WO2014141451A1 - Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus - Google Patents

Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus Download PDF

Info

Publication number
WO2014141451A1
WO2014141451A1 PCT/JP2013/057289 JP2013057289W WO2014141451A1 WO 2014141451 A1 WO2014141451 A1 WO 2014141451A1 JP 2013057289 W JP2013057289 W JP 2013057289W WO 2014141451 A1 WO2014141451 A1 WO 2014141451A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
lens structure
connector device
optical connector
optical element
Prior art date
Application number
PCT/JP2013/057289
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 高井
中條 徳男
松嶋 直樹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/057289 priority Critical patent/WO2014141451A1/en
Publication of WO2014141451A1 publication Critical patent/WO2014141451A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present invention relates to technologies such as optical transmission, optical interconnect, and optical connector device.
  • the transmission speed of various IT devices such as servers, routers, and storage is improving year by year. In the future, for example, 25 gigabits per second is required for the transmission rate. In that case, electrical transmission becomes difficult due to wiring loss, crosstalk, and the like.
  • Responding to difficulties in electrical transmission is divided into board transmission, metal cable transmission, and optical transmission using an optical interconnect, depending on the wiring density, cost, and the like.
  • an optical transmission system such as a packet optical transport system (POTS)
  • POTS packet optical transport system
  • Optical transmission has characteristics such as high speed and low power compared to metal cable transmission and the like.
  • optical interconnect device is mounted on a device to be transmitted and received by optical transmission.
  • the optical interconnect device includes an optical element having a photoelectric conversion function, an optical element driving IC, and an optical connector device connected to an optical waveguide such as an optical fiber, which are mounted on a substrate.
  • the optical connector device includes a lens structure. In the optical interconnect device on the transmission side and the reception side, the optical connector devices are connected by an optical waveguide such as an optical fiber.
  • optical element of the optical interconnect device and the optical waveguide such as an optical fiber are connected by an optical path by the optical connector device.
  • optical alignment relating to the optical path in other words, alignment of the optical axis is performed.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-169116
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2008-40318
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2003-391958
  • Patent Document 1 describes a method based on image recognition regarding an alignment process and alignment means.
  • a lens and an alignment mark or an optical element are image-recognized and aligned by a camera.
  • Patent Document 2 describes a method using a fitting pin with respect to an alignment process and alignment means. In this technique, parts are aligned by inserting a fitting pin into a guide hole.
  • Patent Document 3 describes a method using a silicon optical bench (SiOB) for the alignment process and alignment means.
  • SiOB silicon optical bench
  • the accuracy of the V-groove in SiOB is used to perform high-precision alignment of optical components.
  • an optical element driving IC which is an electrical component or an electronic component
  • an optical element which is an optical component
  • an optical element which is an optical component
  • the optical element driving IC and the substrate on which the optical element is mounted has a configuration in which electrical components and optical components are mixed.
  • the optical element and the optical connector device are basically separated as separate optical components.
  • the optical element on the substrate and the lens structure constituting the optical connector device are connected including optical alignment.
  • the connection step including alignment is a step in which the optical axis of the optical path of the lens structure on the optical connector device side is aligned and connected to the optical axis such as the emission point of the optical element on the substrate.
  • connection process including alignment between the optical element and the optical connector device requires optically high-precision alignment. The reason is to ensure the characteristics of the optical interconnect device including the transmission speed of optical transmission.
  • the alignment accuracy requires, for example, an accuracy that suppresses the deviation of the optical axis to 10 ⁇ m or less.
  • the above connection process has a problem of high cost because it requires optically highly accurate alignment.
  • Optical transmission using an optical interconnect is required to be realized at a cost equivalent to or close to that of electric transmission from the viewpoint of replacement from electric transmission to optical transmission.
  • the process of connecting the optical element and the optical connector device particularly the optically accurate alignment process, occupies a large cost.
  • the optical interconnect device is considered to be applied to various objects, for example, between IT devices, between boards, and between IC chips.
  • the viewpoint of maintenance and exchangeability of devices and parts such as optical connector devices is also important.
  • an optical element that is an optical component mounted on a substrate of an optical interconnect device fails or when the optical element is inspected, it is desirable that maintenance and replacement work be easy and low cost.
  • the configuration of the optical interconnect device described above is a configuration in which electrical components and optical components are mixed, and the optical element and the optical connector device are separate optical components. There is.
  • Representative embodiments of the present invention are an optical connector device, an optical cable device, and an optical interconnect device, and have the following configuration.
  • the optical connector device of the present embodiment constitutes an optical path between an optical element and an optical waveguide, and has an optical waveguide connection portion to which an end portion of the optical waveguide is connected, and a concave structure, Mounted in the concave portion of the lens structure, the wiring portion formed on the lens structure, and electrically connected to the optical element and an external substrate wiring portion. And the optical element aligned with the optical axis.
  • the concave portion of the lens structure is provided on a first surface which is a surface mounted on an external substrate in the lens structure, and the optical element is a surface-emitting type.
  • the light emitting element has a first surface including an emission point of surface light emission disposed on a bottom surface of the concave portion of the lens structure, and the lens structure changes the direction of the emitted light in the optical path from the first direction to the second direction.
  • a light bending portion to be bent, and an optical path in the lens structure is between a first point of the concave portion corresponding to an emission point of surface light emission of the optical element and a second point which is a bending point of the light bending portion.
  • An optical connector device comprising: a first optical path portion in the first direction; and a second optical path portion in the second direction between the second point and a third point of the optical waveguide connection portion.
  • the lens structure is disposed between the concave portion and the optical waveguide connection portion, and enters the light emitted from the optical element to the end of the optical waveguide.
  • a first lens that increases the amount of incident light is included.
  • the concave portion of the lens structure is provided on a second surface that is upright with respect to a first surface that is a surface mounted on an external substrate in the lens structure
  • the optical element is a surface-emitting light-emitting element
  • a first surface including an emission point of surface emission is disposed on the bottom surface of the concave portion of the lens structure
  • the optical path in the lens structure is An optical connector device including an optical path portion between a first point of the concave portion corresponding to an emission point of surface light emission of the optical element and a second point of the optical waveguide connection portion.
  • the concave portion of the lens structure is provided on the second surface opposite to the first surface that is the surface mounted on the external substrate in the lens structure.
  • the optical element is an edge-emitting type light-emitting element, a first surface including an emission point of end-surface light emission is disposed toward a side surface of the concave portion of the lens structure, and the wiring portion is the lens structure.
  • the optical path in the lens structure is connected to the first point of the recess corresponding to the emission point of the end surface light emission of the optical element and the optical waveguide connection.
  • the optical connector apparatus containing the optical path part between the 2nd points of a part.
  • the optical element is a light emitting element that converts an electrical signal input through the wiring portion into an optical signal and emits the optical signal to the optical path of the lens structure.
  • the optical element is a light receiving element that converts an optical signal incident from an optical path of the lens structure into an electrical signal and outputs the electrical signal through the wiring portion.
  • the optical cable device includes the first optical connector device and the second optical connector device according to any one of the optical connector devices described above, and the optical waveguide connection portion of the lens structure of the first optical connector device. A first end portion connected to the optical waveguide connecting portion of the lens structure of the second optical connector device; and a second end portion connected to the optical waveguide connecting portion.
  • An optical interconnect device includes any one of the optical connector devices described above, a circuit unit for driving an optical element of the optical connector device, and a substrate on which the circuit unit and the optical connector device are mounted. And a board wiring portion that is formed on the substrate and electrically connects the circuit portion and the wiring portion connected to the optical element of the optical connector device.
  • an optical interconnect device for an optical interconnect device, an optical connector device, and the like, a connection process including alignment between an optical element and an optical connector device, and a manufacturing process including the process are realized at low cost.
  • an optical interconnect device and an optical connector device can be realized at low cost.
  • FIG. 3 is a diagram illustrating a configuration of an XZ section after connection of a transmission-side optical interconnect device according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of an XZ section after connection of the optical interconnect device on the reception side according to the first embodiment.
  • FIG. 5 is a diagram illustrating a flow example of a method for manufacturing the optical interconnect device according to the first embodiment. It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of Embodiment 1.
  • FIG. It is a figure which shows the structure of the XZ cross section of the state before the connection of the components at the time of manufacture of the optical connector apparatus of Embodiment 1.
  • FIG. (A) And (b) is a figure which shows the structural example of the surface emitting optical element in the optical connector apparatus of Embodiment 1.
  • FIG. 3 is a diagram illustrating a configuration example relating to mechanical connection of the optical connector device of the optical interconnect device according to the first embodiment. It is a figure which shows the 2nd structural example of the optical interconnect system to which the optical interconnect apparatus of Embodiment 1 is applied.
  • FIG. 3 is a diagram illustrating a first configuration example in the XY plane of the optical connector device according to the first embodiment. It is a figure which shows the 2nd structural example in XY plane of the optical connector apparatus of Embodiment 1.
  • FIG. It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of the optical interconnect apparatus of Embodiment 2 of this invention.
  • FIG. 4 shows the structure of the XZ cross section of the optical interconnect apparatus of Embodiment 4 of this invention. It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of Embodiment 4.
  • FIG. It is a figure which shows the structure of the XZ cross section of the state before the connection of the optical connector apparatus of Embodiment 4.
  • FIG. It is a figure which shows the structure of the XZ cross section of the optical interconnect apparatus of Embodiment 5 of this invention. It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of Embodiment 5.
  • FIG. It is a figure which shows the structure of the XZ cross section of the state before the connection of the optical connector apparatus of Embodiment 5.
  • FIG. It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of the optical interconnect apparatus of Embodiment 6 of this invention. It is a figure which shows the structure of the XZ cross section before the connection of the optical interconnect apparatus of a comparative example. It is a figure which shows the structure of the XZ cross section after the connection of the optical interconnect apparatus of a comparative example.
  • FIG. 29 shows a state before connection between the optical element 925 and the optical connector device 920 as a configuration of the XZ cross section of the optical interconnect device of the comparative example. Specifically, the alignment between the optical axis of the optical element 925 mounted on the package substrate 911 in the electronic circuit board 910 and the optical axis of the optical path of the lens structure 921 which is a main body constituting the optical connector device 920 is adjusted. The state corresponding to the process of connection C0 including is shown.
  • the optical interconnect device of the comparative example has a configuration in which an electronic circuit board 910 including an optical element 925 and an optical connector device 920 are connected.
  • the optical connector device 920 is mainly configured by a lens structure 921, and an end of an optical fiber portion 933 serving as an optical waveguide is connected to a part of the lens structure 921. In the optical interconnect device on the transmission side and the reception side, the optical connector device 920 is connected by an optical fiber portion 933.
  • the electronic circuit board 910 has a configuration in which electrical components and optical components are mixed.
  • an optical element driving IC 915, an optical element 925, and the like are mounted on the package substrate 911 via electrical wiring 912.
  • the optical element 925 is an optical element having a photoelectric conversion function, for example, a light emitting element corresponding to a transmission function.
  • a point p0 of the optical element 925 indicates a light emission point.
  • the optical element driving IC 915 is a driving IC that is an integrated circuit unit that drives the optical element 925.
  • the wiring 912 includes a wiring that electrically connects the optical element driving IC 915 and the optical element 925.
  • the optical element 925 of the optical interconnect device and the optical waveguide formed by the optical fiber portion 933 are connected by an optical path configured in the lens structure 921 of the optical connector device 920.
  • the optical path of the lens structure 921 is that the optical path portion in the Z direction from the point p1 to the point p2 on the optical axis in the Z direction perpendicular to the substrate surface indicated by the line AA and the substrate surface indicated by the line BB.
  • the lens structure 921 has a point p1 to which the point p0 on the upper surface of the optical element 925 is connected on the bottom surface f1 that is a flat XY plane on the side mounted on the package substrate 911.
  • the point p1 of the lens structure 921 corresponds to the position of the point p0 of the optical element 925 at the time of connection C0 on the optical axis of the line AA.
  • the point p1 is an incident point from the optical element 925.
  • the point p2 of the lens structure 921 indicates a bending point at which 90-degree total reflection of light is performed at a 45-degree inclined surface between the X direction and the Z direction shown in the drawing.
  • the 45-degree inclined surface portion of the lens structure 921 is configured by a mirror or the like having a characteristic of performing 90-degree total reflection of light.
  • the point p3 of the lens structure 921 indicates a point corresponding to the optical axis of the core of the optical fiber indicated by the BB line on the surface of the YZ plane to which the end of the optical fiber portion 933 is connected. In other words, the point p3 is an incident point to the optical fiber portion 933.
  • connection C0 including alignment between the optical element 925 on the package substrate 911 and the lens structure 921 of the optical connector device 920.
  • connection C0 including this alignment optical alignment related to the optical path, in other words, alignment of the optical axis is performed. That is, the point p0 of the optical element 925 and the point p1 of the lens structure 921 are connected on the optical axis of the line AA.
  • the alignment accuracy is required to be high, for example, to suppress the deviation between the points p0 and p1 on the optical axis of the AA line to 10 ⁇ m or less.
  • FIG. 30 shows a state after the connection C0 between the optical element 925 on the electronic circuit board 910 side and the lens structure 921 on the optical connector device 920 side in the optical interconnect device of the comparative example of FIG.
  • a heat sink 917 is mounted on the optical element driving IC 915.
  • the optical connector device 920 is mounted on the optical element 925 on the package substrate 911.
  • FIG. 30 only the state where the upper surface of the optical element 925 and the bottom surface f1 of the lens structure 921 are in contact with each other is shown as a state of connection of the optical connector device 920 to the electronic circuit board 910.
  • This form of connection actually has not only the location of the optical element 925 but also a site that is mechanically connected and held on the package substrate 911 at another site of the optical connector device 920, such as a peripheral edge. It is good also as a form.
  • light emitted in the Z direction from the emission point p0 of the optical element 925 that is a light emitting element is an optical path portion from the point p1 to the point p2 of the lens structure 921. Is totally reflected 90 degrees on the surface in the vicinity of the point p2, and changes to emitted light in the X direction. The emitted light enters the core at the end of the optical fiber portion 933 via the optical path portion from the point p2 to the point p3.
  • the outline of the optical transmission operation of data from the first optical interconnect device on the transmission side to the second optical interconnect device on the reception side in the optical interconnect system using the optical interconnect device of the comparative example is as follows.
  • the first optical interconnect device on the transmission side converts an electrical signal of transmission data into an optical signal by the optical element 925 based on control by the optical element driving IC 915.
  • the transmission-side optical interconnect device emits the optical signal from the optical element 925 to the optical waveguide formed by the optical fiber unit 933 through the optical path formed by the optical connector device 920.
  • the optical waveguide formed by the optical fiber unit 933 transmits an optical signal.
  • the optical interconnect device on the receiving side enters the optical signal from the optical waveguide by the optical fiber portion 933 into the optical element 925 through the optical path by the optical connector device 920.
  • the optical interconnect device on the receiving side converts the optical signal into an electrical signal by the optical element 920 based on the control of the optical element driving IC 915.
  • the optical element driving IC 915 of the optical interconnect device on the receiving side acquires an electrical signal from the optical element 925 as reception data.
  • the optical element driving IC 915 that is an electrical component and the optical element 925 that is an optical component are mixed. Further, the optical element 925 and the optical connector device 920 are basically separated as separate optical components. The process of connection C0 including the alignment of the optical element 925 and the optical connector device 920 is expensive because it requires optically highly accurate alignment.
  • the configuration is a mixture of electrical components and optical components or separation of optical components, for example, when an optical element 925 that is an optical component on the package substrate 911 fails, or when the optical element 925 is inspected, Its maintainability is not so good. That is, since the process of connection C0 including alignment is required again in the optical element 925 and the optical connector device 920, the cost is high.
  • FIG. 1 shows an XZ cross-sectional configuration of the state before the electronic circuit board 10 and the optical connector device 20 are connected as an outline of the optical interconnect device 1 and the optical connector device 20 of the first embodiment.
  • the optical interconnect device 1 according to the first embodiment includes an electronic circuit board 10 on which an optical element driving IC 15 is mounted via a wiring 12 on a package substrate 11, and an optical connector apparatus in which an optical element 25 is built in a lens structure 21. 20.
  • it has a configuration in which the optical element 25 is mounted in the concave portion 26 of the lens structure 21 constituting the optical connector device 20.
  • the optical element 25 is mounted in the concave portion 26 of the lens structure 21 via the wiring 22. At the time of mounting, alignment between the optical element 25 and the optical path of the lens structure 21 on the optical axis indicated by the line AA is completed.
  • the optical connector device 20 is mainly composed of a lens structure 21, and an end portion of an optical fiber portion 33 serving as an optical waveguide is connected to an optical fiber connection portion 23 that is a part of the lens structure 21.
  • the optical connector devices 20 are connected by an optical fiber portion 33.
  • a portion including the optical connector device 20 and the optical waveguide such as the optical fiber portion 33 is referred to as an optical cable device 30 described later.
  • the optical interconnect device 1 includes an optical element 925, which is another optical component in the optical interconnect device of the comparative example of FIG. 29, and the lens structure 921 of the optical connector device 920, as one integrated optical component.
  • the optical connector device 20 is an integrated configuration. In other words, the optical connector device 20 can be handled as a single integrated optical component that is optically coupled to the optical element 25 and ensures alignment accuracy.
  • the optical interconnect device 1 of the first embodiment has a configuration in which the optical connector device 20 that is an optical component and the electronic circuit board 10 that is an electrical component are clearly separated. This simplifies the connection process including alignment in the comparative example, and reduces the connection process including alignment that occupies a large cost in the manufacturing process. By reducing the cost of the connection process including alignment, the optical interconnect device 1 can be configured at a low cost, and the optical interconnect device 1 having excellent maintenance and replaceability can be provided.
  • connection C2 between the electronic circuit board 10 and the optical connector device 20 the wiring 12 of the optical connector device 20 in which the optical element 25 is incorporated is electrically connected to the wiring 12 at a predetermined position on the package substrate 11.
  • the optical element driving IC 15 and the optical element 25 are electrically connected through the wiring 22 and the wiring 12.
  • the optical interconnect device 1 on which the optical connector device 20 is mounted is configured. Since the electrical component and the optical component are clearly separated as described above, the connection C2 of the optical connector device 20 on the package substrate 11 is not optically high precision as in the comparative example, The connection accuracy can be achieved.
  • various known techniques can be applied, and it is easy and low-cost.
  • FIG. 2 shows an example of a system and apparatus to which the optical interconnect device 1 according to the first embodiment is applied.
  • FIG. 2A shows an IT system 300 that is an application target system.
  • the IT system 300 has a configuration in which a plurality of IT devices 301 are connected via a network such as a LAN.
  • the IT device 301 is a server rack, for example.
  • the IT device 301 includes one or more board modules 302.
  • FIG. 2B shows a configuration example of the board module 302 of the IT equipment 301 in FIG.
  • a plurality of substrates 303 such as blade substrates are connected to each other via a backplane substrate 304.
  • Each substrate 303 mounts a plurality of chips 305 and the like, and the plurality of chips 305 are connected to each other by a bus or the like.
  • the chip 305 is an IC chip that includes a processor, a memory, and the like.
  • the first chip 305 of the first substrate 303 and the second chip 305 of the second substrate 303 are connected via the backplane substrate 304, and communication including transmission a and reception b of electrical signals is performed. An example is shown.
  • the optical interconnect there are the IT devices 301 in FIG. 2A, the substrate modules 302, the substrates 303 in FIG. 2B, or the chips 305.
  • the optical interconnect device 1 of the first embodiment or the like is mounted on each target substrate 303.
  • the optical interconnect devices 1 on the board 303 are connected by an optical cable device 30 having both ends of the optical connector device 20.
  • FIG. 3 shows a configuration example of functional blocks of an optical interconnect system including the optical interconnect device 1.
  • the optical interconnect system of FIG. 3 shows a configuration example in which two optical interconnect devices 1 having a configuration capable of transmitting and receiving light in one direction are connected by an optical cable device 30.
  • the first optical interconnect device 1A on the left side has only the transmission function 2A
  • the second optical interconnect device 1B on the right side has only the reception function 2B.
  • the optical interconnect device 1A can transmit light in one direction from the optical interconnect device 1B.
  • An example of the physical configuration of the transmission-side optical interconnect device 1A is shown in FIG.
  • a physical configuration example of the optical interconnect device 1B on the receiving side is shown in FIG.
  • the optical interconnect device 1A on the transmission side and the optical interconnect device 1B on the reception side have an optical element driving IC 15 and an optical connector device 20, respectively.
  • the optical cable device 30 includes an optical connector device 20 at one end that is a transmission side, an optical connector device 20 at the other end that is a reception side, and an optical fiber portion 33 that connects both ends, particularly one optical fiber. And a fiber portion 33A.
  • the transmission-side optical interconnect device 1A includes a transmission-side optical element driving IC 15A and a transmission-side optical connector device 20A connected thereto as the transmission function 2A.
  • the transmission-side optical connector device 20A includes a VCSEL, which is a vertical-resonance surface-emitting optical element shown in FIG. 10 described later, as a light-emitting element that is the transmission-side optical element 25A.
  • the transmission-side optical element driving IC 15A is a VCSEL driver that drives a VCSEL that is the optical element 25A of the transmission-side optical connector device 20A.
  • the receiving-side optical interconnect device 1B includes a receiving-side optical element driving IC 15B and a receiving-side optical connector device 20B as the receiving function 2B.
  • the reception-side optical connector device 20B includes a photodiode (abbreviated as PD) as a light-receiving element that is the reception-side optical element 25B.
  • the receiving side optical element driving IC 15B is a trans-impedance amplifier (TIA) that drives the PD that is the optical element 25B of the receiving side optical connector apparatus 20B.
  • TIA trans-impedance amplifier
  • the transmission side optical element driving IC 15A transmits the electrical signal of the transmission data through the wiring 12 and the wiring 22 as in the case of transmission a1.
  • the VCSEL which is the optical element 25A of the transmission side optical connector device 25A is driven.
  • the optical element 25A converts an electrical signal into an optical signal and emits it.
  • the optical signal is incident on the end portion of the optical fiber portion 33A through the optical path of the transmission side optical connector device 20A.
  • the optical fiber unit 33 of the optical cable device 30 transmits an optical signal.
  • the optical interconnect device 1B on the reception side enters the optical signal from the optical fiber portion 33A into the optical connector device 25B on the reception side.
  • the optical signal enters the optical element 25B through the optical path of the receiving side optical connector device 25B.
  • the PD which is the optical element 25B of the receiving side optical connector device 25B is driven.
  • the PD which is the optical element 25B, converts an optical signal into an electrical signal and receives it.
  • An electrical signal from the PD, which is the optical element 25B is transmitted to the reception-side optical element driving IC 15B through the wiring 22 and the wiring 12.
  • the reception-side optical element driving IC 15B acquires an electrical signal from the optical element 25B as reception data.
  • FIG. 4 shows a configuration example of the optical cable device 30 according to the first embodiment.
  • the optical cable device 30 is a cable with an optical connector.
  • FIG. 4A shows an optical cable device 30 corresponding to a configuration capable of optical transmission in one direction in FIG.
  • the optical cable device 30 has two optical connector devices 20 as both ends and an optical fiber portion 33 that connects them.
  • the optical connector device 20 at one end is a transmission side optical connector device 20A corresponding to the transmission function 2A
  • the optical connector device 20 at the other end is a reception side optical connector device 20B corresponding to the reception function 2B.
  • the optical fiber portion 33 is configured by an optical fiber and a protective coating 34 on the outside thereof as a cross-sectional structure.
  • the optical fiber of the optical fiber portion 33 has an outer cladding 31 and an inner core 32.
  • FIG. 5 shows a configuration of an XZ cross section before connection of the transmission-side optical interconnect device 1A of the first embodiment.
  • the optical interconnect device 1A has a VCSEL driver as the transmission side optical element driving IC 15A
  • the transmission side optical connector device 20A has a VCSEL as a light emitting element as the transmission side optical element 25A.
  • a shows the emitted light from the optical element 25 ⁇ / b> A to the optical fiber portion 33.
  • the package substrate 11 of the electronic circuit substrate 10 is mounted on the target substrate 50 via, for example, solder balls 51.
  • the electronic circuit board 10 is mainly mounted on the package board 11, the wiring 12 formed on the package board 11, the transmission side optical element driving IC 15A connected via the wiring 12, and the transmission side optical element driving IC 15A. And a heat sink 17.
  • the transmission side optical element driving IC 15 ⁇ / b> A is mounted on the wiring 12 of the package substrate 11 via, for example, solder balls 13.
  • the electronic circuit board 10 shows a portion excluding the optical connector device 20 that is an optical component, and is configured as an electrical component.
  • the transmission side optical connector device 20A has the same configuration as that of FIG.
  • the transmission-side optical connector device 20A includes a lens structure 21 as a main body, a transmission-side optical element 25A mounted in a recess of the lens structure 21, and a metal formed in the lens structure 21 and connected to the optical element 25A. And an end portion of the optical fiber portion 33 is connected.
  • the package substrate 11 is an organic substrate, and an electrical wiring 12 made of metal is formed on the main surface.
  • the wiring 12 on the package substrate 11 includes a wiring formed to extend from a wiring connected to the transmission-side optical element driving IC 15A to a predetermined position on the right side in the X direction.
  • the wiring 22 made of metal formed on the optical connector device 20 side is electrically connected in the Z direction to the wiring 12 at the predetermined position, that is, the connection position of the optical connector device 20.
  • Receiveiver side optical interconnect device 6 shows an XZ cross-sectional configuration of the receiving-side optical interconnect device 1B of the first embodiment.
  • the reception-side optical interconnect device 1B has a TIA as the reception-side optical element driving IC 15B, and has a PD that is a light-receiving element as the reception-side optical element 25B of the reception-side optical connector device 20B.
  • b shows the incident light from the optical fiber part 33 to the optical element 25B.
  • the optical signal incident on the point p3 of the lens structure 21 from the end of the optical fiber portion 33 travels along the optical path portion to the left in the X direction from the point p3, and is 90 degrees around the point p2 of the 45 degree mirror 24. Reflected and changed to light in the Z direction. Then, the incident light travels along the optical path portion downward from the point p2 in the Z direction, and is incident on the optical element 25B via the point p1 of the recess.
  • the optical element 25B which is a PD, converts an optical signal into an electrical signal and outputs it.
  • the optical element driving IC 15B which is a TIA, impedance-converts and amplifies the current signal received from the optical element 25B through the wiring 22 and the wiring 12, and acquires it as a voltage signal.
  • FIG. 7 shows an example of a manufacturing flow of the optical interconnect device 1 of the first embodiment.
  • S1 etc. show a process.
  • the lens structure 21 is manufactured or prepared.
  • the optical element 25 is manufactured or prepared.
  • the optical fiber portion 33 is manufactured or prepared.
  • step S4 the lens structure 21 in step S1 and the optical element 25 in step S2 are connected while optically aligned.
  • Step S4 corresponds to connection C1 including alignment shown in FIG. 9 described later.
  • the wiring 22 is formed over the concave portion 26 of the bottom surface f1 of the lens structure 21 and a part of the bottom surface f1.
  • step S4 for example, using a manufacturing apparatus such as a chip mounter, the electrode structure on the upper surface of the optical element 25 is connected to the concave portion 26 of the lens structure 21 via the wiring 22.
  • step S4 When mounting, alignment is performed so that the point p0 of the optical element 25, the point p1 of the concave portion 26 of the lens structure 21, and the point p2 of the 45-degree mirror 24 are aligned on the optical axis of the AA line. Is done. Thereby, the optical element 25 and the lens structure 21 are optically coupled.
  • the connection C2 including alignment in step S4 is realized with the mounting accuracy of a manufacturing apparatus such as a chip mounter to be used. As the required alignment accuracy, for example, a high accuracy for keeping the deviation in the optical axis to 10 ⁇ m or less is ensured.
  • step S4 the optical connector device 20 including the optical element 25 is obtained.
  • the alignment in step S4 is a method different from the conventional passive alignment.
  • step S5 the optical fiber connection portion 23 in the optical connector device 20 incorporating the optical element 25 obtained in step S4 and the end of the optical fiber portion 33 in step S3 are connected while optically aligned. To do.
  • the optical fiber core 32 at the end of the optical fiber portion 33 is It is connected while optically aligning. Connection including alignment in the optical fiber connection portion 23 is possible by various known techniques.
  • step S6 the electronic circuit board 10 is manufactured or prepared.
  • the wiring 12 is formed on the package substrate 11, and the optical element driving IC 15 and the like are mounted via the wiring 12, whereby the electronic circuit substrate 10 is obtained.
  • step S7 the optical connector device 20 in which the optical element 25 obtained in step S5 is mounted and the optical fiber portion 33 is connected is mounted on the package substrate 11 of the electronic circuit board 10 obtained in step S6.
  • Step S7 corresponds to connection C2 in FIG.
  • the manufacturing apparatus is used to electrically connect the wiring 22 on the bottom surface f ⁇ b> 1 side of the lens structure 21 to the wiring 12 at a predetermined position on the package substrate 11.
  • the optical element 25 and the optical element driving IC 15 are electrically connected through the wiring 12 and the wiring 22.
  • step S7 mechanical connection of the optical connector device 20 onto the package substrate 11 may be performed separately from the electrical connection, as in the example shown in FIG.
  • step S7 the optical interconnect device 1 to which the optical connector device 20 is connected is obtained. Note that step S7 may be performed at the time of setup or maintenance replacement, not at the time of manufacture, depending on the application target.
  • step S7 and connection C2 Various known techniques can be applied to the means for electrically connecting the wiring 22 on the optical connector device 20 side to the wiring 12 on the package substrate 11 in step S7 and connection C2.
  • solder connection, connection through a layer of silver paste or the like, or connection using an anisotropic conductive film (ACF) can be applied.
  • connection by a spring connector or the like can be applied as in the fourth embodiment described later.
  • step S7 and connection C2 when an ACF is used, the ACF is connected between the wiring 12 on the package substrate 11 side and the wiring 22 on the bottom surface f1 on the optical connector device 20 side.
  • the optical connector device 20 incorporating the optical element 25 has been aligned with high accuracy in step S4, so that it is handled as an optical component that ensures optical coupling and predetermined optical accuracy. Can do. Therefore, the mounting of the optical connector device 20 on the package substrate 11 in the step S7 can be performed easily and at low cost not with optical accuracy but with electrical accuracy.
  • the connection including optical alignment in step S4 is easier and less expensive than the connection C0 including alignment in FIG. 29 of the comparative example. That is, the optical interconnect device 1 can be provided at a low cost.
  • the optical connector device 20 including the optical element 25 can be replaced. At the time of the replacement, it is only necessary to remove the optical connector device 20 from the package substrate 11 and attach a new optical connector device 20 by electrical connection C2. That is, the optical interconnect device 1 according to the first embodiment has high maintenance and exchangeability.
  • FIG. 8 shows a state after the optical element 25 is built in as an XZ cross-sectional configuration of the optical connector device 20 of the first embodiment.
  • the configuration of the optical path and the like will be described in detail with reference to FIG.
  • FIG. 8 shows a case where a VCSEL which is the optical element 25A on the transmission side is used as the optical element 25.
  • the upper surface on the upper side in the Z direction is a light emitting surface, and a point p0 on the upper surface indicates an emission point. Details of the VCSEL which is the optical element 25 are shown in FIG.
  • the lens structure 21 is made of a material such as glass or plastic.
  • the optical fiber connection portion 23 which is a part of the lens structure 21 has a shape for connecting the end portion of the optical fiber portion 33.
  • the optical fiber connection portion 23 is provided as a region corresponding to the shape of the optical fiber portion 33 at the right side in the X direction and the upper side in the Z direction of the lens structure 21 and includes the YZ including the point p3. Includes a plane.
  • the surface of the end portion of the optical fiber portion 33 is connected to the surface including the point p3 of the optical fiber connection portion 23 including optical alignment on the optical axis of the BB line.
  • the point p3 of the optical fiber connection portion 23 of the lens structure 21 is a point aligned with the optical axis of the core 32 at the end of the optical fiber portion 33, and is an exit point from the lens structure 21 to the optical fiber portion 33.
  • a concave portion 26 is provided on a bottom surface f1 which is an XY plane on the lens structure 21 on the side mounted on the package substrate 11.
  • the concave portion 26 is an optical element built-in portion, and is a concave region having a depth in the Z direction upward on the bottom surface f1 of the flat XY plane of the lens structure 21.
  • the recess 26 is an optical element built-in portion.
  • the shape of the recess 26 is designed in accordance with the shape of the optical element 25. For example, when the optical element 25 has a cylindrical shape as shown in FIG. 10 described later, the concave portion 26 also has a cylindrical shape.
  • the depth of the recess in the Z direction of the recess 26 is larger than the height of the optical element 25 in the Z direction.
  • a point p ⁇ b> 1 of the recess 26 is a center point for mounting the optical element 25.
  • the optical element 25 is mounted in the concave portion 26 on the bottom surface f1 of the lens structure 21 via the wiring 12.
  • the bottom surface of the concave portion 26 in the Z direction is an XY plane parallel to the bottom surface f1 of the lens structure 21.
  • the optical element 25 is mounted such that the top surface including the surface emission point p ⁇ b> 0 is parallel to the XY plane that is the bottom surface of the recess 26.
  • the X direction and the Y direction are directions parallel to the substrate surface such as the package substrate 11 and the bottom surface f1 of the lens structure 21.
  • the optical element 25 mounted in the concave portion 26 is accommodated in the region of the concave portion 26 and does not protrude outward from the bottom surface f1 of the lens structure 21 in the Z direction.
  • the wiring 22 formed on the optical connector device 20 side is formed over the bottom and side surfaces of the concave portion 26 of the lens structure 21 and a partial region of the bottom surface f1 of the lens structure 21.
  • an electrode terminal at the peripheral edge of the upper surface of the optical element 25 is electrically connected to one end portion of the wiring 22 formed on the bottom surface of the recess 26.
  • the other end of the wiring 22 is formed to extend to a predetermined position on the bottom surface f ⁇ b> 1 around the concave portion 26 of the lens structure 21 via the side surface of the concave portion 26. 1, the exposed wiring 22 around the recess 26 in the bottom surface f1 of the lens structure 21 and the wiring 12 on the package substrate 11 corresponding to the position of the wiring 22 in the X direction and the Y direction. Are electrically connected.
  • the lens structure 21 has a 45-degree mirror 24 that is a light bending means at a 45-degree inclined surface between the X direction and the Z direction shown in the figure as one of the elements constituting the optical path.
  • the lens structure 21 forms an optical path that bends 90 degrees in the Z direction and the X direction.
  • the lens structure 21 has a 45-degree mirror 24 as a light bending means.
  • the 45 degree mirror 24 has a characteristic of totally reflecting light at 90 degrees inside the lens structure 21.
  • the 45 degree mirror 24 reflects light from the Z direction in the X direction in the vicinity of the point p2.
  • Point p2 is a perpendicular intersection of the optical axis in the Z direction of the AA line and the optical axis in the X direction of the BB line, and is a bending point of the optical path, and is a reflection point of the 45 ° mirror 24. It is.
  • Examples of the form of the 45-degree mirror 24 of the lens structure 21 include a form in which a metal film, a dielectric multilayer film, or the like is formed at the 45-degree slope portion of the lens structure 21.
  • the 45-degree mirror 24 of the lens structure 21 is shaped like a right-angle prism, that is, a triangular prism having a 45-degree right-angled isosceles triangle in the region including the 45-degree slope of the lens structure 21.
  • a prism or the like is provided.
  • the lens structure 21 constitutes an optical path connecting the optical element 15 and the end of the optical fiber portion 33.
  • the optical path formed in the lens structure 21 is a 45-degree mirror from the point p1 of the concave portion 26 corresponding to the point p0 on the upper surface of the optical element 25 on the optical axis of the AA line, upward in the Z direction perpendicular to the substrate surface.
  • a straight optical path portion from the point p2 of the 45-degree mirror 24 to the point p3 of the optical fiber connection portion 23 to the right in the X direction parallel to the substrate surface.
  • the light emitted in the Z direction from the point p 0 on the upper surface of the optical element 25 enters the lens structure 21 from the position of the point p 1 of the recess 26.
  • the light from the point p1 is reflected near the point p2 of the 45 degree mirror 24 and becomes light in the X direction.
  • Light from the point p ⁇ b> 2 enters the core 32 at the end of the optical fiber portion 33 from the point p ⁇ b> 3 of the optical fiber connection portion 23. Thereafter, the emitted light is optically transmitted through the optical fiber unit 33 and is incident on the optical connector device 20 of the optical interconnect device 1 on the receiving side.
  • the optical connector device 20 in the optical interconnect device 1 of the first embodiment is mounted so that the optical element 25 is built in the concave portion 26 of the bottom surface f1 of the lens structure 21.
  • the optical element 925 protrudes in the Z direction with respect to the flat bottom surface f1 of the lens structure 921. Therefore, in the optical interconnect device 1 of the first embodiment, the overall shape of the optical connector device 20 on which the optical element 25 is mounted is compact, and the process of mounting the optical connector device 20 on the package substrate 11 is facilitated.
  • the overall shape of the optical interconnect device 1 on which the optical connector device 20 is mounted particularly the height in the Z direction, can be made compact.
  • FIG. 9 is an XZ cross-sectional view of the optical connector device 20 of the optical interconnect device 1 according to the first embodiment, corresponding to step S4 of FIGS. 8 and 7, in a state before the connection between the lens structure 21 and the optical element 25.
  • the configuration is shown.
  • the connection C1 including alignment indicates a state in which the optical element 25 is mounted via the wiring 22 with respect to the concave portion 26 of the lens structure 21 on the optical axis of the AA line in the Z direction.
  • the concave portion 26 is located on the upper side with the lens structure 21 facing downward in the Z direction, contrary to the state shown in FIG.
  • the optical element 25 is mounted in the recess 26 from the upper side in the Z direction.
  • the wiring 22 is formed in the area
  • FIG. 10 shows a configuration of a VCSEL which is a vertical resonance surface emitting optical element used as the optical element 25 of the optical connector device 20 according to the first embodiment, particularly as the transmitting optical device 25A in the transmitting optical connector device 20A.
  • a VCSEL Very Cavity Surface Emitting Laser
  • the optical element 25A in FIG. 10 shows a case of a cylindrical shape and a case where there is one emission region including the emission point p0.
  • FIG. 10A shows an outline of an XZ section of a VCSEL which is the optical element 25A on the transmission side.
  • s1 indicates a light emitting surface which is the upper surface of the optical element 25A.
  • the surface-emitting optical element 25A emits light a in the Z direction from the emission point p0 by resonating in the Z direction perpendicular to the substrate surface on the light emitting surface s1 in the XY direction parallel to the substrate surface. Is emitted.
  • An emission region including the emission point p0 is provided at the center position in the X direction of the light emitting surface s1.
  • s2 represents an active layer or emission part inside the optical element 25A.
  • s3 indicates the electrode terminal of the optical element 25 or its position.
  • the aforementioned wiring 22 is connected to the electrode terminal s3.
  • FIG. 10B shows an outline on the XY plane on the upper surface of the optical element 25A in FIG.
  • An emission region including one emission point p0 is provided at the circular center of the light emitting surface s1.
  • an electrode terminal s3 is provided on the outer periphery of the circular upper surface of the optical element 25.
  • FIG. 11 shows a configuration of an optical element 25Ab that is a modification of the VCSEL that is the optical element 25A on the transmission side.
  • the optical element 25Ab in FIG. 11 is a rectangular parallelepiped shape, and shows a case where the emission point p0 has a plurality of emission regions in an array.
  • FIG. 11A shows an outline of the XZ section of the optical element 25Ab.
  • the light emitting surface s1 on the upper surface of the optical element 25A has an emission region including a plurality of emission points p0.
  • FIG. 11B shows an outline of the XY plane of the upper surface of the optical element 25Ab. In the rectangle of the light emitting surface s1, a plurality of emission regions s4 including the emission point p0 are arranged in a two-dimensional array.
  • FIG. 12 shows an outline of an XZ cross section of an example of the configuration of mechanical connection between the optical connector device 20 and the package substrate 11 in step S7 and connection C2, as a modification of the optical interconnect device 1 of the first embodiment.
  • FIG. 12 shows a state in which the lens structure 21 is detachably mechanically connected to the package substrate 11 separately from the electrical connection shown in FIG.
  • maintenance part 121 which is a means to hold is shown.
  • the holding unit 121 is provided at a predetermined position on the package substrate 11 so as to correspond to a predetermined portion of the lens structure 21, for example, the position of the outer peripheral portion such as the four corners, on the XY plane. At the time of the above-described connection C2, predetermined locations such as the four corners of the lens structure 21 of the optical connector device 20 are mounted and held on the holding portion 121 on the package substrate 11 in the Z direction.
  • the holding part 121 can be a structure made of, for example, a resin material. Further, the holding unit 12 is not limited to the configuration of FIG. 12, and various means such as screwing can be applied.
  • FIG. 13 shows a configuration example of functional blocks of an optical interconnect system including the optical interconnect device 1.
  • FIG. 13 shows a configuration example in which two optical interconnect devices 1C having a configuration capable of bidirectional transmission and reception are connected by an optical cable device 30 as a second configuration example of the optical interconnect system.
  • the two optical interconnect devices 1C each have both the transmission function 2A and the reception function 2B.
  • the elements constituting the transmission function 2A and the reception function 2B are the same as the elements in FIG.
  • the first optical interconnect device 1 ⁇ / b> C on the left side includes a transmission-side optical element drive IC 15 ⁇ / b> A and a reception-side optical element drive IC 15 ⁇ / b> B as the optical element drive IC 15, and the transmission-side optical connector device 20 ⁇ / b> A and the reception-side light as the optical connector device 15.
  • a connector device 20B is provided.
  • the transmitting side optical element driving IC 15A and the receiving side optical element driving IC 15B are connected by a wiring 12 so as to be communicable.
  • Examples of the mounting form of the optical interconnect device 1C include a form in which the components of the transmission function 2A and the components of the reception function 2B are mounted in parallel in the Y direction on the XY plane of the package substrate 11 described above. .
  • the transmission side optical connector device 20 ⁇ / b> A and the reception side optical connector device 20 ⁇ / b> B may be configured to be mounted in common on one lens structure 21 as in the example of FIG. 14 described later. .
  • the transmission side optical connector device 20A of the first optical interconnect device 1C on the left side is connected to the reception side optical connector device 20B of the second optical interconnect device 1C on the right side by an optical fiber portion 33A.
  • the transmission side optical connector device 20A of the second optical interconnect device 1C on the right side is connected to the reception side optical connector device 20B of the first optical interconnect device 1C on the left side by an optical fiber portion 33B.
  • the optical fiber portion 33A and the optical fiber portion 33B in the optical cable device 30 may be composed of two separate optical fibers as in the example of FIG. 14 described later, or one common optical fiber. It may be constituted by.
  • FIG. 4B shows the optical cable device 30 corresponding to the configuration capable of bidirectional optical transmission in FIG.
  • the optical cable device 30 has two optical connector devices 20 having both the transmission function 2A and the reception function 2B as both ends, and an optical fiber portion 33 that connects them.
  • the optical fiber section 33 in FIG. 4B has a configuration in which the transmission-side optical fiber section 33A and the reception-side optical fiber section 33B are shared as one optical fiber section 33.
  • FIG. 14 shows an outline of the configuration of the XY plane as a mounting configuration example of the optical connector device 20 and the like of the optical interconnect device 1C of FIG.
  • the configuration of the XY plane in FIG. 14 roughly corresponds to the configuration of the XZ cross section in FIG.
  • the shapes of the optical element 25A, the optical element 25B, and the recess in the XY plane are shown by rectangles corresponding to FIG. 11 in FIG. 14, but as described above, the circular shape of FIG. Various shapes are possible.
  • FIG. 14 shows an optical connector device 20Ca that is a first configuration example of the XY plane of the optical connector device 20.
  • the optical connector device 20Ca integrates the above-described transmission-side optical connector device 20A and the reception-side optical connector device 20B in one lens structure 21, and is provided as a transmission-side optical connector portion 20a and a reception-side optical connector portion 20b.
  • the transmitting optical element 25A and the receiving optical element 25B are arranged in parallel in the Y direction.
  • the transmitting optical element 25A is mounted in the concave portion of the transmitting-side optical connector portion 20a in the lens structure 21, and the receiving optical element 25B is mounted in the concave portion of the receiving-side optical connector portion 20b.
  • the optical element driving IC 15A and the optical element 25A are connected by the wiring 12 in the X direction.
  • the optical element 25A and the transmission optical fiber portion 33A are linearly arranged and connected in the X direction.
  • a shows the emitted light from the optical element 25A.
  • the optical element driving IC 15B and the optical element 25B are connected by the wiring 12 in the X direction.
  • the optical element 25B and the receiving optical fiber portion 33B are linearly arranged and connected in the X direction.
  • b shows the incident light to the optical element 25B.
  • FIG. 15 shows an optical connector device 20Cb which is a second configuration example of the XY plane of the optical connector device 20, which is different from FIG.
  • the optical connector device 20 ⁇ / b> Cb further has a configuration in which the transmission optical fiber portion 33 ⁇ / b> A and the reception optical fiber portion 33 ⁇ / b> B are shared as one optical fiber portion 33.
  • the optical connector device 20Cb corresponds to the common configuration of the optical fiber portion 33, and in the lens structure 21, a common optical unit that shares a part of the optical path on the transmission side and a part of the optical path on the reception side. It has a system part 151.
  • the common optical system 151 includes, for example, an end portion of the optical fiber portion 33 in which the optical path in the X direction of the optical axis of the BB line in the outgoing light a from the optical element 25A on the transmission side is different in the Y direction. Is bent from the optical axis in the X direction toward the Y direction in the direction of minus 45 degrees. Then, the common optical system unit 151 bends the light by plus 45 degrees so that the optical path in the minus 45 degree direction returns to the optical axis in the X direction again at the position of the end of the optical fiber part 33. . Regarding the incident light b to the optical element 25B on the receiving side, the direction of the optical path is changed by the common optical system 151 as described above.
  • the optical connector device 20 may have a configuration in which a plurality of optical elements 25 are arranged in parallel in the Y direction or the like in a single lens structure 21 and are built in the same manner as described above.
  • the configuration of the optical element 25, the wiring 22, and the concave portion 26 of the lens structure 21 in Embodiment 1 is not limited to the configuration described above, and various modifications as described below are possible.
  • the shapes of the concave portions 26 and the wirings 22 of the lens structure 21 are designed according to the shape of the components of the optical element 25 used for mounting.
  • FIG. 16 shows a first modification related to mounting of the optical element 25 in the recess 26 of the lens structure 21.
  • the optical element 25 in FIG. 16 has a shape of a two-stage cylinder in the Z direction, not a simple cylinder shape with a fixed radius. That is, the optical element 25 of FIG. 16 has two types of widths a1 and a2 as widths on the XY plane. The width a1 in the XY direction on the upper surface side having the light emitting surface s1 is smaller than the width a2 on the lower surface side.
  • the concave portion 26 of the lens structure 21 has a shape having a width of two steps corresponding to the shape of the optical element 25.
  • FIG. 16 shows a case where the electrode terminal s3 of the optical element 25 is provided, for example, on the outer peripheral portion of the upper surface of the lower cylindrical portion.
  • the wiring 22 is formed in the first-stage recess in the recess 26, and the wiring 22 is connected to the electrode terminal s3.
  • FIG. 16 shows a case where the lower surface of the optical element 25 and the bottom surface f1 of the lens structure 21 are substantially at the same height in the Z direction.
  • FIG. 17 shows a second modification regarding the mounting of the optical element 25 in the concave portion 26 of the lens structure 21.
  • the optical element 25 in FIG. 17 has an electrode terminal s3 on the side surface.
  • the wiring 22 is formed over the side surface of the concave portion 26 of the lens structure 21 and a part of the bottom surface f1 of the lens structure 21.
  • the optical element 25 is mounted on the bottom surface of the recess 26, and the wiring 22 formed on the side surface of the recess 26 is connected to the electrode terminal s3 on the side surface of the optical element 25.
  • FIG. 17 shows a case where the lower surface of the optical element 25 and the bottom surface f1 of the lens structure 21 are substantially at the same height in the Z direction.
  • FIG. 18 shows a third modification regarding the mounting of the optical element 25 in the recess 26 of the lens structure 21.
  • the optical element 25 in FIG. 18 has an electrode terminal s3 on the outer peripheral portion on the lower side opposite to the upper surface having the light emitting surface s1.
  • the wiring 22 is first formed over a part of the side surface of the concave portion 26 of the lens structure 21 and a part of the bottom surface f1 of the lens structure 21.
  • the optical element 25 is mounted on the bottom surface of the concave portion 26, and the portion extending in the Z direction of the electrode terminal s 3 on the lower surface side of the optical element 25 is connected to the wiring 22 on the side surface of the concave portion 26 of the lens structure 21. Is done.
  • the depth of the recess 26 in the Z direction is larger than the height of the optical element 25 in the Z direction.
  • the optical interconnect device 1 and the optical connector device 20 As described above, according to the optical interconnect device 1 and the optical connector device 20 according to the first embodiment, the electronic circuit board 10 that is an electrical component and the optical connector device 20 that is an optical component are clearly separated. Therefore, the cost of the connection process including alignment between the optical element 915 of the comparative example and the lens structure 921 of the optical connector device 920 and the manufacturing process including the process can be reduced. Thereby, the optical interconnect device 1 and the optical connector device 20 can be provided at low cost.
  • the optical connector device 20 as an integrated optical component incorporating the optical element 25 and the connection C2 between the electronic circuit board 10 and the optical connector device 20 are electrical connections and easy. Therefore, it is easy to replace the optical element 25, and the maintenance and replaceability of the optical interconnect device 1 and the optical connector device 20 is excellent.
  • the optical interconnect device 1 according to the second embodiment will be described with reference to FIG.
  • the second embodiment is based on the configuration of the optical interconnect device 1 of the first embodiment.
  • the lens structure 21 of the optical connector device 20D has a plano-convex lens 27.
  • the second embodiment will be described in the case of the optical interconnect device 1A on the transmission side.
  • FIG. 19 shows an XZ cross-sectional configuration of the optical connector device 20D in the optical interconnect device 1 of the second embodiment.
  • the lens structure 21 has a plano-convex lens 27 at the position of the point p1 of the recess 26 corresponding to the emission point p0 of the optical element 25 on the optical axis of the AA line.
  • the plano-convex lens 27 is a condenser lens.
  • the plane side of the plano-convex lens 27 is disposed on the bottom surface of the recess 26, and the center point of the plane coincides with the point p 1 of the recess 26.
  • the convex surface side of the plano-convex lens 27 is disposed on the inner side of the lens structure 21 and in the upward direction in the Z direction.
  • the focal point of the plano-convex lens 27 exists on the optical axis of the AA line.
  • the outgoing light from the point p0 of the optical element 25 is incident from the point p1 on the plane side of the plano-convex lens 27 on the optical axis of the line AA. Emits from the convex side. Light emitted from the plano-convex lens 27 in the Z direction is totally reflected by 90 degrees near the point p2 of the 45 degree mirror 24, and becomes light in the X direction. On the optical axis of the BB line, light in the X direction from the point p2 enters the core at the end of the optical fiber portion 33 from the point p3 of the optical fiber connection portion 23.
  • the outgoing light a in the optical path of the lens structure 21 of the second embodiment has a light width and an area that are reduced by the action of the plano-convex lens 27 as a condenser lens.
  • the width h1 in the X direction of the optical path portion in the Z direction and the width h2 in the Y direction of the optical path portion in the X direction in the optical path of the lens structure 21 in the second embodiment are the same in the optical path of the lens structure 21 in the first embodiment. It becomes narrower than the width of the part.
  • the plano-convex lens 27 is provided in the middle of the optical path portion in the Z direction from the point p1 to the point p2.
  • a plano-convex lens 27 may be provided in the middle of the optical path portion in the X direction to the point p3.
  • the direction of the light is reversed as in the case of the incident light b in FIG. 6 described above, and accordingly, the direction of the plano-convex lens 27 is reversed to the lens structure 21 accordingly. It is sufficient to adopt the form provided as above.
  • the optical interconnect device 1 according to the third embodiment will be described with reference to FIG.
  • the third embodiment is based on the configuration of the optical interconnect device 1 of the first embodiment.
  • an optical element is provided in the concave portion 26 of the lens structure 21 of the optical connector device 20E.
  • 26 has a lid portion 28 on the lower side in the Z direction.
  • FIG. 20 shows a configuration of an XZ cross section of the optical connector device 20E in the optical interconnect device 1 of the third embodiment.
  • the optical element 25 is mounted in the concave portion 26 of the lens structure 21 via the wiring 22.
  • the lid portion 28 is further mounted close to the lower side of the concave portion 26 in the Z direction of the optical element 25.
  • the height of the lid portion 28 is designed according to the depth of the concave portion 26 and the height of the optical element 25 in the Z direction so that the bottom surface f1 of the lens structure 21 is flat except for the wiring 22.
  • the lid portion 28 in the lens structure 21 may be fixed to the optical element 25 or may be fixed to the side surface of the lens structure 21 or the like.
  • the optical element 25 has no portion exposed to the outside at the bottom surface f ⁇ b> 1 of the lens structure 21.
  • the bottom surface f ⁇ b> 1 of the lens structure 21 is a substantially flat XY plane including the lid portion 301 except for the portion of the wiring 22 connected to the wiring 12 on the package substrate 11 side. Only a part of the wiring 22 is exposed to the outside on the flat bottom surface f1 of the lens structure 21.
  • the lid portion 28 may be made of the same material as the lens structure 21 or may be made of another material. That is, the lid 28 may be included as a part of the lens structure 21, or the lid 28 may be provided as a separate component from the lens structure 21.
  • the lid 28 may have a structure that can be attached to and detached from the lens structure 21. Further, the lid portion 28 may be configured to be fixed in contact with the optical element 25 in the concave portion 26. In this case, the position of the optical element 25 in the recess 26 and the optical axis retainability are enhanced.
  • the optical interconnect device 1 according to the fourth embodiment will be described with reference to FIGS.
  • a concave portion 26 is provided on the side surface of the lens structure 21, and a surface emitting optical element 25 is mounted on the concave portion 26 on the side surface. Constitutes a linear optical path in the X direction.
  • the fourth embodiment uses a press-fit spring connector as means for electrical and mechanical connection between the optical connector device 20 and the package substrate 11.
  • the optical interconnect device 1F according to the fourth embodiment will be described in the case of the optical interconnect device 1A on the transmission side.
  • FIG. 21 shows an XZ cross-sectional configuration of the optical interconnect device 1F of the fourth embodiment.
  • the optical interconnect device 1F mounts a transmission side optical element drive IC 15A and an optical connector device 20F, which is the transmission side optical connector device 20B, on the package substrate 11 via the wiring 12.
  • the optical connector device 20F is electrically and mechanically connected to the package substrate 11 using a press-fit spring connector.
  • the wire 22 on the optical connector device 20F side is connected to a pin 41 of a spring connector as a connection portion.
  • the wiring 12 on the package substrate 11 side is formed with a spring connector socket 42 as a connecting portion.
  • the pins 41 on the optical connector device 20F side are inserted into the sockets 42 on the package substrate 11 side in the Z direction, which is the direction perpendicular to the substrate surface. Then, the wiring 12 and the wiring 22 are electrically connected and fixed.
  • the pin 41 is press-fitted into the socket 42, the elastic portion of the pin 41 is deformed and contacts the inner surface of the socket 42. Thereby, the optical element driving IC 15 and the optical element 25 are electrically connected through the wiring 12 and the wiring 22. Further, when the optical connector device 20 ⁇ / b> F is removed from the package substrate 11, the pins 41 are removed from the socket 42.
  • FIG. 22 shows an XZ cross-sectional configuration of the optical connector device 20F of the fourth embodiment.
  • the lens structure 21 of the optical connector device 20F according to the fourth embodiment has an optical fiber connection portion 23 on one side surface which is a YZ plane on the right side in the X direction, and the end of the optical fiber portion 33 is connected to the optical fiber connection portion 23. Parts are connected.
  • the point p2 of the lens structure 21 corresponds to the point where the core at the end of the optical fiber portion 33 is connected on the optical axis of the BB line.
  • the lens structure 21 of the optical connector device 20F has a recess 26 on the other side surface f2 which is the YZ plane on the left side in the X direction.
  • the side surface f2 is a surface that stands upright with respect to the bottom surface f1.
  • a surface-emitting optical element 25, particularly a transmitting-side optical element 25 ⁇ / b> A is mounted in the concave portion 26 on the side surface f ⁇ b> 2 of the lens structure 21 via the wiring 22.
  • the upper surface which is the light emitting surface including the point p0 of the optical element 25, is mounted in an arrangement facing the X direction with respect to the bottom surface, which is the YZ plane of the recess 26.
  • the optical path constituted by the lens structure 21 extends from the point p1 on the side surface of the concave portion 26 of the lens structure 21 corresponding to the point p0 on the light emitting surface of the optical element 25 to the point p2 on the optical fiber connection portion 23. It includes a straight optical path in the X direction. That is, the optical path of the lens structure 21 is a linear optical path in the X direction.
  • the outgoing light a in the X direction from the point p0 of the optical element 25A on the transmission side is incident on the core of the optical fiber portion 33 via the points p1 and p2 of the lens structure 21.
  • the wiring 22 is formed to extend from the bottom surface and side surface of the recess 26 to the bottom surface f1 of the lens structure 21 via the side surface f2 of the lens structure 21.
  • the electrode terminals on the outer periphery of the upper surface of the optical element 25 are connected to the wiring 22 on the bottom surface of the recess 26.
  • a pin 41 of a spring connector is connected to the end of the wiring 22 on the bottom surface f1 side.
  • Reference numeral 43 denotes a housing portion for the pin 41 of the spring connector.
  • FIG. 23 shows a configuration of an XZ cross section in a state before connection of the optical connector device 20F of the fourth embodiment, corresponding to FIG.
  • the wiring 22 is formed from the bottom surface of the concave portion 26 of the lens structure 21 to the side surface f2 of the lens structure 21.
  • the optical element 25 is positioned at the point p0 of the optical element 25 and the bottom surface of the concave portion 26 of the lens structure 21 with respect to the lens structure 21 on the optical axis of the BB line in the X direction.
  • the point p1 and the point p2 of the optical fiber connecting portion 33 are connected while being aligned.
  • the optical interconnect device 1F of the fourth embodiment as in the first embodiment and the like, it is possible to reduce the cost of the connection process including alignment, thereby reducing the cost and maintaining and exchanging the optical interconnect device 1F. Etc. can be provided.
  • the connection method between the electronic circuit board 10 and the optical connector device 20 in the fourth embodiment the wiring 12 and the wiring 22 can be connected without soldering.
  • the connection method of the fourth embodiment for example, when replacing the optical connector device 20 due to a failure of the optical element 25, the replacement work can be performed simply by inserting and removing the pin 41 and the socket 42.
  • a condensing unit such as a plano-convex lens is provided between the optical element 25 of the concave portion 26 and the end of the optical fiber portion 33.
  • the amount of light incident on the core may be adjusted.
  • not only the connection method by the spring connector but also the wiring 22 formed to extend to a part of the bottom surface f1 of the lens structure 21 is provided as in the first embodiment, for example.
  • the wiring 22 on the bottom surface f1 may be connected to the wiring 12 on the package substrate 11 side.
  • the optical interconnect device 1D according to the fifth embodiment will be described with reference to FIGS.
  • an optical element of an edge-emitting type different from the above-described surface-emitting type is used as the optical element 25, and a concave portion 26 is provided on the upper surface f3 of the lens structure 21.
  • the optical element 25 is mounted in the concave portion 26 of the upper surface f3, whereby the lens structure 21 forms a linear optical path in the X direction.
  • the optical interconnect device 1G according to the fifth embodiment will be described in the case of the optical interconnect device 1A on the transmission side.
  • FIG. 24 shows an XZ cross-sectional configuration of the optical interconnect device 1G of the fifth embodiment.
  • the optical interconnect device 1G mounts a transmission side optical element driving IC 15A and an optical connector device 20G as the transmission side optical connector device 20B on the package substrate 11 via the wiring 12.
  • the lens structure 21 of the optical connector device 20G is provided with a recess 26 on an upper surface f3 that is an XY plane on the upper side in the Z direction on the side opposite to the bottom surface f1.
  • An edge-emitting optical element 25G is mounted in the recess 26 on the upper surface f3.
  • FIG. 27 described later shows the edge-emitting optical element 25G.
  • the wiring 22 connected to the optical element 25G is formed from the bottom surface of the recess 26 to the bottom surface f1 of the lens structure 21 through the through-hole 63 provided in the lens structure 21.
  • the wiring 22 on the bottom surface f1 of the lens structure 21 is connected to the wiring 12 on the package substrate 11 side.
  • FIG. 25 shows a configuration of an XZ section of the optical connector device 20G of the fifth embodiment.
  • the lens structure 21 of the optical connector device 20G according to the fifth embodiment has the optical fiber connection portion 23 in the region on the right side in the X direction and the upper side in the Z direction, and the end portion of the optical fiber portion 33 is connected to the optical fiber connection portion 23. Is done.
  • the point p2 of the optical fiber connection portion 23 of the lens structure 21 corresponds to the point where the core at the end of the optical fiber portion 33 is connected on the optical axis of the BB line.
  • the lens structure 21 of the optical connector device 20G is provided with a recess 26 on the upper surface f3 that is the XY plane above the Z direction.
  • An edge-emitting optical element 25G in particular, a transmitting-side optical element 25A is mounted on the concave portion 26 of the upper surface f3 of the lens structure 21 via the wiring 22.
  • An end face which is a light emitting surface including the point p0 of the optical element 25G faces the right side in the X direction with respect to the bottom surface which is the XY plane of the recess 26 on the central axis of the mounting in the Z direction indicated by the line AA.
  • the lower surface of 25G is mounted.
  • the wiring 22 is formed to extend from the bottom surface of the recess 26 to a part of the bottom surface f1 of the lens structure 21 through a through hole 63 extending in the Z direction.
  • an electrode terminal on the outer peripheral portion of the lower surface of the optical element 25G is connected to one end portion of the wiring 22 formed through the through hole 63 provided in the bottom surface of the recess 26.
  • the optical path constituted by the lens structure 21 is X from the point p1 on the side surface of the concave portion 26 of the lens structure 21 corresponding to the point p0 on the end face of the optical element 25 to the point p2 on the optical fiber connection portion 23.
  • the optical path of the lens structure 21 is a linear optical path in the X direction.
  • the outgoing light a in the X direction from the point p0 of the optical element 25A on the transmission side is incident on the core of the optical fiber portion 33 via the points p1 and p2 of the lens structure 21.
  • FIG. 26 shows an XZ cross-sectional configuration before connection of the optical connector device 20G of the fifth embodiment, corresponding to FIG.
  • the wiring 22 is formed through the through hole 63 from the bottom surface of the concave portion 26 of the lens structure 21 to the bottom surface f1 of the lens structure 21.
  • the optical element 25G has a central structure on the upper and lower surfaces of the optical element 25G on the central axis of the mounting in the Z direction indicated by the line AA with respect to the lens structure 21, and the lens structure. 21 are connected while being aligned so that the center points of the bottom surfaces of the recesses 26 are aligned.
  • the optical element 25G When mounted, the optical element 25G has a point p0 on the end face of the optical element 25G, a point p1 on the side surface of the concave portion 26 of the lens structure 21, and an optical fiber connection portion on the optical axis in the X direction of the BB line.
  • the connections are made while aligning so that 33 points p2 are aligned.
  • the optical connector device 20G condenses light on the optical axis of the BB line between the concave portion 26 and the optical fiber connecting portion 23 in the lens structure 21.
  • a plano-convex lens 27 serving as a lens may be provided. On the plane side of the plano-convex lens 27, the center point thereof is arranged corresponding to the point 1 of the recess 26. The convex surface side of the plano-convex lens 27 is arranged in the right direction in the X direction.
  • the plano-convex lens 27 receives light emitted from the point p0 of the optical element 25G from the plane side and exits from the convex surface side, and the width h3 or the width of light in the YZ direction in the optical path portion in the X direction on the optical axis of the BB line. Narrow the area. As a result, the amount of light incident on the core at the end of the optical fiber portion 33 is increased.
  • FIG. 27 shows a configuration example of an edge-emitting optical element 25G used as the transmitting-side optical element 25A in the optical connector device 20G of the fifth embodiment.
  • the optical element 25G in FIG. 27 shows a case of a rectangular parallelepiped shape and a case where there is one emission region including the emission point p0.
  • FIG. 27A schematically shows an XZ section of the edge-emitting optical element 25G.
  • s1 indicates an end surface serving as a light emitting surface including the emission point p0, and is a YZ plane perpendicular to the substrate surface on the right side in the X direction.
  • s2 represents an active layer or emission part inside the optical element 25G.
  • FIG. 27B is a perspective view showing the state of the end face s1 of the optical element 25G in FIG.
  • the optical element 25G has an emission region including the emission point p0 at the center position in the Y direction and Z direction of the light emitting surface s1.
  • the optical element 25G emits light a from the emission point p0 in the X direction by resonating in the X direction, which is a direction parallel to the substrate surface, from the emission region on the end surface s1.
  • the cost of the connection process including alignment can be reduced, thereby reducing the cost and maintaining and exchanging the optical interconnect device 1G. Etc. can be provided.
  • the through hole 63 provided in the lens structure 21 is not limited to the Z direction, and may be provided as a through hole extending from the side surface of the recess 26 to the side surface f2 of the lens structure 21 in the X direction.
  • the lens structure 21 may be provided with the wiring 22 routed to the bottom surface f1 via the top surface f3 and the side surface f2 without providing the through hole 63 in the lens structure 21. .
  • the optical interconnect device 1H according to the sixth embodiment will be described with reference to FIG.
  • the sixth embodiment uses an edge-emitting optical element 25G as the optical element 25 in the same manner as in the fifth embodiment, and a concave portion on the bottom surface f1 of the lens structure 21 as in the first embodiment. 26, and the optical element 25G is mounted in the concave portion 26 of the bottom f1, whereby the lens structure 21 forms a linear optical path in the X direction.
  • the optical interconnect device 1H of the sixth embodiment will be described in the case of the optical interconnect device 1A on the transmission side.
  • FIG. 28 shows a configuration of an XZ section of the optical connector device 20H provided in the optical interconnect device 1H of the sixth embodiment.
  • the lens structure 21 of the optical connector device 20H according to the sixth embodiment has the optical fiber connection portion 23 in the X direction right side and Z direction lower side regions, and the end portion of the optical fiber portion 33 is connected to the optical fiber connection portion 23. Connected.
  • the point p2 of the optical fiber connection portion 23 of the lens structure 21 corresponds to the point where the core at the end of the optical fiber portion 33 is connected on the optical axis of the BB line.
  • the lens structure 21 of the optical connector device 20H has a recess 26 on the bottom surface f1.
  • An end surface light emitting type optical element 25G, particularly a transmitting side optical element 25A is mounted in the concave portion 26 of the bottom surface f1 of the lens structure 21 via the wiring 22.
  • the wiring 22 connected to the optical element 25G is formed from the bottom surface of the recess 26 to a predetermined position on the bottom surface f1 of the lens structure 21 via the side surface.
  • an electrode terminal on the outer peripheral portion of the lower surface of the optical element 25G is connected to one end portion of the wiring 22 formed on the bottom surface of the recess 26.
  • the wiring 22 on the bottom surface f1 of the lens structure 21 is connected to the wiring 12 on the package substrate 11 as in the first embodiment.
  • the optical element 25G is placed on the center axis of the mounting in the Z direction indicated by line AA with respect to the bottom surface of the recess 26.
  • the upper surface or the lower surface of the optical element 25G is mounted such that the end surface, which is the light emitting surface including the point p0, faces right in the X direction.
  • the optical element 25G is located at the center point of the upper and lower surfaces of the optical element 25G and the bottom surface of the concave portion 26 of the lens structure 21 with respect to the lens structure 21 in the Z-axis mounting center axis indicated by the line AA.
  • the optical element 25G When mounted, the optical element 25G has a point p0 on the end face of the optical element 25G, a point p1 on the side surface of the concave portion 26 of the lens structure 21, and an optical fiber connection portion on the optical axis in the X direction of the BB line. The connections are made while aligning so that 33 points p2 are aligned.
  • the optical path constituted by the lens structure 21 is X from the point p1 on the side surface of the concave portion 26 of the lens structure 21 corresponding to the point p0 on the end face of the optical element 25G to the point p2 on the optical fiber connection portion 23.
  • the optical path of the lens structure 21 is a linear optical path in the X direction.
  • the outgoing light a in the X direction from the point p0 of the optical element 25A on the transmission side is incident on the core of the optical fiber portion 33 via the points p1 and p2 of the lens structure 21.
  • the cost of the connection process including alignment can be reduced, thereby reducing the cost and maintaining and exchanging the optical interconnect device 1H. Etc. can be provided.
  • a condensing lens is provided between the optical element 25 and the optical fiber connecting portion 23 in the lens structure 21 and on the optical axis of the BB line. It is good also as a form which provided the plano-convex lens which works as.
  • Optical fiber connection part 24 ... 45 degree mirror, 25, 25A, 25B ...
  • Optical element, 26 ... Recessed part, 27 ... Plano-convex lens, 28 ... Lid, 30 ...
  • Optical cable device 31 ... Cladding, 32 ... Core, 33 ...
  • Optical fiber part 41 ... Pin, 42 ... Socket, 50 Board, 51 ... solder balls.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Provided is a technology of achieving an optical interconnect apparatus and an optical connector apparatus, which have low cost and excellent maintainability and replaceability. An optical connector apparatus (20) provided in an optical interconnect apparatus (1) has: a lens structural body (21), which constitutes an optical path between an optical element (25) and an optical fiber section (33), and which has a recessed section (26), and an optical fiber connecting section (23) to which an end portion of the optical fiber section (33) is connected; wiring (22), which is formed on the lens structural body (21), and which is electrically connected to the optical element (25) and to wiring (12) of an external package board (11); and the optical element (25), which is mounted in the recessed section (26) of the lens structural body (21), and which has the center thereof aligned with an optical axis of the optical path of the lens structural body (21) when being mounted.

Description

光コネクタ装置、光ケーブル装置、及び光インターコネクト装置Optical connector device, optical cable device, and optical interconnect device
 本発明は、光伝送、光インターコネクト、及び光コネクタ装置などの技術に関する。 The present invention relates to technologies such as optical transmission, optical interconnect, and optical connector device.
 サーバ、ルータ、及びストレージ等の各種のIT機器は、伝送速度が年々向上している。伝送速度は将来的には例えば25ギガビット毎秒が要求される。その場合、電気伝送は、配線損失やクロストーク等によって困難になる。電気伝送の困難への対応は、配線密度やコスト等の観点により、基板伝送、メタルケーブル伝送、及び光インターコネクトによる光伝送などに分かれる。例えばパケット・オプティカル・トランスポート・システム(POTS)などの光伝送システムでは、構造上の制約や配線数の多さから、電気伝送では損失低減が困難である。そのため、光インターコネクトの適用が必須になると考えられる。光伝送は、メタルケーブル伝送などに比べて、高速及び低電力などの特性を有する。 The transmission speed of various IT devices such as servers, routers, and storage is improving year by year. In the future, for example, 25 gigabits per second is required for the transmission rate. In that case, electrical transmission becomes difficult due to wiring loss, crosstalk, and the like. Responding to difficulties in electrical transmission is divided into board transmission, metal cable transmission, and optical transmission using an optical interconnect, depending on the wiring density, cost, and the like. For example, in an optical transmission system such as a packet optical transport system (POTS), it is difficult to reduce loss in electrical transmission due to structural limitations and the number of wires. Therefore, application of optical interconnects is considered essential. Optical transmission has characteristics such as high speed and low power compared to metal cable transmission and the like.
 光インターコネクトによる光伝送の適用対象となる部位ないし距離としては、例えば、IT機器間、基板間、及びICチップ間が挙げられる。光インターコネクトのシステムは、光伝送による送信及び受信の対象となる装置に、光インターコネクト装置が搭載される。 Examples of parts or distances to which optical transmission by the optical interconnect is applied include, for example, between IT devices, between boards, and between IC chips. In an optical interconnect system, an optical interconnect device is mounted on a device to be transmitted and received by optical transmission.
 光インターコネクト装置は、基板上に搭載される、光電変換機能を持つ光素子、光素子駆動IC、及び光ファイバ等の光導波路に接続される光コネクタ装置などを有する。光コネクタ装置は、レンズ構造体などで構成される。送信側及び受信側の光インターコネクト装置は、光コネクタ装置間が光ファイバ等の光導波路で接続される。 The optical interconnect device includes an optical element having a photoelectric conversion function, an optical element driving IC, and an optical connector device connected to an optical waveguide such as an optical fiber, which are mounted on a substrate. The optical connector device includes a lens structure. In the optical interconnect device on the transmission side and the reception side, the optical connector devices are connected by an optical waveguide such as an optical fiber.
 光インターコネクト装置の光素子と、光ファイバ等の光導波路との間は、光コネクタ装置による光路によって接続される。光インターコネクト装置の製造時、光素子と光コネクタ装置との接続の工程においては、上記光路に関する光学的な調芯、言い換えると光軸の位置合わせ、が行われる。 The optical element of the optical interconnect device and the optical waveguide such as an optical fiber are connected by an optical path by the optical connector device. At the time of manufacturing the optical interconnect device, in the process of connecting the optical element and the optical connector device, optical alignment relating to the optical path, in other words, alignment of the optical axis is performed.
 上記光インターコネクト装置、光コネクタ装置、及び光学的な調芯などに関する先行技術例として、特開2009-169116号公報(特許文献1)、特開2008-40318号公報(特許文献2)、及び特開2003-391958号公報(特許文献3)が挙げられる。 As prior art examples relating to the above optical interconnect device, optical connector device, optical alignment, and the like, Japanese Unexamined Patent Application Publication No. 2009-169116 (Patent Document 1), Japanese Unexamined Patent Application Publication No. 2008-40318 (Patent Document 2), and No. 2003-391958 (Patent Document 3).
 特許文献1では、調芯工程及び調芯手段に関して、画像認識による方式について記載されている。この技術では、カメラにより、レンズとアライメントマークまたは光素子とを画像認識して位置合わせを行う。 Patent Document 1 describes a method based on image recognition regarding an alignment process and alignment means. In this technique, a lens and an alignment mark or an optical element are image-recognized and aligned by a camera.
 特許文献2では、調芯工程及び調芯手段に関して、嵌合ピンによる方式について記載されている。この技術では、ガイド孔に嵌合ピンを挿入することにより、部品同士の位置合わせを行う。 Patent Document 2 describes a method using a fitting pin with respect to an alignment process and alignment means. In this technique, parts are aligned by inserting a fitting pin into a guide hole.
 特許文献3では、調芯工程及び調芯手段に関して、シリコン・オプティカル・ベンチ(SiOB)による方式について記載されている。この技術では、SiOBにおけるV溝の精度を用いて、光部品の高精度な位置合わせを行う。 Patent Document 3 describes a method using a silicon optical bench (SiOB) for the alignment process and alignment means. In this technique, the accuracy of the V-groove in SiOB is used to perform high-precision alignment of optical components.
特開2009-169116号公報JP 2009-169116 A 特開2008-40318号公報JP 2008-40318 A 特開2003-391958号公報JP 2003-391958 A
 前述の光インターコネクト装置は、基板上に、電気部品ないし電子部品である光素子駆動ICと、光部品である光素子とが搭載され、光素子駆動ICと光素子とを電気的に接続する配線などが形成されている。上記光素子駆動IC及び光素子を搭載した基板は、電気部品と光部品とが混在した構成である。また前述の光インターコネクト装置は、光素子と光コネクタ装置とが別の光部品として基本的に分離されている。光インターコネクト装置の製造時またはセットアップ時、基板上の光素子と、光コネクタ装置を構成するレンズ構造体とは、光学的な調芯を含む接続がされる。この調芯を含む接続の工程は、基板上の光素子の出射点などの光軸に対して、光コネクタ装置側のレンズ構造体の光路の光軸を位置合わせして接続する工程である。 In the optical interconnect device described above, an optical element driving IC, which is an electrical component or an electronic component, and an optical element, which is an optical component, are mounted on a substrate and electrically connect the optical element driving IC and the optical element. Etc. are formed. The optical element driving IC and the substrate on which the optical element is mounted has a configuration in which electrical components and optical components are mixed. In the above optical interconnect device, the optical element and the optical connector device are basically separated as separate optical components. At the time of manufacturing or setting up the optical interconnect device, the optical element on the substrate and the lens structure constituting the optical connector device are connected including optical alignment. The connection step including alignment is a step in which the optical axis of the optical path of the lens structure on the optical connector device side is aligned and connected to the optical axis such as the emission point of the optical element on the substrate.
 上記光素子と光コネクタ装置との調芯を含む接続の工程は、光学的に高精度な調芯を必要とする。理由は、光伝送の伝送速度を含む光インターコネクト装置の特性を確保するためである。この調芯の精度は、例えば光軸のズレを10μm以下に抑える精度が必要である。しかしながら、上記接続の工程は、光学的に高精度な調芯が必要であるため、高コストであるという課題がある。 The connection process including alignment between the optical element and the optical connector device requires optically high-precision alignment. The reason is to ensure the characteristics of the optical interconnect device including the transmission speed of optical transmission. The alignment accuracy requires, for example, an accuracy that suppresses the deviation of the optical axis to 10 μm or less. However, the above connection process has a problem of high cost because it requires optically highly accurate alignment.
 光インターコネクトによる光伝送は、電気伝送から光伝送への置き換え等の観点から、電気伝送と同等の又は近いコストで実現することが求められる。従来の光インターコネクト装置の製造プロセスでは、上記光素子と光コネクタ装置との接続の工程、特に光学的に高精度な調芯の工程が、大きなコストを占める。光インターコネクト装置などを低コストで実現するためには、上記調芯を含む接続の工程を低コスト化することが必要である。 Optical transmission using an optical interconnect is required to be realized at a cost equivalent to or close to that of electric transmission from the viewpoint of replacement from electric transmission to optical transmission. In the manufacturing process of the conventional optical interconnect device, the process of connecting the optical element and the optical connector device, particularly the optically accurate alignment process, occupies a large cost. In order to realize an optical interconnect device or the like at a low cost, it is necessary to reduce the cost of the connection process including the alignment.
 また上記調芯を含む接続の工程の低コスト化だけでなく、光インターコネクト装置を各種対象、例えばIT機器間、基板間、及びICチップ間などへ適用することを考慮した場合、光インターコネクト装置及び光コネクタ装置などの装置や部品の保守交換性の観点も重要である。例えば光インターコネクト装置の基板上に搭載される光部品である光素子が故障した際や、光素子を点検する際などに、その保守交換の作業が容易で低コストであることが望ましい。しかしながら、前述の光インターコネクト装置の構成は、電気部品と光部品とが混在した構成であり、光素子と光コネクタ装置とが別の光部品であること等から、保守交換性の観点では改善余地がある。 In addition to the cost reduction of the connection process including the alignment, the optical interconnect device is considered to be applied to various objects, for example, between IT devices, between boards, and between IC chips. The viewpoint of maintenance and exchangeability of devices and parts such as optical connector devices is also important. For example, when an optical element that is an optical component mounted on a substrate of an optical interconnect device fails or when the optical element is inspected, it is desirable that maintenance and replacement work be easy and low cost. However, the configuration of the optical interconnect device described above is a configuration in which electrical components and optical components are mixed, and the optical element and the optical connector device are separate optical components. There is.
 なお前述の光インターコネクト装置などに関する先行技術例は、調芯工程及び調芯手段として、アクティブ調芯あるいはパッシブ調芯が可能となるように、画像認識、嵌合ピン、あるいはSiOB等が用いられている。しかしながら、上記調芯工程及び調芯手段は、アクティブ調芯とパッシブ調芯のいずれにしても、設備や使用部品が高コストである課題や、製造プロセスの手間が大きく高コストである課題がある。特許文献1の技術では、画像認識のための設備投資が必要である。特許文献2の技術では、ガイド孔の位置やサイズに関して高精度が必要であり部品コストが高い。特許文献3の技術では、SiOB自体のコストが高い。 In the prior art examples relating to the optical interconnect device described above, image recognition, fitting pins, or SiOB are used as the alignment process and alignment means so that active alignment or passive alignment is possible. Yes. However, the alignment process and the alignment means have a problem that the cost of equipment and parts used is high, and a problem that the manufacturing process is large and expensive, regardless of whether it is active alignment or passive alignment. . The technique of Patent Document 1 requires capital investment for image recognition. In the technique of Patent Document 2, high accuracy is required with respect to the position and size of the guide hole, and the component cost is high. In the technique of Patent Document 3, the cost of SiOB itself is high.
 本発明の目的は、上記光インターコネクト装置及び光コネクタ装置などに関して、光素子と光コネクタ装置との調芯を含む接続の工程、及び当該工程を含む製造プロセスを低コストで実現でき、光インターコネクト装置及び光コネクタ装置などを低コストで実現できる技術を提供することである。本発明の他の目的は、光インターコネクト装置及び光コネクタ装置などに関する保守交換性を高くすることができる技術を提供することである。 An object of the present invention is to provide an optical interconnect device, an optical connector device, and the like that can realize a connection process including alignment between an optical element and an optical connector device and a manufacturing process including the step at low cost. And a technology capable of realizing an optical connector device and the like at a low cost. Another object of the present invention is to provide a technique capable of improving maintenance and exchangeability related to an optical interconnect device and an optical connector device.
 本発明のうち代表的な形態は、光コネクタ装置、光ケーブル装置、及び光インターコネクト装置であって、以下に示す構成を有することを特徴とする。 Representative embodiments of the present invention are an optical connector device, an optical cable device, and an optical interconnect device, and have the following configuration.
 (1)本形態の光コネクタ装置は、光素子と光導波路との間の光路を構成し、前記光導波路の端部が接続される光導波路接続部、及び凹部を有する、レンズ構造体と、前記レンズ構造体に形成され、前記光素子、及び外部の基板配線部に対して電気的に接続される、配線部と、前記レンズ構造体の凹部に搭載され、当該搭載の際に前記光路の光軸に調芯されている、前記光素子と、を有する。 (1) The optical connector device of the present embodiment constitutes an optical path between an optical element and an optical waveguide, and has an optical waveguide connection portion to which an end portion of the optical waveguide is connected, and a concave structure, Mounted in the concave portion of the lens structure, the wiring portion formed on the lens structure, and electrically connected to the optical element and an external substrate wiring portion. And the optical element aligned with the optical axis.
 (2)本形態の光コネクタ装置において、前記レンズ構造体の凹部は、前記レンズ構造体における外部の基板に搭載される面である第1面に設けられ、前記光素子は、面発光型の発光素子であり、面発光の出射点を含む第1面が前記レンズ構造体の凹部の底面に配置され、前記レンズ構造体は、前記光路における出射光の方向を第1方向から第2方向へ屈曲させる光屈曲部を含み、前記レンズ構造体における光路は、前記光素子の面発光の出射点に対応した前記凹部の第1点と前記光屈曲部の屈曲点である第2点との間の前記第1方向への第1光路部と、前記第2点と前記光導波路接続部の第3点との間の前記第2方向への第2光路部と、を含む、光コネクタ装置。 (2) In the optical connector device of the present embodiment, the concave portion of the lens structure is provided on a first surface which is a surface mounted on an external substrate in the lens structure, and the optical element is a surface-emitting type. The light emitting element has a first surface including an emission point of surface light emission disposed on a bottom surface of the concave portion of the lens structure, and the lens structure changes the direction of the emitted light in the optical path from the first direction to the second direction. A light bending portion to be bent, and an optical path in the lens structure is between a first point of the concave portion corresponding to an emission point of surface light emission of the optical element and a second point which is a bending point of the light bending portion. An optical connector device comprising: a first optical path portion in the first direction; and a second optical path portion in the second direction between the second point and a third point of the optical waveguide connection portion.
 (3)本形態の光コネクタ装置において、前記レンズ構造体は、前記凹部と前記光導波路接続部との間に配置され、前記光素子からの出射光を入射して前記光導波路の端部へ入射される光量を大きくする、第1レンズを含む。 (3) In the optical connector device according to the present embodiment, the lens structure is disposed between the concave portion and the optical waveguide connection portion, and enters the light emitted from the optical element to the end of the optical waveguide. A first lens that increases the amount of incident light is included.
 (4)本形態の光コネクタ装置において、前記レンズ構造体の凹部は、前記レンズ構造体における外部の基板に搭載される面である第1面に対して直立する第2面に設けられ、前記光素子は、面発光型の発光素子であり、面発光の出射点を含む第1面が前記レンズ構造体の凹部の底面に配置され、前記レンズ構造体は、前記レンズ構造体における光路は、前記光素子の面発光の出射点に対応した前記凹部の第1点と前記光導波路接続部の第2点との間の光路部を含む、光コネクタ装置。 (4) In the optical connector device of the present embodiment, the concave portion of the lens structure is provided on a second surface that is upright with respect to a first surface that is a surface mounted on an external substrate in the lens structure, The optical element is a surface-emitting light-emitting element, and a first surface including an emission point of surface emission is disposed on the bottom surface of the concave portion of the lens structure, and the optical path in the lens structure is An optical connector device including an optical path portion between a first point of the concave portion corresponding to an emission point of surface light emission of the optical element and a second point of the optical waveguide connection portion.
 (5)本形態の光コネクタ装置において、前記レンズ構造体の凹部は、前記レンズ構造体における前記外部の基板に搭載される面である第1面に対して反対側である第2面に設けられ、前記光素子は、端面発光型の発光素子であり、端面発光の出射点を含む第1面が前記レンズ構造体の凹部の側面に向いて配置され、前記配線部は、前記レンズ構造体の凹部から前記レンズ構造体の第1面までの貫通孔を通じて設けられ、前記レンズ構造体における光路は、前記光素子の端面発光の出射点に対応した前記凹部の第1点と前記光導波路接続部の第2点との間の光路部を含む、光コネクタ装置。 (5) In the optical connector device of the present embodiment, the concave portion of the lens structure is provided on the second surface opposite to the first surface that is the surface mounted on the external substrate in the lens structure. The optical element is an edge-emitting type light-emitting element, a first surface including an emission point of end-surface light emission is disposed toward a side surface of the concave portion of the lens structure, and the wiring portion is the lens structure. The optical path in the lens structure is connected to the first point of the recess corresponding to the emission point of the end surface light emission of the optical element and the optical waveguide connection. The optical connector apparatus containing the optical path part between the 2nd points of a part.
 (6)本形態の光コネクタ装置において、前記光素子は、前記配線部を通じて入力される電気信号を光信号に変換して前記レンズ構造体の光路へ出射する発光素子である。 (6) In the optical connector device of the present embodiment, the optical element is a light emitting element that converts an electrical signal input through the wiring portion into an optical signal and emits the optical signal to the optical path of the lens structure.
 (7)本形態の光コネクタ装置において、前記光素子は、前記レンズ構造体の光路から入射される光信号を電気信号に変換して前記配線部を通じて出力する受光素子である。 (7) In the optical connector device of the present embodiment, the optical element is a light receiving element that converts an optical signal incident from an optical path of the lens structure into an electrical signal and outputs the electrical signal through the wiring portion.
 (8)本形態の光ケーブル装置は、上記のいずれかの光コネクタ装置による第1光コネクタ装置及び第2光コネクタ装置と、前記第1光コネクタ装置の前記レンズ構造体の前記光導波路接続部に第1端部が接続され、前記第2光コネクタ装置の前記レンズ構造体の前記光導波路接続部に第2端部が接続される、前記光導波路と、を有する。 (8) The optical cable device according to the present embodiment includes the first optical connector device and the second optical connector device according to any one of the optical connector devices described above, and the optical waveguide connection portion of the lens structure of the first optical connector device. A first end portion connected to the optical waveguide connecting portion of the lens structure of the second optical connector device; and a second end portion connected to the optical waveguide connecting portion.
 (9)本形態の光インターコネクト装置は、上記のいずれかの光コネクタ装置と、前記光コネクタ装置の光素子を駆動するための回路部と、前記回路部と前記光コネクタ装置とを搭載する基板と、前記基板に形成され前記回路部と前記光コネクタ装置の前記光素子に接続される前記配線部とを電気的に接続する基板配線部と、を有する。 (9) An optical interconnect device according to the present embodiment includes any one of the optical connector devices described above, a circuit unit for driving an optical element of the optical connector device, and a substrate on which the circuit unit and the optical connector device are mounted. And a board wiring portion that is formed on the substrate and electrically connects the circuit portion and the wiring portion connected to the optical element of the optical connector device.
 本発明のうち代表的な形態によれば、光インターコネクト装置及び光コネクタ装置などに関して、光素子と光コネクタ装置との調芯を含む接続の工程、及び当該工程を含む製造プロセスを低コストで実現でき、光インターコネクト装置及び光コネクタ装置などを低コストで実現できる。また本発明のうち代表的な形態によれば、光インターコネクト装置及び光コネクタ装置などに関する保守交換性を高くすることができる。 According to typical embodiments of the present invention, for an optical interconnect device, an optical connector device, and the like, a connection process including alignment between an optical element and an optical connector device, and a manufacturing process including the process are realized at low cost. In addition, an optical interconnect device and an optical connector device can be realized at low cost. In addition, according to the representative embodiment of the present invention, it is possible to improve maintenance and exchangeability regarding the optical interconnect device and the optical connector device.
本発明の実施の形態1の光インターコネクト装置の概要として、接続前のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section before a connection as an outline | summary of the optical interconnect apparatus of Embodiment 1 of this invention. (a)及び(b)は、実施の形態1等の光インターコネクト装置を適用する対象となるシステムの構成例を示す図である。(A) And (b) is a figure which shows the structural example of the system used as the object to which the optical interconnect apparatus of Embodiment 1 etc. is applied. 実施の形態1の光インターコネクト装置を適用した光インターコネクトシステムの第1の構成例を示す図である。It is a figure which shows the 1st structural example of the optical interconnect system to which the optical interconnect apparatus of Embodiment 1 is applied. (a)及び(b)は、実施の形態1の光ケーブル装置の構成例を示す図である。(A) And (b) is a figure which shows the structural example of the optical cable apparatus of Embodiment 1. FIG. 実施の形態1の送信側の光インターコネクト装置の接続後のXZ断面の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of an XZ section after connection of a transmission-side optical interconnect device according to the first embodiment. 実施の形態1の受信側の光インターコネクト装置の接続後のXZ断面の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of an XZ section after connection of the optical interconnect device on the reception side according to the first embodiment. 実施の形態1の光インターコネクト装置の製造方法のフロー例を示す図である。FIG. 5 is a diagram illustrating a flow example of a method for manufacturing the optical interconnect device according to the first embodiment. 実施の形態1の光コネクタ装置のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of Embodiment 1. FIG. 実施の形態1の光コネクタ装置の製造時における部品の接続前の状態のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the state before the connection of the components at the time of manufacture of the optical connector apparatus of Embodiment 1. FIG. (a)及び(b)は、実施の形態1の光コネクタ装置における面発光型光素子の構成例を示す図である。(A) And (b) is a figure which shows the structural example of the surface emitting optical element in the optical connector apparatus of Embodiment 1. FIG. (a)及び(b)は、実施の形態1の光コネクタ装置における面発光型光素子の変形例を示す図である。(A) And (b) is a figure which shows the modification of the surface emitting type optical element in the optical connector apparatus of Embodiment 1. FIG. 実施の形態1の光インターコネクト装置の光コネクタ装置の機械的な接続に関する構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example relating to mechanical connection of the optical connector device of the optical interconnect device according to the first embodiment. 実施の形態1の光インターコネクト装置を適用した光インターコネクトシステムの第2の構成例を示す図である。It is a figure which shows the 2nd structural example of the optical interconnect system to which the optical interconnect apparatus of Embodiment 1 is applied. 実施の形態1の光コネクタ装置のXY平面における第1の構成例を示す図である。FIG. 3 is a diagram illustrating a first configuration example in the XY plane of the optical connector device according to the first embodiment. 実施の形態1の光コネクタ装置のXY平面における第2の構成例を示す図である。It is a figure which shows the 2nd structural example in XY plane of the optical connector apparatus of Embodiment 1. FIG. 実施の形態1の光コネクタ装置の光素子の搭載に関する第1の変形例を示す図である。It is a figure which shows the 1st modification regarding mounting of the optical element of the optical connector apparatus of Embodiment 1. FIG. 実施の形態1の光コネクタ装置の光素子の搭載に関する第2の変形例を示す図である。It is a figure which shows the 2nd modification regarding mounting of the optical element of the optical connector apparatus of Embodiment 1. FIG. 実施の形態1の光コネクタ装置の光素子の搭載に関する第3の変形例を示す図である。It is a figure which shows the 3rd modification regarding mounting of the optical element of the optical connector apparatus of Embodiment 1. FIG. 本発明の実施の形態2の光インターコネクト装置の光コネクタ装置のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of the optical interconnect apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の光インターコネクト装置の光コネクタ装置のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of the optical interconnect apparatus of Embodiment 3 of this invention. 本発明の実施の形態4の光インターコネクト装置のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the optical interconnect apparatus of Embodiment 4 of this invention. 実施の形態4の光コネクタ装置のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of Embodiment 4. FIG. 実施の形態4の光コネクタ装置の接続前の状態のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the state before the connection of the optical connector apparatus of Embodiment 4. FIG. 本発明の実施の形態5の光インターコネクト装置のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the optical interconnect apparatus of Embodiment 5 of this invention. 実施の形態5の光コネクタ装置のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of Embodiment 5. FIG. 実施の形態5の光コネクタ装置の接続前の状態のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the state before the connection of the optical connector apparatus of Embodiment 5. FIG. (a)及び(b)は、実施の形態5の光コネクタ装置における端面発光型光素子の概要を示す図である。(A) And (b) is a figure which shows the outline | summary of the end surface light emission type | mold optical element in the optical connector apparatus of Embodiment 5. FIG. 本発明の実施の形態6の光インターコネクト装置の光コネクタ装置のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section of the optical connector apparatus of the optical interconnect apparatus of Embodiment 6 of this invention. 比較例の光インターコネクト装置の接続前のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section before the connection of the optical interconnect apparatus of a comparative example. 比較例の光インターコネクト装置の接続後のXZ断面の構成を示す図である。It is a figure which shows the structure of the XZ cross section after the connection of the optical interconnect apparatus of a comparative example.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一符号を付し、その繰り返しの説明は省略する。なお説明上、基板面などを構成する方向をX方向及びY方向とし、その垂直方向をZ方向とする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted. For the sake of explanation, the directions constituting the substrate surface and the like are defined as the X direction and the Y direction, and the vertical direction thereof is defined as the Z direction.
 <比較例>
 図29及び図30を用いて、本実施の形態に対する比較例の光インターコネクト装置の構成について説明する。なお本比較例では、送信機能を有する光インターコネクト装置の例で説明する。
<Comparative example>
A configuration of an optical interconnect device of a comparative example with respect to the present embodiment will be described with reference to FIGS. In this comparative example, an example of an optical interconnect device having a transmission function will be described.
 図29は、比較例の光インターコネクト装置のXZ断面の構成として、光素子925と光コネクタ装置920との接続前の状態を示す。詳しくは、電子回路基板910におけるパッケージ基板911上に搭載されている光素子925の光軸と、光コネクタ装置920を構成する本体であるレンズ構造体921の光路の光軸とにおける、調芯を含む接続C0の工程に対応した状態を示す。 FIG. 29 shows a state before connection between the optical element 925 and the optical connector device 920 as a configuration of the XZ cross section of the optical interconnect device of the comparative example. Specifically, the alignment between the optical axis of the optical element 925 mounted on the package substrate 911 in the electronic circuit board 910 and the optical axis of the optical path of the lens structure 921 which is a main body constituting the optical connector device 920 is adjusted. The state corresponding to the process of connection C0 including is shown.
 光インターコネクトの適用対象装置の基板950上に、比較例の光インターコネクト装置を構成する電子回路基板910における特にパッケージ基板911が搭載される。比較例の光インターコネクト装置は、光素子925を含む電子回路基板910と、光コネクタ装置920とが接続される構成を有する。光コネクタ装置920は、主にレンズ構造体921で構成され、レンズ構造体921の一部に対して光導波路となる光ファイバ部933の端部が接続される。送信側及び受信側の光インターコネクト装置は、光コネクタ装置920間が光ファイバ部933で接続される。 On the substrate 950 of the optical interconnect application target device, in particular, the package substrate 911 in the electronic circuit substrate 910 constituting the optical interconnect device of the comparative example is mounted. The optical interconnect device of the comparative example has a configuration in which an electronic circuit board 910 including an optical element 925 and an optical connector device 920 are connected. The optical connector device 920 is mainly configured by a lens structure 921, and an end of an optical fiber portion 933 serving as an optical waveguide is connected to a part of the lens structure 921. In the optical interconnect device on the transmission side and the reception side, the optical connector device 920 is connected by an optical fiber portion 933.
 電子回路基板910は、電気部品と光部品が混在した構成である。電子回路基板910は、パッケージ基板911上に、電気的な配線912を介して、光素子駆動IC915、光素子925などが搭載される。光素子925は、光電変換機能を持つ光素子であり、例えば送信機能に対応した発光素子である。光素子925の点p0は光の出射点を示す。光素子駆動IC915は、光素子925を駆動する集積回路部である駆動ICである。配線912は、光素子駆動IC915と光素子925とを電気的に接続する配線を含む。 The electronic circuit board 910 has a configuration in which electrical components and optical components are mixed. On the electronic circuit board 910, an optical element driving IC 915, an optical element 925, and the like are mounted on the package substrate 911 via electrical wiring 912. The optical element 925 is an optical element having a photoelectric conversion function, for example, a light emitting element corresponding to a transmission function. A point p0 of the optical element 925 indicates a light emission point. The optical element driving IC 915 is a driving IC that is an integrated circuit unit that drives the optical element 925. The wiring 912 includes a wiring that electrically connects the optical element driving IC 915 and the optical element 925.
 光インターコネクト装置の光素子925と、光ファイバ部933による光導波路との間は、光コネクタ装置920のレンズ構造体921に構成される光路によって接続される。このレンズ構造体921の光路は、A-A線で示す基板面垂直なZ方向の光軸における、点p1から点p2までのZ方向の直線の光路部と、B-B線で示す基板面平行なX方向の光軸における、点p2から点p3までのX方向の直線の光路部とを有する。 The optical element 925 of the optical interconnect device and the optical waveguide formed by the optical fiber portion 933 are connected by an optical path configured in the lens structure 921 of the optical connector device 920. The optical path of the lens structure 921 is that the optical path portion in the Z direction from the point p1 to the point p2 on the optical axis in the Z direction perpendicular to the substrate surface indicated by the line AA and the substrate surface indicated by the line BB. And a straight optical path portion in the X direction from the point p2 to the point p3 on the parallel optical axis in the X direction.
 レンズ構造体921は、パッケージ基板911上に搭載される側の平坦なXY平面である底面f1において、光素子925の上面の点p0が接続される点p1を有する。レンズ構造体921の点p1は、A-A線の光軸における、接続C0の際の光素子925の点p0の位置と対応している。言い換えると点p1は光素子925からの入射点である。 The lens structure 921 has a point p1 to which the point p0 on the upper surface of the optical element 925 is connected on the bottom surface f1 that is a flat XY plane on the side mounted on the package substrate 911. The point p1 of the lens structure 921 corresponds to the position of the point p0 of the optical element 925 at the time of connection C0 on the optical axis of the line AA. In other words, the point p1 is an incident point from the optical element 925.
 レンズ構造体921の点p2は、図示するX方向とZ方向との間の45度の斜面の箇所における光の90度の全反射が行われる屈曲点を示す。レンズ構造体921の当該45度の斜面の箇所は、光の90度の全反射が行われる特性を持つミラー等で構成される。 The point p2 of the lens structure 921 indicates a bending point at which 90-degree total reflection of light is performed at a 45-degree inclined surface between the X direction and the Z direction shown in the drawing. The 45-degree inclined surface portion of the lens structure 921 is configured by a mirror or the like having a characteristic of performing 90-degree total reflection of light.
 レンズ構造体921の点p3は、光ファイバ部933の端部が接続されるYZ平面の面における、B-B線で示す光ファイバのコアの光軸に対応した点を示す。言い換えると点p3は光ファイバ部933への入射点である。 The point p3 of the lens structure 921 indicates a point corresponding to the optical axis of the core of the optical fiber indicated by the BB line on the surface of the YZ plane to which the end of the optical fiber portion 933 is connected. In other words, the point p3 is an incident point to the optical fiber portion 933.
 比較例の光インターコネクト装置の製造時またはセットアップ時、パッケージ基板911上の光素子925と光コネクタ装置920のレンズ構造体921との調芯を含む接続C0の工程を有する。この調芯を含む接続C0の工程において、上記光路に関する光学的な調芯、言い換えると光軸の位置合わせ、が行われる。即ちA-A線の光軸上に、光素子925の点p0とレンズ構造体921の点p1とが殆ど一致するように接続される。この接続C0の際、調芯の精度は、例えばA-A線の光軸における点p0と点p1とのズレを10μm以下に抑える高精度が必要とされる。 At the time of manufacturing or setting up the optical interconnect device of the comparative example, there is a process of connection C0 including alignment between the optical element 925 on the package substrate 911 and the lens structure 921 of the optical connector device 920. In the process of connection C0 including this alignment, optical alignment related to the optical path, in other words, alignment of the optical axis is performed. That is, the point p0 of the optical element 925 and the point p1 of the lens structure 921 are connected on the optical axis of the line AA. For this connection C0, the alignment accuracy is required to be high, for example, to suppress the deviation between the points p0 and p1 on the optical axis of the AA line to 10 μm or less.
 図30は、図29の比較例の光インターコネクト装置における電子回路基板910側の光素子925と光コネクタ装置920側のレンズ構造体921との接続C0の後の状態を示す。電子回路基板910は、例えば光素子駆動IC915上にヒートシンク917が搭載される。比較例の光インターコネクト装置は、パッケージ基板911上の光素子925上に光コネクタ装置920が搭載される。なお図30では、電子回路基板910に対する光コネクタ装置920の接続の状態として、光素子925の上面とレンズ構造体921の底面f1とが接触する状態のみを図示している。この接続の形態は、実際には、当該光素子925の箇所だけではなく、光コネクタ装置920の他の部位、例えば周縁部などでパッケージ基板911上に機械的に接続及び保持される部位を有する形態としてもよい。 FIG. 30 shows a state after the connection C0 between the optical element 925 on the electronic circuit board 910 side and the lens structure 921 on the optical connector device 920 side in the optical interconnect device of the comparative example of FIG. In the electronic circuit board 910, for example, a heat sink 917 is mounted on the optical element driving IC 915. In the optical interconnect device of the comparative example, the optical connector device 920 is mounted on the optical element 925 on the package substrate 911. In FIG. 30, only the state where the upper surface of the optical element 925 and the bottom surface f1 of the lens structure 921 are in contact with each other is shown as a state of connection of the optical connector device 920 to the electronic circuit board 910. This form of connection actually has not only the location of the optical element 925 but also a site that is mechanically connected and held on the package substrate 911 at another site of the optical connector device 920, such as a peripheral edge. It is good also as a form.
 上記接続後の状態におけるレンズ構造体921の光路により、例えば発光素子である光素子925の出射点p0からのZ方向への出射光は、レンズ構造体921の点p1から点p2への光路部を経由して点p2付近の面で90度全反射され、X方向への出射光に変化する。そして当該出射光は、点p2から点p3への光路部を経由して、光ファイバ部933の端部のコアに入射される。 Due to the optical path of the lens structure 921 in the state after the connection, for example, light emitted in the Z direction from the emission point p0 of the optical element 925 that is a light emitting element is an optical path portion from the point p1 to the point p2 of the lens structure 921. Is totally reflected 90 degrees on the surface in the vicinity of the point p2, and changes to emitted light in the X direction. The emitted light enters the core at the end of the optical fiber portion 933 via the optical path portion from the point p2 to the point p3.
 比較例の光インターコネクト装置を用いた光インターコネクトのシステムにおける、送信側の第1の光インターコネクト装置から受信側の第2の光インターコネクト装置へのデータの光伝送の動作の概要は以下である。送信側の第1の光インターコネクト装置は、光素子駆動IC915による制御に基づいて、送信データの電気信号を光素子925により光信号へ変換する。送信側の光インターコネクト装置は、当該光素子925からの光信号を光コネクタ装置920による光路を通じて光ファイバ部933による光導波路へ出射する。光ファイバ部933による光導波路は、光信号を伝送する。受信側の光インターコネクト装置は、光ファイバ部933による光導波路からの光信号を、光コネクタ装置920による光路を通じて光素子925へ入射する。受信側の光インターコネクト装置は、光素子駆動IC915の制御に基づいて、当該光信号を光素子920により電気信号へ変換する。そして受信側の光インターコネクト装置の光素子駆動IC915は、光素子925からの電気信号を受信データとして取得する。 The outline of the optical transmission operation of data from the first optical interconnect device on the transmission side to the second optical interconnect device on the reception side in the optical interconnect system using the optical interconnect device of the comparative example is as follows. The first optical interconnect device on the transmission side converts an electrical signal of transmission data into an optical signal by the optical element 925 based on control by the optical element driving IC 915. The transmission-side optical interconnect device emits the optical signal from the optical element 925 to the optical waveguide formed by the optical fiber unit 933 through the optical path formed by the optical connector device 920. The optical waveguide formed by the optical fiber unit 933 transmits an optical signal. The optical interconnect device on the receiving side enters the optical signal from the optical waveguide by the optical fiber portion 933 into the optical element 925 through the optical path by the optical connector device 920. The optical interconnect device on the receiving side converts the optical signal into an electrical signal by the optical element 920 based on the control of the optical element driving IC 915. Then, the optical element driving IC 915 of the optical interconnect device on the receiving side acquires an electrical signal from the optical element 925 as reception data.
 上記比較例の光インターコネクト装置は、電子回路基板910において、電気部品である光素子駆動IC915等と、光部品である光素子925とが混在している。また、光素子925と光コネクタ装置920とが別の光部品として基本的に分離されている。上記光素子925と光コネクタ装置920との調芯を含む接続C0の工程は、光学的に高精度な調芯が必要であるため、高コストである。 In the optical interconnect device of the above comparative example, in the electronic circuit board 910, the optical element driving IC 915 that is an electrical component and the optical element 925 that is an optical component are mixed. Further, the optical element 925 and the optical connector device 920 are basically separated as separate optical components. The process of connection C0 including the alignment of the optical element 925 and the optical connector device 920 is expensive because it requires optically highly accurate alignment.
 また、電気部品と光部品の混在や、光部品の分離の構成であるため、例えばパッケージ基板911上の光部品である光素子925が故障した際や、光素子925を点検する際などに、その保守交換性があまり良くない。即ち、光素子925と光コネクタ装置920とにおいて調芯を含む接続C0の工程を再度必要とするので、高コストである。 In addition, since the configuration is a mixture of electrical components and optical components or separation of optical components, for example, when an optical element 925 that is an optical component on the package substrate 911 fails, or when the optical element 925 is inspected, Its maintainability is not so good. That is, since the process of connection C0 including alignment is required again in the optical element 925 and the optical connector device 920, the cost is high.
 <実施の形態1>
 図1~図18を用いて、本発明の実施の形態1の光インターコネクト装置、光コネクタ装置、及び光ケーブル装置などについて説明する。
<Embodiment 1>
The optical interconnect device, optical connector device, optical cable device, and the like according to the first embodiment of the present invention will be described with reference to FIGS.
 [光インターコネクト装置]
 図1は、実施の形態1の光インターコネクト装置1、及び光コネクタ装置20の概要として、電子回路基板10と光コネクタ装置20との接続前の状態のXZ断面の構成を示す。実施の形態1の光インターコネクト装置1は、パッケージ基板11上に配線12を介して光素子駆動IC15が搭載される電子回路基板10と、レンズ構造体21に光素子25が内蔵された光コネクタ装置20とを有する。特に、光コネクタ装置20を構成するレンズ構造体21の凹部26に光素子25を内蔵するように搭載する構成を有する。光コネクタ装置20を含む光インターコネクト装置1の製造時、レンズ構造体21の凹部26に対して、配線22を介して光素子25が内蔵されるように搭載される。その搭載の際、A-A線に示す光軸における光素子25とレンズ構造体21の光路との調芯が済んでいる。
[Optical interconnect equipment]
FIG. 1 shows an XZ cross-sectional configuration of the state before the electronic circuit board 10 and the optical connector device 20 are connected as an outline of the optical interconnect device 1 and the optical connector device 20 of the first embodiment. The optical interconnect device 1 according to the first embodiment includes an electronic circuit board 10 on which an optical element driving IC 15 is mounted via a wiring 12 on a package substrate 11, and an optical connector apparatus in which an optical element 25 is built in a lens structure 21. 20. In particular, it has a configuration in which the optical element 25 is mounted in the concave portion 26 of the lens structure 21 constituting the optical connector device 20. When the optical interconnect device 1 including the optical connector device 20 is manufactured, the optical element 25 is mounted in the concave portion 26 of the lens structure 21 via the wiring 22. At the time of mounting, alignment between the optical element 25 and the optical path of the lens structure 21 on the optical axis indicated by the line AA is completed.
 光コネクタ装置20は、主にレンズ構造体21で構成され、レンズ構造体21の一部である光ファイバ接続部23に対して光導波路となる光ファイバ部33の端部が接続される。送信側及び受信側の光インターコネクト装置1は、光コネクタ装置20間が光ファイバ部33で接続される。なお本明細書では、光コネクタ装置20と光ファイバ部33等の光導波路とを含めた部分を、後述の光ケーブル装置30と称する。 The optical connector device 20 is mainly composed of a lens structure 21, and an end portion of an optical fiber portion 33 serving as an optical waveguide is connected to an optical fiber connection portion 23 that is a part of the lens structure 21. In the optical interconnect device 1 on the transmission side and the reception side, the optical connector devices 20 are connected by an optical fiber portion 33. In this specification, a portion including the optical connector device 20 and the optical waveguide such as the optical fiber portion 33 is referred to as an optical cable device 30 described later.
 実施の形態1の光インターコネクト装置1は、図29の比較例の光インターコネクト装置では別の光部品である光素子925と光コネクタ装置920のレンズ構造体921とを、一体的な1つの光部品である光コネクタ装置20として統合した構成を有する。即ち、光コネクタ装置20は、光素子25との光結合がされ、調芯の精度が確保された、一体的な1つの光部品として取り扱うことができる。 The optical interconnect device 1 according to the first embodiment includes an optical element 925, which is another optical component in the optical interconnect device of the comparative example of FIG. 29, and the lens structure 921 of the optical connector device 920, as one integrated optical component. The optical connector device 20 is an integrated configuration. In other words, the optical connector device 20 can be handled as a single integrated optical component that is optically coupled to the optical element 25 and ensures alignment accuracy.
 また図29の比較例の光インターコネクト装置の電子回路基板910は、光部品と電気部品とが混在した構成であるため、光学的な調芯を含む接続C0が高コストである。それに対し、実施の形態1の光インターコネクト装置1は、光部品である光コネクタ装置20と、電気部品である電子回路基板10とが明確に分離された構成を有する。これにより、比較例における調芯を含む接続の工程を簡便化し、製造プロセスで大きなコストを占める調芯を含む接続の工程を低コスト化する。調芯を含む接続の工程の低コスト化により、光インターコネクト装置1を低コストで構成でき、かつ、保守交換性にも優れた光インターコネクト装置1を提供できる。 In addition, since the electronic circuit board 910 of the optical interconnect device of the comparative example of FIG. 29 has a configuration in which optical components and electrical components are mixed, the connection C0 including optical alignment is expensive. In contrast, the optical interconnect device 1 of the first embodiment has a configuration in which the optical connector device 20 that is an optical component and the electronic circuit board 10 that is an electrical component are clearly separated. This simplifies the connection process including alignment in the comparative example, and reduces the connection process including alignment that occupies a large cost in the manufacturing process. By reducing the cost of the connection process including alignment, the optical interconnect device 1 can be configured at a low cost, and the optical interconnect device 1 having excellent maintenance and replaceability can be provided.
 電子回路基板10と光コネクタ装置20との接続C2の際、パッケージ基板11上の所定の位置の配線12に対し、光素子25が内蔵された光コネクタ装置20の配線12が電気的に接続される。これにより、光素子駆動IC15と光素子25とは、配線22及び配線12を通じて電気的に接続される。これにより、光コネクタ装置20が搭載された光インターコネクト装置1が構成される。上記のように電気部品と光部品とが明確に分離された構成を有するので、パッケージ基板11上への光コネクタ装置20の接続C2は、比較例のような光学的な高精度ではなく、電気的な接続の精度で行えばよい。この電気的な接続の手段は、各種の公知技術が適用可能であり、容易かつ低コストである。 At the time of connection C2 between the electronic circuit board 10 and the optical connector device 20, the wiring 12 of the optical connector device 20 in which the optical element 25 is incorporated is electrically connected to the wiring 12 at a predetermined position on the package substrate 11. The Thereby, the optical element driving IC 15 and the optical element 25 are electrically connected through the wiring 22 and the wiring 12. Thereby, the optical interconnect device 1 on which the optical connector device 20 is mounted is configured. Since the electrical component and the optical component are clearly separated as described above, the connection C2 of the optical connector device 20 on the package substrate 11 is not optically high precision as in the comparative example, The connection accuracy can be achieved. As this means for electrical connection, various known techniques can be applied, and it is easy and low-cost.
 [適用対象システム]
 図2は、実施の形態1等の光インターコネクト装置1を適用する対象となるシステム及び装置の例を示す。図2(a)は、適用対象システムであるITシステム300を示す。ITシステム300は、複数のIT機器301がLAN等のネットワークで接続された構成である。IT機器301は、例えばサーバラックである。IT機器301は、1つ以上の基板モジュール302を備える。
[Applicable systems]
FIG. 2 shows an example of a system and apparatus to which the optical interconnect device 1 according to the first embodiment is applied. FIG. 2A shows an IT system 300 that is an application target system. The IT system 300 has a configuration in which a plurality of IT devices 301 are connected via a network such as a LAN. The IT device 301 is a server rack, for example. The IT device 301 includes one or more board modules 302.
 図2(b)は、図2(a)のIT機器301の基板モジュール302の構成例を示す。基板モジュール302は、ブレード基板などの複数の基板303が、バックプレーン基板304を介して相互に接続される。各基板303は、複数のチップ305などを搭載し、複数のチップ305がバス等で相互に接続される。チップ305は、プロセッサやメモリ等を備えるICチップである。例えば第1の基板303の第1のチップ305と、第2の基板303の第2のチップ305とが、バックプレーン基板304を介して接続され、電気信号の送信a及び受信bを含む通信を行う例を示している。 FIG. 2B shows a configuration example of the board module 302 of the IT equipment 301 in FIG. In the substrate module 302, a plurality of substrates 303 such as blade substrates are connected to each other via a backplane substrate 304. Each substrate 303 mounts a plurality of chips 305 and the like, and the plurality of chips 305 are connected to each other by a bus or the like. The chip 305 is an IC chip that includes a processor, a memory, and the like. For example, the first chip 305 of the first substrate 303 and the second chip 305 of the second substrate 303 are connected via the backplane substrate 304, and communication including transmission a and reception b of electrical signals is performed. An example is shown.
 光インターコネクトの適用例として、図2(a)のIT装置301間、基板モジュール302間、図2(b)の基板303間、あるいはチップ305間が挙げられる。例えば基板303間を光インターコネクトで接続する場合、対象の各基板303に、実施の形態1等の光インターコネクト装置1を搭載する。当該基板303の光インターコネクト装置1間は、光コネクタ装置20を両端とする光ケーブル装置30で接続される。 As an application example of the optical interconnect, there are the IT devices 301 in FIG. 2A, the substrate modules 302, the substrates 303 in FIG. 2B, or the chips 305. For example, when the substrates 303 are connected by an optical interconnect, the optical interconnect device 1 of the first embodiment or the like is mounted on each target substrate 303. The optical interconnect devices 1 on the board 303 are connected by an optical cable device 30 having both ends of the optical connector device 20.
 [光インターコネクトシステム(1)]
 図3は、光インターコネクト装置1を含む光インターコネクトシステムの機能ブロックの構成例を示す。特に図3の光インターコネクトシステムは、送信及び受信の一方向の光伝送が可能な構成を有する2つの光インターコネクト装置1を光ケーブル装置30で接続した構成例を示す。左側の第1の光インターコネクト装置1Aは、送信機能2Aのみを有し、右側の第2の光インターコネクト装置1Bは、受信機能2Bのみを有する。光インターコネクト装置1Aから光インターコネクト装置1Bへの一方向の光伝送が可能な構成を有する。送信側の光インターコネクト装置1Aの物理的な構成例を後述の図5で示す。受信側の光インターコネクト装置1Bの物理的な構成例を後述の図6で示す。
[Optical interconnect system (1)]
FIG. 3 shows a configuration example of functional blocks of an optical interconnect system including the optical interconnect device 1. In particular, the optical interconnect system of FIG. 3 shows a configuration example in which two optical interconnect devices 1 having a configuration capable of transmitting and receiving light in one direction are connected by an optical cable device 30. The first optical interconnect device 1A on the left side has only the transmission function 2A, and the second optical interconnect device 1B on the right side has only the reception function 2B. The optical interconnect device 1A can transmit light in one direction from the optical interconnect device 1B. An example of the physical configuration of the transmission-side optical interconnect device 1A is shown in FIG. A physical configuration example of the optical interconnect device 1B on the receiving side is shown in FIG.
 送信側の光インターコネクト装置1A及び受信側の光インターコネクト装置1Bは、それぞれ光素子駆動IC15及び光コネクタ装置20を有する。光ケーブル装置30は、送信側である一方の端部の光コネクタ装置20と、受信側である他方の端部の光コネクタ装置20と、それら両端を接続する光ファイバ部33、特に1本の光ファイバ部33Aとを有する。 The optical interconnect device 1A on the transmission side and the optical interconnect device 1B on the reception side have an optical element driving IC 15 and an optical connector device 20, respectively. The optical cable device 30 includes an optical connector device 20 at one end that is a transmission side, an optical connector device 20 at the other end that is a reception side, and an optical fiber portion 33 that connects both ends, particularly one optical fiber. And a fiber portion 33A.
 送信側の光インターコネクト装置1Aは、送信機能2Aとして、送信側光素子駆動IC15Aと、それに接続される送信側光コネクタ装置20Aとを有する。送信側光コネクタ装置20Aは、送信側の光素子25Aである発光素子として、後述の図10で示す、垂直共振型の面発光型の光素子であるVCSELを有する。送信側光素子駆動IC15Aは、送信側光コネクタ装置20Aの光素子25AであるVCSELを駆動するVCSELドライバである。 The transmission-side optical interconnect device 1A includes a transmission-side optical element driving IC 15A and a transmission-side optical connector device 20A connected thereto as the transmission function 2A. The transmission-side optical connector device 20A includes a VCSEL, which is a vertical-resonance surface-emitting optical element shown in FIG. 10 described later, as a light-emitting element that is the transmission-side optical element 25A. The transmission-side optical element driving IC 15A is a VCSEL driver that drives a VCSEL that is the optical element 25A of the transmission-side optical connector device 20A.
 受信側の光インターコネクト装置1Bは、受信機能2Bとして、受信側光素子駆動IC15Bと、受信側光コネクタ装置20Bとを有する。受信側光コネクタ装置20Bは、受信側の光素子25Bである受光素子として、フォトダイオード(PDと略す)を含む。受信側光素子駆動IC15Bは、受信側光コネクタ装置20Bの光素子25BであるPDを駆動するトランス・インピーダンス・アンプ(TIA)である。 The receiving-side optical interconnect device 1B includes a receiving-side optical element driving IC 15B and a receiving-side optical connector device 20B as the receiving function 2B. The reception-side optical connector device 20B includes a photodiode (abbreviated as PD) as a light-receiving element that is the reception-side optical element 25B. The receiving side optical element driving IC 15B is a trans-impedance amplifier (TIA) that drives the PD that is the optical element 25B of the receiving side optical connector apparatus 20B.
 光インターコネクト装置1Aから光インターコネクト装置1Bへデータを光伝送する場合、送信a1のように、送信側光素子駆動IC15Aは、送信データの電気信号を、配線12及び配線22を通じて送信側光コネクタ装置20Aの光素子25Aへ送信する。送信側光素子駆動IC15Aによる制御に基づき、送信側光コネクタ装置25Aの光素子25AであるVCSELを駆動する。光素子25Aは、電気信号を光信号に変換して出射する。当該光信号は、送信側光コネクタ装置20Aの光路を通じて、光ファイバ部33Aの端部へ入射される。光ケーブル装置30の光ファイバ部33は、光信号を伝送する。そして、受信側の光インターコネクト装置1Bは、光ファイバ部33Aからの光信号を受信側光コネクタ装置25Bに入射する。当該光信号は、受信側光コネクタ装置25Bの光路を通じて、光素子25Bに入射される。受信側光素子駆動IC15Bによる制御に基づき、受信側光コネクタ装置25Bの光素子25BであるPDを駆動する。光素子25BであるPDは、光信号を電気信号に変換して受信する。光素子25BであるPDからの電気信号は、配線22及び配線12を通じて受信側光素子駆動IC15Bへ送信される。受信側光素子駆動IC15Bは、当該光素子25Bからの電気信号を受信データとして取得する。 When optically transmitting data from the optical interconnect device 1A to the optical interconnect device 1B, the transmission side optical element driving IC 15A transmits the electrical signal of the transmission data through the wiring 12 and the wiring 22 as in the case of transmission a1. To the optical element 25A. Based on the control by the transmission side optical element driving IC 15A, the VCSEL which is the optical element 25A of the transmission side optical connector device 25A is driven. The optical element 25A converts an electrical signal into an optical signal and emits it. The optical signal is incident on the end portion of the optical fiber portion 33A through the optical path of the transmission side optical connector device 20A. The optical fiber unit 33 of the optical cable device 30 transmits an optical signal. Then, the optical interconnect device 1B on the reception side enters the optical signal from the optical fiber portion 33A into the optical connector device 25B on the reception side. The optical signal enters the optical element 25B through the optical path of the receiving side optical connector device 25B. Based on the control by the receiving side optical element driving IC 15B, the PD which is the optical element 25B of the receiving side optical connector device 25B is driven. The PD, which is the optical element 25B, converts an optical signal into an electrical signal and receives it. An electrical signal from the PD, which is the optical element 25B, is transmitted to the reception-side optical element driving IC 15B through the wiring 22 and the wiring 12. The reception-side optical element driving IC 15B acquires an electrical signal from the optical element 25B as reception data.
 [光ケーブル装置]
 図4は、実施の形態1の光ケーブル装置30の構成例を示す。光ケーブル装置30は、言い換えると、光コネクタ付きケーブルである。図4(a)は、図3の一方向の光伝送が可能な構成に対応した光ケーブル装置30を示す。光ケーブル装置30は、2つの光コネクタ装置20を両端として、それらを接続する光ファイバ部33を有する。一方の端部の光コネクタ装置20は、送信機能2Aに対応した送信側光コネクタ装置20Aであり、他方の端部の光コネクタ装置20は、受信機能2Bに対応した受信側光コネクタ装置20Bである。光ファイバ部33は、断面構造として、光ファイバ、及びその外側の保護被膜34などで構成される。光ファイバ部33の光ファイバは、外側のクラッド31と、内側のコア32とを有する。
[Optical cable device]
FIG. 4 shows a configuration example of the optical cable device 30 according to the first embodiment. In other words, the optical cable device 30 is a cable with an optical connector. FIG. 4A shows an optical cable device 30 corresponding to a configuration capable of optical transmission in one direction in FIG. The optical cable device 30 has two optical connector devices 20 as both ends and an optical fiber portion 33 that connects them. The optical connector device 20 at one end is a transmission side optical connector device 20A corresponding to the transmission function 2A, and the optical connector device 20 at the other end is a reception side optical connector device 20B corresponding to the reception function 2B. is there. The optical fiber portion 33 is configured by an optical fiber and a protective coating 34 on the outside thereof as a cross-sectional structure. The optical fiber of the optical fiber portion 33 has an outer cladding 31 and an inner core 32.
 [送信側の光インターコネクト装置]
 図5は、実施の形態1の送信側の光インターコネクト装置1Aの接続前のXZ断面の構成を示す。光インターコネクト装置1Aは、送信側光素子駆動IC15AとしてVCSELドライバを有し、送信側光コネクタ装置20Aは、送信側の光素子25Aとして、発光素子であるVCSELを有する。aは光素子25Aから光ファイバ部33への出射光を示す。
[Transmitter optical interconnect device]
FIG. 5 shows a configuration of an XZ cross section before connection of the transmission-side optical interconnect device 1A of the first embodiment. The optical interconnect device 1A has a VCSEL driver as the transmission side optical element driving IC 15A, and the transmission side optical connector device 20A has a VCSEL as a light emitting element as the transmission side optical element 25A. a shows the emitted light from the optical element 25 </ b> A to the optical fiber portion 33.
 光インターコネクト装置1Aは、適用対象の基板50上に、例えばはんだボール51を介して、電子回路基板10のパッケージ基板11が搭載される。電子回路基板10は、主に、パッケージ基板11と、パッケージ基板11上に形成される配線12と、配線12を介して接続される送信側光素子駆動IC15Aと、送信側光素子駆動IC15Aに搭載されるヒートシンク17とを有する。送信側光素子駆動IC15Aは、パッケージ基板11の配線12上に例えばはんだボール13を介して搭載される。なお電子回路基板10は、光部品である光コネクタ装置20を除く部分を示し、電気部品として構成されている。 In the optical interconnect device 1 </ b> A, the package substrate 11 of the electronic circuit substrate 10 is mounted on the target substrate 50 via, for example, solder balls 51. The electronic circuit board 10 is mainly mounted on the package board 11, the wiring 12 formed on the package board 11, the transmission side optical element driving IC 15A connected via the wiring 12, and the transmission side optical element driving IC 15A. And a heat sink 17. The transmission side optical element driving IC 15 </ b> A is mounted on the wiring 12 of the package substrate 11 via, for example, solder balls 13. The electronic circuit board 10 shows a portion excluding the optical connector device 20 that is an optical component, and is configured as an electrical component.
 送信側光コネクタ装置20Aは、図1の構成と同様である。送信側光コネクタ装置20Aは、本体であるレンズ構造体21と、レンズ構造体21の凹部に搭載される送信側の光素子25Aと、レンズ構造体21に形成され光素子25Aと接続される金属による電気的な配線22とを有し、光ファイバ部33の端部が接続される。 The transmission side optical connector device 20A has the same configuration as that of FIG. The transmission-side optical connector device 20A includes a lens structure 21 as a main body, a transmission-side optical element 25A mounted in a recess of the lens structure 21, and a metal formed in the lens structure 21 and connected to the optical element 25A. And an end portion of the optical fiber portion 33 is connected.
 パッケージ基板11は、有機基板であり、主面に金属による電気的な配線12が形成されている。パッケージ基板11上の配線12は、送信側光素子駆動IC15Aに接続される配線から、X方向右方の所定の位置まで延在して形成される配線を含む。当該所定の位置、即ち光コネクタ装置20の接続位置の配線12に対して、Z方向で、光コネクタ装置20側に形成された金属による配線22が電気的に接続される。 The package substrate 11 is an organic substrate, and an electrical wiring 12 made of metal is formed on the main surface. The wiring 12 on the package substrate 11 includes a wiring formed to extend from a wiring connected to the transmission-side optical element driving IC 15A to a predetermined position on the right side in the X direction. The wiring 22 made of metal formed on the optical connector device 20 side is electrically connected in the Z direction to the wiring 12 at the predetermined position, that is, the connection position of the optical connector device 20.
 [受信側の光インターコネクト装置]
 図6は、実施の形態1の受信側の光インターコネクト装置1BのXZ断面の構成を示す。受信側の光インターコネクト装置1Bは、受信側光素子駆動IC15BとしてTIAを有し、受信側光コネクタ装置20Bの受信側の光素子25Bとして、受光素子であるPDを有する。bは光ファイバ部33から光素子25Bへの入射光を示す。
[Receiver side optical interconnect device]
6 shows an XZ cross-sectional configuration of the receiving-side optical interconnect device 1B of the first embodiment. The reception-side optical interconnect device 1B has a TIA as the reception-side optical element driving IC 15B, and has a PD that is a light-receiving element as the reception-side optical element 25B of the reception-side optical connector device 20B. b shows the incident light from the optical fiber part 33 to the optical element 25B.
 光ファイバ部33の端部からレンズ構造体21の点p3に入射された光信号は、点p3からX方向左方への光路部を進み、45度ミラー24の点p2の付近で90度全反射され、Z方向への光に変化する。そして当該入射光は、点p2からZ方向下方への光路部を進み、凹部の点p1を経由して、光素子25Bに入射される。PDである光素子25Bは、光信号を電気信号に変換して出力する。TIAである光素子駆動IC15Bは、光素子25Bから配線22及び配線12を通じて受信した電流信号を、インピーダンス変換して増幅し、電圧信号として取得する。 The optical signal incident on the point p3 of the lens structure 21 from the end of the optical fiber portion 33 travels along the optical path portion to the left in the X direction from the point p3, and is 90 degrees around the point p2 of the 45 degree mirror 24. Reflected and changed to light in the Z direction. Then, the incident light travels along the optical path portion downward from the point p2 in the Z direction, and is incident on the optical element 25B via the point p1 of the recess. The optical element 25B, which is a PD, converts an optical signal into an electrical signal and outputs it. The optical element driving IC 15B, which is a TIA, impedance-converts and amplifies the current signal received from the optical element 25B through the wiring 22 and the wiring 12, and acquires it as a voltage signal.
 [製造フロー]
 図7は、実施の形態1の光インターコネクト装置1の製造フロー例を示す。S1等は工程を示す。工程S1では、レンズ構造体21を製造または準備する。工程S2では、光素子25を製造または準備する。工程S3では、光ファイバ部33を製造または準備する。
[Production flow]
FIG. 7 shows an example of a manufacturing flow of the optical interconnect device 1 of the first embodiment. S1 etc. show a process. In step S1, the lens structure 21 is manufactured or prepared. In step S2, the optical element 25 is manufactured or prepared. In step S3, the optical fiber portion 33 is manufactured or prepared.
 工程S4では、工程S1のレンズ構造体21と、工程S2の光素子25とを、光学的に調芯しながら接続する。工程S4は、後述の図9に示す調芯を含む接続C1に対応する。工程S4において、まずレンズ構造体21の底面f1の凹部26及び底面f1の一部にわたって配線22が形成される。そして工程S4では、例えばチップマウンタ等の製造装置を用いて、レンズ構造体21の凹部26に、配線22を介して、光素子25の上面の電極端子が接続されるように搭載する。この搭載の際、調芯として、A-A線の光軸において、光素子25の点p0、レンズ構造体21の凹部26の点p1、及び45度ミラー24の点p2が揃うように位置合わせがされる。これにより光素子25とレンズ構造体21とが光結合される。工程S4における調芯を含む接続C2は、使用するチップマウンタ等の製造装置が持つ搭載の精度で実現される。必要な調芯の精度として例えば光軸におけるズレを10μm以下に抑える高精度が確保される。工程S4により、光素子25を内蔵した光コネクタ装置20を得る。工程S4の調芯は、従来のパッシブ調芯とは異なる方式である。 In step S4, the lens structure 21 in step S1 and the optical element 25 in step S2 are connected while optically aligned. Step S4 corresponds to connection C1 including alignment shown in FIG. 9 described later. In step S4, first, the wiring 22 is formed over the concave portion 26 of the bottom surface f1 of the lens structure 21 and a part of the bottom surface f1. In step S4, for example, using a manufacturing apparatus such as a chip mounter, the electrode structure on the upper surface of the optical element 25 is connected to the concave portion 26 of the lens structure 21 via the wiring 22. When mounting, alignment is performed so that the point p0 of the optical element 25, the point p1 of the concave portion 26 of the lens structure 21, and the point p2 of the 45-degree mirror 24 are aligned on the optical axis of the AA line. Is done. Thereby, the optical element 25 and the lens structure 21 are optically coupled. The connection C2 including alignment in step S4 is realized with the mounting accuracy of a manufacturing apparatus such as a chip mounter to be used. As the required alignment accuracy, for example, a high accuracy for keeping the deviation in the optical axis to 10 μm or less is ensured. In step S4, the optical connector device 20 including the optical element 25 is obtained. The alignment in step S4 is a method different from the conventional passive alignment.
 工程S5では、工程S4により得られた、光素子25を内蔵した光コネクタ装置20における光ファイバ接続部23と、工程S3の光ファイバ部33の端部とを、光学的に調芯しながら接続する。この接続の際、B-B線の光軸において、レンズ構造体21の光ファイバ接続部23のYZ平面の点p3の位置に対し、光ファイバ部33の端部の光ファイバのコア32が、光学的に調芯しながら接続される。この光ファイバ接続部23における調芯を含む接続は、各種の公知技術により可能である。 In step S5, the optical fiber connection portion 23 in the optical connector device 20 incorporating the optical element 25 obtained in step S4 and the end of the optical fiber portion 33 in step S3 are connected while optically aligned. To do. At the time of this connection, with respect to the position of the point p3 on the YZ plane of the optical fiber connection portion 23 of the lens structure 21 on the optical axis of the BB line, the optical fiber core 32 at the end of the optical fiber portion 33 is It is connected while optically aligning. Connection including alignment in the optical fiber connection portion 23 is possible by various known techniques.
 工程S6では、電子回路基板10を製造または準備する。パッケージ基板11上に配線12が形成され、配線12を介して光素子駆動IC15等が搭載されることにより、電子回路基板10を得る。 In step S6, the electronic circuit board 10 is manufactured or prepared. The wiring 12 is formed on the package substrate 11, and the optical element driving IC 15 and the like are mounted via the wiring 12, whereby the electronic circuit substrate 10 is obtained.
 工程S7では、工程S6で得られた電子回路基板10のパッケージ基板11上に、工程S5で得られた光素子25が搭載済みかつ光ファイバ部33が接続済みの光コネクタ装置20を搭載する。工程S7は、図1の接続C2に対応する。工程S7では、製造装置を用いて、パッケージ基板11上の所定の位置の配線12に対して、レンズ構造体21の底面f1側の配線22を位置合わせしながら、電気的に接続する。これにより光素子25と光素子駆動IC15とが配線12及び配線22を通じて電気的に接続される。また工程S7は、後述の図12で示す例のように、電気的な接続とは別に、パッケージ基板11上への光コネクタ装置20の機械的な接続が行われてもよい。工程S7により、光コネクタ装置20が接続された光インターコネクト装置1が得られる。なお工程S7は、適用対象に応じて、製造時ではなく、セットアップ時や保守交換時に行われてもよい。 In step S7, the optical connector device 20 in which the optical element 25 obtained in step S5 is mounted and the optical fiber portion 33 is connected is mounted on the package substrate 11 of the electronic circuit board 10 obtained in step S6. Step S7 corresponds to connection C2 in FIG. In step S <b> 7, the manufacturing apparatus is used to electrically connect the wiring 22 on the bottom surface f <b> 1 side of the lens structure 21 to the wiring 12 at a predetermined position on the package substrate 11. As a result, the optical element 25 and the optical element driving IC 15 are electrically connected through the wiring 12 and the wiring 22. In step S7, mechanical connection of the optical connector device 20 onto the package substrate 11 may be performed separately from the electrical connection, as in the example shown in FIG. By step S7, the optical interconnect device 1 to which the optical connector device 20 is connected is obtained. Note that step S7 may be performed at the time of setup or maintenance replacement, not at the time of manufacture, depending on the application target.
 工程S7及び接続C2における、パッケージ基板11上の配線12に対する光コネクタ装置20側の配線22を電気的に接続する手段については、各種の公知技術を適用可能である。例えば、はんだ接続、銀ペースト等の層を介した接続、あるいは異方性導電フィルム(ACF:Anisotropic Conductive Film)による接続などが適用可能である。また後述の実施の形態4のように、スプリングコネクタ等による接続も適用可能である。工程S7及び接続C2の構成一例として、ACFを用いる場合、パッケージ基板11側の配線12と、光コネクタ装置20側の底面f1の配線22との間に、ACFを挟んで接続する。 Various known techniques can be applied to the means for electrically connecting the wiring 22 on the optical connector device 20 side to the wiring 12 on the package substrate 11 in step S7 and connection C2. For example, solder connection, connection through a layer of silver paste or the like, or connection using an anisotropic conductive film (ACF) can be applied. Further, connection by a spring connector or the like can be applied as in the fourth embodiment described later. As an example of the configuration of step S7 and connection C2, when an ACF is used, the ACF is connected between the wiring 12 on the package substrate 11 side and the wiring 22 on the bottom surface f1 on the optical connector device 20 side.
 上記製造フローのように、光素子25を内蔵した光コネクタ装置20は、工程S4で高精度に調芯済みであるため、光結合及び所定の光学的な精度が保障された光部品として取り扱うことができる。そのため、工程S7におけるパッケージ基板11への光コネクタ装置20の搭載は、光学的な精度ではなく電気的な精度で容易かつ低コストで可能となる。工程S4の光学的な調芯を含む接続は、比較例の図29の調芯を含む接続C0よりも、容易で低コストである。即ち、光インターコネクト装置1を低コストで提供できる。また例えば光素子25の故障や点検の際には、光素子25を内蔵した光コネクタ装置20ごと交換することができる。当該交換時には、パッケージ基板11から光コネクタ装置20を取り外し、新たな光コネクタ装置20を電気的な接続C2によって取り付ける作業だけで済む。即ち、実施の形態1の光インターコネクト装置1は保守交換性が高い。 As in the above manufacturing flow, the optical connector device 20 incorporating the optical element 25 has been aligned with high accuracy in step S4, so that it is handled as an optical component that ensures optical coupling and predetermined optical accuracy. Can do. Therefore, the mounting of the optical connector device 20 on the package substrate 11 in the step S7 can be performed easily and at low cost not with optical accuracy but with electrical accuracy. The connection including optical alignment in step S4 is easier and less expensive than the connection C0 including alignment in FIG. 29 of the comparative example. That is, the optical interconnect device 1 can be provided at a low cost. Further, for example, when the optical element 25 is broken or inspected, the optical connector device 20 including the optical element 25 can be replaced. At the time of the replacement, it is only necessary to remove the optical connector device 20 from the package substrate 11 and attach a new optical connector device 20 by electrical connection C2. That is, the optical interconnect device 1 according to the first embodiment has high maintenance and exchangeability.
 [光コネクタ装置]
 図8は、実施の形態1の光コネクタ装置20のXZ断面の構成として、光素子25を内蔵した後の状態を示す。図8を用いて光コネクタ装置20の詳細として光路などの構成について説明する。なお図8は光素子25として特に送信側の光素子25AであるVCSELを用いた場合を示す。
[Optical connector device]
FIG. 8 shows a state after the optical element 25 is built in as an XZ cross-sectional configuration of the optical connector device 20 of the first embodiment. The configuration of the optical path and the like will be described in detail with reference to FIG. FIG. 8 shows a case where a VCSEL which is the optical element 25A on the transmission side is used as the optical element 25.
 光素子25は、Z方向上側である上面が発光面となっており、その上面の点p0は出射点を示す。光素子25であるVCSELの詳細については後述の図10で示す。 In the optical element 25, the upper surface on the upper side in the Z direction is a light emitting surface, and a point p0 on the upper surface indicates an emission point. Details of the VCSEL which is the optical element 25 are shown in FIG.
 レンズ構造体21は、例えばガラスやプラスチック等の材料で構成される。 The lens structure 21 is made of a material such as glass or plastic.
 レンズ構造体21の一部である光ファイバ接続部23は、光ファイバ部33の端部を接続するための形状を有する。実施の形態1では、光ファイバ接続部23は、レンズ構造体21のX方向右側及びZ方向上側の箇所において、光ファイバ部33の形状に対応した領域として設けられており、点p3を含むYZ平面を含む。光ファイバ接続部23の点p3を含む面に対して、光ファイバ部33の端部の面が、B-B線の光軸における光学的な調芯を含めて接続される。レンズ構造体21の光ファイバ接続部23の点p3は、光ファイバ部33の端部のコア32の光軸に位置合わせされた点であり、レンズ構造体21から光ファイバ部33への出射点に対応する。 The optical fiber connection portion 23 which is a part of the lens structure 21 has a shape for connecting the end portion of the optical fiber portion 33. In the first embodiment, the optical fiber connection portion 23 is provided as a region corresponding to the shape of the optical fiber portion 33 at the right side in the X direction and the upper side in the Z direction of the lens structure 21 and includes the YZ including the point p3. Includes a plane. The surface of the end portion of the optical fiber portion 33 is connected to the surface including the point p3 of the optical fiber connection portion 23 including optical alignment on the optical axis of the BB line. The point p3 of the optical fiber connection portion 23 of the lens structure 21 is a point aligned with the optical axis of the core 32 at the end of the optical fiber portion 33, and is an exit point from the lens structure 21 to the optical fiber portion 33. Corresponding to
 実施の形態1の光コネクタ装置20は、レンズ構造体21におけるパッケージ基板11に搭載される側のXY平面である底面f1において凹部26が設けられている。凹部26は、言い換えると光素子内蔵部であり、レンズ構造体21の平坦なXY平面の底面f1においてZ方向上方に深さを持つへこみ領域である。凹部26は言い換えると光素子内蔵部である。凹部26の形状は、光素子25の形状に合わせて設計されている。光素子25が例えば後述の図10のような円柱形状である場合、それに対応して凹部26も円柱形状である。凹部26のZ方向のへこみの深さは、光素子25のZ方向の高さよりも大きい。凹部26の点p1は、光素子25の搭載の中心点である。 In the optical connector device 20 of the first embodiment, a concave portion 26 is provided on a bottom surface f1 which is an XY plane on the lens structure 21 on the side mounted on the package substrate 11. In other words, the concave portion 26 is an optical element built-in portion, and is a concave region having a depth in the Z direction upward on the bottom surface f1 of the flat XY plane of the lens structure 21. In other words, the recess 26 is an optical element built-in portion. The shape of the recess 26 is designed in accordance with the shape of the optical element 25. For example, when the optical element 25 has a cylindrical shape as shown in FIG. 10 described later, the concave portion 26 also has a cylindrical shape. The depth of the recess in the Z direction of the recess 26 is larger than the height of the optical element 25 in the Z direction. A point p <b> 1 of the recess 26 is a center point for mounting the optical element 25.
 レンズ構造体21の底面f1の凹部26に、配線12を介して、光素子25が内蔵されるように搭載される。凹部26のZ方向上方の底面は、レンズ構造体21の底面f1と平行なXY平面である。凹部26の底面に対して、光素子25は、面発光の出射点p0を含む上面が、凹部26の底面であるXY平面に平行な配置で搭載される。なおX方向及びY方向は、パッケージ基板11等の基板面及びレンズ構造体21の底面f1などに平行な方向である。凹部26に搭載された光素子25は、凹部26の領域内に収まり、レンズ構造体21の底面f1からZ方向外側へは出ない。 The optical element 25 is mounted in the concave portion 26 on the bottom surface f1 of the lens structure 21 via the wiring 12. The bottom surface of the concave portion 26 in the Z direction is an XY plane parallel to the bottom surface f1 of the lens structure 21. With respect to the bottom surface of the recess 26, the optical element 25 is mounted such that the top surface including the surface emission point p <b> 0 is parallel to the XY plane that is the bottom surface of the recess 26. The X direction and the Y direction are directions parallel to the substrate surface such as the package substrate 11 and the bottom surface f1 of the lens structure 21. The optical element 25 mounted in the concave portion 26 is accommodated in the region of the concave portion 26 and does not protrude outward from the bottom surface f1 of the lens structure 21 in the Z direction.
 光コネクタ装置20側に形成される配線22は、レンズ構造体21の凹部26の底面や側面、及びレンズ構造体21の底面f1の一部の領域にわたって形成される。例えば、凹部26の底面に形成された配線22の一方端の部分に対して、光素子25の上面の周縁部にある電極端子が電気的に接続される。配線22の他方端は、凹部26の側面を経由してレンズ構造体21の凹部26の周りの底面f1の所定の位置まで延在して形成される。図1の接続C2の際、レンズ構造体21の底面f1の凹部26の周りの露出した配線22と、当該配線22のX方向及びY方向の位置で対応した、パッケージ基板11上の配線12とが、電気的に接続される。 The wiring 22 formed on the optical connector device 20 side is formed over the bottom and side surfaces of the concave portion 26 of the lens structure 21 and a partial region of the bottom surface f1 of the lens structure 21. For example, an electrode terminal at the peripheral edge of the upper surface of the optical element 25 is electrically connected to one end portion of the wiring 22 formed on the bottom surface of the recess 26. The other end of the wiring 22 is formed to extend to a predetermined position on the bottom surface f <b> 1 around the concave portion 26 of the lens structure 21 via the side surface of the concave portion 26. 1, the exposed wiring 22 around the recess 26 in the bottom surface f1 of the lens structure 21 and the wiring 12 on the package substrate 11 corresponding to the position of the wiring 22 in the X direction and the Y direction. Are electrically connected.
 レンズ構造体21は、光路を構成する要素の1つとして、図示するX方向とZ方向との間の45度の斜面の箇所に、光屈曲手段である45度ミラー24を有する。実施の形態1では、レンズ構造体21は、Z方向とX方向とで90度屈曲する光路を構成する。そのための光屈曲手段としてレンズ構造体21は45度ミラー24を有する。45度ミラー24は、レンズ構造体21の内部において光を90度で全反射させる特性を有する。45度ミラー24は、点p2の付近で、Z方向からの光をX方向へと反射させる。点p2は、A-A線のZ方向の光軸とB-B線のX方向の光軸との直角の交点であって、また光路の屈曲点であって、45度ミラー24の反射点である。 The lens structure 21 has a 45-degree mirror 24 that is a light bending means at a 45-degree inclined surface between the X direction and the Z direction shown in the figure as one of the elements constituting the optical path. In the first embodiment, the lens structure 21 forms an optical path that bends 90 degrees in the Z direction and the X direction. For this purpose, the lens structure 21 has a 45-degree mirror 24 as a light bending means. The 45 degree mirror 24 has a characteristic of totally reflecting light at 90 degrees inside the lens structure 21. The 45 degree mirror 24 reflects light from the Z direction in the X direction in the vicinity of the point p2. Point p2 is a perpendicular intersection of the optical axis in the Z direction of the AA line and the optical axis in the X direction of the BB line, and is a bending point of the optical path, and is a reflection point of the 45 ° mirror 24. It is.
 レンズ構造体21の45度ミラー24の形態は、例えば、レンズ構造体21の当該45度の斜面の箇所において金属膜や誘電体多層膜などを形成する形態が挙げられる。あるいは、レンズ構造体21の45度ミラー24の形態は、レンズ構造体21の当該45度の斜面を含む領域において、直角プリズム、即ち45度の直角二等辺三角形の面を持つ三角柱などの形状を持つプリズムなどを設ける形態が挙げられる。 Examples of the form of the 45-degree mirror 24 of the lens structure 21 include a form in which a metal film, a dielectric multilayer film, or the like is formed at the 45-degree slope portion of the lens structure 21. Alternatively, the 45-degree mirror 24 of the lens structure 21 is shaped like a right-angle prism, that is, a triangular prism having a 45-degree right-angled isosceles triangle in the region including the 45-degree slope of the lens structure 21. There is a form in which a prism or the like is provided.
 レンズ構造体21は、光素子15と光ファイバ部33の端部との間を結ぶ光路を構成する。レンズ構造体21に構成される光路は、A-A線の光軸における、光素子25の上面の点p0に対応した凹部26の点p1から、基板面垂直なZ方向上方への45度ミラー24の点p2までの直線の光路部と、45度ミラー24の点p2から基板面平行なX方向右方への光ファイバ接続部23の点p3までの直線の光路部とを含む。 The lens structure 21 constitutes an optical path connecting the optical element 15 and the end of the optical fiber portion 33. The optical path formed in the lens structure 21 is a 45-degree mirror from the point p1 of the concave portion 26 corresponding to the point p0 on the upper surface of the optical element 25 on the optical axis of the AA line, upward in the Z direction perpendicular to the substrate surface. And a straight optical path portion from the point p2 of the 45-degree mirror 24 to the point p3 of the optical fiber connection portion 23 to the right in the X direction parallel to the substrate surface.
 光素子25の上面の点p0からZ方向に出射された光は、凹部26の点p1の位置からレンズ構造体21に入射される。点p1からの光は、45度ミラー24の点p2の付近で反射されてX方向への光になる。点p2からの光は、光ファイバ接続部23の点p3から光ファイバ部33の端部のコア32に入射される。その後、当該出射光は、光ファイバ部33を光伝送されて、受信側の光インターコネクト装置1の光コネクタ装置20へ入射される。なおA-A線の光軸及びB-B線の光軸において、光素子25からの出射光の広がりのイメージを破線で図示しているが、出射光の指向性が高い光素子25を用いることにより、光ファイバ部33の端部のコア32に入射される出射光の広がりの幅は狭くなる。 The light emitted in the Z direction from the point p 0 on the upper surface of the optical element 25 enters the lens structure 21 from the position of the point p 1 of the recess 26. The light from the point p1 is reflected near the point p2 of the 45 degree mirror 24 and becomes light in the X direction. Light from the point p <b> 2 enters the core 32 at the end of the optical fiber portion 33 from the point p <b> 3 of the optical fiber connection portion 23. Thereafter, the emitted light is optically transmitted through the optical fiber unit 33 and is incident on the optical connector device 20 of the optical interconnect device 1 on the receiving side. Note that the image of the spread of the outgoing light from the optical element 25 on the optical axis of the AA line and the optical axis of the BB line is shown by broken lines, but the optical element 25 having high directivity of the outgoing light is used. As a result, the width of the spread of the outgoing light incident on the core 32 at the end of the optical fiber portion 33 is narrowed.
 実施の形態1の光インターコネクト装置1における光コネクタ装置20は、レンズ構造体21の底面f1の凹部26に光素子25が内蔵されるように搭載されている。前述の比較例では、図30のように、接続後、レンズ構造体921の平坦な底面f1に対してZ方向で光素子925が出る形状となる。従って、実施の形態1の光インターコネクト装置1は、光素子25を搭載した光コネクタ装置20の全体の形状がコンパクトであり、光コネクタ装置20をパッケージ基板11上に搭載する工程についても容易化される。またそれに併せて、光コネクタ装置20を搭載する光インターコネクト装置1の全体の形状、特にZ方向の高さを、コンパクトにできる。 The optical connector device 20 in the optical interconnect device 1 of the first embodiment is mounted so that the optical element 25 is built in the concave portion 26 of the bottom surface f1 of the lens structure 21. In the above-described comparative example, as shown in FIG. 30, after the connection, the optical element 925 protrudes in the Z direction with respect to the flat bottom surface f1 of the lens structure 921. Therefore, in the optical interconnect device 1 of the first embodiment, the overall shape of the optical connector device 20 on which the optical element 25 is mounted is compact, and the process of mounting the optical connector device 20 on the package substrate 11 is facilitated. The At the same time, the overall shape of the optical interconnect device 1 on which the optical connector device 20 is mounted, particularly the height in the Z direction, can be made compact.
 図9は、図8及び図7の工程S4に対応した、実施の形態1の光インターコネクト装置1の光コネクタ装置20におけるレンズ構造体21と光素子25との接続の前の状態のXZ断面の構成を示す。調芯を含む接続C1は、Z方向のA-A線の光軸において、レンズ構成体21の凹部26に対し、配線22を介して、光素子25が搭載される状態を示す。なお工程S4における、チップマウンタ等の製造装置を用いた、調芯を含む接続C1の際には、図9の状態とは逆に、レンズ構造体21をZ方向下側にして凹部26が上側に来るように配置し、Z方向上側から光素子25を凹部26へ搭載する。 FIG. 9 is an XZ cross-sectional view of the optical connector device 20 of the optical interconnect device 1 according to the first embodiment, corresponding to step S4 of FIGS. 8 and 7, in a state before the connection between the lens structure 21 and the optical element 25. The configuration is shown. The connection C1 including alignment indicates a state in which the optical element 25 is mounted via the wiring 22 with respect to the concave portion 26 of the lens structure 21 on the optical axis of the AA line in the Z direction. In the connection S1 including alignment using a manufacturing apparatus such as a chip mounter in step S4, the concave portion 26 is located on the upper side with the lens structure 21 facing downward in the Z direction, contrary to the state shown in FIG. The optical element 25 is mounted in the recess 26 from the upper side in the Z direction.
 まずc1に示すように、製造装置を用いて、レンズ構造体21の凹部26の底面及び側面、並びにレンズ構造体21の底面f1の凹部26の周りの領域に、配線22が形成される。そして、チップマウンタ等の製造装置を用いて、レンズ構造体21の凹部26及び配線22に対し、光素子25が、調芯を含めて接続C1がされる。その調芯の際、A-A線の光軸において、光素子25の点p0、レンズ構造体21の凹部26の点p1、及び45度ミラー24の点p2が揃うように位置合わせがされる。 First, as shown by c1, the wiring 22 is formed in the area | region around the recessed part 26 of the bottom face f1 of the lens structure 21, and the bottom face and side surface of the recessed part 26 of the lens structure 21 using a manufacturing apparatus. Then, using a manufacturing apparatus such as a chip mounter, the optical element 25 is connected to the concave portion 26 and the wiring 22 of the lens structure 21 with the connection C1 including alignment. During the alignment, alignment is performed so that the point p0 of the optical element 25, the point p1 of the recess 26 of the lens structure 21, and the point p2 of the 45 degree mirror 24 are aligned on the optical axis of the AA line. .
 [面発光型光素子]
 図10は、実施の形態1の光コネクタ装置20の光素子25、特に送信側光コネクタ装置20Aにおける送信側の光素子25Aとして用いる、垂直共振型の面発光型の光素子であるVCSELの構成例を示す。VCSEL(Vertical Cavity Surface Emitting Laser:垂直共振面発光レーザ)は、半導体レーザの一種である。図10の光素子25Aは、円柱形状の場合、及び出射点p0を含む出射領域が1つの場合を示す。
[Surface emitting optical element]
FIG. 10 shows a configuration of a VCSEL which is a vertical resonance surface emitting optical element used as the optical element 25 of the optical connector device 20 according to the first embodiment, particularly as the transmitting optical device 25A in the transmitting optical connector device 20A. An example is shown. A VCSEL (Vertical Cavity Surface Emitting Laser) is a kind of semiconductor laser. The optical element 25A in FIG. 10 shows a case of a cylindrical shape and a case where there is one emission region including the emission point p0.
 図10(a)は、送信側の光素子25AであるVCSELのXZ断面の概要を示す。s1は、光素子25Aの上面である発光面を示す。面発光型である光素子25Aは、基板面に平行なXY方向の発光面s1において、基板面に垂直なZ方向に共振して面発光することにより、出射点p0からZ方向への光aを出射する。発光面s1のX方向中心位置に、出射点p0を含む出射領域を有する。s2は、光素子25Aの内部の活性層ないし出射部を示す。s3は、光素子25の電極端子ないしその位置を示す。電極端子s3に対して前述の配線22が接続される。 FIG. 10A shows an outline of an XZ section of a VCSEL which is the optical element 25A on the transmission side. s1 indicates a light emitting surface which is the upper surface of the optical element 25A. The surface-emitting optical element 25A emits light a in the Z direction from the emission point p0 by resonating in the Z direction perpendicular to the substrate surface on the light emitting surface s1 in the XY direction parallel to the substrate surface. Is emitted. An emission region including the emission point p0 is provided at the center position in the X direction of the light emitting surface s1. s2 represents an active layer or emission part inside the optical element 25A. s3 indicates the electrode terminal of the optical element 25 or its position. The aforementioned wiring 22 is connected to the electrode terminal s3.
 図10(b)は、図10(a)の光素子25Aの上面におけるXY平面での概要を示す。発光面s1の円形の中心に、1つの出射点p0を含む出射領域を有する。また、光素子25の円形の上面における外周部に電極端子s3を有する。 FIG. 10B shows an outline on the XY plane on the upper surface of the optical element 25A in FIG. An emission region including one emission point p0 is provided at the circular center of the light emitting surface s1. In addition, an electrode terminal s3 is provided on the outer periphery of the circular upper surface of the optical element 25.
 図11は、上記送信側の光素子25AであるVCSELの変形例である光素子25Abの構成を示す。図11の光素子25Abは、直方体形状の場合であり、出射点p0を出射領域が複数、アレイ状に存在する場合を示す。図11(a)は、光素子25AbのXZ断面の概要を示す。光素子25Aの上面の発光面s1において複数の出射点p0を含む出射領域を有する。図11(b)は、光素子25Abの上面のXY平面の概要を示す。発光面s1の矩形において、出射点p0を含む出射領域s4が複数、2次元アレイ状に配置されている。 FIG. 11 shows a configuration of an optical element 25Ab that is a modification of the VCSEL that is the optical element 25A on the transmission side. The optical element 25Ab in FIG. 11 is a rectangular parallelepiped shape, and shows a case where the emission point p0 has a plurality of emission regions in an array. FIG. 11A shows an outline of the XZ section of the optical element 25Ab. The light emitting surface s1 on the upper surface of the optical element 25A has an emission region including a plurality of emission points p0. FIG. 11B shows an outline of the XY plane of the upper surface of the optical element 25Ab. In the rectangle of the light emitting surface s1, a plurality of emission regions s4 including the emission point p0 are arranged in a two-dimensional array.
 [機械的接続例]
 図12は、実施の形態1の光インターコネクト装置1の変形例として、工程S7及び接続C2における、光コネクタ装置20とパッケージ基板11との機械的接続の構成一例のXZ断面の概要を示す。図12は、パッケージ基板11上に光コネクタ装置20を接続した状態において、前述の図1の電気的な接続とは別に、パッケージ基板11に対しレンズ構造体21を着脱可能に機械的に接続して保持する手段である保持部121を設けた構成を示す。
[Mechanical connection example]
FIG. 12 shows an outline of an XZ cross section of an example of the configuration of mechanical connection between the optical connector device 20 and the package substrate 11 in step S7 and connection C2, as a modification of the optical interconnect device 1 of the first embodiment. FIG. 12 shows a state in which the lens structure 21 is detachably mechanically connected to the package substrate 11 separately from the electrical connection shown in FIG. The structure which provided the holding | maintenance part 121 which is a means to hold is shown.
 保持部121は、例えば、XY平面において、レンズ構造体21の所定の箇所、例えば四隅などの外周部の位置に対応させて、パッケージ基板11上の所定の位置に設けられる。前述の接続C2の際、Z方向において、パッケージ基板11上の保持部121に対し、光コネクタ装置20のレンズ構造体21の四隅などの所定の箇所が装着され、保持される。保持部121は、例えば樹脂材料などによる構造物が可能である。また、保持部12は、図12の構成に限らず、例えばネジ止めなど、各種の手段を適用可能である。 The holding unit 121 is provided at a predetermined position on the package substrate 11 so as to correspond to a predetermined portion of the lens structure 21, for example, the position of the outer peripheral portion such as the four corners, on the XY plane. At the time of the above-described connection C2, predetermined locations such as the four corners of the lens structure 21 of the optical connector device 20 are mounted and held on the holding portion 121 on the package substrate 11 in the Z direction. The holding part 121 can be a structure made of, for example, a resin material. Further, the holding unit 12 is not limited to the configuration of FIG. 12, and various means such as screwing can be applied.
 [光インターコネクトシステム(2)]
 図13は、光インターコネクト装置1を含む光インターコネクトシステムの機能ブロックの構成例を示す。図13は、特に光インターコネクトシステムの第2の構成例として、送信及び受信の双方向の光伝送が可能な構成を有する2つの光インターコネクト装置1Cを光ケーブル装置30で接続した構成例を示す。
[Optical interconnect system (2)]
FIG. 13 shows a configuration example of functional blocks of an optical interconnect system including the optical interconnect device 1. FIG. 13 shows a configuration example in which two optical interconnect devices 1C having a configuration capable of bidirectional transmission and reception are connected by an optical cable device 30 as a second configuration example of the optical interconnect system.
 2つの光インターコネクト装置1Cは、いずれも、送信機能2Aと受信機能2Bとの両方を備える。送信機能2A及び受信機能2Bを構成する要素については、図3の要素と同様である。例えば左側の第1の光インターコネクト装置1Cは、光素子駆動IC15として、送信側光素子駆動IC15A及び受信側光素子駆動IC15Bを備え、光コネクタ装置15として、送信側光コネクタ装置20A及び受信側光コネクタ装置20Bを備える。送信側光素子駆動IC15Aと受信側光素子駆動IC15Bとは、通信可能に配線12で接続されている。 The two optical interconnect devices 1C each have both the transmission function 2A and the reception function 2B. The elements constituting the transmission function 2A and the reception function 2B are the same as the elements in FIG. For example, the first optical interconnect device 1 </ b> C on the left side includes a transmission-side optical element drive IC 15 </ b> A and a reception-side optical element drive IC 15 </ b> B as the optical element drive IC 15, and the transmission-side optical connector device 20 </ b> A and the reception-side light as the optical connector device 15. A connector device 20B is provided. The transmitting side optical element driving IC 15A and the receiving side optical element driving IC 15B are connected by a wiring 12 so as to be communicable.
 光インターコネクト装置1Cの実装の形態は、例えば前述のパッケージ基板11のXY平面において、Y方向に、上記送信機能2Aの部品と、受信機能2Bの部品とを並列させる配置で搭載する形態が挙げられる。 Examples of the mounting form of the optical interconnect device 1C include a form in which the components of the transmission function 2A and the components of the reception function 2B are mounted in parallel in the Y direction on the XY plane of the package substrate 11 described above. .
 なお光コネクタ装置20において、送信側光コネクタ装置20Aと受信側光コネクタ装置20Bとは、後述の図14の例のように、1つのレンズ構造体21に共通化して実装された形態としてもよい。 In the optical connector device 20, the transmission side optical connector device 20 </ b> A and the reception side optical connector device 20 </ b> B may be configured to be mounted in common on one lens structure 21 as in the example of FIG. 14 described later. .
 左側の第1の光インターコネクト装置1Cの送信側光コネクタ装置20Aは、右側の第2の光インターコネクト装置1Cの受信側光コネクタ装置20Bと、光ファイバ部33Aで接続されている。同様に、右側の第2の光インターコネクト装置1Cの送信側光コネクタ装置20Aは、左側の第1の光インターコネクト装置1Cの受信側光コネクタ装置20Bと、光ファイバ部33Bで接続されている。なお光ケーブル装置30における光ファイバ部33Aと光ファイバ部33Bは、後述の図14の例のように、2本の別の光ファイバで構成されてもよいし、1本の共通化された光ファイバで構成されてもよい。 The transmission side optical connector device 20A of the first optical interconnect device 1C on the left side is connected to the reception side optical connector device 20B of the second optical interconnect device 1C on the right side by an optical fiber portion 33A. Similarly, the transmission side optical connector device 20A of the second optical interconnect device 1C on the right side is connected to the reception side optical connector device 20B of the first optical interconnect device 1C on the left side by an optical fiber portion 33B. Note that the optical fiber portion 33A and the optical fiber portion 33B in the optical cable device 30 may be composed of two separate optical fibers as in the example of FIG. 14 described later, or one common optical fiber. It may be constituted by.
 図4(b)は、図13の双方向の光伝送が可能な構成に対応した光ケーブル装置30を示す。光ケーブル装置30は、送信機能2A及び受信機能2Bの両方を備える2つの光コネクタ装置20を両端として、それらを接続する光ファイバ部33を有する。図4(b)の光ファイバ部33は、特に送信側の光ファイバ部33Aと受信側の光ファイバ部33Bとを1本の光ファイバ部33として共通化した構成を有する。 FIG. 4B shows the optical cable device 30 corresponding to the configuration capable of bidirectional optical transmission in FIG. The optical cable device 30 has two optical connector devices 20 having both the transmission function 2A and the reception function 2B as both ends, and an optical fiber portion 33 that connects them. The optical fiber section 33 in FIG. 4B has a configuration in which the transmission-side optical fiber section 33A and the reception-side optical fiber section 33B are shared as one optical fiber section 33.
 [光コネクタ装置の平面構成例]
 図14は、図13の光インターコネクト装置1Cの光コネクタ装置20等の実装構成例として、XY平面の構成の概要を示す。なお図14のXY平面の構成は、前述の図1等のXZ断面の構成と概略対応している。なおXY平面における光素子25A、光素子25B、及び凹部の形状を図14では図11に対応した矩形で示しているが、前述のように光素子25の実装の詳細に応じて図10の円形などの各種の形状が可能である。
[Example of planar configuration of optical connector device]
FIG. 14 shows an outline of the configuration of the XY plane as a mounting configuration example of the optical connector device 20 and the like of the optical interconnect device 1C of FIG. The configuration of the XY plane in FIG. 14 roughly corresponds to the configuration of the XZ cross section in FIG. Note that the shapes of the optical element 25A, the optical element 25B, and the recess in the XY plane are shown by rectangles corresponding to FIG. 11 in FIG. 14, but as described above, the circular shape of FIG. Various shapes are possible.
 図14は、光コネクタ装置20のXY平面の第1の構成例である光コネクタ装置20Caを示す。光コネクタ装置20Caは、1つのレンズ構造体21において、前述の送信側光コネクタ装置20Aと受信側光コネクタ装置20Bとを統合し、送信側光コネクタ部20a及び受信側光コネクタ部20bとして備える。光コネクタ装置20Caは、レンズ構造体21において、Y方向で、送信用の光素子25Aと受信用の光素子25Bとが並列で配置される。光コネクタ装置20Caは、レンズ構造体21における送信側光コネクタ部20aの凹部に送信用の光素子25Aが搭載され、受信側光コネクタ部20bの凹部に受信用の光素子25Bが搭載される。 FIG. 14 shows an optical connector device 20Ca that is a first configuration example of the XY plane of the optical connector device 20. The optical connector device 20Ca integrates the above-described transmission-side optical connector device 20A and the reception-side optical connector device 20B in one lens structure 21, and is provided as a transmission-side optical connector portion 20a and a reception-side optical connector portion 20b. In the optical connector device 20Ca, in the lens structure 21, the transmitting optical element 25A and the receiving optical element 25B are arranged in parallel in the Y direction. In the optical connector device 20Ca, the transmitting optical element 25A is mounted in the concave portion of the transmitting-side optical connector portion 20a in the lens structure 21, and the receiving optical element 25B is mounted in the concave portion of the receiving-side optical connector portion 20b.
 送信側光コネクタ部20aは、X方向において、前述の光素子駆動IC15Aと、光素子25Aとが配線12で接続される。また送信側光コネクタ部20aは、X方向において、光素子25Aと送信用の光ファイバ部33Aとが直線的に配置され接続されている。aは光素子25Aからの出射光を示す。受信側光コネクタ部20bは、X方向において、前述の光素子駆動IC15Bと、光素子25Bとが配線12で接続される。また受信側光コネクタ部20bは、X方向において、光素子25Bと受信用の光ファイバ部33Bとが直線的に配置され接続されている。bは光素子25Bへの入射光を示す。 In the transmission side optical connector portion 20a, the optical element driving IC 15A and the optical element 25A are connected by the wiring 12 in the X direction. In the transmission side optical connector portion 20a, the optical element 25A and the transmission optical fiber portion 33A are linearly arranged and connected in the X direction. a shows the emitted light from the optical element 25A. In the receiving side optical connector portion 20b, the optical element driving IC 15B and the optical element 25B are connected by the wiring 12 in the X direction. In the receiving side optical connector portion 20b, the optical element 25B and the receiving optical fiber portion 33B are linearly arranged and connected in the X direction. b shows the incident light to the optical element 25B.
 図15は、図14とは別の、光コネクタ装置20のXY平面の第2の構成例である光コネクタ装置20Cbを示す。光コネクタ装置20Cbは、更に、送信用の光ファイバ部33Aと受信用の光ファイバ部33Bとを1本の光ファイバ部33として共通化した構成を有する。また光コネクタ装置20Cbは、共通化された光ファイバ部33の構成に対応して、レンズ構造体21において、送信側の光路の一部と受信側の光路の一部とを共通化する共通光学系部151を有する。共通光学系部151は、例えば、送信側の光素子25Aからの出射光aにおける前述のB-B線の光軸のX方向の光路を、Y方向の位置が異なる光ファイバ部33の端部へと導くために、当該X方向の光軸からY方向へマイナス45度の方向へ光を曲げる。そして、共通光学系部151は、当該マイナス45度の方向の光路から、光ファイバ部33の端部の位置で、再度X方向の光軸へと戻すように、プラス45度分、光を曲げる。受信側の光素子25Bへの入射光bに関しても上記と同様に共通光学系部151で光路の方向が変化される。 FIG. 15 shows an optical connector device 20Cb which is a second configuration example of the XY plane of the optical connector device 20, which is different from FIG. The optical connector device 20 </ b> Cb further has a configuration in which the transmission optical fiber portion 33 </ b> A and the reception optical fiber portion 33 </ b> B are shared as one optical fiber portion 33. Further, the optical connector device 20Cb corresponds to the common configuration of the optical fiber portion 33, and in the lens structure 21, a common optical unit that shares a part of the optical path on the transmission side and a part of the optical path on the reception side. It has a system part 151. The common optical system 151 includes, for example, an end portion of the optical fiber portion 33 in which the optical path in the X direction of the optical axis of the BB line in the outgoing light a from the optical element 25A on the transmission side is different in the Y direction. Is bent from the optical axis in the X direction toward the Y direction in the direction of minus 45 degrees. Then, the common optical system unit 151 bends the light by plus 45 degrees so that the optical path in the minus 45 degree direction returns to the optical axis in the X direction again at the position of the end of the optical fiber part 33. . Regarding the incident light b to the optical element 25B on the receiving side, the direction of the optical path is changed by the common optical system 151 as described above.
 他の実施の形態として、光コネクタ装置20は、1つのレンズ構造体21において、Y方向などで複数の光素子25を並列で配置して上記と同様に内蔵させた形態が可能である。 As another embodiment, the optical connector device 20 may have a configuration in which a plurality of optical elements 25 are arranged in parallel in the Y direction or the like in a single lens structure 21 and are built in the same manner as described above.
 [変形例]
 実施の形態1における光素子25、配線22、及びレンズ構造体21の凹部26などの構成については、上述した構成に限らず、以下に示すような各種の変形例が可能である。実装上用いる光素子25の部品の形状などに合わせて、レンズ構造体21の凹部26及び配線22の形状などが設計される。
[Modification]
The configuration of the optical element 25, the wiring 22, and the concave portion 26 of the lens structure 21 in Embodiment 1 is not limited to the configuration described above, and various modifications as described below are possible. The shapes of the concave portions 26 and the wirings 22 of the lens structure 21 are designed according to the shape of the components of the optical element 25 used for mounting.
 [光素子の搭載の変形例(1)]
 図16は、レンズ構造体21の凹部26への光素子25の搭載に関する第1の変形例を示す。図16の光素子25は、一定半径の単純な円柱の形状ではなく、Z方向において2段の円柱の形状である。即ち、図16の光素子25は、XY平面での幅として、2種類の幅であるa1とa2を有する。発光面s1を持つ上面側のXY方向の幅a1が、下面側の幅a2よりも小さい。レンズ構造体21の凹部26は、この光素子25の形状に対応して、2段の幅を持つ形状を有する。また図16は、光素子25の電極端子s3が例えば下側の円柱部の上面の外周部に設けられている場合を示す。これに対応して、工程S4及び接続C1の際、凹部26における1段目の凹部に配線22が形成され、当該配線22が電極端子s3と接続される。また図16は、光素子25の下面と、レンズ構造体21の底面f1とが、Z方向で概略同じ高さに揃っている場合を示す。
[Variation of mounting optical element (1)]
FIG. 16 shows a first modification related to mounting of the optical element 25 in the recess 26 of the lens structure 21. The optical element 25 in FIG. 16 has a shape of a two-stage cylinder in the Z direction, not a simple cylinder shape with a fixed radius. That is, the optical element 25 of FIG. 16 has two types of widths a1 and a2 as widths on the XY plane. The width a1 in the XY direction on the upper surface side having the light emitting surface s1 is smaller than the width a2 on the lower surface side. The concave portion 26 of the lens structure 21 has a shape having a width of two steps corresponding to the shape of the optical element 25. FIG. 16 shows a case where the electrode terminal s3 of the optical element 25 is provided, for example, on the outer peripheral portion of the upper surface of the lower cylindrical portion. Correspondingly, in the process S4 and the connection C1, the wiring 22 is formed in the first-stage recess in the recess 26, and the wiring 22 is connected to the electrode terminal s3. FIG. 16 shows a case where the lower surface of the optical element 25 and the bottom surface f1 of the lens structure 21 are substantially at the same height in the Z direction.
 [光素子の搭載の変形例(2)]
 図17は、レンズ構造体21の凹部26への光素子25の搭載に関する第2の変形例を示す。図17の光素子25は、側面に電極端子s3を有する。工程S4及び接続C1の際、まずレンズ構造体21の凹部26の側面及びレンズ構造体21の底面f1の一部にわたって配線22が形成される。そして、凹部26の底面に対して光素子25が搭載され、凹部26の側面に形成された配線22と、光素子25の側面の電極端子s3とが接続される。また図17は、光素子25の下面と、レンズ構造体21の底面f1とが、Z方向で概略同じ高さに揃っている場合を示す。
[Variation of mounting optical element (2)]
FIG. 17 shows a second modification regarding the mounting of the optical element 25 in the concave portion 26 of the lens structure 21. The optical element 25 in FIG. 17 has an electrode terminal s3 on the side surface. In the process S4 and the connection C1, first, the wiring 22 is formed over the side surface of the concave portion 26 of the lens structure 21 and a part of the bottom surface f1 of the lens structure 21. Then, the optical element 25 is mounted on the bottom surface of the recess 26, and the wiring 22 formed on the side surface of the recess 26 is connected to the electrode terminal s3 on the side surface of the optical element 25. FIG. 17 shows a case where the lower surface of the optical element 25 and the bottom surface f1 of the lens structure 21 are substantially at the same height in the Z direction.
 [光素子の搭載の変形例(3)]
 図18は、レンズ構造体21の凹部26への光素子25の搭載に関する第3の変形例を示す。図18の光素子25は、発光面s1を有する上面とは反対側の下側における外周部に電極端子s3を有する。工程S4及び接続C1の際、まずレンズ構造体21の凹部26の側面の一部及びレンズ構造体21の底面f1の一部にわたって配線22が形成される。そして、凹部26の底面に対して光素子25が搭載され、光素子25の下面側の電極端子s3のZ方向に伸びた部分と、レンズ構造体21の凹部26の側面の配線22とが接続される。凹部26のZ方向の深さは、光素子25のZ方向の高さよりも大きい。
[Variation of mounting optical element (3)]
FIG. 18 shows a third modification regarding the mounting of the optical element 25 in the recess 26 of the lens structure 21. The optical element 25 in FIG. 18 has an electrode terminal s3 on the outer peripheral portion on the lower side opposite to the upper surface having the light emitting surface s1. In the process S4 and the connection C1, the wiring 22 is first formed over a part of the side surface of the concave portion 26 of the lens structure 21 and a part of the bottom surface f1 of the lens structure 21. The optical element 25 is mounted on the bottom surface of the concave portion 26, and the portion extending in the Z direction of the electrode terminal s 3 on the lower surface side of the optical element 25 is connected to the wiring 22 on the side surface of the concave portion 26 of the lens structure 21. Is done. The depth of the recess 26 in the Z direction is larger than the height of the optical element 25 in the Z direction.
 [効果等]
 以上のように、実施の形態1の光インターコネクト装置1及び光コネクタ装置20等によれば、電気部品である電子回路基板10と光部品である光コネクタ装置20とで明確に分離された構成を有するので、比較例の光素子915と光コネクタ装置920のレンズ構造体921との調芯を含む接続の工程、及び当該工程を含む製造プロセスを低コスト化できる。これにより光インターコネクト装置1及び光コネクタ装置20等を低コストで提供できる。また実施の形態1によれば、光素子25が内蔵された一体的な光部品としての光コネクタ装置20、及び電子回路基板10と光コネクタ装置20との接続C2が電気的な接続であり容易である構成などを有するので、光素子25の交換が容易である等、光インターコネクト装置1及び光コネクタ装置20等に関する保守交換性に優れる。
[Effects]
As described above, according to the optical interconnect device 1 and the optical connector device 20 according to the first embodiment, the electronic circuit board 10 that is an electrical component and the optical connector device 20 that is an optical component are clearly separated. Therefore, the cost of the connection process including alignment between the optical element 915 of the comparative example and the lens structure 921 of the optical connector device 920 and the manufacturing process including the process can be reduced. Thereby, the optical interconnect device 1 and the optical connector device 20 can be provided at low cost. In addition, according to the first embodiment, the optical connector device 20 as an integrated optical component incorporating the optical element 25 and the connection C2 between the electronic circuit board 10 and the optical connector device 20 are electrical connections and easy. Therefore, it is easy to replace the optical element 25, and the maintenance and replaceability of the optical interconnect device 1 and the optical connector device 20 is excellent.
 <実施の形態2>
 図19を用いて、実施の形態2の光インターコネクト装置1について説明する。実施の形態2は、実施の形態1の光インターコネクト装置1の構成を前提とし、追加される要素として、図19に示すように、光コネクタ装置20Dのレンズ構造体21に、平凸レンズ27を有する。なお実施の形態2は、送信側の光インターコネクト装置1Aの場合で説明する。
<Embodiment 2>
The optical interconnect device 1 according to the second embodiment will be described with reference to FIG. The second embodiment is based on the configuration of the optical interconnect device 1 of the first embodiment. As an added element, as shown in FIG. 19, the lens structure 21 of the optical connector device 20D has a plano-convex lens 27. . The second embodiment will be described in the case of the optical interconnect device 1A on the transmission side.
 図19は、実施の形態2の光インターコネクト装置1における光コネクタ装置20DのXZ断面の構成を示す。レンズ構造体21は、A-A線の光軸における光素子25の出射点p0に対応した凹部26の点p1の位置に、平凸レンズ27を有する。平凸レンズ27は、集光レンズである。平凸レンズ27の平面側は、凹部26の底面に配置され、当該平面の中心点が凹部26の点p1に一致する。平凸レンズ27の凸面側は、レンズ構造体21の内側、Z方向上方の向きで配置される。平凸レンズ27の焦点は、A-A線の光軸上に存在する。 FIG. 19 shows an XZ cross-sectional configuration of the optical connector device 20D in the optical interconnect device 1 of the second embodiment. The lens structure 21 has a plano-convex lens 27 at the position of the point p1 of the recess 26 corresponding to the emission point p0 of the optical element 25 on the optical axis of the AA line. The plano-convex lens 27 is a condenser lens. The plane side of the plano-convex lens 27 is disposed on the bottom surface of the recess 26, and the center point of the plane coincides with the point p 1 of the recess 26. The convex surface side of the plano-convex lens 27 is disposed on the inner side of the lens structure 21 and in the upward direction in the Z direction. The focal point of the plano-convex lens 27 exists on the optical axis of the AA line.
 平凸レンズ27を含むレンズ構造体21により構成される光路は、A-A線の光軸において、光素子25の点p0からの出射光が、平凸レンズ27の平面側の点p1から入射され、凸面側から出射する。平凸レンズ27からのZ方向への出射光が、45度ミラー24の点p2の付近で90度全反射され、X方向への光となる。B-B線の光軸において、点p2からのX方向への光は、光ファイバ接続部23の点p3から、光ファイバ部33の端部のコアに入射される。 In the optical path constituted by the lens structure 21 including the plano-convex lens 27, the outgoing light from the point p0 of the optical element 25 is incident from the point p1 on the plane side of the plano-convex lens 27 on the optical axis of the line AA. Emits from the convex side. Light emitted from the plano-convex lens 27 in the Z direction is totally reflected by 90 degrees near the point p2 of the 45 degree mirror 24, and becomes light in the X direction. On the optical axis of the BB line, light in the X direction from the point p2 enters the core at the end of the optical fiber portion 33 from the point p3 of the optical fiber connection portion 23.
 実施の形態2のレンズ構造体21の光路における出射光aは、平凸レンズ27の集光レンズとしての働きにより、光の幅及び面積が小さくなる。実施の形態2のレンズ構造体21の光路におけるZ方向の光路部のX方向の幅h1及びX方向の光路部のY方向の幅h2は、実施の形態1のレンズ構造体21の光路における同じ箇所の幅に比べて狭くなる。これにより、実施の形態2の光コネクタ装置20Dは、点p3から光ファイバ部33の端部のコア32へ入射される光の光量が、実施の形態1よりも増える。即ち、実施の形態2は、光伝送の効率を向上することができる。 The outgoing light a in the optical path of the lens structure 21 of the second embodiment has a light width and an area that are reduced by the action of the plano-convex lens 27 as a condenser lens. The width h1 in the X direction of the optical path portion in the Z direction and the width h2 in the Y direction of the optical path portion in the X direction in the optical path of the lens structure 21 in the second embodiment are the same in the optical path of the lens structure 21 in the first embodiment. It becomes narrower than the width of the part. Thereby, in the optical connector device 20D according to the second embodiment, the amount of light incident on the core 32 at the end of the optical fiber portion 33 from the point p3 is larger than that in the first embodiment. That is, Embodiment 2 can improve the efficiency of optical transmission.
 上記実施の形態2は、点p1から点p2へのZ方向の光路部の途中に平凸レンズ27を設けた形態であるが、これに限らず、実施の形態2の変形例として、点p2から点p3へのX方向の光路部の途中に平凸レンズ27を設けた形態としてもよい。また受信側の光インターコネクト装置1Bに適用する場合、前述の図6の入射光bのように、光の方向が逆になるので、それに合わせて、レンズ構造体21に平凸レンズ27の向きを逆にして設けた形態とすればよい。 In the second embodiment, the plano-convex lens 27 is provided in the middle of the optical path portion in the Z direction from the point p1 to the point p2. However, the present invention is not limited to this. A plano-convex lens 27 may be provided in the middle of the optical path portion in the X direction to the point p3. Further, when applied to the optical interconnect device 1B on the reception side, the direction of the light is reversed as in the case of the incident light b in FIG. 6 described above, and accordingly, the direction of the plano-convex lens 27 is reversed to the lens structure 21 accordingly. It is sufficient to adopt the form provided as above.
 <実施の形態3>
 図20を用いて、実施の形態3の光インターコネクト装置1について説明する。実施の形態3は、実施の形態1の光インターコネクト装置1の構成を前提とし、追加される要素として、図20に示すように、光コネクタ装置20Eのレンズ構造体21の凹部26において、光素子26のZ方向下側に蓋部28を有する。
<Embodiment 3>
The optical interconnect device 1 according to the third embodiment will be described with reference to FIG. The third embodiment is based on the configuration of the optical interconnect device 1 of the first embodiment. As an added element, as shown in FIG. 20, in the concave portion 26 of the lens structure 21 of the optical connector device 20E, an optical element is provided. 26 has a lid portion 28 on the lower side in the Z direction.
 図20は、実施の形態3の光インターコネクト装置1における光コネクタ装置20EのXZ断面の構成を示す。前述の製造時の工程S4及び接続C1の際、レンズ構造体21の凹部26に、配線22を介して、光素子25が搭載される。そして実施の形態3では、更に、凹部26の光素子25のZ方向下側に近接して、蓋部28が搭載される。例えば、レンズ構造体21の底面f1が配線22を除いて平坦になるように、Z方向における凹部26の深さと光素子25の高さとに合わせて、蓋部28の高さが設計される。またレンズ構造体21における蓋部28は、光素子25に対して固定されてもよいし、レンズ構造体21の側面などに対して固定されてもよい。 FIG. 20 shows a configuration of an XZ cross section of the optical connector device 20E in the optical interconnect device 1 of the third embodiment. In the above-described manufacturing step S4 and connection C1, the optical element 25 is mounted in the concave portion 26 of the lens structure 21 via the wiring 22. In the third embodiment, the lid portion 28 is further mounted close to the lower side of the concave portion 26 in the Z direction of the optical element 25. For example, the height of the lid portion 28 is designed according to the depth of the concave portion 26 and the height of the optical element 25 in the Z direction so that the bottom surface f1 of the lens structure 21 is flat except for the wiring 22. The lid portion 28 in the lens structure 21 may be fixed to the optical element 25 or may be fixed to the side surface of the lens structure 21 or the like.
 凹部26が蓋部28が搭載されることにより、光素子25は、レンズ構造体21の底面f1で外側に露出する部分が無くなる。レンズ構造体21の底面f1は、パッケージ基板11側の配線12と接続される部分の配線22を除き、蓋部301を含めて、概略的に平坦なXY平面になる。レンズ構造体21の平坦な底面f1において配線22の一部のみが外部に露出した状態となる。 By mounting the lid portion 28 on the concave portion 26, the optical element 25 has no portion exposed to the outside at the bottom surface f <b> 1 of the lens structure 21. The bottom surface f <b> 1 of the lens structure 21 is a substantially flat XY plane including the lid portion 301 except for the portion of the wiring 22 connected to the wiring 12 on the package substrate 11 side. Only a part of the wiring 22 is exposed to the outside on the flat bottom surface f1 of the lens structure 21.
 蓋部28は、レンズ構造体21と同じ材料で構成されてもよいし、別の材料で構成されてもよい。即ち、レンズ構造体21の一部として蓋部28を含む構成としてもよいし、レンズ構造体21とは別の部品として蓋部28を設ける構成としてもよい。また蓋部28は、レンズ構造体21に対して取り付け及び取り外しが可能な構造としてもよい。また蓋部28は、更に、凹部26において光素子25に接触して固定する構造としてもよい。その場合、凹部26内における光素子25の位置及び光軸の保持性が高まる。 The lid portion 28 may be made of the same material as the lens structure 21 or may be made of another material. That is, the lid 28 may be included as a part of the lens structure 21, or the lid 28 may be provided as a separate component from the lens structure 21. The lid 28 may have a structure that can be attached to and detached from the lens structure 21. Further, the lid portion 28 may be configured to be fixed in contact with the optical element 25 in the concave portion 26. In this case, the position of the optical element 25 in the recess 26 and the optical axis retainability are enhanced.
 <実施の形態4>
 図21~図23を用いて、実施の形態4の光インターコネクト装置1について説明する。実施の形態4は、図21等に示すように、レンズ構造体21の側面に凹部26が設けられ、当該側面の凹部26に面発光型の光素子25が搭載され、これによりレンズ構造体21はX方向の直線的な光路を構成する。また実施の形態4は、光コネクタ装置20とパッケージ基板11との電気的及び機械的な接続の手段として、プレスフィット方式のスプリングコネクタを用いる。なお実施の形態4の光インターコネクト装置1Fは、送信側の光インターコネクト装置1Aの場合で説明する。
<Embodiment 4>
The optical interconnect device 1 according to the fourth embodiment will be described with reference to FIGS. In the fourth embodiment, as shown in FIG. 21 and the like, a concave portion 26 is provided on the side surface of the lens structure 21, and a surface emitting optical element 25 is mounted on the concave portion 26 on the side surface. Constitutes a linear optical path in the X direction. The fourth embodiment uses a press-fit spring connector as means for electrical and mechanical connection between the optical connector device 20 and the package substrate 11. The optical interconnect device 1F according to the fourth embodiment will be described in the case of the optical interconnect device 1A on the transmission side.
 図21は、実施の形態4の光インターコネクト装置1FのXZ断面の構成を示す。光インターコネクト装置1Fは、パッケージ基板11上に、配線12を介して、送信側光素子駆動IC15A、及び送信側光コネクタ装置20Bである光コネクタ装置20F等を搭載する。光コネクタ装置20Fは、パッケージ基板11に対して、プレスフィット方式のスプリングコネクタを用いて電気的及び機械的に接続される。光コネクタ装置20F側の配線22は、接続部として、スプリングコネクタのピン41が接続されている。パッケージ基板11側の配線12は、接続部として、スプリングコネクタのソケット42が形成されている。 FIG. 21 shows an XZ cross-sectional configuration of the optical interconnect device 1F of the fourth embodiment. The optical interconnect device 1F mounts a transmission side optical element drive IC 15A and an optical connector device 20F, which is the transmission side optical connector device 20B, on the package substrate 11 via the wiring 12. The optical connector device 20F is electrically and mechanically connected to the package substrate 11 using a press-fit spring connector. The wire 22 on the optical connector device 20F side is connected to a pin 41 of a spring connector as a connection portion. The wiring 12 on the package substrate 11 side is formed with a spring connector socket 42 as a connecting portion.
 光コネクタ装置20Fは、前述の工程S7でパッケージ基板11に搭載される際は、基板面垂直方向であるZ方向において、光コネクタ装置20F側のピン41が、パッケージ基板11側のソケット42に挿入され、配線12と配線22が電気的に接続されると共に固定される。ソケット42へのピン41の圧入によりピン41の弾性部が変形してソケット42の内面に接触する。これにより、光素子駆動IC15と光素子25とが配線12及び配線22を通じて電気的に接続される。また光コネクタ装置20Fは、パッケージ基板11から取り外される際は、ピン41がソケット42から抜かれる。 When the optical connector device 20F is mounted on the package substrate 11 in the above-described step S7, the pins 41 on the optical connector device 20F side are inserted into the sockets 42 on the package substrate 11 side in the Z direction, which is the direction perpendicular to the substrate surface. Then, the wiring 12 and the wiring 22 are electrically connected and fixed. When the pin 41 is press-fitted into the socket 42, the elastic portion of the pin 41 is deformed and contacts the inner surface of the socket 42. Thereby, the optical element driving IC 15 and the optical element 25 are electrically connected through the wiring 12 and the wiring 22. Further, when the optical connector device 20 </ b> F is removed from the package substrate 11, the pins 41 are removed from the socket 42.
 図22は、実施の形態4の光コネクタ装置20FのXZ断面の構成を示す。実施の形態4の光コネクタ装置20Fのレンズ構造体21は、X方向右側のYZ平面である一方側の側面に光ファイバ接続部23を有し、光ファイバ接続部23に光ファイバ部33の端部が接続される。レンズ構造体21の点p2は、B-B線の光軸における、光ファイバ部33の端部のコアが接続される点に対応する。 FIG. 22 shows an XZ cross-sectional configuration of the optical connector device 20F of the fourth embodiment. The lens structure 21 of the optical connector device 20F according to the fourth embodiment has an optical fiber connection portion 23 on one side surface which is a YZ plane on the right side in the X direction, and the end of the optical fiber portion 33 is connected to the optical fiber connection portion 23. Parts are connected. The point p2 of the lens structure 21 corresponds to the point where the core at the end of the optical fiber portion 33 is connected on the optical axis of the BB line.
 光コネクタ装置20Fのレンズ構造体21は、X方向左側のYZ平面である他方側の側面f2に凹部26が設けられている。側面f2は、底面f1に対して直立する面である。レンズ構造体21の側面f2の凹部26に、配線22を介して、面発光型の光素子25、特に送信側の光素子25Aが搭載される。B-B線の光軸において、凹部26のYZ平面である底面に対し、光素子25の点p0を含む発光面である上面が、X方向を向く配置で搭載される。 The lens structure 21 of the optical connector device 20F has a recess 26 on the other side surface f2 which is the YZ plane on the left side in the X direction. The side surface f2 is a surface that stands upright with respect to the bottom surface f1. A surface-emitting optical element 25, particularly a transmitting-side optical element 25 </ b> A is mounted in the concave portion 26 on the side surface f <b> 2 of the lens structure 21 via the wiring 22. On the optical axis of the BB line, the upper surface, which is the light emitting surface including the point p0 of the optical element 25, is mounted in an arrangement facing the X direction with respect to the bottom surface, which is the YZ plane of the recess 26.
 これにより、レンズ構造体21により構成される光路は、光素子25の発光面の点p0に対応したレンズ構造体21の凹部26の側面の点p1から、光ファイバ接続部23の点p2までのX方向への直線の光路部を含む。即ちレンズ構造体21の光路は、X方向の直線的な光路となる。送信側の光素子25Aの点p0からのX方向への出射光aは、レンズ構造体21の点p1、点p2を経由して、光ファイバ部33のコアへ入射される。実施の形態4は、レンズ構造体21において前述の45度ミラー24を設ける必要は無い。 Thereby, the optical path constituted by the lens structure 21 extends from the point p1 on the side surface of the concave portion 26 of the lens structure 21 corresponding to the point p0 on the light emitting surface of the optical element 25 to the point p2 on the optical fiber connection portion 23. It includes a straight optical path in the X direction. That is, the optical path of the lens structure 21 is a linear optical path in the X direction. The outgoing light a in the X direction from the point p0 of the optical element 25A on the transmission side is incident on the core of the optical fiber portion 33 via the points p1 and p2 of the lens structure 21. In the fourth embodiment, it is not necessary to provide the aforementioned 45-degree mirror 24 in the lens structure 21.
 配線22は、凹部26の底面及び側面からレンズ構造体21の側面f2を経由して、レンズ構造体21の底面f1まで延在して形成される。例えば実施の形態1と同様に、光素子25の上面の外周部の電極端子が凹部26の底面の配線22に接続される。配線22の底面f1側の端部は、スプリングコネクタのピン41が接続される。43はスプリングコネクタのピン41の収容部を示す。 The wiring 22 is formed to extend from the bottom surface and side surface of the recess 26 to the bottom surface f1 of the lens structure 21 via the side surface f2 of the lens structure 21. For example, as in the first embodiment, the electrode terminals on the outer periphery of the upper surface of the optical element 25 are connected to the wiring 22 on the bottom surface of the recess 26. A pin 41 of a spring connector is connected to the end of the wiring 22 on the bottom surface f1 side. Reference numeral 43 denotes a housing portion for the pin 41 of the spring connector.
 図23は、図22に対応した、実施の形態4の光コネクタ装置20Fの接続前の状態のXZ断面の構成を示す。前述の工程S4及び接続C1の際、レンズ構造体21の凹部26の底面からレンズ構造体21の側面f2にわたって配線22が形成される。チップマウンタ等の製造装置を用いて、光素子25は、レンズ構造体21に対し、X方向のB-B線の光軸において、光素子25の点p0、レンズ構造体21の凹部26の底面の点p1、及び光ファイバ接続部33の点p2が揃うように調芯しながら接続される。 FIG. 23 shows a configuration of an XZ cross section in a state before connection of the optical connector device 20F of the fourth embodiment, corresponding to FIG. In the above-described step S4 and connection C1, the wiring 22 is formed from the bottom surface of the concave portion 26 of the lens structure 21 to the side surface f2 of the lens structure 21. Using a manufacturing apparatus such as a chip mounter, the optical element 25 is positioned at the point p0 of the optical element 25 and the bottom surface of the concave portion 26 of the lens structure 21 with respect to the lens structure 21 on the optical axis of the BB line in the X direction. The point p1 and the point p2 of the optical fiber connecting portion 33 are connected while being aligned.
 実施の形態4の光インターコネクト装置1Fによれば、実施の形態1等と同様に、調芯を含む接続の工程を低コスト化でき、これにより低コストで保守交換性に優れた光インターコネクト装置1F等を提供できる。実施の形態4における電子回路基板10と光コネクタ装置20との接続の方式によれば、配線12と配線22との無はんだ接続が可能である。実施の形態4の接続の方式によれば、例えば光素子25が故障して光コネクタ装置20ごと交換する際、交換の作業はピン41とソケット42との抜き差しだけで済み、容易である。 According to the optical interconnect device 1F of the fourth embodiment, as in the first embodiment and the like, it is possible to reduce the cost of the connection process including alignment, thereby reducing the cost and maintaining and exchanging the optical interconnect device 1F. Etc. can be provided. According to the connection method between the electronic circuit board 10 and the optical connector device 20 in the fourth embodiment, the wiring 12 and the wiring 22 can be connected without soldering. According to the connection method of the fourth embodiment, for example, when replacing the optical connector device 20 due to a failure of the optical element 25, the replacement work can be performed simply by inserting and removing the pin 41 and the socket 42.
 実施の形態4の変形例として、レンズ構造体21において凹部26の光素子25と光ファイバ部33の端部との間に平凸レンズ等の集光手段が設けられることで、光ファイバ部33のコアに入射される光量を調整する形態としてもよい。また実施の形態4の変形例として、スプリングコネクタによる接続の方式に限らず、例えば実施の形態1と同様にレンズ構造体21の底面f1の一部まで延在して形成される配線22を設け、当該底面f1の配線22がパッケージ基板11側の配線12に接続される形態としてもよい。 As a modification of the fourth embodiment, in the lens structure 21, a condensing unit such as a plano-convex lens is provided between the optical element 25 of the concave portion 26 and the end of the optical fiber portion 33. The amount of light incident on the core may be adjusted. Further, as a modification of the fourth embodiment, not only the connection method by the spring connector but also the wiring 22 formed to extend to a part of the bottom surface f1 of the lens structure 21 is provided as in the first embodiment, for example. The wiring 22 on the bottom surface f1 may be connected to the wiring 12 on the package substrate 11 side.
 <実施の形態5>
 図24~図27を用いて、実施の形態5の光インターコネクト装置1Dについて説明する。実施の形態5は、図24等に示すように、光素子25として前述の面発光型とは異なる端面発光型の光素子を用い、レンズ構造体21の上面f3に凹部26が設けられ、当該上面f3の凹部26に光素子25が搭載され、これによりレンズ構造体21はX方向の直線的な光路を構成する。なお実施の形態5の光インターコネクト装置1Gは、送信側の光インターコネクト装置1Aの場合で説明する。
<Embodiment 5>
The optical interconnect device 1D according to the fifth embodiment will be described with reference to FIGS. In the fifth embodiment, as shown in FIG. 24 and the like, an optical element of an edge-emitting type different from the above-described surface-emitting type is used as the optical element 25, and a concave portion 26 is provided on the upper surface f3 of the lens structure 21. The optical element 25 is mounted in the concave portion 26 of the upper surface f3, whereby the lens structure 21 forms a linear optical path in the X direction. The optical interconnect device 1G according to the fifth embodiment will be described in the case of the optical interconnect device 1A on the transmission side.
 図24は、実施の形態5の光インターコネクト装置1GのXZ断面の構成を示す。光インターコネクト装置1Gは、パッケージ基板11上に、配線12を介して、送信側光素子駆動IC15A、及び送信側光コネクタ装置20Bである光コネクタ装置20G等を搭載する。光コネクタ装置20Gのレンズ構造体21は、底面f1とは反対側の、Z方向上方のXY平面である上面f3に凹部26が設けられている。上面f3の凹部26に端面発光型の光素子25Gが搭載される。後述の図27は、端面発光型の光素子25Gについて示す。実施の形態5では、光素子25Gに接続される配線22は、レンズ構造体21に設けられた貫通孔63を通じて、凹部26の底面からレンズ構造体21の底面f1までにわたって形成される。そしてレンズ構造体21の底面f1の配線22がパッケージ基板11側の配線12に対して接続される。 FIG. 24 shows an XZ cross-sectional configuration of the optical interconnect device 1G of the fifth embodiment. The optical interconnect device 1G mounts a transmission side optical element driving IC 15A and an optical connector device 20G as the transmission side optical connector device 20B on the package substrate 11 via the wiring 12. The lens structure 21 of the optical connector device 20G is provided with a recess 26 on an upper surface f3 that is an XY plane on the upper side in the Z direction on the side opposite to the bottom surface f1. An edge-emitting optical element 25G is mounted in the recess 26 on the upper surface f3. FIG. 27 described later shows the edge-emitting optical element 25G. In the fifth embodiment, the wiring 22 connected to the optical element 25G is formed from the bottom surface of the recess 26 to the bottom surface f1 of the lens structure 21 through the through-hole 63 provided in the lens structure 21. The wiring 22 on the bottom surface f1 of the lens structure 21 is connected to the wiring 12 on the package substrate 11 side.
 図25は、実施の形態5の光コネクタ装置20GのXZ断面の構成を示す。実施の形態5の光コネクタ装置20Gのレンズ構造体21は、X方向右側及びZ方向上側の領域に光ファイバ接続部23を有し、光ファイバ接続部23に光ファイバ部33の端部が接続される。レンズ構造体21の光ファイバ接続部23の点p2は、B-B線の光軸における、光ファイバ部33の端部のコアが接続される点に対応する。 FIG. 25 shows a configuration of an XZ section of the optical connector device 20G of the fifth embodiment. The lens structure 21 of the optical connector device 20G according to the fifth embodiment has the optical fiber connection portion 23 in the region on the right side in the X direction and the upper side in the Z direction, and the end portion of the optical fiber portion 33 is connected to the optical fiber connection portion 23. Is done. The point p2 of the optical fiber connection portion 23 of the lens structure 21 corresponds to the point where the core at the end of the optical fiber portion 33 is connected on the optical axis of the BB line.
 光コネクタ装置20Gのレンズ構造体21は、Z方向上方のXY平面である上面f3に凹部26が設けられている。レンズ構造体21の上面f3の凹部26に、配線22を介して、端面発光型の光素子25G、特に送信側の光素子25Aが搭載される。A-A線で示すZ方向の搭載の中心軸において、凹部26のXY平面である底面に対し、光素子25Gの点p0を含む発光面である端面がX方向右側を向く配置で、光素子25Gの下面が搭載される。 The lens structure 21 of the optical connector device 20G is provided with a recess 26 on the upper surface f3 that is the XY plane above the Z direction. An edge-emitting optical element 25G, in particular, a transmitting-side optical element 25A is mounted on the concave portion 26 of the upper surface f3 of the lens structure 21 via the wiring 22. An end face which is a light emitting surface including the point p0 of the optical element 25G faces the right side in the X direction with respect to the bottom surface which is the XY plane of the recess 26 on the central axis of the mounting in the Z direction indicated by the line AA. The lower surface of 25G is mounted.
 配線22は、凹部26の底面からZ方向に延在する貫通孔63を経由してレンズ構造体21の底面f1の一部まで延在して形成される。例えば光素子25Gの下面の外周部にある電極端子が、凹部26の底面に設けられた貫通孔63を通じて形成される配線22の一方端部と接続される。 The wiring 22 is formed to extend from the bottom surface of the recess 26 to a part of the bottom surface f1 of the lens structure 21 through a through hole 63 extending in the Z direction. For example, an electrode terminal on the outer peripheral portion of the lower surface of the optical element 25G is connected to one end portion of the wiring 22 formed through the through hole 63 provided in the bottom surface of the recess 26.
 これにより、レンズ構造体21により構成される光路は、光素子25の端面の点p0に対応したレンズ構造体21の凹部26の側面の点p1から、光ファイバ接続部23の点p2までのX方向への直線の光路部を含む。即ちレンズ構造体21の光路は、X方向の直線的な光路となる。送信側の光素子25Aの点p0からのX方向への出射光aは、レンズ構造体21の点p1、点p2を経由して、光ファイバ部33のコアへ入射される。実施の形態5は、レンズ構造体21において前述の45度ミラー24を設ける必要は無い。 Thereby, the optical path constituted by the lens structure 21 is X from the point p1 on the side surface of the concave portion 26 of the lens structure 21 corresponding to the point p0 on the end face of the optical element 25 to the point p2 on the optical fiber connection portion 23. Includes a straight optical path to the direction. That is, the optical path of the lens structure 21 is a linear optical path in the X direction. The outgoing light a in the X direction from the point p0 of the optical element 25A on the transmission side is incident on the core of the optical fiber portion 33 via the points p1 and p2 of the lens structure 21. In the fifth embodiment, it is not necessary to provide the aforementioned 45-degree mirror 24 in the lens structure 21.
 図26は、図25に対応した、実施の形態5の光コネクタ装置20Gの接続前の状態のXZ断面の構成を示す。前述の工程S4及び接続C1の際、レンズ構造体21の凹部26の底面からレンズ構造体21の底面f1への貫通孔63を通じて配線22が形成される。チップマウンタ等の製造装置を用いて、光素子25Gは、レンズ構造体21に対し、A-A線で示すZ方向の搭載の中心軸において、光素子25Gの上下面の中心点、レンズ構造体21の凹部26の底面の中心点が揃うように、調芯しながら接続される。またその搭載の際、光素子25Gは、B-B線のX方向の光軸において、光素子25Gの端面の点p0、レンズ構造体21の凹部26の側面の点p1、及び光ファイバ接続部33の点p2が揃うように、調芯しながら接続される。 FIG. 26 shows an XZ cross-sectional configuration before connection of the optical connector device 20G of the fifth embodiment, corresponding to FIG. In the above-described step S4 and connection C1, the wiring 22 is formed through the through hole 63 from the bottom surface of the concave portion 26 of the lens structure 21 to the bottom surface f1 of the lens structure 21. Using a manufacturing apparatus such as a chip mounter, the optical element 25G has a central structure on the upper and lower surfaces of the optical element 25G on the central axis of the mounting in the Z direction indicated by the line AA with respect to the lens structure 21, and the lens structure. 21 are connected while being aligned so that the center points of the bottom surfaces of the recesses 26 are aligned. When mounted, the optical element 25G has a point p0 on the end face of the optical element 25G, a point p1 on the side surface of the concave portion 26 of the lens structure 21, and an optical fiber connection portion on the optical axis in the X direction of the BB line. The connections are made while aligning so that 33 points p2 are aligned.
 更に、図25に示すように、実施の形態5の光コネクタ装置20Gは、レンズ構造体21において、凹部26と光ファイバ接続部23との間、B-B線の光軸上に、集光レンズとして働く平凸レンズ27を設けた形態としてもよい。平凸レンズ27の平面側は、その中心点が凹部26の点1に対応して配置される。平凸レンズ27の凸面側は、X方向右側の向きで配置される。平凸レンズ27は、光素子25Gの点p0からの出射光を平面側から入射して凸面側から出射し、B-B線の光軸におけるX方向の光路部におけるYZ方向の光の幅h3ないし面積を狭める。これにより光ファイバ部33の端部のコアに入射される光量を増やす。 Further, as shown in FIG. 25, the optical connector device 20G according to the fifth embodiment condenses light on the optical axis of the BB line between the concave portion 26 and the optical fiber connecting portion 23 in the lens structure 21. A plano-convex lens 27 serving as a lens may be provided. On the plane side of the plano-convex lens 27, the center point thereof is arranged corresponding to the point 1 of the recess 26. The convex surface side of the plano-convex lens 27 is arranged in the right direction in the X direction. The plano-convex lens 27 receives light emitted from the point p0 of the optical element 25G from the plane side and exits from the convex surface side, and the width h3 or the width of light in the YZ direction in the optical path portion in the X direction on the optical axis of the BB line. Narrow the area. As a result, the amount of light incident on the core at the end of the optical fiber portion 33 is increased.
 [端面発光型光素子]
 図27は、実施の形態5の光コネクタ装置20Gにおいて送信側の光素子25Aとして用いる、端面発光型の光素子25Gの構成例を示す。図27の光素子25Gは、直方体形状の場合、及び出射点p0を含む出射領域が1つの場合を示す。図27(a)は、端面発光型の光素子25GのXZ断面の概略を示す。s1は、出射点p0を含む発光面となる端面を示し、X方向右側の基板面垂直なYZ平面である。s2は、光素子25Gの内部の活性層ないし出射部を示す。s3は、光素子25Gの電極端子ないしその位置の例として下面の外周部にある場合を示す。図27(b)は、図27(a)の光素子25Gの端面s1の様子を斜視図で示す。光素子25Gは、発光面s1のY方向及びZ方向の中心位置に、出射点p0を含む出射領域を有する。光素子25Gは、端面s1における出射領域から、基板面に平行な方向であるX方向へ共振させて発光することにより、出射点p0からX方向への光aを出射する。
[Edge-emitting optical device]
FIG. 27 shows a configuration example of an edge-emitting optical element 25G used as the transmitting-side optical element 25A in the optical connector device 20G of the fifth embodiment. The optical element 25G in FIG. 27 shows a case of a rectangular parallelepiped shape and a case where there is one emission region including the emission point p0. FIG. 27A schematically shows an XZ section of the edge-emitting optical element 25G. s1 indicates an end surface serving as a light emitting surface including the emission point p0, and is a YZ plane perpendicular to the substrate surface on the right side in the X direction. s2 represents an active layer or emission part inside the optical element 25G. s3 shows the case where it exists in the outer peripheral part of a lower surface as an example of the electrode terminal of the optical element 25G, or its position. FIG. 27B is a perspective view showing the state of the end face s1 of the optical element 25G in FIG. The optical element 25G has an emission region including the emission point p0 at the center position in the Y direction and Z direction of the light emitting surface s1. The optical element 25G emits light a from the emission point p0 in the X direction by resonating in the X direction, which is a direction parallel to the substrate surface, from the emission region on the end surface s1.
 実施の形態5の光インターコネクト装置1Gによれば、実施の形態1等と同様に、調芯を含む接続の工程を低コスト化でき、これにより低コストで保守交換性に優れた光インターコネクト装置1G等を提供できる。 According to the optical interconnect device 1G of the fifth embodiment, as in the first embodiment and the like, the cost of the connection process including alignment can be reduced, thereby reducing the cost and maintaining and exchanging the optical interconnect device 1G. Etc. can be provided.
 実施の形態5の変形例として、レンズ構造体21に設ける貫通孔63は、Z方向に限らず、凹部26の側面からX方向へレンズ構造体21の側面f2へ抜ける貫通孔として設けてもよい。また実施の形態5の変形例として、レンズ構造体21に貫通孔63を設けずに、レンズ構造体21の上面f3や側面f2を経由して底面f1まで配線22を引き回して設ける形態としてもよい。 As a modification of the fifth embodiment, the through hole 63 provided in the lens structure 21 is not limited to the Z direction, and may be provided as a through hole extending from the side surface of the recess 26 to the side surface f2 of the lens structure 21 in the X direction. . As a modification of the fifth embodiment, the lens structure 21 may be provided with the wiring 22 routed to the bottom surface f1 via the top surface f3 and the side surface f2 without providing the through hole 63 in the lens structure 21. .
 <実施の形態6>
 図28を用いて、実施の形態6の光インターコネクト装置1Hについて説明する。実施の形態6は、図26に示すように、光素子25として実施の形態5と同様に端面発光型の光素子25Gを用い、実施の形態1と同様にレンズ構造体21の底面f1に凹部26が設けられ、当該底f1の凹部26に光素子25Gが搭載され、これによりレンズ構造体21はX方向の直線的な光路を構成する。なお実施の形態6の光インターコネクト装置1Hは、送信側の光インターコネクト装置1Aの場合で説明する。
<Embodiment 6>
The optical interconnect device 1H according to the sixth embodiment will be described with reference to FIG. As shown in FIG. 26, the sixth embodiment uses an edge-emitting optical element 25G as the optical element 25 in the same manner as in the fifth embodiment, and a concave portion on the bottom surface f1 of the lens structure 21 as in the first embodiment. 26, and the optical element 25G is mounted in the concave portion 26 of the bottom f1, whereby the lens structure 21 forms a linear optical path in the X direction. The optical interconnect device 1H of the sixth embodiment will be described in the case of the optical interconnect device 1A on the transmission side.
 図28は、実施の形態6の光インターコネクト装置1Hに備える光コネクタ装置20HのXZ断面の構成を示す。実施の形態6の光コネクタ装置20Hのレンズ構造体21は、X方向右側及びZ方向下側の領域に光ファイバ接続部23を有し、光ファイバ接続部23に光ファイバ部33の端部が接続される。レンズ構造体21の光ファイバ接続部23の点p2は、B-B線の光軸における、光ファイバ部33の端部のコアが接続される点に対応する。 FIG. 28 shows a configuration of an XZ section of the optical connector device 20H provided in the optical interconnect device 1H of the sixth embodiment. The lens structure 21 of the optical connector device 20H according to the sixth embodiment has the optical fiber connection portion 23 in the X direction right side and Z direction lower side regions, and the end portion of the optical fiber portion 33 is connected to the optical fiber connection portion 23. Connected. The point p2 of the optical fiber connection portion 23 of the lens structure 21 corresponds to the point where the core at the end of the optical fiber portion 33 is connected on the optical axis of the BB line.
 実施の形態6の光コネクタ装置20Hのレンズ構造体21は、底面f1に凹部26が設けられている。レンズ構造体21の底面f1の凹部26に、配線22を介して、端面発光型の光素子25G、特に送信側の光素子25Aが搭載される。光素子25Gに接続される配線22は、凹部26の底面から側面を経由してレンズ構造体21の底面f1の所定の位置までにわたって形成される。例えば光素子25Gの下面の外周部にある電極端子が、凹部26の底面に形成された配線22の一方端部と接続される。光コネクタ装置20Hは、実施の形態1と同様に、レンズ構造体21の底面f1の配線22が、パッケージ基板11の配線12に対して接続される。 The lens structure 21 of the optical connector device 20H according to the sixth embodiment has a recess 26 on the bottom surface f1. An end surface light emitting type optical element 25G, particularly a transmitting side optical element 25A is mounted in the concave portion 26 of the bottom surface f1 of the lens structure 21 via the wiring 22. The wiring 22 connected to the optical element 25G is formed from the bottom surface of the recess 26 to a predetermined position on the bottom surface f1 of the lens structure 21 via the side surface. For example, an electrode terminal on the outer peripheral portion of the lower surface of the optical element 25G is connected to one end portion of the wiring 22 formed on the bottom surface of the recess 26. In the optical connector device 20H, the wiring 22 on the bottom surface f1 of the lens structure 21 is connected to the wiring 12 on the package substrate 11 as in the first embodiment.
 前述の工程S4及び接続C1の際、チップマウンタ等の製造装置を用いて、光素子25Gは、A-A線で示すZ方向の搭載の中心軸において、凹部26の底面に対し、光素子25Gの点p0を含む発光面である端面がX方向右側を向く配置で、光素子25Gの上面または下面が搭載される。搭載の際、光素子25Gは、レンズ構造体21に対し、A-A線で示すZ方向の搭載の中心軸において、光素子25Gの上下面の中心点、レンズ構造体21の凹部26の底面の中心点が揃うように、調芯しながら接続される。またその搭載の際、光素子25Gは、B-B線のX方向の光軸において、光素子25Gの端面の点p0、レンズ構造体21の凹部26の側面の点p1、及び光ファイバ接続部33の点p2が揃うように、調芯しながら接続される。 At the time of the above-described step S4 and connection C1, using a manufacturing apparatus such as a chip mounter, the optical element 25G is placed on the center axis of the mounting in the Z direction indicated by line AA with respect to the bottom surface of the recess 26. The upper surface or the lower surface of the optical element 25G is mounted such that the end surface, which is the light emitting surface including the point p0, faces right in the X direction. At the time of mounting, the optical element 25G is located at the center point of the upper and lower surfaces of the optical element 25G and the bottom surface of the concave portion 26 of the lens structure 21 with respect to the lens structure 21 in the Z-axis mounting center axis indicated by the line AA. They are connected while aligning so that their center points are aligned. When mounted, the optical element 25G has a point p0 on the end face of the optical element 25G, a point p1 on the side surface of the concave portion 26 of the lens structure 21, and an optical fiber connection portion on the optical axis in the X direction of the BB line. The connections are made while aligning so that 33 points p2 are aligned.
 これにより、レンズ構造体21により構成される光路は、光素子25Gの端面の点p0に対応したレンズ構造体21の凹部26の側面の点p1から、光ファイバ接続部23の点p2までのX方向への直線の光路部を含む。即ちレンズ構造体21の光路は、X方向の直線的な光路となる。送信側の光素子25Aの点p0からのX方向への出射光aは、レンズ構造体21の点p1、点p2を経由して、光ファイバ部33のコアへ入射される。実施の形態6は、レンズ構造体21において前述の45度ミラー24を設ける必要は無い。 Thereby, the optical path constituted by the lens structure 21 is X from the point p1 on the side surface of the concave portion 26 of the lens structure 21 corresponding to the point p0 on the end face of the optical element 25G to the point p2 on the optical fiber connection portion 23. Includes a straight optical path to the direction. That is, the optical path of the lens structure 21 is a linear optical path in the X direction. The outgoing light a in the X direction from the point p0 of the optical element 25A on the transmission side is incident on the core of the optical fiber portion 33 via the points p1 and p2 of the lens structure 21. In the sixth embodiment, it is not necessary to provide the aforementioned 45-degree mirror 24 in the lens structure 21.
 実施の形態6の光インターコネクト装置1Hによれば、実施の形態1等と同様に、調芯を含む接続の工程を低コスト化でき、これにより低コストで保守交換性に優れた光インターコネクト装置1H等を提供できる。 According to the optical interconnect device 1H of the sixth embodiment, similarly to the first embodiment, the cost of the connection process including alignment can be reduced, thereby reducing the cost and maintaining and exchanging the optical interconnect device 1H. Etc. can be provided.
 実施の形態6の変形例として、前述の実施の形態5と同様に、レンズ構造体21において光素子25と光ファイバ接続部23との間、B-B線の光軸上に、集光レンズとして働く平凸レンズを設けた形態としてもよい。 As a modified example of the sixth embodiment, similar to the fifth embodiment described above, a condensing lens is provided between the optical element 25 and the optical fiber connecting portion 23 in the lens structure 21 and on the optical axis of the BB line. It is good also as a form which provided the plano-convex lens which works as.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 1,1A,1B,1C…光インターコネクト装置、2A…送信機能、2B…受信機能、10…電子回路基板、11…パッケージ基板、12…配線、13…はんだボール、15…光素子駆動IC、15A…送信側光素子駆動IC、15B…受信側光素子駆動IC、17…ヒートシンク、20,20Ca,20Cb,…光コネクタ装置、20A…送信側光コネクタ装置、20B…受信側光コネクタ装置、20a…送信側光コネクタ部、20b…受信側光コネクタ部、21…レンズ構造体、22…配線、23…光ファイバ接続部、24…45度ミラー、25,25A,25B…光素子、26…凹部、27…平凸レンズ、28…蓋部、30…光ケーブル装置、31…クラッド、32…コア、33…光ファイバ部、41…ピン、42…ソケット、50…基板、51…はんだボール。 DESCRIPTION OF SYMBOLS 1,1A, 1B, 1C ... Optical interconnect device, 2A ... Transmission function, 2B ... Reception function, 10 ... Electronic circuit board, 11 ... Package board, 12 ... Wiring, 13 ... Solder ball, 15 ... Optical element drive IC, 15A Transmission side optical element drive IC, 15B ... Reception side optical element drive IC, 17 ... Heat sink, 20, 20Ca, 20Cb, ... Optical connector device, 20A ... Transmission side optical connector device, 20B ... Reception side optical connector device, 20a ... Transmission side optical connector part, 20b ... Reception side optical connector part, 21 ... Lens structure, 22 ... Wiring, 23 ... Optical fiber connection part, 24 ... 45 degree mirror, 25, 25A, 25B ... Optical element, 26 ... Recessed part, 27 ... Plano-convex lens, 28 ... Lid, 30 ... Optical cable device, 31 ... Cladding, 32 ... Core, 33 ... Optical fiber part, 41 ... Pin, 42 ... Socket, 50 Board, 51 ... solder balls.

Claims (20)

  1.  光素子と光導波路との間の光路を構成し、前記光導波路の端部が接続される光導波路接続部、及び凹部を有する、レンズ構造体と、
     前記レンズ構造体に形成され、前記光素子、及び外部の基板配線部に対して電気的に接続される、配線部と、
     前記レンズ構造体の凹部に搭載され、当該搭載の際に前記光路の光軸に調芯されている、前記光素子と、を有する、光コネクタ装置。
    An optical path between the optical element and the optical waveguide, an optical waveguide connecting portion to which an end of the optical waveguide is connected, and a concave structure;
    A wiring portion formed in the lens structure and electrically connected to the optical element and an external substrate wiring portion;
    An optical connector device comprising: the optical element that is mounted in the concave portion of the lens structure and is aligned with the optical axis of the optical path at the time of mounting.
  2.  請求項1記載の光コネクタ装置において、
     前記レンズ構造体の凹部は、前記レンズ構造体における外部の基板に搭載される面である第1面に設けられ、
     前記光素子は、面発光型の発光素子であり、面発光の出射点を含む第1面が前記レンズ構造体の凹部の底面に配置され、
     前記レンズ構造体は、前記光路における出射光の方向を第1方向から第2方向へ屈曲させる光屈曲部を含み、
     前記レンズ構造体における光路は、前記光素子の面発光の出射点に対応した前記凹部の第1点と前記光屈曲部の屈曲点である第2点との間の前記第1方向への第1光路部と、前記第2点と前記光導波路接続部の第3点との間の前記第2方向への第2光路部と、を含む、光コネクタ装置。
    The optical connector device according to claim 1,
    The concave portion of the lens structure is provided on a first surface which is a surface mounted on an external substrate in the lens structure,
    The optical element is a surface-emitting type light-emitting element, and a first surface including an emission point of surface emission is disposed on the bottom surface of the concave portion of the lens structure,
    The lens structure includes a light bending portion that bends the direction of outgoing light in the optical path from a first direction to a second direction;
    The optical path in the lens structure has a first direction in the first direction between a first point of the concave portion corresponding to an emission point of surface light emission of the optical element and a second point that is a bending point of the light bending portion. An optical connector device comprising: an optical path portion; and a second optical path portion in the second direction between the second point and a third point of the optical waveguide connection portion.
  3.  請求項1記載の光コネクタ装置において、
     前記レンズ構造体は、前記凹部と前記光導波路接続部との間に配置され、前記光素子からの出射光を入射して前記光導波路の端部へ入射される光量を大きくする、第1レンズを含む、光コネクタ装置。
    The optical connector device according to claim 1,
    The lens structure is disposed between the concave portion and the optical waveguide connecting portion, and is configured to increase a light amount incident on an end portion of the optical waveguide by entering light emitted from the optical element. An optical connector device.
  4.  請求項1記載の光コネクタ装置において、
     前記レンズ構造体の凹部において前記光素子の外側に配置される蓋部を有する、光コネクタ装置。
    The optical connector device according to claim 1,
    An optical connector device having a lid portion disposed outside the optical element in the concave portion of the lens structure.
  5.  請求項1記載の光コネクタ装置において、
     前記レンズ構造体の凹部は、前記レンズ構造体における外部の基板に搭載される面である第1面に対して直立する第2面に設けられ、
     前記光素子は、面発光型の発光素子であり、面発光の出射点を含む第1面が前記レンズ構造体の凹部の底面に配置され、
     前記レンズ構造体における光路は、前記光素子の面発光の出射点に対応した前記凹部の第1点と前記光導波路接続部の第2点との間の光路部を含む、光コネクタ装置。
    The optical connector device according to claim 1,
    The concave portion of the lens structure is provided on a second surface that stands upright with respect to the first surface that is a surface mounted on an external substrate in the lens structure,
    The optical element is a surface-emitting type light-emitting element, and a first surface including an emission point of surface emission is disposed on the bottom surface of the concave portion of the lens structure,
    The optical connector device in which the optical path in the lens structure includes an optical path portion between a first point of the concave portion and a second point of the optical waveguide connecting portion corresponding to a surface emission emission point of the optical element.
  6.  請求項1記載の光コネクタ装置において、
     前記レンズ構造体の凹部は、前記レンズ構造体における前記外部の基板に搭載される面である第1面に対して反対側である第2面に設けられ、
     前記光素子は、端面発光型の発光素子であり、端面発光の出射点を含む第1面が前記レンズ構造体の凹部の側面に向いて配置され、
     前記配線部は、前記レンズ構造体の凹部から前記レンズ構造体の第1面までの貫通孔を通じて設けられ、
     前記レンズ構造体における光路は、前記光素子の端面発光の出射点に対応した前記凹部の第1点と前記光導波路接続部の第2点との間の光路部を含む、光コネクタ装置。
    The optical connector device according to claim 1,
    The concave portion of the lens structure is provided on a second surface opposite to the first surface which is a surface mounted on the external substrate in the lens structure,
    The optical element is an edge-emitting type light-emitting element, and a first surface including an emission point of edge emission is disposed toward a side surface of the concave portion of the lens structure,
    The wiring portion is provided through a through hole from the concave portion of the lens structure to the first surface of the lens structure,
    The optical path in the said lens structure is an optical connector apparatus containing the optical path part between the 1st point of the said recessed part corresponding to the emission point of the end surface light emission of the said optical element, and the 2nd point of the said optical waveguide connection part.
  7.  請求項1記載の光コネクタ装置において、
     前記レンズ構造体の凹部は、前記レンズ構造体における前記外部の基板に搭載される面である第1面に設けられ、
     前記光素子は、端面発光型の発光素子であり、端面発光の出射点を含む第1面が前記レンズ構造体の凹部の側面に向いて配置され、
     前記レンズ構造体における光路は、前記光素子の端面発光の出射点に対応した前記凹部の第1点と前記光導波路接続部の第2点との間の光路部を含む、光コネクタ装置。
    The optical connector device according to claim 1,
    The concave portion of the lens structure is provided on a first surface which is a surface mounted on the external substrate in the lens structure,
    The optical element is an edge-emitting type light-emitting element, and a first surface including an emission point of edge emission is disposed toward a side surface of the concave portion of the lens structure,
    The optical path in the said lens structure is an optical connector apparatus containing the optical path part between the 1st point of the said recessed part corresponding to the emission point of the end surface light emission of the said optical element, and the 2nd point of the said optical waveguide connection part.
  8.  請求項1記載の光コネクタ装置において、
     前記光素子は、前記配線部を通じて入力される電気信号を光信号に変換して前記レンズ構造体の光路へ出射する発光素子である、光コネクタ装置。
    The optical connector device according to claim 1,
    The optical connector device, wherein the optical element is a light emitting element that converts an electrical signal input through the wiring portion into an optical signal and emits the optical signal to the optical path of the lens structure.
  9.  請求項1記載の光コネクタ装置において、
     前記光素子は、前記光導波路を通じて前記レンズ構造体の光路から入射される光信号を電気信号に変換して前記配線部を通じて出力する受光素子である、光コネクタ装置。
    The optical connector device according to claim 1,
    The optical connector device, wherein the optical element is a light receiving element that converts an optical signal incident from an optical path of the lens structure through the optical waveguide into an electrical signal and outputs the electrical signal through the wiring unit.
  10.  請求項1記載の光コネクタ装置において、
     前記配線部は、
     前記レンズ構造体の凹部の底面または側面に形成される第1配線部と、
     前記レンズ構造体の凹部以外の表面部に形成され、前記外部の基板配線部に対して電気的に接続される、第2配線部と、を含む、光コネクタ装置。
    The optical connector device according to claim 1,
    The wiring part is
    A first wiring portion formed on the bottom surface or side surface of the concave portion of the lens structure;
    An optical connector device comprising: a second wiring portion formed on a surface portion other than the concave portion of the lens structure and electrically connected to the external substrate wiring portion.
  11.  請求項1記載の光コネクタ装置において、
     前記レンズ構造体は、前記光路における光の方向を第1方向と第2方向との間で屈曲する光屈曲部を含み、
     前記光屈曲部は、光を反射させるミラーまたはプリズムを含む、光コネクタ装置。
    The optical connector device according to claim 1,
    The lens structure includes a light bending portion that bends the direction of light in the optical path between a first direction and a second direction,
    The said optical bending part is an optical connector apparatus containing the mirror or prism which reflects light.
  12.  請求項1記載の光コネクタ装置において、
     前記配線部に接続されるピンを有し、
     前記ピンは、前記外部の基板の基板配線部に設けられるソケットに対して電気的及び機械的に接続される、光コネクタ装置。
    The optical connector device according to claim 1,
    Having a pin connected to the wiring portion;
    The optical connector device, wherein the pin is electrically and mechanically connected to a socket provided in a board wiring portion of the external board.
  13.  請求項1記載の光コネクタ装置による第1光コネクタ装置及び第2光コネクタ装置と、
     前記第1光コネクタ装置の前記レンズ構造体の前記光導波路接続部に第1端部が接続され、前記第2光コネクタ装置の前記レンズ構造体の前記光導波路接続部に第2端部が接続される、前記光導波路と、を有する、光ケーブル装置。
    A first optical connector device and a second optical connector device by the optical connector device according to claim 1;
    A first end is connected to the optical waveguide connecting portion of the lens structure of the first optical connector device, and a second end is connected to the optical waveguide connecting portion of the lens structure of the second optical connector device. An optical cable device comprising: the optical waveguide.
  14.  請求項13記載の光ケーブル装置において、
     前記第1光コネクタ装置は、前記光素子として、発光素子を有し、
     前記第2光コネクタ装置は、前記光素子として、受光素子を有し、
     前記第1光コネクタ装置から第2光コネクタ装置への一方向の光伝送機能を持つ、光ケーブル装置。
    The optical cable device according to claim 13.
    The first optical connector device has a light emitting element as the optical element,
    The second optical connector device has a light receiving element as the optical element,
    An optical cable device having a one-way optical transmission function from the first optical connector device to the second optical connector device.
  15.  請求項13記載の光ケーブル装置において、
     前記第1光コネクタ装置及び第2光コネクタ装置は、前記光素子として、発光素子及び受光素子を有し、
     前記第1光コネクタ装置から第2光コネクタ装置への方向及び前記第2光コネクタ装置から第1光コネクタ装置への方向による双方向の光伝送機能を持つ、光ケーブル装置。
    The optical cable device according to claim 13.
    The first optical connector device and the second optical connector device have a light emitting element and a light receiving element as the optical element,
    An optical cable device having a bidirectional optical transmission function according to a direction from the first optical connector device to the second optical connector device and a direction from the second optical connector device to the first optical connector device.
  16.  請求項13記載の光ケーブル装置において、
     前記光導波路は、光ファイバを含んで構成される、光ケーブル装置。
    The optical cable device according to claim 13.
    The optical waveguide device includes the optical waveguide including an optical fiber.
  17.  請求項1~7のいずれかに記載の光コネクタ装置と、
     前記光コネクタ装置の光素子を駆動するための回路部と、
     前記回路部と前記光コネクタ装置とを搭載する基板と、
     前記基板に形成され前記回路部と前記光コネクタ装置の光素子に接続される前記配線部とを電気的に接続する基板配線部と、を有する、光インターコネクト装置。
    An optical connector device according to any one of claims 1 to 7,
    A circuit unit for driving the optical element of the optical connector device;
    A substrate on which the circuit unit and the optical connector device are mounted;
    An optical interconnect device comprising: a substrate wiring portion that electrically connects the circuit portion formed on the substrate and the wiring portion connected to the optical element of the optical connector device.
  18.  請求項17記載の光インターコネクト装置において、
     前記光コネクタ装置の光素子は、前記回路部から前記基板配線部及び前記配線部を通じて入力される電気信号を光信号に変換して前記レンズ構造体の光路へ出射する発光素子を有し、
     前記回路部は、光インターコネクトの送信の際に前記光素子への電気信号を制御する、送信用駆動部を有する、光インターコネクト装置。
    The optical interconnect device according to claim 17, wherein
    The optical element of the optical connector device includes a light emitting element that converts an electrical signal input from the circuit unit through the substrate wiring unit and the wiring unit into an optical signal and emits the optical signal to the optical path of the lens structure,
    The optical interconnect device, wherein the circuit unit includes a transmission drive unit that controls an electrical signal to the optical element during transmission of the optical interconnect.
  19.  請求項17記載の光インターコネクト装置において、
     前記光コネクタ装置の光素子は、前記光導波路の端部から前記レンズ構造体の光路を通じて入射される光信号を電気信号に変信して前記配線部及び前記基板配線部を通じて前記回路部へ出力する受光素子を有し、
     前記回路部は、光インターコネクトの受信の際に前記光素子からの電気信号を制御する、受信用駆動部を有する、光インターコネクト装置。
    The optical interconnect device according to claim 17, wherein
    The optical element of the optical connector device converts an optical signal incident from the end of the optical waveguide through the optical path of the lens structure into an electrical signal and outputs the electrical signal to the circuit unit through the wiring unit and the substrate wiring unit. A light receiving element
    The optical interconnect device, wherein the circuit unit includes a reception drive unit that controls an electrical signal from the optical element when receiving the optical interconnect.
  20.  請求項17記載の光インターコネクト装置において、
     前記光コネクタ装置は、前記回路部から前記基板配線部及び前記配線部を通じて入力される電気信号を光信号に変換して前記レンズ構造体の光路へ出射する発光素子と、前記光導波路の端部から前記レンズ構造体の光路を通じて入射される光信号を電気信号に変信して前記配線部及び前記基板配線部を通じて前記回路部へ出力する受光素子と、を有し、
     前記回路部は、光インターコネクトの送信の際に前記光素子への電気信号を制御する、送信用駆動部と、光インターコネクトの受信の際に前記光素子からの電気信号を制御する、受信用駆動部と、を有する、光インターコネクト装置。
    The optical interconnect device according to claim 17, wherein
    The optical connector device includes: a light emitting element that converts an electric signal input from the circuit unit through the substrate wiring unit and the wiring unit into an optical signal and emits the optical signal to an optical path of the lens structure; and an end of the optical waveguide A light receiving element that converts an optical signal incident through the optical path of the lens structure into an electrical signal and outputs the electrical signal to the circuit unit through the wiring unit and the substrate wiring unit,
    The circuit unit controls an electrical signal to the optical element during transmission of the optical interconnect, and a driving unit for transmission and a reception drive that controls an electrical signal from the optical element during reception of the optical interconnect. And an optical interconnect device.
PCT/JP2013/057289 2013-03-14 2013-03-14 Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus WO2014141451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057289 WO2014141451A1 (en) 2013-03-14 2013-03-14 Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057289 WO2014141451A1 (en) 2013-03-14 2013-03-14 Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus

Publications (1)

Publication Number Publication Date
WO2014141451A1 true WO2014141451A1 (en) 2014-09-18

Family

ID=51536146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057289 WO2014141451A1 (en) 2013-03-14 2013-03-14 Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus

Country Status (1)

Country Link
WO (1) WO2014141451A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088011A1 (en) * 2018-11-02 2020-05-07 青岛海信宽带多媒体技术有限公司 Receiver optical subassembly and optical module
WO2022020257A1 (en) * 2020-07-20 2022-01-27 Apple Inc. Photonic integrated circuits with controlled collapse chip connections
US11525967B1 (en) 2018-09-28 2022-12-13 Apple Inc. Photonics integrated circuit architecture
US11881678B1 (en) 2019-09-09 2024-01-23 Apple Inc. Photonics assembly with a photonics die stack
US11914201B2 (en) 2021-09-23 2024-02-27 Apple Inc. Mechanisms that transfer light between layers of multi-chip photonic assemblies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470714A (en) * 1987-08-27 1989-03-16 American Telephone & Telegraph Optical fiber coupling assembly
JP2004271648A (en) * 2003-03-05 2004-09-30 Seiko Epson Corp Optical communication module, optical communication apparatus, and its manufacturing method
JP2005085819A (en) * 2003-09-04 2005-03-31 Ngk Spark Plug Co Ltd Photoelectric composite board, optical waveguide, and optical waveguide with optical element
JP2007241211A (en) * 2006-02-09 2007-09-20 Matsushita Electric Works Ltd Photoelectric conversion device, manufacturing method of the same, and external waveguide
WO2011055568A1 (en) * 2009-11-03 2011-05-12 株式会社オートネットワーク技術研究所 Optical communication module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470714A (en) * 1987-08-27 1989-03-16 American Telephone & Telegraph Optical fiber coupling assembly
JP2004271648A (en) * 2003-03-05 2004-09-30 Seiko Epson Corp Optical communication module, optical communication apparatus, and its manufacturing method
JP2005085819A (en) * 2003-09-04 2005-03-31 Ngk Spark Plug Co Ltd Photoelectric composite board, optical waveguide, and optical waveguide with optical element
JP2007241211A (en) * 2006-02-09 2007-09-20 Matsushita Electric Works Ltd Photoelectric conversion device, manufacturing method of the same, and external waveguide
WO2011055568A1 (en) * 2009-11-03 2011-05-12 株式会社オートネットワーク技術研究所 Optical communication module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11525967B1 (en) 2018-09-28 2022-12-13 Apple Inc. Photonics integrated circuit architecture
WO2020088011A1 (en) * 2018-11-02 2020-05-07 青岛海信宽带多媒体技术有限公司 Receiver optical subassembly and optical module
US11881678B1 (en) 2019-09-09 2024-01-23 Apple Inc. Photonics assembly with a photonics die stack
WO2022020257A1 (en) * 2020-07-20 2022-01-27 Apple Inc. Photonic integrated circuits with controlled collapse chip connections
US11914201B2 (en) 2021-09-23 2024-02-27 Apple Inc. Mechanisms that transfer light between layers of multi-chip photonic assemblies

Similar Documents

Publication Publication Date Title
US10082633B2 (en) Wafer-level integrated opto-electronic module
US8285087B2 (en) Optical interconnection system using optical printed circuit board having one-unit optical waveguide integrated therein
CN106226871B (en) Optoelectronic module, multichannel module, interconnection system, method of manufacturing and connecting to a board for a contactless free-space optical link
US20130223800A1 (en) Surface mount (smt) connector for vcsel and photodiode arrays
JP2008040318A (en) Manufacturing method of multi-channel optical module
US9103999B2 (en) Optical data communication module having EMI cage
WO2014141451A1 (en) Optical connector apparatus, optical cable apparatus, and optical interconnect apparatus
WO2016088349A1 (en) Optical module
US8750657B2 (en) Flip-chip optical interface with micro-lens array
CN113272700A (en) Connector plug and active optical cable assembly using same
US8870467B2 (en) Optical interface and splitter with micro-lens array
US9448361B2 (en) Photoelectric wiring module
EP2211217A1 (en) Printed circuit board fiberoptical transceiver in surface mount technology (SMT)
JP2007057976A (en) Optical module
US7004646B2 (en) Receptacle type optical transmitter and/or receiver module
KR101256814B1 (en) All passive aligned optical module and manufacturing method thereof
US8636426B2 (en) Photoelectric conversion system with optical transceive module
JP2000028871A (en) Packaging form of optical semiconductor module
CN105093435B (en) Light delivery module
KR101419503B1 (en) optical and electric connector unit of electronic device having unified optical and electric transceiver for interfacing to external device
US8690455B2 (en) Planar optical interface and splitter
KR101477381B1 (en) Optical Interconnection Module and Receptacle for Optical Interconnection Module and optical connector comprising the same
CN104101960A (en) Optical communication apparatus
JP7334782B2 (en) Optical fiber, communication device and method for manufacturing optical fiber
KR20180060869A (en) Multi-channel Optical Module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP