WO2014137135A1 - Method for synthesizing hollow nano-silica material - Google Patents

Method for synthesizing hollow nano-silica material Download PDF

Info

Publication number
WO2014137135A1
WO2014137135A1 PCT/KR2014/001766 KR2014001766W WO2014137135A1 WO 2014137135 A1 WO2014137135 A1 WO 2014137135A1 KR 2014001766 W KR2014001766 W KR 2014001766W WO 2014137135 A1 WO2014137135 A1 WO 2014137135A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
synthesizing
hollow nano
silica material
hollow
Prior art date
Application number
PCT/KR2014/001766
Other languages
French (fr)
Korean (ko)
Inventor
배재영
윤태관
권재민
Original Assignee
계명대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 산학협력단 filed Critical 계명대학교 산학협력단
Publication of WO2014137135A1 publication Critical patent/WO2014137135A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow

Definitions

  • the present invention relates to a synthesis method, and more particularly to a method for synthesizing hollow nano silica material having a core shell structure.
  • the core shell shell nanoparticles can be applied to various fields such as photonic crystal, catalyst, drug delivery, cosmetic or functional coating material. These core-shell nanoparticles generally comprise a predetermined nano position as a core and are prepared by coating this core surface with another material. The physicochemical properties of such core-shell nanoparticles can be controlled by fine-tuning the composition, size, or structure of the core or coating layer (ie, shell) surrounding the core.
  • the shell may improve stability and dispersibility of the core nanoparticles, and may adjust surface charge, functionality, or reactivity of the core nanoparticles.
  • core-shell nanoparticles having magnetic properties, optical properties, or catalytic functions may be manufactured according to the material of the shell.
  • Prior research papers introduce various types of core-shell nanoparticles, for example, a-Fe 2 0 3 , Ce0 2 or Si0 2.
  • Core-shell nanoparticles coated with polypyrrole on nanoparticles for example, a-Fe 2 0 3 , gold (Au) or silver (Au) nanoparticles, or core-shell nanoparticles coated with gold (Au) on Si0 2 nanoparticles It is.
  • the hollow particles in which all of the core nanoparticles are removed or a part of the core nanoparticles are removed R2014 / 001766
  • the hollow core-shell nanoparticles may be applied to low refractive index materials, thermal insulation materials, or drug delivery capsules that require high porosity.
  • a typical form of such hollow core-shell nanoparticles is a hollow core, and the core is surrounded by a shell made of a single membrane.
  • the hollow core of the hollow core is made of a single membrane such as silica or magnesium fluoride.
  • Various shell nanoparticles and methods for their preparation have been proposed.
  • Japanese Unexamined Patent Publication No. JP 2002-160907 discloses hollow silica particles in which a core is hollow and surrounded by a shell of a silica film and a method for producing the same.
  • US 2005-0244322A1 discloses hollow silica particles and a method for producing the hollow silica particles, the core of which has a hollow shape, the shell of which comprises a porous silica membrane having a plurality of channels, and which surrounds the hollow core. have.
  • Korean Patent Publication No. 0628033 discloses hollow magnesium fluoride particles and a method of manufacturing the same, in which the core has a hollow shape, and the core is surrounded by a shell of the magnesium fluoride membrane.
  • the conventional hollow silica particles or hollow magnesium fluoride particles all have a hollow core core surrounded by a shell made of a single silica film or magnesium fluoride film, and the single silica film or magnesium fluoride film has a dense structure or (A) of FIG. 1 can have a porous structure (FIG. 1 (b)).
  • HSS hollow silica spheres
  • An object of the present invention to solve the above problems is to provide a method for easily synthesizing HSS particles of various sizes for the purpose of using the HSS particles widely used in the industry.
  • the core nanomaterial is preferably polystyrene as a silica precursor
  • the step (a) may include adding (poly) PVP (polyvinylpyrrolidone) as a stabilizer to the distilled water solvent; (a2) adding ⁇ (2,2'-azobis dihydrochloride) as an initiator; (a3) adding styrene as a precursor; (a4) stirring the solution to which the stabilizer, the initiator and the precursor are added at 60 to 80 degrees for 24 hours, wherein the size of the particles is controlled by adjusting the concentration of at least one of the solvent, stabilizer and initiator. It is preferable.
  • the step (a4) may include forming a 10% NaOH solution; Mixing the NaOH solution and the styrene in a ratio of 1 to 1 may include removing the inhibitor in the styrene.
  • step (d) it is preferable to react for 2 to 4 hours at 50 ° C to 60 ° C.
  • the present invention provides a method for easily synthesizing HSS particles of various sizes for the purpose that the HSS particles are widely used in the industry, without going through a sintering process, reducing the energy consumption required for manufacturing and production cost It provides an efficient hollow nano-silica material synthesis method that can lower the.
  • FIG. 1 is a view showing the structure of a hollow nano silica particles having a conventional core shell structure
  • FIG. 2 is a view showing the flow of the hollow nano-silica material synthesis method according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for synthesizing a core nanomaterial applied to a method for synthesizing a hollow nano silica material according to an embodiment of the present invention
  • FIG. 4 is a TEM photograph of HSS particles synthesized by the method of synthesizing a hollow nano silica material according to an embodiment of the present invention.
  • FIG. 2 is a view showing the flow of the hollow nano-silica material synthesis method according to an embodiment of the present invention.
  • the hollow nano-silica material synthesis method according to an embodiment of the present invention (a) core nanomaterial synthesis step (S100); (B) forming a dispersion by adding and dispersing the ethane core nanomaterials in a solvent (S200); (c) adding TEOS to the dispersion (S300); And (d) adding ammonia water to the solution to which the TEOS is added (S400) and reacting (S500) the pH to 8-9.
  • the present invention proposes a method for synthesizing hollow silica spheres (HSS) without undergoing a sintering process, thereby easily synthesizing HSS materials, preventing deformation or modification due to sintering, and core material
  • HSS hollow silica spheres
  • the method of synthesizing a vaporized nano-silica material according to an embodiment of the present invention includes: (a) synthesizing a core nanomaterial (S100); (b) adding the core nanomaterial to the ethanol solvent and dispersing to form a dispersion (S200); (c) adding TEOS to the dispersion (S300); And (d) adding ammonia water to the solution to which the TEOS is added (S400) to react the pH at 8 to 9 (S500).
  • the present invention proposes a method for synthesizing hollow silica spheres (HSS) without undergoing a sintering process, thereby easily synthesizing HSS materials, preventing deformation or modification due to sintering, and core material Almost control the size of the HSS size can be easily synthesized Suggest.
  • HSS hollow silica spheres
  • hollow silica particles which are used in various industries, may have different particle sizes depending on the purpose and purpose of use. Since it is most affected, the method of controlling the size of the core material and synthesizing it is an important issue.
  • step (a) (S100) is a step of synthesizing polystyrene (polystyrene: PS), which is a core nanomaterial having a core structure, to synthesize a hollow nano silica material.
  • polystyrene polystyrene: PS
  • step (al) distilled water is used as a solvent, and PVP (polyvinylpyrrolidone) is added as a stabilizer at a constant molar ratio calculated on the particle size.
  • PVP polyvinylpyrrolidone
  • ⁇ (2,2'-azobis dihydrochloride) used as an initiator is added at a molar ratio that is proportional to the particle size
  • precursor styrene is added to the solution to which PVP and AIBA are added.
  • step (a4) the solution in which the additive is added to the solvent is stirred at about 70 ° C. for 24 hours to synthesize polystyrene nanocore material particles.
  • NaOH is used as a precursor to remove the inhibitor inside the styrene.
  • Inhibitors are isolated.
  • the inhibitor refers to a substance that impedes the progress of chemical reactions and physiological actions, and is called an antioxidant, a corrosion inhibitor, a polymerization inhibitor, a cocatalyst, a catalyst poison, and an metabolic antagonist depending on the type of reaction. .
  • Styrene (styrene) used as a precursor in the embodiment of the present invention has an inhibitor therein, it can act to reduce the reaction required for the synthesis, to separate the liquid preparation in advance by mixing the NaOH solution It is preferable.
  • Core material synthesis method used in the synthesis of hollow nano-silica material according to an embodiment of the present invention is to control the size of the core material nanoparticles by controlling the concentration of at least one of the stabilizer, initiator and solvent. .
  • PS particles which are core material nanoparticles having a size of 100 nm or less
  • the water and acetone ratio may be synthesized using a mixed solvent in a ratio of 1: 1 to synthesize a core material of 100 nm or less.
  • step S200 ethanol.
  • the core nanomaterial polystyrene (PS) is added to the solvent and dispersed to form a dispersion.
  • a solvent for forming a dispersion is used as an ethanol solvent, but distilled water is also possible, and isopropyl alcohol and It is possible to use a solution in which alcohol and distilled water are mixed. That is, all of them can be in a range that does not inhibit the dispersion of nanoparticles, and any solvent can be used to dissolve the silica precursor thereafter.
  • EtOH ethanol
  • Step (S400) is a step of adding TEOS to the dispersion, using tetraethyi orthosilicate (TEOS) as a silica precursor. That is, after forming the dispersion to which PS particle was added, 1-5 mL of TEOS is added to this dispersion.
  • This core material is formed by a shell structure of the silica material to the PS core particles - a synthesizing a hollow silica nano-material having a shell structure, and friction.
  • Step (d) adds ammonia water to the solution to which the TEOS is added (S400).
  • the addition amount of the ammonia water has to be very sensitively controlled because it affects the removal of the PS particles therein, in the embodiment of the present invention, it is preferable to adjust the amount of the ammonia water to be pH 8-9.
  • FIG. 4 shows a TEM picture of the HSS particles synthesized by the method of synthesizing the hollow nano silica material according to an embodiment of the present invention. As shown in FIG. 4, it can be clearly seen that a hollow nano silica material having a clear core shell structure of about 100 nm is formed. While the invention has been shown and described in connection with specific embodiments thereof, it is well known in the art that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the claims.
  • the present invention is intended to provide a method for easily synthesizing HSS particles of various sizes for the purpose of using the HSS particles that are used in various industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

The present invention relates to a method for synthesizing a hollow nano-silica material comprising the steps of: (a) synthesizing a core nanomaterial; (b) preparing a dispersion solution by adding the core nanomaterial to an ethanol solvent and dispersing same; (c) adding TEOS to the dispersion solution; and (d) performing a reaction by adding ammonium hydroxide to the solution to which the TEOS has been added at a pH between 8 and 9. The present invention provides a method for easily synthesizing HSS particles having various sizes depending on the purpose of utilization of the HSS, which can be utilized in a variety of industries, and provides an efficient method for synthesizing the hollow nano-silica material which does not require a firing step, reduces energy consumption required for manufacturing, and reduces production cost.

Description

【명세서】  【Specification】
【발명의 명칭】 [Name of invention]
중공형 나노 실리카 물질 합성방법  Hollow nano silica material synthesis method
【기술분야】 Technical Field
본 발명은 합성방법에 관한 것으로, 보다 상세하게는 코어 쉘 구조를 갖는 중공형 나노 실리카 물질 합성방법에 관한 것이다.  The present invention relates to a synthesis method, and more particularly to a method for synthesizing hollow nano silica material having a core shell structure.
【배경기술】 Background Art
코어ᅳ쉘 나노 입자는 광 결정 (photonic crystal), 촉매, 약물 전달 (drug delivery), 화장품 또는 기능성 코팅 소재 등의 다양한 분야에 적용 가능하다. 이 러한 코어—쉘 나노 입자는 일반적으로 소정의 나노 입장를 코어로 포함하고, 이 러한 코어 표면을 다른 물질로 코팅하여 제조한다. 이러한 코어 -쉘 나노 입자의 물리화학적 특성은 코어 또는 코어를 둘러싸는 코팅층 (즉, 쉘)의 조성, 크기 또는 구조 등을 미세 튜닝 (fine-tuning)함으로써 조절할 수 있다.  The core shell shell nanoparticles can be applied to various fields such as photonic crystal, catalyst, drug delivery, cosmetic or functional coating material. These core-shell nanoparticles generally comprise a predetermined nano position as a core and are prepared by coating this core surface with another material. The physicochemical properties of such core-shell nanoparticles can be controlled by fine-tuning the composition, size, or structure of the core or coating layer (ie, shell) surrounding the core.
예를 들어 , 쉘은 코어 나노 입자의 안정성, 분산성을 향상시킬 수 있으며 , 코어 나노 입자의 표면 전하, 기능성 (functionality) 또는 반웅성 (reactivity) 등을 조절할 수 있다. 또한, 쉘을 이루는 물질에 따라 자성 (magnetic property), 광학물성 (optical property) 또는 촉매 기능 등이 부여된 코어 -쉘 나노 입자를 제조할 수도 있다.  For example, the shell may improve stability and dispersibility of the core nanoparticles, and may adjust surface charge, functionality, or reactivity of the core nanoparticles. In addition, core-shell nanoparticles having magnetic properties, optical properties, or catalytic functions may be manufactured according to the material of the shell.
선행 연구 논문 (Frank Caruso, Advanced materials, 2001, vol 13, No 1.11-22)에는 다양한 종류의 코어 -쉘 나노 입자가 소개되어 있는데, 예를 들어 , a-Fe203, Ce02 또는 Si02 나노 입자에 폴리피를 (polypyrrole)이 코팅 된 코어 -쉘 나노 입자, . a-Fe203, 금 (Au) 혹은 은 (Au) 나노 입자에 Si02가 코팅된 코어 -쉘 나노 입자 또는 Si02 나노 입자에 금 (Au)이 코팅 된 코어 -쉘 나노 입자 등이 소개되어 있다. Prior research papers (Frank Caruso, Advanced materials, 2001, vol 13, No 1.11-22) introduce various types of core-shell nanoparticles, for example, a-Fe 2 0 3 , Ce0 2 or Si0 2. Core-shell nanoparticles coated with polypyrrole on nanoparticles ,. Core-shell nanoparticles coated with Si0 2 on a-Fe 2 0 3 , gold (Au) or silver (Au) nanoparticles, or core-shell nanoparticles coated with gold (Au) on Si0 2 nanoparticles It is.
한편, 코어 -쉘 나노 입자의 특별한 예로서, 코어 나노 입자의 전부가 제거된 중공 형 태의 입자 또는 상기 코어 나노 입자의 일부가 제거되어 그 R2014/001766 On the other hand, as a special example of the core-shell nanoparticles, the hollow particles in which all of the core nanoparticles are removed or a part of the core nanoparticles are removed, R2014 / 001766
내부에 일정한 중공을 갖는 입자 등이 있다. 이러한 중공 형태의 코어-쉘 나노 입자는 높은 공극률이 요구되는 저굴절 소재나 단열 소재 또는 약물 전달 캡슐 등에 적용 가능하다. Particles having a certain hollow inside. The hollow core-shell nanoparticles may be applied to low refractive index materials, thermal insulation materials, or drug delivery capsules that require high porosity.
이러한 중공 형태의 코어-쉘 나노 입자의 전형적인 형태는 코어가 비어 있고, 이 코어가 단일막으로 이루어진 쉘로 둘러싸인 형태인데, 종래부터 쉘이 실리카 또는 불화마그네슴 등의 단일막으로 이루어진 상기 중공 형태의 코어-쉘 나노 입자 및 이의 제조 방법이 다양하게 제안된 바 있다.  A typical form of such hollow core-shell nanoparticles is a hollow core, and the core is surrounded by a shell made of a single membrane. Conventionally, the hollow core of the hollow core is made of a single membrane such as silica or magnesium fluoride. Various shell nanoparticles and methods for their preparation have been proposed.
예를 들어, 일본 공개특허공보 JP 2002-160907 호에는, 코어가 중공 형태를 띄고 있으며, 이러한 코어가 실리카막의 쉘로 둘러싸인 중공 실리카 입자 및 이의 제조 방법이 개시되어 있다. 또한, 미국 공개특허공보 US 2005- 0244322A1에는, 코어가 중공 형태를 띄고 있고, 쉘이 다수의 채널을 갖는 다공질 실리카막으로 이루어져 상기 중공 형태의 코어를 둘러싸고 있는 중공 실리카 입자 및 이의 제조 방법이 개시되어 있다.  For example, Japanese Unexamined Patent Publication No. JP 2002-160907 discloses hollow silica particles in which a core is hollow and surrounded by a shell of a silica film and a method for producing the same. In addition, US 2005-0244322A1 discloses hollow silica particles and a method for producing the hollow silica particles, the core of which has a hollow shape, the shell of which comprises a porous silica membrane having a plurality of channels, and which surrounds the hollow core. have.
또한, 한국 등록특허공보 제 0628033 호에는, 마찬가지로 코어가 중공 형태를 띄고 있으며, 이러한 코어가 불화 마그네슴막의 쉘로 둘러싸인 중공 불화마그네슘 입자 및 이의 제조 방법이 개시되어 있다.  In addition, Korean Patent Publication No. 0628033 discloses hollow magnesium fluoride particles and a method of manufacturing the same, in which the core has a hollow shape, and the core is surrounded by a shell of the magnesium fluoride membrane.
이처럼, 종래의 중공 실리카 입자 또는 중공 불화마그네슴 입자는 모두 중공 형태의 코어를 단일 실리카막 또는 불화마그네슘막으로 이루어진 쉘이 둘러싼 형태를 띄고 있으며, 이러한 단일 실리카막 또는 불화마그네슘막은 치밀한 구조를 띄거나 (도 1의 (a)) 다공질 구조를 될 수 있다 (도 1의 (b)).  As such, the conventional hollow silica particles or hollow magnesium fluoride particles all have a hollow core core surrounded by a shell made of a single silica film or magnesium fluoride film, and the single silica film or magnesium fluoride film has a dense structure or (A) of FIG. 1 can have a porous structure (FIG. 1 (b)).
그러나, 산업에 다양하게 활용되는 중공형 실리카 입자 (hollow silica spheres:HSS)는 사용되는 목적, 용도에 따라 그 입자 크기를 달리해야 한다. HSS 입자 크기는 합성에 사용되는 코어에 의해 영향을 받기 때문에, 다양한 크기의 HSS 입자를 다양한 합성방법을 이용하여 용이하게 합성할 수 있는 방법이 요구되는 실정이다.  However, hollow silica spheres (HSS), which are widely used in the industry, have different particle sizes depending on the purpose and purpose of use. Since the HSS particle size is influenced by the core used in the synthesis, there is a need for a method for easily synthesizing HSS particles of various sizes using various synthesis methods.
그리고, 중공형 나노 실리카 물질의 합성에서 소성과정을 거쳐야 하므로, 높은 온도로 가열하여야 하는 어려움이 있고, 합성에 많은 에너지를 소모시켜야 한다는 문제점이 있다. 【발명의 상세한 설명】 And, since the firing process in the synthesis of the hollow nano-silica material, there is a difficulty in heating to a high temperature, there is a problem in that a large amount of energy is consumed in the synthesis. [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
상술한 문제를 해결하고자 하는 본 발명의 과제는 산업에 다양하게 활용되는 HSS 입자는 사용되는 목적에 다양한 크기의 HSS 입자를 용이하게 합성할 수 있는 방법을 제공하고자 함이다.  An object of the present invention to solve the above problems is to provide a method for easily synthesizing HSS particles of various sizes for the purpose of using the HSS particles widely used in the industry.
또한, 제조에 필요한 에너지 소모를 줄이고 생산 단가를 낮출 수 있는 합성방법을 제공하고자 함이다.  In addition, it is intended to provide a synthetic method that can reduce the energy consumption required for manufacturing and lower the production cost.
【기술적 해결방법】 Technical Solution
상술한 과제를 해결하기 위한 본 발명의 특징은 (a) 코어 나노물질 합성하는 단계 ; (b) 에탄올 용매에 상기 코어 나노물질을 첨가하고 분산시켜 분산액을 형성하는 단계 ; (c) 상기 분산액에 TEOS 첨가하는 단계 ; 및 (d) 상기 TEOS가 첨가된 용액에 암모니아수를 첨가하여 pH를 8 내지 9로 하여 반웅시 키는 단계를 포함한다. Features of the present invention for solving the above problems is ( a ) synthesizing a core nanomaterial; (b) adding and dispersing the core nanomaterial in an ethanol solvent to form a dispersion; (c) adding TEOS to the dispersion; And (d) adding ammonia water to the solution to which the TEOS is added to react the pH to 8-9.
여기서, 상기 코어 나노물질은 실리카 전구체로 폴리스티 렌 (polystyrene)인 것 이 바람직하고, 상기 (a) 단계는, (al) 증류수 용매에 안정제로 PVP(polyvinylpyrrolidone)를 첨가하는 단계 ; (a2) 개시제로 ΑΙΒΑ(2,2' - azobis dihydrochloride)를 첨가하는 단계 ; (a3) 전구체로 스티 렌 (styrene)을 첨가하는 단계 ; (a4) 상기 안정제, 개시제 및 전구체가 첨가된 용액을 60도 내지 80도에서 24시간 교반하는 단계를 포함하되 , 상기 용매, 안정제 및 개시제 중 적어도 어느 하나의 농도를 조절하여 입자의 크기를 조절하는 것이 바람직하다.  Here, the core nanomaterial is preferably polystyrene as a silica precursor, and the step (a) may include adding (poly) PVP (polyvinylpyrrolidone) as a stabilizer to the distilled water solvent; (a2) adding ΑΙΒΑ (2,2'-azobis dihydrochloride) as an initiator; (a3) adding styrene as a precursor; (a4) stirring the solution to which the stabilizer, the initiator and the precursor are added at 60 to 80 degrees for 24 hours, wherein the size of the particles is controlled by adjusting the concentration of at least one of the solvent, stabilizer and initiator. It is preferable.
또한, 바람직하게는 상기 (a4) 단계는, 10% 농도의 NaOH 용액을 형성하는 단계 ; 상기 NaOH 용액과 상기 스티 렌 (styrene)을 1: 1 비율로 흔합하여, 상기 스티 렌 내부의 억제제를 제거하는 단계를 포함하는 것 일 수 있다.  Also, preferably, the step (a4) may include forming a 10% NaOH solution; Mixing the NaOH solution and the styrene in a ratio of 1 to 1 may include removing the inhibitor in the styrene.
더하여 , 상기 (d) 단계는, 50°C 내지 60°C에서 2 내지 4시간 반웅시키는 것이 바람직하다. 【유리한 효과】 In addition, the step (d), it is preferable to react for 2 to 4 hours at 50 ° C to 60 ° C. Advantageous Effects
이와 같은 본 발명은 산업에 다양하게 활용되는 HSS 입자는 사용되는 목적에 다양한 크기의 HSS 입자를 용이하게 합성할 수 있는 방법을 제공하고, 소성 과정을 거치지 않고, 제조에 필요한 에너지 소모를 줄이고 생산 단가를 낮출 수 있는 효율적인 중공형 나노 실리카 물질 합성방법을 제공한다.  The present invention provides a method for easily synthesizing HSS particles of various sizes for the purpose that the HSS particles are widely used in the industry, without going through a sintering process, reducing the energy consumption required for manufacturing and production cost It provides an efficient hollow nano-silica material synthesis method that can lower the.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 종래의 코어 쉘 구조를 갖는 중공형 나노 실리카 입자의 구조를 나타낸 도면이고,  1 is a view showing the structure of a hollow nano silica particles having a conventional core shell structure,
도 2는 본 발명의 실시예에 따른 중공형 나노 실리카 물질 합성방법의 흐름을 나타낸 도면이고,  2 is a view showing the flow of the hollow nano-silica material synthesis method according to an embodiment of the present invention,
도 3은 본 발명의 실시예에 따른 중공형 나노 실리카 물질 합성방법에 적용되는 코어 나노물질의 합성방법의 흐름도이고,  3 is a flowchart of a method for synthesizing a core nanomaterial applied to a method for synthesizing a hollow nano silica material according to an embodiment of the present invention;
도 4는 본 발명의 실시예에 따른 중공형 나노 실리카 물질의 합성방법에 의해 합성된 HSS 입자의 TEM 사진이다.  4 is a TEM photograph of HSS particles synthesized by the method of synthesizing a hollow nano silica material according to an embodiment of the present invention.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
도 2는 본 발명의 실시예에 따른 중공형 나노 실리카 물질 합성방법의 흐름을 나타낸 도면이다. 도 2에 나타낸 바와 같이, 본 발명의 실시예에 따른 중공형 나노 실리카 물질 합성방법은, (a) 코어 나노물질 합성하는 단계 (S100); (b) 에탄을 용매에 상기 코어 나노물질을 첨가하고 분산시켜 분산액을 형성하는 단계 (S200); (c) 상기 분산액에 TEOS 첨가하는 단계 (S300); 및 (d) 상기 TEOS가 첨가된 용액에 암모니아수를 첨가하여 (S400) pH를 8 내지 9로 하여 반응 (S500)시키는 단계를 포함한다.  2 is a view showing the flow of the hollow nano-silica material synthesis method according to an embodiment of the present invention. As shown in Figure 2, the hollow nano-silica material synthesis method according to an embodiment of the present invention, (a) core nanomaterial synthesis step (S100); (B) forming a dispersion by adding and dispersing the ethane core nanomaterials in a solvent (S200); (c) adding TEOS to the dispersion (S300); And (d) adding ammonia water to the solution to which the TEOS is added (S400) and reacting (S500) the pH to 8-9.
이처럼 본원 발명은 소성과정을 거치지 않는 중공형 나노 실리카 물질 (hollow silica spheres: HSS)의 합성방법을 제안함으로써, HSS 물질을 용이하게 합성하고, 소성에 따른 변형 또는 변성을 방지할 수 있으며, 코어 물질 크기의 용이한 조절로 HSS 크기를 용이하게 조절하여 합성할 수 있는 방법을 제안한다. R2014/001766 As such, the present invention proposes a method for synthesizing hollow silica spheres (HSS) without undergoing a sintering process, thereby easily synthesizing HSS materials, preventing deformation or modification due to sintering, and core material We propose a method that can be easily synthesized by controlling the size of the HSS by easy control of size. R2014 / 001766
【발명의 실시를 위 한 형 태】 [Form for implementation of invention]
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 통해 설명될 것이다. 그러나 본 발명은 여기에서 설명되는 실시 예들에 한정되지 않고 다른 형 태로 구체화될 수도 있다. 단지, 본 실시 예들은 본 발명 이 속하는 기술분야에서 통상의 지식을 가진 자에 게 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여 제공되는 것이다.  Advantages and features of the present invention, and a method of achieving the same will be described through embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. However, the embodiments are provided to explain in detail enough to easily implement the technical idea of the present invention to those skilled in the art.
도면들에 있어서, 본 발명의 실시 예들은 도시된 특정 형 태로 제한되는 것 이 아니며 명확성을 기하기 위하여 과장된 것이다. 또한 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소를 나타낸다.  In the drawings, the embodiments of the present invention are not limited to the specific forms shown and are exaggerated for clarity. In addition, parts denoted by the same reference numerals throughout the specification represent the same components.
본 명세서에서 "및 /또는"이 란 표현은 전후에 나열된 구성요소들 중 적어도 하나를 포함하는 의미로 사용된다. 또한, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 또한, 명세서에서 사용돠는 . "포함한다" 또는 "포함하는"으로 언급된 구성요소, 단계, 동작 및 소자는 하나 이상의 다른 구성요소, 단계, 동작, 소자 및 장치의 존재 또는 추가를 의미한다. 이하에서 본 발명에 따른 바람직한 실시 예를 도면을 참조하여 상세히 설명하기로 한다.  The expression “and / or” is used herein to mean at least one of the components listed before and after. In addition, singular forms also include the plural unless specifically stated otherwise in the text. Also, as used in the specification. Components, steps, operations, and elements referred to as "comprising" or "comprising" mean the presence or addition of one or more other components, steps, operations, elements, and devices. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 실시 예에 따른 중공형 나노 실리카 물질 합성방법의 흐름을 나타낸 도면이다. 도 2에 나타낸 바와 같이 , 본 발명의 실시 예에 따른 증공형 나노 실리카 물질 합성방법은, (a) 코어 나노물질 합성하는 단계 (S100); (b) 에탄올 용매에 상기 코어 나노물질을 첨가하고 분산시켜 분산액을 형성하는 단계 (S200); (c) 상기 분산액에 TEOS 첨가하는 단계 (S300); 및 (d) 상기 TEOS가 첨가된 용액에 암모니아수를 첨가하여 (S400) pH를 8 내지 9로 하여 반웅 (S500)시키는 단계를 포함한다.  2 is a view showing the flow of the hollow nano-silica material synthesis method according to an embodiment of the present invention. As shown in FIG. 2, the method of synthesizing a vaporized nano-silica material according to an embodiment of the present invention includes: (a) synthesizing a core nanomaterial (S100); (b) adding the core nanomaterial to the ethanol solvent and dispersing to form a dispersion (S200); (c) adding TEOS to the dispersion (S300); And (d) adding ammonia water to the solution to which the TEOS is added (S400) to react the pH at 8 to 9 (S500).
이처럼 본원 발명은 소성과정을 거치지 않는 중공형 나노 실리카 물질 (hollow silica spheres: HSS)의 합성방법을 제안함으로써, HSS 물질을 용이하게 합성하고, 소성에 따른 변형 또는 변성을 방지할 수 있으며, 코어 물질 크기의 용이 한 조절로 HSS 크기를 용이하게 조절하여 합성할 수 있는 방법을 제안한다. As such, the present invention proposes a method for synthesizing hollow silica spheres (HSS) without undergoing a sintering process, thereby easily synthesizing HSS materials, preventing deformation or modification due to sintering, and core material Easily control the size of the HSS size can be easily synthesized Suggest.
상술한 바와 같이 산업에 다양하게 활용되는 중공형 실리카 입자 (hollow silical spheres:HSS)는 사용되는 목적, 용도에 따라 그 입자 크기를 달리해야 고, HSS 입자 크기에 그 합성에 사용되는 코어 물질에 의해 가장 크게 영향을 받으므로, 코어 물질의 크기를 조절하여 합성하는 방법이 중요한 이슈이다.  As described above, hollow silica particles (HSS), which are used in various industries, may have different particle sizes depending on the purpose and purpose of use. Since it is most affected, the method of controlling the size of the core material and synthesizing it is an important issue.
그러므로, 본 발명의 실시 예에서는 코어물질의 합성단계에서, 첨가물질들의 농도 또는 비율을 조절하여 용이하게 다양한 크기의 코어물질 입자를 합성하고, 그에 따라 중공형 실리카 물질을 합성하는 방법을 제안함으로써, 다양한 산업에서 목적, 용도에 따른 물질을 용이하게 제조할 수 있게 된다. 특히, 본 발명의 실시 예는 반사방지 코팅소재로 활용이 용이하다. 중공형 나노 실리카 (HSS) 합성공정  Therefore, in the embodiment of the present invention, by synthesizing the core material particles of various sizes easily by adjusting the concentration or ratio of the additives, by suggesting a method for synthesizing the hollow silica material, It is possible to easily manufacture a material according to the purpose and use in various industries. In particular, embodiments of the present invention is easy to utilize as an anti-reflective coating material. Hollow Nano Silica (HSS) Synthesis Process
도 2에 나타낸 바와 같이 , 먼저, (a) 단계 (S100)는 중공형 나노 실리카 물질을 합성하기 위해 , 먼저 코어구조를 갖는 코어 나노물질인 폴리스티 렌 (polystyrene:PS)을 합성하는 단계이다.  As shown in FIG. 2, first, step (a) (S100) is a step of synthesizing polystyrene (polystyrene: PS), which is a core nanomaterial having a core structure, to synthesize a hollow nano silica material.
코어 나노물질인 폴리스티 렌 (PS)의 합성은 본 발명의 용매는 증류수를 사용하고, 상기 용매에 PVP, AIBA 및 스티 렌을 순서대로 첨가하여, 약 70도에서 소정 시간동안 교반시켜 폴리스티 렌 (polystyrene)을 합성한다.  Synthesis of polystyrene (PS), a core nanomaterial, uses distilled water as the solvent of the present invention, PVP, AIBA, and styrene are sequentially added to the solvent, followed by stirring at about 70 degrees for a predetermined time. Synthesize (polystyrene).
도 3은 본 발명의 실시 예에 따른 중공형 나노 실리카 물질 합성방법에 적용되는 코어 나노물질의 합성방법의 흐름도를 나타낸다. 도 3에 나타낸 바와 같이 , (al) 단계에서 증류수를 용매로 하여 안정제로서 PVP(polyvinylpyrrolidone)를 입자의 크기에 대웅된 일정한 몰비율로 첨가하고, (a2) 단계에서, 상기 PVP가 첨가된 용액에 개시제로 사용되는 ΑΙΒΑ(2,2' - azobis dihydrochloride)를 입자의 크기에 대웅되는 몰비율로 첨가하고, (a3) 단계에서, 상기 PVP와 AIBA가 첨가된 용액에 전구체 스티 렌 (styrene)을 첨가하고, (a4) 단계에서, 상기 용매에 첨가물질이 첨가된 용액을 약 70°C에서 24시간 동안 교반하여 폴리스티 렌 나노 코어물질 입자를 합성 한다. 3 is a flowchart illustrating a method for synthesizing a core nanomaterial applied to a method for synthesizing a hollow nano silica material according to an embodiment of the present invention. As shown in Fig. 3, in the step (al), distilled water is used as a solvent, and PVP (polyvinylpyrrolidone) is added as a stabilizer at a constant molar ratio calculated on the particle size. ΑΙΒΑ (2,2'-azobis dihydrochloride) used as an initiator is added at a molar ratio that is proportional to the particle size, and in step (a3), precursor styrene is added to the solution to which PVP and AIBA are added. In addition, in step (a4), the solution in which the additive is added to the solvent is stirred at about 70 ° C. for 24 hours to synthesize polystyrene nanocore material particles.
여기서, 전구체로 스티 렌의 내부에 있는 억제제를 제거하기 위해 NaOH를 사용한다. 10% 농도의 NaOH 용액을 제조한 후, 스티 렌과 1: 1 비율로 섞어 주게 되면 억제제가 분리된다. 여기서 억제제는 화학반웅, 생리작용 등의 진행을 방해하는 물질을 말한하는 것으로, 반웅의 종류에 따라 산화 방지제, 부식 방지제, 중합 억제제, 부촉매 , 촉매독, 대사 길항 (代謝挂抗) 물질 등이라 부른다. Here, NaOH is used as a precursor to remove the inhibitor inside the styrene. Prepare 10% NaOH solution and mix with styrene in 1: 1 ratio. Inhibitors are isolated. In this regard, the inhibitor refers to a substance that impedes the progress of chemical reactions and physiological actions, and is called an antioxidant, a corrosion inhibitor, a polymerization inhibitor, a cocatalyst, a catalyst poison, and an metabolic antagonist depending on the type of reaction. .
본 발명의 실시 예에서 전구체로 사용되는 스티 렌 (styrene)은 내부에 억제제가 존재하여, 합성에 필요한 반웅을 저하시 키는 작용을 할 수 있으므로, 상기 NaOH 용액을 섞어 사전에 액제제를 분리하는 것이 바람직하다.  Styrene (styrene) used as a precursor in the embodiment of the present invention has an inhibitor therein, it can act to reduce the reaction required for the synthesis, to separate the liquid preparation in advance by mixing the NaOH solution It is preferable.
본 발명의 실시 예에 따른 중공형 나노 실리카 물질 합성 에 사용되는 코어물질 합성방법은 그 핵심 적 특징은 안정제, 개시제 및 용매 중 적어도 어느 하나의 농도를 조절하여 코어물질 나노 입자의 크기를 조절하는 것이다.  Core material synthesis method used in the synthesis of hollow nano-silica material according to an embodiment of the present invention is to control the size of the core material nanoparticles by controlling the concentration of at least one of the stabilizer, initiator and solvent. .
그 외에도, 용매의 종류를 달리하여 lOOnm 이하의 크기를 갖는 코어물질 나노입자인 PS 입자를 합성하는 것도 가능하다. 즉ᅳ 물과 아세톤 비율은 1: 1 비율의 흔합용매를 사용하여 합성하면 lOOnm 이하의 코어 물질을 합성할 수 있다.  In addition, it is also possible to synthesize PS particles, which are core material nanoparticles having a size of 100 nm or less, by varying the type of solvent. That is, the water and acetone ratio may be synthesized using a mixed solvent in a ratio of 1: 1 to synthesize a core material of 100 nm or less.
(b) 단계 (S200)에서, 에탄올 . 용매에 상기 코어 나노물질 폴리 스티 렌 (PS)을 첨가하고, 분산시켜 분산액을 형성하게 되는데, 여 기서 분산액을 형성하기 위 한 수용매로 에탄올 용매로 사용하지만, 증류수도 가능하고, 이소프로필 알콜 및 알콜과 증류수가 흔합된 용액등 사용하는 것이 가능하다. 즉, 나노 입자의 분산액을 저해하지 않는 범위에서 모두 가능하고, 이후의 실리카 전구체를 용해시키기 위 한 용매이면 모두 가능하다. 그리고, 에탄올 (EtOH) 용매에 합성된 PS 입자를 첨가한 후 분산이 잘되도록 교반을 시켜준다. (b) in step S200, ethanol. The core nanomaterial polystyrene (PS) is added to the solvent and dispersed to form a dispersion. In this case, a solvent for forming a dispersion is used as an ethanol solvent, but distilled water is also possible, and isopropyl alcohol and It is possible to use a solution in which alcohol and distilled water are mixed. That is, all of them can be in a range that does not inhibit the dispersion of nanoparticles, and any solvent can be used to dissolve the silica precursor thereafter. Then, after adding the PS particles synthesized in the ethanol (EtOH) solvent is stirred to ensure good dispersion.
(c) 단계 (S400)는, 상기 분산액에 TEOS 첨가하는 단계로서, 실리카 전구체로는 tetraethyi orthosilicate (TEOS)를 사용한다. 즉, PS 입자가 첨가된 분산액을 형성한 후, 이 분산액에 TEOS 1 내지 5mL를 첨가한다. 이는 코어 물질인 PS 입자에 실리카 물질의 쉘구조를 형성하여 코어 -쉘 구조를 갖는 중공형 나노 실리카 물질을 합성하기 '위함이다. (c) Step (S400) is a step of adding TEOS to the dispersion, using tetraethyi orthosilicate (TEOS) as a silica precursor. That is, after forming the dispersion to which PS particle was added, 1-5 mL of TEOS is added to this dispersion. This core material is formed by a shell structure of the silica material to the PS core particles - a synthesizing a hollow silica nano-material having a shell structure, and friction.
(d) 단계는, 상기 TEOS가 첨가된 용액에 암모니아수를 첨가 (S400)하여 pH를 8 내지 9로 하여 반웅 (S500)시키는 단계로서, 상기 TEOS 첨가 용액에 암모니아수 (NH4OH)를 흔합하여 pH를 8 내지 9 범위로 맞추어 반웅시킨다. 이때의 반웅 온도를 5C C 내지 60 °C 정도로 형성하는 것이 바람직하다. 반웅 온도가 50°C 미만이 되면 내부의 폴리스티 렌 (PS)이 녹아나오지 않게 된다. 반웅 온도를 맞춰준 상태에서 2시간 이상 반웅시키면 중공형 나노 실리카가 합성된다. 여기서, 암모니아수의 첨가량은 내부의 PS 입자의 제거에 영향을 미치기 때문에 매우 민감하게 조절하여야 하므로, 본 발명의 실시예에서는 pH 8 내지 9가 되도록 암모니아수 첨가량을 조절하는 것이 바람직하다. Step (d) adds ammonia water to the solution to which the TEOS is added (S400). As a step of reacting the pH to 8 to 9 (S500), ammonia water (NH 4 OH) is mixed with the TEOS-added solution to adjust the pH to a range of 8 to 9. It is preferable to form the reaction temperature at this time to about 5C C to 60 ° C. If the reaction temperature is below 50 ° C, the internal polystyrene (PS) will not melt. When the reaction temperature is set to 2 hours or more, the hollow nano silica is synthesized. Here, since the addition amount of the ammonia water has to be very sensitively controlled because it affects the removal of the PS particles therein, in the embodiment of the present invention, it is preferable to adjust the amount of the ammonia water to be pH 8-9.
그리고, 반웅 온도를 50 °C 이상을 유지하여 반웅을 시키는 것이 바람직한데, 이는 반웅 온도가 50°C 미만이 될 경우 내부의 PS 입자들이 제거되지 않는다. 이후 TEOS 및 암모니아수의 첨가 비율에 따라 반웅 시간을 조절한다. 반웅시간은 약 2 내지 8시간으로 조절한다. 도 4는 본 발명의 실시예에 따른 중공형 나노 실리카 물질의 합성방법에 의해 합성된 HSS 입자의 TEM 사진을 나타낸다. 도 4에 나타낸 바와 같이 약 lOOnm 크기의 코어 쉘 구조가 선명한 중공형 나노 실리카 물질이 형성되었음을 명백히 알 수 있다. 이상의 설명에서 본 발명은 특정의 실시 예와 관련하여 도시 및 설명하였지만, 특허청구범위에 의해 나타난 발명의 사상 및 영역으로부터 벗어나지 않는 한도 내에서 다양한 개조 및 변화가 가능 하다는 것을 당 업계에서 통상의 지식을 가진 자라면 누구나 쉽게 알 수 있을 것이다. Then, the temperature holding banung more than 50 ° C it is preferred that the banung, which do inside PS particles are not removed when the banung temperature is less than 50 ° C. Since reaction time is adjusted according to the addition ratio of TEOS and ammonia water. The reaction time is adjusted to about 2 to 8 hours. Figure 4 shows a TEM picture of the HSS particles synthesized by the method of synthesizing the hollow nano silica material according to an embodiment of the present invention. As shown in FIG. 4, it can be clearly seen that a hollow nano silica material having a clear core shell structure of about 100 nm is formed. While the invention has been shown and described in connection with specific embodiments thereof, it is well known in the art that various modifications and changes can be made without departing from the spirit and scope of the invention as indicated by the claims. Anyone who owns it can easily find out.
【산업상 이용가능성】 Industrial Applicability
본 발명은 산업에 다양하게 활용되는 HSS 입자는 사용되는 목적에 다양한 크기의 HSS 입자를 용이하게 합성할 수 있는 방법을 제공하고자 하는 것으로 산업상 이용가능성이 있다.  Industrial Applicability The present invention is intended to provide a method for easily synthesizing HSS particles of various sizes for the purpose of using the HSS particles that are used in various industries.

Claims

【특허 청구범위】 [Patent Claims]
【청구항 1】 [Claim 1]
(a) 코어 나노물질 합성하는 단계;  (a) synthesizing the core nanomaterials;
(b) 에탄을 용매에 상기 코어 나노물질을 첨가하고 분산시켜 분산액을 형성하는 단계 ;  (b) adding and dispersing ethane to the core nanomaterial in a solvent to form a dispersion;
(c) 상기 분산액에 TEOS 첨가하는 단계 ; 및  (c) adding TEOS to the dispersion; And
(d) 상기 TEOS가 첨가된 용액에 암모니아수를 첨가하여 pH를 8 내지 9로 하여 반웅시키는 단계를 포함하는 것을 특징으로 하는 중공형 나노 실리카 물질 합성방법 .  (d) adding ammonia water to the solution to which the TEOS is added to react the pH to 8 to 9, characterized in that the hollow nano silica material synthesis method.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 코어 나노물질은 실리카 전구체로 폴리스티 렌 (polystyrene)인 것을 특징으로 하는 중공형 나노 실리카 물질 합성방법 .  The core nanomaterial is a silica precursor, polystyrene (polystyrene) characterized in that the hollow nano-silica material synthesis method.
【청구항 3】 [Claim 3]
제 2항에 있어서,  The method of claim 2,
상기 (a) 단계는,  In step (a),
(al) 증류수 용매에 안정제로 PVP(polyvinylpyrrolidone)를 첨가하는 단계 ; (a2) 개시제로 ΑΙΒΑ(2,2' - azobis dihydrochloride)를 첨가하는 단계 ;  (al) adding polyvinylpyrrolidone (PVP) as a stabilizer to the distilled water solvent; (a2) adding ΑΙΒΑ (2,2'-azobis dihydrochloride) as an initiator;
(a3) 전구체로 스티 렌 (styrene)을 첨가하는 단계 ;  (a3) adding styrene as a precursor;
(a4) 상기 안정제, 개시제 및 전구체가 첨가된 용액을 60도 내지 80도에서 24시간 교반하는 단계를 포함하되,  (a4) stirring the solution to which the stabilizer, the initiator, and the precursor are added at 60 to 80 degrees for 24 hours,
상기 용매, 안정제 및 개시제 중 적어도 어느 하나의 농도를 조절하여 입자의 크기를 조절하는 것을 특징으로 하는 중공형 나노 실리카 물질 합성방법 .  Hollow nano-silica material synthesis method characterized in that to control the size of the particles by adjusting the concentration of at least any one of the solvent, stabilizer and initiator.
【청구항 4】 [Claim 4]
제 3항에 있어서 ,  The method of claim 3,
상기 (a4) 단계는, 10% 농도의 NaOH용액을 형성하는 단계; Step (a4) is, Forming a 10% NaOH solution;
상기 NaOH 용액과 상기 스티렌 (styrene)을 1:1 비율로 흔합하여, 상기 스티렌 내부의 억제제를 제거하는 단계를 포함하는 것을 특징으로 하는 중공형 나노 실리카 물질 합성방법.  And mixing the NaOH solution with the styrene in a 1: 1 ratio, thereby removing the inhibitor in the styrene.
【청구항 5】 [Claim 5]
제 1항 내지 제 4항 중 어느 한 항에 있어서,  The method according to any one of claims 1 to 4,
상기 (d) 단계는,  In step (d),
50 °C 내지 60°C에서 2 내지 4시간 반웅시키는 것을 특징으로 하는 중공형 나노 실리카 물질 합성방법. Hollow nano-silica material synthesis method characterized in that the reaction for 2 to 4 hours at 50 ° C to 60 ° C.
PCT/KR2014/001766 2013-03-05 2014-03-04 Method for synthesizing hollow nano-silica material WO2014137135A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0023421 2013-03-05
KR20130023421 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014137135A1 true WO2014137135A1 (en) 2014-09-12

Family

ID=51491597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001766 WO2014137135A1 (en) 2013-03-05 2014-03-04 Method for synthesizing hollow nano-silica material

Country Status (1)

Country Link
WO (1) WO2014137135A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194457A (en) * 2019-05-20 2019-09-03 重庆科技学院 A kind of SiO2The preparation method and size of hollow nanometer rods regulate and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455333B1 (en) * 2002-05-29 2004-11-06 우제완 Method for preparing silica hollow microspheres
KR20080028992A (en) * 2005-08-10 2008-04-02 더 프록터 앤드 갬블 캄파니 Hollow silica particles, compositions comprising them, and methods for making same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455333B1 (en) * 2002-05-29 2004-11-06 우제완 Method for preparing silica hollow microspheres
KR20080028992A (en) * 2005-08-10 2008-04-02 더 프록터 앤드 갬블 캄파니 Hollow silica particles, compositions comprising them, and methods for making same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG SHIN YUN ET AL.: "Fabrication of uniform hollow silica nanospheres using a cationic polystyrene core", BULL. KOREAN CHEM. SOC., vol. 32, no. 5, 2011, pages 1534 - 1538 *
KWON, JAE MIN: "Preparation of Hollow Silica Spheres with Controllable Sizes Using Polystyrene as a Template by Non-calcined Process", KEIMYUNG UNIVERSITY MASTER'S DEGREE THESIS, December 2012 (2012-12-01), pages 11 - 12 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110194457A (en) * 2019-05-20 2019-09-03 重庆科技学院 A kind of SiO2The preparation method and size of hollow nanometer rods regulate and control method

Similar Documents

Publication Publication Date Title
Feng et al. Self‐templating approaches to hollow nanostructures
CN101274246B (en) Sol-gel method for preparing earth silicon/titanic oxide hollow microballoon
Goia Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions
Yokoi et al. Synthesis of mesoporous silica nanospheres promoted by basic amino acids and their catalytic application
US9415442B2 (en) Stable oxide encapsulated metal clusters and nanoparticles
JPWO2007122930A1 (en) Core-shell type silica and method for producing the same
WO2009081700A1 (en) Polymer-coated fine inorganic particle and process for producing the same
WO2009030703A2 (en) Novel nanoparticles
Han et al. One-pot synthesis of a Au@ TiO 2 core–shell nanocomposite and its catalytic property
CN113213489B (en) Hollow silicon dioxide microsphere and preparation method thereof
CN107487774B (en) Method for modifying silica sol by using layered silicate
Li et al. A magnetic mesoporous SiO 2/Fe 3 O 4 hollow microsphere with a novel network-like composite shell: Synthesis and application on laccase immobilization
KR101672532B1 (en) Syntehtic method of core material for mesoporous hollow sillica spheres, and core meterial manufactured by it
WO2015133606A1 (en) Method for producing nano hollow particles composed of silica shell
KR20160127871A (en) Syntehtic method of core material for mesoporous hollow sillica spheres, and core meterial manufactured by it
ul Haq et al. Preparation and properties of uniform coated inorganic colloidal particles. 11. Nickel and its compounds on manganese compounds
CN104028182A (en) Preparation method of zinc oxide ternary compound nano material with yolk-eggshell structure
WO2014137135A1 (en) Method for synthesizing hollow nano-silica material
CN113582188A (en) Preparation method of nano core-shell silica microspheres
KR20160129979A (en) Method for producing metal/ceramic nanostructure, metal/ceramic nanostructure produced by the same, and catalyst containing the same
KR20120091300A (en) Method of synthesizing metal composite oxide and metal composite oxide obtained by same
KR101466095B1 (en) hollow sillica spheres synthetic method using of surfactant
JP5888821B2 (en) Metal nanoparticles and production method thereof
JP5563329B2 (en) Metal nanoparticles and production method thereof
WO2014137134A1 (en) Method for synthesizing core material used for synthesizing hollow nano-silica material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760998

Country of ref document: EP

Kind code of ref document: A1