成される回路は、一筆書き(traversable)である。この回路は、一部に並列的に接続された熱発電チューブを含んでいて良く、回路が一筆書きであることは必須ではない。
 図14の例では、例えば熱発電チューブT1から熱発電チューブT10に電流が流れる。電流は、熱発電チューブT10から熱発電チューブT1に流れてもよい。この電流の向きは、熱発電チューブTに使用する熱電材料の種類、熱発電チューブTの内周面と外周面との間で生じる熱流の向き、熱発電チューブTにおける積層面の傾斜の方向などに依存して決まる。熱発電チューブT1~T10の接続は、熱発電チューブT1~T10の各々で生じた起電力が相殺されず、重畳されるように決定される。
 なお、熱発電チューブT1~T10を流れる電流の向きと、熱発電チューブT1~T10の内部流路を流れる媒体(高温媒体または低温媒体)の流れ方向とは、相互に無関係である。例えば、図14の例では、熱発電チューブT1~T10の内部流路を流れる媒体の流れ方向は、全てに共通して例えば図中の左側から右側であってもよい。
<熱発電ユニットの一態様>
 次に、図16を参照する。図16(a)は、本開示の熱発電システムが備える熱発電ユニットの一態様を示す正面図であり、図16(b)は、熱発電ユニット100の側面のうちの一つを示す図(ここでは右側面図)である。図16(a)に示されるように、この態様における熱発電ユニット100は、複数の熱発電チューブTと、複数の熱発電チューブTを内部に収容する容器30とを備えている。このような構造は、一見したところ、熱交換器の「シェル・アンド・チューブ構造」に似ている。しかしながら、熱交換器では、複数のチューブは単に流体を流す管路として機能するだけであり、電気的接続は不要である。本開示の熱発電システムでは、実用上、熱交換器には要求されないチューブ相互間の安定した電気的接続を達成することが求められる。
 図13を参照しながら説明したように、熱発電ユニット100には、高温媒体および低温媒体が供給される。例えば、複数の開口部Aを介して、熱発電チューブT1~T10の各々の内部流路に高温媒体が供給される。一方、容器30の内部には、後述する流体入口38aを介して低温媒体が供給される。これにより、熱発電チューブTの外周面と内周面との間に温度差が与えられる。このとき、熱発電ユニット100において、高温媒体と低温媒体との間の熱交換が行われるとともに、熱発電チューブT1~T10の各々において、それぞれの軸方向に起電力が発生する。
 本実施形態における容器30は、熱発電チューブTを取り囲む筒状の胴部(シェル)32と、胴部32の開放された両端を塞ぐように設けられた一対のプレート34、36とを有している。より詳細には、プレート34は胴部32の左端に固定され、プレート36は胴部32の右端に固定されている。プレート34および36には、各々に各熱発電チューブTが挿入される複数の開口部Aが設けられており、プレート34、36の対応する一対の開口部Aには、それぞれ、熱発電チューブTの両端部が挿入されている。
 このプレート34、36は、シェル・アンド・チューブ型熱交換器における管板(チューブシート)と同様に、複数のチューブ(熱発電チューブT)を空間的に分離した状態で支持する機能を有している。しかし、本実施形態におけるプレート34、36は、後に詳しく説明するように、熱交換器の管板には無い電気的接続機能を有している。
 図16(a)に示されている例において、プレート34は、胴部32に固定された第1プレート部分34aと、第1プレート部分34aに対して脱着可能に取り付けられた第2プレート部分34bとを有している。同様に、プレート36は、胴部32に固定された第1プレート部分36aと、第1プレート部分36aに対して脱着可能に取り付けられた第2プレート部分36bを有している。プレート34および36に設けられた開口部Aは、それぞれ、第1プレート部分34a、36aおよび第2プレート部分34b、36bを貫通し、各熱発電チューブTの流路を容器30の外部に開放している。
 容器30を構成する材料の例は、ステンレス鋼、ハステロイ(登録商標)、インコネル(登録商標)などの金属である。容器30を構成する材料の他の例は、塩化ビニル樹脂、アクリル樹脂などである。胴部32およびプレート34、36は、同一の材料から形成されていてもよいし、異なる材料から形成されていてもよい。胴部32および第1プレート部分34a、36aが金属から形成されている場合、第1プレート部分34a、36aは、例えば溶接により胴部32に固定される。胴部32の両端にフランジが設けられている場合、このフランジに第1プレート部分34a、36aが固定されていてもよい。
 動作時、容器30の内部には流体(低温媒体または高温媒体)が導入されるため、容器30の内部は気密または水密が保たれる必要がある。後述するように、プレート34、36の開口部Aでは、熱発電チューブTの端部が挿入された状態で気密または水密を保つためのシールが実現される。胴部32とプレート34、36との間で隙間はなく、動作時には気密または水密が保たれる構造が実現される。
 図16(b)に示されるように、プレート36には10個の開口部Aが設けられている。同様に、プレート34にも10個の開口部Aが設けられている。図16に示される例において、プレート34の開口部Aとプレート36の開口部Aとは鏡面対称の配置関係にあり、対応する一対の開口部Aの中心点を結ぶ10本の直線は互いに平行である。このような構成によれば、対応する一対の開口部Aによって各熱発電チューブTが平行に支持され得る。容器30内において、複数の熱発電チューブTは平行の関係にある必要はなく、「非平行」または「ねじれ」の関係にあってもよい。
 プレート36は、図16(b)に示されるように、プレート36に設けられた開口部Aのうちの少なくとも2つを相互に連結するように形成されたチャネル(以下、「連結溝」と称することがある)Cを有する。図16(b)に示す例では、チャネルC61は、開口部A61と開口部A62とを相互に連結している。他のチャネルC62~C65についても同様に、プレート36に設けられた開口部Aのうちの2つを相互に連結している。後述するように、チャネルC61~C65の各々には、導電性部材が収容される。
 図17は、図16(b)のM-M断面の一部を示す。なお、図17では、容器30の下半分における断面は示されておらず、その正面が示されている。図17に示されるように、容器30は、その内部に流体を流すための流体入口38aおよび流体出口38bを有している。熱発電ユニット100では、流体入口38aおよび流体出口38bが、容器30の上部に配置されている。流体入口38aの配置は、容器30の上部に限定されず、流体入口38aが、例えば容器30の下部に配置されてもよい。流体出口38bも同様である。流体入口38aおよび流体出口38bは、それぞれ、流体の入口および出口として固定して使用される必要はなく、流体の入口および出口が定期的または不定期的に反転して用いられてもよい。流体の流れ方向が固定されている必要はない。また、流体入口38aおよび流体出口38bの各々の個数は1個に限定されず、流体入口38aおよび流体出口38bの一方または両方が複数であってもよい。
 図33は、熱発電ユニット100に導入された高温媒体および低温媒体の流れ方向の例を模式的に示す図である。図33の例では、熱発電チューブT1~T10の各々の内部流路に高温媒体HMが供給されており、容器30の内部に低温媒体LMが供給されている。この場合、プレート34に設けられた開口部Aを介して、各熱発電チューブの内部流路に高温媒体HMが導入される。各熱発電チューブの内部流路に導入された高温媒体HMは、各熱発電チューブの内周面と接触する。一方、流体入口38aから容器30の内部に低温媒体LMが導入される。容器30の内部に導入された低温媒体LMは、各熱発電チューブの外周面と接触する。
 図33に示した例では、高温媒体HMは、各熱発電チューブの内部流路を流れる間に、低温媒体LMと熱の交換を行う。低温媒体LMと熱の交換を行い、温度の低下した高温媒体HMは、プレート36に設けられた開口部Aを介して熱発電ユニット100の外部に排出される。一方、低温媒体LMは、容器30の内部を流れる間に、高温媒体HMと熱の交換を行う。高温媒体HMと熱の交換を行い、温度の上昇した低温媒体LMは、流体出口38bから熱発電ユニット100の外部に排出される。なお、図33に示した高温媒体HMの流れ方向および低温媒体LMの流れ方向は、あくまでも例である。高温媒体HMおよび低温媒体LMのいずれか一方またはこれらの両方が、図の右側から左側に向かって流れていてもよい。
 ある態様では、熱発電チューブTの流路に高温媒体HM(例えば温水)を導入し、かつ、流体入口38aから低温媒体LM(例えば冷却水)を導入して容器30の内部を低温媒体LMで満たすことができる。逆に、熱発電チューブTの流路には低温媒体LM(例えば冷却水)を導入し、かつ、流体入口38aから高温媒体HM(例えば温水)を導入して容器30の内部を高温媒体HMで満たしてもよい。こうして、熱発電チューブTの各々における外周面24と内周面26との間に発電に必要な温度差を与えることができる。
<流体に対するシールおよび熱発電チューブ間の電気的接続の態様>
 図18(a)は、プレート36の一部の断面を示す図である。図18(a)は、熱発電チューブT1および熱発電チューブT2の両方の中心軸を含む平面で切断したときの断面を模式的に示している。図18(a)には、プレート36が有する複数の開口部Aのうち、2個の開口部A61、A62およびその近傍の構造が示されている。図18(b)は、図18(a)において矢印V1で示す方向から見たときの導電性部材J1の外観を示す。この導電性部材J1は、2つの貫通孔Jh1、Jh2を有している。より詳細には、導電性部材J1は、貫通孔Jh1を有する第1リング部分Jr1と、貫通孔Jh2を有する第2リング部分Jr2と、これらのリング部分Jr1、Jr2とを接続する連結部Jcとを有している。
 プレート36の開口部A61には、図18(a)に示されるように、熱発電チューブT1の端部(第2電極側)が挿入されており、開口部A62には、熱発電チューブT2の端部(第1電極側)が挿入されている。この状態において、導電性部材J1の貫通孔Jh1およびJh2には、それぞれ、熱発電チューブT1の端部および熱発電チューブT2の端部が挿入されている。熱発電チューブT1の端部(第2電極側)と熱発電チューブT2(第1電極側)とは、この導電性部材J1によって電気的に接続される。本明細書では、2本の熱発電チューブを電気的に接続する導電性部材を「連結プレート」と称する場合がある。
 なお、第1リング部分Jr1および第2リング部分Jr2の形状は、円環形状に限定されない。熱発電チューブとの間の電気的接続が確保できれば、貫通孔Jh1またはJh2の形状は、円、楕円または多角形であってもよい。例えば、貫通孔Jh1またはJh2の形状が、軸方向に垂直な平面で切断したときの第1電極E1または第2電極E2の断面形状と異なっていてもよい。本明細書において、「リング」という場合には、円環状以外の形状も含まれる。
 図18(a)の例において、第1プレート部分36aには、開口部A61、A62に対応して凹部R36が設けられている。この凹部R36は、開口部A61と開口部A62との間を連結する溝部分R36cを含んでいる。この溝部分R36cには、導電性部材J1の連結部Jcが位置している。一方、第2プレート部分36bには、開口部A61に対応した凹部R61と開口部A62に対応した凹部R62とが設けられる。この例では、凹部R36と凹部R61、R62とによって形成された空間の内部に、シールおよび電気的接続を実現するための各種の部材が配置されている。当該空間は、導電性部材J1を収容するチャネルC61を形成しており、チャネルC61によって開口部A61と開口部A62とが連結されている。
 図18(a)の例では、導電性部材J1の他に、第1のOリング52a、座金54、導電性リング状部材56、第2のOリング52bがチャネルC61に収容されており、各熱発電チューブT1、熱発電チューブT2の端部が、これらの部材の孔を貫いている。容器30の胴部32に近い側に配置された第1のOリング52aは、第1プレート部分36aに形成された座面Bsaと接し、胴部32の内部に供給された流体がチャネルC61の内部に進入しないようにシールを実現している。一方、容器30の胴部32から遠い側に配置された第2のOリング52bは、第2プレート部分36bに形成された座面Bsbと接しており、第2プレート部分36bの外側に存在する流体がチャネルC61の内部に進入しないようにシールを実現している。
 Oリング52a、52bは、断面がO形(円形)の環型のシール部品である。Oリング52a、52bは、ゴム、金属、プラスティックなどから形成され、部品同士の隙間からの流体の流出または流入を防ぐ機能を有している。図18(a)において、第2プレート部分36bの右側には、各熱発電チューブTの流路と連通する空間が位置し、その空間内には高温媒体または低温媒体を構成する流体が存在している。本実施形態では、図18に示す部材を用いることにより、熱発電チューブTの電気的接続と、高温媒体および低温媒体を構成する流体に対するシールとを実現することができる。なお、導電性リング状部材56の構造と機能の詳細については後述する。
 プレート36について説明した構成と同様の構成がプレート34にも設けられている。前述したように、プレート34の開口部Aとプレート36の開口部Aとの関係は鏡面対称にあるが、プレート34とプレート36とにおいて、2つの開口部Aを連結する溝部が形成されている位置は鏡面対称ではない。もしプレート34において熱発電チューブTを電気的に接続する導電性部材の配列パターンと、プレート36において熱発電チューブTを電気的に接続する導電性部材の配列パターンとが鏡面対称であれば、複数の熱発電チューブTを直列的に接続できない。
 本実施形態のように、胴部32に固定されたプレート(例えばプレート36)が、第1プレート部分(36a)と第2プレート部分(36b)とを含む場合、第1プレート部分(36a)における複数の開口部Aの各々は、第1のOリング52aを受ける第1の座面(Bsa)を有し、第2プレート部分(36b)における複数の開口部Aの各々は、第2のOリングを受ける第2の座面(Bsb)を有する。しかし、プレート34、36は、図18に示されるような構成を有している必要はなく、例えばプレート36は、第1プレート部分36aと第2プレート部分36bとに分かれている必要もない。第2プレート部分36bの代わりに他の部材によって導電性部材J1を押圧すれば、第1のOリング52aが第1の座面(Bsa)を押圧してシールが実現され得る。
 なお、図18(a)の例では、熱発電チューブT1と導電性部材J1との間に導電性リング状部材56が介在している。同様に、熱発電チューブT2と導電性部材J1との間にも、もう1つの導電性リング状部材56が介在している。
 導電性部材J1は、典型的には、金属から形成される。導電性部材J1を構成する材料の例は、銅(無酸素銅)、真鍮、アルミニウムなどである。腐食防止の観点から、ニッケルめっきまたは錫めっきが施されてもよい。なお、導電性部材J(ここではJ1)と、導電性部材Jの2つの貫通孔(ここではJh1およびJh2)にそれぞれ挿入される熱発電チューブ(ここではT1およびT2)との間の電気的接続が確保できる限りにおいて、導電性部材Jの一部に絶縁性コーティングが施されていてもよい。すなわち、導電性部材Jは、金属から形成された本体と、本体の表面の少なくとも一部を覆う絶縁性コートとを有していてもよい。例えば、テフロン(登録商標)などの樹脂から絶縁性コートが形成されてもよい。導電性部材Jの本体がアルミニウムから構成される場合には、表面の一部に絶縁性コートとしての絶縁酸化被膜を形成してもよい。
 図19(a)は、導電性部材J1を収容するチャネルC61近傍の分解斜視図である。図19(a)に示すように、第1のOリング52a、導電性リング状部材56、導電性部材J1、および第2のOリング52bは、容器30の外側から開口部A61および開口部A62の各々の内部に挿入される。必要に応じて、第1のOリング52aと導電性リング状部材56との間に座金54が配置される。座金54は、導電性部材J1と第2のOリング52bとの間にも配置され得る。座金54は、後述する導電性リング状部材56の平坦部56fとOリング52a(または54b)との間に挿入される。
 図19(b)は、第2プレート部分36bのシール面(第1プレート部分36aと対向する面)のうち、開口部A61およびA62に対応する部分を示す。上述したように、第2プレート部分36bにおける開口部A61およびA62は、第2のOリング52bを受ける座面Bsbを有している。したがって、第1プレート部分36aのシール面と第2プレート部分36bのシール面とを対向させて、フランジ接合などにより第1プレート部分36aおよび第2プレート部分36bを結合すると、第1プレート部分36a内の第1のOリング52aを座面Bsaに押圧することができる。より詳細には、第2の座面Bsbが、第2のOリング52b、導電性部材J1、および導電性リング状部材56を介して、第1のOリング52aを座面Bsaに押圧する。これにより、高温媒体および低温媒体から導電性部材J1をシールすることができる。
 第1プレート部分36aおよび第2プレート部分36bが金属などの導電性材料から形成されている場合、第1プレート部分36aおよび第2プレート部分36bのシール側表面は、絶縁材料によってコートされ得る。第1プレート部分36aおよび第2プレート部分36bのうち、動作時に導電性部材Jに接触する領域は、導電性部材Jから電気的に絶縁されるように絶縁コートされ得る。ある態様では、例えばフッ素スプレーによるフッ素樹脂コートが第1プレート部分36aおよび第2プレート部分36bのシール側表面に形成され得る。
<導電性リング状部材の構成の詳細>
 次に、図20(a)および図20(b)を参照しながら、導電性リング状部材56の構成を詳細に説明する。
 図20(a)は、導電性リング状部材56の1つの例示的な形状を示す斜視図である。図20(a)の導電性リング状部材56は、リング状の平坦部56fと、複数の弾性部56rとを備える。平坦部56fは、貫通孔56aを有する。複数の弾性部56rの各々は、平坦部56fの貫通孔56aの周縁から突出し、貫通孔56aの中心に向かって弾性力で付勢されている。このような導電性リング状部材56は、1枚の金属板(厚さは、例えば0.1mm~数mm)を加工することによって容易に作製することができる。なお、導電性部材Jも、同様に1枚の金属板(厚さは、例えば0.1mm~数mm)を加工することによって容易に作製することができる。
 導電性リング状部材56の貫通孔56aには、熱発電チューブTの端部(第1電極または第2電極)が挿入される。このため、リング状の平坦部56fの貫通孔56aの形状およびサイズは、熱発電チューブTの端部(第1電極または第2電極)における外周面の形状およびサイズに整合するように設計される。
 ここで、図21を参照しながら、導電性リング状部材56の形状をより詳細に説明する。図21(a)は、導電性リング状部材56および熱発電チューブT1の一部を示す断面図である。図21(b)は、導電性リング状部材56に熱発電チューブT1の端部が挿入された状態を示す断面図である。図21(c)は、導電性リング状部材56および導電性部材J1の貫通孔に熱発電チューブT1の端部が挿入された状態を示す断面図である。図21(a)、(b)および(c)は、熱発電チューブT1の軸(中心軸)を含む平面に沿って熱発電チューブT1を切断したときの断面を示している。
 図21(a)に示すように、例えば、熱発電チューブT1の端部(第1電極または第2電極)における外周面が直径Dの円筒面であるとする。この場合、導電性リング状部材56の貫通孔56aは、熱発電チューブT1の端部が通過可能なように、直径がD+δ1(δ1>0)である円形を有するように形成される。これに対して、複数の弾性部56rの各々は、貫通孔56aの中心に向かって弾性力が付勢されるように形成されている。複数の弾性部56rの各々は、図21(a)に示したように、例えば、貫通孔56aの中心に向かって傾くように形成される。すなわち、弾性部56rは、外力が与えられない限り、断面の直径がDよりも小さな円筒の外周面(この外周面の直径をD-δ2(δ2>0)とする。)に外接するように加工されている。
 D+δ1>D>D-δ2の関係から、熱発電チューブT1の端部が貫通孔56aに挿入されたとき、複数の弾性部56rの各々は、図21(b)に示すように、熱発電チューブT1の端部における外周面と物理的に接触する。このとき、複数の弾性部56rの各々は、貫通孔56aの中心に向かって弾性力が付勢されているので、複数の弾性部56rの各々は、熱発電チューブT1の端部における外周面を弾性力で押圧する。こうして、貫通孔56aに挿入された熱発電チューブT1の外周面は、複数の弾性部56rとの間で安定した物理的かつ電気的な接触を実現する。
 次に、図21(c)を参照する。導電性部材J1は、プレート34、36に設けられた開口部A内において、導電性リング状部材56の平坦部56fに接触する。より詳細には、導電性リング状部材56および導電性部材J1が熱発電チューブT1の端部が装着されたとき、図21(c)に示したように、導電性リング状部材56の平坦部56fの表面と、導電性部材J1のリング状部分Jr1の表面とが接触する。このように、本実施形態では、導電性リング状部材56と導電性部材J1との間の電気的な接続は、平面同士の接触によって行われる。導電性リング状部材56と導電性部材J1との間の接触が平面同士の接触であるので、熱発電チューブT1で発生した電流を流すのに十分な接触面積を確保することができる。平坦部56fの幅Wは、熱発電チューブT1で発生した電流を流すのに十分な接触面積が得られるように適宜設定され得る。なお、導電性リング状部材56と導電性部材J1との間の接触面積が確保できる限りにおいて、平坦部56fの表面または導電性部材J1のリング状部分Jr1の表面が凹凸形状を有していてもよい。例えば、平坦部56fの表面に形成された凹凸形状と、平坦部56fの表面に形成された凹凸形状に対応するような凹凸形状を導電性部材J1のリング状部分Jr1の表面に形成することで、より大きな接触面積を確保することもできる。
 次に、図34を参照する。図34(a)は、導電性リング状部材56および導電性部材J1の一部を示す断面図である。図34(b)は、導電性部材J1の貫通孔Jh1に導電性リング状部材56の弾性部56rが挿入された状態を示す断面図である。図34(a)および(b)は、熱発電チューブT1の軸(中心軸)を含む平面に沿って導電性リング状部材56および導電性部材J1を切断したときの断面を示している。
 ここで、導電性部材Jの貫通孔(ここではJh1)の直径を2Rrとすると、導電性部材Jの貫通孔は、熱発電チューブT1の端部が通過可能なように、D<2Rrを満足するように形成される。また、導電性リング状部材56の平坦部56fの直径を2Rfとすると、導電性部材Jの貫通孔は、平坦部56fの表面と、リング状部分Jr1の表面とが確実に接触するように、2Rr<2Rfを満足するように形成される。
 なお、図35に示すように、熱発電チューブTの端部に面取り部Cmが形成されていてもよい。導電性リング状部材56が熱発電チューブT1の端部に挿入される時、例えば、導電性リング状部材56の弾性部56rと熱発電チューブTの端部とが接触することによって、熱発電チューブTの端部が損傷することがある。熱発電チューブTが端部に面取り部Cmを有することで、弾性部56rと熱発電チューブTの端部とが接触することによる熱発電チューブTの端部の損傷が抑制される。熱発電チューブTの端部の損傷が抑制されることで、導電性部材J1が高温媒体および低温媒体からより確実にシールされる。また、熱発電チューブT1の外周面と、弾性部56rとの間の電気的な接触不良が低減される。面取り部Cmは、図35に示したような曲面状であってもよいし、平面状であってもよい。
 こうして、導電性部材J1は、導電性リング状部材56を介して、熱発電チューブTの端部における外周面と電気的に接続する。本実施形態では、第1プレート部分36aおよび第2プレート部分36bを結合することにより、導電性リング状部材56の平坦部56fと導電性部材Jとの安定した電気的接触が実現するとともに、前述したシールを実現できる。
 更に、熱発電チューブTの端部に対応させて導電性リング状部材56を配置しておくことで、導電性部材J1のシールをより確実に行うことができる。前述したように、第1のOリング52aは、導電性部材J1、および導電性リング状部材56を介して座面Bsaに押圧される。ここで、導電性リング状部材56は、平坦部56fを有している。すなわち、第1のOリング52aに対する押圧力は、導電性リング状部材56の平坦部56fを介して第1のOリング52aに与えられる。すなわち、導電性リング状部材56が平坦部56fを有するので、第1のOリング52aに対して均等に押圧力を与えることができる。したがって、座面Bsaに対して、第1のOリング52aを確実に押圧することができ、容器内の液体に対するシールを確実に行うことができる。また、第2のOリング52bに対しても同様に適切な押圧力を与えることができるので、容器外の液体に対するシールも確実に行うことができる。
 次に、導電性リング状部材56を熱発電チューブTに嵌め込む方法の一例を説明する。
 まず、図19(a)に示されるように、第1プレート部分36aの開口部A61、A62内に、それぞれ、熱発電チューブT1、熱発電チューブT2の端部が挿入される。その後、第1のOリング52aと、必要に応じて座金54を熱発電チューブの先端から嵌め、開口部A61、A62の奥に移動させる。次に、導電性リング状部材56を熱発電チューブの先端から嵌め、開口部A61、A62の奥に移動させる。その後、導電性部材J1と、必要に応じて座金54および第2のOリング52bを熱発電チューブの先端から嵌め、開口部A61、A62の奥に移動させる。最後に、第2プレート部分36bのシール面を第1プレート部分36aに対向させ、第2プレート部分36bの開口部に熱発電チューブの先端が挿入されるようにして第2プレート部分36bと第1プレート部分36aとを結合する。この結合には、例えば、フランジ接合を適用できる。この場合、第2プレート部分36bおよび第1プレート部分36aの結合は、図16に示す第2プレート部分36bに設けられた孔36bhおよび第1プレート部分36aに設けられた孔を介してボルトおよびナットで行うことができる。
 導電性リング状部材56と熱発電チューブTとの接続は永久的ではなく、導電性リング状部材56は熱発電チューブTに対して着脱可能である。例えば、熱発電チューブTを新しい熱発電チューブTに交換する場合、上述した導電性リング状部材56を熱発電チューブTに嵌め込む動作の逆の動作を行えばよい。導電性リング状部材56は繰り返して使用することも可能であるし、新しい導電性リング状部材56に交換されてもよい。
 導電性リング状部材56の形状は、図20(a)に示す例に限定されない。平坦部56fの幅(半径方向のサイズ)と貫通孔56aの半径との比率も任意である。また、個々の弾性部56rは多様な形状を有し得るし、複数の弾性部56rの個数も任意である。
 図20(b)は、導電性リング状部材56の他の例の形状を示す斜視図である。図20(b)の導電性リング状部材56も、リング状の平坦部56fと、複数の弾性部56rとを備える。平坦部56fは、貫通孔56aを有する。複数の弾性部56rの各々は、平坦部56fの貫通孔56aの周縁から突出し、貫通孔56aの中心に向かって弾性力で付勢されている。この例では、弾性部56rの個数は4個である。弾性部56rの個数は2個であってもよいが、3個以上であることが好ましい。弾性部56rの個数は例えば6個以上に設定される。
 なお、平板状の導電性部材Jを導電性リング状部材56の平坦部56fに接触させる構成によれば、導電性部材Jのリング状部分における貫通孔と、これに挿入される熱発電チューブとの間に隙間(あそび)が許容される。このため、熱発電チューブが脆い材料から形成されている場合でも、導電性部材Jのリング状部分Jr1が熱発電チューブを損傷することなく安定した接続を実現できる。
<連結プレートを介した電気的接続>
 上述したように、プレート36に設けられた開口部Aのうちの少なくとも2つを相互に連結するように形成されたチャネルCの内部に、導電性部材(連結プレート)が収容される。ここで、導電性リング状部材56以外の部材を用いて、2本の熱発電チューブの端部を電気的に接続することも可能である。したがって、ある態様では、チャネルC内の導電性リング状部材56は省略され得る。このとき、2本の熱発電チューブの端部は、例えば、コード、導体棒、導電性ペーストなどによって電気的に接続され得る。2本の熱発電チューブの端部がコードを介して相互に電気的に接続される場合、熱発電チューブの端部とコードとは、ハンダ、圧着、ワニ口クリップなどを介して電気的に接続され得る。
 しかしながら、図10および図11に示したように、チャネルCの内部に収容された導電性部材で2本の熱発電チューブの端部を電気的に接続することによって、熱発電チューブTの端部と導電性部材J1とをより確実に電気的に接続できる。導電性部材Jが平板状である場合(例えば、連結部Jcの幅が大きい場合)には、コードなどを用いる場合と比較して、2本の熱発電チューブ間における電気抵抗を低減できる。更に、熱発電チューブTの端部に端子などが固定されないので、熱発電チューブTの交換が容易である。導電性リング状部材56によって、2本の熱発電チューブの端部の固定および電気的接続の両方を実現することも可能である。
 熱発電ユニット100では、プレート(34または36)に、開口部Aのうちの少なくとも2つを相互に連結するように形成されたチャネルCが設けられているので、熱交換器の管板には無い電気的接続機能が実現される。また、第1のOリング52aおよび第2のOリング52bが、それぞれ、座面BsaおよびBsbを押圧するように構成できるので、熱発電チューブTの端部が挿入された状態で気密または水密を保つためのシールが実現される。このように、プレート(34または36)にチャネルCを設けることで、導電性リング状部材56が省略された態様であっても、2本の熱発電チューブの端部の電気的接続と、高温媒体および低温媒体を構成する流体に対するシールとを実現することが可能である。
<熱流の向きと積層面の傾斜の方向との間の関係>
 ここで、図36を参照しながら、熱発電チューブTにおける熱流の向きと、熱発電チューブTにおける積層面の傾斜の方向との間の関係を説明する。
 図36(a)は、電気的に直列に接続された熱発電チューブTを流れる電流を模式的に示す図である。図36(a)では、熱発電チューブT1~T10のうちの3本(T1~T3)の断面を模式的に示している。
 図36(a)では、熱発電チューブT1の一端(例えば第1電極側の端部)に、導電性部材K1が接続されており、熱発電チューブT1の他端(例えば第2電極側の端部)には、導電性部材(連結プレート)J1が接続されている。導電性部材J1は、熱発電チューブT2の一端(第1電極側の端部)とも接続されており、これにより、熱発電チューブT1と熱発電チューブT2とが電気的に接続される。更に、熱発電チューブT2の他端(第2電極側の端部)と、熱発電チューブT3の一端(第1電極側の端部)とは、導電性部材J2によって電気的に接続されている。
 このとき、図36(a)に示したように、熱発電チューブT1における積層面の傾斜の方向と、熱発電チューブT2における積層面の傾斜の方向とは、互いに反対である。同様に、熱発電チューブT2における積層面の傾斜の方向と、熱発電チューブT3における積層面の傾斜の方向とは、互いに反対である。すなわち、熱発電ユニット100では、熱発電チューブT1~T10の各々は、連結プレートを介して自身に接続される熱発電チューブとは、積層面の傾斜の方向が互いに反対である。
 ここで、図36(a)に示したように、熱発電チューブT1~T3の各々の内周面に高温媒体HMを接触させ、外周面に低温媒体LMを接触させたとする。すると、熱発電チューブT1では、例えば図の右側から左側に向かって電流が流れる。これに対して、熱発電チューブT2では、熱発電チューブT1とは積層面の傾斜の方向が互いに反対であるので、図の左側から右側に向かって電流が流れる。
 図37は、2個の開口部A61、A62およびその近傍における電流の向きを模式的に示す図である。図37は、図19(a)に対応する図である。図37では、電流の流れ方向が、破線の矢印で模式的に示されている。図37に示したように、熱発電チューブT1で生じた電流は、開口部A61側のリング状導電性部材56、導電性部材J1および開口部A62側のリング状導電性部材56を順に介して熱発電チューブT2に向けて流れる。熱発電チューブT2に流入した電流は、熱発電チューブT2で生じた電流と重畳されて熱発電チューブT3に向けて流れる。熱発電チューブT3は、図36(a)に示したように、熱発電チューブT2とは積層面の傾斜の方向が互いに反対である。そのため、熱発電チューブT3では、図36(a)において右側から左側に向かって電流が流れる。したがって、熱発電チューブT1~T3の各々で生じた起電力は、相殺されることなく重畳される。このように、積層面の傾斜の方向が交互に反対となるように、複数の熱発電チューブTを順に接続することによって、熱発電ユニットからより大きな電圧を取り出すことができる。
 次に、図36(b)を参照する。図36(b)は、図36(a)と同様に、電気的に直列に接続された熱発電チューブTを流れる電流を模式的に示している。図36(b)においても、図36(a)に示した例と同様に、積層面の傾斜の方向が交互に反対となるように、熱発電チューブT1~T3が順に接続されている。この場合も、相互に接続された2本の熱発電チューブにおいて積層面の傾斜の方向が互いに反対であるので、熱発電チューブT1~T3の各々で生じた起電力は、相殺されることなく重畳される。
 ここで、図36(b)に示したように、熱発電チューブT1~T3の各々の内周面に低温媒体LMを接触させ、外周面に高温媒体HMを接触させると、各熱発電チューブT1~T3で発生する電圧の極性は、図36(a)に示した場合とは逆になる。別の言い方をすれば、各熱発電チューブにおける温度勾配の向きを反転させると、各熱発電チューブにおける起電力の極性(各熱発電チューブを流れる電流の向きといってもよい。)が反転する。したがって、例えば、図16(a)に示した場合と同様に導電性部材K1側から導電性部材J3側に向かって電流が流れるようにするには、各熱発電チューブT1~T3における第1電極側および第2電極側が図16(a)に示した場合と反対になるようにすればよい。なお、図36(a)および(b)に示した電流の向きはあくまで例示である。金属層20を構成する材料および熱電材料層22を構成する熱電材料によっては、電流の向きは、図16(a)および(b)に示した電流の向きと反対になることもある。
 図36(a)および(b)を参照して説明したように、熱発電チューブTで発生する電圧の極性は、熱発電チューブTにおける積層面の傾斜の方向に依存する。そのため、例えば熱発電チューブTを交換する場合には、熱発電ユニット100内における熱発電チューブTの内周面と外周面との間の温度勾配を考慮して、適切に熱発電チューブTを配置する。
 図38(a)および(b)は、それぞれ、電極に極性の表示を有する熱発電チューブを示す斜視図である。図38(a)に示す熱発電チューブTでは、第1電極E1aおよび第2電極E2aに、熱発電チューブで発生する電圧の極性を識別するためのモールド(凹凸形状)Mpが形成されている。図38(b)に示す熱発電チューブTでは、第1電極E1bおよび第2電極E2bに、熱発電チューブTにおける積層面が、第1電極E1bおよび第2電極E2bのどちらの側に傾斜しているかを示すマークMkが付されている。モールドまたはマークは互いに組み合わされてもよい。モールドまたはマークは、チューブ本体Tbに付与されていてもよいし、第1電極および第2電極のいずれか一方にのみ付与されていてもよい。
 このように、例えば第1電極および第2電極に、熱発電チューブTで発生する電圧の極性を識別するためモールドまたはマークを付与しておくこともできる。これにより、熱発電チューブTにおける積層面が、第1電極E1aおよび第2電極E2aのどちらの側に傾斜しているかを熱発電チューブTの外観から判断することが可能である。モールドまたはマークを付与することに代えて、第1電極と第2電極とを互いに異なる形状としてもよい。例えば、第1電極と第2電極との間で、長さ、太さまたは軸方向に垂直な断面の形状などを異ならせてもよい。
<熱発電ユニット100の外部に電力を取り出すための電気的接続構造>
 再び図14を参照する。図14に示す例では、10本の熱発電チューブT1~T10が導電性部材J1~J9によって電気的に直列に接続されている。導電性部材J1~J9の各々による2つの熱発電チューブTの接続については、前述した通りである。以下、直列回路の両端に位置する2本の発電チューブT1、T10から熱発電ユニット100の外部に電力を取り出すための電気的接続構造の例を説明する。
 まず図22を参照する。この図22は、図16(a)に示される熱発電ユニット100の側面のうちの他の一つを示す図(左側面図)である。図16(b)がプレート36の側の構成を示しているのに対して、図22は、プレート34の側の構成を示している。プレート36について説明した構成および動作と共通する構成および動作の説明は繰り返さない。
 図22に示されるように、チャネルC42~C45は、プレート34に設けられた開口部Aのうちの少なくとも2つを相互に連結している。本明細書では、このようなチャネルを「相互接続部分」と称する場合がある。各相互接続部分に収容される導電性部材は、導電性部材J1と同様の構成を有する。これに対して、プレート34に設けられたチャネルC41は、プレート34における開口部A41から外縁まで延びるように設けられている。本明細書では、プレートに設けられた開口部から外縁まで延びるように設けられているチャネルを「端子接続部分」と称する場合がある。図22に示したチャネルC41およびC46は、端子接続部分である。端子接続部分には、外部回路に接続するための端子として機能する導電性部材が収容される。
 図23(a)は、プレート34の一部の断面を示す図である。図23(a)は、熱発電チューブT1の中心軸を含む平面で切断したときの断面を模式的に示しており、図22におけるR-R線断面図に相当する。図23(a)には、プレート34が有する複数の開口部Aのうち、開口部A41およびその近傍の構造が示されている。図23(b)は、図23(a)において矢印V2で示す方向から見たときの導電性部材K1の外観を示す。この導電性部材K1は、一端に貫通孔Khを有している。より詳細には、導電性部材K1は、貫通孔Khを有するリング部分Krと、リング部分Krからリング部分Krの外側に向かって延びる端子部Ktとを有している。導電性部材K1は、導電性部材J1と同様に、典型的には、金属から形成される。
 プレート34の開口部A41には、図23(a)に示されるように、熱発電チューブT1の端部(第1電極側)が挿入されている。この状態において、導電性部材K1の貫通孔Khには、熱発電チューブT1の端部が挿入されている。このように、本実施形態における導電性部材(J、K1)は、熱発電チューブTを通す少なくとも1個の孔を有する導電性プレートであるといえる。なお、開口部A410およびその近傍の構造は、プレート34の開口部A410に熱発電チューブT10の端部が挿入されること以外は、開口部A41およびその近傍の構造と同様である。
 図23(a)の例において、第1プレート部分34aには、開口部A41に対応して凹部R34が設けられている。この凹部R34は、開口部A41から第1プレート部分34aの外縁にまで達する溝部分R34tを含んでいる。この溝部分R34tには、導電性部材K1の端子部Ktが位置している。この例では、凹部R34と、第2プレート部分34bに設けられた凹部R41とによって形成された空間が、導電性部材K1を収容するチャネルを形成している。図18(a)に示した例と同様に、図23(a)の例においても、導電性部材K1の他に、第1のOリング52a、座金54、導電性リング状部材56、第2のOリング52bがチャネルC41に収容されており、熱発電チューブT1の端部が、これらの部材の孔を貫いている。第1のOリング52aは、胴部32の内部に供給された流体がチャネルC41の内部に進入しないように、シールを実現する。また、第2のOリング52bは、第2プレート部分34bの外側に存在する流体がチャネルC41の内部に進入しないように、シールを実現する。
 図24は、導電性部材K1を収容するチャネルC41近傍の分解斜視図である。例えば、第1のOリング52a、座金54、導電性リング状部材56、導電性部材K1、座金54および第2のOリング52bが、容器30の外側から開口部A41の内部に挿入される。第2プレート部分34bのシール面(第1プレート部分34aと対向する面)は、図19(b)に示した第2プレート部分36bのシール面とほぼ同様の構成を有する。すなわち、第1プレート部分34aおよび第2プレート部分34bを結合することで、第2プレート部分34bの第2の座面Bsbが、第2のOリング52b、導電性部材K1、および導電性リング状部材56を介して、第1のOリング52aを第1プレート部分34aの座面Bsaに押圧する。これにより、高温媒体および低温媒体から導電性部材K1をシールすることができる。
 導電性部材K1のリング部分Krは、プレート34に設けられた開口部A内において、導電性リング状部材56の平坦部56fに接触する。こうして、導電性部材K1は、導電性リング状部材56を介して、熱発電チューブTの端部における外周面と電気的に接続する。ここで、導電性部材K1の一端(端子部Kt)は、図23(a)に示したように、プレート34の外部に突出する。したがって、端子部Ktのうち、プレート34の外部に突出した部分は、熱発電ユニットと外部回路とを接続するための端子として機能し得る。図24に示したように、端子部Ktのうち、プレート34の外部に突出した部分がリング状に形成されていてもよい。本明細書では、一端に熱発電チューブが挿入され、他端が外部に突出する導電性部材を「端子プレート」と称することがある。
 このように、熱発電ユニット100では、端子接続部分に収容された2個の端子プレートに、熱発電チューブT1および熱発電チューブT10がそれぞれ接続されている。また、複数の熱発電チューブT1~T10は、2個の端子プレートの間において、チャネルの相互接続部分に収容された連結プレートを介して電気的に直列に接続されている。したがって、一端がプレートの外部に突出する2個の端子プレートを介して、複数の熱発電チューブT1~T10によって生じた電力を外部に取りだすことができる。
 導電性リング状部材56および導電性部材(J、K1)の配置は、チャネルC内において適宜変更され得る。このとき、導電性リング状部材56の弾性部56rが導電性部材の貫通孔(Jh1、Jh2またはKh)に挿入されるように、導電性リング状部材56および導電性部材を配置すればよい。また、前述したように、導電性リング状部材56が省略された態様によって、熱発電チューブTの端部と導電性部材K1とが電気的に接続されてもよい。なお、導電性リング状部材56の平坦部56fの一部を延長して、導電性部材K1の端子部Ktの代用とすることもできる。この場合、導電性部材K1を省略してもよい。
 なお、上述の実施形態では、第1プレート部分に設けられた凹部および第2プレート部分に設けられた凹部からチャネルCが形成されたが、第1プレート部分および第2プレート部分のいずれか一方に設けられた凹部からチャネルCが形成されてもよい。容器30が金属から構成される場合、導電性部材(連結プレート、端子プレート)と容器30とが導通しないように、チャネルC内部に絶縁性コーティングが施されていてもよい。例えば、プレート34(34aおよび34b)が、金属から形成された本体と、本体の表面の少なくとも一部を覆う絶縁性コートとを有していてもよい。プレート36(36aおよび36b)も同様に、金属から形成された本体と、本体の表面の少なくとも一部を覆う絶縁性コートとを有していてもよい。第1プレート部分に設けられた凹部の表面および第2プレート部分に設けられた凹部の表面に絶縁性コーティングが施されている場合は、導電性部材の表面の絶縁性コーティングを省略できる。
<シールおよび電気的接続のための構造の他の例>
 図25は、熱発電チューブTの外周面に接する媒体と、各熱発電チューブT1~T10の内周面に接する媒体とが混ざり合わないように分離するための構造の例を示す断面図である。図25に示す例では、容器30の外側からブッシング60が挿入されることで、高温媒体と低温媒体との分離および熱発電チューブと導電性部材との間の電気的接続が実現される。
 図25の例において、プレート34uに設けられた開口部A41は、雌ネジ部Th34を有している。より詳細には、プレート34uの開口部A41に対応して設けられた凹部R34の壁面にネジ山が形成されている。凹部R34には、雄ネジ部Th60を有するブッシング60が挿入される。ブッシング60は、軸方向に沿って貫通孔60aを有している。ここで、プレート34uの開口部A41に、熱発電チューブT1の端部が挿入されている。したがって、貫通孔60aは、凹部R34にブッシング60が挿入された状態において熱発電チューブT1の内部流路に連通する。
 凹部R34とブッシング60との間に形成された空間の内部には、シールおよび電気的接続を実現するための各種の部材が配置される。図25の例では、プレート34uに形成された座面Bsaから容器30の外側に向かって、Oリング52、導電性部材K1およびリング状導電性部材56が順に配置されている。熱発電チューブT1の端部は、これらの部材の孔に挿入されている。Oリング52は、プレート34uに形成された座面Bsaおよび熱発電チューブT1の端部の外周面と接する。ここで、雌ネジ部Th34に雄ネジ部Th60が挿入されると、導電性リング状部材56の平坦部56fおよび導電性プレートK1を介して、雄ネジ部Th60がOリング52を座面Bsaに押圧する。すなわち、胴部32の内部に供給された流体が熱発電チューブT1の内部流路に供給された流体と混ざり合わないようにシールを実現することができる。また、熱発電チューブT1の外周面が導電性リング状部材56の複数の弾性部56rと接触し、導電性リング状部材56の平坦部56fが導電性部材K1のリング部分Krと接触するので、熱発電チューブと導電性部材とを電気的に接続することができる。
 このように、図25に示す部材を用いることによって、より簡易な構成で、高温媒体と低温媒体との分離および熱発電チューブと導電性部材との間の電気的接続を実現することもできる。
 図39(a)および(b)は、高温媒体と低温媒体との分離および熱発電チューブと導電性部材との間の電気的接続を実現するための構造の他の例を示す断面図である。図39(a)では、プレート34uに形成された座面Bsaから容器30の外側に向かって、第1のOリング52a、座金54、リング状導電性部材56、導電性部材K1、座金54および第2のOリング52bが順に配置されている。図39(a)に示す例では、導電性プレートK1および導電性リング状部材56の平坦部56fを介して、雄ネジ部Th60がOリング52aを座面Bsaに押圧する。図39(b)では、プレート34uに形成された座面Bsaから容器30の外側に向かって、第1のOリング52a、導電性部材K1、リング状導電性部材56および第2のOリング52bが順に配置されている。また、図39(b)では、ブッシング60に形成された貫通孔60a内に、貫通孔64aを有するブッシング64が更に挿入されている。貫通孔64aは、熱発電チューブT1の内部流路に連通している。図39(b)に示す例では、ブッシング64の雄ネジ部Th64が、第2のOリング52bを座面Bsaに向けて押圧する。このように、第1のOリング52aおよび第2のOリング52bを配置することによって、高温媒体を構成する流体および低温媒体を構成する流体の両方に対するシールを行ってもよい。高温媒体を構成する流体および低温媒体を構成する流体の両方に対するシールを行うことで、導電性リング状部材56の腐食が抑制される。
 上述したように、導電性部材K1の端子部Ktの一端は、プレート34uの外部に突出し、熱発電ユニットと外部回路とを接続するための端子として機能し得る。図25ならびに図39(a)および(b)に示したような態様において、導電性部材K1(端子プレート)の代わりに、導電性部材J1のような連結プレートが適用されてもよい。この場合は、貫通孔Jh1に熱発電チューブT1の端部が挿入される。必要に応じて、Oリングと導電性部材との間などに座金54が配置されてもよい。
<熱発電システムの実施形態>
 次に、本開示の熱発電システムの実施形態を説明する。
 図26(a)は、本開示の熱発電システムの実施形態を示す図である。図26(b)は、図26(a)のB-B線断面図である。図26(c)は、図26(a)に示す熱発電システムが備えるバッファ槽の構成例を示す斜視図である。図26(a)において、実線の太い矢印は、熱発電チューブの外周面と接する媒体、すなわち容器30の中(熱発電チューブの外側)を流れる媒体の流れ方向を概略的に示している。破線の太い矢印は、熱発電チューブの内周面に接する媒体、すなわち、熱発電チューブの貫通孔(内部流路)を流れる媒体の流れ方向を概略的に示している。本明細書では、各容器30の流体入口および流体出口に連通した管路を「第1媒体路」と称し、各熱発電チューブの流路に連通した管路を「第2媒体路」と称する場合がある。
 図26(a)に示される熱発電システム200Aは、第1の熱発電ユニット100-1と、第2の熱発電ユニット100-2とを備えている。第1の熱発電ユニット100-1および第2の熱発電ユニット100-2は、それぞれ、前述した熱発電ユニット100の構成と同一の構成を有している。熱発電システム200Aは、更に、第1の熱発電ユニット100-1と第2の熱発電ユニット100-2の間に置かれた太い円筒状のバッファ槽44を備えている。このバッファ槽44は、第1の熱発電ユニット100-1における複数の熱発電チューブの流路に連通する第1開口部44a1と、第2熱発電ユニット100-2における複数の熱発電チューブの流路に連通する第2開口部44a2とを有している。
 熱発電システム200Aでは、第1の熱発電ユニット100-1の流体入口38a1から導入された媒体は、第1の熱発電ユニット100-1の容器30、第1の熱発電ユニット100-1の流体出口38b1、中継のための管路40、第2の熱発電ユニット100-2の流体入口38a2および第2の熱発電ユニット100-2の容器30を順に流れ、流体出口38b2に到達する(第1媒体路)。すなわち、第1の熱発電ユニット100-1の容器30の内部に供給された媒体は、管路40を介して、第2の熱発電ユニット100-2の容器30の内部に供給される。この管路40は、直線的である必要はなく、屈曲していてもよい。
 一方、第1の熱発電ユニット100-1の複数の熱発電チューブの内部流路は、バッファ槽44の第1開口部44a1および第2開口部44a2を介して、第2の熱発電ユニット100-2の複数の熱発電チューブの内部流路に連通している(第2媒体路)。第1の熱発電ユニット100-1の複数の熱発電チューブの内部流路の各々に導入された媒体は、バッファ槽44で合流した後、第2の熱発電ユニット100-2の複数の熱発電チューブの内部流路の各々に導入される。
 複数の熱発電ユニットを備える熱発電システムにおいては、各熱発電チューブの流路に連通した第2媒体路は、任意に設計され得る。ここで、1つの容器30内において複数の熱発電チューブを介して行われる熱交換の程度は、熱発電チューブの位置によって異なることが生じ得る。したがって、隣接する2つの熱発電ユニット間において、例えば、一方の熱発電ユニットの各熱発電チューブの内部流路と、他方の熱発電ユニットの各熱発電チューブの内部流路とを直列的に接続すると、内部流路を流れる媒体の温度のばらつきが拡大する。各熱発電チューブの内部流路を流れる媒体の温度のばらつきが拡大すると、各熱発電チューブの発電量がばらつく可能性がある。
 熱発電システム200Aでは、第1の熱発電ユニット100-1の複数の熱発電チューブの内部流路からバッファ槽44の内部に流れ込んだ媒体は、バッファ槽44の中で熱を交換し、第2の熱発電ユニット100-2の複数の熱発電チューブの内部流路に供給される。第1の熱発電ユニット100-1の複数の熱発電チューブの内部流路からバッファ槽44の内部に流れ込んだ媒体が、バッファ槽44の中で熱を交換するので、媒体温度が均一化され得る。このように、各熱発電チューブの内部流路を流れる媒体を、他の熱発電チューブの内部流路を流れる媒体と混合することで、複数の熱発電チューブの内部流路を流れる媒体の温度が均一化されるという利点が得られる。
 図26(a)の例では、第2媒体路が、複数の熱発電チューブTの流路を同一方向に流体が流れるように構成されている。しかしながら、複数の熱発電チューブTの流路における流体の流れ方向は、同一方向に限定されない。複数の熱発電チューブTの流路における流体の流れ方向は、高温媒体および低温媒体の流路の設計に応じて多様に設定可能である。また、本開示の熱発電システムにおける複数の熱発電ユニットは、直列的または並列的に連結され得る。
<熱発電システムの他の実施形態>
 図27(a)は、本開示の熱発電システムの他の実施形態を示す図である。図27(b)は、図27(a)のB-B線断面図であり、図27(c)は図27(a)のC-C線断面図である。
 この実施形態における熱発電システム200Bのバッファ槽44は、内部に2枚の邪魔板46a、46bを有している。2枚の邪魔板46a、46bには、それぞれ、異なる複数の位置に矩形の開口部が設けられている。バッファ槽44の内部を流れる媒体は、邪魔板46a、46bの各々に設けられた複数の開口部を通過する。このとき、乱流が生じ、撹拌効果によって媒体温度の均一化が促進される。このように、バッファ槽44が、複数の熱発電チューブの流路からバッファ槽44内に流れ込んできた流体の流れを乱す構造物を内部に有していてもよい。
 邪魔板46a、46bは、流体の流れ方向を部分的に変化させる形状を有していればよい。したがって、邪魔板46a、46bに形成される開口部の形状、大きさ、および位置は、図示されている例に限定されず、任意の形状、大きさ、および位置に設定され得る。各邪魔板は、複数の片に分割されていてもよいし、開口部はスリットであってもよい。邪魔板46a、46bの個数も任意であり、1枚の邪魔板でも撹拌効果を発揮し得る。邪魔板は平板状である必要はなく、らせん状、放射状、グリッド状であってもよい。
 また、媒体を撹拌して温度分布を均一化する効果を示すものであれば、邪魔板以外の構成をバッファ槽の内部またはバッファ槽の形状そのものに付与していてもよい。例えば、バッファ槽44の内壁に凹凸を設けたり、内壁に溝またはフィンを設けたりしてもよい。また、バッファ槽44の途中を細く絞ってもよい。
 図28(a)は、本開示の熱発電システムの更に他の実施形態を示す図である。図28(b)は、図28(a)のB-B線断面図である。
 バッファ槽44内に配置される構造物は、バッファ槽44内に流れ込んできた流体の流れ方向を部分的に変化させる可動部を有し得る。この実施形態における熱発電システム200Cのバッファ槽44は、内部に回転する羽根48を有している。羽根48は、不図示の支持部材によって回転可能に支持されており、媒体の流れによって回転する。羽根48は、モータなどの外部動力源によって回転させられてもよい。羽根48が回転することにより、乱流が生じ、撹拌効果によって媒体温度の均一化が促進される。このような羽根48は、回転しないように固定されていたとしても、邪魔板と同様に媒体の流れを乱すため、媒体温度の均一化は向上する。バッファ槽44内に設けられる羽根48の個数は、複数であってもよい。
 羽根48の代わりに、あるいは、羽根48とともに、媒体の流れによって回転、搖動、変形する他の撹拌機構がバッファ槽44内に設けられていてもよい。
 図29(a)は、本開示の熱発電システムの更に他の実施形態を示す図である。図29(b)は、図29(a)のB-B線断面図である。
 この実施形態における熱発電システム200Dのバッファ槽44は、内部に仕切り板46cを有している。これにより、バッファ槽44の内部の空間が、2つの空間44Aおよび44Bに分割される。例えば、図29(b)に示すように、空間44Aは、第2の熱発電ユニット100-2の容器に設けられた開口部Aのうちの半分と連通する。空間44Bは、第2の熱発電ユニット100-2の容器に設けられた開口部Aのうち、残りの半分と連通する。
 熱発電システム200Dでは、バッファ槽44の内部に形成された空間44Aに、第1の熱発電ユニット100-1における複数の熱発電チューブのうちの半分から媒体が流れ込む。空間44Bには、第1の熱発電ユニット100-1における複数の熱発電チューブのうち、残りの半分から媒体が流れ込む。バッファ槽44に形成された2つの空間44A、44Bの各々において、第1の熱発電ユニット100-1の複数の熱発電チューブの内部流路から流れ込んだ媒体の熱交換が行われる。このように、バッファ槽44の内部を複数の空間に分割して、分割された空間ごとに、バッファ槽44に流れ込む媒体の熱交換を行わせてもよい。
 仕切り板44cの形状、数および配置は、図示されている例に限定されず、任意の形状、数および配置に設定され得る。3個以上の発電ユニットが直列的に連結される場合には、隣接する2個の発電ユニットの間に挿入されたバッファ槽ごとに仕切り板44cの形状、数または配置を異ならせてもよい。バッファ槽ごとに仕切り板44cの形状、数または配置を異ならせることで、媒体温度の均一化が促進され得る。
 上記の図27、図28および図29を参照しながら説明した邪魔板、撹拌機構および仕切り板は、組み合わせて使用してもよい。3個以上の発電ユニットが直列的に連結される場合、バッファ槽44は、隣接する2個の発電ユニットの間のすべてに挿入してもよいし、一部のみに挿入してもよい。
 なお、邪魔板、撹拌機構および仕切り板は、容器30の内部に設けてもよい。例えば高温媒体が熱発電チューブの内部流路を流れるとき、容器30の内部には低温媒体が流れる。低温媒体は容器30内の熱発電チューブによって加熱されて部分的に昇温するが、熱発電チューブから離れた部分の温度は相対的に低い。したがって、容器30内で低温媒体の流れを邪魔板や撹拌機構によって乱せば、低温媒体の温度分布が均され、低温媒体が熱発電チューブに接する部分での温度を低下させることができる。
 次に、図30を参照する。図30は、本開示の熱発電システムの更に他の実施形態を示す図である。図30において、図26(a)と同様に、実線の太い矢印は、熱発電チューブの外周面と接する媒体の流れ方向を概略的に示している。また、破線の太い矢印は、熱発電チューブの内周面に接する媒体の流れ方向を概略的に示している。熱発電システム200Eでは、第1の熱発電ユニット100-1の複数の熱発電チューブTの流路における流体の流れ方向と、第2の熱発電ユニット100-2の複数の熱発電チューブTの流路における流体の流れ方向とは、互いに反平行に構成されている。
 熱発電システム200Eでは、第1の熱発電ユニット100-1および第2の熱発電ユニット100-2が、空間的に並列に配置されている。例えば、第2の熱発電ユニット100-2は、第1の熱発電ユニット100-1の横に配置される。なお、第1の熱発電ユニット100-1および第2の熱発電ユニット100-2は、鉛直方向に沿って積み重ねられてもよい。この場合、概略的には、第1媒体路中の媒体は鉛直方向に沿って流れる。
 図30に示したように、バッファ槽44は、屈曲した形状であり得る。このように、本開示の実施形態による熱発電システムでは、高温媒体および低温媒体の流路の設計は多様に可能である。例えば、熱発電システムを設置する場所の面積などに応じて、柔軟な設計が可能である。図26~図30は、あくまでも幾つかの例を示すだけであり、各容器の流体入口および流体出口に連通した第1媒体路、および各熱発電チューブの流路に連通した第2媒体路は、任意に設計され得る。なお、複数の熱発電ユニットは、電気的に直列にも接続され得るし、電気的に並列にも接続され得る。
<熱発電システムが備える電気回路の構成例>
 次に、図31を参照しながら、本開示による熱発電システムが備える電気回路の構成例を説明する。
 図31の例において、本実施形態における熱発電システム200は、熱発電ユニット100-1、100-2から出力される電力を受け取る電気回路250を備えている。すなわち、ある態様では、複数の導電性部材は、複数の熱発電チューブに電気的に接続された電気回路を有し得る。
 この電気回路250は、熱発電ユニット100-1、100-2から出力される電力の電圧を上昇させる昇圧回路252と、昇圧回路252から出力される直流電力を交流電力(周波数は例えば50/60Hzまたはその他の周波数)に変換するインバータ(DC-ACインバータ)回路254とを有している。インバータ回路254から出力される交流電力は、負荷400に供給され得る。負荷400は、交流電力を使用して動作する各種の電気機器または電子機器であり得る。負荷400は、それ自体が充電機能を有していてもよいし、電気回路250に固定されている必要も無い。負荷400で消費されない交流電力は、商用系統410に連系されて売電され得る。
 図31の例における電気回路250は、熱発電ユニット100-1、100-2から得られる直流電力を蓄積するための充放電制御部262および蓄電部264を備えている。蓄電部264は、例えばリチウムイオン二次電池などの化学電池や、電気二重層コンデンサなどのキャパシタであり得る。蓄電部264に蓄えられた電力は、必要に応じて、充放電制御部262によって昇圧回路252に与えられ、インバータ回路254を介して交流電力として使用または売電され得る。
 熱発電ユニット100-1、100-2から得られる電力の大きさは、時間に応じて周期的または不定期的に変動する場合がある。例えば、高温媒体の熱源が工場の廃熱である場合、工場の稼働スケジュールに応じて高温媒体の温度が変動する可能性がある。そのような場合、熱発電ユニット100-1、100-2の発電状態が変動するため、熱発電ユニット100-1、100-2から得られる電力の電圧および/または電流の大きさが変動してしまう。そのような発電状態の変動があっても、図31に示される熱発電システム200では、充放電制御回路262を介して蓄電部264に電力を蓄積すれば、発電量の変動による影響は抑制され得る。
 発電とともにリアルタイムで電力を消費する場合は、発電状態の変動に応じて昇圧回路252の昇圧比を調整してもよい。また、発電状態の変動を検知または予測して、熱発電ユニット100-1、100-2に供給する高温媒体または低温媒体の流量および温度などを調整し、それによって発電状態を定常状態に保持する制御を行ってもよい。
 再び図13を参照する。図13に例示されるシステムでは、高温媒体の流量がポンプP1によって調整され得る。同様に、低温媒体の流量はポンプP2によって調整され得る。高温媒体および低温媒体の一方または両方の流量を調整することにより、熱発電チューブの発電量を制御することが可能である。
 なお、不図示の高温熱源から高温媒体に供給する熱の量を調整することにより、高温媒体の温度を制御することも可能である。同様に、低温媒体から不図示の低温熱源に放出する熱の量を調整することにより、低温媒体の温度を制御することも可能である。
 図13には示されていないが、高温媒体の流路および低温媒体の流路の少なくとも一方に弁および分岐路を設け、それによって発電システムに供給される各媒体の流量を調整してもよい。
<熱発電システムの他の実施形態>
 以下、図32を参照しながら、本開示による熱発電システムの他の実施形態を説明する。
 本実施形態では、一般廃棄物処理施設(いわゆるごみ処理場またはクリーンセンター)に複数の熱発電ユニット(例えば100-1、100-2)が設けられている。近年の廃棄物処理施設では、ごみ(廃棄物)を燃焼する際に発生した熱エネルギーから高温高圧水蒸気(例えば400~500℃、数メガパスカル)が生成されることがある。このような水蒸気のエネルギーは、タービン発電によって電力に変換され、施設内の電力使用に供されている。
 本実施形態による熱発電システム300は、複数の熱発電ユニットを備えている。図32の例では、熱発電ユニット100-1、100-2に供給される高温媒体が廃棄物処理施設におけるごみの燃焼熱を得て生成されている。より詳細には、このシステムは、焼却炉310と、焼却炉310で生じた燃焼熱から高温高圧水蒸気を生成するボイラ320と、ボイラ320で生成された高温高圧水蒸気によって回転するタービン330とを備えている。タービン330の回転エネルギーは、不図示の同期発電機に与えられ、同期発電機によって交流電力(例えば3相交流電力)に変換される。
 タービン330を回転する仕事に使用された水蒸気は、復水器360によって液体の水に戻り、ポンプ370によってボイラ320に供給される。この水は、ボイラ320、タービン330、復水器360によって構成される「熱サイクル」を循環する作動媒体である。ボイラ320で水に与えられた熱の一部は、タービン330を回転させる仕事をした後、復水器360で冷却水に与えられる。一般的に、冷却水は、復水器360と冷却塔350との間を循環する。
 このように焼却炉310で発生した熱のうち、タービン330によって電力に変換されるエネルギーは一部であり、タービン330を回転させた後の低温低圧の水蒸気が保有する熱エネルギーは、従来、電気エネルギーに変換して利用されることなく周囲環境に捨てられることが多かった。本実施形態では、このようなタービン330で仕事をした後の低温の水蒸気、または熱水を高温媒体の熱源として有効に利用することができる。本実施形態では、このような低温(例えば140℃程度)の水蒸気から熱交換器340によって熱を得て、例えば99℃の温水を得る。そして、この温水を高温媒体として熱発電ユニット100-1、100-2に供給する。
 一方、低温媒体としては、例えば、廃棄物処理施設で使用される冷却水の一部が利用され得る。廃棄物処理施設が冷却塔350を有している場合、この冷却塔350から例えば10℃程度の水を得て、低温媒体として使用することができる。低温媒体は、特別な冷却塔を利用して得る必要は無く、施設内または近隣の井戸水や川の水を用いて代用することも可能である。
 図32の熱発電ユニット100-1、100-2は、例えば図31に示される電気回路250に接続され得る。熱発電ユニット100-1、100-2で生成された電力は、施設内で使用されたり、蓄電部264に蓄えられたりすることができる。余剰電力は、交流電力に変換された後、商用系統410を介して売電され得る。
 図32の熱発電システム300は、ボイラ320およびタービン330を備える廃棄物処理施設の廃熱利用システムに複数の熱発電ユニットを組み込んだ形態を有している。しかし、熱発電ユニット100-1、100-2の動作にとって、ボイラ320、タービン330、復水器360、熱交換機340は不可欠の構成要素ではない。従来は捨てられていたような比較的低い温度の気体または熱水があれば、それを直接に高温媒体として有効に利用することもできるし、熱交換器を介して他の気体または液体を加熱し、それを高温媒体として利用することもできる。図32のシステムは、実用的な例の1つに過ぎない。
 各実施形態について説明したことから明らかなように、本開示の熱発電システムの実施形態によれば、未利用のまま周囲環境に捨てられていた熱エネルギーを回収して有効に活用することができる。例えば、廃棄物処理施設におけるごみの燃焼熱を利用して高温媒体を生成することにより、従来は捨てられていたような比較的低い温度の気体または熱水が保有する熱エネルギーを有効に活用することが可能となる。
 なお、本開示の熱発電システムの製造方法は、前述した複数の熱発電チューブを用意する工程と、複数の熱発電チューブを前述の構成を有する第1および第2の容器の複数の開口部に挿入し、複数の熱発電チューブを前記第1および第2の容器の各々の内部に保持する工程と、複数の導電性部材によって複数の熱発電チューブを電気的に接続する工程と、第1の容器の内部に保持される複数の熱発電チューブの流路に連通する第1開口部、および、第2の容器の内部に保持される複数の熱発電チューブの流路に連通する第2開口部を有するバッファ槽を第1の容器と第2の容器との間に配置する工程とを含む。
 また、本開示の発電方法は、前述した熱発電システムの各容器の流体入口および流体出口を介して第1媒体を各容器内に流し、第1媒体を各熱発電チューブの外周面に接触させる工程と、各熱発電チューブの前記流路内に第1媒体の温度とは異なる温度を有する第2媒体を流す工程と、複数の導電性部材を介して、複数の熱発電チューブで発生した電力を取り出す工程とを含む。
 本開示の熱発電ユニットは、上記のバッファ槽を介して連結して使用されることなく、単独で使用されてもよい。本開示の熱発電ユニットは、複数の熱発電チューブを備え、前記複数の熱発電チューブの各々は、外周面および内周面と、内周面によって区画される流路とを有し、内周面と外周面との間の温度差によって各熱発電チューブの軸方向に起電力を発生するように構成されている。複数の熱発電チューブは、複数のプレート状の導電性部材によって電気的に直列に接続されている。複数のプレート状の導電性部材は、熱媒体から絶縁されていれば、熱発電チューブを囲む容器の内部または外部に位置していてもよい。
 本開示による熱発電システムは、自動車や工場などから排出される排ガスなどの熱を用いた発電機として利用可能である。
10、10M  熱発電素子
10a  上面
10b  下面
12  炭素含有層
12m、12Mm  第1部分
12h、12Mh  第2部分
12M 中間層
14  炭素含有層
14m、14Mm  第1部分
14h、14Mh  第2部分
14M 中間層
20  金属層
20’ 圧粉体
22  熱電材料層
24  外周面
24’ 圧粉体
25  第1端面
26  内周面
27  第2端面
28  積層体
30  容器
32  胴部
34、34u、36  プレート
34a  プレート34の第1プレート部分
34b  プレート34の第2プレート部分
35    中継プレート
36a  プレート36の第1プレート部分
36b  プレート36の第2プレート部分
36bh 第2プレート部分36bの孔
38a、38a1、38a2  容器30の流体入口
38b、38b1、38b2  容器30の流体出口
40、42  管路
44  バッファ槽
44A、44B  バッファ槽44の内部の空間に形成された2つの空間
44a1  第1開口部
44a2  第2開口部
46a、46b  邪魔板
46c  仕切り板
48   羽根
52   Oリング
52a  第1のOリング
52b  第2のOリング
54   座金
56   導電性リング状部材
56f  リング状の平坦部
56r  複数の弾性部
56a  貫通孔
60   ブッシング
60a  ブッシング60の貫通孔
100  熱発電ユニット
100-1  第1の熱発電ユニット
100-2  第2の熱発電ユニット
120  高温熱源
140  低温熱源
200A、200B、200C、200D、200E  熱発電システム
250  電気回路
252  昇圧回路
254  インバータ回路
262  充放電制御部
264  蓄電部
310  焼却炉
320  ボイラ
330  タービン
340  熱交換器
350  冷却塔400  負荷
410  商用系統
A  プレート34、36の開口部
A41、A410 プレート34の開口部
A61、A62  プレート36の開口部
C  プレート34、36のチャネル
C41~C46  プレート34のチャネル
C61~C65  プレート36のチャネル
Bsa  第1の座面
Bsb  第2の座面
E1   第1電極
E2   第2電極
J    導電性部材
J1~J9  導電性部材
Jc   連結部
Jh1、Jh2  導電性部材Jの2つの貫通孔
Jr1  導電性部材Jの第1リング部分
Jr2  導電性部材Jの第2リング部分
K1   導電性部材
Kh   導電性部材K1の貫通孔
Kr   導電性部材K1のリング部分
Kt   導電性部材K1の端子部
R34、R36  凹部
R34t 溝部分
R36c 溝部分
R41、R61、R62  凹部
T  熱発電チューブ
T1~T10  熱発電チューブ
Tb   チューブ本体
Tb1  チューブ本体
Th34 開口部A41の雌ネジ部
Th60 ブッシング60の雄ネジ部

Claims (14)

  1.  互いに対向して配置された第1電極および第2電極と、
     第1主面および第2主面と、前記第1主面および第2主面の間に位置しており、前記第1電極および第2電極がそれぞれ電気的に接続された第1端面および第2端面とを有する積層体と、
    を備え、
     前記積層体は、相対的にゼーベック係数が低く熱伝導率が高い第1材料から形成された第1層と、相対的にゼーベック係数が高く熱伝導率が低い第2材料から形成された第2層とが交互に積層された構造を有し、
     前記複数の第1層と前記複数の第2層の積層面は、前記第1電極および第2電極が対向する方向に対して傾斜しており、
     前記積層体は、前記第1主面および第2主面の少なくとも一方に炭素を含む炭素含有層を有し、
     前記第1主面と前記第2主面との温度差によって前記第1電極および第2電極間に電位差が発生する、熱発電素子。
  2.  前記積層体は、前記炭素含有層の下層の少なくとも一部に形成された半導体層または絶縁体層を有する請求項1に記載の熱発電素子。
  3.  前記第1主面および前記第2主面は平面であり、前記積層体は直方体形状を有する請求項1に記載の熱発電素子。
  4.  前記積層体は管形状を有し、前記第1主面および前記第2主面は、それぞれ、前記管の外周面および内周面である請求項1に記載の熱発電素子。
  5.  前記第2材料はBiを含み、
     前記第1材料は、Biを含まず、Biとは異なる金属を含む請求項1から4のいずれかに記載の熱発電素子。
  6.  前記炭素含有層は、前記第1材料および前記炭素を含む第1部分と前記第2材料および前記炭素を含む第2部分とを有する請求項1から5のいずれかに記載の熱発電素子。
  7.  前記積層体は焼結体であり、前記炭素含有層は、前記焼結体の一部である請求項1から6のいずれかに記載の熱発電素子。
  8.  請求項1に規定される熱発電素子を含み、
     前記積層体が管形状を有する、熱発電チューブ。
  9.  相対的にゼーベック係数が低く熱伝導率が高い第1材料の原料からなり、一対の積層面と、前記一対の積層面との間に位置し、前記一対の積層面に対して非垂直な第1側面および第2側面とを有する複数の第1圧粉体、および、相対的にゼーベック係数が高く熱伝導率が低い第2材料の原料からなり、一対の積層面と、前記一対の積層面との間に位置し、前記一対の積層面に対して非垂直な第1側面および第2側面とを有する複数の第2圧粉体を用意する工程(A)と、
     前記複数の第1圧粉体および前記複数の第2圧粉体を、前記積層面が互いに接触するように交互に積層することにより、積層圧粉体を形成し、前記複数の第1圧粉体および前記複数の第2圧粉体の各第1側面および各第2側面が、それぞれ前記積層圧粉体の第1主面および第2主面を構成し、前記第1主面および第2主面の少なくとも一方に、カーボンシート、カーボンパウダーおよびグラファイトシートから選ばれる1つを配置する工程(B)と、
     前記カーボンシートが配置された前記積層圧粉体を焼結する工程(C)と
    を包含し、
     前記焼結する工程(C)の後、前記1つが配置されていた前記第1主面または前記第2主面から炭素を含む部分が実質的に除去されない、熱発電素子の製造方法。
  10.  前記焼結する工程(C)において、前記積層圧粉体に圧力を加えながら前記積層圧粉体を焼結する請求項9に記載の熱発電素子の製造方法。
  11.  前記焼結する工程(C)は、ホットプレス法または放電プラズマ法によって行われる請求項10に記載の熱発電素子の製造方法。
  12.  前記複数の第1圧粉体および複数の第2圧粉体のそれぞれは、前記第1および第2側面を外周面および内周面とする管形状を有し、前記第1側面と第2側面は、前記一対の積層面によって接続されており、前記積層面は円錐台の側面形状を有する請求項11に記載の熱発電素子の製造方法。
  13.  請求項8に記載の熱発電チューブを複数備える熱発電ユニットであって、
     前記複数の熱発電チューブの各々は、外周面および内周面と、前記内周面によって区画される流路と、を有し、前記内周面と前記外周面との間の温度差によって各熱発電チューブの軸方向に起電力を発生するように構成されており、
     前記熱発電ユニットは、
     前記複数の熱発電チューブを内部に収容する容器であって、前記内部に流体を流すための流体入口および流体出口と、各熱発電チューブが挿入される複数の開口部とを有する容器と、
     前記複数の熱発電チューブを電気的に接続する複数の導電性部材と、
    を更に備え、
     前記容器は、
     前記複数の熱発電チューブを取り囲む胴部と、
     前記胴部に固定され、前記複数の開口部が設けられた一対のプレートであって、前記複数の導電性部材を収容するチャネルが前記複数の開口部の少なくとも2つを相互に連結するように形成された一対のプレートと、
    を有し、
     各プレートの前記複数の開口部には、それぞれ、各熱発電チューブの端部が挿入されており、前記プレートにおける前記チャネルには、前記複数の導電性部材が収容されており、
     前記複数の熱発電チューブは、前記チャネルに収容された前記複数の導電性部材によって電気的に直列に接続されている、熱発電ユニット。
  14.  請求項13に記載の熱発電ユニットと、
     前記容器の前記流体入口および前記流体出口に連通した第1媒体路と、
     前記複数の熱発電チューブの前記流路に連通した第2媒体路と、
     前記複数の導電性部材に電気的に接続され、前記複数の熱発電チューブで発生した電力を取り出す電気回路と、
    を備える、熱発電システム。
PCT/JP2014/001382 2013-03-12 2014-03-11 熱発電素子、熱発電ユニットおよび熱発電システム WO2014141699A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015505298A JP5834256B2 (ja) 2013-03-12 2014-03-11 熱発電素子、熱発電ユニットおよび熱発電システム
US14/801,176 US20150325768A1 (en) 2013-03-12 2015-07-16 Thermoelectric generator and production method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-049484 2013-03-12
JP2013049484 2013-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/801,176 Continuation US20150325768A1 (en) 2013-03-12 2015-07-16 Thermoelectric generator and production method for the same

Publications (1)

Publication Number Publication Date
WO2014141699A1 true WO2014141699A1 (ja) 2014-09-18

Family

ID=51536378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001382 WO2014141699A1 (ja) 2013-03-12 2014-03-11 熱発電素子、熱発電ユニットおよび熱発電システム

Country Status (3)

Country Link
US (1) US20150325768A1 (ja)
JP (1) JP5834256B2 (ja)
WO (1) WO2014141699A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810807A (zh) * 2014-12-31 2016-07-27 中国科学院上海硅酸盐研究所 环形构造热电器件
WO2016164695A1 (en) * 2015-04-09 2016-10-13 Nitto Denko Corporation Thermoelectric component and method of making same
TWI574438B (zh) * 2015-11-24 2017-03-11 財團法人工業技術研究院 熱電轉換裝置
KR20180062600A (ko) * 2016-12-01 2018-06-11 한국기계연구원 경사형 열전소자 및 이의 제조방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910543B2 (en) * 2015-05-21 2021-02-02 Karl Joseph Steutermann Thermo-electric device to provide electrical power
KR102109486B1 (ko) * 2018-02-12 2020-05-13 한국표준과학연구원 도넛형 열전 발전모듈 및 그 장치
JP7428573B2 (ja) * 2020-04-06 2024-02-06 株式会社東芝 発電素子、発電モジュール、発電装置、及び、発電システム
CN111446356B (zh) * 2020-05-25 2022-07-19 长沙理工大学 一种卷筒式横向热电器件及其制造方法
CN111581847B (zh) * 2020-05-25 2022-05-31 长沙理工大学 一种道路用埋入式热电器件设计方法及其埋入式热电发电路面
CN114659657A (zh) * 2022-03-28 2022-06-24 电子科技大学 叠层结构薄膜热流传感器的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286463A (ja) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd 熱電変換モジュール
JP2003347608A (ja) * 2002-05-28 2003-12-05 Kyocera Corp 熱電素子用結晶体及びその製造方法並びに熱電素子の製造方法
JP2005223131A (ja) * 2004-02-05 2005-08-18 Toyota Motor Corp 内燃機関の熱電発電装置
JP2007324500A (ja) * 2006-06-05 2007-12-13 Sps Syntex Inc FeSi2系熱電変換材料及びその製造方法
JP2010034508A (ja) * 2008-07-02 2010-02-12 Oki Denki Bosai Kk 熱電変換モジュールおよびその製造方法
JP2011198778A (ja) * 2008-07-15 2011-10-06 Panasonic Corp 熱発電デバイスの製造方法
WO2012014366A1 (ja) * 2010-07-30 2012-02-02 パナソニック株式会社 パイプ形状の熱発電デバイスとその製造方法、熱発電体、熱発電デバイスを用いて電気を発生させる方法、および熱発電体を用いて電気を発生させる方法
JP2012033685A (ja) * 2010-07-30 2012-02-16 Panasonic Corp パイプ型熱発電デバイスの製造方法、およびその積層体の製造方法
JP2012069625A (ja) * 2010-09-22 2012-04-05 Panasonic Corp パイプ型光熱発電デバイス
WO2012170443A2 (en) * 2011-06-06 2012-12-13 Amerigon Incorporated Cartridge-based thermoelectric systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510274A (en) * 1968-04-09 1970-05-05 American Cyanamid Co Synthesis of new thorium compounds
CN101356658B (zh) * 2006-11-30 2011-02-16 松下电器产业株式会社 使用热发电元件的发电方法、热发电元件及其制造方法、热发电器件
DE102008058779A1 (de) * 2008-11-24 2010-05-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Modul für einen thermoelektrischen Generator und ein thermoelektrischer Generator
WO2012049790A1 (ja) * 2010-10-13 2012-04-19 パナソニック株式会社 ガスセンサとこれを用いて流体に含有されるガスを検出する方法および流体に含有されるガスの濃度を測定する方法、ガス検出器ならびにガス濃度測定器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286463A (ja) * 1999-03-30 2000-10-13 Nhk Spring Co Ltd 熱電変換モジュール
JP2003347608A (ja) * 2002-05-28 2003-12-05 Kyocera Corp 熱電素子用結晶体及びその製造方法並びに熱電素子の製造方法
JP2005223131A (ja) * 2004-02-05 2005-08-18 Toyota Motor Corp 内燃機関の熱電発電装置
JP2007324500A (ja) * 2006-06-05 2007-12-13 Sps Syntex Inc FeSi2系熱電変換材料及びその製造方法
JP2010034508A (ja) * 2008-07-02 2010-02-12 Oki Denki Bosai Kk 熱電変換モジュールおよびその製造方法
JP2011198778A (ja) * 2008-07-15 2011-10-06 Panasonic Corp 熱発電デバイスの製造方法
WO2012014366A1 (ja) * 2010-07-30 2012-02-02 パナソニック株式会社 パイプ形状の熱発電デバイスとその製造方法、熱発電体、熱発電デバイスを用いて電気を発生させる方法、および熱発電体を用いて電気を発生させる方法
JP2012033685A (ja) * 2010-07-30 2012-02-16 Panasonic Corp パイプ型熱発電デバイスの製造方法、およびその積層体の製造方法
JP2012069625A (ja) * 2010-09-22 2012-04-05 Panasonic Corp パイプ型光熱発電デバイス
WO2012170443A2 (en) * 2011-06-06 2012-12-13 Amerigon Incorporated Cartridge-based thermoelectric systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810807A (zh) * 2014-12-31 2016-07-27 中国科学院上海硅酸盐研究所 环形构造热电器件
WO2016164695A1 (en) * 2015-04-09 2016-10-13 Nitto Denko Corporation Thermoelectric component and method of making same
TWI574438B (zh) * 2015-11-24 2017-03-11 財團法人工業技術研究院 熱電轉換裝置
US10340435B2 (en) 2015-11-24 2019-07-02 Industrial Technology Research Institute Thermoelectric conversion device
KR20180062600A (ko) * 2016-12-01 2018-06-11 한국기계연구원 경사형 열전소자 및 이의 제조방법
KR102050767B1 (ko) * 2016-12-01 2019-12-04 한국기계연구원 경사형 열전소자 및 이의 제조방법

Also Published As

Publication number Publication date
JP5834256B2 (ja) 2015-12-16
JPWO2014141699A1 (ja) 2017-02-16
US20150325768A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP5834256B2 (ja) 熱発電素子、熱発電ユニットおよび熱発電システム
JP5856709B2 (ja) 熱発電ユニットおよび熱発電システム
JP5515028B2 (ja) リバーシブル燃料電池およびリバーシブル燃料電池モジュール
JP2015165555A (ja) 熱発電ユニット
JP6456160B2 (ja) 熱発電ユニットおよび熱発電システム
CN101783628B (zh) 环保热能发电装置
JP5866533B2 (ja) 熱発電ユニット、熱発電システムおよび熱発電モジュール
US10873018B2 (en) Thermoelectric generator system
JP5681842B1 (ja) 熱発電ユニットおよび熱発電ユニットの検査方法
JP5681843B1 (ja) 熱発電ユニットおよび熱発電システム
JP5649761B1 (ja) 熱発電素子および熱発電素子の製造方法
WO2015019385A1 (ja) 熱発電システム
CN105080294B (zh) 稀土陶瓷膜及其制备方法、稀土陶瓷膜电化学制氧结构
JP2016063075A (ja) 熱発電ユニット、熱発電システムおよび熱発電モジュール
CN105810807B (zh) 环形构造热电器件
WO2019072134A1 (zh) 非温差热能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762215

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015505298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762215

Country of ref document: EP

Kind code of ref document: A1