WO2014141554A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2014141554A1
WO2014141554A1 PCT/JP2013/083311 JP2013083311W WO2014141554A1 WO 2014141554 A1 WO2014141554 A1 WO 2014141554A1 JP 2013083311 W JP2013083311 W JP 2013083311W WO 2014141554 A1 WO2014141554 A1 WO 2014141554A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plate
screw
hole
current collector
Prior art date
Application number
PCT/JP2013/083311
Other languages
English (en)
French (fr)
Inventor
西村 拓也
雄輔 内田
貴紀 梶本
佳樹 宮本
田中 明
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2015505238A priority Critical patent/JP6015845B2/ja
Publication of WO2014141554A1 publication Critical patent/WO2014141554A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery such as a lithium ion battery.
  • secondary batteries have been used in various fields, for example, as power sources for electronic devices such as mobile phones. Most of the secondary batteries used for these applications are small-sized, high capacity, and high energy density lithium ion batteries. In recent years, lithium ion batteries have also been used as power sources for electric vehicles, power sources for power storage in homes, etc., or emergency power sources.
  • a power supply system including a lead battery as a secondary battery that is, a lead storage battery has been conventionally used.
  • the lead battery is superior in that the cost per electric energy is lower than that of the lithium ion battery and the safety when the secondary battery is overcharged is high.
  • lithium ion batteries are excellent in that they have high energy density and high input / output characteristics.
  • the volume energy density of the lithium ion battery is about twice the volume energy density of the lead battery, and the weight energy density of the lithium ion battery is at least three times the weight energy density of the lead battery.
  • the power supply system composed of lead batteries has a problem of installation space in which the area of the part where the lead batteries are to be installed must be increased. Due to such a problem of installation space, for example, it has been difficult to install a power supply system composed of a lead battery for use as a backup power supply in an urban area.
  • a large-capacity power supply system composed of lithium ion batteries is expected as a power supply system for backup power supply in the above-mentioned city center. Further, if the output characteristics per lithium ion battery can be increased, a power supply system including a smaller number of lithium ion batteries can be constructed. As a result, the overall cost can be reduced, and the superiority over lead batteries can be further improved. In this case, development of a lithium ion battery having high energy density, high input / output characteristics, high safety and high reliability is required.
  • Japanese Patent Laid-Open No. 50-134147 describes a method of collecting current collecting tabs into a single current collecting plate and connecting the current collecting plate to a pole column.
  • Patent Document 2 Japanese Patent No. 34283366
  • the connection method is any one of welding, screw tightening, and pressure bonding.
  • Patent Document 3 Japanese Patent No. 4494731 describes a method of fixing a current collecting tab to a pole column with a screw and welding the screw and the pole column.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2005-5215
  • a positive electrode plate and a negative electrode plate are divided into a plurality of sets for each predetermined number of sheets, a tab and a current collecting lead for each predetermined number are joined, and then the electrode group is connected to a battery can.
  • the other end of the current collecting lead is fixed to the positive electrode terminal and the negative electrode terminal with a bolt, and the current collecting lead and the terminal are joined by welding to produce a lithium ion battery.
  • Patent Document 5 Japanese Patent Application Laid-Open No.
  • 2010-205546 discloses a non-aqueous electrolyte in which lithium hexafluorophosphate of a lithium salt is dissolved in an organic solvent as a non-aqueous electrolyte for a lithium ion battery.
  • a technique for injecting liquid into a battery can is described.
  • An object of the present invention is to provide a secondary battery having both high safety and high reliability.
  • a secondary battery includes a battery container, a first electrode terminal provided in the battery container and having a first polarity, and a second polarity provided in the battery container and opposite to the first polarity.
  • the secondary battery is provided in the battery container and has a plurality of first electrode plates each having a first polarity, and a plurality of secondary electrodes respectively provided in the battery container and each having a second polarity.
  • the secondary battery includes a first current collector plate connected to each of the plurality of first electrode plates, a first attachment plate attached to the first electrode terminal across the first current collector plate, A first screw member, a first nut member, and a second screw member, each having a first mounting plate attached to one electrode terminal.
  • the first electrode terminal is formed with a first through hole for allowing the first screw member to pass therethrough and a first screw hole for fastening the second screw member.
  • the first mounting plate is formed with a first screw hole for penetrating the first screw member and a second screw hole for penetrating the second screw member.
  • the first current collector plate is formed with a third screw hole for allowing the first screw member to pass therethrough and a fourth screw hole for allowing the second screw member to pass therethrough.
  • the 1st screw member which penetrated the 1st screw hole, the 3rd screw hole, and the 1st penetration hole is fastened with the 1st nut member, and the 2nd screw hole and the 4th screw hole
  • the first mounting plate is attached to the first electrode terminal with the first current collecting plate interposed therebetween, and the first current collecting plate is the first current collecting plate. Connected to electrode terminals.
  • the secondary battery may include a third screw member and a second nut member that attach the first mounting plate to the first electrode terminal.
  • the first electrode terminal is formed with a second through hole for allowing the third screw member to pass therethrough
  • the first mounting plate is formed with a fifth screw hole for allowing the third screw member to pass therethrough.
  • the first current collector plate may be formed with a sixth screw hole for allowing the third screw member to pass therethrough. At this time, the third screw member penetrating the fifth screw hole, the sixth screw hole, and the second through hole is fastened to the second nut member, thereby sandwiching the first current collector plate.
  • a first mounting plate is attached to the first electrode terminal, and the first current collector plate is connected to the first electrode terminal.
  • the first screw hole may be formed at the center of the first end face of the first electrode terminal.
  • the first through hole is formed in a first portion of the first end face located on the first side of the center part, and the second through hole is a first side of the center part of the first end face. It may be formed in the second portion located on the opposite side.
  • the first screw hole may be formed at the center of gravity of the first end surface of the first electrode terminal.
  • the first through hole is formed at a first position away from the center of gravity of the first end surface within the first end surface, and the second through hole is located at the first position around the center of gravity within the first end surface. You may form in the 2nd position which is a symmetrical position.
  • the first through hole may be formed in a first portion of the first end face of the first electrode terminal located on the first side of the center portion of the first end face.
  • the 1st screw hole may be formed in the 2nd part located in the opposite side to the 1st side of a center part among 1st end surfaces.
  • the first through hole may be formed at a first position away from the center of gravity of the first end surface within the first end surface of the first electrode terminal.
  • the first screw hole may be formed in a second position that is symmetrical to the first position with the center of gravity as the center in the first end face.
  • the first nut member may be a double nut.
  • the secondary battery may have a plurality of first current collecting tabs provided at respective end portions of the plurality of first electrode plates.
  • the first current collecting plate may be connected to each of the plurality of first current collecting tabs.
  • the secondary battery includes a second current collector plate connected to each of the plurality of second electrode plates, a second attachment plate attached to the second electrode terminal across the second current collector plate, and a second electrode You may have the 4th screw member, the 3rd nut member, and the 5th screw member which have attached the 2nd attachment board to the terminal.
  • the second electrode terminal is formed with a third through hole for allowing the fourth screw member to pass therethrough and a second screw hole for fastening the fifth screw member.
  • the second mounting plate is formed with a seventh screw hole for allowing the fourth screw member to pass therethrough and an eighth screw hole for allowing the fifth screw member to pass therethrough.
  • the second current collector plate is formed with a ninth screw hole for allowing the fourth screw member to pass therethrough and a tenth screw hole for allowing the fifth screw member to pass therethrough.
  • the fourth screw member that penetrates the seventh screw hole, the ninth screw hole, and the third through hole is fastened to the third nut member, and the eighth screw hole and the tenth screw.
  • the secondary battery according to the representative embodiment is housed in a battery can, and an electrode group in which each of a plurality of positive plates and each of a plurality of negative plates are alternately stacked in a first direction via a separator. 3 or more.
  • the three or more electrode groups include two or more electrode groups (A) and one or more electrode groups (B), and are arranged in the first direction. Negative electrode plates are respectively disposed on both end surfaces in the first direction of the electrode group (A), and positive electrode plates are respectively disposed on both end surfaces in the first direction of the electrode group (B).
  • Electrode groups (A) are respectively arranged at positions on both ends of the array of electrode groups. Only one electrode group (B) is arranged at positions other than both ends of the electrode group arrangement, or two or more electrode groups (B) so that the electrode groups (B) are not adjacent to each other. And one or more electrode groups (A) are arranged.
  • the secondary battery according to the representative embodiment is housed in a battery can, and an electrode group in which each of a plurality of positive plates and each of a plurality of negative plates are alternately stacked in a first direction via a separator. There are multiple.
  • the plurality of electrode groups are arranged in the first direction. Negative electrode plates are respectively disposed on both end faces of each of the plurality of electrode groups in the first direction.
  • a positive and negative electrode plate laminated via a separator has an electrode tab at each end, and an electrode group in which a predetermined plurality of positive and negative electrode plates are alternately laminated via a separator includes a plurality of the electrode groups.
  • the electrode group is an electrode group (A) in which the electrode plates located on both end surfaces of the electrode group in the stacking direction are both negative electrode plates and the electrode group in the stacking direction of the electrode group.
  • the negative electrode plate side of the stacking direction end face is the inner wall surface of the battery can.
  • the electrode group (C) or the electrode group (A) is arranged so that the opposing surfaces of the adjacent electrode groups do not become a positive electrode plate except for a position opposite to the inner wall surface of the battery can.
  • a configuration in which the electrode group (C) is arranged can be employed.
  • the same polarity electrode tab is joined to each positive and negative current collector plate, and the same polarity said current collector plate together with the holding plate is positive and negative by a bolt. It may be fastened to the terminal base part.
  • the electrode tabs of the same polarity of each electrode group may be joined to the positive and negative terminal base portions by friction stir welding.
  • the secondary battery may be configured with a total of 400 positive and negative electrode plates.
  • a secondary battery comprising: an electrode group in which a plurality of positive and negative electrode plates are laminated via a separator; a plurality of electrode tabs extending from the electrode group; and a terminal communicating inside and outside the battery can, wherein the electrode
  • the group is a group (A) in which one end face and the other end face in the electrode group stacking direction are formed of negative electrode plates.
  • A in which one end face and the other end face in the electrode group stacking direction are formed of negative electrode plates.
  • one electrode group is composed of 50 positive electrode plates and 51 negative electrode plates.
  • the positive electrode plate and the negative electrode plate are alternately arranged via the separator, the negative electrode plate exists at both ends of the electrode group.
  • the configuration shown in the following second embodiment is also conceivable.
  • FIG. 1 is a partially broken perspective view showing a secondary battery according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of the secondary battery according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of the secondary battery according to Embodiment 1.
  • FIG. It is a figure which shows the structure of a small electrode bundle. It is a figure which shows the structure of an electrode bundle. It is a figure which shows the structure of a small electrode group.
  • It is a disassembled perspective view which shows an electrode terminal, a current collection board, and a pressing board.
  • It is sectional drawing which shows the various examples of the connection structure of a current collecting plate.
  • FIG. 10 is an explanatory diagram of Example 5.
  • FIG. 10 is an explanatory diagram of Example 6.
  • FIG. 10 is an explanatory diagram of Example 7.
  • the first embodiment is an embodiment when the present invention is applied to a prismatic lithium ion battery as a secondary battery.
  • Patent Documents 1 to 3 described above for example, charging / discharging under the condition that the charging / discharging time rate is about 1 C and the charging / discharging current is about 100 Ah is assumed.
  • the metal atoms are tied together, so the contact resistance between the electrode plate and electrode terminal is different from the case of mechanical connection by caulking or screwing. Can be greatly reduced.
  • sparks are generated, and there is a risk that foreign substances made of metal are generated. Then, the generated spark may damage the separator, or a foreign material made of the generated metal may be mixed between the electrode plates to cause a short circuit.
  • the distance between the electrode plate and the welded portion of the current collecting tab is increased by elongating the current collecting tab. It is possible to make it longer.
  • welding may be performed in a state where a jig for preventing the generated spark from reaching the electrode plate is mounted across the current collecting tab.
  • the contact resistance between the electrode plate and the electrode terminal may increase, which is disadvantageous in performing high-rate charge / discharge. It is.
  • a large number of current collecting tabs may be collectively damaged.
  • an electrode plate is connected to an electrode terminal by a simple connection method that does not use welding, can withstand charge / discharge at a large current, and has a high safety and high reliability. The issue is to provide.
  • FIG. 1 is a partially broken perspective view showing the secondary battery of the first embodiment.
  • each of two directions orthogonal to each other in the horizontal plane is defined as an X-axis direction and a Z-axis direction, respectively, and is orthogonal to the horizontal plane, that is, the X-axis direction and the Z-axis direction.
  • the vertical direction which is the direction in which the image is generated, is the Y axis direction.
  • the secondary battery of the first embodiment has a battery case 1 that is a battery container.
  • the battery case 1 has a prismatic shape with an open surface, and includes a lid 1 a that closes the opening of the battery case 1.
  • the battery case 1 is sealed by welding the opening peripheral portion of the battery case 1 and the lid 1 a. That is, the lid 1a keeps the inside of the battery case 1 in a sealed state.
  • the battery case 1 is preferably made of various metal materials such as stainless steel or an aluminum-based material containing aluminum as a main component.
  • the battery case 1 is provided with a liquid injection port 2 and a gas release valve 3.
  • the liquid injection port 2 is for injecting an electrolytic solution (not shown) into the battery case 1.
  • the gas release valve 3 is for releasing the internal gas when the temperature of the secondary battery rises due to an internal short circuit or the like and the internal pressure in the battery case 1 rises above a predetermined pressure.
  • the battery case 1 is also referred to as a battery can (see Embodiment 2 described later).
  • lithium hexafluorophosphate (LiPF 6 ) is added to a solution obtained by mixing one or more cyclic carbonate organic solvents such as ethylene carbonate and chain carbonate organic solvents such as dimethyl carbonate. Then, a nonaqueous electrolytic solution in which a lithium salt such as lithium tetrafluoroborate (LiBF 4 ) is dissolved is injected. After injecting the non-aqueous electrolyte, the liquid injection port 2 is sealed with a liquid port stopper.
  • a lithium salt such as lithium tetrafluoroborate (LiBF 4 )
  • the secondary battery of the first embodiment has two electrode terminals 4.
  • One of the two electrode terminals 4 is an electrode terminal having a first polarity, and the other is an electrode terminal having a second polarity opposite to the first polarity. Therefore, one of the two electrode terminals 4 is the positive electrode terminal 4a, and the other is the negative electrode terminal 4b.
  • the electrode terminal 4 is provided in the battery case 1 so as to penetrate the lid 1a of the battery case 1, and communicates, that is, electrically connects the inside and the outside of the secondary battery.
  • the positive electrode terminal 4a is made of, for example, a material containing aluminum as a main component, that is, an aluminum-based material.
  • the negative electrode terminal 4b is made of, for example, a material containing copper as a main component, that is, a copper-based material, or made of a material containing nickel as a main component, that is, a nickel-based material.
  • FIG. 2 and 3 are cross-sectional views of the secondary battery of the first embodiment.
  • 2 shows a case where the secondary battery is viewed from the X-axis direction of FIG. 1
  • FIG. 3 shows a case where the secondary battery is viewed from the Z-axis direction of FIG.
  • the secondary battery of the first embodiment has a plurality of electrode plates 6.
  • some of the plurality of electrode plates are electrode plates having a first polarity
  • the other plurality of electrode plates are electrode plates having a second polarity opposite to the first polarity.
  • some of the plurality of electrode plates 6 are positive electrode plates 6a
  • the other plurality of electrode plates 6 are negative electrode plates 6b.
  • Each of the plurality of positive electrode plates 6 a and each of the plurality of negative electrode plates 6 b are alternately stacked in the Z-axis direction via the separator 8 to constitute an electrode group 9.
  • the electrode group 9 includes a plurality of positive electrode plates 6a and a plurality of negative electrode plates 6b, and each of the plurality of positive electrode plates 6a and each of the plurality of negative electrode plates 6b passes through the separator 8 in the Z-axis direction. They are stacked alternately.
  • the electrode group 9 is also referred to as a power generation element (see Embodiment 2 described later).
  • the positive electrode plate 6a includes a positive electrode current collector made of an aluminum foil formed in a plate shape, and a mixture layer provided on both surfaces of the positive electrode current collector and including a positive electrode active material, a binder, and a conductive agent. is doing.
  • the positive electrode active material 1) one represented by the chemical formula LiMO 2 (M is at least one transition metal) or 2) spinel manganese can be used.
  • a positive electrode active material 3) a material obtained by substituting a part of Mn, Ni, Co or the like with one or more transition metal elements among materials such as lithium manganate, lithium nickelate or lithium cobaltate Can be used.
  • a material obtained by substituting a part of the transition metal with a metal element such as Mg or Al among the materials described in 3) can be used.
  • a phosphate compound LiFePO 4 , LiMnPO 4 , LiMn X M 1-X PO 4 (0.3 ⁇ x ⁇ 1, M is Li, Fe, Ni, Co, Ti, One or more elements selected from Cu, Zn, Mg and Zr) can be used.
  • a known conductive agent can be used.
  • a carbon-based conductive agent such as graphite, acetylene black, carbon black, or carbon fiber can be used.
  • materials used as the conductive agent are not limited to these materials.
  • a binder that is, a binder
  • a known binder can be used.
  • polyvinylidene fluoride, styrene / butadiene rubber, isoprene rubber, or the like can be used.
  • materials used as the binder are not limited to these materials.
  • a metal oxide lithium manganate is used as the positive electrode active material, and polyvinylidene fluoride (hereinafter referred to as PVDF) is used as the binder.
  • PVDF polyvinylidene fluoride
  • acetylene black is used as the agent.
  • the negative electrode plate 6b is formed in a plate shape, and is provided on both surfaces of a material having high conductivity and flexibility, for example, a negative electrode current collector made of copper or nickel, and a negative electrode current collector, and a negative electrode active material and a binder. And a mixture layer containing a conductive agent.
  • a negative electrode active material As a negative electrode active material, 1) a carbon-based material such as graphite or amorphous carbon, 2) an oxide-based material such as Li 4 Ti 5 O 12 3) a metal-based material or alloy-based material such as tin or silicon Can be used.
  • a known conductive agent can be used.
  • a carbon-based conductive agent such as graphite, acetylene black, carbon black, or carbon fiber can be used.
  • materials used as the conductive agent are not limited to these materials.
  • a binder that is, a binder
  • a known binder can be used.
  • polyvinylidene fluoride, styrene / butadiene rubber, isoprene rubber, or the like can be used.
  • materials used as the binder are not limited to these materials.
  • the separator 8 is formed in a sheet shape from a porous material such as polyolefin or non-woven fabric through which lithium ions can pass.
  • a porous material such as polyolefin or non-woven fabric through which lithium ions can pass.
  • the polyolefin material include polypropylene or polyethylene
  • examples of the nonwoven material include glass or paper.
  • the separator 8 has a size that can prevent the positive electrode plate 6a and the negative electrode plate 6b from contacting each other in a stacked state.
  • the secondary battery of the first embodiment has a plurality of current collecting tabs 10.
  • Each of the plurality of current collecting tabs 10 is provided at each end of each of the plurality of electrode plates 6.
  • some of the plurality of current collecting tabs 10 are current collecting tabs 10 having a first polarity
  • the other plurality of current collecting tabs 10 are second opposite to the first polarity. It is the current collection tab 10 which has polarity. Accordingly, among the plurality of current collecting tabs 10, some of the current collecting tabs 10 are positive current collecting tabs 10a, and the other plurality of current collecting tabs 10 are negative current collecting tabs 10b.
  • the secondary battery according to the first embodiment has a plurality of current collecting tabs 10a provided at the respective end portions of the plurality of positive electrode plates 6a.
  • the secondary battery according to the first embodiment includes a plurality of current collecting tabs 10b provided at the respective end portions of the plurality of negative electrode plates 6b.
  • the current collecting tab is also referred to as an electrode tab (see Embodiment 2 described later).
  • FIG. 4 is a diagram showing the configuration of the electrode bundle
  • FIG. 5 is a diagram showing the configuration of the electrode bundle
  • FIG. 6 is a diagram showing the configuration of the small electrode group.
  • a laminate in which the negative electrode plate 6b, the separator 8, the positive electrode plate 6a, and the separator 8 are laminated in this order in the Z-axis direction can be used as a minimum unit laminate.
  • the laminate is referred to as a small electrode bundle 11.
  • the small electrode bundle 11 includes a current collecting tab 10a provided at the end of the positive electrode plate 6a and a current collecting tab 10b provided at the end of the negative electrode plate 6b.
  • an array in which a plurality of electrode bundles 11 are arranged in the Z-axis direction that is, an assembly in which the plurality of electrode bundles 11 are bundled in the Z-axis direction is referred to as an electrode bundle 12.
  • the secondary battery of the first embodiment has two current collecting plates 13 for each electrode bundle 12.
  • a plurality of current collecting tabs 10 provided at respective end portions of the plurality of electrode plates 6 are connected to the current collecting plate 13 collectively.
  • One of the two current collector plates 13 is a current collector plate having a first polarity, and the other is a current collector plate having a second polarity opposite to the first polarity. Therefore, one of the two current collecting plates 13 is a positive current collecting plate 13a, and the other is a negative current collecting plate 13b. That is, a plurality of current collecting tabs 10 a provided respectively at end portions of the plurality of positive electrode plates 6 a included in the electrode bundle 12 are connected to the current collecting plate 13 a together. In addition, a plurality of current collecting tabs 10 b provided at the respective end portions of the plurality of negative electrode plates 6 b included in the electrode bundle 12 are collectively connected to the current collecting plate 13 b.
  • connection method between the current collecting tab 10 and the current collecting plate 13 is not particularly limited. Therefore, the current collecting tab 10 and the current collecting plate 13 are connected so that, for example, the connection resistance between the current collecting tab 10 and the current collecting plate 13 is small and no spark or metal powder is generated at the time of connection. Connected by way. Alternatively, the current collecting tab 10 and the current collecting plate 13 are connected even if, for example, the connection resistance between the current collecting tab 10 and the current collecting plate 13 is reduced and sparks or metal powder is generated during the connection. It is connected by the joining method devised so that a spark or metal powder may not scatter around the part to be done. Specifically, the plurality of current collecting tabs 10 and the current collecting plate 13 are connected by ultrasonic welding, laser welding, or the like. In addition, as shown in FIG. 6, the part where the some current collection tab 10 and the current collecting plate 13 are joined is called junction part BD.
  • an assembly composed of one electrode bundle 12 and two current collector plates 13, that is, current collector plates 13 a and 13 b is referred to as a small electrode group 14.
  • An array in which a plurality of small electrode groups 14 are arranged in the Z-axis direction, that is, an assembly in which the plurality of small electrode groups 14 are bundled in the Z-axis direction is the electrode group 9 described above.
  • FIG. 5 an electrode bundle 12 including three electrode bundles 11 is illustrated as an example, but FIG. 2 illustrates an electrode bundle 12 including four electrode bundles 11 as another example. .
  • FIG. 2 illustrates an electrode bundle 12 including four electrode bundles 11 as another example.
  • FIG. 2 as an example, an electrode group 9 including two small electrode groups 14 is illustrated.
  • the negative electrode plates 6b are disposed on both end faces in the Z direction of the electrode group 9, respectively. That is, it is preferable that the negative electrode plate 6b is disposed on the end surface of the electrode group 9 that faces the inner wall of the battery case 1, and the inner wall of the battery case 1 and the negative electrode plate 6b face each other. Thereby, compared with the negative electrode plate 6b, since the positive electrode plate 6a which is in contact with other members and easily short-circuits does not face the inner wall of the battery case 1, the positive electrode plate 6a and the inner wall of the battery case 1 are in contact and short-circuited. This can be prevented.
  • connection structure of the current collector plate Next, the connection structure of the current collector plate will be described.
  • three holes are formed in the current collector plate, and the current collector plate is formed by two through bolts and one screw bolt, or by one through bolt and two screw bolts. The case where it is connected to the electrode terminal will be described as an example.
  • each of the through bolt and the screw bolt is a bolt member.
  • the bolt is a kind of screw
  • each of the through bolt and the screw bolt is also a screw member.
  • the through bolt has a relatively large length, that is, is long, and has a screw thread or a thread groove formed on the outer peripheral surface of the shaft portion.
  • It is a screw member also called a screw.
  • the screw bolt is a screw member that is also referred to as a small screw or a short screw because its length is relatively small, that is, short, and a screw thread or a screw groove is formed on the outer peripheral surface of the shaft portion.
  • the current collector plate is connected to the electrode terminal by two through bolts and one screwed bolt, which means that two through holes are formed on one end surface of the electrode terminal in the Z-axis direction. It means that the current collector plate is connected to the electrode terminal by the bolt and one screwed bolt. Therefore, as shown in FIG. 9 described later, even when the current collector plate is connected to each of both end faces of the electrode terminal by two through bolts and two screw bolts, This corresponds to the case where the current collector plate is connected to the electrode terminal by a through bolt and one screw bolt.
  • FIG. 7 and 8 are exploded perspective views showing the electrode terminal, the current collector plate, and the holding plate.
  • 9 to 11 are sectional views showing various examples of the current collector plate connection structure. 7 shows a case where the current collector is connected to both end faces of the electrode terminal, and FIG. 8 shows a case where the current collector is connected only to one end face of the electrode terminal.
  • 9 to 11 are cross-sectional views perpendicular to the Y-axis direction.
  • the secondary battery of the first embodiment has two pressing plates 15.
  • the holding plate 15 is an attachment plate attached to the electrode terminal 4 with the current collector plate 13 interposed therebetween.
  • One of the two pressing plates 15 is a pressing plate 15 having a first polarity, and the other is a pressing plate 15 having a second polarity opposite to the first polarity. Therefore, one of the two pressing plates 15 is a pressing plate 15a for the positive electrode, and the other is a pressing plate 15b for the negative electrode. That is, the holding plate 15a is an attachment plate attached to the positive electrode terminal 4a with the current collecting plate 13a interposed therebetween, and the holding plate 15b is an attachment plate attached to the negative electrode terminal 4b with the current collecting plate 13b interposed therebetween.
  • the thickness of the pressing plate 15 is preferably 3 mm or more. Thereby, the rigidity of the member of the pressing plate 15 can be sufficiently secured, and the current collecting plate 13 can be pressed uniformly.
  • One end surface 41 of the electrode terminal 4 in the Z-axis direction is a connection surface connected to the current collector plate 13.
  • the end surface 41 is a plane perpendicular to the Z-axis direction. Further, the end surface 41 has, for example, a rectangular shape, and the length of the end surface 41 in the X-axis direction is larger than the length of the end surface 41 in the Y-axis direction.
  • the through-hole 16 is a through-hole that penetrates the electrode terminal 4 from one end face 41 of the electrode terminal 4 and reaches the end face 42 (for example, see FIG. 9) opposite to the end face 41. It is a through-hole for making it penetrate.
  • the screw hole 17 is a screw hole for fastening a screw bolt 19 that is a screw member.
  • the through bolt 18 and the screw bolt 19 are for attaching the pressing plate 15 to the electrode terminal 4. 7 to 9 show an example in which two through holes 16 and one screw hole 17 are formed in the end face 41.
  • a through hole 161 is formed in the holding plate 15 at a position corresponding to the through hole 16, that is, a position overlapping with the through hole 16 when viewed from the Z-axis direction, and a position corresponding to the screw hole 17, A through hole 171 is formed at a position overlapping the screw hole 17.
  • the through hole 161 is a screw hole for allowing the through bolt 18 to pass therethrough
  • the through hole 171 is a screw hole for allowing the screw bolt 19 to pass therethrough.
  • a through hole 162 is formed at a position corresponding to the through hole 16 in the current collector plate 13, that is, a position overlapping with the through hole 16 when viewed from the Z-axis direction, and a position corresponding to the screw hole 17, That is, a through hole 172 is formed at a position overlapping the screw hole 17.
  • the through hole 162 is a screw hole for allowing the through bolt 18 to pass therethrough
  • the through hole 172 is a screw hole for allowing the screw bolt 19 to pass therethrough.
  • a through hole 16a for passing the through bolt 18a and a screw bolt 19a are fastened to one end face 41 of the positive electrode terminal 4a.
  • Screw holes 17a are formed.
  • the through bolt 18a and the screw bolt 19a are for attaching the pressing plate 15a to the positive terminal 4a.
  • a through hole 161a is formed at a position corresponding to the through hole 16a
  • a through hole 171a is formed at a position corresponding to the screw hole 17a.
  • a through hole 162a is formed at a position corresponding to the through hole 16a
  • a through hole 172a is formed at a position corresponding to the screw hole 17a.
  • a through hole 16b for passing the through bolt 18b and a screw bolt 19b are fastened to one end surface 41 of the negative electrode terminal 4b.
  • Screw holes 17b are formed.
  • the through bolt 18b and the screw bolt 19b are for attaching the holding plate 15b to the negative terminal 4b.
  • a through hole 161b is formed at a position corresponding to the through hole 16b
  • a through hole 171b is formed at a position corresponding to the screw hole 17b.
  • a through hole 162b is formed at a position corresponding to the through hole 16b
  • a through hole 172b is formed at a position corresponding to the screw hole 17b.
  • FIG. 7 and 8 show an example in which one current collecting plate 13 is disposed between the electrode terminal 4 and the holding plate 15, but for example, as shown in FIG. Between the pressing plate 15, a plurality of current collecting plates 13 may be disposed so as to overlap each other in the Z-axis direction.
  • the through-hole 161, the through-hole 162, and the through-bolt 18 that penetrates the through-hole 16 are fastened to the nut 20 on the opposite side of the pressing plate 15 across the electrode terminal 4, and the through-hole 171 A screw bolt 19 penetrating through the through hole 172 is fastened to the screw hole 17.
  • the holding plate 15 is attached to the electrode terminal 4 with the current collector plate 13 interposed therebetween, and the current collector plate 13 is connected to the electrode terminal 4.
  • the second through hole 16 for allowing the second through bolt 18 to pass through is formed in the end face 41 of the electrode terminal 4. Further, a second through hole 161 is formed at a position corresponding to the second through hole 16 in the pressing plate 15, and a position corresponding to the second through hole 16 is formed at the current collecting plate 13. A second through hole 162 is formed. The second through-bolt 18 penetrating the second through-hole 161, the second through-hole 162, and the second through-hole 16 is 2 on the opposite side of the holding plate 15 with the electrode terminal 4 interposed therebetween. By fastening with the second nut 20, the holding plate 15 is attached to the electrode terminal 4 with the current collector plate 13 interposed therebetween, and the current collector plate 13 is connected to the electrode terminal 4.
  • the holding plate 15 is attached to the end surface 41 of the electrode terminal 4 with the current collector plate 13 sandwiched by one through bolt 18 and one nut 20.
  • Another pressing plate 15 can be attached to 42 with another current collecting plate 13 interposed therebetween.
  • one current collector 13 is connected to the end surface 41 of the electrode terminal 4 by one through bolt 18 and one nut 20, and another current collector 13 can be connected to the end face 42 of the electrode terminal 4.
  • the pressing plate 15 is attached only to the end surface 41 of the electrode terminal 4 with the current collector plate 13 sandwiched between one through bolt 18 and one nut 20. It is also possible to connect the current collector plate 13 only to the end face 41.
  • the thickness of the electrode terminal 4 in the Z-axis direction is defined as a thickness T1.
  • the thickness T1 of the electrode terminal 4 in the Z-axis direction is equal to the length of the through hole 16.
  • the through bolt 18 includes a shaft portion 181 that can be inserted into the through hole 16 and a head portion 182 that cannot be inserted into the through hole 16, and the length of the shaft portion 181 is defined as a length L1.
  • the screw bolt 19 includes a shaft portion 191 that can be inserted into the screw hole 17 and a head portion 192 that cannot be inserted into the screw hole 17, and the length of the shaft portion 191 is L2.
  • the sum total of each of the thicknesses is defined as a thickness T2.
  • the length L1 of the shaft portion 181 of the through bolt 18 is larger than the sum of the thickness T1 and the thickness T2.
  • the length L2 of the shaft portion 191 of the screw bolt 19 is smaller than the sum of the thickness T1 and the thickness T2.
  • the length of the screw hole 17 is equal to or longer than the length L2 of the shaft portion 191 of the screw bolt 19.
  • the length L1 of the shaft portion 181 of the through bolt 18 becomes larger than the length L2 of the shaft portion 191 of the screw bolt 19. That is, as described above, the through-bolt 18 has a relatively large length, that is, is long, and has a thread or a thread groove formed on the outer peripheral surface of the shaft portion 181, and hence is referred to as a large screw or a long screw. It is a screw member.
  • the screw bolt 19 has a relatively small length, that is, a short screw thread or a screw groove formed on the outer peripheral surface of the shaft portion 191. Therefore, the screw bolt 19 is a screw member called a small screw or a short screw. is there.
  • the thickness T2 is smaller than the thickness T1 and the thickness T2 can be ignored with respect to the thickness T1
  • the length L1 of the shaft portion 181 of the through bolt 18 is greater than the thickness T1.
  • the length L2 of the shaft portion 191 of the screw bolt 19 is smaller than the thickness T1.
  • a thread groove or a thread is formed on the inner peripheral surface of the nut 20, and the shaft 181 of the through bolt 18 is opposite to the head 182.
  • a thread or a screw groove is formed on the outer peripheral surface of the portion that is fastened to the nut 20 so as to be screwed with a screw groove or a screw thread formed on the inner peripheral surface of the nut 20. ing.
  • a screw groove or a thread is formed on the inner peripheral surface of the screw hole 17, and the head portion 192 of the shaft portion 191 of the screw bolt 19 is connected to the head portion 192.
  • a thread or screw groove on the outer peripheral surface of the portion on the opposite side, which is fastened to the screw hole 17, is screwed with a screw groove or thread formed on the inner peripheral surface of the screw hole 17. Is formed.
  • the nut 20 as a nut member is preferably a double nut.
  • the current collector plate 13 is connected to the electrode terminal 4 by fastening the through bolt 18 and the nut 20, the current collector is connected to the electrode terminal 4 rather than the function of electrically connecting the current collector plate 13 to the electrode terminal 4. This is because the function of mechanically connecting, that is, fixing, the plate 13 is more exhibited.
  • the nut 20 may be a single nut.
  • a through bolt 18 and a nut 20 that have a rotation loosening prevention function or the like can be used.
  • the screw hole 17 may be any one in which, for example, a thread groove process is performed on the inner peripheral surface of the screw hole 17 to form a screw groove or a screw thread. It may be a through hole that penetrates 4 and reaches the end face 42. Moreover, it is preferable that the contact area between the screw bolt 19 and the screw hole 17 is large. This is because when the current collector plate 13 is connected to the electrode terminal 4 by fastening the screw bolt 19, the current collector plate is connected to the electrode terminal 4 rather than the function of mechanically connecting the current collector plate 13 to the electrode terminal 4, that is, fixing the current collector plate 13. This is because the function of electrically connecting 13 is more exhibited.
  • the screw hole 17 is preferably formed in the center of the end face 41 of the electrode terminal 4.
  • one of the two through holes 16 is formed in a portion of the end surface 41 of the electrode terminal 4 that is located on the first side of the center portion of the end surface 41, and the two through holes 16. The other of them is formed in a portion of the end face 41 of the electrode terminal 4 that is located on the opposite side to the first side of the central portion of the end face 41.
  • the screw hole 17 is formed at the center of gravity of the end face 41 of the electrode terminal 4.
  • one of the two through holes 16 is formed in a first position in the end surface 41 of the electrode terminal 4 away from the center of gravity of the end surface 41, and the other of the two through holes 16 is In the end face 41 of the electrode terminal 4, the center is formed at a second position that is symmetrical to the first position with the center of gravity of the end face 41 as the center.
  • the uniformity of the pressure by which the current collector plate 13 is pressed against the electrode terminal 4 in the end face 41 can be further improved.
  • the screw hole 17 is formed at the center of gravity of the end surface 41 means that the screw hole 17 is included in the screw hole 17 when viewed from a direction perpendicular to the end surface 41. 17 is formed. Further, preferably, the screw hole 17 is formed at the center of gravity of the end surface 41. When viewed from a direction perpendicular to the end surface 41, the center of gravity of the end surface 41 corresponds to the center position of the screw hole 17. It means that the screw holes 17 are formed so as to be in the same position. The same applies when the through hole 16 is formed instead of the screw hole 17.
  • the second position is not symmetrical with the first position around the center of gravity of the end surface 41, the second position is on a straight line connecting the center of gravity of the end surface 41 and the first position, and sandwiches the center of gravity of the end surface 41.
  • the uniformity of the pressure with which the current collector plate 13 is pressed against the electrode terminal 4 can be improved to some extent.
  • FIG. 10 shows an example in which a pressing plate 15 is attached to the electrode terminal 4 with 13 interposed therebetween.
  • the number of through bolts 18 and the number of screw bolts 19 are interchanged to form one through hole 16 and two screw holes 17 in the end surface 41 of the electrode terminal 4.
  • the holding plate 15 may be attached to the electrode terminal 4 with the current collecting plate 13 sandwiched between the two through bolts 18 and the two screw bolts 19.
  • the diameter of the through hole 16 is smaller than the length of the short side of the end surface 41, and The diameter of the head of the bolt 18 is smaller than the length of the short side of the end surface 41.
  • the diameter of the through hole 16 is equal to or greater than a lower limit value at which the current collector plate 13 can be connected to the electrode terminal 4 with sufficient mechanical strength by fastening the through bolt 18 and the nut 20.
  • the diameter of the portion is equal to or greater than the lower limit value at which the current collector plate 13 can be connected to the electrode terminal 4 with sufficient mechanical strength by fastening the through bolt 18 and the nut 20.
  • 12 to 14 are cross-sectional views showing various examples of the current collector plate connection structure. 12 to 14 are cross-sectional views perpendicular to the Y-axis direction.
  • one through hole 16 and one screw hole 17 are formed in one end surface 41 of the electrode terminal 4 in the Z-axis direction.
  • the pressing plate 15 is attached to the end surface 41 of the electrode terminal 4 with the current collector plate 13 sandwiched between the one through bolt 18 and one nut 20, and the electrode terminal 4.
  • Another holding plate 15 can be attached to the end face 42 with another current collecting plate 13 interposed therebetween. Therefore, as shown in FIGS. 12 and 13, one current collector 13 is connected to the end surface 41 of the electrode terminal 4 by one through bolt 18 and one nut 20, and another current collector 13 is connected to the electrode. It can be connected to the end face 42 of the terminal 4.
  • the pressing plate 15 is attached only to the end surface 41 of the electrode terminal 4 across the current collector plate 13, and the end surface 41 of the electrode terminal 4 is attached. It is also possible to connect the current collector plate 13 only to the above.
  • the position of the center of gravity of the end face 41 in the X-axis direction can be made different from the position of the center of gravity of the end face 42 in the X-axis direction.
  • the position of the center of gravity of the end surface 41 in the X-axis direction can be determined by chamfering each of the pair of corners located diagonally to the rectangular electrode terminal 4 when viewed from the Y-axis direction. It can be different from the position of the center of gravity of the end face 42 in the axial direction.
  • the through hole 16 is formed in a portion of the end surface 41 of the electrode terminal 4 that is located on the first side of the center portion of the end surface 41, and the screw hole 17 is formed on the end surface 41 of the electrode terminal 4. Among these, it is formed in a portion located on the opposite side to the first side of the central portion of the end face 41.
  • the uniformity of the pressure by which the current collection board 13 is pressed by the electrode terminal 4 can be improved.
  • the through hole 16 is formed at a first position away from the center of gravity of the end surface 41 within the end surface 41 of the electrode terminal 4, and the screw hole 17 is formed at the end surface 41 within the end surface 41 of the electrode terminal 4.
  • the center of gravity 41 is formed at a second position that is symmetrical to the first position.
  • the second position is on a straight line connecting the center of gravity of the end surface 41 and the first position, and the center of gravity of the end surface 41 is sandwiched between them.
  • the uniformity of the pressure with which the current collector plate 13 is pressed against the electrode terminal 4 can be improved to some extent.
  • the second position may be a position symmetrical to the first position around a straight line passing through the center of gravity of the end surface 41 and parallel to the Y-axis direction.
  • the first position and the second position are the positions of both ends of the fan-shaped arc with the center of gravity of the end surface 41 as the center.
  • FIG. 15 is an exploded perspective view showing an electrode terminal, a current collector plate, and a holding plate.
  • two end holes 41 and two screw holes 17 are formed on one end face 41 of the electrode terminal 4 in the Z-axis direction.
  • the holding plate 15 is attached to the end surface 41 of the electrode terminal 4 with the current collector plate 13 sandwiched between one through bolt 18 and one nut 20, and the end surface 41 of the electrode terminal 4 is attached.
  • Another holding plate 15 can be attached to the end surface opposite to the other current plate 13 with another current collecting plate 13 interposed therebetween. Therefore, one current collector 13 is connected to the end surface 41 of the electrode terminal 4 by one through bolt 18 and one nut 20, and another current collector 13 is connected to the end surface 41 opposite to the electrode terminal 4. Can be connected to the end face.
  • the pressing board 15 is attached only to the end surface 41 of the electrode terminal 4 on both sides of the current collecting plate 13 by one through volt
  • Table 1 shows an example of an arrangement pattern of two through bolts and two screw bolts in the end face 41 of the electrode terminal 4.
  • Table 1 shows an example of an arrangement pattern of two through bolts and two screw bolts in the end face 41 of the electrode terminal 4.
  • four positions arranged from one side to the other side in the X-axis direction, that is, from the left side to the right side, are sequentially arranged as a left end position PS1 and a left middle position PS2.
  • the through hole 16 is formed at that position.
  • the right middle position PS3 where the screw hole 17 is formed is preferably the left middle position PS2 where another screw hole 17 is formed, and the end face 41. It is a position on the opposite side across the center part of.
  • the end surface 41 which is a connection surface connected with the current collection board 13 among the electrode terminals 4
  • the uniformity of the pressure by which the current collection board 13 is pressed by the electrode terminal 4 can be improved.
  • the case shown in the pattern PT4 in Table 1 is the same as the case shown in the pattern PT1 in Table 1 except that the through bolts and the screw bolts are replaced with each other.
  • the right end position PS4 where the through hole 16 is formed is more preferably the left end position PS1 where another through hole 16 is formed, and the end face 41. It is a symmetric position around the center of gravity.
  • the right middle position PS3 in which the screw hole 17 is formed is a symmetric position with respect to the left middle position PS2 in which another screw hole 17 is formed with the center of gravity of the end surface 41 as the center. Thereby, the uniformity of the pressure by which the current collector plate 13 is pressed against the electrode terminal 4 in the end face 41 can be further improved.
  • the case shown in the pattern PT4 in Table 1 is the same as the case shown in the pattern PT1 in Table 1 except that the through bolts and the screw bolts are replaced with each other.
  • the current collector plate 13 is connected to the electrode terminal 4 using only the screw bolt 19 .
  • the current collector plate 13 can be electrically connected to the electrode terminal 4 reliably.
  • the screw bolt 19 is loosened due to minute vibrations continuously applied to the secondary battery from the outside or the secondary battery generating heat due to charging / discharging.
  • the current collector plate 13 is connected to the electrode terminal 4 by using both the through bolt 18 and the nut 20 and the screwed bolt 19 together. At this time, by fastening the through bolt 18 and the nut 20, variation in contact resistance between the current collector plate 13 and the electrode terminal 4 can be reduced. Moreover, the current value at the time of charging / discharging can be easily increased by fastening the screw bolt 19. Therefore, in the secondary battery, safety and reliability can be improved while ensuring a sufficiently large current value for charging and discharging.
  • the current collector plate 13 when the current collector plate 13 is connected to the electrode terminal 4 without using the holding plate 15, the current collector plate 13 in a part away from the through bolt 18 or the screw bolt 19 may not come into contact with the electrode terminal 4. Therefore, the contact resistance between each of the current collector plates 13 and the electrode terminals 4 may increase, and the current value at the time of charging / discharging cannot be easily increased.
  • the current collecting plate 13 is connected to the electrode terminal 4 using the holding plate 15.
  • the area of the pressing plate 15 is substantially the same as the end face 41 of the electrode terminal 4.
  • the current collector plate connection structure described above can also be applied to the case where the current collector plate 13 is connected to only one of the positive electrode terminal 4a and the negative electrode terminal 4b. Further, even when the above-described current collector plate connection structure is applied to only one of the positive electrode terminal 4a and the negative electrode terminal 4b, the above-described current collector plate connection structure is applied to either the positive electrode terminal 4a or the negative electrode terminal 4b. Compared with the case where no is applied, the applied electrode terminal 4 can improve the uniformity of the pressure with which the current collector plate 13 is pressed against the electrode terminal 4. Therefore, in the secondary battery, safety and reliability can be improved while ensuring a sufficiently large current value for charging and discharging.
  • the lithium ion battery of the example of the first embodiment was manufactured in the same manner as the lithium ion battery described in the first embodiment. Specifically, the electrode small bundle 11 in which one positive electrode plate 6a and one negative electrode plate 6b are laminated via the separator 8 is laminated by fifteen bundles in the Z-axis direction of FIG. A bundle 12 was formed. At this time, the current collecting tabs 10a of the 15 positive electrode plates 6a are collectively connected to the current collecting plate 13a for the positive electrodes by ultrasonic welding, and the current collecting tabs 10b of the 16 negative electrode plates 6b are for the negative electrode. The small electrode group 14 was formed by being collectively connected to the current collector plate 13b by ultrasonic welding. Then, 16 electrode bundles 12, that is, 16 small electrode groups 14 were arranged in the Z-axis direction of FIG. 1 to form an electrode group 9, thereby producing a lithium ion battery.
  • the shape of the end surface 41 of the electrode terminal 4 when viewed from the Z-axis direction is a rectangular shape, that is, a rectangular shape, and the length in the X-axis direction is larger than the length in the Y-axis direction.
  • 8 bundles of small electrode groups 14, that is, 8 current collector plates 13 are connected to the end face 41, and the remaining 8 bundles of small electrode groups 14, that is, 8 sheets.
  • the current collector plate 13 was connected to the end face 42. Further, unless otherwise specified, the through bolt 18 was fastened with a nut 20 made of a double nut.
  • a solution of a mixture of ethylene carbonate and dimethyl carbonate was prepared by dissolving lithium hexafluorophosphate (LiPF 6).
  • LiPF 6 lithium hexafluorophosphate
  • a polyethylene porous material was used as the separator.
  • Example 1 A secondary battery of Example 1 was produced.
  • the current collector plate 13 was connected to the electrode terminal 4 by two through bolts 18 and one screw bolt 19.
  • the screw hole 17 is formed at the center of gravity of the end surface 41 of the electrode terminal 4.
  • two positions symmetrical to each other about the center of gravity of the end surface 41 in the X-axis direction are formed.
  • a through hole 16 was formed in each.
  • the current collector plate 13 is connected to the electrode terminal 4 by the two through bolts 18 and the single screw bolt 19. That is, the end surface 41 and the end surface 42 of the electrode terminal 4. This means that the current collector plate 13 is connected to the electrode terminal 4 by two through bolts 18 and one screw bolt 19 on one end face.
  • a secondary battery of Comparative Example 1 was produced.
  • the secondary battery of Comparative Example 1 differs from the secondary battery of Example 1 in that the current collector plate 13 is connected to the electrode terminal 4 by only two through bolts 18.
  • the one disposed at the position is displayed as the first sheet, and the one disposed farthest from the end face 41 of the electrode terminal 4 is displayed as the eighth sheet. Further, the resistance value shown on the vertical axis of FIG. 16 is normalized by the resistance value between the fifth current collecting plate 13 and the electrode terminal 4 in Comparative Example 1.
  • the resistance value of the third to sixth current collector plates 13 is larger than the resistance value of the first, second, seventh and eighth current collector plates 13. This is because, when the current collector plate 13 is connected to the electrode terminal 4 only by the through bolts 18, the two through bolts 18 of the current collector plate 13 become farther away from both the end face 41 and the holding plate 15. It is considered that the portions apart from each other are difficult to contact each other and the contact resistance increases.
  • the resistance value between the current collector plate 13 and the electrode terminal 4 is almost less than half in all of the first to eighth current collector plates 13 as compared with Comparative Example 1. Decreased. Therefore, the resistance value between the current collector plate 13 and the electrode terminal 4 could be reduced by connecting the current collector plate 13 to the electrode terminal 4 with the screw bolt 19.
  • Example 2 A plurality of secondary batteries of Example 2 were produced.
  • the current collector plate 13 was connected to the electrode terminal 4 by one through bolt 18 and one screw bolt 19.
  • each of the through hole 16 and the screw hole 17 is formed at each of two positions symmetrical to each other about the center of gravity of the end surface 41 in the X-axis direction among the end surfaces 41 of the electrode terminal 4. It was done.
  • the current collector plate 13 is connected to the electrode terminal 4 by one through bolt 18 and one screw bolt 19. That is, the end face 41 and the end face 42 of the electrode terminal 4. It means that the current collector plate 13 is connected to the electrode terminal 4 by one through bolt 18 and one screw bolt 19 on one end face.
  • Example 3 A plurality of secondary batteries of Example 3 were produced.
  • the current collector plate 13 is connected to the electrode terminal by two through bolts 18 and one screw bolt 19 or by one through bolt 18 and two screw bolts 19. 4 connected.
  • the screw hole 17 is formed at the center of gravity of the end surface 41 of the electrode terminal 4.
  • the end surface 41 each of two positions symmetrical to each other about the center of gravity of the end surface 41 in the X-axis direction.
  • a through hole 16 was formed.
  • FIG. 1 A through hole 16 was formed.
  • the through hole 16 is formed at the center of gravity of the end surface 41 of the electrode terminal 4, and two positions of the end surface 41 that are symmetrical with respect to the center of gravity of the end surface 41 in the X-axis direction.
  • a screw hole 17 was formed in each of these.
  • the current collector plate 13 is connected to the electrode terminal 4 by the two through bolts 18 and the single screw bolt 19. That is, the end surface 41 and the end surface 42 of the electrode terminal 4.
  • the current collector plate 13 is connected to the electrode terminal 4 by two through bolts 18 and one screw bolt 19 on one end face.
  • the fact that the current collector plate 13 is connected to the electrode terminal 4 by one through bolt 18 and two screw bolts 19 means that one of the end face 41 and the end face 42 of the electrode terminal 4 is It means that the current collector plate 13 is connected to the electrode terminal 4 by one through bolt 18 and two screw bolts 19.
  • the temperature of the electrode terminal 4 at the time of discharging was measured.
  • a secondary battery is installed in a convection thermostat whose ambient environmental temperature is 25 ° C., the discharge current is set to 500 A, and the voltage at the time of stopping the discharge, that is, the end voltage is set to 3.0 V.
  • the temperature of the electrode terminal 4 was measured.
  • the thermocouple was attached as a temperature sensor to the part to which the bus-bar which consists of a copper plate connected to the electricity cable among the electrode terminals 4 is fastened, that is, the fastening part, and the temperature of the electrode terminal 4 was measured by the thermocouple. .
  • FIG. 17 shows the battery resistance of the secondary battery, that is, the contact resistance between the current collector plate and the electrode terminal, and the vertical axis of FIG. 17 shows the temperature rise of the electrode terminal when discharging is performed. .
  • the battery resistance shown on the horizontal axis of FIG. 17 is normalized by the average value of the battery resistance in Example 2.
  • the battery resistance is 1.2 to 1.4 m ⁇
  • the temperature of the electrode terminal 4 is 55 to 85 ° C.
  • the battery resistance is 0.8.
  • the temperature of the electrode terminal 4 was 40 to 50 ° C.
  • the standardized battery resistance in Example 2 is about 1.5 times the standardized battery resistance in Example 3, and the temperature rise in Example 2 It was greater than the temperature rise at 3. That is, for example, when discharging is performed with a large discharge current of 500 A, the temperature rise in the secondary battery of Example 3 in which a total of three through bolts 18 and screw bolts 19 are used is connected to the through bolt 18 and the screw bolt. 19 is smaller than the temperature rise in the secondary battery of Example 2 connected using one by one.
  • Example 4 A plurality of secondary batteries of Example 4 were produced.
  • the current collector plate 13 was connected to the electrode terminal 4 using a total of 2 to 4 through bolts 18 and screw bolts 19.
  • each of the end faces 41 of the electrode terminals 4 has through holes at two positions symmetrical to each other about the center of gravity of the end face 41 in the X-axis direction.
  • 16 and screw holes 17 were formed.
  • the through hole 16 or the screw hole 17 corresponds to the type in which only one of the through bolt 18 and the screw bolt 19 is used.
  • the center of gravity of the end face 41 of the terminal 4 was formed.
  • the through holes 16 or the screw holes 17 were formed. Further, when a total of four through bolts 18 and screw bolts 19 were used, the through holes 16 or the screw holes 17 were formed corresponding to the patterns PT1 to PT4 described above using Table 1. In Example 4, in either case, the through bolt 18 and the nut 20 made of a double nut were fastened.
  • the current collector plate 13 is connected to the electrode terminal 4 by using a total of 2 to 4 through bolts 18 and screw bolts 19. It means that the total of the number of through bolts 18 and the number of screw bolts 19 used for connecting the current collector plate 13 to the electrode terminal 4 is 2 to 4 on one end face.
  • ⁇ Comparative example 2> On the other hand, a plurality of secondary batteries of Comparative Example 2 were produced.
  • the current collector plate 13 was connected to the electrode terminal 4 using a total of 2 to 4 through bolts 18.
  • the secondary battery of Comparative Example 2 differs from the secondary battery of Example 4 in that the current collector plate 13 is connected to the electrode terminal 4 only by the through bolts 18.
  • the through bolt 18 and the nut 20 made of a double nut were fastened.
  • indicates a case where no loosening of the screwed bolt or the like has occurred
  • indicates a case where the loosening of the screwed bolt or the like has occurred
  • indicates a case where the resistance value between the current collector plate and the electrode terminal is between the resistance value in the case of ⁇ and the resistance value in the case of ⁇
  • indicates that the resistance value between the current collector plate and the electrode terminal The case where the resistance value between them is smaller than the resistance value in the case of ⁇ is shown.
  • the total number of through bolts 18 and screw bolts 19 is preferably three or more. Further, when the total number of through bolts 18 and screw bolts 19 is three or more, as shown in Table 2, the use of at least one through bolt 18 prevents loosening of the screw bolts 19 and the like. can do. Furthermore, as shown in FIG. 16, the resistance value between the current collector plate 13 and the electrode terminal 4 can be reduced by using at least one screw bolt 19.
  • the current collector plate connected to the electrode plate is sandwiched between the electrode terminal and the holding plate, and one or more screw bolts are fastened to the screw holes, and When one or more sets of through bolts and nuts are fastened, the pressing plate is attached to the electrode terminal, and the current collecting plate is pressed against the electrode terminal by the pressing plate and connected.
  • the pressing plate is attached to the electrode terminal, and the current collecting plate is pressed against the electrode terminal by the pressing plate and connected.
  • the current collector plate can be connected to the electrode terminal by a simple connection method, and the contact resistance between the current collector plate and the electrode terminal is reduced. It is possible to charge and discharge by flowing a large current.
  • the electrode plate is connected to the electrode terminal by a simple connection method that does not use welding, and a secondary battery having both high safety and high reliability can be provided.
  • the current collector plate connected to each of the plurality of electrode bundles is connected to the electrode terminal using a through bolt and a screw bolt so as to be connected to the electrode terminal with low resistance.
  • the plurality of electrode bundles are arranged so that the positive plates located at both ends of the electrode bundle do not face each other.
  • the second embodiment is an embodiment when the present invention is applied to a lithium ion battery as a secondary battery.
  • a lithium ion battery has a structure in which a plurality of positive and negative electrode plates are alternately stacked via a separator for preventing short circuit in a battery can (stacked type), and a positive electrode plate and a negative electrode plate on a shaft.
  • a structure wound around a separator is known.
  • tabs for connecting the electrode plate and the terminal are formed on each end of the positive electrode plate and the negative electrode plate.
  • the positive electrode terminal and the negative electrode terminal are provided on the lower surface and the upper surface of the battery can lid plate, and the positive electrode terminal and the negative electrode terminal arranged on the lower surface of the battery can cover plate are joined to the tab of the positive electrode plate and the tab of the negative electrode plate, respectively.
  • the number of electrode plates accommodated in the battery can increases as the capacity of the laminated lithium ion battery used for power storage and the like increases. Therefore, when the electrode plate tab is joined to the terminal, the deterioration of the battery characteristics accompanying the increase in the contact resistance of the joint is a problem. Moreover, it is necessary to join all the positive electrode tabs and the negative electrode tabs to the positive electrode terminal and the negative electrode terminal in the manufacturing process, respectively. Furthermore, when the number of electrode plate tabs increases, the bonding with the terminals becomes insufficient, and the internal resistance may increase and become defective.
  • the positive electrode plate and the negative electrode plate are divided into a plurality of sets (hereinafter referred to as electrode groups) for each predetermined number of sheets, and a tab and a current collecting lead for each predetermined number of sheets.
  • the electrode group is housed in a battery can, the other end of the current collecting lead is fixed to the positive terminal and the negative terminal with a bolt, and the current collecting lead and the terminal are welded to produce a lithium ion battery. ing.
  • Patent Document 5 a non-aqueous electrolyte in which lithium hexafluorophosphate of a lithium salt is dissolved in an organic solvent is injected into a battery can as a non-aqueous electrolyte for a lithium ion battery.
  • the technology is described.
  • both end surfaces in the stacking direction of the electrode group are formed with a positive electrode plate and stored in the battery can.
  • the positive electrode plates face each other on the surface where the other end of the electrode group faces.
  • contact between the positive electrodes may cause product defects such as safety problems such as internal short circuits.
  • the current collector lead is fixed to the terminal with a bolt and then welding is performed on the bolt and the terminal, there is a possibility that the contact resistance at the joint between the bolt and the terminal may increase because the bolt tightening and welding positions overlap. . Further, there is a risk that metal pieces generated during welding enter the inside of the battery can and cause an internal short circuit.
  • the first problem is to prevent a short circuit during charging / discharging.
  • the second problem is a secondary battery that prevents a short circuit that is likely to occur due to an operation at the time of manufacture in addition to the above-mentioned purpose, and that has higher safety by reducing the contact resistance between the electrode plate tab and the terminal base portion.
  • the purpose is to provide.
  • FIG. 18 is a perspective view of a battery can of the lithium ion battery according to the second embodiment.
  • the lithium ion battery includes a positive electrode terminal 51 a and a negative electrode terminal 51 b as terminals 51 (see FIG. 19 described later), a liquid injection port 52, a cleavage valve 53, a battery can 54, and a battery lid 55.
  • the battery can 54 has a prismatic shape with one surface opened, and includes a battery lid 55 that closes the opening of the battery can 54.
  • the battery can 54 and the battery lid 55 are sealed by welding the opening peripheral portion of the battery can 54 and the battery lid 55 after inserting the power generation element 56 (see FIG. 20 described later) into the battery can 54.
  • the material of the battery can is preferably a metal material such as an aluminum material in addition to a stainless steel material in terms of mechanical strength.
  • the battery lid 55 is provided with a cleavage valve 53 and a liquid injection port 52.
  • the cleavage valve 53 has a function of releasing the internal gas when the temperature of the lithium ion battery rises for some reason, such as an internal short circuit, and the internal pressure in the battery can rises above a predetermined pressure.
  • lithium hexafluorophosphate (LiPF 6 ) is added to a solution obtained by mixing one or more cyclic carbonate organic solvents such as ethylene carbonate and chain carbonate organic solvents such as dimethyl carbonate. Then, a nonaqueous electrolytic solution in which a lithium salt such as lithium tetrafluoroborate (LiBF 4 ) is dissolved is injected. After injection of the non-aqueous electrolyte, the liquid injection port 52 is sealed with a liquid port stopper.
  • FIG. 19 and 20 are cross-sectional views of the lithium ion battery of the second embodiment.
  • 19 is a cross-sectional view perpendicular to the direction perpendicular to the stacking direction of the positive electrode plate and the negative electrode plate
  • FIG. 20 is a cross-sectional view perpendicular to the stacking direction of the positive electrode plate and the negative electrode plate. That is, FIG. 20 shows a cross-sectional view of a lithium ion battery in which the battery can 54 is cut in parallel with the laminated surface of the positive electrode plate and the negative electrode plate.
  • FIG. 21 is a perspective view of the power generation element with the battery can removed.
  • FIG. 22 is a perspective view of the lithium ion battery with the battery can removed.
  • a power generation element 56 is accommodated in the battery can 54.
  • the power generation elements 56 are alternately stacked via positive electrodes 57a, negative electrodes 57b, and separators (not shown) so that the positive electrodes and the negative plates do not directly contact and short-circuit. Point to.
  • the positive electrode plate 57a has a positive electrode current collector made of an aluminum foil formed in a plate shape, and a mixture layer containing a positive electrode active material, a binder, and a conductive agent provided on both surfaces of the positive electrode current collector.
  • the positive electrode active material 1) one represented by the chemical formula LiMO 2 (M is at least one transition metal) or 2) spinel manganese can be used. 3) A part of Mn, Ni, Co, etc. in the positive electrode active material such as lithium manganate, lithium nickelate, lithium cobaltate and the like can be substituted with one or more transition metals. . Further, a part of the transition metal of 3) substituted with a metal element such as Mg or Al can also be used.
  • phosphate compounds LiFePO 4 , LiMnPO 4 , LiMn X M 1-X PO 4 (0.3 ⁇ x ⁇ 1, M is Li, Fe, Ni, Co, Ti, Cu, Zn, Mg, And one or more elements selected from Zr) can be used.
  • a known conductive agent can be used.
  • a carbon-based conductive agent such as graphite, acetylene black, carbon black, or carbon fiber can be used. However, it is not limited to these materials.
  • a known binder can be used.
  • polyvinylidene fluoride, styrene-butadiene rubber, isoprene rubber, or the like can be used.
  • a metal oxide lithium manganate is used as a positive electrode active material
  • polyvinylidene fluoride hereinafter referred to as PVDF
  • acetylene black is used as a conductive material, that is, a conductive agent.
  • a positive electrode tab 58a that is an electrode tab, that is, an electrode plate tab 58 (see FIG. 23 described later) is formed.
  • the positive electrode tab 58a is electrically connected to the positive electrode terminal 51a via the positive electrode current collector plate 61a
  • one end of the positive electrode tab 58a is connected to one end of the positive electrode current collector plate 61a by ultrasonic welding or laser welding. Etc. are used for joining.
  • the positive electrode tab 58a and the positive electrode terminal 51a are electrically connected by friction stir welding, the positive electrode current collector plate is not used and the positive electrode terminal base 51a is directly joined.
  • the battery lid 55 is provided with a positive electrode terminal 51a that communicates the inside and outside of the battery lid 55 of the lithium ion battery, and is formed of, for example, an aluminum-based material.
  • the negative electrode plate 57b is a plate-shaped material having high conductivity and flexibility, for example, a negative electrode current collector made of copper or nickel, a negative electrode active material and a binder provided on both surfaces of the negative electrode current collector, And a mixture layer containing a conductive agent.
  • the negative electrode active material includes 1) a carbon-based material such as graphite or amorphous carbon, 2) an oxide-based material such as Li 4 Ti 5 O 12 , and 3) a metal / alloy system such as tin or silicon. Materials can be used.
  • the conductive agent a known conductive agent can be used.
  • a carbon-based conductive agent such as graphite, acetylene black, carbon black, or carbon fiber can be used. However, it is not limited to these materials.
  • binder a known binder can be used.
  • polyvinylidene fluoride, styrene-butadiene rubber, isoprene rubber, or the like can be used. However, it is not limited to these materials.
  • a negative electrode tab 58b which is an electrode tab, that is, an electrode plate tab 58 (see FIG. 23 described later) is formed.
  • the negative electrode tab 58b is connected to the negative electrode terminal 51b via the negative electrode current collector plate 61b, and one end of the negative electrode tab 58b is connected to the negative electrode current collector plate 61b.
  • the battery lid 55 is provided with a negative electrode terminal 51b that communicates the inside and outside of the lithium ion battery.
  • the negative electrode terminal 51b is made of, for example, a copper-based or nickel-based material.
  • the positive electrode tab 58a and the negative electrode tab 58b are arranged apart from each other so as not to overlap each other.
  • the separator (not shown) is formed in a sheet shape from a porous material such as polyolefin or non-woven fabric through which lithium ions can pass.
  • a porous material such as polyolefin or non-woven fabric through which lithium ions can pass.
  • the polyolefin separator include polypropylene and polyethylene
  • examples of the nonwoven fabric separator include glass and paper.
  • the separator has a size that can prevent the positive electrode plate 57a and the negative electrode plate 57b from contacting each other in a stacked state.
  • FIG. 21 two positive plates and two negative plates are shown for ease of illustration, but the number of positive plates, negative plates and separators is the lithium ion battery to be manufactured. (For example, when the battery capacity is several hundred Ah, several hundred positive and negative plates are laminated.)
  • the electrolyte solution may be an electrolyte solution produced by the means disclosed in Patent Document 2.
  • FIG. 23 is an exploded perspective view showing a connection method using bolts and nuts. That is, FIG. 23 is an exploded perspective view showing an electrode terminal, a current collector plate, and a pressing plate.
  • FIG. 24 is a diagram illustrating a connection method using bolts and nuts. That is, FIG. 24 is a cross-sectional view showing an example of a connection structure of current collector plates.
  • the electrode plate tabs 58 are joined to one end of the current collector plate 61 by a predetermined number, for example, by ultrasonic welding or laser welding. And the terminal base portion 51 ′ disposed in the battery lid.
  • the current collecting plate 61 can be made of a conductive metal such as aluminum, titanium, nickel, or copper. Moreover, as long as it has high electroconductivity equivalent to a metal, the board made from other materials, such as resin, may be sufficient. Both the current collecting plate 61 and the pressing plate 63 are fixed to a terminal base portion 51 ′ having one or more through holes 59 and one or more non-through holes 60 that are screw holes.
  • the current collecting plate 61 and the pressing plate 63 are formed with holes at the same intervals as through holes or screw holes formed in the terminal base portion 51 ′ so that they can be connected to the terminal base portion 51 ′. At this time, it is preferable that the distance between the through holes of the terminal base portion 51 ′ is uniform. By making the interval between the through holes uniform, the current collecting plates 61 are not distorted and connected, and the contact surfaces between the current collecting plates 61 and between the current collecting plates 61 and the terminal base portion 51 ′ are prevented from decreasing. Prevent high contact resistance.
  • a through bolt 64 is inserted into the through hole from the holding plate side, the male screw portion of the through bolt protruding from the other end of the terminal base is fixed with a nut, and the screw hole is fitted from the holding plate side. Insert the screw bolt 62 to be fixed.
  • the number of positive electrode current collector plates 61a and negative electrode current collector plates 61b used varies depending on the number of positive electrode plates 57a and negative electrode plates 57b used. Therefore, it is important that the current collecting plates 61 have a thickness that does not increase the material resistance even when a plurality of the current collecting plates 61 are overlapped. Further, a cross-sectional area allowing current to flow between the welded electrode plate tab 58 and the terminal base portion 51 ′, and being sandwiched between the terminal base portion 51 ′ and the holding plate 63, a screw bolt 62, a through bolt 64 and a nut The strength which does not deform
  • the holding plate 63 is made of a conductive metal such as aluminum, titanium, nickel, copper, etc., and is preferably the same metal as the current collecting plate 61 in order to reduce material resistance.
  • aluminum is used for the pressing plate of the positive terminal base portion 51'a
  • copper is used for the pressing plate of the negative terminal base portion 51'b.
  • the thickness of the pressing plate is preferably 3 mm or more. By having this thickness, the rigidity of the pressing plate member can be sufficiently secured and pressed uniformly.
  • FIG. 23 shows a method of fixing the current collecting plate 61, the pressing plate 63, and the terminal base portion 51 'at three locations.
  • fixing by the through-hole 59 plays a role of uniformly pressing the current collector plate 61 and the terminal base portion 51 ′, so that the entire surface can be pressed in a balanced manner by arranging them symmetrically.
  • the through hole 59 and the number of screw holes are set. The same or more is preferable.
  • FIG. 24 shows a method of fixing the current collecting plate 61, the pressing plate 63, and the terminal base portion 51 'at two locations. Also in this case, the through-hole through which the through-bolt 64 penetrates and the screw hole to which the screw-in bolt 62 is fastened are respectively arranged at two positions symmetrical with respect to the center of gravity of the end surface of the terminal base portion 51 ′. It is desirable. As a result, the entire surface of the current collector plate 61 can be pressed against the terminal base portion 51 ′ with a good balance.
  • FIG. 25 is a diagram showing a joining method by friction stirring. That is, FIG. 25 is a view showing the vicinity of the welded portion where the tab is welded to the terminal base portion.
  • FIG. 25 shows a joining method by friction stir welding in which metal pieces or the like are hardly scattered during welding.
  • Friction stir welding is a joining method in which a cylindrical tool having a protrusion at the tip is rotated, the base material is softened by frictional heat, and a plurality of members are integrated.
  • FIG. 25 shows a case where the electrode plate tab 58, which is a positive electrode tab, for example, is friction stir welded to the terminal base portion 51 'of the positive electrode terminal, for example.
  • a portion where the tab is welded to the terminal base portion is a welded portion 66.
  • the conduction distance between the terminal 51 and the power generation element 56 becomes shorter than the method of connecting with the screw bolt 62 or the through bolt 64 using the current collector plate 61 and the holding plate 63 described above, and the welded portion. Since the current can also flow through 66, the resistance value can be further reduced.
  • a plurality of positive electrode plates 57a and negative electrode plates 57b accommodated in the battery can 54 are respectively provided on the battery lid 55. Are electrically connected to the negative electrode terminal 51b.
  • the electrode group is configured by alternately laminating positive and negative plates through separators. Specifically, the following three types of electrode groups A, B, and C were prepared.
  • Electrode group B One end surface and the other end surface in the stacking direction are both configured by the positive electrode plate 57a.
  • Electrode group C One end face in the stacking direction is constituted by a positive electrode plate 57a, and the other end face is constituted by a negative electrode plate 57b.
  • the plurality of positive electrode tabs and negative electrode tabs are configured in the same direction.
  • the electrode groups A, B, and C were combined, and a connection method using bolts and nuts and a connection method using friction stir welding were performed.
  • the lithium ion battery of the example of the second embodiment was manufactured in the same manner as the lithium ion battery described in the second embodiment. More specifically, lithium hexafluorophosphate (LiPF 6 ) was used as a mixed solvent of ethylene carbonate and dimethyl carbonate as an electrolytic solution, and a polyethylene porous material was used as a separator. In addition, a battery was manufactured by applying the second embodiment described above.
  • LiPF 6 lithium hexafluorophosphate
  • FIG. 26 is an explanatory diagram of the fifth embodiment, and shows an electrode group of the lithium ion battery of the fifth embodiment.
  • Example 5 four electrode groups were prepared using 200 positive plates and 204 negative plates. That is, one set includes 50 positive plates and 51 negative plates.
  • the power generation element 56 was manufactured using four configurations of the electrode group A. Thereafter, the current collector plate 61 to which the electrode plate tab was welded and the terminal base portion 51 ′ were welded by using the above-described fixing method using bolts and nuts.
  • four electrode groups are produced. However, any number of electrode groups may be produced as long as the electrode groups of this embodiment are arranged. By using one type of arrangement of electrode groups, it can be expected to increase the efficiency of the electrode group manufacturing process.
  • the arrangement in which the positive electrodes face each other does not occur.
  • the outermost surface of the electrode group adjacent to the battery can is necessarily the negative electrode surface, and the negative electrode plate alone is not involved in the ionic reaction, and therefore does not affect the quality even when touched during work.
  • the configuration in which the electrode groups (A) are arranged next to each other increases safety because the positive electrode plates do not face each other even when the electrodes are displaced vertically or horizontally by vibration or the like after manufacturing. Is possible.
  • the secondary battery represented by such Example 5 is accommodated in the battery can 54, and each of the plurality of positive electrode plates 57a and each of the plurality of negative electrode plates 57b are in the direction in which the separators are interposed, that is, stacked.
  • a plurality of electrode groups are alternately stacked in the direction.
  • the plurality of electrode groups are arranged in the stacking direction.
  • Negative electrode plates 57b are disposed on both end surfaces of each of the plurality of electrode groups in the stacking direction.
  • FIG. 27 is an explanatory diagram of the sixth embodiment and shows a part of the electrode group of the lithium ion battery of the sixth embodiment.
  • Example 6 five electrode groups were prepared using 200 positive electrode plates and 201 negative electrode plates. That is, an electrode group A consisting of 40 positive plates, 41 negative plates, and 40 electrode groups B consisting of 40 positive plates and 39 negative plates were prepared. In Example 6, three electrode groups A, two electrode groups B, and a total of five electrode groups were used, and A group and B group were alternately arranged to produce a power generation element. In FIG. 27, only two electrode groups A and one electrode group B are shown. In this example, five electrode groups were prepared, and then the current collector plate 61 to which the electrode plate tab was welded and the terminal base portion 51 ′ were welded by using the above-described fixing method using bolts and nuts. Any number of groups of electrodes may be formed as long as the electrodes are arranged in this embodiment.
  • the number of tabs that can be welded to the current collector plate 61 is the number of tabs that can be welded to the current collector plate 61, and the number of each electrode group may vary as long as the contact resistance satisfies the target battery characteristics, but in order to make the resistance as uniform as possible. It is preferable that the number of electrode groups be equal. Since the positive plates 57a and the negative plates 57b are completely alternately arranged, the total number of the positive plates 57a and the negative plates 57b can be minimized.
  • each of the plurality of positive electrode plates 57a and each of the plurality of negative electrode plates 57b is in a direction through the separator, that is, stacked.
  • Three or more electrode groups are alternately stacked in the direction.
  • the three or more electrode groups include two or more electrode groups (A) and one or more electrode groups (B), and are arranged in the stacking direction.
  • Negative electrode plates 57b are respectively disposed on both end faces in the stacking direction of the electrode group (A).
  • Positive electrode plates 57a are arranged on both end faces in the stacking direction of the electrode group (B).
  • Electrode groups (A) are respectively arranged at positions on both ends of the array of electrode groups. Two or more electrode groups (B) such that only one electrode group (B) is arranged at positions other than both ends of the arrangement of the electrode groups, or the electrode groups (B) are not adjacent to each other;
  • One or more electrode groups (A) are arranged.
  • FIG. 28 is an explanatory diagram of the seventh embodiment and shows an electrode group of the lithium ion battery of the seventh embodiment.
  • Example 7 200 positive plates and 202 negative plates were used.
  • two electrode groups A, two electrode groups C, and a total of four electrode groups were used.
  • the electrode group C was disposed such that the end face facing the battery can was the negative electrode plate 57b and the face facing the electrode group A was the positive electrode plate 57a.
  • the electrode group A was arranged so as to be sandwiched between the electrode groups C. Thereafter, the electrode plate tab 58 and the terminal base portion 51 'were fixed by the fixing method using the bolts and nuts described above. In this embodiment, the electrode group is divided into four groups.
  • the A group can be increased, but the C group is in the direction in which the battery can side and the electrode plate surface are in contact with each other. On the other hand, it will be located at both ends of the array of electrode groups.
  • Example 8 A lithium ion battery of Example 8 was produced.
  • four electrode groups were prepared using 200 positive plates and 204 negative plates.
  • One electrode group has 50 positive plates and 51 negative plates.
  • the power generation element 56 was manufactured using four configurations of the electrode group A. Thereafter, the electrode plate tab 58 and the terminal base portion 51 ′ were welded by the above-described welding method by friction stirring.
  • the electrode group is divided into four groups. However, the electrode group may be divided into any number of groups as long as the electrode groups of the present embodiment are arranged.
  • Comparative Example 5 On the other hand, a lithium ion battery of Comparative Example 5 was produced. In Comparative Example 5, one positive electrode plate was used, 200 negative electrode plates were used, 201 negative electrode plates were used, and a total of 401 positive and negative electrode plates were used to produce one electrode group. Thereafter, the electrode plate tab 58 and the terminal base portion 51 ′ were fixed by a fixing method using bolts and nuts.
  • Table 3 shows the number of positive electrode plates, the number of negative electrode plates, and the number of electrode groups in Examples 5 to 8 and Comparative Example 5.
  • the positive terminal base 51′a or the negative terminal base 51′b is fixed to the positive terminal base 51′a or the negative terminal base 51′b by using a combination of the screw bolt 62, the through bolt 64 and the nut 65.
  • the positive electrode tab 58a or the negative electrode tab 58b is directly welded to the positive electrode terminal base part 51′a or the negative electrode terminal base part 51′b, so that the contact resistance can be greatly reduced as compared with Comparative Example 5. It is.
  • Examples 5 to 7 the positive plate 57a and the negative plate 57b through the current collector plate 51 are passed through the through bolts 64 through the through holes 59 of the positive terminal base portion 51′a and the negative terminal base portion 51′b,
  • the screw bolt 62 fixed to the non-through hole 60 in which the thread is carved is fixed at three points.
  • the positive electrode plate 57a and the negative electrode plate 57b are fixed at two points including only through bolts 64 through the through holes 59.
  • Examples 5 to 7 and Comparative Example 6 were compared from the viewpoint of contact resistance. The results are shown in Table 6. In Table 6, it is indicated by ⁇ when the contact resistance is 1 m ⁇ or more, and ⁇ when it is 1 m ⁇ or less.
  • the lithium ion batteries manufactured in Examples 5 to 7 have more uniform electric conduction paths because the current collector plates are in uniform contact with each other and are fixed to the non-through holes 60 with through bolts 64. As a result, the contact resistance can be reduced.
  • the above embodiment is applicable to various secondary batteries other than lithium ion batteries.
  • the evaluation was performed without using other safety devices such as a cell controller having a current interruption mechanism in the safety evaluation, but the actual product includes the cell controller. It goes without saying that further safety measures are taken and safety is enhanced in a double and triple manner.
  • the present invention is effective when applied to a lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、二次電池において、充放電を行う際の電流値として十分大きな値を確保しつつ、安全性および信頼性を向上させるものである。本発明の二次電池は、電極端子(4)と、電極板と、電極板に接続された集電板(13)と、集電板(13)を挟んで電極端子(4)に取り付けられた押さえ板(15)とを有する。貫通孔(161)と貫通孔(162)と貫通孔(16)とを貫通した貫通ボルト(18)が、ナット(20)と締結され、かつ、貫通孔(171)と貫通孔(172)とを貫通したねじ込みボルト(19)が、ネジ穴(17)に締結されることにより、集電板(13)を挟んで電極端子(4)に押さえ板(15)が取り付けられ、集電板(13)が電極端子(4)に接続されている。

Description

二次電池
 本発明は、リチウムイオン電池等の二次電池に関する。
 近年、さまざまな分野で二次電池が用いられており、例えば、携帯電話などの電子機器の電源として使用されている。これらの用途に用いられる二次電池として、小型で高容量、高エネルギー密度であるリチウムイオン電池が大半を占めている。また近年、リチウムイオン電池は、電気自動車の電源、家庭などの電力貯蔵用の電源、または、非常用電源としても使用されている。
 この非常用電源としては、従来、二次電池としての鉛電池、すなわち鉛蓄電池からなる電源システムが用いられてきた。鉛電池は、リチウムイオン電池に比べ、電力量あたりのコストが安く、二次電池を過充電した場合における安全性が高いという点で、優れている。
 一方、リチウムイオン電池は、エネルギー密度が高く、入出力特性が高いという点で、優れている。リチウムイオン電池の体積エネルギー密度は、鉛電池の体積エネルギー密度の2倍程度であり、また、リチウムイオン電池の重量エネルギー密度は、鉛電池の重量エネルギー密度の3倍以上である。このため、鉛電池からなる電源システムでは、電圧を大きくするために、多数個の鉛電池を直列に接続しなければならず、電流を大きくするために、多数個の鉛電池を並列に接続しなければならない。したがって、鉛電池からなる電源システムには、鉛電池を設置する部分の面積を大きくしなければならないという設置スペースの問題がある。このような設置スペースの問題から、例えば都心部におけるバックアップ電源用として、鉛電池からなる電源システムを設置することは困難であった。
 一方、リチウムイオン電池からなる大容量の電源システムは、上記した都心部でのバックアップ電源用の電源システムとして、期待されている。また、リチウムイオン電池1個当たりの出力特性を増加させることができれば、より少ない個数のリチウムイオン電池からなる電源システムを構築することができる。その結果、全体としてのコストを低減することができ、鉛電池に対する優位性をさらに向上させることができる。この場合、エネルギー密度が高く、入出力特性が高く、かつ、高い安全性と、高い信頼性を兼ね備えたリチウムイオン電池の開発が求められている。
 例えば、リチウムイオン電池を用いて、大電流での放電、すなわちいわゆるハイレート放電を行う場合、電極板と電極端子とを接続する部分において、ジュール熱が無視できないほど大きくなるという課題がある。このジュール熱によってリチウムイオン電池が高温にさらされることで、電極板に塗布された活物質が劣化して、リチウムイオン電池の寿命が短くなるおそれがある。このような課題を解決するためには、例えば電極板と電極端子との間の接触抵抗を低減させることが望ましい。
 特許文献1(特開昭50-134147号公報)には、集電タブを一枚の集電板にまとめて、その集電板を極柱に接続する方法が記載されている。特許文献2(特許第3428336号公報)には、極板群と極柱との接合面の面積を規定し、さらに接続方法を、溶接、ネジ締めおよび圧着のいずれかとすることにより、極板群と極柱との接触抵抗を低減する技術が記載されている。特許文献3(特許第4494731号公報)には、集電タブを極柱にネジにより固定し、ネジと極柱とを溶接する方法が記載されている。
 また、特許文献4(特開2005-5215号公報)では、正極板および負極板を所定枚数毎に複数組に分け、所定枚数ごとのタブと集電リードを接合し、その後電極群を電池缶に収め、前記集電リードの他端を正極端子と負極端子にボルトで固定し、さらに集電リードと端子を溶接接合することでリチウムイオン電池を作製している。さらに、特許文献5(特開2010-205546号公報)には、リチウムイオン電池の非水電解液として、有機溶媒中にリチウム塩の六フッ化リン酸リチウムが溶解された非水電解液が、電池缶内に注液される技術が記載されている。
特開昭50-134147号公報 特許第3428336号公報 特許第4494731号公報 特開2005-5215号公報 特開2010-205546号公報
 本発明は、高い安全性と高い信頼性とを兼ね備えた二次電池を提供することを課題とする。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 代表的な実施の形態による二次電池は、電池容器と、電池容器に設けられ、第1極性を有する第1電極端子と、電池容器に設けられ、第1極性と反対の第2極性を有する第2電極端子とを有する。また、当該二次電池は、電池容器内にそれぞれ設けられ、かつ、第1極性をそれぞれ有する複数の第1電極板と、電池容器内にそれぞれ設けられ、かつ、第2極性をそれぞれ有する複数の第2電極板とを有する。さらに、当該二次電池は、複数の第1電極板の各々と接続された第1集電板と、第1集電板を挟んで第1電極端子に取り付けられた第1取付板と、第1電極端子に第1取付板を取り付けている第1ネジ部材、第1ナット部材および第2ネジ部材とを有する。複数の第1電極板の各々と、複数の第2電極板の各々とは、セパレータを介して交互に積層されている。第1電極端子には、第1ネジ部材を貫通させるための第1貫通孔と、第2ネジ部材を締結するための第1ネジ穴とが形成されている。第1取付板には、第1ネジ部材を貫通させるための第1ネジ用孔と、第2ネジ部材を貫通させるための第2ネジ用孔とが形成されている。第1集電板には、第1ネジ部材を貫通させるための第3ネジ用孔と、第2ネジ部材を貫通させるための第4ネジ用孔とが形成されている。第1ネジ用孔と、第3ネジ用孔と、第1貫通孔とを貫通した第1ネジ部材が、第1ナット部材と締結され、かつ、第2ネジ用孔と、第4ネジ用孔とを貫通した第2ネジ部材が、第1ネジ穴に締結されることにより、第1集電板を挟んで第1電極端子に第1取付板が取り付けられ、第1集電板が第1電極端子に接続されている。
 上記二次電池は、第1電極端子に第1取付板を取り付けている第3ネジ部材および第2ナット部材を有してもよい。また、第1電極端子には、第3ネジ部材を貫通させるための第2貫通孔が形成され、第1取付板には、第3ネジ部材を貫通させるための第5ネジ用孔が形成され、第1集電板には、第3ネジ部材を貫通させるための第6ネジ用孔が形成されていてもよい。このとき、第5ネジ用孔と、第6ネジ用孔と、第2貫通孔とを貫通した第3ネジ部材が、第2ナット部材と締結されることにより、第1集電板を挟んで第1電極端子に第1取付板が取り付けられ、第1集電板が第1電極端子に接続されている。
 上記二次電池において、第1ネジ穴は、第1電極端子の第1端面の中心部に形成されていてもよい。また、第1貫通孔は、第1端面のうち、中心部の第1の側に位置する第1部分に形成され、第2貫通孔は、第1端面のうち、中心部の第1の側と反対側に位置する第2部分に形成されていてもよい。
 上記二次電池において、第1ネジ穴は、第1電極端子の第1端面の重心位置に形成されていてもよい。また、第1貫通孔は、第1端面内で、第1端面の重心から離れた第1位置に形成され、第2貫通孔は、第1端面内で、重心を中心として、第1位置と対称な位置である第2位置に形成されていてもよい。
 上記二次電池において、第1貫通孔は、第1電極端子の第1端面のうち、第1端面の中心部の第1の側に位置する第1部分に形成されていてもよい。また、第1ネジ穴は、第1端面のうち、中心部の第1の側と反対側に位置する第2部分に形成されていてもよい。
 上記二次電池において、第1貫通孔は、第1電極端子の第1端面内で、第1端面の重心から離れた第1位置に形成されていてもよい。また、第1ネジ穴は、第1端面内で、重心を中心として、第1位置と対称な位置である第2位置に形成されていてもよい。
 上記二次電池において、第1ナット部材は、ダブルナットからなるものとすることができる。
 上記二次電池は、複数の第1電極板の各々の端部にそれぞれ設けられた複数の第1集電タブを有してもよい。また、第1集電板は、複数の第1集電タブの各々と接続されていてもよい。
 上記二次電池は、複数の第2電極板の各々と接続された第2集電板と、第2集電板を挟んで第2電極端子に取り付けられた第2取付板と、第2電極端子に第2取付板を取り付けている第4ネジ部材、第3ナット部材および第5ネジ部材とを有してもよい。このとき、第2電極端子には、第4ネジ部材を貫通させるための第3貫通孔と、第5ネジ部材を締結するための第2ネジ穴とが形成されている。第2取付板には、第4ネジ部材を貫通させるための第7ネジ用孔と、第5ネジ部材を貫通させるための第8ネジ用孔とが形成されている。第2集電板には、第4ネジ部材を貫通させるための第9ネジ用孔と、第5ネジ部材を貫通させるための第10ネジ用孔とが形成されている。そして、第7ネジ用孔と、第9ネジ用孔と、第3貫通孔とを貫通した第4ネジ部材が、第3ナット部材と締結され、かつ、第8ネジ用孔と、第10ネジ用孔とを貫通した第5ネジ部材が、第2ネジ穴に締結されることにより、第2集電板を挟んで第2電極端子に第2取付板が取り付けられ、第2集電板が第2電極端子に接続されている。
 また、代表的な実施の形態による二次電池は、電池缶に収容され、複数の正極板の各々と複数の負極板の各々とがセパレータを介して第1方向に交互に積層された電極群を3つ以上備えている。3つ以上の電極群は、2つ以上の電極群(A)と、1つ以上の電極群(B)とを含み、かつ、第1方向に配列されている。電極群(A)の第1方向における両端面に、それぞれ負極板が配置され、電極群(B)の第1方向における両端面に、それぞれ正極板が配置されている。電極群の配列の両端の位置には、それぞれ電極群(A)が配置されている。電極群の配列の両端以外の位置には、1つの電極群(B)のみが配置されるか、または、電極群(B)同士が隣り合わないように、2つ以上の電極群(B)と、1つ以上の電極群(A)とが配置されている。
 また、代表的な実施の形態による二次電池は、電池缶に収容され、複数の正極板の各々と複数の負極板の各々とがセパレータを介して第1方向に交互に積層された電極群を複数備えている。複数の電極群は、第1方向に配列されている。複数の電極群の各々の第1方向における両端面に、それぞれ負極板が配置されている。
 セパレータを介して積層される正負極板は、それぞれの一端に電極タブを有し、所定複数枚の前記正負極板がセパレータを介して交互に積層構成された電極群が、その複数個を以って電池缶に収容された二次電池であって、前記電極群は、電極群の積層方向両端面に位置する極板が共に負極板である電極群(A)と電極群の積層方向の一方端面に位置する極板が正極板であり他方端面に位置する極板が負極板である電極群(C)であり、電極群(C)はその積層方向端面の負極板側が電池缶内壁面に対向するように配置され、前記電池缶内壁面に対向する位置以外では、隣接する電極群同士の対向面が共に正極板とならないように、電極群(C)、又は電極群(A)と電極群(C)とが配置される構成もとることができる。
 上記3種類のいずれかの電極群構成を用いて、電極群ごとに、同極性の電極タブが正負それぞれの集電板へ接合され、同極性の前記集電板が押さえ板とともにボルトにより正負それぞれの端子基体部へ締着してもよい。
 上記三種類のいずれかの電極群構成を用いて、各電極群の同極性の電極タブが摩擦撹拌溶接によって正負それぞれの端子基体部へ接合してもよい。
 正負極板の合計枚数が最低400枚で二次電池が構成されてもよい。
 複数枚の正負極板がセパレータを介して積層されてなる電極群と前記電極群から延びる複数枚の電極タブと、電池缶内外を連通する端子とを備えた二次電池であって、前記電極群は、電極群積層方向の一方の端面と他方の端面とも負極板で構成された群(A)であることを特徴とする。例として、正極板は200枚、負極板は204枚を用いて、4つの電極群を作製すると、1つの電極群は正極板50枚、負極板51枚で構成される。正極板と負極板をセパレータを介して交互に配置した場合、電極群両端は負極板が存在することとなる。このほか、電極群構成の観点からすると、以下の実施の形態2に示す構成も考えられる。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 本発明によれば、高い安全性と、高い信頼性とを兼ね備えた二次電池を提供することができる。
実施の形態1の二次電池を示す一部破断斜視図である。 実施の形態1の二次電池の断面図である。 実施の形態1の二次電池の断面図である。 電極小束の構成を示す図である。 電極束の構成を示す図である。 小電極群の構成を示す図である。 電極端子、集電板および押さえ板を示す分解斜視図である。 電極端子、集電板および押さえ板を示す分解斜視図である。 集電板の接続構造の各種の例を示す断面図である。 集電板の接続構造の各種の例を示す断面図である。 集電板の接続構造の各種の例を示す断面図である。 集電板の接続構造の各種の例を示す断面図である。 集電板の接続構造の各種の例を示す断面図である。 集電板の接続構造の各種の例を示す断面図である。 電極端子、集電板および押さえ板を示す分解斜視図である。 実施例1および比較例1の二次電池について、集電板と電極端子との間の抵抗を測定した結果を示すグラフである。 放電を行った際の電極端子の温度を測定した結果を示すグラフである。 電池缶の斜視図である。 ボルトナットによる接続方法を用いた場合のリチウムイオン電池の断面図である。 リチウムイオン電池の正極板および負極板の積層方向に垂直な断面図である。 電池缶を取り除いた状態の発電要素の斜視図である。 電池缶を取り除いた状態のリチウムイオン電池の斜視図である。 ボルトナットによる接続方法を示す分解斜視図である。 ボルトナットによる接続方法を示す図である。 摩擦撹拌による接合方法を示す図である。 実施例5の説明図である。 実施例6の説明図である。 実施例7の説明図である。
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、その要旨を変更しない範囲において、適宜実施することが可能なものである。
 以下、添付図面に基づいて、本発明の実施形態について説明する。なお、以下の実施の形態においてA~Bとして範囲を示す場合には、特に明示した場合を除き、A以上B以下を示すものとする。
 (実施の形態1)
 初めに、実施の形態1の二次電池について説明する。本実施の形態1は、本発明を、二次電池として、角型リチウムイオン電池に適用した場合における、実施の形態である。
 前述した特許文献1~3では、例えば充放電の時間率が1C程度であり、充放電電流が100Ah程度である条件での充放電を想定している。一方、充放電の時間率および充放電電流がこの5倍である条件、すなわち充放電の時間率が5C程度であり、充放電電流が500Ah程度である条件での充放電を、ハイレート充放電または大電流放電という。このようなハイレート充放電または大電流充放電を行う場合には、上記特許文献1~3に記載された接続方法により電極板と電極端子とが接続されたリチウムイオン電池では、ジュール熱による発熱量が大きく、リチウムイオン電池の安全性および寿命を向上させることができない。
 また、電極板と電極端子とを溶接により接続する場合には、金属原子同士が結びつくため、カシメやネジ止めなどにより機械的に接続する場合と異なり、電極板と電極端子との間の接触抵抗を大きく低減することができる。しかし、溶接により加工を行う際に火花が発生し、金属からなる異物が発生するリスクがある。そして、発生した火花がセパレータを損傷させるか、または、発生した金属からなる異物が電極板の間に混入することにより、短絡が発生するおそれがある。
 このような短絡の発生を防止するため、例えば上記特許文献3に記載されたように、集電タブを長くすることなどにより、電極板と、集電タブのうち溶接される部分との距離を長くすることが考えられる。あるいは、発生した火花が電極板に到達することを防止するための治具を、集電タブを跨いで取り付けた状態で、溶接を行うことが考えられる。しかし、電極板と、集電タブが溶接される部分との距離を長くする場合には、電極板と電極端子との間の接触抵抗が増大するおそれがあり、ハイレート充放電を行う上で不利である。また、電極タブを跨いで治具を取り付けた状態で、溶接を行う場合には、多くの枚数の集電タブがまとめて損傷するおそれがある。
 本実施の形態1では、溶接を用いない簡便な接続方法により電極板が電極端子に接続され、大電流での充放電に耐えられ、高い安全性と、高い信頼性を兼ね備えた二次電池を提供することを課題とする。
 <電槽>
 初めに、電槽を説明する。図1は、実施の形態1の二次電池を示す一部破断斜視図である。図1では、一例として、水平面内で互いに直交する2つの方向の各々を、X軸方向およびZ軸方向のそれぞれとし、水平面に直交する方向、すなわちX軸方向およびZ軸方向のいずれにも直交する方向である鉛直方向を、Y軸方向としている。
 図1に示すように、本実施の形態1の二次電池は、電池容器である電槽1を有する。電槽1は、一面が開口した角柱型であり、電槽1の開口部を塞ぐ蓋1aを備えている。電槽1は、電極群を電槽1に挿入した後、電槽1の開口周縁部と蓋1aを溶接することにより、密閉される。すなわち、蓋1aは、電槽1の内部を密閉状態に保つ。機械的強度の観点から、好適には、電槽1は、ステンレス、または、アルミニウムを主成分として含有するアルミニウム系の材料、などの各種の金属材料からなる。電槽1には、注液口2およびガス放出弁3が備えられている。注液口2は、電槽1の内部に電解液(図示は省略)を注液するためのものである。ガス放出弁3は、内部短絡など、何らかの要因で二次電池の温度が上昇し、電槽1内の内圧が所定圧力以上に上昇したときに、内部のガスを放出するためのものである。
 なお、電槽1のことを、電池缶ともいう(後述する実施の形態2参照)。
 注液口2からは、エチレンカーボネート等の環状カーボネート系有機溶媒や、ジメチルカーボネート等の鎖状カーボネート系有機溶媒を1種または2種以上混合した溶液に、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)等のリチウム塩を溶解した非水電解液が注入される。非水電解液を注入した後、液口栓により注液口2は密閉される。
 本実施の形態1の二次電池は、2つの電極端子4を有する。2つの電極端子4のうち、一方が、第1極性を有する電極端子であり、他方が第1極性と反対の第2極性を有する電極端子である。したがって、2つの電極端子4のうち、一方が正極端子4aであり、他方が負極端子4bである。電極端子4は、電槽1に、電槽1の蓋1aを貫通するように設けられており、二次電池の内部と外部とを連通、すなわち電気的に接続する。正極端子4aは、例えばアルミニウムを主成分として含有する材料、すなわちアルミニウム系の材料からなる。負極端子4bは、例えば銅を主成分として含有する材料、すなわち銅系の材料からなるか、または、ニッケルを主成分として含有する材料、すなわちニッケル系の材料からなる。
 <電極群>
 次に、電極群を説明する。図2および図3は、実施の形態1の二次電池の断面図である。なお、図2では、図1のX軸方向から二次電池を視た場合を示し、図3では、図1のZ軸方向から二次電池を視た場合を示す。
 図1~図3に示すように、本実施の形態1の二次電池は、複数の電極板6を有する。複数の電極板6のうち、一部の複数の電極板が、第1極性を有する電極板であり、他の複数の電極板が、第1極性と反対の第2極性を有する電極板である。したがって、複数の電極板6のうち、一部の複数の電極板6が正極板6aであり、他の複数の電極板6が負極板6bである。複数の正極板6aの各々と、複数の負極板6bの各々とは、セパレータ8を介してZ軸方向に交互に積層されて電極群9を構成している。すなわち、電極群9は、複数の正極板6aと複数の負極板6bとを含み、複数の正極板6aの各々と、複数の負極板6bの各々とが、セパレータ8を介してZ軸方向に交互に積層されたものである。
 なお、電極群9のことを、発電要素ともいう(後述する実施の形態2参照)。
 正極板6aは、板状に形成されたアルミニウム箔からなる正極集電体と、正極集電体の両面に設けられ、正極活物質、結着剤および導電剤を含む合剤層と、を有している。
 正極活物質として、1)化学式LiMO(Mは少なくとも1種の遷移金属)で表されるもの、または、2)スピネルマンガンなどを用いることができる。あるいは、正極活物質として、3)マンガン酸リチウム、ニッケル酸リチウムまたはコバルト酸リチウムなどの材料のうちMn、NiまたはCoなどの一部を、1種または2種以上の遷移金属元素で置換したものを用いることができる。さらに、正極活物質として、3)に記載した材料のうち遷移金属の一部をMg、Alなどの金属元素で置換したものを用いることもできる。この他にも、正極活物質として、リン酸塩化合物、LiFePO、LiMnPO、LiMn1-XPO(0.3≦x≦1、MはLi、Fe、Ni、Co、Ti、Cu、Zn、MgおよびZrから選ばれる一種以上の元素)を用いることができる。
 導電剤として、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラックまたは炭素繊維などの炭素系導電剤を用いることができる。ただし、導電剤として用いられる材料は、これらの材料に限定されない。
 結着剤、すなわちバインダーとして、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、スチレン・ブタジエンゴム、イソプレンゴムなどを用いることができる。ただし、結着剤として用いられる材料は、これらの材料に限定されない。
 本実施の形態1では、後述する実施例1~4において、正極活物質として、金属酸化物のマンガン酸リチウムを用い、結着剤として、ポリフッ化ビニリデン(以下、PVDFと称する)を用い、導電剤として、アセチレンブラックを用いている。
 負極板6bは、板状に形成され、高い導電性と柔軟性を有する材料、例えば銅またはニッケルからなる負極集電体と、負極集電体の両面に設けられ、負極活物質、結着剤および導電剤を含む合剤層と、を有している。
 負極活物質として、1)黒鉛あるいは非晶質炭素などの炭素系の材料、2)LiTi12などの酸化物系の材料、3)スズまたはシリコンなどの金属系材料または合金系材料を用いることができる。
 導電剤として、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラックまたは炭素繊維などの炭素系導電剤を用いることができる。ただし、導電剤として用いられる材料は、これらの材料に限定されない。
 結着剤、すなわちバインダーとして、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、スチレン・ブタジエンゴム、イソプレンゴムなどを用いることができる。ただし、結着剤として用いられる材料は、これらの材料に限定されない。
 本実施の形態1では、後述する実施例1~4において、負極活物質として、グラファイトを用い、結着剤として、PVDFを用い、導電剤として、アセチレンブラックを用いている。
 セパレータ8は、リチウムイオンが通過可能なポリオレフィン系または不織布などの多孔質材により、シート状に形成されている。ポリオレフィン系の材料として、ポリプロピレンまたはポリエチレンが挙げられ、不織布の材料として、ガラスまたは紙等が挙げられる。なお、セパレータ8は、正極板6aと負極板6bとが積層状態で接触することを防止できる大きさを有する。
 本実施の形態1の二次電池は、複数の集電タブ10を有する。複数の集電タブ10の各々は、複数の電極板6の各々の端部にそれぞれ設けられている。複数の集電タブ10のうち、一部の複数の集電タブ10が、第1極性を有する集電タブ10であり、他の複数の集電タブ10が、第1極性と反対の第2極性を有する集電タブ10である。したがって、複数の集電タブ10のうち、一部の複数の集電タブ10が正極用の集電タブ10aであり、他の複数の集電タブ10が負極用の集電タブ10bである。すなわち、本実施の形態1の二次電池は、複数の正極板6aの各々の端部にそれぞれ設けられた複数の集電タブ10aを有する。また、本実施の形態1の二次電池は、複数の負極板6bの各々の端部にそれぞれ設けられた複数の集電タブ10bを有する。
 なお、集電タブのことを、電極タブとも称する(後述する実施の形態2参照)。
 図4は、電極小束の構成を示す図であり、図5は、電極束の構成を示す図であり、図6は、小電極群の構成を示す図である。
 図4に示すように、負極板6b、セパレータ8、正極板6aおよびセパレータ8が、この順にZ軸方向に積層された積層体を、最小単位の積層体とすることができ、この最小単位の積層体を、電極小束11と称する。電極小束11は、正極板6aの端部に設けられた集電タブ10aと、負極板6bの端部に設けられた集電タブ10bとを含む。
 図5に示すように、複数の電極小束11がZ軸方向に配列された配列体、すなわち、複数の電極小束11がZ軸方向に束ねられた集合体を、電極束12と称する。
 本実施の形態1の二次電池は、電極束12ごとに2つの集電板13を有する。集電板13には、複数の電極板6の各々の端部にそれぞれ設けられた複数の集電タブ10が、まとめて接続されている。
 2つの集電板13のうち、一方が、第1極性を有する集電板であり、他方が、第1極性と反対の第2極性を有する集電板である。したがって、2つの集電板13のうち、一方が正極用の集電板13aであり、他方が負極用の集電板13bである。すなわち、集電板13aには、電極束12に含まれた複数の正極板6aの各々の端部にそれぞれ設けられた複数の集電タブ10aが、まとめて接続されている。また、集電板13bには、電極束12に含まれた複数の負極板6bの各々の端部にそれぞれ設けられた複数の集電タブ10bが、まとめて接続されている。
 集電タブ10と集電板13との接続方法は、特に限定されない。したがって、集電タブ10と集電板13とは、例えば集電タブ10と集電板13との間の接続抵抗が小さくなり、かつ、接続の際に火花または金属粉が発生しないような接続方法により接続される。あるいは、集電タブ10と集電板13とは、例えば集電タブ10と集電板13との間の接続抵抗が小さくなり、かつ、接続の際に火花や金属粉が発生したとしても接続される部分の周囲に火花または金属粉が飛散しないように工夫された接合方法により接続される。具体的には、複数の集電タブ10と集電板13とは、超音波溶接またはレーザー溶接等により接続される。なお、図6に示すように、複数の集電タブ10と集電板13とが接合されている部分を、接合部BDと称する。
 図6に示すように、1つの電極束12と、2つの集電板13、すなわち集電板13aおよび13bとからなる集合体を、小電極群14と称する。そして、複数の小電極群14がZ軸方向に配列された配列体、すなわち、複数の小電極群14がZ軸方向に束ねられた集合体が、前述した電極群9である。
 なお、図5では、一例として、3つの電極小束11からなる電極束12を示しているが、図2では、他の例として、4つの電極小束11からなる電極束12を示している。また、図2では、一例として、2つの小電極群14からなる電極群9を示している。
 図2に示すように、電極群9のZ方向における両端面に、それぞれ負極板6bが配置されることが好ましい。すなわち、電極群9の電槽1の内壁と向き合う端面に、負極板6bが配置され、電槽1の内壁と負極板6bとが対向することが好ましい。これにより、負極板6bに比べ、他の部材と接触して短絡しやすい正極板6aが、電槽1の内壁と対向しないため、正極板6aと電槽1の内壁とが接触して短絡することを防止することができる。
 <集電板の接続構造>
 次に、集電板の接続構造について説明する。ここでは、集電板に3つの孔が形成されており、2本の貫通ボルトと1本のねじ込みボルトとにより、または、1本の貫通ボルトと2本のねじ込みボルトとにより、集電板が電極端子に接続される場合を例示して説明する。
 本願明細書では、貫通ボルトおよびねじ込みボルトの各々は、ボルト部材であるが、ボルトは、ネジの一種であるため、貫通ボルトおよびねじ込みボルトの各々は、ネジ部材でもある。そして、図11を用いて後述するように、貫通ボルトは、その長さが相対的に大きく、すなわち長く、軸部の外周面にネジ山またはネジ溝が形成されているため、大ネジまたは長ネジとも称されるネジ部材である。一方、ねじ込みボルトは、その長さが相対的に小さく、すなわち短く、軸部の外周面にネジ山またはネジ溝が形成されているため、小ネジまたは短ネジとも称されるネジ部材である。
 また、本願明細書では、2本の貫通ボルトと1本のねじ込みボルトとにより集電板が電極端子に接続される、とは、Z軸方向における電極端子の一方の端面において、2本の貫通ボルトと1本のねじ込みボルトとにより、集電板が電極端子に接続されることを意味する。したがって、後述する図9に示すように、2本の貫通ボルトと2本のねじ込みボルトとにより集電板が電極端子の両端面のそれぞれに接続される場合でも、本願明細書では、2本の貫通ボルトと1本のねじ込みボルトとにより、集電板が電極端子に接続される場合に相当する。
 図7および図8は、電極端子、集電板および押さえ板を示す分解斜視図である。図9~図11は、集電板の接続構造の各種の例を示す断面図である。なお、図7では、集電板が電極端子の両端面に接続される場合を示し、図8では、集電板が電極端子の一方の端面のみに接続される場合を示す。また、図9~図11は、Y軸方向に垂直な断面図である。
 本実施の形態1の二次電池は、2つの押さえ板15を有する。押さえ板15は、集電板13を挟んで電極端子4に取り付けられた取付板である。2つの押さえ板15のうち、一方が、第1極性を有する押さえ板15であり、他方が、第1極性と反対の第2極性を有する押さえ板15である。したがって、2つの押さえ板15のうち、一方が正極用の押さえ板15aであり、他方が負極用の押さえ板15bである。すなわち、押さえ板15aは、集電板13aを挟んで正極端子4aに取り付けられた取付板であり、押さえ板15bは、集電板13bを挟んで負極端子4bに取り付けられた取付板である。
 好適には、押さえ板15の厚みは3mm以上であることが好ましい。これにより、押さえ板15の部材の剛性を十分に確保し、集電板13を均一に押さえることができる。
 Z軸方向における電極端子4の一方の端面41は、集電板13と接続される接続面である。端面41は、Z軸方向に垂直な平面である。また、端面41は、例えば矩形形状を有しており、端面41のX軸方向の長さは、端面41のY軸方向の長さよりも大きい。
 Z軸方向における電極端子4の一方の端面41には、1つ以上の貫通孔16と、1つ以上のネジ穴17とが形成されている。貫通孔16は、電極端子4の一方の端面41から電極端子4を貫通して端面41と反対側の端面42(例えば図9参照)に達する貫通孔であり、ネジ部材である貫通ボルト18を貫通させるための貫通孔である。また、ネジ穴17は、ネジ部材であるねじ込みボルト19を締結するためのネジ穴である。貫通ボルト18およびねじ込みボルト19は、電極端子4に押さえ板15を取り付けるためのものである。図7~図9では、端面41に、2つの貫通孔16と、1つのネジ穴17とが形成されている例を示す。
 押さえ板15のうち、貫通孔16に対応した位置、すなわちZ軸方向から視たときに貫通孔16と重なり合う位置には、貫通孔161が形成されており、ネジ穴17に対応した位置、すなわちネジ穴17と重なり合う位置には、貫通孔171が形成されている。貫通孔161は、貫通ボルト18を貫通させるためのネジ用孔であり、貫通孔171は、ねじ込みボルト19を貫通させるためのネジ用孔である。
 集電板13のうち、貫通孔16に対応した位置、すなわちZ軸方向から視たときに貫通孔16と重なり合う位置には、貫通孔162が形成されており、ネジ穴17に対応した位置、すなわちネジ穴17と重なり合う位置には、貫通孔172が形成されている。貫通孔162は、貫通ボルト18を貫通させるためのネジ用孔であり、貫通孔172は、ねじ込みボルト19を貫通させるためのネジ用孔である。
 図7および図8に示すように、電極端子4が正極端子4aである場合、正極端子4aの一方の端面41に、貫通ボルト18aを貫通させるための貫通孔16aと、ねじ込みボルト19aを締結するためのネジ穴17aと、が形成されている。貫通ボルト18aおよびねじ込みボルト19aは、正極端子4aに押さえ板15aを取り付けるためのものである。また、押さえ板15aのうち、貫通孔16aに対応した位置には、貫通孔161aが形成され、ネジ穴17aに対応した位置には、貫通孔171aが形成されている。さらに、集電板13aのうち、貫通孔16aに対応した位置には、貫通孔162aが形成され、ネジ穴17aに対応した位置には、貫通孔172aが形成されている。
 図7および図8に示すように、電極端子4が負極端子4bである場合、負極端子4bの一方の端面41に、貫通ボルト18bを貫通させるための貫通孔16bと、ねじ込みボルト19bを締結するためのネジ穴17bと、が形成されている。貫通ボルト18bおよびねじ込みボルト19bは、負極端子4bに押さえ板15bを取り付けるためのものである。また、押さえ板15bのうち、貫通孔16bに対応した位置には、貫通孔161bが形成され、ネジ穴17bに対応した位置には、貫通孔171bが形成されている。さらに、集電板13bのうち、貫通孔16bに対応した位置には、貫通孔162bが形成され、ネジ穴17bに対応した位置には、貫通孔172bが形成されている。
 なお、図7および図8では、電極端子4と押さえ板15との間に、1枚の集電板13が配置されている例を示すが、例えば図9に示すように、電極端子4と押さえ板15との間には、複数の集電板13がZ軸方向に互いに重ねて配置されていてもよい。
 貫通孔161と、貫通孔162と、貫通孔16とが重なり、かつ、貫通孔171と、貫通孔172と、ネジ穴17とが重なるように、電極端子4と押さえ板15との間に、複数の集電板13を重ねて配置する。また、このように配置された状態で、貫通ボルト18に、貫通孔161と、貫通孔162と、貫通孔16とを貫通させ、ねじ込みボルト19に、貫通孔171と、貫通孔172とを貫通させる。そして、貫通孔161と、貫通孔162と、貫通孔16とを貫通した貫通ボルト18が、電極端子4を挟んで押さえ板15と反対側でナット20と締結され、かつ、貫通孔171と、貫通孔172とを貫通したねじ込みボルト19が、ネジ穴17に締結される。これにより、集電板13を挟んで電極端子4に押さえ板15が取り付けられ、集電板13が電極端子4に接続される。
 なお、図7~図9に示す例では、電極端子4の端面41に、2番目の貫通ボルト18を貫通させるための2番目の貫通孔16が形成されている。また、押さえ板15のうち、2番目の貫通孔16に対応した位置には、2番目の貫通孔161が形成され、集電板13のうち、2番目の貫通孔16に対応した位置には、2番目の貫通孔162が形成されている。そして、2番目の貫通孔161と、2番目の貫通孔162と、2番目の貫通孔16とを貫通した2番目の貫通ボルト18が、電極端子4を挟んで押さえ板15と反対側で2番目のナット20と締結されることにより、集電板13を挟んで電極端子4に押さえ板15が取り付けられ、集電板13が電極端子4に接続される。
 図7~図9に示すように、1本の貫通ボルト18と1つのナット20とにより、電極端子4の端面41に、集電板13を挟んで押さえ板15を取り付け、電極端子4の端面42に、別の集電板13を挟んで別の押さえ板15を取り付けることができる。したがって、図7、図9および図10に示すように、1本の貫通ボルト18と1つのナット20とにより、ある集電板13を電極端子4の端面41に接続し、別の集電板13を電極端子4の端面42に接続することができる。あるいは、図8および図11に示すように、1本の貫通ボルト18と1つのナット20とにより、集電板13を挟んで電極端子4の端面41のみに押さえ板15を取り付け、電極端子4の端面41のみに集電板13を接続することもできる。
 図11に示すように、Z軸方向における電極端子4の厚さを厚さT1とする。Z軸方向における電極端子4の厚さT1は、貫通孔16の長さに等しい。また、貫通ボルト18が、貫通孔16に挿入可能な軸部181と、貫通孔16に挿入可能でない頭部182とを含むものとし、軸部181の長さを長さL1とする。さらに、ねじ込みボルト19が、ネジ穴17に挿入可能な軸部191と、ネジ穴17に挿入可能でない頭部192とを含むものとし、軸部191の長さをL2とする。そして、電極端子4の一方の端面41側に配置される押さえ板15のZ軸方向における厚さと、電極端子4の一方の端面41と押さえ板15との間に挟まれる複数の集電板13のそれぞれの厚さとの総和を厚さT2とする。このとき、貫通ボルト18の軸部181の長さL1は、厚さT1と厚さT2との総和よりも大きい。一方、ねじ込みボルト19の軸部191の長さL2は、厚さT1と厚さT2との総和よりも小さい。なお、ネジ穴17の長さは、ネジ込みボルト19の軸部191の長さL2と等しいか、または、長さL2よりも大きい。
 このような長さの関係により、貫通ボルト18の軸部181の長さL1は、ねじ込みボルト19の軸部191の長さL2よりも大きくなる。すなわち、前述したように、貫通ボルト18は、その長さが相対的に大きく、すなわち長く、軸部181の外周面にネジ山またはネジ溝が形成されているため、大ネジまたは長ネジと称されるネジ部材である。一方、ねじ込みボルト19は、その長さが相対的に小さく、すなわち短く、軸部191の外周面にネジ山またはネジ溝が形成されているため、小ネジまたは短ネジと称されるネジ部材である。
 特に、厚さT2が厚さT1に比べて小さく、厚さT1に対して厚さT2を無視することができる場合には、貫通ボルト18の軸部181の長さL1は、厚さT1よりも大きく、ねじ込みボルト19の軸部191の長さL2は、厚さT1よりも小さい。
 なお、図7~図11では、図示は省略するが、ナット20の内周面には、ネジ溝またはネジ山が形成されており、貫通ボルト18の軸部181のうち、頭部182と反対側の部分であって、ナット20と締結される部分の外周面には、ナット20の内周面に形成されたネジ溝またはネジ山と螺合するように、ネジ山またはネジ溝が形成されている。
 一方、図7~図11では、図示は省略するが、ネジ穴17の内周面には、ネジ溝またはネジ山が形成されており、ねじ込みボルト19の軸部191のうち、頭部192と反対側の部分であって、ネジ穴17に締結される部分の外周面には、ネジ穴17の内周面に形成されたネジ溝またはネジ山と螺合するように、ネジ山またはネジ溝が形成されている。
 図7~図9に示すように、好適には、ナット部材であるナット20は、ダブルナットからなる。これにより、二次電池の内部に高温部分と低温部分とが周期的に発生することにより、すなわちヒートサイクルにより、ナット20が緩むことを、防止または抑制することができる。これは、貫通ボルト18とナット20との締結により電極端子4に集電板13を接続する場合、電極端子4に集電板13を電気的に接続する機能よりも、電極端子4に集電板13を機械的に接続、すなわち固定する機能を、より発揮させるためである。
 なお、ナット20は、シングルナットからなるものでもよい。あるいは、貫通ボルト18およびナット20として、回転緩み止め機能などを有するものを用いることもできる。
 一方、ネジ穴17は、前述したように、ネジ穴17の内周面に例えばネジ溝加工が施され、ネジ溝またはネジ山が形成されているものであればよく、例えば端面41から電極端子4を貫通して端面42に達する貫通孔であってもよい。また、ねじ込みボルト19とネジ穴17との間の接触面積が大きいことが好ましい。これは、ねじ込みボルト19の締結により電極端子4に集電板13を接続する場合、電極端子4に集電板13を機械的に接続、すなわち固定する機能よりも、電極端子4に集電板13を電気的に接続する機能を、より発揮させるためである。
 図7~図9に示すように、好適には、ネジ穴17は、電極端子4の端面41の中心部に形成されている。また、好適には、2つの貫通孔16のうち一方は、電極端子4の端面41のうち、端面41の中心部の第1の側に位置する部分に形成されており、2つの貫通孔16のうち他方は、電極端子4の端面41のうち、端面41の中心部の第1の側と反対側に位置する部分に形成されている。これにより、電極端子4のうち集電板13と接続される接続面である端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができる。
 さらに好適には、ネジ穴17は、電極端子4の端面41の重心位置に形成されている。また、好適には、2つの貫通孔16のうち一方は、電極端子4の端面41内で、端面41の重心から離れた第1位置に形成されており、2つの貫通孔16のうち他方は、電極端子4の端面41内で、端面41の重心を中心として、第1位置と対称な位置である第2位置に形成されている。これにより、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をさらに向上させることができる。
 なお、ネジ穴17が、端面41の重心位置に形成されているとは、端面41に垂直な方向から視たときに、端面41の重心位置がネジ穴17に内包されるように、ネジ穴17が形成されていることを意味する。また、好適には、ネジ穴17が、端面41の重心位置に形成されているとは、端面41に垂直な方向から視たときに、端面41の重心位置が、ネジ穴17の中心位置と同一の位置になるように、ネジ穴17が形成されていることを意味する。ネジ穴17に代え、貫通孔16が形成される場合も、同様である。
 また、第2位置が、端面41の重心を中心として、第1位置と対称な位置でなくても、端面41の重心と第1位置とを結ぶ直線上であって、端面41の重心を挟んで第1位置と反対側に位置する位置であれば、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をある程度向上させることができる。
 図7~図9では、電極端子4の端面41に、2つの貫通孔16と1つのネジ穴17とを形成し、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13を挟んで押さえ板15が電極端子4に取り付けられている例を示す。しかし、図10に示すように、貫通ボルト18の本数とねじ込みボルト19の本数とを互いに入れ替え、電極端子4の端面41に、1つの貫通孔16と2つのネジ穴17とを形成し、1本の貫通ボルト18と2本のねじ込みボルト19とにより、集電板13を挟んで押さえ板15が電極端子4に取り付けられていてもよい。
 ただし、貫通ボルト18とナット20とを締結することにより押さえ板15を電極端子4に取り付ける場合、ねじ込みボルト19をネジ穴17に締結することにより押さえ板15を電極端子4に取り付ける場合に比べ、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性が高い。したがって、図10に示すように、端面41に、1つの貫通孔16と2つのネジ穴17とを形成する場合に比べれば、図7~図9に示すように、端面41に、2つの貫通孔16と1つのネジ穴17とを形成する場合が、より好ましい。
 ただし、図7~図9に示すように、電極端子4の端面41に、2つの貫通孔16と1つのネジ穴17とを形成する場合でも、2つの貫通孔16が1つのネジ穴17に対して同じ側に偏って配置された場合には、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性が低下する。したがって、前述したように、端面41内で、2つの貫通孔16が1つのネジ穴17を挟んで反対側に形成されることが好ましい。
 なお、電極端子4と集電板13との接続面、すなわち電極端子4の端面41が矩形形状を有する場合、貫通孔16の直径は、端面41の短辺の長さよりも小さく、かつ、貫通ボルト18の頭部の直径は、端面41の短辺の長さよりも小さい。そして、貫通孔16の直径は、貫通ボルト18とナット20との締結により集電板13を十分な機械的強度で電極端子4に接続することができる下限値以上であり、貫通ボルト18の頭部の直径は、貫通ボルト18とナット20との締結により集電板13を十分な機械的強度で電極端子4に接続することができる下限値以上である。
 <集電板の接続構造の第1変形例>
 次いで、集電板の接続構造の第1変形例について説明する。この第1変形例では、集電板に2つの孔が形成されており、1本の貫通ボルトと1本のねじ込みボルトとにより、集電板が電極端子に接続される場合を例示して説明する。なお、貫通ボルトとねじ込みボルトの配置以外については、前述した2本の貫通ボルトと1本のねじ込みボルトとにより、または、1本の貫通ボルトと2本のねじ込みボルトとにより、集電板が電極端子に接続される場合と同様である。
 図12~図14は、集電板の接続構造の各種の例を示す断面図である。なお、図12~図14は、Y軸方向に垂直な断面図である。
 図12~図14に示すように、本第1変形例では、Z軸方向における電極端子4の一方の端面41には、1つの貫通孔16と、1つのネジ穴17とが形成されている。また、図12および図13に示すように、1本の貫通ボルト18と1つのナット20とにより、電極端子4の端面41に、集電板13を挟んで押さえ板15を取り付け、電極端子4の端面42に、別の集電板13を挟んで別の押さえ板15を取り付けることができる。したがって、図12および図13に示すように、1本の貫通ボルト18と1つのナット20とにより、ある集電板13を電極端子4の端面41に接続し、別の集電板13を電極端子4の端面42に接続することができる。あるいは、図14に示すように、1本の貫通ボルト18と1つのナット20とにより、集電板13を挟んで電極端子4の端面41のみに押さえ板15を取り付け、電極端子4の端面41のみに集電板13を接続することもできる。
 また、図13に示すように、X軸方向における端面41の重心の位置を、X軸方向における端面42の重心の位置と異ならせることができる。例えば、Y軸方向から視たときに、矩形形状を有する電極端子4の対角に位置する一対の角部の各々が面取りされることにより、X軸方向における端面41の重心の位置を、X軸方向における端面42の重心の位置と異ならせることができる。
 好適には、貫通孔16は、電極端子4の端面41のうち、端面41の中心部の第1の側に位置する部分に形成されており、ネジ穴17は、電極端子4の端面41のうち、端面41の中心部の第1の側と反対側に位置する部分に形成されている。これにより、電極端子4のうち集電板13と接続される接続面である端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができる。
 さらに好適には、貫通孔16は、電極端子4の端面41内で、端面41の重心から離れた第1位置に形成されており、ネジ穴17は、電極端子4の端面41内で、端面41の重心を中心として、第1位置と対称な位置である第2位置に形成されている。これにより、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をさらに向上させることができる。
 なお、第2位置が、端面41の重心を中心として、第1位置と対称な位置でなくても、端面41の重心と第1位置とを結ぶ直線上であって、端面41の重心を挟んで第1位置と反対側に位置する位置であれば、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をある程度向上させることができる。あるいは、第2位置は、端面41の重心を通りY軸方向に平行な直線を中心として、第1位置と対称な位置であってもよい。このとき、第1位置と第2位置とは、端面41の重心を中心とする扇形状の円弧の両端のそれぞれの位置である。
 <集電板の接続構造の第2変形例>
 次いで、集電板の接続構造の第2変形例について説明する。この第2変形例では、集電板に4つの孔が形成され、2本の貫通ボルトと2本のねじ込みボルトとにより、集電板が電極端子に接続される。なお、貫通ボルトとねじ込みボルトとの配置以外については、前述した2本の貫通ボルトと1本のねじ込みボルトとにより、または、1本の貫通ボルトと2本のねじ込みボルトとにより、集電板が電極端子に接続される場合と同様である。
 図15は、電極端子、集電板および押さえ板を示す分解斜視図である。
 図15に示すように、本第2変形例では、Z軸方向における電極端子4の一方の端面41には、2つの貫通孔16と、2つのネジ穴17とが形成されている。また、図15に示すように、1本の貫通ボルト18と1つのナット20とにより、電極端子4の端面41に、集電板13を挟んで押さえ板15を取り付け、電極端子4の端面41と反対側の端面に、別の集電板13を挟んで別の押さえ板15を取り付けることができる。したがって、1本の貫通ボルト18と1つのナット20とにより、ある集電板13を、電極端子4の端面41に接続し、別の集電板13を、電極端子4の端面41と反対側の端面に接続することができる。あるいは、図示は省略するが、1本の貫通ボルト18と1つのナット20とにより、集電板13を挟んで電極端子4の端面41のみに押さえ板15を取り付け、電極端子4の端面41のみに集電板13を接続することもできる。
 表1は、電極端子4の端面41内における、2つの貫通ボルトと2つのねじ込みボルトとの配置パターンの例を示す。表1では、パターンPT1~パターンPT4までの4つのパターンについて、X軸方向における一方の側から他方の側、すなわち左側から右側にかけて配列した4つの位置を、順に、左端位置PS1、左中位置PS2、右中位置PS3および右端位置PS4としている。また、表1では、左端位置PS1、左中位置PS2、右中位置PS3および右端位置PS4のうち、ある位置に、貫通ボルトが配置されているとは、その位置に貫通孔16が形成されていることを意味する。そして、表1では、左端位置PS1、左中位置PS2、右中位置PS3および右端位置PS4のうち、ある位置に、ねじ込みボルトが配置されているとは、その位置にネジ穴17が形成されていることを意味する。
Figure JPOXMLDOC01-appb-T000001
 表1のパターンPT1に示す場合、すなわち図15に示す場合、好適には、ネジ穴17が形成された右中位置PS3は、別のネジ穴17が形成された左中位置PS2と、端面41の中心部を挟んで反対側の位置である。これにより、電極端子4のうち集電板13と接続される接続面である端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができる。また、表1のパターンPT4に示す場合も、貫通ボルトとねじ込みボルトとが互いに入れ替えられている点を除いて、表1のパターンPT1に示す場合と同様である。
 表1のパターンPT1に示す場合、すなわち図15に示す場合、さらに好適には、貫通孔16が形成された右端位置PS4は、別の貫通孔16が形成された左端位置PS1と、端面41の重心を中心として、対称な位置である。また、ネジ穴17が形成された右中位置PS3は、別のネジ穴17が形成された左中位置PS2と、端面41の重心を中心として、対称な位置である。これにより、端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性をさらに向上させることができる。また、表1のパターンPT4に示す場合も、貫通ボルトとねじ込みボルトとが互いに入れ替えられている点を除いて、表1のパターンPT1に示す場合と同様である。
 その他、表1のパターンPT2およびパターンPT3に示す場合でも、左端位置PS1および左中位置PS2に形成された貫通孔16またはネジ穴17の種類の組み合わせと、右中位置PS3および右端位置PS4に形成された貫通孔16またはネジ穴17の種類の組み合わせとが、同じになる。したがって、右中位置PS3が、端面41の中心部を挟んで左中位置PS2と反対側の位置である場合には、表1のパターンPT1およびパターンPT4に比べれば少し効果が小さくなるものの、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させる効果がある程度得られる。
 <貫通ボルトおよびねじ込みボルトの一方のみを用いる場合との比較>
 例えば貫通ボルト18のみを用いて、電極端子4に集電板13を接続する場合を考える。この場合、電極端子4に集電板13を機械的に確実に接続、すなわち固定することができる。しかし、押さえ板15と電極端子4との間に複数の集電板13が重ねて配置される場合、集電板13の各々と電極端子4との間の接触抵抗が増大するおそれがあり、充放電を行う際の電流値を容易に増加させることができない。
 一方、ねじ込みボルト19のみを用いて電極端子4に集電板13を接続する場合を考える。この場合、電極端子4に集電板13を電気的に確実に接続することができる。しかし、外部から微小な振動が二次電池に継続して加えられるか、または、充放電に伴って二次電池が発熱することなどにより、ねじ込みボルト19の締結が緩むおそれがある。ここで、ねじ込みボルト19が緩むことを防止することは容易ではない。そのため、集電板13と電極端子4との間の接触抵抗のばらつきが大きくなり、二次電池の信頼性が低下するおそれがある。
 本実施の形態1では、集電板13が、貫通ボルト18およびナット20と、ねじ込みボルト19との両方を併用して、電極端子4に接続される。このとき、貫通ボルト18とナット20との締結により、集電板13と電極端子4との間の接触抵抗のばらつきを低減することができる。また、ねじ込みボルト19の締結により、充放電を行う際の電流値を容易に増加させることができる。したがって、二次電池において、充放電を行う際の電流値として十分大きな値を確保しつつ、安全性および信頼性を向上させることができる。
 なお、押さえ板15を用いずに集電板13を電極端子4に接続した場合、貫通ボルト18またはねじ込みボルト19から離れた部分の集電板13が、電極端子4に接触しないおそれがある。したがって、集電板13の各々と電極端子4との間の接触抵抗が増大するおそれがあり、充放電を行う際の電流値を容易に増加させることができない。
 本実施の形態1では、集電板13が、押さえ板15を用いて、電極端子4に接続される。押さえ板15の面積は、電極端子4の端面41と略等しい面積である。これにより、電極端子4のうち集電板13と接続される接続面である端面41内において、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができ、充放電を行う際の電流値を容易に増加させることができる。したがって、二次電池において、充放電を行う際の電流値として十分大きな値を確保しつつ、安全性および信頼性を向上させることができる。
 なお、上記した集電板の接続構造は、正極端子4aおよび負極端子4bのうち一方のみに集電板13が接続される場合にも適用することができる。また、上記した集電板の接続構造が、正極端子4aおよび負極端子4bのうち一方のみに適用された場合でも、上記した集電板の接続構造が、正極端子4aおよび負極端子4bのいずれにも適用されない場合に比べ、適用された電極端子4については、集電板13が電極端子4に押さえ付けられる圧力の均一性を向上させることができる。したがって、二次電池において、充放電を行う際の電流値として十分大きな値を確保しつつ、安全性および信頼性を向上させることができる。
 <実施の形態1の実施例>
 次に、本実施の形態1における、リチウムイオン電池としての二次電池の実施例を説明する。
 本実施の形態1の実施例のリチウムイオン電池は、本実施の形態1で説明したリチウムイオン電池と同様に作製した。具体的には、1枚の正極板6aと1枚の負極板6bとがセパレータ8を介して積層された電極小束11を、図1のZ軸方向に15束積層することなどにより、電極束12を形成した。このとき、15枚の正極板6aの各々の集電タブ10aが正極用の集電板13aに超音波溶接でまとめて接続され、16枚の負極板6bの各々の集電タブ10bが負極用の集電板13bに超音波溶接でまとめて接続されることにより、小電極群14が形成された。そして、電極束12、すなわち小電極群14を図1のZ軸方向に16束配列して電極群9を形成することにより、リチウムイオン電池を作製した。
 Z軸方向から視たときの電極端子4の端面41の形状は矩形形状、すなわち長方形状であり、X軸方向の長さがY軸方向の長さよりも大きい。そして、前述した16束の小電極群14のうち8束の小電極群14、すなわち8枚の集電板13を、端面41に接続し、残りの8束の小電極群14、すなわち8枚の集電板13を、端面42に接続した。また、特に言及する場合を除き、貫通ボルト18を、ダブルナットからなるナット20と締結した。
 なお、電解液として、エチレンカーボネートとジメチルカーボネートとを混合した溶液に、六フッ化リン酸リチウム(LiPF)を溶解したものを用いた。また、セパレータとして、ポリエチレン多孔質材料を用いた。
 <実施例1>
 実施例1の二次電池を作製した。実施例1の二次電池では、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された。例えば図11に示したように、電極端子4の端面41の重心位置に、ネジ穴17が形成され、端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通孔16が形成された。
 なお、前述したのと同様に、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された、とは、電極端子4の端面41および端面42のうち一方の端面において、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続されたことを意味する。
 <比較例1>
 一方、比較例1の二次電池を作製した。比較例1の二次電池は、2本の貫通ボルト18のみにより、集電板13が電極端子4に接続された点で、実施例1の二次電池と異なる。
 <電極端子と集電板との間の抵抗測定>
 このようにして作製した実施例1および比較例1の二次電池について、集電板13と電極端子4との間の接触抵抗を測定した。その結果を、図16のグラフに示す。図16の横軸は、集電板13の位置を示し、図16の縦軸は、集電板13と電極端子4との間の接触抵抗の抵抗値を示す。図16の横軸では、Z軸方向に重ねて配置され、電極端子4と押さえ板15との間に配置されている8枚の集電板13のうち、電極端子4の端面41に最も近い位置に配置されているものを1枚目として表示し、電極端子4の端面41から最も遠い位置に配置されているものを8枚目として表示した。また、図16の縦軸に示す抵抗値は、比較例1における5枚目の集電板13と電極端子4との間の抵抗値により規格化されている。
 図16の比較例1の場合、3~6枚目の集電板13の抵抗値が、1、2、7および8枚目の集電板13の抵抗値よりも大きくなる。これは、集電板13が貫通ボルト18のみにより電極端子4に接続されている場合、端面41および押さえ板15のいずれからも離れるほど、集電板13のうち、2本の貫通ボルト18のいずれからも離れた部分同士が接触しにくく、接触抵抗が大きくなるためと考えられる。
 一方、図16の実施例1の場合、1~8枚目の集電板13のうち全てにおいて、比較例1に比べ、集電板13と電極端子4との間の抵抗値が概ね半分以下に減少した。したがって、ねじ込みボルト19により集電板13を電極端子4に接続することで、集電板13と電極端子4との間の抵抗値を低減することができた。
 <実施例2>
 実施例2の二次電池を複数個作製した。実施例2の二次電池では、1本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された。例えば図14に示したように、電極端子4の端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通孔16およびネジ穴17のそれぞれが形成された。
 なお、前述したのと同様に、1本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された、とは、電極端子4の端面41および端面42のうち一方の端面において、1本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続されたことを意味する。
 <実施例3>
 実施例3の二次電池を複数個作製した。実施例3の二次電池では、2本の貫通ボルト18と1本のねじ込みボルト19とにより、または、1本の貫通ボルト18と2本のねじ込みボルト19とにより、集電板13が電極端子4に接続された。図9に示したように、電極端子4の端面41の重心位置に、ネジ穴17が形成され、端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通孔16が形成された。あるいは、図10に示したように、電極端子4の端面41の重心位置に、貫通孔16が形成され、端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、ネジ穴17が形成された。
 なお、前述したのと同様に、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続された、とは、電極端子4の端面41および端面42のうち一方の端面において、2本の貫通ボルト18と1本のねじ込みボルト19とにより、集電板13が電極端子4に接続されたことを意味する。また、1本の貫通ボルト18と2本のねじ込みボルト19とにより、集電板13が電極端子4に接続された、とは、電極端子4の端面41および端面42のうち一方の端面において、1本の貫通ボルト18と2本のねじ込みボルト19とにより、集電板13が電極端子4に接続されたことを意味する。
 <放電の際の電極端子の温度測定>
 このようにして作製した実施例2および3の二次電池について、放電を行った際の電極端子4の温度を測定した。具体的には、周囲の環境温度が25℃である対流恒温槽内に二次電池を設置し、放電電流を500Aとし、放電を終止するときの電圧、すなわち終止電圧を3.0Vとした条件で放電を行って、電極端子4の温度を測定した。また、電極端子4のうち、通電ケーブルに繋がっている銅板からなるバスバーが締結されている部分、すなわち締結部に、温度センサとして熱電対を取り付け、その熱電対により電極端子4の温度を測定した。その結果を、図17に示す。図17の横軸は、二次電池の電池抵抗、すなわち集電板と電極端子との間の接触抵抗を示し、図17の縦軸は、放電を行った際の電極端子の温度上昇を示す。また、図17の横軸に示す電池抵抗は、実施例2における電池抵抗の平均値により規格化されている。
 実施例2の二次電池では、電池抵抗が1.2~1.4mΩであり、電極端子4の温度が55~85℃であり、実施例3の二次電池では、電池抵抗が0.8~0.9mΩであり、電極端子4の温度が40~50℃であった。そして、図17に示すように、実施例2における規格化された電池抵抗は、実施例3における規格化された電池抵抗の1.5倍程度であり、実施例2における温度上昇は、実施例3における温度上昇よりも大きかった。つまり、例えば500Aの大きな放電電流で放電を行う場合には、貫通ボルト18とねじ込みボルト19とを合計3本用いて接続する実施例3の二次電池における温度上昇は、貫通ボルト18とねじ込みボルト19とを1本ずつ用いて接続する実施例2の二次電池における温度上昇よりも、小さい。
 <実施例4>
 実施例4の二次電池を複数個作製した。実施例4の二次電池では、貫通ボルト18とねじ込みボルト19とを合計2~4本用いて、集電板13を電極端子4に接続した。貫通ボルト18とねじ込みボルト19とを合計2本用いた場合には、電極端子4の端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通孔16およびネジ穴17のそれぞれが形成された。貫通ボルト18とねじ込みボルト19とを合計3本用いた場合には、貫通ボルト18とねじ込みボルト19とのうち1本のみが用いられる種類に対応して、貫通孔16またはネジ穴17が、電極端子4の端面41の重心位置に形成された。そして、電極端子4の端面41のうち、X軸方向において端面41の重心を中心として互いに対称な2つの位置の各々に、貫通ボルト18とねじ込みボルト19とのうち2本が用いられる種類に対応して、貫通孔16またはネジ穴17が形成された。さらに、貫通ボルト18とねじ込みボルト19とを合計4本用いた場合には、表1を用いて前述したパターンPT1~PT4に対応して、貫通孔16またはネジ穴17が形成された。なお、実施例4では、いずれの場合でも、貫通ボルト18と、ダブルナットからなるナット20とが締結された。
 なお、前述したのと同様に、貫通ボルト18とねじ込みボルト19とを合計2~4本用いて、集電板13を電極端子4に接続した、とは、電極端子4の端面41および端面42のうち一方の端面において、集電板13を電極端子4に接続するために用いた貫通ボルト18の本数とねじ込みボルト19の本数との合計が2~4本であることを意味する。
 <比較例2>
 一方、比較例2の二次電池を複数個作製した。比較例2の二次電池では、貫通ボルト18を合計2~4本用いて、集電板13を電極端子4に接続した。比較例2の二次電池は、貫通ボルト18のみにより、集電板13が電極端子4に接続された点で、実施例4の二次電池と異なる。なお、比較例2の二次電池では、貫通ボルト18と、ダブルナットからなるナット20とが締結された。
 <比較例3>
 また、比較例3の二次電池を複数個作製した。比較例3の二次電池では、ねじ込みボルト19を合計2~4本用いて、集電板13を電極端子4に接続した。比較例3の二次電池は、ねじ込みボルト19のみにより、集電板13が電極端子4に接続された点で、実施例4の二次電池と異なる。
 <比較例4>
 一方、比較例4の二次電池を複数個作製した。比較例4の二次電池では、貫通ボルト18を合計2~4本用いて、集電板13を電極端子4に接続した。比較例4の二次電池は、貫通ボルト18のみにより、集電板13が電極端子4に接続された点で、実施例4の二次電池と異なる。また、比較例4の二次電池では、貫通ボルト18と、シングルナットからなるナット20とが締結された。
 <ヒートサイクル試験によるねじ込みボルト等の緩み>
 このようにして作製した実施例4および比較例2~4の二次電池について、ヒートサイクル試験によるねじ込みボルト等の緩みを評価した。具体的には、80℃での加熱と、-40℃での冷却とを、予め決められた複数回繰り返した後、集電板13と電極端子4との間の接触抵抗の抵抗値を測定し、測定された抵抗値に基づいて、ねじ込みボルト等の緩みが発生したか否かを評価した。その結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、〇は、ねじ込みボルト等の緩みが発生しなかった場合を示し、×は、ねじ込みボルト等の緩みが発生した場合を示す。△は、集電板と電極端子との間の抵抗値が、〇の場合の抵抗値と×の場合の抵抗値との間である場合を示し、◎は、集電板と電極端子との間の抵抗値が、〇の場合の抵抗値よりもさらに小さい場合を示す。
 表2に示すように、比較例3の場合、すなわちねじ込みボルト19のみを用いた場合には、ねじ込みボルト19の緩みが発生したか、または、ねじ込みボルト19等の緩みが発生しなかった場合に比べ、集電板13と電極端子4との間の抵抗値が大きくなった。一方、比較例2、実施例4および比較例4の場合、すなわち貫通ボルト18を少なくとも1本用いた場合には、貫通ボルト18を全く用いなかった比較例3に比べ、ねじ込みボルト19または貫通ボルト18の緩みが発生しにくかった。比較例2、実施例4および比較例4では、貫通ボルト18とねじ込みボルト19との合計本数が3本以上では、ねじ込みボルト等の緩みは略同程度であった。
 以上の結果をまとめると、図17に示したように、例えば500Aの大きな放電電流で放電を行う場合には、貫通ボルト18とねじ込みボルト19との合計本数が3本以上であることが好ましい。また、貫通ボルト18とねじ込みボルト19との合計本数が3本以上である場合には、表2に示したように、貫通ボルト18を少なくとも1本用いることにより、ねじ込みボルト19等の緩みを防止することができる。さらに、図16に示したように、ねじ込みボルト19を少なくとも1本は用いることにより、集電板13と電極端子4との間の抵抗値を低減することができる。
 <本実施の形態の主要な特徴と効果>
 本実施の形態1の二次電池は、電極板と接続された集電板が電極端子と押さえ板とに挟まれた状態で、1本以上のネジ込みボルトがネジ穴に締結され、かつ、1組以上の貫通ボルトとナットとが締結されることにより、押さえ板が電極端子に取り付けられ、集電板が押さえ板により電極端子に押さえ付けられて接続される。貫通ボルトにより押さえ板が取り付けられることにより、外部からの振動が加えられるか、または、充放電の際に加熱と冷却が繰り返された場合に、集電板が押さえ付けられている力が緩むことを、防止することができる。また、ネジ込みボルトにより押さえ板が取り付けられることにより、集電板と電極端子との間の接触抵抗を小さくすることができる。これにより、集電板を溶接により電極端子に接続しなくても、簡便な接続方法により集電板を電極端子に接続することができ、集電板と電極端子との間の接触抵抗を低減することができ、大電流を流して充放電することができる。
 さらに、本実施の形態1によれば、電極端子に集電板を固定した後に溶接を行う必要がないので、電極端子から発生した金属片が電極群に混入するおそれがない。このようにして、溶接を用いない簡便な接続方法により電極板が電極端子に接続され、高い安全性と高い信頼性とを兼ね備えた二次電池を提供することができる。
 (実施の形態2)
 実施の形態1の二次電池では、複数の電極束の各々にそれぞれ接続された集電板が、電極端子と低抵抗で接続されるように、貫通ボルトとねじ込みボルトとを用いて電極端子に接続されていた。一方、実施の形態2の二次電池では、複数の電極束が、電極束の両端に位置する正極板同士が対向しないように、配列されている。なお、本実施の形態2は、本発明を、二次電池として、リチウムイオン電池に適用した場合における、実施の形態である。
 一般にリチウムイオン電池は、電池缶内に複数の正極板と負極板が短絡を防ぐためのセパレータを介して交互に積層して収容された構造(積層型)や、軸に正極板と負極板とセパレータを介して捲回した構造などが知られている。
 積層型のリチウムイオン電池は正極板と負極板の一端に、一枚ごとに極板と端子を接続するためのタブが形成されている。そして電池缶蓋板の下面と上面に正極端子、負極端子が設けられ、電池缶蓋板下面に配置された正極端子と負極端子は、それぞれ正極板のタブと負極板のタブに接合されている。
 しかしながら、電力貯蔵用などに使用される積層型のリチウムイオン電池は高容量化や高出力化を図るに伴い、電池缶内に収容される極板の枚数が増加する。そのため、極板タブを端子に接合する際、接合部の接触抵抗増大に伴う電池特性の低下が課題となっている。また製造工程において正極タブと負極タブを各々すべて正極端子と負極端子に接合させる必要があり、接合に多大な手間がかかる。さらに、極板タブの枚数が多くなることによって、端子との接合が不十分となり、内部抵抗が高くなり不良となることがある。
 このような課題に対し、前述したように、例えば上記特許文献4では正極板および負極板を所定枚数毎に複数組(以下、電極群と呼ぶ)に分け、所定枚数ごとのタブと集電リードを接合し、その後電極群を電池缶に収め、前記集電リードの他端を正極端子と負極端子にボルトで固定し、さらに集電リードと端子を溶接接合することでリチウムイオン電池を作製している。また、上記特許文献5には、リチウムイオン電池の非水電解液として、有機溶媒中にリチウム塩の六フッ化リン酸リチウムが溶解された非水電解液が、電池缶内に注液される技術が記載されている。
 しかしながら、所定枚数毎に複数の組に分けられた電極群を電池缶に収め、集電リードで端子に固定した場合、例えば電極群の積層方向の両端面が正極板で形成され電池缶に収められた場合、電極群の他端が対向する面は正極板同士が対向することとなる。このような場合、正極同士の接触により、内部短絡など安全性に問題が発生するなどの製品不良を発生させる恐れがある。また、集電リードを端子にボルトで固定した後に前記ボルトと端子に溶接を施すと、ボルト締めと溶接を施す位置が重なることからボルトと端子の接合部の接触抵抗が増大する可能性がある。また、溶接の際に発生する金属片が、電池缶の内部に入り込み、内部短絡を発生させる危険性がある。
 本実施の形態2では、第1の課題は、充放電における短絡を防ぐことである。第2の課題は、前記目的に加えて製造時の操作に起因して生じやすい短絡を防ぎ、かつ極板タブと端子基体部との接触抵抗を小さくすることでより安全性が高い二次電池を提供することを目的とする。
 <電池缶>
 図18は、実施の形態2のリチウムイオン電池の電池缶の斜視図である。リチウムイオン電池は、端子51(後述する図19参照)としての正極端子51aおよび負極端子51bと、注液口52と、開裂弁53と、電池缶54と、電池蓋55とを有する。
 図18に示すように、電池缶54は、一面が開口した角柱型であり、電池缶54の開口部を塞ぐ電池蓋55を備えている。電池缶54と電池蓋55は、発電要素56(後述する図20参照)を電池缶54に挿入後、電池缶54の開口周縁部と電池蓋55を溶接することで密閉される。電池缶の材質はステンレス系の他にアルミニウム系などの金属材料であれば、機械的強度の面から好ましい。電池蓋55には、開裂弁53及び注液口52が配設されている。開裂弁53は、内部短絡など、何らかの要因でリチウムイオン電池の温度が上昇し、電池缶内の内圧が所定圧力以上に上昇した時に、内部のガスを放出する機能を有している。
 注液口52からは、エチレンカーボネート等の環状カーボネート系有機溶媒や、ジメチルカーボネート等の鎖状カーボネート系有機溶媒を1種または2種以上混合した溶液に、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)等のリチウム塩を溶解した非水電解液が注入される。非水電解液注入後、液口栓により注液口52は密閉される。
 <発電要素>
 図19および図20は、実施の形態2のリチウムイオン電池の断面図である。図19は、正極板および負極板の積層方向に直交する方向に垂直な断面図であり、図20は、正極板および負極板の積層方向に垂直な断面図である。すなわち、図20は、電池缶54を、正極板および負極板の積層面と平行に切断したリチウムイオン電池の断面図を示す。また、図21は、電池缶を取り除いた状態の発電要素の斜視図である。図22は、電池缶を取り除いた状態のリチウムイオン電池の斜視図である。
 図19および図20に示すように、電池缶54の中には発電要素56が収容されている。発電要素56とは、図21に示すように、正極板57a、負極板57b、前記正極板と前記負極板が直接接触して短絡しないよう、図示しないセパレータを介して交互に積層されているものを指す。
 正極板57aは、板状に形成されたアルミニウム箔からなる正極集電体と、正極集電体の両面に設けられた正極活物質とバインダーと導電剤を含む合剤層を有している。
 正極活物質には、1)化学式LiMO(Mは少なくとも1種の遷移金属)で表されるもの、あるいは2)スピネルマンガンなどを用いることができる。また、3)マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウムなどの正極活物質中のMn、Ni、Coなどの一部を1種あるいは2種以上の遷移金属で置換したものとすることができる。さらに、3)の遷移金属の一部をMg、Alなどの金属元素で置換したものを用いることもできる。この他にもリン酸塩化合物、LiFePO、LiMnPO、LiMn1-XPO(0.3≦x≦1、MはLi,Fe,Ni,Co,Ti,Cu,Zn,Mg,及びZrから選ばれる一種以上の元素)が使用可能である。
 導電剤には、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラック、炭素繊維などの炭素系導電剤を用いることができる。ただし、これらの材料に限定されない。
 結着剤には、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、スチレン・ブタジエンゴム、イソプレンゴムなどを用いることができる。ただし、これらの材料に限定されない。本実施の形態2においては、正極活物質として金属酸化物のマンガン酸リチウム、バインダーにポリフッ化ビニリデン(以下、PVDF)、導電材、すなわち導電剤にアセチレンブラックを用いた。
 正極集電体の一端には、電極タブ、すなわち極板タブ58(後述する図23参照)である正極タブ58aが形成されている。正極タブ58aは、正極集電板61aを介して正極端子51aに電気的に接続する方法を用いる場合には、正極タブ58aの一端を前記正極集電板61aの一端に超音波溶接やレーザー溶接等を用いて接合する。摩擦撹拌溶接を用いて、正極タブ58aと正極端子51aを電気的に接続する場合には、正極集電板は用いず、正極端子基体部51’aに直接接合される。
 電池蓋55には、リチウムイオン電池の電池蓋55内外を連通する正極端子51aが設けられ、例えばアルミニウム系の材料により形成される。
 負極板57bは、板状に形成された高い導電性と柔軟性を有した材料、例えば銅やニッケルからなる負極集電体と、負極集電体の両面に設けられた負極活物質とバインダーと導電剤を含む合剤層とを有している。負極活物質には、1)黒鉛あるいは非晶質炭素などの炭素系の材料、2)LiTi12のような酸化物系の材料、3)スズ、シリコンのような金属・合金系材料を用いることができる。導電剤には、公知の導電剤を用いることができ、例えば黒鉛、アセチレンブラック、カーボンブラック、炭素繊維などの炭素系導電剤を用いることができる。ただし、これらの材料に限定されない。
 結着剤には、公知の結着剤を用いることができ、例えばポリフッ化ビニリデン、スチレン・ブタジエンゴム、イソプレンゴムなどを用いることができる。ただし、これらの材料に限定されない。
 本実施の形態2においては、負極活物質としてグラファイト、バインダーにPVDF、導電材、すなわち導電剤にアセチレンブラックを用いた。負極集電体の一端には、電極タブ、すなわち極板タブ58(後述する図23参照)である負極タブ58bが形成されている。負極タブ58bは、前記正極タブ58aと同様に、負極集電板61bを介して負極端子51bに電気的に接続する方法を用いる場合には、負極タブ58bの一端を前記負極集電板61bの一端に超音波溶接やレーザー溶接等を用いて接合する。摩擦撹拌溶接を用いて、負極タブ58bと負極端子51bを電気的に接続する場合には、負極集電板は用いず、負極端子基体部51’bに直接接合される。
 電池蓋55には、リチウムイオン電池の内外を連通する負極端子51bが設けられている。負極端子51bは、例えば銅系やニッケル系の材料により形成されている。図20に示されるように、正極タブ58aと負極タブ58bとは、互いに重なり合わないように離れて配置されている。
 図示しないセパレータは、リチウムイオンが通過可能なポリオレフィン系や不織布などの多孔質材によりシート状に形成されている。ポリオレフィン系のセパレータとして、ポリプロピレンやポリエチレン、不織布のセパレータとしてガラスや紙等が挙げられる。なおセパレータは、正極板57aと負極板57bとが積層状態で接触することを阻止できる大きさを有している。(なお、図21においては、図示を容易にするために、2枚の正極板と2枚の負極板が示されているが、正極板、負極板及びセパレータの枚数は、製造するリチウムイオン電池の電池容量によって決まり、例えば電池容量が数百Ahの場合には、数百枚の正極板及び負極板が積層される。)
 電解液は、本実施の形態2に関する限り、特別な電解液を準備する必要はなく、例えば、特許文献2に開示された手段により、作製された電解液であればよい。
 <ボルトナットによる接続方法>
 図23は、ボルトナットによる接続方法を示す分解斜視図である。すなわち、図23は、電極端子、集電板および押さえ板を示す分解斜視図である。図24は、ボルトナットによる接続方法を示す図である。すなわち、図24は、集電板の接続構造の例を示す断面図である。
 図23に示すように、前記極板タブ58は所定枚数ずつ前記集電板61の一端へたとえば超音波溶接やレーザー溶接によって接合され、前記集電板61の他端2枚以上が押さえ板63と電池蓋内に配置される端子基体部51’によって挟持される。集電板61は、導電性の金属、例えばアルミニウム、チタン、ニッケル、銅等が利用できる。また、金属と同等の高い導電性を有していれば、樹脂など他の材料でできた板であってもよい。前記集電板61と前記押さえ板63はともに、1つ以上の貫通穴59と1つ以上のネジ穴である非貫通穴60を有する端子基体部51’に固定される。前記集電板61と前記押さえ板63は、端子基体部51’と接続可能なように、端子基体部51’に形成された貫通穴ないしネジ穴と同間隔で穴が形成されている。このとき、端子基体部51’の貫通穴間隔は均等にすることが好ましい。貫通穴間隔を均等とすることで、集電板61が歪んで接続されず、集電板61同士や集電板61と端子基体部51’との接触面が減少することを防止し、よって接触抵抗が高くなることを防ぐ。前記貫通穴には押さえ板側から貫通ボルト64を挿入し、前記端子基体部他端から突出する前記貫通ボルトの雄ネジ部をナットで固定し、前記ネジ穴には、押さえ板側から嵌合するねじ込みボルト62を挿入し固定する。
 正極集電板61a、負極集電板61bの使用枚数は、正極板57aと負極板57b各々の使用枚数により変化する。そのため、前記集電板61は、複数枚重ね合わせても、材料抵抗が増加しない厚さであることも重要である。また、溶接された極板タブ58と端子基体部51’との間に流れる電流を許容できる断面積、そして端子基体部51’と押さえ板63に挟持され、ねじ込みボルト62、貫通ボルト64とナット65の組み合わせによる締結で変形、破断しない強度が必要である。
 前記押さえ板63は、導電性の金属、例えばアルミニウム、チタン、ニッケル、銅等で構成されており、材料抵抗を低減させるため、前記集電板61と同一金属であることが望ましい。本実施の形態2では前記正極端子基体部51’aの押さえ板にアルミニウム、前記負極端子基体部51’bの押さえ板に銅を用い、ほぼ直方体状に形成されている。押さえ板の厚みは3mm以上であることが好ましい。この程度の厚みがあることで、押さえ板部材の剛性を十分に確保し、均一に押さえることができる。
 図23では集電板61、押さえ板63、端子基体部51’を3か所で固定する方法を示した。この場合は、穴の位置は対称性が見られるように配置し、貫通穴59を2箇所とすることが望ましい。理由は貫通穴59による固定は集電板61と端子基体部51’を均一に押さえつける役割を果たすため、対称性があるよう配置する事で全面をバランスよく押さえつけることが出来るからである。同様に、穴の数を集電板61の接続1箇所に付き4箇所以上を固定する場合についても、穴の位置は対称性が見られるように配置し、貫通穴59をネジ穴の数と同じもしくはそれ以上にするほうが望ましい。
 また、図24では、集電板61、押さえ板63、端子基体部51’を2か所で固定する方法を示す。この場合も、貫通ボルト64が貫通する貫通穴と、ねじ込みボルト62が締結されるネジ穴とは、端子基体部51’の端面の重心を中心として互いに対称な2つの位置の各々にそれぞれ配置されることが望ましい。これにより、集電板61の全面をバランスよく端子基体部51’に押さえつけることができる。
 <摩擦撹拌溶接による溶接方法>
 図25は、摩擦撹拌による接合方法を示す図である。すなわち、図25は、タブが端子基体部に溶接された溶接部付近を示す図である。
 図25では、溶接の際に金属片などが飛散しにくい摩擦攪拌溶接による接合方法を示す。摩擦攪拌溶接は先端に突起のある円筒状の工具を回転させ、摩擦熱により母材を軟化させ複数の部材を一体化させる接合方法である。図25は、例えば正極タブである極板タブ58を、例えば正極端子の端子基体部51’に摩擦攪拌溶接した場合を示すものである。タブが端子基体部に溶接された部分は、溶接部66である。このようにすると、前述した集電板61と押さえ板63を使用してねじ込みボルト62や貫通ボルト64で接続する方法よりも、端子51と発電要素56との伝導距離が短くなるほか、溶接部66を通しても電流を流すことができるので、抵抗値を更に小さくすることができる。
 上記いずれかの接続方法を用いてタブと端子を接続することにより、電池缶54内に収容された複数枚の全ての正極板57aと負極板57bがそれぞれ電池蓋55に設けられた正極端子51aと負極端子51bに電気的に接続される。
 <電極群の構成形態>
 電極群は、正極板と負極板がセパレータを介して交互に積層して構成されたものである。具体的には、次の3種類の電極群A、B、Cを用意した。
 <電極群A>
 正極板と負極板の積層方向の一方の端面と他方の端面とも負極板57bで構成されたものである。
 <電極群B>
 積層方向の一方の端面と他方の端面とも正極板57aで構成されたものである。
 <電極群C>
 積層方向の一方の端面が正極板57a、他方の端面が負極板57bで構成されたものである。電極群A、B、Cいずれの電極群も複数枚の正極タブ、負極タブは同一方向に構成されている。以下の実施例では、上記A、B、Cの電極群を組み合わせ、ボルトナットによる接続方法と摩擦撹拌溶接による接続方法を行った。
 <実施の形態2の実施例>
 以下、本実施の形態2における、リチウムイオン電池の実施例を説明する。
 本実施の形態2の実施例のリチウムイオン電池は、本実施の形態2で説明したリチウムイオン電池と同様に作製した。より具体的には、電解液としてエチレンカーボネートとジメチルカーボネートとの混合溶媒に六フッ化リン酸リチウム(LiPF)、セパレータにはポリエチレン多孔質材料を用いた。そのほか、上述した本実施の形態2を適用して電池を作製した。
 <実施例5>
 実施例5のリチウムイオン電池を作製した。図26は、実施例5の説明図であり、実施例5のリチウムイオン電池の電極群を示す図である。
 図26に示すように、実施例5では、正極板は200枚、負極板は204枚を用いて、4つの電極群を作製した。すなわち、1つの組は正極板50枚、負極板は51枚である。本実施例5では、電極群Aの構成を4つ用いて、発電要素56を作製した。その後、上述したボルトナットによる固定方法を用いて、極板タブが溶接された集電板61と端子基体部51’を溶接した。本実施例では電極群を4群作製したが、本実施例の電極群の並びであれば、何群作製しても構わない。電極群の並べ方を1種類とすることで、電極群作製工程の高効率化を図ることが期待できる。組立工程においては電池缶54へ電極群を挿入する際、正極板同士が対向する並びは生じないため、短絡などの不良低減が期待できる。また、電池缶と隣接する電極群の最外面は、必ず負極面であり、負極板のみではイオン反応に関与しないため、作業時に触れることがあった場合でも品質に影響を与えない。特に、電極群(A)を隣同士に配置する構成は、製造後に振動等により電極群単位で上下や左右にずれることとなった場合でも、正極板は対向しないため、より安全性を高めることが可能となる。
 なお、このような実施例5に代表される二次電池は、電池缶54に収容され、複数の正極板57aの各々と複数の負極板57bの各々とがセパレータを介してある方向、すなわち積層方向に交互に積層された電極群を複数備えている。複数の電極群は、当該積層方向に配列されている。複数の電極群の各々の当該積層方向における両端面に、それぞれ負極板57bが配置されている。
 <実施例6>
 実施例6のリチウムイオン電池を作製した。図27は、実施例6の説明図であり、実施例6のリチウムイオン電池の一部の電極群を示す図である。
 実施例6では、正極板は200枚、負極板は201枚を用いて、5つの電極群を作製した。すなわち、正極板40枚、負極板41枚の電極群A、正極板40枚、負極板39枚の電極群Bを作成した。本実施例6では、電極群Aを3つ、電極群Bを2つと計5つの電極群を用いて、A群とB群を交互に配置し発電要素を作製した。なお、図27では、2つの電極群Aと1つの電極群Bのみを示している。本実施例では電極群を5つ作製し、その後、上述したボルトナットによる固定方法を用いて、極板タブが溶接された集電板61と端子基体部51’とを溶接した。本実施例の電極群の並びであれば、何群作製しても構わない。集電板61に溶接可能なタブの枚数であり、接触抵抗が目的の電池特性を満たす範囲であれば各電極群の枚数は様々であっても良いが、抵抗を可能な限り均一化するため電極群の枚数構成は各々均等であることが好ましい。正極板57aと負極板57bが完全に交互に配列されるため、正極板57aと負極板57bの総枚数を最小限に抑制できる効果がある。
 なお、このような実施例6に代表される二次電池は、電池缶54に収容され、複数の正極板57aの各々と複数の負極板57bの各々とがセパレータを介してある方向、すなわち積層方向に交互に積層された電極群を3つ以上備えている。3つ以上の電極群は、2つ以上の電極群(A)と、1つ以上の電極群(B)とを含み、かつ、当該積層方向に配列されている。電極群(A)の当該積層方向における両端面に、それぞれ負極板57bが配置されている。電極群(B)の当該積層方向における両端面に、それぞれ正極板57aが配置されている。電極群の配列の両端の位置には、それぞれ電極群(A)が配置されている。電極群の配列の両端以外の位置には、1つの電極群(B)のみが配置されるか、電極群(B)同士が隣り合わないように、2つ以上の電極群(B)と、1つ以上の電極群(A)とが配置されている。
 <実施例7>
 実施例7のリチウムイオン電池を作製した。図28は、実施例7の説明図であり、実施例7のリチウムイオン電池の電極群を示す図である。
 図28に示すように、実施例7では、正極板は200枚、負極板は202枚を用いた。本実施例7では、電極群Aを2つ、電極群Cを2つ、計4つの電極群を用いた。電極群Cは、電池缶と向き合う端面が負極板57b、電極群Aと向き合う面が正極板57aとなるように配置した。図28のように電極群Aは、電極群C同士に挟み込まれるように配置した。その後、上述したボルトナットによる固定方法で極板タブ58と端子基体部51’を固定した。本実施例では電極群を4群に分割したが、本実施例の電極群の並びであれば、A群が増えることは構わないが、C群は電池缶側面と極板面が接する方向に対して、電極群の並びの両端に位置することとなる。
 <実施例8>
 実施例8のリチウムイオン電池を作製した。実施例8では、正極板は200枚、負極板は204枚を用いて、4つの電極群を作製した。1つの電極群は正極板50枚、負極板は51枚である。本実施例8では、電極群Aの構成を4つ用いて、発電要素56を作製した。その後、上述した摩擦撹拌による溶接方法で極板タブ58と端子基体部51’を溶接した。本実施例では電極群を4群に分割したが、本実施例の電極群の並びであれば、何群に分割しても構わない。
 <比較例5>
 一方、比較例5のリチウムイオン電池を作製した。比較例5では、正極板は200枚、負極板は201枚を用い、正負極板計401枚を用いて、1つの電極群を作製し、発電要素56とした。その後、ボルトナットを使用する固定方法によって極板タブ58と端子基体部51’を固定した。
 以下、本発明と比較を行った要素について列挙する。すなわち、以下の表3に、実施例5~8および比較例5における、正極板枚数、負極板枚数および電極群数を示す。
Figure JPOXMLDOC01-appb-T000003
 実施例5~7については、上述したボルトナットによる接続方法を行い、集電板61を介して極板タブ58と端子基体部51’を接続した部分の接触抵抗を計測し、実施例8については、摩擦撹拌溶接を用いて、極板タブ58と端子基体部51’を接続した部分の接触抵抗を計測した。比較例5については、正極タブ58a、負極タブ58bをそれぞれ1つにまとめボルトで固定した際の接触抵抗を計測した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4では、接触抵抗が0.1mΩ未満を◎、0.1~1mΩを○、1mΩ以上を△で標記した。実施例5~7のように、集電板61を介して正極端子基体部51’aまたは負極端子基体部51’bに、ねじ込みボルト62、貫通ボルト64とナット65の組み合わせを用いて固定することにより、比較例5に比べて接触抵抗を下げることが可能である。実施例8では、正極端子基体部51’aまたは負極端子基体部51’bに直接正極タブ58aまたは負極タブ58bが溶接されることで、接触抵抗を比較例5に比べて大きく下げることが可能である。
 次に、実施例5~8の電極積層作業から端子基体部への固定までにかかる作業時間を検討した。この検討として、それぞれの実施例と比較例に対応してリチウムイオン電池を3個ずつ作製し、その平均作業時間を比較した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5では、比較例5に対する平均作業時間が短いものに対して○を標記する。比較例5の場合は、電極枚数が多いことから、一度の溶接で全ての電極を端子基体部に固定することが困難であり、且つ対向する電極がずれることを調整するのに多大な時間を要した。それに対し、実施例5~8の場合は、電極群に分け、集電板61を使用してねじ込みボルト62、貫通ボルト64とナット65の組み合わせを用いて固定することや摩擦攪拌溶接を使用したことにより平均作業時間の短縮が可能となった。
 実施例5~7では、集電板51を介した正極板57aと負極板57bを、正極端子基体部51’aと負極端子基体部51’bの貫通穴59を通した貫通ボルト64と、ネジ山が彫られた非貫通穴60に固定されたねじ込みボルト62の3点で固定している。また、比較例6では、正極板57aと負極板57bを、貫通穴59を通した貫通ボルト64のみの2点で固定している。これらの実施例5~7と比較例6を接触抵抗の観点から比較した。結果を表6に示す。表6では、接触抵抗が1mΩ以上の場合は△、1mΩ以下の場合は○で示す。
Figure JPOXMLDOC01-appb-T000006
 実施例5~7で製造されたリチウムイオン電池は、比較例6に比べ、均一に集電板同士が接触すること、非貫通穴60に貫通ボルト64で固定したことにより電気伝導経路が増加したことで、接触抵抗の低減が可能となった。
 <本実施の形態の主要な特徴と効果>
 本実施の形態2の二次電池は、正極板同士が対向する並びは生じないため、安全性が向上する。また、電極群(A)を隣同士に配置する構成は、電池使用時に振動等により電極群単位で上下や左右にずれることとなった場合でも、正極板は対向しないため、安全性をより高めることが可能となる。
 極板のタブを集電板に接合し、前記集電板と端子基体部を貫通ボルトとナット、ねじ込みボルトを併用する接続方法を用いることで、同一箇所に溶接とボルト固定を施す必要がなく、接触抵抗を小さく抑えることができ、また大電流放電が可能となる。これは、貫通ボルトは外部からの振動や充放電に伴う熱による、ゆるみ防止の機能、ねじ込みボルトは集電板と端子との導電性を高める効果、を発揮することによる。さらに、溶接は端子に集電板を固定する前に用いるため、端子の金属片が混入する恐れは少ない。
 電極群に分けて、極板タブと端子を直接、摩擦撹拌溶接で接合する方法を用いることによって、伝導距離は短くなるため、さらなる抵抗成分の低減が可能となる。また、摩擦撹拌溶接は摩擦熱によって接合部の金属を流動させて加圧固定させる方法であるため、金属片の飛散は大幅に削減することができる。このようにして、高い安全性と高い信頼性とを兼ね備えた二次電池を提供することができる。
 以上、本発明者によってなされた発明をその実施の形態および実施例に基づき具体的に説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、上記実施の形態は、リチウムイオン電池以外の各種の二次電池にも適用可能である。
 また、上記実施例および比較例においては、安全性の評価において電流遮断機構等を有するセルコントローラー等の他の安全装置を用いずに評価を行ったが、実製品においては、上記セルコントローラーを含むさらなる安全対策を施し、二重三重に安全性の強化が図られていることは言うまでもない。
 本発明は、リチウムイオン電池に適用して有効である。
1…電槽、1a…蓋、2…注液口、3…ガス放出弁、4…電極端子、4a…正極端子、4b…負極端子、6…電極板、6a…正極板、6b…負極板、8…セパレータ、9…電極群、10(10a、10b)…集電タブ、11…電極小束、12…電極束、13(13a、13b)…集電板、14…小電極群、15(15a、15b)…押さえ板、16(16a、16b)…貫通孔、17(17a、17b)…ネジ穴、18(18a、18b)…貫通ボルト、19(19a、19b)…ねじ込みボルト、20…ナット、41…端面、42…端面、51(51a、51b)…端子、51’(51’a、51’b)…端子基体部、52…注液口、53…開裂弁、54…電池缶、55…電池蓋、56…発電要素、57(57a、57b)…極板、58…極板タブ、58a…正極タブ、58b…負極タブ、59…貫通穴、60…非貫通穴、61(61a、61b)…集電板、62…ねじ込みボルト、63…押さえ板、64…貫通ボルト、65…ナット、66…溶接部、161(161a、161b)…貫通孔、162(162a、162b)…貫通孔、171(171a、171b)…貫通孔、172(172a、172b)…貫通孔、181…軸部、182…頭部、191…軸部、192…頭部、BD…接合部
 

Claims (15)

  1.  電池容器と、
     前記電池容器に設けられ、第1極性を有する第1電極端子と、
     前記電池容器に設けられ、前記第1極性と反対の第2極性を有する第2電極端子と、
     前記電池容器内にそれぞれ設けられ、かつ、前記第1極性をそれぞれ有する複数の第1電極板と、
     前記電池容器内にそれぞれ設けられ、かつ、前記第2極性をそれぞれ有する複数の第2電極板と、
     前記複数の第1電極板の各々と接続された第1集電板と、
     前記第1集電板を挟んで前記第1電極端子に取り付けられた第1取付板と、
     前記第1電極端子に前記第1取付板を取り付けている第1ネジ部材、第1ナット部材および第2ネジ部材と、
     を有し、
     前記複数の第1電極板の各々と、前記複数の第2電極板の各々とは、セパレータを介して交互に積層され、
     前記第1電極端子には、前記第1ネジ部材を貫通させるための第1貫通孔と、前記第2ネジ部材を締結するための第1ネジ穴とが形成され、
     前記第1取付板には、前記第1ネジ部材を貫通させるための第1ネジ用孔と、前記第2ネジ部材を貫通させるための第2ネジ用孔とが形成され、
     前記第1集電板には、前記第1ネジ部材を貫通させるための第3ネジ用孔と、前記第2ネジ部材を貫通させるための第4ネジ用孔とが形成され、
     前記第1ネジ用孔と、前記第3ネジ用孔と、前記第1貫通孔とを貫通した前記第1ネジ部材が、前記第1ナット部材と締結され、かつ、前記第2ネジ用孔と、前記第4ネジ用孔とを貫通した前記第2ネジ部材が、前記第1ネジ穴に締結されることにより、前記第1集電板を挟んで前記第1電極端子に前記第1取付板が取り付けられ、前記第1集電板が前記第1電極端子に接続されている、二次電池。
  2.  請求項1記載の二次電池において、
     前記第1電極端子に前記第1取付板を取り付けている第3ネジ部材および第2ナット部材を有し、
     前記第1電極端子には、前記第3ネジ部材を貫通させるための第2貫通孔が形成され、
     前記第1取付板には、前記第3ネジ部材を貫通させるための第5ネジ用孔が形成され、
     前記第1集電板には、前記第3ネジ部材を貫通させるための第6ネジ用孔が形成され、
     前記第5ネジ用孔と、前記第6ネジ用孔と、前記第2貫通孔とを貫通した前記第3ネジ部材が、前記第2ナット部材と締結されることにより、前記第1集電板を挟んで前記第1電極端子に前記第1取付板が取り付けられ、前記第1集電板が前記第1電極端子に接続されている、二次電池。
  3.  請求項2記載の二次電池において、
     前記第1ネジ穴は、前記第1電極端子の第1端面の中心部に形成され、
     前記第1貫通孔は、前記第1端面のうち、前記中心部の第1の側に位置する第1部分に形成され、
     前記第2貫通孔は、前記第1端面のうち、前記中心部の前記第1の側と反対側に位置する第2部分に形成されている、二次電池。
  4.  請求項2記載の二次電池において、
     前記第1ネジ穴は、前記第1電極端子の第1端面の重心位置に形成され、
     前記第1貫通孔は、前記第1端面内で、前記第1端面の重心から離れた第1位置に形成され、
     前記第2貫通孔は、前記第1端面内で、前記重心を中心として、前記第1位置と対称な位置である第2位置に形成されている、二次電池。
  5.  請求項1記載の二次電池において、
     前記第1貫通孔は、前記第1電極端子の第1端面のうち、前記第1端面の中心部の第1の側に位置する第1部分に形成され、
     前記第1ネジ穴は、前記第1端面のうち、前記中心部の前記第1の側と反対側に位置する第2部分に形成されている、二次電池。
  6.  請求項1記載の二次電池において、
     前記第1貫通孔は、前記第1電極端子の第1端面内で、前記第1端面の重心から離れた第1位置に形成され、
     前記第1ネジ穴は、前記第1端面内で、前記重心を中心として、前記第1位置と対称な位置である第2位置に形成されている、二次電池。
  7.  請求項1記載の二次電池において、
     前記第1ナット部材は、ダブルナットからなる、二次電池。
  8.  請求項1記載の二次電池において、
     前記複数の第1電極板の各々の端部にそれぞれ設けられた複数の第1集電タブを有し、
     前記第1集電板は、前記複数の第1集電タブの各々と接続されている、二次電池。
  9.  請求項1記載の二次電池において、
     前記複数の第2電極板の各々と接続された第2集電板と、
     前記第2集電板を挟んで前記第2電極端子に取り付けられた第2取付板と、
     前記第2電極端子に前記第2取付板を取り付けている第4ネジ部材、第3ナット部材および第5ネジ部材と、
     を有し、
     前記第2電極端子には、前記第4ネジ部材を貫通させるための第3貫通孔と、前記第5ネジ部材を締結するための第2ネジ穴とが形成され、
     前記第2取付板には、前記第4ネジ部材を貫通させるための第7ネジ用孔と、前記第5ネジ部材を貫通させるための第8ネジ用孔とが形成され、
     前記第2集電板には、前記第4ネジ部材を貫通させるための第9ネジ用孔と、前記第5ネジ部材を貫通させるための第10ネジ用孔とが形成され、
     前記第7ネジ用孔と、前記第9ネジ用孔と、前記第3貫通孔とを貫通した前記第4ネジ部材が、前記第3ナット部材と締結され、かつ、前記第8ネジ用孔と、前記第10ネジ用孔とを貫通した前記第5ネジ部材が、前記第2ネジ穴に締結されることにより、前記第2集電板を挟んで前記第2電極端子に前記第2取付板が取り付けられ、前記第2集電板が前記第2電極端子に接続されている、二次電池。
  10.  電池缶に収容され、複数の正極板の各々と複数の負極板の各々とがセパレータを介して第1方向に交互に積層された電極群を3つ以上備えた二次電池であって、
     3つ以上の前記電極群は、2つ以上の電極群(A)と、1つ以上の電極群(B)とを含み、かつ、前記第1方向に配列され、
     前記電極群(A)の前記第1方向における両端面に、それぞれ前記負極板が配置され、
     前記電極群(B)の前記第1方向における両端面に、それぞれ前記正極板が配置され、
     前記電極群の配列の両端の位置には、それぞれ前記電極群(A)が配置され、
     前記電極群の配列の両端以外の位置には、1つの前記電極群(B)のみが配置されるか、または、前記電極群(B)同士が隣り合わないように、2つ以上の前記電極群(B)と、1つ以上の前記電極群(A)とが配置されている、二次電池。
  11.  電池缶に収容され、複数の正極板の各々と複数の負極板の各々とがセパレータを介して第1方向に交互に積層された電極群を複数備えた二次電池であって、
     前記複数の前記電極群は、前記第1方向に配列され、
     前記複数の前記電極群の各々の前記第1方向における両端面に、それぞれ前記負極板が配置されている、二次電池。
  12.  セパレータを介して積層される正負極板は、それぞれの一端に電極タブを有し、所定複数枚の前記正負極板がセパレータを介して交互に積層構成された電極群が、その複数個を以って電池缶に収容された二次電池であって、
     前記電極群は、電極群の積層方向両端面に位置する極板が共に負極板である電極群(A)と電極群の積層方向の一方端面に位置する極板が正極板であり他方端面に位置する極板が負極板である電極群(C)であり、
     電極群(C)はその積層方向端面の負極板側が電池缶内壁面に対向するように配置され、
     前記電池缶内壁面に対向する位置以外では、隣接する電極群同士の対向面が共に正極板とならないように、電極群(C)、又は電極群(A)と電極群(C)とが配置されることを特徴とする二次電池。
  13.  電極群ごとに、同極性の電極タブが正負それぞれの集電板へ接合され、同極性の前記集電板が押さえ板とともにボルトにより正負それぞれの端子基体部へ締着されていることを特徴とする請求項10乃至12のいずれかに記載の二次電池。
  14.  各電極群の同極性の電極タブが摩擦撹拌溶接によって正負それぞれの端子基体部へ接合されていることを特徴とする請求項10乃至12のいずれかに記載の二次電池。
  15.  正負極板の合計枚数が最低400枚で構成されることを特徴とする請求項10乃至12のいずれかに記載の二次電池。
PCT/JP2013/083311 2013-03-15 2013-12-12 二次電池 WO2014141554A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015505238A JP6015845B2 (ja) 2013-03-15 2013-12-12 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-054323 2013-03-15
JP2013054323 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141554A1 true WO2014141554A1 (ja) 2014-09-18

Family

ID=51536240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083311 WO2014141554A1 (ja) 2013-03-15 2013-12-12 二次電池

Country Status (2)

Country Link
JP (1) JP6015845B2 (ja)
WO (1) WO2014141554A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115422A (ja) * 2014-12-11 2016-06-23 株式会社東芝 電極群、電池、及び電池の製造方法
CN109148777A (zh) * 2018-08-31 2019-01-04 江苏引创照明科技有限公司 一种太阳能路灯用聚合物锂电池支架
JP2019204799A (ja) * 2015-03-30 2019-11-28 三洋電機株式会社 角形二次電池及びそれを用いた組電池
CN112993471A (zh) * 2015-03-30 2021-06-18 三洋电机株式会社 方形二次电池以及组电池
JP2021120961A (ja) * 2019-09-04 2021-08-19 三洋電機株式会社 角形二次電池及びそれを用いた組電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210259A1 (de) * 2017-06-20 2018-12-20 Robert Bosch Gmbh Batteriezelle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139994A (ja) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd バイポーラ電池
JP2008034356A (ja) * 2006-07-06 2008-02-14 Enax Inc シート状二次電池及びその製造方法
JP2009087612A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 積層式電池
JP2009087613A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 角型電池
JP2011119213A (ja) * 2009-12-01 2011-06-16 Samsung Sdi Co Ltd 二次電池
WO2011099491A1 (ja) * 2010-02-09 2011-08-18 三菱重工業株式会社 二次電池、二次電池の製造装置および製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176710B1 (en) * 1999-12-14 2001-01-23 Carrel W. Ewing Battery feed connector for network power controllers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139994A (ja) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd バイポーラ電池
JP2008034356A (ja) * 2006-07-06 2008-02-14 Enax Inc シート状二次電池及びその製造方法
JP2009087612A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 積層式電池
JP2009087613A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 角型電池
JP2011119213A (ja) * 2009-12-01 2011-06-16 Samsung Sdi Co Ltd 二次電池
WO2011099491A1 (ja) * 2010-02-09 2011-08-18 三菱重工業株式会社 二次電池、二次電池の製造装置および製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115422A (ja) * 2014-12-11 2016-06-23 株式会社東芝 電極群、電池、及び電池の製造方法
JP2019204799A (ja) * 2015-03-30 2019-11-28 三洋電機株式会社 角形二次電池及びそれを用いた組電池
CN112993471A (zh) * 2015-03-30 2021-06-18 三洋电机株式会社 方形二次电池以及组电池
US11165125B2 (en) 2015-03-30 2021-11-02 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US11569552B2 (en) 2015-03-30 2023-01-31 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
US11862762B2 (en) 2015-03-30 2024-01-02 Sanyo Electric Co., Ltd. Prismatic secondary battery and assembled battery using the same
CN109148777A (zh) * 2018-08-31 2019-01-04 江苏引创照明科技有限公司 一种太阳能路灯用聚合物锂电池支架
CN109148777B (zh) * 2018-08-31 2023-09-08 江苏引创照明科技有限公司 一种太阳能路灯用聚合物锂电池支架
JP2021120961A (ja) * 2019-09-04 2021-08-19 三洋電機株式会社 角形二次電池及びそれを用いた組電池
JP7160457B2 (ja) 2019-09-04 2022-10-25 三洋電機株式会社 角形二次電池及びそれを用いた組電池
JP2022180650A (ja) * 2019-09-04 2022-12-06 三洋電機株式会社 角形二次電池及びそれを用いた組電池
JP7453307B2 (ja) 2019-09-04 2024-03-19 三洋電機株式会社 角形二次電池及びそれを用いた組電池

Also Published As

Publication number Publication date
JP6015845B2 (ja) 2016-10-26
JPWO2014141554A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5774752B2 (ja) 電池及び組電池
JP4301340B2 (ja) 組電池
JP6015845B2 (ja) 二次電池
JP5830953B2 (ja) 二次電池、バッテリユニットおよびバッテリモジュール
JP5690575B2 (ja) 非水系二次電池
US11121439B2 (en) Secondary battery
JP5783331B2 (ja) 二次電池の集電構造及び二次電池
WO2012102220A1 (ja) 非水系二次電池
US20130177788A1 (en) Nonaqueous secondary battery
JP2015064959A (ja) 組電池
JP2013016321A (ja) 集電体および非水系二次電池
WO2011111556A1 (ja) リチウムイオン二次電池
CN101740799A (zh) 二次电池
JPWO2015159433A1 (ja) 角形二次電池
WO2013038701A1 (ja) 非水電解質二次電池
JP2010232164A (ja) 角形二次電池の製造方法
JP5937969B2 (ja) 非水系二次電池
BR102017018802B1 (pt) Bateria secundária vedada
KR102505716B1 (ko) 전극 조립체
JP5790881B2 (ja) 二次電池の端子構造及び二次電池
JP2018060599A (ja) 角形二次電池
JP2011086483A (ja) ラミネート型2次電池
JP4586357B2 (ja) リチウムイオン電池
JP2013222517A (ja) 角形二次電池
JP2013229127A (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877589

Country of ref document: EP

Kind code of ref document: A1