WO2014136974A1 - 免疫性末梢神経障害症由来抗体を認識する組成物とその利用 - Google Patents

免疫性末梢神経障害症由来抗体を認識する組成物とその利用 Download PDF

Info

Publication number
WO2014136974A1
WO2014136974A1 PCT/JP2014/056073 JP2014056073W WO2014136974A1 WO 2014136974 A1 WO2014136974 A1 WO 2014136974A1 JP 2014056073 W JP2014056073 W JP 2014056073W WO 2014136974 A1 WO2014136974 A1 WO 2014136974A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
immobilized
glc
chain
sugar
Prior art date
Application number
PCT/JP2014/056073
Other languages
English (en)
French (fr)
Inventor
泰生 隅田
雅広 若尾
秀治 石田
伸泰 結城
Original Assignee
株式会社スディックスバイオテック
国立大学法人鹿児島大学
国立大学法人岐阜大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社スディックスバイオテック, 国立大学法人鹿児島大学, 国立大学法人岐阜大学 filed Critical 株式会社スディックスバイオテック
Publication of WO2014136974A1 publication Critical patent/WO2014136974A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/564Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids
    • G01N2405/08Sphingolipids
    • G01N2405/10Glycosphingolipids, e.g. cerebrosides, gangliosides

Definitions

  • the present invention relates to fluorescent nanoparticles in which the sugar chain portion of ganglioside is immobilized and use thereof.
  • GBS Guillain-Barre syndrome
  • FS Fisher syndrome
  • BBE Bickerstaff type brainstem encephalitis
  • Ganglioside is an acidic glycolipid with sialic acid and is abundant in nerve cell membrane. Ganglioside is composed of ceramide having fatty acid and hydrophobicity, and hydrophilic oligosaccharide, and it is said that it is a part of oligosaccharide existing mainly in the form exposed on the cell surface that has physiological activity.
  • An antibody against ganglioside has attracted attention as a pathogen of autoimmune peripheral nerve disease, mainly GBS and FS.
  • GBS and FS anti-ganglioside antibodies are detected in blood.
  • the antibody titer of the anti-ganglioside antibody is highest immediately after the onset, and decreases and disappears over time (Non-patent Document 2).
  • Non-Patent Document 3 Non-Patent Document 4
  • Non-Patent Document 5 Non-Patent Document 5
  • the ELISA method is an abbreviation for Enzyme-Linked Immuno-Sorbent Assay, and is a method used when detecting or quantifying the concentration of an antibody or an antigen contained in a sample.
  • a specific protein When a specific protein is present in a trace amount in a biological sample, it has high specificity (how accurately it can be distinguished from contaminants) and good quantitativeness (it can be detected even in trace amounts, or low concentration) Good reproducibility).
  • ELISA uses a highly specific antigen-antibody reaction and clears the above conditions by using color development / luminescence based on enzyme reaction as a signal.
  • Non-patent Documents 5 and 6 A complex of GM1 ganglioside sugar chain and protein has also been synthesized (Non-patent Document 9).
  • Non-patent Document 1 Plasma exchange therapy and massive intravenous injection of immunoglobulin have been established as effective treatments for GBS.
  • Patent Document 1 Non-Patent Document 7
  • Non-patent Document 8 a fluorescent linker compound that can be used for the preparation of the sugar chain-immobilized fluorescent nanoparticles.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2011-209282 (published on October 20, 2011)”
  • the above-mentioned ELISA method currently used as a method for measuring an anti-ganglioside antibody has a problem that it is a time consuming and laborious method. In other words, it is usually necessary to send the patient's serum to the testing company and wait for a week or more for the result to arrive. Therefore, there is a problem that a quick diagnosis cannot be performed and treatment is inevitably delayed.
  • An object of the present invention is to develop a rapid and simple diagnostic method using nanoparticles having ganglioside sugar chains immobilized thereon.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide sugar chain-immobilized fluorescent nanoparticles in which a sugar chain part of ganglioside is immobilized and use thereof.
  • the present invention can provide, for example, a simple diagnostic test tool that has specific reactivity to an antibody against ganglioside present in GBS patient serum and enables detection within 3 hours. .
  • the sugar chain-immobilized fluorescent nanoparticles according to the present invention include one or more sugar chains containing a ganglioside-derived sugar chain, and one or more sugar chains having a hydrocarbon chain or a hydrocarbon-derived chain in the main chain.
  • a sugar chain ligand comprising two or more types of linker compounds, wherein the main chain of the linker compound has an amino group bonded to the sugar chain at one end and a hydrocarbon structure containing a sulfur atom at the other end
  • the sugar chain-immobilized fluorescent nanoparticles (also referred to as ganglioside sugar chain-immobilized fluorescent nanoparticles) according to the present invention specifically bind to an anti-ganglioside antibody such as an anti-GM1 antibody present in the serum of GBS patients. Have an action of forming an aggregate.
  • GBS has similar clinical symptoms to cerebral thrombosis, and a rapid examination method is required. If the sugar chain-immobilized fluorescent nanoparticles of the present invention are used, the serum of the patient can be used directly, and the test result can be confirmed visually within a few hours. Therefore, the possibility of practical use is extremely high.
  • FIG. 3 is a diagram showing a synthesis route of a disaccharide structure necessary for synthesizing a GM1-Glc sugar chain. It is a figure showing the path
  • FIG. 2 is a view showing a chemical structure of a sugar chain ligand complex (GM1-Glc-f-mono) containing a GM1 sugar chain prepared from a GM1-Glc sugar chain.
  • GM1-Glc-f-mono a sugar chain ligand complex
  • FIG. 1 is a schematic view showing a method for preparing GM1-Glc sugar chain-immobilized fluorescent nanoparticles (GM1-Glc-FNP).
  • FIG. It is a figure which shows the particle size distribution by the DLS measurement of GM1-Glc sugar chain fixed fluorescent nanoparticle (GM1-Glc-FNP). It is a figure which shows the result of the MALDI-TOF / MS analysis by Positive mode of GM1-Glc sugar chain fixed fluorescent nanoparticle (GM1-Glc-FNP).
  • FIG. 3 is a schematic diagram showing a method for preparing fluorescent nanoparticles having tetraethylene glycol and GM1-Glc sugar chains immobilized thereon.
  • FIG. 3 is a schematic diagram showing the structure of fluorescent nanoparticles (TEG-containing GM1-Glc-FNP) in which a GM1-Glc sugar chain and tetraethylene glycol are immobilized.
  • FIG. 2 is a diagram showing a synthesis route of a GD1a-immobilized sugar chain ligand complex (GD1a-f-mono). It is a figure which shows the result of the fluorescence emission of the precipitate after the centrifugation in the aggregation experiment of GD1a sugar chain fixed fluorescent nanoparticle (GD1a-FNP) and sugar chain binding protein. It is a figure which shows the fluorescence spectrum of the supernatant after centrifugation in the aggregation experiment of GD1a sugar chain fixed fluorescent nanoparticle (GD1a-FNP) and sugar chain binding protein.
  • FIG. 1 It is a figure which shows the result of the fluorescence emission of the deposit after centrifugation in the aggregation experiment with GD1a-FNP and the serum of the patient of immune peripheral neuropathy. It is a figure which shows the result of having measured the fluorescence spectrum of the supernatant after centrifugation in the aggregation experiment with GD1a-FNP and the serum of the patient of immune peripheral neuropathy. It is a figure which shows the result of the aggregation experiment which mixed the anti-GM1IgG antibody positive by ELISA method, and the result of making it react with GM1-FNP in Example 18 negative or false positive, and GD1a-FNP.
  • FIG. 19 is a diagram showing the results of an agglutination experiment in which GD1a-GM1-FNP was mixed with serum that was positive for anti-GM1 IgG antibody by ELISA and negative or false positive as a result of reaction with GM1-FNP in Example 18 .
  • FIG. 3 is a diagram showing an intermediate synthesis route when a GQ1b-Glc sugar chain is synthesized.
  • FIG. 3 is a diagram showing a pathway showing glycosylation and deprotection for synthesizing GQ1b-Glc sugar chain.
  • FIG. 2 is a view showing a synthesis route of a GQ1b-Glc-immobilized sugar chain ligand complex (GQ1b-Glc-f-mono).
  • FIG. 1 is a schematic diagram showing a method for preparing GM1 sugar chain-immobilized fluorescent nanoparticles (GM1-FNP2) in which GM1 sugar chains are immobilized on ZAIS / ZnS core / shell nanoparticles having ZAIS as a core.
  • FIG. It is a figure which shows the result of the fluorescence emission of the precipitate after centrifugation in the aggregation experiment of GM1-FNP2 and the serum and protein of the patient of immune peripheral neuropathy.
  • the “sugar chain-immobilized fluorescent nanoparticle” refers to a sugar chain ligand complex described in detail below and a fluorescent nanoparticle (also referred to as a fluorescent metal nanoparticle). It will be.
  • the fluorescent nanoparticles may be produced as described later, or commercially available ones may be used.
  • the “metal nanoparticle” is not particularly limited as long as it is a nanoparticle containing an inorganic metal component.
  • the metal component suitably used in the present invention include Si, Ge, Cd, Zn, Cu. , Ag, Ga, As, In, Te, S, Au and the like, but are not limited thereto.
  • nanoparticles are intended to be dispersed in an aqueous solution to form a colloidal solution. Therefore, the average particle diameter of the nanoparticles is preferably in the range of 0.5 to 400 nm, more preferably in the range of 0.5 nm to 100 nm, and further in the range of 1 nm to 10 nm. preferable.
  • the average particle size may be less than 0.5 nm, but the production of such particles is expensive and impractical, and if it exceeds 400 nm, the dispersion stability of the particles tends to change over time. It is not preferable.
  • the said average particle diameter says the average particle diameter measured by the dynamic light scattering method (DLS).
  • the sugar chain-immobilized fluorescent nanoparticles according to the present invention comprise one or more sugar chains containing a ganglioside-derived sugar chain, a linker compound having a hydrocarbon chain or a hydrocarbon-derived chain in the main chain, A sugar chain ligand complex having a hydrocarbon structure in which the main chain of the linker compound has an amino group bonded to the sugar chain at one end and a sulfur atom at the other end; And a fluorescent nanoparticle in which a particle core made of a second metal component is covered with a layer made of a first and third metal component, and the hydrocarbon structure is immobilized on the layer.
  • Anti-ganglioside antibodies are often found in the serum in the acute phase of immune peripheral neuropathy such as GBS, FS, and BBE, and these antibodies are considered to be a causative agent of immune peripheral neuropathy .
  • anti-GM1 antibody is involved in the development of GBAN, AMAN (acute motor axon type neuropathy), and anti-GM1 antibody produced by Campylobacter lipooligosaccharide acts on GM1 on peripheral nerve axons as a target. It is thought that axonal disorder is caused by.
  • ganglioside which can be a pathogenic substance of immune peripheral neuropathy as ganglioside.
  • ganglioside which can be a pathogenic substance of immune peripheral neuropathy
  • the ganglioside is more preferably one or more gangliosides selected from the group consisting of GM1, GD1a, and GQ1b.
  • “sugar chain derived from ganglioside” means a sugar chain contained in ganglioside, and the sugar chain contains one or more sialic acids.
  • “a sugar chain containing a ganglioside-derived sugar chain” includes both a ganglioside-derived sugar chain itself and a sugar chain obtained by binding a saccharide to a ganglioside-derived sugar chain.
  • the “sugar chain containing a ganglioside-derived sugar chain” is also simply referred to as “ganglioside sugar chain”.
  • the ganglioside sugar chain may be, for example, the GM1 sugar chain itself (hereinafter sometimes referred to as “GM1 sugar chain” or “ganglioside GM1 sugar chain”) represented by the following chemical formula 14, for example: A sugar chain represented by Chemical Formula 1 (hereinafter referred to as “GM1-Glc sugar chain”), which is a sugar chain obtained by binding one glucose as the additional sugar to the reducing end of the sugar chain represented by Chemical Formula 14. 8).
  • GM1 sugar chain A sugar chain represented by Chemical Formula 1 (hereinafter referred to as “GM1-Glc sugar chain”), which is a sugar chain obtained by binding one glucose as the additional sugar to the reducing end of the sugar chain represented by Chemical Formula 14. 8).
  • GD1a sugar chain (hereinafter sometimes referred to as “GD1a sugar chain” or “ganglioside GD1a sugar chain”) represented by the following chemical formula 15; “GQ1b sugar chain” “sometimes referred to as ganglioside GQ1b sugar chain”, sugar chain represented by chemical formula 16 in which one additional glucose is bonded to the reducing end of GQ1b sugar chain (hereinafter referred to as “GQ1b-Glc sugar chain”)
  • GQ1b-Glc sugar chain sugar chain represented by chemical formula 16 in which one additional glucose is bonded to the reducing end of GQ1b sugar chain
  • the upper limit on the number of additional sugars (eg, glucose in the GM1-Glc sugar chain; hereinafter referred to as “further sugar”) to be bound to the ganglioside-derived sugar chain is that the sugar chain cluster effect on the nanoparticles is Since it is important for bonding, it is preferably 5 or less, more preferably 3 or less, and particularly preferably 1 or less.
  • the binding position of the further sugar is preferably the reducing end of the sugar chain derived from ganglioside.
  • any kind can be used as long as it can undergo a reductive amination reaction with an amino group of a linker compound described later.
  • glucose, galactose, mannose, etc. can be used.
  • ganglioside sugar chain one type or two or more types can be used.
  • one type of sugar chain may be used.
  • one type of GM1 sugar chain itself or the above-described GM1-Glc sugar chain shown in Chemical Formula 14 may be used.
  • two or more of the above ganglioside sugar chains may be used.
  • two or more anti-ganglioside antibodies are used using two or more of the ganglioside sugar chains. Can also be detected.
  • the sugar chain ligand complex which is a component of the sugar chain-immobilized fluorescent nanoparticle according to the present invention, is composed of a linker compound capable of binding to any fluorescent nanoparticle and a ganglioside sugar chain.
  • the sugar chain ligand complex is required not to form a non-specific interaction based on hydrophobicity with the anti-ganglioside antibody.
  • the sugar chain ligand complex is composed of one or more ganglioside sugar chains and one or more linker compounds each having a hydrocarbon chain or a hydrocarbon-derived chain in the main chain,
  • the main chain of the linker compound has a hydrocarbon structure having an amino group bonded to the ganglioside sugar chain at one end and a sulfur atom at the other end.
  • the hydrocarbon-derived chain is a hydrocarbon chain composed of carbon and hydrogen, and some of the carbon and hydrogen may be replaced with other atoms and substituents. That is, the hydrocarbon-derived chain has an amino group at the terminal, and a part of the carbon-carbon bond (C—C bond) which is the main chain structure of the hydrocarbon chain is a carbon-nitrogen bond (C—N Bond), carbon-oxygen bond (C—O bond), and amide bond (CO—NH bond).
  • the hydrocarbon structure containing a sulfur atom means a hydrocarbon structure composed of carbon and hydrogen in which some carbon is replaced with sulfur.
  • the hydrocarbon structure containing a sulfur atom may be a chain (including both a straight chain and a branched chain) or a ring, and may have both a chain structure and a ring structure. May be included.
  • the hydrocarbon structure containing a sulfur atom may have a hydrocarbon structure containing an S—S bond or an SH group. That is, the hydrocarbon structure containing a sulfur atom may contain a disulfide bond (SS bond) or a thiol group (SH group).
  • SS bond disulfide bond
  • SH group thiol group
  • the amino group is preferably an aromatic amino group.
  • pH 3-4 which is the optimum condition for the reductive amination reaction, it is necessary that the amino group is not protonated. Therefore, an aromatic amino group in which an unshared electron pair exists on a nitrogen atom even at pH 3 to 4 due to conjugation with an aromatic group is preferable.
  • a compound shown in WO2005 / 0797965 or a compound shown in Non-Patent Document 8 can be mentioned. Specifically, the general formula (17)
  • p and q are each independently an integer of 0 or more and 6 or less
  • the X has an aromatic amino group at the terminal and a carbon-nitrogen bond in the main chain.
  • a hydrocarbon-derived chain having a structure including one chain, two chains, or three chains
  • Y as a hydrocarbon structure including a sulfur atom or a sulfur atom.
  • Z a structure in which a linker compound having a linear structure having a carbon-carbon bond or a carbon-oxygen bond and a sugar having a reducing end are bonded via the aromatic amino group. It is preferable to have.
  • X is the general formula (18), general formula (19), general formula (20) or general formula (21).
  • m 1 to m 5 are each independently an integer of 0 or more and 6 or less, R ′ is hydrogen (H) or R), and R is a sugar chain-derived compound (for example, reduced More preferably, the Z is represented by the formula (22) or the formula (23).
  • n 1 and n 2 are each an integer of 1 or more and 6 or less. More preferably, the ligand conjugate usable in the present invention is, for example, the general formula (24), the general formula (25), the general formula (26), the general formula (27), the general formula (28), or the general formula. (29)
  • linker compound represented by the general formula (29) is a linker compound that has been developed by the inventors and has itself fluorescence (Non-patent Document 8).
  • the linker compound that can be used in the present invention performs a condensation reaction between thioctic acid and an amine compound whose aromatic amino group end is protected by a protecting group to deprotect the protecting group at the end of the aromatic amino group.
  • the linker compound represented by the general formula (28) is, for example, a condensation reaction between a dimer of ⁇ -mercaptobutyric acid and an amine compound in which two molecular amino terminal ends are protected by a protecting group. And deprotecting the protecting group at the terminal of the aromatic amino group.
  • the amine compound is not particularly limited as long as it has an aromatic amino group end protected by a protecting group.
  • a linker compound in which n 1 is 4 in the structure represented by the general formula (29) (the following formula (30))
  • a ligand complex into which a sugar having a reducing end (ganglioside sugar chain) is introduced is used.
  • a method for producing the ligand complex will be described in (1-6. Method for producing sugar chain-immobilized fluorescent nanoparticles).
  • the linker compound represented by the general formula (29) is a linker compound that exhibits fluorescence as described above (Non-patent Document 8, hereinafter referred to as “fluorescent linker compound”), and the fluorescence is used as an index. Since the sugar chain ligand complex can be purified, it is particularly preferably used.
  • the linker compounds represented by the general formulas (24) to (28) are not fluorescent linker compounds, when these linker compounds are used, the sugar chain ligand complex is obtained as a white solid, Since the sugar chain ligand complex obtained by using the linker compounds represented by the general formulas (24) to (28) can also be immobilized on the fluorescent nanoparticles described later, it is preferably used in the present invention. Can do.
  • a synthesis procedure of a sugar chain ligand complex in which a sugar having a reducing end is introduced into a linker compound in which n 1 and q are 0 in the structure represented by the general formula (26) is disclosed in WO2005 / 07965.
  • the disclosed sugar chain ligand conjugate in which a saccharide having a reducing end is introduced into the linker compound represented by the general formula (24), (25), (27), (28) is also synthesized by the same procedure. can do.
  • the linker compound that can be used in the present invention has a hydrocarbon chain or a hydrocarbon-derived chain in the main chain, and has an amino group at one end of the main chain. Furthermore, since the linker compound has an amino group at the terminal, a sugar chain molecule can be easily introduced.
  • the amino group may be a modified amino group (for example, an amino group modified with an acetyl group, a methyl group or a formyl group), an aromatic amino group, or an unmodified amino group. There may be.
  • the linker compound can be used alone or in combination of two or more. That is, in the present invention, one kind of linker compound (for example, a linker compound represented by the formula (30)) is used, and the linker compound is bound to one kind of ganglioside sugar chain (for example, GM1-Glc sugar chain). You may use only the made sugar chain ligand conjugate.
  • one kind of linker compound for example, a linker compound represented by the formula (30)
  • ganglioside sugar chain for example, GM1-Glc sugar chain.
  • one kind of linker compound (for example, a linker compound represented by the formula (30)) is mixed with two or more kinds of ganglioside sugar chains (for example, a GM1-Glc sugar chain and a sugar chain represented by the chemical formula 14).
  • a sugar chain ligand complex in which different types of sugar chains are independently bonded to one type of linker compound (for example, a linker compound represented by the formula (30) in which a GM1-Glc sugar chain is bonded;
  • a mixture with a linker compound represented by the formula (30) to which a sugar chain is bonded may be prepared and used.
  • linker compounds for example, a linker compound represented by the formula (30) and a linker compound in which n 1 and q are 0 in the structure represented by the general formula (26)
  • the saccharide is linked to one type of ganglioside sugar chain (for example, GM1-Glc sugar chain) or two or more types of ganglioside sugar chains (for example, GM1-Glc sugar chain and the sugar chain represented by Chemical Formula 14).
  • a chain ligand complex may be prepared and used.
  • the sugar chain ligand complex used in the present invention may consist of one kind of linker compound and one kind of ganglioside sugar chain.
  • a specific anti-ganglioside antibody for example, anti-GM1 antibody
  • the sugar chain ligand complex used in the present invention may be a mixture of sugar chain ligand complexes obtained by combining two or more types of linker compounds and two or more types of ganglioside sugar chains.
  • two or more types of anti-ganglioside antibodies can be detected, for example, a plurality of anti-ganglioside antibodies (for example, anti-GM1 antibody and anti-GD1a antibody) involved in GBS can be detected simultaneously.
  • the sugar-ligand complex includes a sulfur atom (S).
  • the sulfur atom (S) includes cadmium (Cd) contained in the fluorescent nanoparticle and a metal-sulfur bond (Cd—S). Bond) and can bind to the fluorescent nanoparticles.
  • the linker compound that can be used in the present invention is mainly composed of a hydrocarbon structure containing an S—S bond or an SH group in that a metal-sulfur bond (eg, Cd—S bond) can be easily formed. It is preferable to provide at the other end of the chain.
  • the linker compound can be arranged by assembling sugar chain molecules on the fluorescent nanoparticles.
  • Sulfur (S) in a disulfide bond (SS bond) or SH group forms a metal-sulfur bond (Cd-S bond) with cadmium (Cd) present on the fluorescent nanoparticles,
  • the bond with can be strengthened.
  • the sugar chain ligand complex In the sugar chain ligand complex, a glycoside sugar chain having a reducing end is introduced into the amino group of the linker compound.
  • the sugar chain ligand complex has a structure in which the linker compound and a sugar chain having a reducing end are bonded via an amino group.
  • the introduction of the sugar chain can be performed, for example, by a reductive amination reaction between the amino group (—NH 2 group) of the linker compound and the sugar chain. That is, an aldehyde group (—CHO group) or a ketone group (—CRO group, R is a hydrocarbon group) in the sugar chain generated by equilibrium reacts with the amino group of the linker compound. Then, by continuously reducing the Schiff base formed by this reaction, the sugar chain can be easily introduced into the amino group.
  • a reductive amination reaction between the amino group (—NH 2 group) of the linker compound and the sugar chain. That is, an aldehyde group (—CHO group) or a ketone group (—CRO group, R is a hydrocarbon group) in the sugar chain generated by equilibrium reacts with the amino group of the linker compound. Then, by continuously reducing the Schiff base formed by this reaction, the sugar chain can be easily introduced into the amino group.
  • the “sugar chain having a reducing end” is a monosaccharide, oligosaccharide chain or polysaccharide chain in which the anomeric carbon atom is not substituted. That is, the sugar chain having the reducing end is a reducing sugar chain.
  • the sugar chain having a reducing end may be a commercially available product or a natural product, or a product prepared by decomposing a commercially available and natural polysaccharide chain.
  • sugar chain having the reducing end for example, the ganglioside sugar chain described above in (1-1.
  • Sugar chain containing a ganglioside-derived sugar chain can be used.
  • the linker compound contained in the sugar chain ligand complex has a sulfur atom capable of binding to a metal and an amino group capable of binding to a sugar chain molecule such as an oligosaccharide chain. Therefore, for example, the sugar chain ligand complex is fixed to the metal on the fluorescent nanoparticle by a metal-sulfur bond such as a Cd—S bond, so that the fluorescent nanoparticle according to the present invention is bonded to the fluorescent nanoparticle according to the present invention via the linker compound.
  • the sugar chain molecules can be bound firmly and easily, and the fluorescent nanoparticles can be stabilized in a colloidal state.
  • the immobilization of the above-mentioned sugar chain ligand complex to the fluorescent nanoparticles can be performed by simply mixing the ligand complex treated with a reducing agent and the solution containing the fluorescent nanoparticles. It is possible to immobilize sugar chains.
  • the reducing agent used for the reducing agent treatment is preferably sodium borohydride.
  • the S—S bond in the linker compound is reduced to be converted into a —SH group, and can be bonded to any metal by a metal-sulfur (S) bond, for example, a cadmium-sulfur (Cd—S) bond. it can.
  • S metal-sulfur
  • Cd—S cadmium-sulfur
  • the sugar chain ligand complex has a non-cyclic partial structure in which many hydroxyl groups are present at the binding site to the linker compound (that is, the reducing end sugar unit bonded to the linker compound has many hydroxyl groups. Therefore, the influence of non-specific interaction with the protein can be almost ignored. Therefore, by using the ligand complex having the linker compound, the interaction between the sugar chain and the anti-ganglioside antibody can be evaluated with good reproducibility.
  • the sugar chain ligand complex includes a linker compound and a sugar chain molecule
  • a metal-sulfur (S) bond such as cadmium-sulfur (Cd-S) is formed at the SS bond in the linker compound.
  • S metal-sulfur
  • Cd-S cadmium-sulfur
  • Any metal can be used as long as it can bind to the sugar-ligand complex, and metals such as zinc, copper, silver, and indium can be used in addition to cadmium. Particularly, cadmium and zinc can be used. It is preferable to use it.
  • the sugar chain-immobilized fluorescent nanoparticle according to the present invention is a fluorescent nanoparticle in which a particle core composed of first and second metal components is coated with a layer composed of first and third metal components. Contains particles.
  • the linker compound since the linker compound has a hydrocarbon structure containing a sulfur atom at the other end, the hydrocarbon structure is immobilized on the layer. That is, the S—S bond of the hydrocarbon structure forms a metal-sulfur (S) bond with the metal contained in the layer, so that the hydrocarbon structure is fixed to the layer.
  • the sugar chain-immobilized fluorescent nanoparticle according to the present invention contains the above-mentioned sugar chain ligand complex, but preferably further contains the following complex in addition to the sugar chain ligand complex. That is, it comprises an aminated oligoethylene glycol and a linker compound having a hydrocarbon chain or a hydrocarbon-derived chain in the main chain, and the main chain of the linker compound has the aminated oligoethylene at one end thereof. It is preferable to include a complex having a carboxyl group bonded to glycol and having a hydrocarbon structure containing a sulfur atom at the other end.
  • the ganglioside sugar chain-immobilized fluorescent nanoparticles according to the present invention also include fluorescent nanoparticles prepared by co-immobilizing oligoethylene glycol with the local density of the immobilized sugar chains. .
  • the oligoethylene glycol can be immobilized on the fluorescent nanoparticle together with the sugar chain.
  • the local density of the sugar chain immobilized on the nanoparticles can be suitably adjusted.
  • the detection sensitivity of the anti-ganglioside antibody can be increased. Therefore, detection of an anti-ganglioside antibody can be performed more easily.
  • the oligoethylene glycol is an alcohol obtained by dehydration polycondensation of 2 to 10 ethylene glycols. Of these, triethylene glycol, tetraethylene glycol, and pentaethylene glycol are preferably used, and tetraethylene glycol is particularly preferably used because it is easily available.
  • the oligoethylene glycol used may be one type or two or more types.
  • a complex composed of an aminated oligoethylene glycol and a linker compound can be prepared by performing an amidation condensation reaction between the linker compound and the aminated oligoethylene glycol.
  • the linker compound has a hydrocarbon chain or a hydrocarbon-derived chain in the main chain, and the re-main chain has a carboxyl group bonded to the aminated oligoethylene glycol at one end and a sulfur atom at the other end. It is preferable to have a hydrocarbon structure containing
  • a linker compound having a structure represented by the following general formula (31) can be used.
  • the linker compound used may be one type or two or more types.
  • n 1 is an integer from 1 to 6
  • a suitable molar ratio between the ganglioside sugar chain and the oligoethylene glycol is unclear because it varies depending on the type of ganglioside sugar chain used. For example, as shown in the Examples described later, when the ganglioside sugar chain is a GM1 sugar chain (Chemical Formula 14), the detection result was better when oligoethylene glycol was not included, but the ganglioside sugar chain was GM1. In the case of -Glc sugar chain (Chemical Formula 1), the best detection results are obtained when the molar ratio of GM1-Glc sugar chain to tetraethylene glycol is 5: 5.
  • the molar ratio is preferably adjusted as appropriate depending on the type of ganglioside sugar chain used. As shown in the examples described later, when the ganglioside sugar chain is a GM1-Glc sugar chain, an aggregate that emits fluorescence even when the molar ratio of the ganglioside sugar chain to the oligoethylene glycol is 10: 0 to 3: 7. Since it is observed, it can be said that the molar ratio is an example of a suitable molar ratio.
  • the fluorescent nanoparticle that is a constituent element of the sugar chain-immobilized fluorescent nanoparticle of the present embodiment is a layer in which particles (core) composed of first and second metal components are composed of first and third metal components ( It has a “core / shell” structure that is covered by a shell.
  • core particles
  • the fluorescent nanoparticles are heat-treated, the surface of the shell layer is homogenized, and the sugar chain ligand complex can be efficiently bound. As a result, on the fluorescent nanoparticles Can be provided with high stability.
  • the first metal component is preferably selected from the group consisting of cadmium, zinc, silver, indium and sulfur
  • the second metal component is preferably selected from the group consisting of tellurium and sulfur
  • the third metal component is preferably selected from the group consisting of cadmium, sulfur and zinc.
  • Examples of “core / shell” fluorescent nanoparticles that can be used in the present invention include, but are not limited to, CdTe / CdS and ZAIS / ZnS.
  • ZAIS means Zn, Ag, In, and S.
  • the sugar chain-immobilized fluorescent nanoparticle disclosed in the present invention has a core / shell type quantum dot composed of Cd and Te as its basic structure as a fluorescent nanoparticle.
  • ZAIS nanoparticles generally referred to as ZAIS composed of Ag, In, and S are also included in the applicable range.
  • the method for producing a fluorescent nanoparticle comprises mixing a first solution containing a first metal component and a second solution containing a second metal component under heating conditions, And the second solution is cooled to room temperature, and the particles composed of the first and second metal components are purified from the mixed solution.
  • the solution mixed in the first step is the third metal component.
  • the particles composed of the first and second metal components are covered with the layer composed of the first and third metal components.
  • the method for producing a fluorescent nanoparticle comprises mixing a first solution containing a first metal component and a second solution containing a second metal component under heating conditions, By cooling the mixed solution of the first solution and the second solution to room temperature, purifying the particles composed of the first and second metal components from the mixed solution, and heat-treating the aqueous solution containing the purified particles and the third metal component The particles composed of the first and second metal components are covered with the layer composed of the first and third metal components.
  • the heat treatment after purifying the particle core By performing the heat treatment after purifying the particle core, the homogenization of the surface of the shell layer is further improved, and the binding property of the sugar chain ligand complex to the fluorescent nanoparticle is remarkably improved.
  • the heat treatment performed before purification is preferably performed for 30 minutes to 8 hours. As a result, sugar chain-immobilized fluorescent nanoparticles having a uniform particle size and high water dispersibility can be obtained.
  • room temperature is a temperature in a normal laboratory and is preferably 20 to 30 ° C., but is not particularly limited as long as it is a temperature at which the reaction in the heat treatment can be stopped. It may be the temperature in the chamber (for example, 4 ° C.).
  • the first solution is a solution in which the salt or complex salt of the first metal component is dissolved
  • the second solution is hydrophilic even if the salt or complex salt of the second metal component is dissolved.
  • a solution in which the second metal component is dissolved may be used.
  • sugar chain-immobilized fluorescent nanoparticles (ganglioside sugar chain-immobilized fluorescent nanoparticles) according to the present invention can be produced as follows. Here, a case will be described in which the sugar chain represented by Chemical Formula 1 (GM1-Glc sugar chain) is used as the ganglioside sugar chain and the linker compound represented by the formula (30) is used as the linker compound. Also when using other linker compounds, sugar chain-immobilized fluorescent nanoparticles can be prepared according to the following method.
  • a ganglioside sugar chain structure having a protecting group (a sugar chain represented by Chemical Formula 14 having a protecting group) is obtained by chemical synthesis, and further, glucose protected at positions 1, 2, 3, and 4 is reacted. Finally, the protecting group is removed to synthesize a ganglioside sugar chain (sugar chain represented by Chemical Formula 1) having glucose at the reducing end.
  • Non-patent Document 8 a uniquely developed fluorescent linker compound represented by the formula (30) is introduced into the sugar chain by a reductive amination reaction, and the fact that the fluorescent linker compound exhibits fluorescence is utilized.
  • a sugar chain ligand complex ganglioside sugar chain ligand complex
  • the sugar chain ligand complex is immobilized on a core / shell type fluorescent nanoparticle by an existing method (Patent Document 1, Non-Patent Document 7) and purified using a centrifugal ultrafiltration method.
  • Sugar chain-immobilized fluorescent nanoparticles can be produced.
  • the sugar chain-immobilized fluorescent nanoparticles according to the present invention can be obtained by mixing a solution containing hydrophilic fluorescent nanoparticles subjected to heat treatment with the reducing agent-treated sugar chain ligand complex. Each S atom of the S—S bond of the ligand complex is bound by a metal-sulfur bond to a metal on the fluorescent nanoparticle. The resulting sugar chain-immobilized fluorescent nanoparticles are dispersed in an aqueous solution.
  • the S—S bond of the sugar chain ligand complex is converted into a fluorescent nanoparticle.
  • sugar chain-immobilized fluorescent nanoparticles can be obtained.
  • the conditions for the heat treatment of the hydrophilic fluorescent nanoparticles are not particularly limited, but are preferably performed at 50 to 200 ° C. in the presence of a thiol stabilizer, and 70 to 180 ° C. Is more preferable, and it is more preferable that it is 100 degreeC or more.
  • the thiol stabilizer is not particularly limited, and examples thereof include thio compounds such as thioacetamide, 3-mercaptopropionic acid (3-MPA), thioglycolic acid (TGA), 4-mercaptobutanoic acid, cysteine, cystamine, and salts. It is done.
  • the reducing agent used for the reducing agent treatment is not particularly limited, and examples thereof include salts such as sodium borohydride and sodium cyanoborohydride, and salts having different cation components.
  • the solvent used in the solution containing the fluorescent nanoparticles and the sugar chain ligand complex is not particularly limited, and examples thereof include water, methanol, ethanol, propanol, and mixed solvents thereof.
  • Purification of the sugar chain-immobilized fluorescent nanoparticles can be performed, for example, by centrifugally filtering the sugar chain-immobilized fluorescent nanoparticles obtained by the above mixing and removing components such as low-molecular salts, in a solution state. And stable sugar chain-immobilized fluorescent nanoparticles can be obtained.
  • the mixing ratio of the metal nanoparticles used to prepare the sugar chain-immobilized fluorescent nanoparticles, the above-mentioned sugar chain ligand complex, and the reducing agent is not particularly limited, but when cadmium is included as a metal component
  • the cadmium concentration in the solution containing the fluorescent nanoparticle and the sugar chain ligand complex is preferably 0.1 mM to 1 mM in the final concentration.
  • the concentration of the sugar chain ligand complex is preferably 0.1 mM to 10 mM as the final concentration in the solution containing the fluorescent nanoparticles and the sugar chain ligand complex.
  • the concentration of the complex is preferably 0.1 mM to 10 mM as the final concentration in the solution.
  • the concentration of the reducing agent used is preferably 10 times the molar concentration of the sugar chain ligand complex as the final concentration in the solution.
  • the sugar chains-immobilized fluorescent nanoparticles may be measured with a MALDI-TOF type mass spectrometer.
  • the glycoside sugar chain ligand is reduced because the sugar chain ligand complex (ganglioside sugar chain ligand complex) immobilized with the fluorescent nanoparticles and sulfur-metal bond is reductively decomposed by sulfur-metal bond.
  • m / Z molecular ion peak
  • the ganglioside sugar chain-immobilized fluorescent nanoparticles are aggregated and centrifuged using a lectin (sugar chain-binding protein) that is known to specifically bind to the sugar chains that constitute the ganglioside sugar chain. What is necessary is just to investigate precipitation production.
  • a lectin sucgar chain-binding protein
  • the above lectin and a solution containing fluorescent nanoparticles immobilized with sugar chains are mixed, and the sugar chains and proteins are allowed to interact and specifically bind to each other to confirm the formation of aggregates. It can be confirmed that sugar chains are immobilized on the nanoparticles.
  • lectin examples include concanavalin A (ConA) and lentil lectin (LCA) which are proteins capable of recognizing glucose when the sugar chain located at the end of the sugar chain-immobilized fluorescent nanoparticle is glucose.
  • ConA concanavalin A
  • LCDA lentil lectin
  • PSA Pea lectin
  • a bean lectin which is a protein that recognizes galactose
  • WGA wheat germ lectin
  • sugar chain-immobilized fluorescent nanoparticles produced by such a production method can easily immobilize antibodies on the surface thereof, antibody-immobilized fluorescent nanoparticles with improved specificity for living tissues can be easily obtained. Can be provided.
  • the method for detecting an anti-ganglioside antibody according to the present invention was performed by mixing the sugar chain-immobilized fluorescent nanoparticle according to the present invention and a specimen, thereby immobilizing the sugar chain-immobilized fluorescent nanoparticle.
  • the method includes a step of reacting a sugar chain containing a ganglioside-derived sugar chain with an anti-ganglioside antibody contained in the subject.
  • one or more ganglioside sugar chains are immobilized on the sugar chain-immobilized fluorescent nanoparticles. Therefore, when an anti-ganglioside antibody is contained in the subject, formation of an aggregate (aggregate) can be visually confirmed by an antigen-antibody reaction between the sugar chain and the antibody. At that time, the fluorescent color of the solution changes.
  • the subject is preferably blood or serum, and particularly preferably serum.
  • the blood or serum may be derived from a human or a mammal other than a human.
  • the mixing of the sugar chain-immobilized fluorescent nanoparticles with the analyte is performed by bringing the solution containing the sugar chain-immobilized nanoparticles close to the analyte, and the antigen-antibody reaction between the ganglioside sugar chain and the anti-ganglioside antibody.
  • mixing can be performed by preparing a dilution series of a specimen on a microplate, a plastic tube, or the like, and adding a solution containing the sugar chain-immobilized fluorescent nanoparticles and leaving it to stand.
  • solution containing a sugar chain-immobilized fluorescent nanoparticle is intended to be a colloidal solution in which the sugar chain-immobilized fluorescent nanoparticle according to the present invention is dispersed in a liquid.
  • a liquid for example, water or a buffer solution can be used.
  • the specimen contains an anti-ganglioside antibody against a ganglioside sugar chain immobilized on a sugar chain-immobilized fluorescent nanoparticle, an antigen-antibody reaction occurs and emits fluorescence. Aggregates (aggregates) can be obtained.
  • ganglioside sugar chain-immobilized fluorescent nanoparticles fluorescent nanoparticles with ganglioside sugar chains immobilized
  • patient serum is added and mixed in a plastic tube and left for several hours. Centrifuge.
  • autoantibodies that bind to the sugar chains of the ganglioside sugar chain-immobilized fluorescent nanoparticles are present in the serum, a fluorescent precipitate is obtained, so that the test result can be obtained easily and visually.
  • the anti-ganglioside antibody is suffering from immune peripheral neuropathy considered to be a pathogenic substance.
  • Detection reagent for immune peripheral neuropathy The ganglioside sugar chain-immobilized fluorescent nanoparticles of the present invention can be used as a rapid and simple detection reagent and diagnostic agent for terminal nerve paralysis such as Guillain-Barre syndrome.
  • the detection reagent for immune peripheral neuropathy according to the present invention contains the sugar chain-immobilized fluorescent nanoparticles according to the present invention.
  • the sugar chain-immobilized fluorescent nanoparticle according to the present invention includes the above-described fluorescent nanoparticle, wherein a sugar chain ligand complex comprising one or more ganglioside sugar chains and the above-described linker compound. It is fixed to particles. Therefore, an anti-ganglioside antibody (autoantibody) in serum that binds to the ganglioside sugar chain can be detected quickly, simply, and with high accuracy.
  • a sugar chain ligand complex comprising one or more ganglioside sugar chains and the above-described linker compound. It is fixed to particles. Therefore, an anti-ganglioside antibody (autoantibody) in serum that binds to the ganglioside sugar chain can be detected quickly, simply, and with high accuracy.
  • the reagent containing the sugar chain-immobilized fluorescent nanoparticles according to the present invention can be used as a detection reagent or diagnostic agent for immune peripheral neuropathy including Guillain-Barre syndrome.
  • the detection reagent is in the form of a colloidal solution in which the sugar chain-immobilized fluorescent nanoparticles according to the present invention are dispersed in a liquid.
  • components other than the sugar chain-immobilized fluorescent nanoparticles according to the present invention include, for example, water, a buffer solution, and the aminated oligoethylene described above. Examples include a complex of glycol and the above linker compound.
  • the concentration of the sugar chain ligand complex constituting the sugar chain-immobilized fluorescent nanoparticle is preferably 0.1 mM to 10 mM as the final concentration in the solution as described above.
  • the mixing ratio of the metal nanoparticles used for preparing the sugar chain-immobilized fluorescent nanoparticles, the sugar chain ligand complex, and the reducing agent is not particularly limited, but cadmium is included as a metal component.
  • the cadmium concentration in the solution is preferably 0.1 mM to 1 mM in the final concentration.
  • the concentration of the reducing agent used is preferably 10 times the molar concentration of the sugar chain ligand complex as the final concentration in the solution.
  • the present invention can also be configured as follows.
  • the ganglioside sugar chain-immobilized fluorescent nanoparticle according to the present invention is composed of metal nanoparticles emitting fluorescence composed of ganglioside GM1 sugar chain, cadmium and tellurium.
  • the method for detecting an autoantibody according to the present invention detects an autoantibody that reacts specifically with an immobilized ganglioside sugar chain by mixing the ganglioside sugar chain-immobilized fluorescent nanoparticles and patient serum. .
  • the ganglioside sugar chain-immobilized fluorescent nanoparticles according to the present invention are composed of ganglioside GM1 sugar chains and metal nanoparticles that emit fluorescence composed of zinc, silver, indium, and sulfur.
  • the method for detecting an autoantibody according to the present invention detects an autoantibody that reacts specifically with an immobilized ganglioside sugar chain by mixing the ganglioside sugar chain-immobilized fluorescent nanoparticles and patient serum. .
  • the ganglioside sugar chain-immobilized fluorescent nanoparticle according to the present invention is composed of metal nanoparticles emitting fluorescence composed of ganglioside GD1a sugar chain, cadmium and tellurium.
  • the method for detecting an autoantibody according to the present invention detects an autoantibody that reacts specifically with an immobilized ganglioside sugar chain by mixing the ganglioside sugar chain-immobilized fluorescent nanoparticles and patient serum. .
  • the ganglioside sugar chain-immobilized fluorescent nanoparticles according to the present invention are composed of ganglioside GD1a sugar chains and metal nanoparticles that emit fluorescence composed of zinc, silver, indium, and sulfur.
  • the method for detecting an autoantibody according to the present invention detects an autoantibody that reacts specifically with an immobilized ganglioside sugar chain by mixing the ganglioside sugar chain-immobilized fluorescent nanoparticles and patient serum. .
  • the ganglioside sugar chain-immobilized fluorescent nanoparticle according to the present invention is composed of metal nanoparticles emitting fluorescence composed of ganglioside GQ1b sugar chain, cadmium and tellurium.
  • the method for detecting an autoantibody according to the present invention detects an autoantibody that reacts specifically with an immobilized ganglioside sugar chain by mixing the ganglioside sugar chain-immobilized fluorescent nanoparticles and patient serum. .
  • the ganglioside sugar chain-immobilized fluorescent nanoparticles according to the present invention are composed of ganglioside GQ1b sugar chains and metal nanoparticles that emit fluorescence composed of zinc, silver, indium, and sulfur.
  • the method for detecting an autoantibody according to the present invention detects an autoantibody that reacts specifically with an immobilized ganglioside sugar chain by mixing the ganglioside sugar chain-immobilized fluorescent nanoparticles and patient serum. .
  • the detection reagent or diagnostic agent for immune peripheral neuropathy including Guillain-Barre syndrome according to the present invention includes the sugar chain or nanoparticles according to the present invention.
  • fluorescent nanoparticles were prepared by immobilizing the sugar chain part of ganglioside with the aim of developing a simple tool for a new GBS diagnostic test method.
  • the present invention includes the following 1) to 3) as medically or industrially useful methods and substances.
  • the fluorescent nanoparticle is a semiconductor nanoparticle having cadmium and tellurium having a core-shell structure, or zinc, silver, indium, or sulfur as constituent elements.
  • FIG. 1 is a diagram showing the chemical structure of a GM1-Glc sugar chain in which Glc is introduced into the sugar chain part of ganglioside GM1.
  • Formula 1 shown in FIG. 1 shows the structure of the target GM1-Glc sugar chain.
  • FIG. 2 is a diagram showing an intermediate synthesis route when a GM1-Glc sugar chain is synthesized.
  • a tetrasaccharide structure (shown in Formula 4) serving as a GM1-core is converted into a disaccharide Gal ⁇ 1-3GalN (shown in Formula 2) and NeuAc ⁇ 2-3Gal (Formula 3) in the presence of NIS and TfOH.
  • the corresponding glucoside donor shown in Formula 6 was derived from the tetrasaccharide structure in 5 steps.
  • FIG. 3 is a diagram showing a synthesis route of a disaccharide structure necessary for synthesizing a GM1-Glc sugar chain.
  • gentibiose represented in Formula 11
  • the protecting group be a benzyl group.
  • a glucose sugar donor shown in Formula 7
  • a sugar acceptor shown in Formula 8
  • a disaccharide shown in Formula 9
  • the disaccharide protecting group represented by Formula 9 was converted from a benzoyl group to a benzyl group, and the sugar chain represented by Formula 10 was obtained in two steps with a yield of 88%.
  • the benzylidene group was selectively cleaved by treating with trimethylsilane and BF 3 ⁇ OEt 2 in dichloromethane to obtain gentibiose represented by Formula 11 in a yield of 85%.
  • FIG. 4 is a diagram showing a pathway showing glycosylation and deprotection for synthesizing the GM1-Glc sugar chain. Next, as shown in FIG.
  • the GM1 core sugar donor (shown in Formula 6) synthesized as described above and a disaccharide (shown in Formula 11) are reacted in dichloromethane in the presence of TMSOTf.
  • the desired ⁇ -glycoside (shown in Formula 12) was obtained in 69% yield.
  • GM1-Glc sugar chain (Formula 1) almost quantitatively.
  • the spectrum data of the GM1-Glc sugar chain shown in Formula 1 are as follows.
  • Example 2 Synthesis and fractionation of GM1-Glc-immobilized sugar chain ligand complex
  • the GM1 ganglioside sugar chain (GM1-Glc, 1.0 mg, 0.86 ⁇ mol) having 6-glucose at the reducing end synthesized in Example 1 was dissolved in 20 ⁇ L of ultrapure water, and the original development shown in the above formula (30)
  • N, N-dimethylformamide in a fluorescent linker compound referred to as “f-mono”, 0.28 mg, 1.1 ⁇ mol
  • GM1-Glc-f-mono GM1-Glc-immobilized sugar chain ligand complex
  • FIG. 6 is a schematic view showing a method for preparing GM1-Glc sugar chain-immobilized fluorescent nanoparticles (GM1-Glc-FNP).
  • CdCl 2 (9.17 mg, 50.0 ⁇ mol) and 3-mercaptopropionic acid (3-MPA, 5.45 ⁇ L, 63 ⁇ mol) were dissolved in 10 mL of ultrapure water, and the pH of the solution was adjusted to 9 with 1M NaOH. After bubbling argon gas for 30 minutes with stirring, the solution was heated to 105 ° C. with vigorous stirring.
  • tellurium powder (16.0 mg, 0.125 mmol) and NaBH 4 (18.9 mg, 0.500 mmol) were dissolved in ultrapure water (2 mL) degassed under argon, and at room temperature. Stir for 1.5 hours.
  • the obtained solution NaHTe solution, 200 ⁇ L was added to the above solution heated and stirred at 105 ° C., stirred at the same temperature for further 2 hours, and returned to room temperature.
  • GM1-Glc-f-mono (1 mM, 50 ⁇ L) prepared in Example 2 was mixed with an aqueous solution of NaBH 4 (10 mM, 50 ⁇ L) at room temperature and allowed to stand for 10 minutes. Thereafter, 100 ⁇ L of a solution obtained by diluting the CdTe / CdS core / shell QD solution 5 times with ultrapure water was added to the solution allowed to stand for 10 minutes and stirred at room temperature in the dark for 24 hours. Unreacted sugar-ligand complex was removed by centrifugal ultrafiltration (14000 ⁇ g, 5 min) using Amicon Ultra 10 K (Millipore, MA, USA), followed by washing with ultrapure water three times. A GM1-Glc sugar chain-immobilized fluorescent nanoparticle (GM1-Glc-FNP) solution was prepared by finally suspending the precipitate in PBS.
  • GM1-Glc-FNP GM1-Glc-FNP
  • FIG. 7 is a graph showing the particle size distribution of GM1-Glc sugar chain-immobilized fluorescent nanoparticles (GM1-Glc-FNP) by DLS measurement. As shown in FIG. 7, according to the DLS measurement (device used: Zetasizer Nano ZS90, Malvern Instruments, Worcestershire, UK), the average particle diameter of the nanoparticles (GM1-Glc-FNP) was 8.9 nm.
  • Example 4 Confirmation of immobilized ganglioside sugar chain ligand complex by MALDI-TOF / MS]
  • 1 ⁇ L of PBS solution of GM1-Glc sugar chain-immobilized fluorescent nanoparticles prepared in Example 3 was mixed with 10 ⁇ L of saturated DHBA solution (water / methanol 1/1 solution), and 1 ⁇ L was placed on a measurement plate and allowed to air dry. .
  • the plate was put into the measuring section of Voyager-DE-PRO (Applied Biosystems, CA, USA) and subjected to mass spectrometry.
  • FIG. 8 is a diagram showing a result of MALDI-TOF / MS analysis by POS1-mode of GM1-Glc-FNP
  • FIG. 9 shows a result of MALDI-TOF / MS analysis by Negative mode of GM1-Glc-FNP.
  • Example 5 Confirmation of protein binding ability of GM1-Glc sugar chain-immobilized fluorescent nanoparticles
  • Protein Concanavalin A (ConA), Jaccalin, Peant agglutinin (PNA), Ricin communis agglutinin I (RCA120), Bovine serum albumin (BSA), and GM1-Glc sugar chain-immobilized fluorescent nanoparticle immobilized fluorescent protein .
  • BSA Bovine serum albumin
  • GM1-Glc sugar chain-immobilized fluorescent nanoparticle immobilized fluorescent protein Other than BSA, it is a sugar chain binding protein (lectin).
  • ConA, RCA120, Jaccalin and BSA were dissolved in PBS to a concentration of 10 ⁇ M and PNA at a concentration of 3.6 ⁇ M, respectively, and 5 ⁇ L thereof was transferred to a 200 ⁇ L capacity plastic tube.
  • FIG. 10 is a diagram showing the results of fluorescence emission of precipitates after centrifugation in an aggregation experiment between GM1-Glc sugar chain-immobilized fluorescent nanoparticles (GM1-Glc-FNP) and a sugar chain-binding protein;
  • FIG. 11 is a diagram showing the fluorescence spectrum of the supernatant after the centrifugation.
  • Example 6 Reaction of GM1-Glc sugar chain-immobilized fluorescent nanoparticles with patient serum
  • 5 ⁇ L of serum from patients with immune peripheral neuropathy, including patients with Guillain-Barre syndrome was transferred to a plastic tube with a volume of 200 ⁇ L.
  • 5 ⁇ L of a 0.1 ⁇ M PBS solution of GM1-Glc sugar chain-immobilized fluorescent nanoparticles prepared in Example 3 was stirred with a vortex mixer and left in a dark place at 4 ° C. for a certain time (12 hours). And centrifuged at 14000 G for 5 minutes.
  • the tube was irradiated with ultraviolet light, the fluorescence of the precipitate was observed, and a photograph was taken. Then, the fluorescence spectrum of the supernatant was measured.
  • FIG. 12 shows the results of fluorescence emission of precipitates after centrifugation in an aggregation experiment between GM1-Glc sugar chain-immobilized fluorescent nanoparticles (GM1-Glc-FNP) and sera of patients with immune peripheral neuropathy.
  • FIG. 13 shows the results of centrifugation at different incubation times in an aggregation experiment between GM1-Glc sugar chain-immobilized fluorescent nanoparticles (GM1-Glc-FNP) and sera of patients with immune peripheral neuropathy. It is a figure which shows the result of fluorescence emission of the subsequent deposit.
  • the numbers in the figure are sample numbers
  • 13912 and 13923 are the results of using anti-GM1 antibody negative and anti-GD1a antibody negative sera by ELISA
  • 13882 and 13934 are anti-GM1 antibody negative and anti-antigen by ELISA.
  • 14078, 14134, 14151, 14192, and 14614 show the results using GD1a antibody-positive sera, and the results using anti-GM1 antibody-positive sera by ELISA, respectively.
  • Example 7 Identification of protein in patient serum formed aggregate with GM1-Glc sugar chain-immobilized fluorescent nanoparticles
  • the presence of the antibody in the fluorescent precipitate obtained in Example 6 was confirmed by SDS-PAGE of the precipitate.
  • the precipitate obtained using the serum of sample number 14151 was washed three times with PBS, the precipitate was collected and dispersed again in PBS, and SDS-PAGE sample preparation buffer (reducing conditions and non-reducing conditions) was applied to 10% polyacrylamide gel under reducing conditions and 8% polyacrylamide gel under non-reducing conditions, and silver stained after electrophoresis.
  • FIG. 14 shows the result of silver staining using an SDS buffer containing 2-mercaptoethanol as the sample preparation buffer.
  • FIG. 15 shows an SDS buffer containing no 2-mercaptoethanol as the sample preparation buffer. The results of silver staining using are shown.
  • GM1-Glc-FNP is the GM1-Glc sugar chain-immobilized fluorescent nanoparticle
  • ppt is the precipitate obtained in Example 6
  • Serum sample is the result of using the serum of sample number 14151
  • the left lane is a molecular weight marker.
  • FIG. 16 is a diagram showing the result of Western blotting confirming the presence of the antibody in the fluorescent precipitate obtained in Example 6.
  • ppt indicates the result obtained by using the precipitate obtained in Example 6
  • Serum sample indicates the serum of sample number 14151.
  • FIG. 16 also shows that the sugar chain-immobilized fluorescent nanoparticles are selectively bound to the serum antibodies.
  • Example 8 Competitive inhibition using GM1 sugar chain and GM1-Glc sugar chain
  • the detection of anti-GM1 antibody when the GM1 sugar chain represented by Chemical Formula 14 and the GM1-Glc sugar chain were simultaneously present in the serum sample was examined.
  • Serum 2.5 ⁇ L of sample No. 14151 used in Example 5 was placed in a 200 ⁇ L plastic tube, and 2.5 ⁇ L of GM1 sugar chain in PBS (0 mM, 1 mM, 2 mM, 4 mM, 8 mM, 16 mM) was carried out.
  • 5 ⁇ L of GM1-Glc-FNP in PBS (0.1 ⁇ M) prepared in Example 3 was added, stirred with a vortex mixer, allowed to stand at 4 ° C. in the dark for 6 hours, and centrifuged at 14000 G for 5 minutes. .
  • the tube was irradiated with ultraviolet light, the fluorescence of the precipitate was observed, and a photograph was taken. Then, the fluorescence spectrum of the supernatant was measured.
  • FIG. 17 is a diagram showing the results of fluorescence emission of precipitates after centrifugation when GM1 sugar chains and GM1-Glc sugar chains are simultaneously present in a serum sample.
  • FIG. 18 is a diagram showing a fluorescence spectrum of a supernatant after centrifugation in the case where a GM1 sugar chain and a GM1-Glc sugar chain are simultaneously present in a serum sample.
  • the size of the aggregates decreased as the concentration of the GM1 sugar chain increased. Further, as shown in FIG. 18, it was found that the fluorescence spectrum of the supernatant increases as the concentration of the GM1 sugar chain increases.
  • FIG. 19 shows a method for preparing fluorescent nanoparticles (hereinafter referred to as “TEG-containing GM1-Glc-FNP”) in which tetraethylene glycol (hereinafter also referred to as “TEG”) and GM1-Glc sugar chain are immobilized.
  • TAG-containing GM1-Glc-FNP fluorescent nanoparticles
  • TEG tetraethylene glycol
  • GM1-Glc sugar chain GM1-Glc sugar chain
  • tetraethylene glycol is bonded to a linker compound in which n 1 of the linker compound represented by the general formula (31) is 4 by the following method, and from aminated tetraethylene glycol and the linker compound, To obtain a complex (hereinafter referred to as “TEG-mono”).
  • TEG is reacted with tetraethylene glycol and TsCl in the presence of pyridine in dichloromethane at 0 ° C. under argon to convert one end of the ethylene glycol chain to a tosyl group, and further to an azide group, whereby TEG -Mono precursor was obtained in two steps with a yield of 73%.
  • FIG. 20 is a schematic diagram showing the structure of TEG-containing GM1-Glc-FNP.
  • Example 10 Aggregation experiment of serum sample using TEG-containing GM1-Glc-FNP
  • concentration of TEG with respect to the GM1-Glc sugar chain was changed, and an agglutination experiment of a serum sample using TEG-containing GM1-Glc-FNP was performed.
  • sample numbers 13923 and 13938 anti-GM1 antibody-negative and anti-GD1a antibody-negative sera by ELISA method
  • 13934 anti-GM1 antibody-negative and anti-GD1a antibody-positive serum by ELISA method
  • 14078, 14151 , 14192 serum positive for anti-GM1 antibody by ELISA
  • the 5 ⁇ L serum sample was transferred to a 200 ⁇ L plastic tube. Thereto was added 5 ⁇ L of a TEG-containing GM1-Glc-FNP PBS solution (0.1 ⁇ M) prepared in Example 9.
  • the TEG-containing GM1-Glc-FNP was prepared so that the molar ratio of the GM1-Glc sugar chain to the TEG was 10: 0, 7: 3, 5: 5, 3: 7.
  • the tube was stirred with a vortex mixer and then left in a dark place for 1 hour, followed by centrifugation at 14000 G for 5 minutes. Then, the tube was irradiated with ultraviolet light, and the fluorescence of the precipitate was observed to take a photograph.
  • FIG. 21 is a diagram showing the results of a serum sample agglutination experiment using TEG-containing GM1-Glc-FNP while changing the TEG concentration relative to the GM1-Glc sugar chain.
  • (A) to (d) of FIG. 21 show the results when the molar ratio of GM1-Glc sugar chain to TEG is 10: 0, 7: 3, 5: 5, 3: 7, respectively. .
  • FIG. 21 (a) using GM1-Glc-FNP without addition of TEG no aggregates are observed in sample number 14078.
  • FIGS. 21B and 21C when the molar ratio of GM1-Glc sugar chain to TEG is 7: 3, 5: 5, aggregates are also observed in sample number 14078. ing. When the molar ratio was 3: 7, as shown in FIG. 21 (d), although aggregates were observed at 14078 and 14192, the fluorescence was weak.
  • Example 11 Relationship between antibody concentration and reaction time and aggregate detection sensitivity
  • a dilution series of a serum sample was prepared and the reaction time between the serum sample and GM1-Glc-FNP was varied to examine the relationship between the antibody concentration and reaction time and the detection sensitivity of the aggregate.
  • Sample number 14152 was used as a serum sample. Dilute the sample with PBS and take 5 ⁇ L each of the dilution ratios of 1, 1/2, 1/4, 1/8, 1/16, 1/32 in a 200 ⁇ L capacity plastic tube. Moved.
  • Example 10 a TEG-containing GM1-Glc-FNP PBS solution (0.1 ⁇ M) prepared in Example 10 and having a molar ratio of GM1-Glc sugar chain to TEG of 5: 5 was added.
  • the tube was stirred with a vortex mixer, allowed to stand in the dark at 4 ° C. for 1 hour or 12 hours, and centrifuged at 14000 G for 5 minutes. Next, the tube was irradiated with ultraviolet light, and the fluorescence of the precipitate was observed to take a photograph.
  • FIG. 22 is a diagram showing the results of examining the relationship between antibody concentration and reaction time and aggregate detection sensitivity using TEG-containing GM1-Glc-FNP. 22A shows the result when the standing time is 1 hour, and FIG. 22B shows the result when the standing time is 12 hours. From FIG. 22, it can be seen that the aggregates increased depending on the antibody concentration and the reaction time, and as a result, the antibody detection sensitivity was improved.
  • Example 12 Detection of anti-GM1 IgG antibody using TEG-containing GM1-Glc-FNP
  • anti-GM1 IgG antibody detection by TEG-containing GM1-Glc-FNP was examined using 50 samples each of anti-GM1 antibody-positive sera by ELISA and anti-GM1 antibody-negative sera by ELISA.
  • Each serum sample was put into a plastic tube having a capacity of 15 ⁇ L and 200 ⁇ L, respectively, and the TEG-containing GM1-Glc-FNP PBS prepared in Example 10 and having a molar ratio of GM1-Glc sugar chain to TEG of 5: 5 was used. 15 ⁇ L of the solution (0.1 ⁇ M) was added. The tube was stirred with a vortex mixer, allowed to stand in the dark at 4 ° C. for 3 hours, and centrifuged at 14000 G for 5 minutes. Next, the tube was irradiated with ultraviolet light and photographed.
  • FIG. 23 shows the detection results of anti-GM1 IgG antibody by TEG-containing GM1-Glc-FNP when 50 samples of anti-GM1 IgG antibody-positive serum were used by ELISA.
  • FIG. 24 shows the results of detection of anti-GM1 IgG antibody by TEG-containing GM1-Glc-FNP when 50 samples of anti-GM1 IgG antibody-negative serum were used by ELISA.
  • the numbers in the figure indicate sample numbers.
  • anti-GM1 IgG antibody in serum can be detected easily and with high sensitivity in a short time by TEG-containing GM1-Glc-FNP.
  • FIG. 25 shows anti-GM1 antibody-positive sera obtained by ELISA, and when the mixture was allowed to stand for 3 hours after mixing with TEG-containing GM1-Glc-FNP, the serum of the precipitate was not confirmed. It is a figure which shows the detection result of the anti-GM1IgG antibody at the time of leaving still for a time.
  • Example 13 Preparation of GM1 sugar chain-immobilized ligand complex and preparation of fluorescent nanoparticles having immobilized GM1 sugar chain
  • the GM1 sugar chain represented by the above chemical formula 14 purchased from Oligotech. 1.0 mg, 1.0 ⁇ mol
  • the fluorescent linker compound f-mono, 1.. 98 mg, 6.65 ⁇ mol
  • the fluorescent linker compound f-mono, 1.. 98 mg, 6.65 ⁇ mol
  • GM1-f-mono GM1 sugar chain-immobilized sugar chain ligand complex
  • 26 is a diagram showing a synthesis route of GM1-f-mono.
  • the yield of GM1-f-mono was 0.37 mg (yield 28.9%).
  • the spectrum data of GM1-f-mono is as follows. MS calcd. for: C 51 H 83 N 4 O 29 S 2 : 1278.45, Found: m / z 1277.82 [M ⁇ H] ⁇ .
  • GM1 sugar chain-immobilized fluorescent nanoparticle (GM1-FNP) solution was prepared by the same method as in Example 3 except that GM1-f-mono was used instead of GM1-Glc-f-mono.
  • Example 14 Confirmation of protein binding ability of GM1-FNP] Protein Concanavalin A (ConA), Wheat germ agglutinin (WGA), Sambucus nigra agglutinin (SNA), Peanut agglutinin (PNA), Ricin communis aglutin 120 The binding activity of the conductive nanoparticles was investigated.
  • ConA Protein Concanavalin A
  • WGA Wheat germ agglutinin
  • SNA Sambucus nigra agglutinin
  • PNA Peanut agglutinin
  • Ricin communis aglutin 120 The binding activity of the conductive nanoparticles was investigated.
  • ConA is ⁇ Glc
  • RCA120 is ⁇ Gal
  • PNA is Gal ⁇ 1-3GalNAC
  • WGA is GlcNAc
  • SNA is SA (sialic acid)
  • BSA has the ability to bind to sugar chains. Absent.
  • Each protein was dissolved in PBS at a concentration of 3.6 ⁇ M, and 5 ⁇ L thereof was transferred to a plastic tube having a capacity of 200 ⁇ L. Thereto was added 5 ⁇ L of a GM1 sugar chain-immobilized fluorescent nanoparticle (GM1-FNP) PBS solution (0.25 ⁇ M) prepared in Example 13 and stirred with a vortex mixer, and left in a dark place at 4 ° C. for 12 hours. And centrifuged at 14000 G for 5 minutes. The tube was irradiated with ultraviolet light, the fluorescence of the precipitate was observed, and a photograph was taken. Then, the fluorescence spectrum of the supernatant was measured.
  • GM1-FNP GM1 sugar chain-immobilized fluorescent nanoparticle
  • FIG. 27 is a diagram showing the fluorescence emission results of the precipitate after centrifugation in an aggregation experiment of GM1-FNP and a sugar chain binding protein
  • FIG. 28 shows the fluorescence spectrum of the supernatant after the centrifugation.
  • Example 15 Reaction of GM1-FNP with patient serum
  • the tube was irradiated with ultraviolet light, the fluorescence of the precipitate was observed, and a photograph was taken. Then, the fluorescence spectrum of the supernatant was measured.
  • FIG. 29 shows the results of fluorescence emission of precipitates after centrifugation in an aggregation experiment between GM1 sugar chain-immobilized fluorescent nanoparticles (GM1-FNP) and sera of patients with immune peripheral neuropathy.
  • FIG. 30 is a diagram showing the results of measuring the fluorescence spectrum of the supernatant after the centrifugation.
  • the numbers in 5 digits in FIGS. 29 and 30 are sample numbers.
  • 13923 and 13938 are the results of using anti-GM1 antibody negative and anti-GD1a antibody negative sera by ELISA, and 13934 is anti-GM1 antibody negative by ELISA.
  • 14078, 14151 and 14192 show the results using anti-GD1a antibody-positive sera, and the results using anti-GM1 antibody-positive sera by the ELISA method, respectively.
  • GM1-FNP GM1 sugar chain-immobilized fluorescent nanoparticles
  • GM1-Glc-FNP GM1-Glc sugar chain-immobilized fluorescent nanoparticles
  • Example 16 Comparison between sugar chain-immobilized fluorescent nanoparticles and sugar chain-immobilized gold nanoparticles
  • PNA is used using sugar-chain immobilized fluorescent nanoparticles (SFNP) and sugar-chain immobilized gold nanoparticles (SGNP). Agglutination experiments were performed and the results were compared.
  • GM1-Glc sugar chain-immobilized fluorescent nanoparticles prepared in Example 3 (GM1-Glc-FNP), GM1 sugar chain-immobilized fluorescent nanoparticles (GM1-FNP) prepared in Example 13, and GM1 sugar chain Immobilized gold nanoparticles (GM1-GNP) were subjected to the experiment.
  • the GM1-GNP was prepared as follows. That is, an aqueous solution of HAuCl 4 (1.25 mM, 80 ⁇ L) was transferred to a 1.5 mL plastic tube. Thereto was added an aqueous solution of NaBH 4 (50 mM, 10 ⁇ L), and the mixture was stirred with a vortex mixer and allowed to stand for 10 minutes. GM1-f-mono (5 mM, 10 ⁇ L) prepared in Example 13 was added to the solution allowed to stand for 10 minutes and allowed to stand for 30 minutes.
  • Unreacted sugar-ligand complex was removed by performing centrifugal ultrafiltration (14000 ⁇ g, 5 min) using Amicon Ultra 10 K (Millipore, MA, USA) three times, and the precipitate was finally added to PBS.
  • a solution of sugar chain-immobilized gold nanoparticles (GM1-GNP) in which the GM1 sugar chain was immobilized was prepared.
  • the average particle diameter of the obtained GM1-GNP was measured by the DLS method and found to be 8.1 nm.
  • GM1-Glc-FNP For each of the above GM1-Glc-FNP, GM1-FNP and GM1-GNP, TEG-containing GM1-Glc-FNP, TEG-containing GM1-FNP and TEG-containing GM1-GNP in which tetraethylene glycol was also immobilized were prepared.
  • the preparation method is according to the method described in Example 9.
  • the molar ratio of sugar chain to TEG was 10: 0, 7: 3, 5: 5, 3: 7, 1: 9.
  • TEG is not contained.
  • this case is also referred to as “TEG-containing GM1-Glc-FNP” or the like hereinafter.
  • TEG-containing GM1-Glc-FNP, TEG-containing GM1-FNP, and TEG-containing GM1-GNP in PBS were each taken and transferred to a 200 ⁇ L plastic tube. Thereto, 5 ⁇ L of PNA was added, and the tube was stirred with a vortex mixer and allowed to stand in the dark for 3 hours.
  • PNA having a concentration of 0 ⁇ M, 0.11 ⁇ M, 0.225 ⁇ M, 0.45 ⁇ M, 0.9 ⁇ M, 1.8 ⁇ M, 3.6 ⁇ M was used.
  • the tube containing TEG-containing GM1-GNP was centrifuged at 5000 G for 1 minute, and the other was centrifuged at 14000 G for 5 minutes. Then, the tube was irradiated with ultraviolet light, and the fluorescence of the precipitate was observed to take a photograph.
  • A) of each figure shows the result which confirmed the fluorescence of the deposit
  • (b) of each figure is a figure which shows the change of the fluorescence intensity of a supernatant liquid.
  • fluorescence was detected when 0.11 ⁇ M or more of PNA was used ((a) in FIG. 31).
  • fluorescence was detected when 0.45 ⁇ M or more of PNA was used (FIG. 32 (a)).
  • fluorescence was detected when 1.8 ⁇ M or more of PNA was used ((a) in FIG. 33).
  • anti-ganglioside that can be performed with 1 mg of GM1-Glc-immobilized sugar chain ligand complex (GM1-Glc-f-mono) and 1 mg of GM1-immobilized sugar chain ligand complex (GM1-f-mono).
  • the number of antibody tests is as shown in Table 3 when the binding characteristics of the anti-ganglioside antibody are the same as those of PNA.
  • the number of testable times is the number of times when 15 ⁇ L of sugar chain-immobilized fluorescent nanoparticles or sugar chain-immobilized gold nanoparticles are used per test.
  • the anti-ganglioside antibody has better detectability than the case where the sugar chain-immobilized gold nanoparticles are used, and the number of examinations It can be seen that it is much more.
  • Example 17 Comparison of TEG-containing GM1-Glc-FNP, TEG-containing GM1-FNP, and GM1-FNP in serum aggregation experiments.
  • TEG-containing GM1-Glc-FNP and GM1-FNP had different binding properties to PNA. Therefore, in this example, whether or not the binding properties to anti-ganglioside antibodies were different was examined.
  • Serum sample 14151 5 ⁇ L was transferred to a 200 ⁇ L plastic tube. Then, a dilution series is prepared using PBS so that the serum dilution ratio is 1/4, 1/8, and 1/16, and each of the sugar chain-immobilized fluorescent nanoparticles is added to each dilution series. 5 ⁇ L was added, and the mixture was stirred with a vortex mixer and allowed to stand in the dark at 4 ° C. for 3 hours. Subsequently, the tube was centrifuged at 14000 G for 5 minutes, the tube was irradiated with ultraviolet light, and the fluorescence of the precipitate was observed to take a picture.
  • TEG-containing GM1-Glc-FNP and GM1-FNP had different binding properties to PNA, as shown in FIG. 34, the binding properties to the anti-GM1 antibody were three sugar chain-immobilized fluorescent nanoparticles. There was no big change.
  • Example 18 Detection of anti-GM1 IgG antibody using GM1-FNP
  • detection of anti-GM1 IgG antibody by GM1-FNP prepared in Example 13 was examined using 50 samples each of sera positive for anti-GM1 antibody by ELISA and anti-GM1 antibody negative by ELISA.
  • Each serum sample was placed in a plastic tube having a capacity of 15 ⁇ L and 200 ⁇ L, respectively, and 15 ⁇ L of a GM1-FNP PBS solution (0.1 ⁇ M) was added thereto.
  • the tube was stirred with a vortex mixer, allowed to stand in the dark at 4 ° C. for 3 hours, and centrifuged at 14000 G for 5 minutes. Next, the tube was irradiated with ultraviolet light, a photograph was taken, and the fluorescence spectrum of the supernatant was measured (Ex. 360 nm, Em. 650 nm).
  • FIG. 35 is a diagram showing the detection results of anti-GM1 IgG antibody by GM1-FNP when 50 samples of anti-GM1 IgG antibody-positive serum were used by ELISA.
  • FIG. 36 is a diagram showing the fluorescence intensity of the supernatant in each tube shown in FIG.
  • the numbers shown in FIG. 35 are obtained by adding a serial number from 1 to 50 to the sample number. Further, in FIG. 35, the determination criterion of the detection result is described using + and ⁇ signs. That is, “+++” allows visual observation of aggregates and the fluorescence intensity of the supernatant is less than 150 (positive), “++” enables visual observation of aggregates, and The fluorescence intensity of the supernatant is 150 or more and less than 300 (positive), “+” indicates that the aggregate can be visually observed, and the fluorescence intensity of the supernatant is 300 or more (positive). “-” Indicates that the aggregate can be observed by magnifying the photograph shown in FIG. 35 (false positive), and “-” indicates that no aggregate was observed (negative).
  • FIG. 37 is a diagram showing the detection results of anti-GM1 IgG antibody by GM1-FNP when 50 samples of anti-GM1 IgG antibody-negative serum were used by ELISA.
  • FIG. 38 is a diagram showing the fluorescence intensity of the supernatant in each tube shown in FIG.
  • FIG. 39 shows the anti-GM1 IgG antibody-positive sera by ELISA, which was judged to be negative for 3 hours after mixing with GM1-FNP. It is a figure which shows the detection result of an aggregate. As shown in FIG. 39, no new aggregate was formed even when the standing time was 12 hours.
  • FIG. 40 shows a serum positive for anti-GM1 IgG antibody by ELISA, and when the mixture was allowed to stand for 3 hours after mixing with GM1-FNP, the determination result was a false positive. It is a figure which shows the detection result of an aggregate.
  • Example 12 results of Example 12 and the results of this example are shown in Table 4 when compared with the results of the ELISA method.
  • the numbers in the table are the number of samples.
  • the column in which the glycan-immobilized fluorescent nanoparticles are positive in TEG-containing GM1-Glc-FNP is shown in 37 samples out of 50 sera positive in anti-GM1 antibody in ELISA. It shows that the fluorescence of the precipitate was confirmed. The false positive was included as a positive because an aggregate was formed.
  • the numbers shown in parentheses represent the results for the overnight reaction.
  • Example 19 Preparation of GD1a sugar chain-immobilized ligand complex and preparation of fluorescent nanoparticles having immobilized GD1a sugar chain
  • the GD1a sugar chain represented by the above chemical formula 15 purchased from Oligotech. 1.04 mg, 0.78 ⁇ mol
  • the fluorescent linker compound f-mono, 0. 35 mg, 1.16 ⁇ mol
  • the fluorescent linker compound f-mono, 0. 35 mg, 1.16 ⁇ mol
  • FIG. 33 is a diagram showing a synthesis route of GD1a-f-mono.
  • the yield of GD1a-f-mono was 0.51 mg (yield 41.8%).
  • the spectral data of GD1a-f-mono is as follows. MS calcd. for: C 62 H 97 N 5 NaO 37 S 2 : 1591.53, Found: m / z 1591.75 [M ⁇ H] ⁇ .
  • a GD1a sugar chain-immobilized fluorescent nanoparticle (GD1a-FNP) solution was prepared by the same method as in Example 3 except that GD1a-f-mono was used instead of GM1-Glc-f-mono. .
  • Example 20 Confirmation of protein binding ability of GD1a-FNP.
  • Each protein was dissolved in PBS at a concentration of 3.6 ⁇ M, and 5 ⁇ L thereof was transferred to a plastic tube having a capacity of 200 ⁇ L. Thereto was added 5 ⁇ L of the GD1a-FNP PBS solution (0.25 ⁇ M) prepared in Example 19, stirred with a vortex mixer, left in the dark for 12 hours, and centrifuged at 14000 G for 5 minutes. The tube was irradiated with ultraviolet light, the fluorescence of the precipitate was observed, and a photograph was taken. Then, the fluorescence spectrum of the supernatant was measured.
  • FIG. 42 is a diagram showing the fluorescence emission results of the precipitate after centrifugation in the aggregation experiment of GD1a-FNP and sugar chain binding protein
  • FIG. 43 shows the fluorescence spectrum of the supernatant after the centrifugation.
  • Example 21 Reaction of GD1a sugar chain-immobilized fluorescent nanoparticles (GD1a-FNP) with patient serum
  • the tube was irradiated with ultraviolet light, the fluorescence of the precipitate was observed, and a photograph was taken. Then, the fluorescence spectrum of the supernatant was measured.
  • FIG. 44 is a diagram showing the results of fluorescence emission of precipitates after centrifugation in an agglutination experiment between GD1a-FNP and serum of a patient with immune peripheral neuropathy.
  • FIG. 45 is a diagram showing the results of measuring the fluorescence spectrum of the supernatant after the centrifugation.
  • FIGS. 44 and 45 are sample numbers
  • 13923 and 13938 are the results of using anti-GM1 antibody negative and anti-GD1a antibody negative sera by ELISA
  • 13882 and 13934 are anti-GM1 antibody negative by ELISA.
  • 14078, 14151 and 14192 show the results using anti-GD1a antibody-positive sera, and the results using anti-GM1 antibody-positive sera by the ELISA method, respectively.
  • anti-GD1a antibody can be detected even when GD1a sugar chain-immobilized fluorescent nanoparticles (GD1a-FNP) are used. According to the results using 14151, anti-GD1a antibody may also be present in anti-GM1 antibody-positive serum.
  • Example 22 Aggregation experiment using anti-GM1 IgG antibody-positive serum and other sugar chain-immobilized fluorescent nanoparticles
  • anti-GM1 IgG antibody-positive serum was mixed with sugar chain-immobilized fluorescent nanoparticles to which sugar chains other than GM1 sugar chains were immobilized, thereby confirming the presence or absence of cross-reactivity.
  • Each serum sample was put in a plastic tube having a capacity of 5 ⁇ L and 200 ⁇ L, respectively, and 5 ⁇ L of GD1a-FNP PBS solution (0.1 ⁇ M) prepared in Example 19 was added thereto.
  • the tube was stirred with a vortex mixer, allowed to stand in the dark at 4 ° C. for 3 hours, and centrifuged at 14000 G for 5 minutes. Next, the tube was irradiated with ultraviolet light and photographed.
  • FIG. 46 is a graph showing the results of an agglutination experiment in which GD1a-FNP was mixed with serum that was positive for anti-GM1 IgG antibody by ELISA and negative or false positive as a result of reaction with GM1-FNP in Example 18. It is. As shown in FIG. 46, no aggregate was observed. That is, GD1a-FNP did not show cross-reactivity with anti-GM1 IgG antibody.
  • GD1a-GM1 sugar chain-immobilized fluorescent nanoparticle (GD1a-GM1 sugar chain-immobilized fluorescent nanoparticle (the GD1a-GM1 sugar chain-immobilized fluorescent nanoparticle) was used by using the sugar chain of GD1a and the sugar chain of GM1 at a ratio of 50 mol%.
  • GD1a-GM1-FNP was prepared and subjected to the same experiment.
  • GD1a-GM1-FNP was prepared by the following method. That is, to the mixed solution of GM1-f-mono (1 mM, 12.5 ⁇ L) prepared in Example 13 and GD1a-f-mono (1 mM, 12.5 ⁇ L) prepared in Example 19, an aqueous solution of NaBH 4 ( 10 mM, 25 ⁇ L) was mixed at room temperature and allowed to stand for 10 minutes. In this case, the molar ratio between GM1 and GD1a is 5: 5.
  • FIG. 47 shows the results of an agglutination experiment in which GD1a-GM1-FNP was mixed with serum that was positive for anti-GM1 IgG antibody by ELISA and negative or false positive as a result of reaction with GM1-FNP in Example 18.
  • FIG. 47 shows the results of an agglutination experiment in which GD1a-GM1-FNP was mixed with serum that was positive for anti-GM1 IgG antibody by ELISA and negative or false positive as a result of reaction with GM1-FNP in Example 18.
  • FIG. 47 shows the results of an agglutination experiment in which GD1a-GM1-FNP was mixed with serum that was positive for anti-GM1 IgG antibody by ELISA and negative or false positive as a result of reaction with GM1-FNP in Example 18.
  • FIG. 47 shows the results of an agglutination experiment in which GD1a-GM1-FNP was mixed with serum that was positive for anti-GM1 IgG antibody by
  • Example 23 Synthesis of GQ1b-Glc sugar chain
  • a sugar chain represented by Chemical Formula 16 (GQ1b-Glc sugar chain) in which one glucose was further bonded to the reducing end of the GQ1b sugar chain was synthesized.
  • FIG. 48 is a diagram showing an intermediate synthesis route for synthesizing the GQ1b-Glc sugar chain. That is, in FIG. 48, a heptasaccharide structure (shown in Formula g) that forms GQ1b-core was prepared. First, the NeuAc ⁇ 2-8 NeuAc ⁇ 2-3Gal trisaccharide structure (shown in Formula a) was introduced into the corresponding glycoside donor (shown in Formula b) in 4 steps.
  • FIG. 49 is a diagram showing a pathway showing glycosylation and deprotection for synthesizing the GQ1b-Glc sugar chain.
  • the aforementioned GQ1b-core glycosyl donor with a heptasaccharide structure (shown in formula g) and a gentiobiose acceptor (shown in formula 11) are reacted in dichloromethane in the presence of TMSOTf to give the desired ⁇ -glycoside (formula h Was obtained in 80% yield.
  • FIG. 50 is a diagram showing a synthesis route for a GQ1b-Glc-immobilized sugar chain ligand complex (GQ1b-Glc-f-mono).
  • the GQ1b sugar chain having 6-glucose at the reducing end (GQ1b-Glc, 1.00 mg, 0.49 ⁇ mol) synthesized in Example 23 was dissolved in 20 ⁇ L of ultrapure water, and the original development shown in the above formula (30) was performed.
  • a fluorescent linker compound (f-mono: 0.16 mg, 0.54 ⁇ mol) was added to a 30 ⁇ L solution of N, N-dimethylformamide, and 6 ⁇ L of acetic acid was further added.
  • GQ1b-Glc-f-mono a GQ1b-Glc-immobilized sugar chain ligand complex
  • GQ1b-Glc sugar chain-immobilized fluorescent nanoparticles (GQ1b-Glc-FNP) were prepared in the same manner as in Example 3 except that GQ1b-Glc-f-mono was used instead of GM1-Glc-f-mono. PBS solution was prepared.
  • FIG. 51 is a diagram showing the results of measuring the fluorescence and UV-Vis spectrum of the GQ1b-Glc-FNP solution.
  • FIG. 52 is a diagram showing the particle size distribution of GQ1b-Glc-FNP measured by DLS. As shown in FIG. 52, the average particle diameter of GQ1b-Glc-FNP was 9.7 nm as a result of measurement using the same equipment as in Example 3.
  • Example 25 Confirmation of GQ1b-Glc-FNP by MALDI-TOF / MS]
  • 1 ⁇ L of PBS solution of GQ1b-Glc-FNP prepared in Example 24 was mixed with 10 ⁇ L of saturated DHBA solution (water / methanol 1/1 solution), and 1 ⁇ L was placed on a measuring plate and allowed to air dry. The plate was put into the measuring section of Voyager-DE-PRO (Applied Biosystems, CA, USA) and subjected to mass spectrometry.
  • FIG. 53 is a diagram showing a result of MALDI-TOF / MS analysis by GQ1b-Glc-FNP Positive mode
  • FIG. 54 is a diagram showing a result of MALDI-TOF / MS analysis by Negative mode of GQ1b-Glc-FNP.
  • Example 26 Confirmation of protein binding ability of GQ1b-Glc-FNP.
  • the binding activity of GQ1b-Glc-FNP to ConA, PNA, RCA120, jackalin, WGA, and von Willebrand factor (vWF) was examined.
  • the binding sugar chain of jackalin is ⁇ Gal.
  • FIG. 55 is a diagram showing the results of fluorescence emission of the precipitate after centrifugation in an aggregation experiment of GQ1b-Glc-FNP and a sugar chain binding protein
  • FIG. 56 shows the fluorescence spectrum of the supernatant after centrifugation.
  • Example 27 Reaction of GQ1b-Glc-FNP with patient serum
  • 5 ⁇ L of serum from patients with immune peripheral neuropathy, including patients with Guillain-Barre syndrome was transferred to a plastic tube with a volume of 200 ⁇ L.
  • the mixture was allowed to stand for 3 hours or 12 hours, and centrifuged at 14000 G for 5 minutes.
  • the tube was irradiated with ultraviolet light, and the fluorescence of the precipitate was observed to take a photograph.
  • FIG. 57 shows the results of fluorescence emission of precipitates after centrifugation in an agglutination experiment between GQ1b-Glc-FNP and sera of patients with immune peripheral neuropathy.
  • FIG. 57 (a) shows the result when left for 3 hours
  • FIG. 57 (b) shows the result when left for 12 hours.
  • the numbers in FIG. 57 are sample numbers.
  • 13923 and 13138 show the results of using anti-GM1 antibody-negative and anti-GD1a antibody-negative sera by ELISA method
  • 13934 shows the results of using anti-GM1 antibody-negative and anti-GD1a antibody-positive serum by ELISA method
  • 14078, 14151 and 14192 show the results of using the anti-GM1 antibody-positive sera by the ELISA method
  • 14992, 15056 and 15090 show the results of using the anti-GQ1b antibody-positive sera by the ELISA method, respectively.
  • FIG. 58 is a schematic diagram showing a method for preparing fluorescent nanoparticles (GM1-FNP2) in which GM1 sugar chains are immobilized on ZAIS / ZnS core / shell nanoparticles having ZAIS as a core.
  • sodium N, N-diethyldithiocarbamate (563 mg, 2.50 mmol) was transferred to an Erlenmeyer flask and dissolved in 50 mL of ultrapure water.
  • AgNO 3 (95.6 mg, 0.563 mmol)
  • In (NO 3 ) 3 .3H 2 O 200 mg, 0.563 mmol
  • Zn (NO 3 ) 2 .6H 2 O (37.2 mg).
  • 2.50 mmol was dissolved in 50 mL of ultrapure water, and 50 mL of the solution prepared above was added dropwise under shading and stirred for 5 minutes.
  • the obtained metal salt was centrifuged (3500 rpm, 5 min), and the precipitate was washed four times with ultrapure water and twice with methanol, and then dried under reduced pressure. 50 mg of the dried powder was transferred to a two-necked round bottom flask, heated at 180 ° C. for 30 minutes under argon, added with 3 mL of oleylamine, and heated at 180 ° C. for 5 minutes under argon. After standing to cool, the solution was centrifuged (3500 rpm, 5 min), the supernatant was membrane filtered (0.45 ⁇ m), and methanol was added to the filtrate to precipitate ZAIS nanoparticles.
  • the precipitate was suspended in 2 mL of oleylamine and heated at 180 ° C. for 30 minutes under argon. After allowing to cool, anhydrous zinc acetate (10.3 mg, 56.3 ⁇ mol) and thioacetamide (4.22 mg, 56.3 ⁇ mol) were added to the solution, and the mixture was heated at 180 ° C. for 30 minutes under an argon atmosphere. Methanol was added to the solution, and the precipitate was resuspended in 3 mL of chloroform.
  • the solution was centrifuged (3500 rpm, 5 min), and the precipitate was resuspended in 2 mL of ultrapure water. Separately, zinc acetate anhydrous (20.6 mg, 112 ⁇ mol) and thioacetamide (8.44 mg, 112 ⁇ mol) were added to a two-necked round bottom flask, dissolved in 2 mL of ultrapure water, and TGA (7.96 ⁇ L, 112 ⁇ mol) 2 mL of a solution obtained by diluting the above solution 5-fold was added and heated at 80 ° C. for 5 hours.
  • an aqueous solution of NaBH 4 (100 mM, 12.5 ⁇ L) was mixed with GM1-f-mono (10 mM, 12.5 ⁇ L) prepared in Example 13 at room temperature and left for 10 minutes. . Thereafter, 100 ⁇ L of a solution obtained by diluting the ZAIS / ZnS core / shell nanoparticle solution 8 times with ultrapure water was added to the solution allowed to stand for 10 minutes, and heated at 50 ° C. for 2 hours in the dark. Unreacted sugar-ligand complex was removed by centrifugal ultrafiltration (14000 ⁇ g, 5 min) using Amicon Ultra 10 K (Millipore, MA, USA), followed by washing 4 times with ultrapure water. GM1 sugar chain-immobilized fluorescent nanoparticle (GM1-FNP2) solution was prepared by finally suspending the precipitate in PBS.
  • GM1-f-mono 10 mM, 12.5 ⁇ L
  • Example 29 Reaction of GM1a-FNP2 with patient serum and protein
  • Sera of patients with immune peripheral neuropathy including patients with Guillain-Barre syndrome and PNA dissolved in PBS at a concentration of 4 ⁇ M 5 ⁇ L were transferred to a plastic tube having a volume of 200 ⁇ L.
  • 5 ⁇ L of 3 ⁇ M PBS solution of GM1 sugar chain-immobilized fluorescent nanoparticle (GM1-FNP2) having ZAIS / ZnS core / shell nanoparticles prepared in Example 28 as a core was added, and stirred with a vortex mixer. It was left in the dark at 4 ° C. overnight (12 hours), and centrifuged at 14000 G for 5 minutes. Next, the tube was irradiated with ultraviolet light, and the fluorescence of the precipitate was observed to take a photograph.
  • FIG. 59 is a diagram showing the results of fluorescence emission of precipitates after centrifugation in an agglutination experiment between GM1-FNP2 and sera and proteins of patients with immune peripheral neuropathy.
  • the 5-digit number is the sample number
  • 13939 is the result of using anti-GM1 antibody negative and anti-GD1a antibody negative sera by ELISA
  • 13934 is anti-GM1 antibody negative and anti-GD1a by ELISA.
  • the results using antibody-positive sera, 14078 and 14192, respectively, show the results using anti-GM1 antibody-positive sera by ELISA.
  • GM1-FNP2 fluorescent nanoparticles
  • GM1-Glc sugar chain-immobilized fluorescent nanoparticles GM1- It was revealed that anti-GM1 antibody can be detected as in the case of using (Glc-FNP).
  • the sugar chain-immobilized fluorescent nanoparticles according to the present invention in which the sugar chain part of ganglioside is immobilized are used for rapid and simple detection of immune peripheral neuropathy such as Guillain-Barre syndrome and Fisher syndrome.
  • immune peripheral neuropathy such as Guillain-Barre syndrome and Fisher syndrome.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Rehabilitation Therapy (AREA)
  • Rheumatology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 免疫性末梢神経障害症患者の血清中に存在するガングリオシド結合性の自己抗体を、迅速、簡便に検出できる糖鎖固定化蛍光性ナノ粒子とその利用とを提供する。 ガングリオシド由来の糖鎖を含有する糖鎖と、主鎖に炭化水素鎖等を備えた所定のリンカー化合物とからなる糖鎖リガンド複合体と、所定のコア/シェル構造を備える蛍光性ナノ粒子と、を含有し、上記糖鎖が固定化されてなる糖鎖固定化蛍光性ナノ粒子。

Description

免疫性末梢神経障害症由来抗体を認識する組成物とその利用
 本発明は、ガングリオシドの糖鎖部分を固定化した蛍光性ナノ粒子およびその利用に関する。
 免疫性末梢神経障害症であるギラン・バレー(Guillain-Barre)症候群(GBS)は、急性に発症する四肢筋力低下と深部腱反射消失を主徴とする末梢神経疾患である。急性に四肢筋力低下を呈する神経・筋疾患の中で最も頻度が高い。そのほか、GBSには、Fisher症候群(FS)やBickerstaff型脳幹脳炎(BBE)など、様々な類縁疾患あるいは亜型が知られている(非特許文献1)。
 ガングリオシドはシアル酸を有する酸性糖脂質で、神経細胞膜に豊富に存在する。ガングリオシドは脂肪酸を有し疎水性を示すセラミドと、親水性のオリゴ糖から成り、主に生理活性を有するのは細胞表面に露出した形で存在するオリゴ糖の部分であるとされている。
 ガングリオシドに対する抗体が、GBSおよびFSを中心に、自己免疫性末梢神経疾患の病因物質として注目されている。GBSおよびFSでは、血液中に抗ガングリオシド抗体が検出される。上記抗ガングリオシド抗体の抗体価は、発症直後に最も高く、時間の経過とともに低下、消失する(非特許文献2)。
 また、先行感染病原体(GBS等の免疫性末梢神経障害症に先行して発症することが多い感染症の病原体)とガングリオシドとの分子相同性が存在することが確認されただけでなく、動物モデルも樹立され、病原体と神経組織との分子相同性による発症機序が証明されている(非特許文献3、非特許文献4、非特許文献5)。
 抗ガングリオシド抗体の検索は、すでに臨床的に汎用されている。GBSではGM1、GM1b、GD1a、GalNAc-GD1aに対するIgG抗体を検出することが、Fisher症候群やBickerstaff型脳幹脳炎、急性外眼筋麻痺ではIgG抗GQ1b抗体を検出することが、補助診断の手法として有用である(非特許文献6)。
 抗ガングリオシド抗体の測定法としては、ELISA法がある。ELISA法とは、Enzyme-Linked Immuno-Sorbent Assayの略であり、試料中に含まれる抗体あるいは抗原の濃度を検出・定量する際に用いられる方法である。生体試料中に特定のタンパク質が微量にしか存在しない場合は、特異性の高さ(夾雑物からどれだけ正確に区別できるか)と定量性の良さ(微量であっても検出できる、あるいは低濃度における再現性の良さ)とが求められる。ELISAは特異性の高い抗原抗体反応を利用し、酵素反応に基づく発色・発光をシグナルに用いることで上記の条件をクリアしている。
 そこで、研究レベルではGBS関連疾患と抗ガングリオシド抗体の関係が解明され、臨床現場で使用できる抗糖脂質抗体の測定方法としてELISA法(非特許文献5、非特許文献6)が実用化されている。また、GM1ガングリオシドの糖鎖と蛋白質との複合体も合成されている(非特許文献9)。
 その他に、GBSの効果的な治療法として、血漿交換療法と免疫グロブリンの大量静脈注射療法とが確立されている(非特許文献1)。
 一方、発明者らは、これまでに、均一な粒径、高い水分散性および発光性を有し、かつ、容易に糖鎖を固定化することができる糖鎖固定化蛍光性ナノ粒子を開発している(特許文献1、非特許文献7)。
 さらに、発明者らは、上記糖鎖固定化蛍光性ナノ粒子の調製に用いうる蛍光性リンカー化合物についても独自に開発している(非特許文献8)。
日本国公開特許公報「特開2011-209282号(2011年10月20日公開)」
N. Yuki, et al., N. Engl. J. Med., 366: 2294‐2304(2012) Odaka M, et al., J. Neurol. Sci., 210: 99‐103(2003) Yuki N, et al., J.Exp.Med., 178:1771‐1775(1993) N. Yuki, et al., Proc. Natl. Acad. Sci. U.S.A, 101: 11404‐11409(2004) N. Yuki, et al., Ann. Neurol., 49: 712‐720(2001) 小鷹昌明ら、モダンメディア 54(3):82‐86(2008) H. Shinchi, et al., Chem. Asian J., 7: 2678‐2682(2012) Sato M, et al., J. Biochem., 146:33-41(2009) T. Yoshikawa, et al., Glycoconjugate J., 25:545‐553(2008)
 しかしながら、抗ガングリオシド抗体の測定法として現在用いられている上述したELISA法は、時間と手間がかかる方法であるという問題がある。つまり、通常は検査会社へ患者の血清を送り、その結果が届くまでに1週間以上待たねばならない。そのため、迅速な診断を行うことができず、必然的に治療も遅れてしまうという問題がある。
 このような状況下、患者の血清中に含まれる抗ガングリオシド抗体を迅速に検出することができる新たな方法、上記抗体を迅速に検出可能なキットが求められている。本発明は、ガングリオシドの糖鎖を固定化したナノ粒子を用いた迅速簡便な診断法の開発を目的とした。
 我々はこのような背景に立脚して研究を開始し、ガングリオシドの「糖鎖」に標的を定め、最新のナノテクノロジーを駆使して迅速簡便な診断法(迅速簡便に上記抗体を検出する方法)の開発を行ってきた。本発明では、いままでに開発してきた糖鎖固定化蛍光性ナノ粒子の技術(特許文献1、非特許文献7)に基づき、ガングリオシドGM1等の、ガングリオシドの糖鎖部分を固定化した蛍光性ナノ粒子を新規に調製し、それを用いて患者血清中のGBSに深く関係する抗体の検出に成功した。
 本発明は、上記従来の問題点に鑑みてなされたものであって、その目的は、ガングリオシドの糖鎖部分を固定化した糖鎖固定化蛍光性ナノ粒子およびその利用を提供することにある。
 本発明は、例えば、GBS患者血清中に存在するガングリオシドに対する抗体に対して特異的な反応性を有し、かつその検出を3時間以内に可能とする簡便な検査診断ツールを提供することができる。
 本発明に係る糖鎖固定化蛍光性ナノ粒子は、ガングリオシド由来の糖鎖を含有する1種または2種以上の糖鎖と、主鎖に炭化水素鎖または炭化水素誘導鎖を備えた1種または2種以上のリンカー化合物とからなり、上記リンカー化合物の主鎖が、その一端に上記糖鎖と結合したアミノ基を有し、その他端に硫黄原子を含む炭化水素構造を備えている糖鎖リガンド複合体と、第一および第二の金属成分からなる粒子コアが第一および第三の金属成分からなる層によって被覆された蛍光性ナノ粒子と、を含有し、上記炭化水素構造が上記層に固定化されてなることを特徴としている。
 本発明に係る糖鎖固定化蛍光性ナノ粒子(ガングリオシド糖鎖固定化蛍光性ナノ粒子ともいう)は、GBS患者等の血清中に存在する抗GM1抗体等の抗ガングリオシド抗体と特異的に結合し、会合体を形成する作用を有する。
 GBSは臨床症状が脳血栓と似ており、迅速な検査法が求められている。本発明の糖鎖固定化蛍光性ナノ粒子を用いれば、患者の血清を直接使用し、数時間以内に可視で検査結果を確認できるものであるため、実用化の可能性は極めて高い。
ガングリオシドGM1の糖鎖部分にGlcを導入したGM1-Glc糖鎖の化学構造を示す図である。 GM1-Glc糖鎖を合成する際の中間体の合成経路を示す図である。 GM1-Glc糖鎖を合成する際に必要な二糖構造の合成経路を示す図である。 GM1-Glc糖鎖を合成するためのグリコシデーションと脱保護とを示す経路を表す図である。 GM1-Glc糖鎖から調製したGM1糖鎖を含む糖鎖リガンド複合体(GM1-Glc-f-mono)の化学構造を示す図である。 GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)の調製法を示す概略図である。 GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)のDLS測定による粒径分布を示す図である。 GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)のPositive modeによるMALDI-TOF/MS分析の結果を示す図である。 GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)のNegative modeによるMALDI-TOF/MS分析の結果を示す図である。 GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)と糖鎖結合性タンパク質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。 GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)と糖鎖結合性タンパク質との凝集実験における遠心分離後の上澄みの蛍光スペクトルを示す図である。 GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)と免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。 GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)と免疫性末梢神経障害症の患者の血清との凝集実験におけるインキュベート時間を変えた際の、遠心分離後の沈殿物の蛍光発光の結果を示す図である。 蛍光を発する沈殿物中に抗体が存在することを、還元条件下で沈殿物のSDS-PAGEを行って確認した結果を示す図である。 蛍光を発する沈殿物中に抗体が存在することを、非還元条件下で沈殿物のSDS-PAGEを行って確認した結果を示す図である。 蛍光を発する沈殿物中に抗体が存在することを、ウエスタンブロッティングを行って確認した結果を示す図である。 GM1糖鎖と、GM1-Glc糖鎖とを同時に血清サンプル中に存在させた場合における、遠心分離後の沈殿物の蛍光発光の結果を示す図である。 GM1糖鎖と、GM1-Glc糖鎖とを同時に血清サンプル中に存在させた場合における、遠心分離後の上澄みの蛍光スペクトルを示す図である。 テトラエチレングリコールおよびGM1-Glc糖鎖を固定化した蛍光性ナノ粒子の調製法を示す概略図である。 GM1-Glc糖鎖と、テトラエチレングリコールとが固定化された蛍光性ナノ粒子(TEG含有GM1-Glc-FNP)の構造を示す模式図である。 GM1-Glc糖鎖に対するTEGの濃度を変更し、TEG含有GM1-Glc-FNPを用いた血清サンプルの凝集実験を行った結果を示す図である。 TEG含有GM1-Glc-FNPを用い、抗体濃度および反応時間と凝集体の検出感度との関係を検討した結果を示す図である。 ELISA法で抗GM1抗体陽性の血清を50サンプル用いた場合の、TEG含有GM1-Glc-FNPによる抗GM1IgG抗体の検出結果を示す図である。 ELISA法で抗GM1IgG抗体陰性の血清を50サンプル用いた場合の、TEG含有GM1-Glc-FNPによる抗GM1IgG抗体の検出結果を示す図である。 ELISA法で抗GM1抗体陽性の血清であって、TEG含有GM1-Glc-FNPと混和後3時間静置した場合は沈殿物の蛍光が確認されなかった血清につき、上記混和後12時間静置した場合の抗GM1IgG抗体の検出結果を示す図である。 GM1糖鎖固定化糖鎖リガンド複合体の合成経路を示す図である。 GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)と糖鎖結合性タンパク質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。 GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)と糖鎖結合性タンパク質との凝集実験における遠心分離後の上澄みの蛍光スペクトルを示す図である。 GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)と免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。 GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)と免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の上澄みの蛍光スペクトルを示す図である。 TEG含有GM1-Glc-FNP(GM1-Glc:TEG=5:5)をPNAと混和し、PNAの凝集を確認した結果を示す図である。 TEG含有GM1-FNP(GM1:TEG=10:0)をPNAと混和し、PNAの凝集を確認した結果を示す図である。 TEG含有GM1-GNP(GM1:TEG=5:5)をPNAと混和し、PNAの凝集を確認した結果を示す図である。 TEG含有GM1-Glc-FNP(GM1-Glc:TEG=5:5)、GM1-FNP(GM1:TEG=10:0)、およびTEG含有GM1-FNP(GM1:TEG=5:5)を用いて血清の凝集試験を行った結果を示す図である。 ELISA法で抗GM1IgG抗体陽性の血清を50サンプル用いた場合の、GM1-FNPによる抗GM1IgG抗体の検出結果を示す図である。 ELISA法で抗GM1抗体陽性の血清50サンプルと、GM1-FNPとを混和したときの上澄みの蛍光強度を示す図である。 ELISA法で抗GM1IgG抗体陰性の血清を50サンプル用いた場合の、GM1-FNPによる抗GM1IgG抗体の検出結果を示す図である。 ELISA法で抗GM1抗体陰性の血清50サンプルと、GM1-FNPとを混和したときの上澄みの蛍光強度を示す図である。 ELISA法で抗GM1IgG抗体陽性の血清であって、GM1-FNPと混和後3時間静置した場合は判定結果が陰性であった血清につき、上記混和後12時間静置した場合の凝集体の検出結果を示す図である。 ELISA法で抗GM1IgG抗体陽性の血清であって、GM1-FNPと混和後3時間静置した場合は判定結果が擬陽性であった血清につき、上記混和後12時間静置した場合の凝集体の検出結果を示す図である。 GD1a固定化糖鎖リガンド複合体(GD1a-f-mono)の合成経路を示す図である。 GD1a糖鎖固定化蛍光性ナノ粒子(GD1a-FNP)と糖鎖結合性タンパク質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。 GD1a糖鎖固定化蛍光性ナノ粒子(GD1a-FNP)と糖鎖結合性タンパク質との凝集実験における遠心分離後の上澄みの蛍光スペクトルを示す図である。 GD1a-FNPと免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。 GD1a-FNPと免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の上澄みの蛍光スペクトルを測定した結果を示す図である。 ELISA法で抗GM1IgG抗体陽性、かつ、実施例18においてGM1-FNPと反応させた結果が陰性または擬陽性であった血清と、GD1a-FNPとを混和した凝集実験の結果を示す図である。 ELISA法で抗GM1IgG抗体陽性、かつ、実施例18においてGM1-FNPと反応させた結果が陰性または擬陽性であった血清と、GD1a-GM1-FNPとを混和した凝集実験の結果を示す図である。 GQ1b-Glc糖鎖を合成する際の中間体の合成経路を示す図である。 GQ1b-Glc糖鎖を合成するためのグリコシデーションと脱保護とを示す経路を表す図である。 GQ1b-Glc固定化糖鎖リガンド複合体(GQ1b-Glc-f-mono)の合成経路を示す図である。 GQ1b-Glc-FNP溶液の蛍光およびUV-Visスペクトルを測定した結果を示す図である。 GQ1b-Glc-FNPのDLS測定による粒径分布を示す図である。 GQ1b-Glc-FNPのPositive modeによるMALDI-TOF/MS分析の結果を示す図である。 GQ1b-Glc-FNPのNegative modeによるMALDI-TOF/MS分析の結果を示す図である。 GQ1b-Glc-FNPと糖鎖結合性タンパク質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。 GQ1b-Glc-FNPと糖鎖結合性タンパク質との凝集実験における遠心分離後の上澄みの蛍光スペクトルを示す図である。 GQ1b-Glc-FNPと免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。 ZAISをコアに持つZAIS/ZnS core/shell ナノ粒子にGM1糖鎖を固定化した、GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP2)の調製法を示す概略図である。 GM1-FNP2と免疫性末梢神経障害症の患者の血清および蛋白質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。
 〔1.糖鎖固定化蛍光性ナノ粒子〕
 以下に本発明について詳述する。なお、本明細書中に記載された非特許文献および特許文献の全ては、本明細書中において参考として援用される。
 本明細書において、「糖鎖固定化蛍光性ナノ粒子」とは、以下に詳述する糖鎖リガンド複合体と、蛍光性ナノ粒子(蛍光性の金属ナノ粒子ともいう。)とを結合させてなるものである。なお、蛍光性ナノ粒子は後述するように製造してもよいし、市販のものを使用してもよい。
 なお、本明細書において、「金属ナノ粒子」は、無機金属成分を含むナノ粒子であれば特に限定されず、本発明において好適に用いられる金属成分としては、Si、Ge、Cd、Zn、Cu、Ag、Ga、As、In、Te、S、Auなどが挙げられるがこれらに限定されない。
 また、本明細書中において、「ナノ粒子」は水溶液中で分散してコロイド溶液を形成するものが意図される。よって、ナノ粒子の平均粒子径は、0.5~400nmの範囲内であることが好ましく、0.5nm~100nmの範囲内であることがより好ましく、1nm~10nmの範囲内であることがさらに好ましい。平均粒子径は0.5nm未満であってもよいが、そのような粒子の製造は高コストであって実用的でなく、400nmを超えると、粒子の分散安定性が経時的に変化しやすいので好ましくない。
 なお、本明細書において、上記平均粒子径は、動的光散乱法(DLS)によって測定した平均粒子径をいう。
 (1-1.ガングリオシド由来の糖鎖を含有する糖鎖)
 本発明に係る糖鎖固定化蛍光性ナノ粒子は、ガングリオシド由来の糖鎖を含有する1種または2種以上の糖鎖と、主鎖に炭化水素鎖または炭化水素誘導鎖を備えたリンカー化合物とからなり、上記リンカー化合物の主鎖が、その一端に上記糖鎖と結合したアミノ基を有し、その他端に硫黄原子を含む炭化水素構造を備えている糖鎖リガンド複合体と、第一および第二の金属成分からなる粒子コアが第一および第三の金属成分からなる層によって被覆された蛍光性ナノ粒子と、を含有し、上記炭化水素構造が上記層に固定化されてなる。
 GBS、FS、BBE等の免疫性末梢神経障害症の急性期の血清中には、抗ガングリオシド抗体が認められることが多く、これらの抗体は免疫性末梢神経障害症の病因物質と考えられている。例えば、抗GM1抗体は、GBSであるAMAN(急性運動軸索型ニューロパチー)の発症に関与し、カンピロバクターのリポオリゴ糖によって産出された抗GM1抗体が末梢神経軸索上のGM1を標的として作用することによって軸索障害が生じると考えられている。
 よって、抗ガングリオシド抗体の迅速かつ簡便な検出を行うという本発明の目的に鑑みると、ガングリオシドとしては、免疫性末梢神経障害症の病因物質となりうるガングリオシドを用いることが好ましい。こうした観点からは、例えば、GM1、GM1b、GD1a、GalNAc-GD1a、GM2、GD1a、GD1b、GT1a、およびGQ1bからなる群より選ばれる1種または2種以上のガングリオシドを用いることが好ましい。
 中でも、上記ガングリオシドが、GM1、GD1a、およびGQ1bからなる群より選ばれる1種または2種以上のガングリオシドであることがより好ましい。
 本明細書において「ガングリオシド由来の糖鎖」とは、ガングリオシドに含有されている糖鎖との意味であり、上記糖鎖はシアル酸を1つ以上含有する。本明細書において「ガングリオシド由来の糖鎖を含有する糖鎖」とは、ガングリオシド由来の糖鎖そのもの、および、ガングリオシド由来の糖鎖にさらなる糖を結合させた糖鎖のいずれをも含む。以下、「ガングリオシド由来の糖鎖を含有する糖鎖」を、単に「ガングリオシド糖鎖」とも称する。
 したがって、ガングリオシド糖鎖としては、例えば、以下の化学式14に示す、GM1の糖鎖そのもの(以下、「GM1糖鎖」「ガングリオシドGM1糖鎖」と称する場合がある)であってもよいし、例えば、化学式14に示す糖鎖の還元末端に、上記さらなる糖としてグルコースを1つ結合させた糖鎖である、化学式1に示す糖鎖(以下、「GM1-Glc糖鎖」と称する。非特許文献8を参照)であってもよい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 もちろん、これに限られるものではなく、例えば、以下の化学式15に示すGD1aの糖鎖(以下、「GD1a糖鎖」「ガングリオシドGD1a糖鎖」と称する場合がある)、GQ1bの糖鎖(以下、「GQ1b糖鎖」「ガングリオシドGQ1b糖鎖」と称する場合がある)、GQ1bの糖鎖の還元末端にさらにグルコースを1つ結合させた化学式16に示す糖鎖(以下、「GQ1b-Glc糖鎖」と称する)などのように、別の構造のガングリオシド糖鎖を用いた場合もその適用範囲に含まれる。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 ガングリオシド由来の糖鎖に結合させるさらなる糖(例えば、GM1-Glc糖鎖におけるグルコース。以下、「さらなる糖」と称する)の数の上限は、ナノ粒子上の糖鎖クラスター効果が糖鎖と蛋白質との結合には重要であるため、5個以下であることが好ましく、3個以下であることがより好ましく、1個以下であることが特に好ましい。
 上記さらなる糖の結合位置は、ガングリオシド由来の糖鎖の還元末端であることが好ましい。また、上記さらなる糖の種類としては、後述するリンカー化合物のアミノ基と還元アミノ化反応しうるものであればよい。例えば、グルコース、ガラクトース、マンノース等を用いることができる。
 ガングリオシド糖鎖としては、1種または2種以上を用いることができる。特定のガングリオシドに対する抗ガングリオシド抗体のみを検出したい場合は、上記糖鎖として1種類のみを用いればよい。例えば、GM1に対する抗ガングリオシド抗体のみを検出したい場合は、化学式14に示す、GM1が有する糖鎖そのもの、または、上述したGM1-Glc糖鎖等を1種類用いればよい。
 一方、抗ガングリオシド抗体を2種以上検出したい場合は、上記ガングリオシド糖鎖を2種以上用いてもよい。例えば、GBS患者の血清中には、上述したようにGM1,GM1b、GD1a、GalNAc-GD1aに対するIgG抗体が検出されるため、上記ガングリオシド糖鎖を2種以上用いて、2種以上の抗ガングリオシド抗体を検出することも可能である。
 (1-2.リンカー化合物、糖鎖リガンド複合体)
 本発明に係る糖鎖固定化蛍光性ナノ粒子の構成要素である糖鎖リガンド複合体は、任意の蛍光性ナノ粒子と結合することのできるリンカー化合物と、ガングリオシド糖鎖とから構成されている。
 そのため、上記糖鎖リガンド複合体は、抗ガングリオシド抗体と疎水性に基づく非特異的な相互作用を形成しないことが必要とされる。好ましくは、上記糖鎖リガンド複合体は、1種または2種以上のガングリオシド糖鎖と、主鎖に炭化水素鎖または炭化水素誘導鎖を備えた1種または2種以上のリンカー化合物とからなり、上記リンカー化合物の主鎖が、その一端に上記ガングリオシド糖鎖と結合したアミノ基を有し、その他端に硫黄原子を含む炭化水素構造を備えている。
 上記炭化水素誘導鎖は、炭素及び水素からなる炭化水素鎖であり、一部の炭素や水素が他の原子や置換基に置き換わっていてもよい。すなわち、上記炭化水素誘導鎖とは、末端にアミノ基を有し、炭化水素鎖の主鎖構造である炭素-炭素結合(C-C結合)の一部が、炭素-窒素結合(C-N結合)、炭素-酸素結合(C-O結合)、アミド結合(CO-NH結合)に置き換わっていてもよいものを指す。
 また、上記硫黄原子を含む炭化水素構造とは、炭素及び水素からなる炭化水素構造にて、一部の炭素が硫黄に置き換わっているものを意味する。また、この硫黄原子を含む炭化水素構造は、鎖状(直鎖、枝分かれ鎖の両方を含む)であっても、環状であってもよく、また、鎖状構造および環状構造の両方の構造を含んでいてもよい。
 本発明に係る糖鎖固定化蛍光性ナノ粒子において、上記硫黄原子を含む炭化水素構造は、S-S結合またはSH基を含む炭化水素構造を備えているものであってもよい。つまり、上記硫黄原子を含む炭化水素構造中に、ジスルフィド結合(S-S結合)またはチオール基(SH基)が含まれていてもよい。
 また、本発明に係る糖鎖固定化蛍光性ナノ粒子において、上記アミノ基は芳香族アミノ基であることが好ましい。還元アミノ化反応の最適条件であるpH3~4においては、アミノ基がプロトン化されないことが必要である。そのため、芳香族との共役によってpH3~4でも非共有電子対が窒素原子上に存在する芳香族アミノ基が好ましい。
 本発明に利用されるリガンド複合体として好適なものは、WO2005/077965に示されている化合物、または非特許文献8に示されている化合物が挙げられる。具体的には、一般式(17)
Figure JPOXMLDOC01-appb-C000009
(式中、p,qはそれぞれ独立して0以上6以下の整数)にて表される構造を備え、上記Xとして、末端に芳香族アミノ基を有するとともに、主鎖に炭素-窒素結合を有していてもよい炭化水素誘導鎖を、1鎖、2鎖または3鎖含んでなる構造を備え、上記Yとして、硫黄原子又は硫黄原子を含む炭化水素構造を備えることが好ましい。また、上記Zとして、炭素-炭素結合又は炭素-酸素結合を持つ直鎖構造を備えているリンカー化合物と、還元末端を有する糖とが、上記芳香族アミノ基を介して結合している構造を有していることが好ましい。
 上記Xは、一般式(18)、一般式(19)、一般式(20)または一般式(21)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式中、m~mはそれぞれ独立して0以上6以下の整数、R’は水素(H)またはR)にて表される構造を備え、上記Rは糖鎖由来化合物(例えば還元末端を有する糖)であることがより好ましく、上記Zは、式(22)または式(23)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式中、n,nはそれぞれ1以上6以下の整数)であってもよい。より好ましくは、本発明に利用可能なリガンド複合体は、例えば、一般式(24)、一般式(25)、一般式(26)、一般式(27)、一般式(28)、または一般式(29)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(式中、m~mはそれぞれ独立して0以上6以下の整数、n,nはそれぞれ独立して1以上6以下の整数、qは0以上6以下の整数)にて表される構造を有するリンカー化合物の芳香族アミノ基に、還元末端を有する糖が導入された構造を有するものが挙げられる。一般式(29)で表されるリンカー化合物は、発明者らが開発した、それ自体が蛍光性を有するリンカー化合物である(非特許文献8)。
 本発明に利用可能なリンカー化合物は、例えば、チオクト酸と、芳香族アミノ基末端が保護基によって保護されたアミン化合物との縮合反応を行い、上記芳香族アミノ基末端の保護基を脱保護することによって製造される。
 また、上記一般式(28)にて表されるリンカー化合物は、例えば、γ-メルカプト酪酸の2量体と、2分子の芳香族アミノ基末端が保護基によって保護されたアミン化合物との縮合反応を行い、上記芳香族アミノ基末端の保護基を脱保護することによって製造される。
 上記チオクト酸は、
Figure JPOXMLDOC01-appb-C000022
にて表される構造を備えており、上記アミン化合物は、保護基によって保護された芳香族アミノ基末端を有するものであれば特に限定されるものではない。
 本発明の一実施形態において、上記一般式(29)にて表される構造においてnが4であるリンカー化合物(以下の式(30))
Figure JPOXMLDOC01-appb-C000023
に、還元末端を有する糖(ガングリオシド糖鎖)が導入されたリガンド複合体が用いられる。当該リガンド複合体の製造方法については、(1-6.糖鎖固定化蛍光性ナノ粒子の製造方法)で述べる。一般式(29)で表されるリンカー化合物は、上述のようにそれ自体が蛍光を呈するリンカー化合物(非特許文献8、以下、「蛍光性リンカー化合物」と称する)であり、当該蛍光を指標として糖鎖リガンド複合体を精製することができるため、特に好ましく用いられる。
 これに対し、一般式(24)~(28)で表されるリンカー化合物は蛍光性リンカー化合物ではないため、これらのリンカー化合物を用いた場合、糖鎖リガンド複合体は白色固体として得られるが、一般式(24)~(28)で表されるリンカー化合物を用いて得られた糖鎖リガンド複合体も、後述する蛍光性ナノ粒子に固定化することができるため、本発明に好適に用いることができる。
 なお、一般式(26)にて表される構造においてnおよびqが0であるリンカー化合物に還元末端を有する糖が導入された糖鎖リガンド複合体の合成手順は、WO2005/07965号公報に開示されており、一般式(24)、(25)、(27)、(28)で表されるリンカー化合物に還元末端を有する糖が導入された糖鎖リガンド複合体も、同様の手順によって合成することができる。
 このように本発明に利用可能なリンカー化合物は、主鎖に炭化水素鎖または炭化水素誘導鎖を備えており、主鎖の一末端にアミノ基を有している。さらに、上記リンカー化合物は、末端にアミノ基を有していることによって、糖鎖分子を簡便に導入することができる。なお、上記アミノ基は、修飾されているアミノ基(例えばアセチル基、メチル基やホルミル基等で修飾されたアミノ基)や、芳香族アミノ基であってもよいし、未修飾のアミノ基であってもよい。
 上記リンカー化合物は、1種または2種以上を用いることができる。つまり、本発明では、1種類のリンカー化合物(例えば、式(30)で表されるリンカー化合物)を用い、当該リンカー化合物を、1種類のガングリオシド糖鎖(例えば、GM1-Glc糖鎖)と結合させた糖鎖リガンド複合体のみを用いてもよい。
 また、1種類のリンカー化合物(例えば、式(30)で表されるリンカー化合物)を、2種類以上のガングリオシド糖鎖(例えば、GM1-Glc糖鎖と、化学式14に示す糖鎖)と混和し、1種類のリンカー化合物に、それぞれ独立して異なる種類の糖鎖が結合した糖鎖リガンド複合体(例えば、GM1-Glc糖鎖が結合した式(30)で表されるリンカー化合物と、化学式14に示す糖鎖が結合した式(30)で表されるリンカー化合物との混合物)を調製して用いてもよい。
 さらに、2種類以上のリンカー化合物(例えば、式(30)で表されるリンカー化合物と、一般式(26)にて表される構造においてnおよびqが0であるリンカー化合物)を用い、これらのリンカー化合物を、1種類のガングリオシド糖鎖(例えば、GM1-Glc糖鎖)または2種類以上のガングリオシド糖鎖(例えば、GM1-Glc糖鎖と、化学式14に示す糖鎖)と結合させた糖鎖リガンド複合体を調製して用いてもよい。
 以上のように、本発明で用いる糖鎖リガンド複合体は、1種類のリンカー化合物と、1種類のガングリオシド糖鎖とからなっていてもよい。この場合、特定の抗ガングリオシド抗体(例えば、抗GM1抗体)を特異的に、高感度で、簡便かつ短時間で検出することができるという利点がある。
 また、本発明で用いる糖鎖リガンド複合体は、2種以上のリンカー化合物と、2種類以上のガングリオシド糖鎖との組み合わせによって得られた糖鎖リガンド複合体の混合物であってもよい。この場合、2種以上の抗ガングリオシド抗体を検出可能であるため、例えばGBSに関与する複数の抗ガングリオシド抗体(例えば、抗GM1抗体および抗GD1a抗体)を同時に検出することも可能である。
 糖鎖リガンド複合体には、硫黄原子(S)が含まれており、この硫黄原子(S)は、例えば、蛍光性ナノ粒子に含まれるカドミウム(Cd)と、金属-硫黄結合(Cd-S結合)を形成し、蛍光性ナノ粒子に結合することができる。
 本発明に利用可能なリンカー化合物は、金属-硫黄結合(例えばCd-S結合)を容易に形成することができるという点で、S-S結合またはSH基が含まれている炭化水素構造を主鎖の他端に備えていることが好ましい。
 これによって、上記リンカー化合物は、蛍光性ナノ粒子上に糖鎖分子を集合化して配列することができる。ジスルフィド結合(S-S結合)またはSH基中の硫黄(S)は、例えば、蛍光性ナノ粒子上に存在するカドミウム(Cd)と、金属-硫黄結合(Cd-S結合)を形成し、金属との結合を強固にすることができる。
 そして、上記糖鎖リガンド複合体には、上記リンカー化合物のアミノ基に、ガングリオシド糖鎖であって、還元末端を有する糖鎖が導入されている。言い換えれば、上記糖鎖リガンド複合体は、上記リンカー化合物と、還元末端を有する糖鎖とが、アミノ基を介して結合している構造を有している。
 この糖鎖の導入は、例えば、上記リンカー化合物のアミノ基(-NH基)と糖鎖との還元アミノ化反応によって行うことができる。つまり、平衡によって生じる糖鎖中のアルデヒド基(-CHO基)またはケトン基(-CRO基、Rは炭化水素基)と、上記リンカー化合物が有するアミノ基とが反応する。そして、この反応によって形成されたシッフ塩基を引き続き還元することによって、アミノ基に容易に糖鎖を導入することができる。
 なお、上記「還元末端を有する糖鎖」とは、アノマー炭素原子が置換を受けていない単糖、オリゴ糖鎖、多糖鎖である。つまり、上記還元末端を有する糖鎖とは、還元糖鎖である。上記還元末端を有する糖鎖としては、市販のものであっても天然のものであってもよく、あるいは、市販および天然の多糖鎖を分解して調製したものを用いることができる。
 上記還元末端を有する糖鎖としては、例えば、(1-1.ガングリオシド由来の糖鎖を含有する糖鎖)で上述したガングリオシド糖鎖を用いることができる。
 上記糖鎖リガンド複合体に含まれるリンカー化合物は、金属に結合可能な硫黄原子と、オリゴ糖鎖等の糖鎖分子に結合可能なアミノ基とを有している。従って、例えばCd-S結合などの金属-硫黄結合により上記糖鎖リガンド複合体が蛍光性ナノ粒子上の金属に固定されるので、上記リンカー化合物を介して、本発明に係る蛍光性ナノ粒子に糖鎖分子を強固にかつ簡単に結合させることができるとともに、蛍光性ナノ粒子をコロイド状態で安定化することができる。
 また、上記糖鎖リガンド複合体の蛍光性ナノ粒子への固定化は、還元剤処理した上記リガンド複合体と蛍光性ナノ粒子を含む溶液とを混和するだけで行うことができるので、非常に容易に糖鎖を固定化することができる。上記還元剤処理に用いる還元剤は水素化ホウ素ナトリウムであることが好ましい。
 これにより、リンカー化合物内のS-S結合を還元して-SH基に変換し、任意の金属と、金属-硫黄(S)結合、例えばカドミウム-硫黄(Cd-S)結合により結合することができる。
 また、上記糖鎖リガンド複合体は、リンカー化合物との結合部に水酸基が多く存在する非環状の部分構造が存在するため(つまり、リンカー化合物に結合した還元末端の糖ユニットが、水酸基が多く存在する非環状の部分構造を有するため)、タンパク質との非特異的な相互作用の影響をほとんど無視することができる。それゆえ、上記リンカー化合物を有する上記リガンド複合体を用いることによって、上記糖鎖と抗ガングリオシド抗体との相互作用を再現性よく評価することが可能になる。
 上記糖鎖リガンド複合体は、リンカー化合物と糖鎖分子とを含んでなっているので、リンカー化合物内のS-S結合にて、金属-硫黄(S)結合、例えばカドミウム-硫黄(Cd-S)結合によって、任意の金属と結合することができる。これにより、例えばこのCd-S結合を介して、蛍光性ナノ粒子上に糖鎖分子が固定化されてなる糖鎖固定化蛍光性ナノ粒子を提供することができる。上記任意の金属としては、上記糖鎖リガンド複合体と結合可能なものであればよく、上記カドミウムの他、亜鉛、銅、銀、インジウム等の金属を用いることができるが、特にカドミウム、亜鉛を用いることが好ましい。
 後述するように、本発明に係る糖鎖固定化蛍光性ナノ粒子は、第一および第二の金属成分からなる粒子コアが第一および第三の金属成分からなる層によって被覆された蛍光性ナノ粒子を含有する。そして、上記糖鎖リガンド複合体は、リンカー化合物がその他端に硫黄原子を含む炭化水素構造を備えているため、上記炭化水素構造が上記層に固定化される。つまり、上記炭化水素構造が備えるS-S結合が、上記層に含有される金属と金属-硫黄(S)結合を形成することによって、上記炭化水素構造が上記層に固定化される。
 (1-4.オリゴエチレングリコールの固定化)
 本発明に係る糖鎖固定化蛍光性ナノ粒子は、上記糖鎖リガンド複合体を含有するが、糖鎖リガンド複合体に加えて、さらに以下の複合体を含有することが好ましい。すなわち、アミノ化されたオリゴエチレングリコールと、主鎖に炭化水素鎖または炭化水素誘導鎖を備えたリンカー化合物と、からなり、上記リンカー化合物の主鎖が、その一端に上記アミノ化されたオリゴエチレングリコールと結合したカルボキシル基を有し、その他端に硫黄原子を含む炭化水素構造を備えている複合体を含有することが好ましい。
 つまり、本発明に係るガングリオシド糖鎖固定化蛍光性ナノ粒子には、固定化した糖鎖の局所密度をオリゴエチレングリコールを共固定化することによって調製した蛍光性ナノ粒子もその適用範囲に含まれる。
 このような、アミノ化されたオリゴエチレングリコールと、上記リンカー化合物との複合体をさらに含有することによって、オリゴエチレングリコールを上記糖鎖と共に蛍光性ナノ粒子に固定化することができるため、蛍光性ナノ粒子に固定化した糖鎖の局所密度を好適に調整することができる。
 その結果、後述する実施例に示すように、抗ガングリオシド抗体の検出感度を増すことができる。したがって、抗ガングリオシド抗体の検出をより容易に行うことができる。
 上記オリゴエチレングリコールとは、エチレングリコールが2個以上10個以下脱水重縮合して得られるアルコールである。中でも、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコールを用いることが好ましく、入手が容易であるため、テトラエチレングリコールを用いることが特に好ましい。用いるオリゴエチレングリコールは1種であってもよいし、2種以上であってもよい。
 アミノ化されたオリゴエチレングリコールと、リンカー化合物とからなる複合体は、リンカー化合物と、アミノ化したオリゴエチレングリコールとのアミド化縮合反応を行うことによって作製することができる。
 上記リンカー化合物としては、主鎖に炭化水素鎖または炭化水素誘導鎖を備え、上記リ主鎖は、その一端に上記アミノ化したオリゴエチレングリコールと結合するカルボキシル基を有し、その他端に硫黄原子を含む炭化水素構造を備えていることが好ましい。例えば、下記一般式(31)にて表される構造を有するリンカー化合物などを用いることができる。用いるリンカー化合物は、1種であっても、2種以上であってもよい。
Figure JPOXMLDOC01-appb-C000024
(式中、nは1以上6以下の整数)
 ガングリオシド糖鎖と、オリゴエチレングリコールとの好適なモル比は、用いるガングリオシド糖鎖の種類によって異なるので一概には言えない。例えば後述する実施例に示すように、ガングリオシド糖鎖がGM1糖鎖(化学式14)である場合は、オリゴエチレングリコールが含まれていない方が検出結果が良好であったが、ガングリオシド糖鎖がGM1-Glc糖鎖(化学式1)である場合は、GM1-Glc糖鎖とテトラエチレングリコールとのモル比が5:5のときに最も良好な検出結果が得られている。
 したがって、上記モル比は用いるガングリオシド糖鎖の種類によって適宜調整することが好ましい。後述する実施例に示すように、ガングリオシド糖鎖がGM1-Glc糖鎖のとき、ガングリオシド糖鎖と、オリゴエチレングリコールとのモル比が10:0~3:7のいずれでも蛍光を発する凝集体が観察されているため、当該モル比が好適なモル比の一例であると言える。
 (1-5.蛍光性ナノ粒子)
 本実施形態の糖鎖固定化蛍光性ナノ粒子の構成要素である蛍光性ナノ粒子は、第一および第二の金属成分からなる粒子(コア)が第一および第三の金属成分からなる層(シェル)によって被覆されている「コア/シェル」構造を有している。後述するように、蛍光性ナノ粒子は加熱処理されているため、シェル層の表面が均質化されて、上記糖鎖リガンド複合体を効率よく結合させることができ、その結果、蛍光性ナノ粒子上に高い安定性を付与し得る。
 第一の金属成分は、カドミウム、亜鉛、銀、インジウムおよび硫黄からなる群より選択されることが好ましく、第二の金属成分が、テルルおよび硫黄からなる群より選択されることが好ましい。また、第三の金属成分は、カドミウム、硫黄および亜鉛からなる群より選択されることが好ましい。本発明に使用可能な「コア/シェル」構造の蛍光性ナノ粒子としては、CdTe/CdS、ZAIS/ZnSが挙げられるがこれらに限定されない。なお、ZAISとはZn、Ag、InおよびSを意味する。
 このように、本発明で開示される糖鎖固定化蛍光性ナノ粒子は、蛍光性ナノ粒子として、CdとTeとで構成されるコア/シェル型の量子ドットをその基本構造としているが、Zn、Ag、In、およびSから構成されるZAISと一般に称されるナノ粒子を用いた場合もその適用範囲に含まれる。
 1つの局面において、上記蛍光性ナノ粒子の製造方法は、第一の金属成分を含む第一溶液と、第二の金属成分を含む第二溶液とを加熱条件下にて混合し、第一溶液と第二溶液との混合溶液を室温に冷却し、第一および第二の金属成分からなる粒子を混合溶液から精製することによって行われ、第一工程において混合された溶液が第三の金属成分をさらに含んでいることによって、第一および第二の金属成分からなる粒子が、第一および第三の金属成分からなる層によって被覆される。
 別の局面において、上記蛍光性ナノ粒子の製造方法は、第一の金属成分を含む第一溶液と、第二の金属成分を含む第二溶液とを加熱条件下にて混合し、第一溶液と第二溶液との混合溶液を室温に冷却し、第一および第二の金属成分からなる粒子を混合溶液から精製し、精製した粒子および第三の金属成分を含む水溶液を加熱処理することによって、第一および第二の金属成分からなる粒子が、第一および第三の金属成分からなる層によって被覆される。
 粒子コアを精製した後に加熱処理を行うことによって、シェル層の表面の均質化がより一層改善されて、上記糖鎖リガンド複合体の上記蛍光性ナノ粒子への結合性が著しく向上する。この場合、精製の前に行われる加熱処理は、30分間~8時間にわたって行われることが好ましい。これにより、粒径が均一でありかつ高い水分散性を有する糖鎖固定化蛍光性ナノ粒子が得られる。
 なお、本明細書において、「室温」は通常の実験室内での温度であり、20~30℃が好ましいが、加熱処理における反応を停止することができる温度であれば特に限定されず、いわゆる低温室における温度(例えば4℃)であってもよい。
 本実施形態において、第一溶液は、第一の金属成分の塩または錯塩が溶解した溶液であり、第二溶液は、第二の金属成分の塩または錯塩が溶解した溶液であっても、親水化された第二の金属成分が溶解した溶液であってもよい。
 (1-6.糖鎖固定化蛍光性ナノ粒子の製造方法)
 本発明に係る糖鎖固定化蛍光性ナノ粒子(ガングリオシド糖鎖固定化蛍光性ナノ粒子)は、以下のようにして作製することができる。ここでは、ガングリオシド糖鎖として、化学式1に示す糖鎖(GM1-Glc糖鎖)を用い、リンカー化合物として式(30)で表されるリンカー化合物を用いる場合について説明するが、他のガングリオシド糖鎖および他のリンカー化合物を用いる場合も、以下の方法に準じて糖鎖固定化蛍光性ナノ粒子を作製することができる。
 まず、化学合成により、保護基を有するガングリオシド糖鎖構造(保護基を備えた、化学式14に示す糖鎖)を得て、さらに1、2、3、4位を保護したグルコースを反応させる。最後に、保護基を除去して、還元末端にグルコースを有するガングリオシド糖鎖(化学式1に示す糖鎖)を合成する。
 次いで、その糖鎖に、式(30)で表される独自開発の蛍光性リンカー化合物(非特許文献8)を還元アミノ化反応によって導入し、上記蛍光性リンカー化合物が蛍光を呈することを利用して精製し、糖鎖リガンド複合体(ガングリオシド糖鎖リガンド複合体)を得る。その糖鎖リガンド複合体を既存の方法(特許文献1、非特許文献7)によってコア/シェル型の蛍光性ナノ粒子に固定化し、遠心限界濾過法を用いて精製することによって、本発明に係る糖鎖固定化蛍光性ナノ粒子を作製することができる。
 ここで、上記既存の方法について説明する。本発明に係る糖鎖固定化蛍光性ナノ粒子は、加熱処理した親水性の蛍光性ナノ粒子を含む溶液と、還元剤処理した上記糖鎖リガンド複合体との混和によって得ることができ、糖鎖リガンド複合体のS-S結合の各S原子が、蛍光性ナノ粒子上の金属と金属-硫黄結合によって結合する。得られる糖鎖固定化蛍光性ナノ粒子は水溶液中で分散する。
 具体的には、例えば、蛍光性ナノ粒子の溶液に、還元剤処理した上記糖鎖リガンド複合体を含む溶液を添加することによって、上記糖鎖リガンド複合体のS-S結合を、蛍光性ナノ粒子上の金属-硫黄結合に変換して、糖鎖固定化蛍光性ナノ粒子を得ることができる。
 また、上述した、アミノ化されたオリゴエチレングリコールと上記リンカー化合物との複合体をさらに含有させる場合は、当該複合体を含む溶液をさらに添加すればよい。
 なお、親水性の蛍光性ナノ粒子の加熱処理の条件は、特に限定されるものではないが、チオール安定化剤の存在下にて、50~200℃で行われることが好ましく、70~180℃がより好ましく、100℃以上であることがさらに好ましい。チオール安定化剤としては、特に限定されないが、チオアセトアミド、3-メルカプトプロピオン酸(3-MPA)、チオグリコール酸(TGA)、4-メルカプトブタン酸、システイン、シスタミンなどのチオ化合物および塩類が挙げられる。
 還元剤処理に用いられる還元剤としては、特に限定されるものではないが、例えば、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウムなどの塩類および陽イオン成分が異なる塩類等を挙げることができる。
 蛍光性ナノ粒子および糖鎖リガンド複合体を含む溶液に用いる溶媒としては、特に限定されるものではないが、例えば、水、メタノール、エタノール、プロパノール、これらの混合溶媒等を挙げることができる。
 糖鎖固定化蛍光性ナノ粒子の精製は、例えば上記混和によって得られた糖鎖固定化蛍光性ナノ粒子を遠心濾過し、低分子の塩などの成分を除くことによって行うことができ、溶液状態で安定な糖鎖固定化蛍光性ナノ粒子を得ることができる。
 糖鎖固定化蛍光性ナノ粒子を調製するために用いる金属ナノ粒子、上記糖鎖リガンド複合体、還元剤の混合比は、特に限定されるものではないが、金属成分としてカドミウムが含まれる場合は、蛍光性ナノ粒子および糖鎖リガンド複合体を含む溶液中のカドミウム濃度が、最終濃度で0.1mM~1mMであることが好ましい。
 上記糖鎖リガンド複合体の濃度は、蛍光性ナノ粒子および糖鎖リガンド複合体を含む溶液中の最終濃度として0.1mM~10mMであることが好ましい。
 また、上述した、アミノ化されたオリゴエチレングリコールと上記リンカー化合物との複合体を用いる場合、当該複合体の濃度は、上記溶液中の最終濃度として、0.1mM~10mMであることが好ましい。
 また、用いられる還元剤の濃度は、上記溶液中の最終濃度として糖鎖リガンド複合体濃度の10倍モル濃度であることが好ましい。
 蛍光性ナノ粒子に糖鎖が固定化されていることについては、例えば、糖鎖固定化蛍光性ナノ粒子をMALDI-TOF型の質量分析計で測定すればよい。この際、蛍光性ナノ粒子と硫黄-金属結合で固定化されている糖鎖リガンド複合体(ガングリオシド糖鎖リガンド複合体)が、硫黄-金属結合で還元的に分解するために、ガングリオシド糖鎖リガンド複合体が蛍光性ナノ粒子に固定化されている場合は、それに相当する分子イオンピーク(m/Z)が観測される。
 また、ガングリオシド糖鎖を構成している糖鎖と特異的に結合することが既知であるレクチン(糖鎖結合性蛋白質)を用いて、ガングリオシド糖鎖固定化蛍光性ナノ粒子の凝集と遠心分離による沈殿物生成を調べればよい。
 すなわち、上記レクチンと、糖鎖固定化蛍光性ナノ粒子を含む溶液とを混和し、糖鎖とタンパク質とを相互作用させて特異的に結合させ、凝集物の生成を確認することによって、蛍光性ナノ粒子に糖鎖が固定化されていることを確認することができる。
 上記レクチンとしては、例えば、糖鎖固定化蛍光性ナノ粒子の末端に位置する糖鎖がグルコースの場合は、グルコースを認識することができるタンパク質であるコンカナバリンA(ConA)、レンチルレクチン(LCA)、エンドウマメレクチン(PSA)等を用いることができる。
 同様に、糖鎖固定化蛍光性ナノ粒子の末端に位置する糖鎖がガラクトースである場合は、ガラクトースを認識するタンパク質であるヒママメレクチン(RCA120)等を用いることができる。また、糖鎖固定化蛍光性ナノ粒子の末端に位置する糖鎖がN-アセチルグルコサミンである場合は、N-アセチルグルコサミンを認識するタンパク質である小麦胚芽レクチン(WGA)等を用いることができる。
 このような製造方法によって製造された糖鎖固定化蛍光性ナノ粒子は、その表面上に抗体を容易に固定化し得るので、生体組織に対する特異性が向上した抗体固定化蛍光性ナノ粒子を容易に提供し得る。
 〔2.抗ガングリオシド抗体の検出方法〕
 本発明に係る抗ガングリオシド抗体の検出方法は、本発明に係る糖鎖固定化蛍光性ナノ粒子と、被検体とを混和することによって、上記糖鎖固定化蛍光性ナノ粒子に固定化された、ガングリオシド由来の糖鎖を含有する糖鎖と、上記被検体中に含まれる抗ガングリオシド抗体とを反応させる工程を含むものである。
 上記糖鎖固定化蛍光性ナノ粒子には、既に説明したように、1種または2種以上のガングリオシド糖鎖が固定化されている。そのため、被検体中に抗ガングリオシド抗体が含有されている場合、上記糖鎖と上記抗体との抗原抗体反応によって、凝集体(会合体)の形成を目視で確認することができる。その際、溶液の蛍光色が変化する。
 よって、上記被検体としては、血液または血清であることが好ましく、血清であることが特に好ましい。上記血液または血清は、ヒト由来のものであってもよいし、ヒト以外の哺乳類由来のものであってもよい。
 糖鎖固定化蛍光性ナノ粒子と、上記被検体との混和は、糖鎖固定化ナノ粒子を含む溶液と、上記被検体とを近接させて、ガングリオシド糖鎖と抗ガングリオシド抗体との抗原抗体反応が可能な状況を提供しうるものであればよい。例えば、マイクロプレートやプラスチックチューブなどに被検体の希釈系列を作製し、糖鎖固定化蛍光性ナノ粒子を含む溶液を添加して放置することにより混和を行うことができる。
 上記「糖鎖固定化蛍光性ナノ粒子を含む溶液」とは、本発明に係る糖鎖固定化蛍光性ナノ粒子が液体に分散したコロイド溶液が意図される。糖鎖固定化蛍光性ナノ粒子を含んでいれば、他に塩などが含まれていてもよい。上記液体としては、例えば水や緩衝液等を用いることができる。
 上記混和を行うことによって、上記被検体中に、糖鎖固定化蛍光性ナノ粒子に固定化されているガングリオシド糖鎖に対する抗ガングリオシド抗体が含まれていれば、抗原抗体反応が起こり、蛍光を発する凝集体(会合体)を得ることができる。
 例えば、作製したガングリオシド糖鎖固定化蛍光性ナノ粒子(ガングリオシド糖鎖を固定化した蛍光性ナノ粒子)を緩衝液で希釈し、患者血清を加えてプラスチックチューブ中で混和し、数時間放置した後、遠心分離する。ガングリオシド糖鎖固定化蛍光性ナノ粒子の糖鎖と結合する自己抗体が血清中に存在する場合は、蛍光を発する沈殿物が得られるため、簡便かつ肉眼で検査結果を得ることができる。
 したがって、抗ガングリオシド抗体が病因物質であると考えられる免疫性末梢神経障害症に罹患しているか否かを、迅速かつ簡便に検出することができる。
 〔3.免疫性末梢神経障害症の検出試薬〕
 本発明のガングリオシド糖鎖固定化蛍光性ナノ粒子は、ギラン・バレー症候群などの末端神経麻痺症などの迅速・簡便検出試薬及び診断薬として利用可能である。
 そこで、本発明に係る免疫性末梢神経障害症の検出試薬は、本発明に係る糖鎖固定化蛍光性ナノ粒子を含有する。
 上述したように、本発明に係る糖鎖固定化蛍光性ナノ粒子は、1種または2種以上のガングリオシド糖鎖と、上述したリンカー化合物とからなる糖鎖リガンド複合体が、上述した蛍光性ナノ粒子に固定化されてなるものである。そのため、上記ガングリオシド糖鎖と結合する、血清中の抗ガングリオシド抗体(自己抗体)を迅速、簡便、かつ高精度に検出することができる。
 それゆえ、本発明に係る糖鎖固定化蛍光性ナノ粒子を含有する試薬を、ギラン・バレー症候群をはじめとする免疫性末梢神経障害症の検出試薬または診断薬として用いることができる。
 糖鎖固定化蛍光性ナノ粒子は、上述したようにコロイド溶液として用いることが好ましいため、上記検出試薬は、本発明に係る糖鎖固定化蛍光性ナノ粒子が液体に分散したコロイド溶液の形態であることが好ましい。本発明に係る免疫性末梢神経障害症の検出試薬において、本発明に係る糖鎖固定化蛍光性ナノ粒子以外に含有しうる成分としては、例えば水、緩衝液、上述したアミノ化されたオリゴエチレングリコールと上記リンカー化合物との複合体等がある。
 上記コロイド溶液において、糖鎖固定化蛍光性ナノ粒子を構成する糖鎖リガンド複合体の濃度は、上述したように、溶液中の最終濃度として0.1mM~10mMであることが好ましい。また、糖鎖固定化蛍光性ナノ粒子を調製するために用いる金属ナノ粒子、上記糖鎖リガンド複合体、還元剤の混合比は、特に限定されるものではないが、金属成分としてカドミウムが含まれる場合は、溶液中のカドミウム濃度が、最終濃度で0.1mM~1mMであることが好ましい。用いられる還元剤の濃度は、溶液中の最終濃度として糖鎖リガンド複合体濃度の10倍モル濃度であることが好ましい。
 なお、本発明は以下のように構成することも可能である。
 本発明に係るガングリオシド糖鎖固定化蛍光性ナノ粒子は、ガングリオシドGM1糖鎖とカドミウム及びテルルからなる蛍光を発する金属ナノ粒子からなる。
 本発明に係る自己抗体を検出する方法は、上記ガングリオシド糖鎖固定化蛍光性ナノ粒子と患者血清を混合することによって、固定化されているガングリオシド糖鎖に特異的に反応する自己抗体を検出する。
 本発明に係るガングリオシド糖鎖固定化蛍光性ナノ粒子は、ガングリオシドGM1糖鎖と亜鉛、銀、インジウム、硫黄からなる蛍光を発する金属ナノ粒子からなる。
 本発明に係る自己抗体を検出する方法は、上記ガングリオシド糖鎖固定化蛍光性ナノ粒子と患者血清を混合することによって、固定化されているガングリオシド糖鎖に特異的に反応する自己抗体を検出する。
 本発明に係るガングリオシド糖鎖固定化蛍光性ナノ粒子は、ガングリオシドGD1a糖鎖とカドミウム及びテルルからなる蛍光を発する金属ナノ粒子からなる。
 本発明に係る自己抗体を検出する方法は、上記ガングリオシド糖鎖固定化蛍光性ナノ粒子と患者血清を混合することによって、固定化されているガングリオシド糖鎖に特異的に反応する自己抗体を検出する。
 本発明に係るガングリオシド糖鎖固定化蛍光性ナノ粒子は、ガングリオシドGD1a糖鎖と亜鉛、銀、インジウム、硫黄からなる蛍光を発する金属ナノ粒子からなる。
 本発明に係る自己抗体を検出する方法は、上記ガングリオシド糖鎖固定化蛍光性ナノ粒子と患者血清を混合することによって、固定化されているガングリオシド糖鎖に特異的に反応する自己抗体を検出する。
 本発明に係るガングリオシド糖鎖固定化蛍光性ナノ粒子は、ガングリオシドGQ1b糖鎖とカドミウム及びテルルからなる蛍光を発する金属ナノ粒子からなる。
 本発明に係る自己抗体を検出する方法は、上記ガングリオシド糖鎖固定化蛍光性ナノ粒子と患者血清を混合することによって、固定化されているガングリオシド糖鎖に特異的に反応する自己抗体を検出する。
 本発明に係るガングリオシド糖鎖固定化蛍光性ナノ粒子は、ガングリオシドGQ1b糖鎖と亜鉛、銀、インジウム、硫黄からなる蛍光を発する金属ナノ粒子からなる。
 本発明に係る自己抗体を検出する方法は、上記ガングリオシド糖鎖固定化蛍光性ナノ粒子と患者血清を混合することによって、固定化されているガングリオシド糖鎖に特異的に反応する自己抗体を検出する。
 本発明にかかるギラン・バレー症候群をはじめとした免疫性末梢神経障害症の検出試薬または診断薬は、本発明に係る糖鎖またはナノ粒子を含む。
 本発明では以上の知見にもとづき、GBSの新規検査診断法のための簡便なツールの開発を目指し、ガングリオシドの糖鎖部分を固定化した蛍光性ナノ粒子を調製した。
 本発明は、医学上または産業上有用な方法・物質として下記1)~3)の発明を含むものである。
1)ガングリオシドGM1の糖鎖部分に蛍光性のリンカーを結合させた構造を有する糖鎖リガンド複合体。
2)平均粒子径が8.9nmの大きさをもつ、上記糖鎖リガンド複合体が固定化された蛍光性ナノ粒子。
3)蛍光性ナノ粒子には、コアシェル構造を有するカドミウムとテルル、または亜鉛、銀、インディウム、硫黄を構成元素としてもつ半導体ナノ粒子。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 以下、本発明を実施例に基づき詳細に説明するが、本発明は何らこれらに限定されるものではない。
 〔実施例1:GM1-Glc糖鎖の合成〕
 図1は、ガングリオシドGM1の糖鎖部分にGlcを導入したGM1-Glc糖鎖の化学構造を示す図である。図1に示す式1は、目的のGM1-Glc糖鎖の構造を示している。
 図2は、GM1-Glc糖鎖を合成する際の中間体の合成経路を示す図である。まず、図2に示すように、GM1-コアとなる四糖構造(式4に示す)を、NISおよびTfOHの存在下、二糖Galβ1-3GalN(式2に示す)とNeuAcα2-3Gal(式3に示す)とを縮合させることによって、89%の収率で調製した。続いて、上記四糖構造から、対応するグルコシド供与体(式6に示す)を、5ステップで導いた。
 図3は、GM1-Glc糖鎖を合成する際に必要な二糖構造の合成経路を示す図である。次に、図3に従って、糖受容体となる非還元末端グルコースの4位をフリーとし、かつ、保護基をベンジル基とすることによって、4位の水酸基の反応性を高めたゲンチビオース(式11に示す)を以下のように調製した。
 すなわち、グルコース糖供与体(式7に示す)と糖受容体(式8に示す)とを、NISおよびTfOHの存在下、ジクロロメタン中において0℃で反応させることによって、二糖(式9に示す)を90%の収率で得た。式9に示す二糖の保護基をベンゾイル基からベンジル基に変換し、式10に示す糖鎖を2段階で、収率88%で得た。そして、ベンジリデン基を、ジクロロメタン中、トリメチルシランとBF・OEtとで処理することによって、選択的に開裂させ、式11に示すゲンチビオースを85%の収率で得た。当該ゲンチビオースのスペクトルデータは以下の通りである。
[α]=-12.9° (c 1.0、 CHCl); H-NMR (600 MHz、 CDCl) δ 7.35-7.21 (m、 35 H、 7 Ph)、 5.01-4.69 (m、 10 H、 5 CHHPh)、 4.59-4.51 (m、 3 H、 H-1f、 CHHPh)、 4.46 (d、 1 H、 J1、2 = 9.6 Hz、 H-1e)、 4.19 (d、 1 H、 Jgem = 11.0 Hz、 H-6e)、 3.74-3.58 (m、 6 H、 H-6’e、 3f、 4f、 5f、 6f、 6’f)、 3.50-3.39 (m、 5 H、 H-2f、 2e、 3e、 4e、 5e)、 2.54 (s、 1 H、 -OH); 13C-NMR (150 MHz、 CDCl) δ 138.9、 138.7、 138.5、 138.5、 138.2、 138.0、 137.6、 128.6、 128.5、 128.5、 128.4、 128.3、 128.2、 128.1、 128.0、 128.0、 127.9、 127.8、 127.7、 104.1、 102.7、 84.8、 84.2、 82.4、 81.6、 78.4、 77.3、 75.8、 75.4、 75.3、 75.1、 74.9、 74.8、 74.1、 73.8、 71.8、 71.3、 68.8、 29.8; MALDI MS: m/z: calcd for C616411Na: 995.43; found: 995.38 [M+Na]
 図4は、GM1-Glc糖鎖を合成するためのグリコシデーションと脱保護とを示す経路を表す図である。次に、図4に示すように、上記のようにして合成したGM1コア糖供与体(式6に示す)と二糖(式11に示す)とをジクロロメタン中、TMSOTfの存在下で反応させ、望むβ‐グリコシド(式12に示す)を69%の収率で得た。
 次いで、アシル系の保護基を除去して式13に示す糖鎖を得て、最後にベンジル基を水素化分解してGM1-Glc糖鎖(式1)をほぼ定量的に得た。式1に示すGM1-Glc糖鎖のスペクトルデータは以下の通りである。
[α]=+0.1° (c 1.0、 HO); H-NMR (600 MHz、 CDOD) δ 5.16 (d、 1 H、 J1、2=3.7 Hz、 H-1e)、 4.79 (d、 1 H、 H-1c)、 4.57 (d、 1 H、 J1、2=8.0 Hz、 H-1d)、 4.49-4.45 (m、 3 H、 H-1a、 1b、 1f)、 4.15-3.19 (m、 39 H、 ring H)、 2.62 (dd、 1 H、 H-3beq)、 1.99 and 1.96 (2 s、 6 H、 2 Ac)、 1.87 (m、 1 H、 H-3bax)、 13C-NMR (150 MHz、 CDOD) δ 175.0、 174.8、 174.1、 106.1、 105.7、 105.5、 104.1、 104.0、 103.4、 101.8、 97.0、 95.3、 94.2、 93.0、 91.5、 84.4、 81.2、 78.1、 77.6、 76.5、 75.1、 74.8、 74.5、 74.3、 73.9、 73.5、 73.4、 72.6、 72.1、 71.5、 70.8、 70.2、 68.9、 68.0、 67.1、 61.2、 61.0、 60.7、 59.7、 59.3、 58.8、 52.5、 51.6、 48.8、 47.5、 28.7、 25.9、 23.5; MALDI MS: m/z: calcd for C4372O: 1160.40; found: 1159.75 [M-H]
 〔実施例2:GM1-Glc固定化糖鎖リガンド複合体の合成と分画〕
 実施例1で合成した還元末端に6-グルコースを有するGM1ガングリオシド糖鎖(GM1-Glc、1.0mg、0.86μmol)を超純水20μLに溶解し、上述した式(30)に示す独自開発の蛍光性リンカー化合物(「f-mono」と称する。0.28mg、1.1μmol)のN、N-ジメチルホルムアミド30μL溶液に加え、さらに酢酸6μLを加えた。
 40℃で6時間放置した後、NaBHCN(1.5mg、24μmol)を10μLの超純水に溶解させた溶液を加え、40℃で3日間放置し、凍結乾燥した。この凍結乾燥残渣を超純水に溶解させ、ODSカラムで精製した(溶出溶媒:水/メタノール 1/1(v/v))。溶出画分を凍結乾燥し、図5に示すGM1-Glc固定化糖鎖リガンド複合体(以下、「GM1-Glc-f-mono」と略)を白色粉末として得た。図5は、GM1-Glc-f-monoの化学構造を示す図である。GM1-Glc-f-monoの収量は0.69mg(収率56%)であった。GM1-Glc-f-monoのスペクトルデータは以下の通りである。
MS calcd. for: C5692342 : 1442.51、 Found: m/z 1442.73 [M-H]
 〔実施例3:GM1-Glc糖鎖を固定化した蛍光性ナノ粒子の調製〕
 図6は、GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)の調製法を示す概略図である。
 まず、CdCl(9.17mg、50.0μmol)と3-メルカプトプロピオン酸(3-MPA、5.45μL、63μmol)とを超純水10mLに溶かし、溶液のpHを1M NaOHで9に合わせ、撹拌しながらアルゴンガスを30分間バブリングしたのち、溶液を激しく撹拌しながら105℃に加熱した。
 別のフラスコに、テルル粉体(16.0mg、0.125mmol)とNaBH(18.9mg、0.500mmol)とをアルゴン下で脱気した超純水(2mL)に溶解させ、室温下で1.5時間撹拌した。得られた溶液(NaHTe溶液、200μL)を、105℃で加熱撹拌している上記溶液に加え、同温度でさらに2時間撹拌し、室温に戻した。
 その溶液に、2-プロパノールを加えて、CdTeの量子ドット(QD)を沈殿させ、それをろ別後に再度水を加えて溶解させた。その溶液を4℃で10時間放置した後、チオアセトアミド(0.27μL、1.33μM)をさらに加えた。
 そして、105℃で57時間撹拌し、室温に戻すことによって、CdTe/CdS core/shell QD溶液を得た。
 次に、図6に示すように、実施例2で調製したGM1-Glc-f-mono(1mM、50μL)にNaBHの水溶液(10mM、50μL)を室温で混合し、10分間放置した。その後、CdTe/CdS core/shell QD溶液を超純水で5倍に薄めた溶液100μLを、上記10分間放置した溶液に加え、暗所で室温にて24時間撹拌した。未反応の糖鎖リガンド複合体はAmicon Ultra 10 K(Millipore、MA、USA)を用いた遠心限外濾過(14000×g、5min)によって除去し、さらに引き続いて超純水で3回洗浄し、沈殿物を最後にPBSに懸濁させることによってGM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)溶液を調製した。
 図7は、GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)のDLS測定による粒径分布を示す図である。図7に示すように、DLS測定(使用機器:Zetasizer Nano ZS90、Malvern Instruments、 Worcestershire、 UK)によれば、このナノ粒子(GM1-Glc-FNP)の平均粒子径は8.9nmであった。
 〔実施例4:固定化したガングリオシド糖鎖リガンド複合体のMALDI-TOF/MSによる確認〕
 実施例3で調製したGM1-Glc糖鎖固定化蛍光性ナノ粒子のPBS溶液1μLを飽和DHBA溶液(水/メタノール 1/1溶液)10μLと混合し、1μLを測定プレートに載せ、自然乾燥させた。そのプレートをVoyager-DE-PRO(Applied Biosystems、CA、USA)の測定部へ入れ、質量分析を行った。
 図8は、GM1-Glc-FNPのPositive modeによるMALDI-TOF/MS分析の結果を示す図であり、図9は、GM1-Glc-FNPのNegative modeによるMALDI-TOF/MS分析の結果を示す図である。
 図8と図9に示すように、実施例2で調製したGM1-Glc固定化糖鎖リガンド複合体と同じ質量数を有するピーク(m/Z値)が得られ、蛍光性ナノ粒子にGM1-Glc糖鎖が固定化されていることが確認された。
 〔実施例5:GM1-Glc糖鎖固定化蛍光性ナノ粒子の蛋白質結合能の確認〕
 蛋白質Concanavalin A(ConA)、Jaccalin、Peanut agglutinin(PNA)、Ricin communis agglutinin I(RCA120)、Bovine serum albumin(BSA)に対してのGM1-Glc糖鎖固定化蛍光性ナノ粒子の結合活性を調べた。BSA以外は、糖鎖結合性蛋白質(レクチン)である。
 ConA、RCA120、Jaccalin、BSAを10μM、PNAを3.6μMの濃度となるように、それぞれPBSに溶解させ、その5μLを200μLの容量のプラスチックチューブに移した。
 そこに、実施例3で調製したGM1-Glc糖鎖固定化蛍光性ナノ粒子の0.2μMのPBS溶液を5μL加え、ボルテックスミキサーで撹拌後、4℃で暗所に一定時間(12時間)放置し、14000Gで5分間遠心分離を行った。上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った後、上清の蛍光スペクトルを測定した。
 図10は、GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)と糖鎖結合性タンパク質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図であり、図11は、上記遠心分離後の上澄みの蛍光スペクトルを示す図である。
 図10に示すように、PNAにのみ、目視で判別可能な蛍光を発する沈殿が生じた。また図11に示すように、PNAの上澄みの蛍光強度だけが大きく減少した。図10および図11より、GM1-Glc糖鎖固定化蛍光性ナノ粒子の糖鎖が特異的にPNAと結合し、その結果、会合体を形成したことが分かる。
 〔実施例6:GM1-Glc糖鎖固定化蛍光性ナノ粒子と患者血清との反応〕
 ギラン・バレー症候群の患者を含めた免疫性末梢神経障害症の患者血清5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例3で調製したGM1-Glc糖鎖固定化蛍光性ナノ粒子の0.1μMのPBS溶液を5μL加え、ボルテックスミキサーで撹拌後、4℃で暗所に一定時間(12時間)放置し、14000Gで5分間遠心分離を行った。上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った後、上清の蛍光スペクトルを測定した。
 図12は、GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)と免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。また、図13は、GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)と免疫性末梢神経障害症の患者の血清との凝集実験におけるインキュベート時間を変えた際の、遠心分離後の沈殿物の蛍光発光の結果を示す図である。
 図中の数字はサンプル番号であり、13912および13923はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陰性の血清を用いた結果を、13882および13934は、ELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陽性の血清を用いた結果を、14078,14134,14151,14192、および14614は、ELISA法で抗GM1抗体陽性の血清を用いた結果をそれぞれ示している。
 図12に示すように、既存のELISA法で抗GM1抗体陽性の血清を使用した場合にのみ、蛍光を発する沈殿物の形成が確認され、そのチューブの上清の蛍光強度は著しく減少した。一方、抗GM1抗体陰性、かつ抗GD1a抗体陰性の血清、および、抗GM1抗体陰性、かつ抗GD1a抗体陽性の血清の場合には、蛍光を発する沈殿物の形成は確認されず、チューブ中の溶液の蛍光強度にも変化がなかった。この変化(上記沈殿物の形成)は、図13に示すようにGM1-Glc糖鎖固定化蛍光性ナノ粒子を血清サンプルへ混合後3時間で確認された。
 〔実施例7:GM1-Glc糖鎖固定化蛍光性ナノ粒子と会合体を形成した患者血清中の蛋白質の同定〕
 実施例6で得られた蛍光を発する沈殿物中に抗体が存在することを、沈殿物のSDS-PAGEを行って確認した。サンプル番号14151の血清を用いて得られた沈殿物をPBSで3回洗浄し、沈殿物を回収してPBSに再度分散させ、SDS-PAGEのサンプル調製用バッファー(還元条件、及び非還元条件)を加え、還元条件では10%ポリアクリルアミドゲル、非還元条件では8%ポリアクリルアミドゲルにアプライし、泳動後に銀染色した。
 図14は、上記サンプル調製用バッファーとして2-メルカプトエタノールを含有するSDSバッファーを用い、銀染色を行った結果を示し、図15は、上記サンプル調製用バッファーとして2-メルカプトエタノールを含有しないSDSバッファーを用い、銀染色を行った結果を示す。図中、GM1-Glc-FNPはGM1-Glc糖鎖固定化蛍光性ナノ粒子、pptは実施例6で得られた上記沈殿物、Serum sampleはサンプル番号14151の血清を供した結果を示し、最も左のレーンは分子量マーカーである。
 図14,15より、IgGの重鎖、軽鎖、Fcに相当する蛋白質バンドが観測され、GM1-Glc糖鎖固定化蛍光性ナノ粒子が血清中の抗体と選択的に結合したことが分かった。
 また、上記沈殿物はウエスタンブロッティングにも供した。抗体としてはヤギ抗ヒトIgG(重鎖及び軽鎖)HRP複合体を用いた。図16は、実施例6で得られた蛍光を発する沈殿物中に抗体が存在することを、ウエスタンブロッティングを行って確認した結果を示す図である。図中、pptは実施例6で得られた上記沈殿物、Serum sampleはサンプル番号14151の血清を供した結果を示す。図16からも、糖鎖固定化蛍光性ナノ粒子が血清中の抗体と選択的に結合したことが分かる。
 〔実施例8:GM1糖鎖と、GM1-Glc糖鎖とを用いた場合の競争阻害〕
 上述した化学式14に示すGM1糖鎖と、GM1-Glc糖鎖とを同時に血清サンプル中に存在させた場合の抗GM1抗体の検出について調べた。
 実施例5で用いたサンプル番号14151の血清2.5μLを200μL容量のプラスチックチューブに入れ、そこにGM1糖鎖のPBS溶液(0mM、1mM、2mM、4mM、8mM、16mM)2.5μLと、実施例3で調製したGM1-Glc-FNPのPBS溶液(0.1μM)5μLとを加え、ボルテックスミキサーで撹拌後、暗所、4℃で6時間静置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った後、上清の蛍光スペクトルを測定した。
 図17は、GM1糖鎖と、GM1-Glc糖鎖とを同時に血清サンプル中に存在させた場合における、遠心分離後の沈殿物の蛍光発光の結果を示す図である。図18は、GM1糖鎖と、GM1-Glc糖鎖とを同時に血清サンプル中に存在させた場合における、遠心分離後の上澄みの蛍光スペクトルを示す図である。
 図17に示すように、GM1糖鎖の濃度が上昇するに連れて、凝集体の大きさが小さくなった。また、図18に示すように、GM1糖鎖の濃度が上昇するに連れて、上澄みの蛍光スペクトルも上昇することが分かった。
 これらの結果から、GM1糖鎖とGM1-Glc-FNPとを同時に血清中に存在させた場合、競争阻害が起こることが分かり、抗ガングリオシド抗体はGM1-Glc-FNPのGM1糖鎖と結合することが明確である。ただし、図17に示すように、凝集体の確認はできているため、GM1糖鎖とGM1-Glc-FNPとが同時に血清中に存在していても、抗ガングリオシド抗体の検出を行うことは可能であると言える。
 〔実施例9:テトラエチレングリコールおよびGM1-Glc糖鎖を固定化した蛍光性ナノ粒子の調製〕
 図19は、テトラエチレングリコール(以下、「TEG」とも称する)およびGM1-Glc糖鎖を固定化した蛍光性ナノ粒子(以下、「TEG含有GM1-Glc-FNP」と称する)の調製法を示す概略図である。
 まず、テトラエチレングリコールを、上述した一般式(31)に示すリンカー化合物のnが4であるリンカー化合物に、以下の方法によって結合させ、アミノ化されたテトラエチレングリコールと、上記リンカー化合物とからなる複合体(以下、「TEG-mono」と称する)を得た。
 すなわち、テトラエチレングリコールとTsClとを、ピリジン存在下、ジクロロメタン中において、アルゴン下、0℃で反応させ、エチレングリコール鎖の一端をトシル基に変換し、さらに、アジド基に変換することによって、TEG-mono前駆体を2段階で、収率73%で得た。
 そして、アジド基を、メタノール中、水素雰囲気下、パラジウムで処理することによって、アミノ基に変換し、チオクト酸およびDCC存在下、ジクロロメタン中において、アルゴン下、6時間撹拌することで、図20に示すTEG-monoを2段階で、39%の収率で得た。TEG-monoのスペクトルデータは以下の通りである。
H-NMR (600 MHz, CDOD) δ3.73-3.59 (19H、m、H、-CHCHO-、-SSCHCHCH=)、3.17(1H, ddd、-SSCHCHCH=)、3.11(1H、ddd、-SSCHCHCH=)、2.50(1H、dddd、-SSCHCHCH=)、2.18(2H、t、-NHCOCH-)、 1.91(1H、dddd、-SSCHCHCH=)、1.75-1.62 (4H、m、-NHCOCHCH-、-NHCOCHCHCHCH-)、1.52-1.41(2H、m、-NHCOCHCHCH-); ESI MS: m/z: calcd for C1631NO: 381.16; found: 404.12 [M+Na]
 実施例2で調製したGM1-Glc-f-mono(1mM、12.5μL)と上記TEG-mono(1mM、12.5μL)との混合液に、NaBHの水溶液(10mM、25μL)を室温で混合し、10分間静置した。この場合、GM1-GlcとTEGとのモル比は5:5となる。その他に、GM1-Glc糖鎖とTEGとのモル比が10:0、7:3、3:7となるように調製した。
 実施例3で調製したCdTe/CdS core/shell QD溶液を超純水で5倍に薄めた溶液50μLを、上記10分間静置した溶液に加え、暗所で室温にて24時間撹拌した。未反応の糖鎖リガンド複合体はAmicon Ultra 10 K(Millipore、MA、USA)を用いた遠心限外濾過(14000×g、5min)を3回行うことによって除去し、沈殿物を最後にPBSに懸濁させることによって、GM1-Glc糖鎖と、テトラエチレングリコールとが固定化された蛍光性ナノ粒子(TEG含有GM1-Glc-FNP)の溶液を調製した。
 図20は、TEG含有GM1-Glc-FNPの構造を示す模式図である。GM1-Glc-f-monoに加えて、TEG-monoを固定化させることによって、蛍光性ナノ粒子に固定化される糖鎖の密度をコントロールすることができる。
 〔実施例10:TEG含有GM1-Glc-FNPを用いた血清サンプルの凝集実験〕
 本実施例では、GM1-Glc糖鎖に対するTEGの濃度を変更し、TEG含有GM1-Glc-FNPを用いた血清サンプルの凝集実験を行った。
 血清サンプルとしては、サンプル番号13923および13938(ELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陰性の血清)、13934(ELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陽性の血清)、14078、14151、14192(ELISA法で抗GM1抗体陽性の血清)を用いた。
 上記血清サンプル5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例9で調製したTEG含有GM1-Glc-FNPのPBS溶液(0.1μM)を5μL加えた。TEG含有GM1-Glc-FNPとしては、GM1-Glc糖鎖とTEGとのモル比が10:0、7:3、5:5、3:7となるように調製したものを使用した。
 次に、上記チューブをボルテックスミキサーで撹拌後暗所に1時間静置し、14000Gで5分間遠心分離を行った。そして、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った。
 図21はGM1-Glc糖鎖に対するTEGの濃度を変更し、TEG含有GM1-Glc-FNPを用いた血清サンプルの凝集実験を行った結果を示す図である。図21の(a)~(d)は、それぞれ、GM1-Glc糖鎖とTEGとのモル比が10:0、7:3、5:5、3:7である場合の結果を示している。
 TEGを加えていないGM1-Glc-FNPを用いた図21(a)では、サンプル番号14078において凝集体が観察されていない。一方、図21の(b)および(c)に示すように、GM1-Glc糖鎖とTEGとのモル比が7:3、5:5である場合はサンプル番号14078においても凝集体が観察されている。上記モル比が3:7である場合は図21の(d)に示すように、14078および14192で凝集体が観察されているものの蛍光が弱かった。
 このように、TEGの含有量を調整することによって、凝集体の検出をより容易にしうること、つまり、抗ガングリオシド抗体の検出感度を増すことができることが明らかとなった。
 〔実施例11:抗体濃度および反応時間と凝集体の検出感度との関係〕
 本実施例では、血清サンプルの希釈系列を作成すると共に、血清サンプルとGM1-Glc-FNPとの反応時間を振ることにより、抗体濃度および反応時間と凝集体の検出感度との関係を検討した。
 血清サンプルとしては、サンプル番号14152を用いた。当該サンプルをPBSを用いて希釈し、希釈倍率を1、1/2、1/4、1/8、1/16、1/32としたサンプルを、それぞれ5μL取り、200μLの容量のプラスチックチューブに移した。
 そこに、実施例10で調製した、GM1-Glc糖鎖とTEGとのモル比が5:5であるTEG含有GM1-Glc-FNPのPBS溶液(0.1μM)を5μL加えた。上記チューブをボルテックスミキサーで撹拌後、暗所、4℃で1時間または12時間静置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った。
 図22は、TEG含有GM1-Glc-FNPを用い、抗体濃度および反応時間と凝集体の検出感度との関係を検討した結果を示す図である。図22の(a)は静置時間を1時間とした場合の結果、図22の(b)は静置時間を12時間とした場合の結果を示している。図22より、抗体の濃度および反応時間に依存して凝集体が大きくなり、その結果抗体の検出感度が向上したことが分かる。
 〔実施例12:TEG含有GM1-Glc-FNPを用いた抗GM1IgG抗体の検出〕
 本実施例では、ELISA法で抗GM1抗体陽性の血清およびELISA法で抗GM1抗体陰性の血清をそれぞれ50サンプル用い、TEG含有GM1-Glc-FNPによる抗GM1IgG抗体の検出について検討した。
 各血清サンプルをそれぞれ15μL、200μL容量のプラスチックチューブに入れ、そこに実施例10で調製した、GM1-Glc糖鎖とTEGとのモル比が5:5であるTEG含有GM1-Glc-FNPのPBS溶液(0.1μM)を15μL加えた。上記チューブをボルテックスミキサーで撹拌後、暗所に4℃で3時間静置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、写真撮影を行った。
 図23はELISA法で抗GM1IgG抗体陽性の血清を50サンプル用いた場合の、TEG含有GM1-Glc-FNPによる抗GM1IgG抗体の検出結果を示す図である。図24は、ELISA法で抗GM1IgG抗体陰性の血清を50サンプル用いた場合の、TEG含有GM1-Glc-FNPによる抗GM1IgG抗体の検出結果を示す図である。図中の数字はサンプル番号を示す。
 図23に示すように、抗GM1抗体陽性の血清50サンプルのうち、図中に丸囲みした37サンプルにおいて沈殿物の蛍光が確認された。つまり、陽性率は37/50=74%であった。一方、図24に示すように、抗GM1IgG抗体陰性の血清を用いた場合は、沈殿物の蛍光は全く確認されなかった。つまり、陽性率は0%、陰性率は100%であった。
 図23および24から、TEG含有GM1-Glc-FNPによって血清中の抗GM1IgG抗体を簡便かつ高感度に、短時間で検出できることが分かる。
 次に、図23において蛍光が確認されなかった13の血清サンプル各15μLを用い、ボルテックスミキサーによる攪拌後の静置時間を12時間とすること以外は上述した本実施例と同じ実験を行い、チューブに紫外光を照射し、写真撮影を行った。
 図25は、ELISA法で抗GM1抗体陽性の血清であって、TEG含有GM1-Glc-FNPと混和後3時間静置した場合は沈殿物の蛍光が確認されなかった血清につき、上記混和後12時間静置した場合の抗GM1IgG抗体の検出結果を示す図である。
 図25に示すように、上記静置時間が3時間の場合は沈殿物の蛍光が確認できなかった13サンプルのうち、2サンプル(サンプル番号:10511、10751)について、蛍光を確認することができた。
 〔実施例13:GM1糖鎖固定化リガンド複合体の調製、およびGM1糖鎖を固定化した蛍光性ナノ粒子の調製〕
 上述した化学式14に示すGM1糖鎖(Oligotechより購入。1.0mg、1.0μmol)を超純水60μLに溶解し、上述した式(30)に示す蛍光性リンカー化合物(f-mono、1.98mg、6.65μmol)のN、N-ジメチルホルムアミド90μL溶液に加え、さらに酢酸18μLを加えた。
 40℃で6時間放置した後、NaBHCN(0.63mg、10μmol)を30μLの超純水に溶解させた溶液を加え、40℃で3日間放置し、凍結乾燥した。この凍結乾燥残渣を超純水に溶解させ、ODSカラムで精製した(溶出溶媒:水/メタノール 1/1(v/v))。溶出画分を凍結乾燥し、図26に式32として示すGM1糖鎖固定化糖鎖リガンド複合体(以下、「GM1-f-mono」と略)を白色粉末として得た。図26はGM1-f-monoの合成経路を示す図である。GM1-f-monoの収量は0.37mg(収率28.9%)であった。GM1-f-monoのスペクトルデータは以下のとおりである。
MS calcd. for: C518329: 1278.45、 Found: m/z 1278.82 [M-H]
 次に、GM1-Glc-f-monoの代わりにGM1-f-monoを用いること以外は実施例3と同じ方法によって、GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)溶液を調製した。
 〔実施例14:GM1-FNPの蛋白質結合能の確認〕
 蛋白質Concanavalin A(ConA)、Wheat germ agglutinin(WGA)、Sambucus nigraagglutinin(SNA)、Peanut agglutinin(PNA)、Ricin communis agglutinin I(RCA120)、Bovine serum albumin(BSA)に対してのGM1糖鎖固定化蛍光性ナノ粒子の結合活性を調べた。
 なお、これらの蛋白質の結合糖鎖は、ConAがαGlc、RCA120がβGal、PNAがGalβ1-3GalNAC、WGAがGlcNAc、SNAがSA(シアル酸)であり、BSAは糖鎖への結合能を有さない。
 各蛋白質をPBSに3.6μMの濃度で溶解させ、その5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例13で調製したGM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)のPBS溶液(0.25μM)を5μL加え、ボルテックスミキサーで撹拌後、4℃で暗所に12時間放置し、14000Gで5分間遠心分離を行った。上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った後、上清の蛍光スペクトルを測定した。
 図27は、GM1-FNPと糖鎖結合性タンパク質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図であり、図28は、上記遠心分離後の上澄みの蛍光スペクトルを示す図である。
 図27に示すように、PNAを用いた場合のみ、目視で判別可能な蛍光を発する沈殿が生じた。また図28に示すように、PNAの上澄みの蛍光強度だけが大きく減少した。図27および図28より、GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)の糖鎖が特異的にPNAと結合し、その結果、会合体を形成したことが分かる。
 〔実施例15:GM1-FNPと患者血清との反応〕
 ギラン・バレー症候群の患者を含めた免疫性末梢神経障害症の患者血清5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例13で調製したGM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)の0.1μMのPBS溶液を5μL加え、ボルテックスミキサーで撹拌後、4℃で暗所に12時間放置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った後、上清の蛍光スペクトルを測定した。
 図29は、GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)と免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。また、図30は、上記遠心分離後の上澄みの蛍光スペクトルを測定した結果を示す図である。
 図29、30中の5ケタの数字はサンプル番号であり、13923および13938はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陰性の血清を用いた結果を、13934はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陽性の血清を用いた結果を、14078、14151および14192は、ELISA法で抗GM1抗体陽性の血清を用いた結果をそれぞれ示している。
 図29に示すように、ELISA法で抗GM1抗体陽性の血清を用いた場合のみ、蛍光を発する沈殿物の形成が確認された(14078、14151および14192)。そして、図30に示すように、14078、14151および14192を用いた場合の上清の蛍光強度は大きく低下していた。
 以上の結果から、GM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)を用いた場合も、GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)を用いた場合と同様に、抗GM1抗体を検出できることが明らかとなった。
 〔実施例16:糖鎖固定化蛍光性ナノ粒子と糖鎖固定化金ナノ粒子との比較〕
 本実施例では、糖鎖固定化蛍光性ナノ粒子(Sugar-chain immobilized fluorescent nanoparticles:SFNP)と、糖鎖固定化金ナノ粒子(Sugar-chain immobilized gold nanoparticles:SGNP)とを用いて、PNAを用いた凝集実験を行い、結果を比較した。
 実施例3で調製したGM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)、実施例13で調製したGM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP)および、GM1糖鎖固定化金ナノ粒子(GM1-GNP)を実験に供した。
 上記GM1-GNPは、以下のようにして調製した。すなわち、HAuCl4の水溶液(1.25mM、80μL)を1.5mLプラスチックチューブに移した。そこに、NaBHの水溶液(50mM、10μL)を加え、ボルテックスミキサーにより撹拌後、10分間静置した。実施例13で調製したGM1-f-mono(5mM、10μL)を上記10分間静置した溶液に加え、30分間静置した。未反応の糖鎖リガンド複合体はAmicon Ultra 10 K(Millipore、MA、USA)を用いた遠心限外濾過(14000×g、5min)を3回行うことによって除去し、沈殿物を最後にPBSに懸濁させることによって、GM1糖鎖が固定化された糖鎖固定化金ナノ粒子(GM1-GNP)の溶液を調製した。なお、得られたGM1-GNPの平均粒子径をDLS法にて測定したところ、8.1nmであった。
 上記GM1-Glc-FNP、GM1-FNPおよびGM1-GNPのそれぞれについて、テトラエチレングリコールをも固定化させたTEG含有GM1-Glc-FNP、TEG含有GM1-FNPおよびTEG含有GM1-GNPを調製した。調製法は実施例9に記載した方法による。糖鎖とTEGとのモル比は、10:0、7:3、5:5、3:7、1:9とした。上記モル比が10:0の場合はTEGを含有していないことになるが、以下、本実施例では、便宜上、この場合も「TEG含有GM1-Glc-FNP」等と称する。
 TEG含有GM1-Glc-FNP、TEG含有GM1-FNPおよびTEG含有GM1-GNPのPBS溶液(0.1μM)をそれぞれ5μL取り、200μLの容量のプラスチックチューブに移した。そこに、PNAを5μL加え、上記チューブをボルテックスミキサーで撹拌後暗所に3時間静置した。PNAは、0μM、0.11μM、0.225μM、0.45μM、0.9μM、1.8μM、3.6μMの濃度のものを用いた。
 次に、TEG含有GM1-GNPを含有するチューブは5000Gで1分間、それ以外は14000Gで5分間遠心分離を行った。そして、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った。
 図31、32、33は、それぞれ、TEG含有GM1-Glc-FNP(GM1-Glc:TEG=5:5)、TEG含有GM1-FNP(GM1:TEG=10:0)、TEG含有GM1-GNP(GM1:TEG=5:5)を、上記濃度のPNAと混和し、PNAの凝集を確認した結果を示す図である。各図の(a)は沈殿物の蛍光を確認した結果を示し、各図の(b)は上澄みの蛍光強度の変化を示す図である。
 TEG含有GM1-Glc-FNP(GM1-Glc:TEG=5:5)を用いた場合は、0.11μM以上のPNAを用いた場合に蛍光が検出された(図31の(a))。また、TEG含有GM1-GNP(GM1:TEG=5:5)を用いた場合は、0.45μM以上のPNAを用いた場合に蛍光が検出された(図32の(a))。そして、TEG含有GM1-GNP(GM1:TEG=5:5)を用いた場合は、1.8μM以上のPNAを用いた場合に蛍光が検出された(図33の(a))。このように、TEG含有GM1-Glc-FNP、TEG含有GM1-GNP、TEG含有GM1-GNPのPNAへの結合性は異なることが確認された。
 同様の実験を、静置時間を3時間から12時間に変更して行った。沈殿物の蛍光を確認した図は示さないが、この場合のK値の最小値およびPNAの検出限界濃度をまとめると表1のとおりである。また、図31~33の結果(静置時間が3時間)を表2にまとめた。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 表1および2より、糖鎖としてGM1-Glcを用いる場合、GM1-GlcとTEGとのモル比が5:5であることが最適であり、糖鎖としてGM1を用いる場合、GM1とTEGとのモル比が10:0であることが最適であることが分かる。
 以上の結果から、GM1-Glc固定化糖鎖リガンド複合体(GM1-Glc-f-mono)1mg、GM1固定化糖鎖リガンド複合体(GM1-f-mono)1mgで行うことが可能な抗ガングリオシド抗体の検査回数は、抗ガングリオシド抗体の結合特性がPNAと同じであるとした場合、表3に示すようになる。
Figure JPOXMLDOC01-appb-T000027
 表3において、検査可能回数とは、1検査あたり糖鎖固定化蛍光性ナノ粒子または糖鎖固定化金ナノ粒子を15μL使用した場合の回数である。
 表3に示すように、本発明に係る糖鎖固定化蛍光性ナノ粒子を用いた場合、糖鎖固定化金ナノ粒子を用いる場合よりも、抗ガングリオシド抗体の検出性に優れ、かつ、検査回数も遙かに多くなることが分かる。
 〔実施例17:血清の凝集実験におけるTEG含有GM1-Glc-FNP、TEG含有GM1-FNP、GM1-FNPの比較〕
 実施例16において、TEG含有GM1-Glc-FNPとGM1-FNPとでPNAへの結合性が異なっていたため、本実施例では、抗ガングリオシド抗体への結合性が異なるか否かについて検討した。
 糖鎖固定化蛍光性ナノ粒子として、実施例16で用いたTEG含有GM1-Glc-FNP(GM1-Glc:TEG=5:5)、GM1-FNP(GM1:TEG=10:0)、およびTEG含有GM1-FNP(GM1:TEG=5:5)を用いた。血清サンプルとしては、ELISA法で抗GM1抗体陽性の血清であるサンプル番号14151を用いた。
 血清サンプル14151の5μLを200μLの容量のプラスチックチューブに移した。そして、血清の希釈率が1/4、1/8、1/16となるようにPBSを用いて希釈系列を作製し、各希釈系列に、上記糖鎖固定化蛍光性ナノ粒子のいずれかを5μL加え、ボルテックスミキサーで撹拌後、4℃で暗所に3時間静置した。続いて、上記チューブを14000Gで5分間遠心分離し、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った。
 図34は、TEG含有GM1-Glc-FNP(GM1-Glc:TEG=5:5)、GM1-FNP(GM1:TEG=10:0)、およびTEG含有GM1-FNP(GM1:TEG=5:5)を用いて血清の凝集試験を行った結果を示す図である。
 TEG含有GM1-Glc-FNPとGM1-FNPとでPNAへの結合性は異なっていたが、図34に示すように、抗GM1抗体への結合性は3種の糖鎖固定化蛍光性ナノ粒子で大きく変わることはなかった。
 〔実施例18:GM1-FNPを用いた抗GM1IgG抗体の検出〕
 本実施例では、ELISA法で抗GM1抗体陽性の血清およびELISA法で抗GM1抗体陰性の血清をそれぞれ50サンプル用い、実施例13で調製したGM1-FNPによる抗GM1IgG抗体の検出について検討した。
 各血清サンプルをそれぞれ15μL、200μL容量のプラスチックチューブに入れ、そこにGM1-FNPのPBS溶液(0.1μM)を15μL加えた。上記チューブをボルテックスミキサーで撹拌後、暗所に4℃で3時間静置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、写真撮影を行い、上澄みの蛍光スペクトルを測定した(Ex.360nm、Em.650nm)。
 図35は、ELISA法で抗GM1IgG抗体陽性の血清を50サンプル用いた場合の、GM1-FNPによる抗GM1IgG抗体の検出結果を示す図である。図36は、図35に示す各チューブにおける上澄みの蛍光強度を示す図である。
 図35に記載した数字はサンプル番号に1から50の通し番号を付したものである。また、図35には検出結果の判定基準を+および-の符号を用いて記している。すなわち、「+++」は目視で凝集体の観察が可能であり、かつ、上澄みの蛍光強度が150未満であること(陽性)、「++」は目視で凝集体の観察が可能であり、かつ、上澄みの蛍光強度が150以上300未満であること(陽性)、「+」は目視で凝集体の観察が可能であり、かつ、上澄みの蛍光強度が300以上であること(陽性)、「+/-」は図35に示す写真を拡大すれば凝集体を観察することが可能であること(擬陽性)、「-」は凝集体が観察されなかったこと(陰性)、をそれぞれ示している。
 図35に示す結果のうち、「+++」、「++」および「+」の占める割合(陽性率)は40/50=80%であった。また、「+/-」の占める割合(擬陽性率)は3/50=6%であった。
 図37は、ELISA法で抗GM1IgG抗体陰性の血清を50サンプル用いた場合の、GM1-FNPによる抗GM1IgG抗体の検出結果を示す図である。図38は、図37に示す各チューブにおける上澄みの蛍光強度を示す図である。
 図37に示すように、判定結果はすべてが「-」であった。すなわち、陽性率は0%であり、陰性率は100%であった。また、図38に示すように、上澄みの蛍光強度は50サンプルでほぼ同じレベルとなっていた。
 次に、ELISA法で抗GM1IgG抗体陽性の血清50サンプルのうち、陰性であった7サンプルを用いて、ボルテックスミキサーで撹拌後の静置時間を3時間から12時間としたこと以外は上述した本実施例と同じ実験を行い、チューブに紫外光を照射し、写真撮影を行った。
 図39は、ELISA法で抗GM1IgG抗体陽性の血清であって、GM1-FNPと混和後3時間静置した場合は判定結果が陰性であった血清につき、上記混和後12時間静置した場合の凝集体の検出結果を示す図である。図39に示すように、静置時間を12時間としても新たな凝集体は生じなかった。
 さらに、ELISA法で抗GM1IgG抗体陽性の血清50サンプルのうち、擬陽性であった3サンプルを用いて、上記静置時間を3時間から12時間としたこと以外は上述した本実施例と同じ実験を行い、チューブに紫外光を照射し、写真撮影を行った。
 図40は、ELISA法で抗GM1IgG抗体陽性の血清であって、GM1-FNPと混和後3時間静置した場合は判定結果が擬陽性であった血清につき、上記混和後12時間静置した場合の凝集体の検出結果を示す図である。
 図40に示すように、静置時間(反応時間)が3時間では擬陽性であった3サンプルすべてではっきり目視できる凝集体が生じた。このように、終夜反応を行うことによって、陽性率を43/50=86%に向上させることができた。
 ここで、実施例12の結果および本実施例の結果を、ELISA法の結果と対比すると表4に示すようになる。表中の数字はサンプル数であり、例えば、糖鎖固定化蛍光性ナノ粒子がTEG含有GM1-Glc-FNPで陽性の欄は、ELISAで抗GM1抗体陽性の血清50サンプルのうち、37サンプルにおいて沈殿物の蛍光が確認されたことを示す。なお、擬陽性は凝集体が生成していることから、陽性に含めた。
Figure JPOXMLDOC01-appb-T000028
 糖鎖固定化蛍光性ナノ粒子としてTEG含有GM1-Glc-FNP(GM1-Glc糖鎖とTEGとのモル比が5:5)を用いた実施例12では、上述したように、静置時間(反応時間)が3時間の場合、ELISAで抗GM1抗体陽性の血清50サンプルのうち、37サンプルにおいて沈殿物の蛍光が確認された(陽性率:74%)。また、静置時間を12時間とした場合(終夜反応)は陽性率が39/50=78%に向上した。表4中、括弧内に示した数字は、終夜反応の場合の結果を表している。
 表4に示す結果から、糖鎖固定化蛍光性ナノ粒子がTEG含有GM1-Glc-FNPである場合、反応時間3時間のとき、χ値は3.438(<3.841)、p値は0.0637(>0.05)となり、終夜反応のとき、χ値は2.4496(<3.841)、p値は0.118(>0.05)となる。また、糖鎖固定化蛍光性ナノ粒子がGM1-FNPである場合、反応時間3時間のとき、χ値は0.985(<3.841)、p値は0.321(>0.05)となる。なお、自由度1の時のχ分布は、有意水準が0.1、0.05、0.01、0.001のとき、それぞれχ値が2.706、3.841、6.635、10.828となる。
 以上の結果から、本発明に係る糖鎖固定化蛍光性ナノ粒子を用いて抗ガングリオシド抗体の検出を行った結果は、ELISAと比較して有示差がないことが明らかとなった。つまり、上記検出には、ELISAと同等の検出感度があることが明らかとなった。上述したように、ELISAによる抗ガングリオシド抗体の検出には非常に時間がかかり、通常は検査会社へ患者の血清を送り、その結果が届くまでに1週間以上待たねばならない。一方、本発明に係る糖鎖固定化蛍光性ナノ粒子を用いた場合は、3時間という短い反応時間で十分な検出結果を得ることができる。したがって、本発明は非常に有用性が高いと言える。
 〔実施例19:GD1a糖鎖固定化リガンド複合体の調製、およびGD1a糖鎖を固定化した蛍光性ナノ粒子の調製〕
 上述した化学式15に示すGD1a糖鎖(Oligotechより購入。1.04mg、0.78μmol)を超純水80μLに溶解し、上述した式(30)に示す蛍光性リンカー化合物(f-mono、0.35mg、1.16μmol)のN、N-ジメチルホルムアミド90μL溶液に加え、さらに酢酸18μLを加えた。
 40℃で6時間放置した後、NaBHCN(0.49mg、7.75μmol)を10μLの超純水に溶解させた溶液を加え、40℃で3日間放置し、凍結乾燥した。この凍結乾燥残渣を超純水に溶解させ、ODSカラムで精製した(溶出溶媒:水/メタノール 1/1(v/v))。溶出画分を凍結乾燥し、図41に式33として示すGD1a糖鎖固定化糖鎖リガンド複合体(以下、「GD1a-f-mono」と略)を白色粉末として得た。図33はGD1a-f-monoの合成経路を示す図である。GD1a-f-monoの収量は0.51mg(収率41.8%)であった。GD1a-f-monoのスペクトルデータは以下のとおりである。
MS calcd. for: C6297NaO372 : 1591.53、 Found: m/z 1591.75[M-H]
 次に、GM1-Glc-f-monoの代わりに、GD1a-f-monoを用いること以外は実施例3と同じ方法によって、GD1a糖鎖固定化蛍光性ナノ粒子(GD1a-FNP)溶液を調製した。
 〔実施例20:GD1a-FNPの蛋白質結合能の確認〕
 ConA、WGA、SNA、PNA、RCA120の各レクチンおよびBSAに対するGD1a糖鎖固定化蛍光性ナノ粒子(GD1a-FNP)の結合活性を調べた。
 各蛋白質をPBSに3.6μMの濃度で溶解させ、その5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例19で調製したGD1a-FNPのPBS溶液(0.25μM)を5μL加え、ボルテックスミキサーで撹拌後暗所に12時間放置し、14000Gで5分間遠心分離を行った。上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った後、上清の蛍光スペクトルを測定した。
 図42は、GD1a-FNPと糖鎖結合性タンパク質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図であり、図43は、上記遠心分離後の上澄みの蛍光スペクトルを示す図である。
 図42に示すように、WGAを用いた場合のみ、目視で判別可能な蛍光を発する沈殿が生じた。また図43に示すように、WGAの上澄みの蛍光強度だけが大きく減少した。図42および図43より、GD1a糖鎖固定化蛍光性ナノ粒子(GD1a-FNP)のGD1a糖鎖が特異的にWGAと結合し、その結果、会合体を形成したことが分かる。
 〔実施例21:GD1a糖鎖固定化蛍光性ナノ粒子(GD1a-FNP)と患者血清との反応〕
 ギラン・バレー症候群の患者を含めた免疫性末梢神経障害症の患者血清5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例19で調製したGD1a糖鎖固定化蛍光性ナノ粒子(GD1a-FNP)の0.1μMのPBS溶液を5μL加え、ボルテックスミキサーで撹拌後、4℃で暗所に12時間放置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った後、上清の蛍光スペクトルを測定した。
 図44は、GD1a-FNPと免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。また、図45は、上記遠心分離後の上澄みの蛍光スペクトルを測定した結果を示す図である。
 図44、45中の数字はサンプル番号であり、13923および13938はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陰性の血清を用いた結果を、13882および13934はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陽性の血清を用いた結果を、14078、14151および14192は、ELISA法で抗GM1抗体陽性の血清を用いた結果をそれぞれ示している。
 図44に示すように、ELISA法で抗GD1a抗体陽性の血清(13882および13934)を用いた場合には、蛍光を発する沈殿物の形成が確認された。また、抗GM1抗体陽性の血清である14151を用いた場合も、蛍光を発する沈殿物の形成が確認された。そして、図45に示すように、13882、14151を用いた場合に、上清の蛍光強度が特に大きく低下していた。
 以上の結果から、GD1a糖鎖固定化蛍光性ナノ粒子(GD1a-FNP)を用いた場合も、抗GD1a抗体を検出できることが明らかとなった。14151を用いた場合の結果によれば、抗GM1抗体陽性の血清中にも抗GD1a抗体が存在するのかもしれない。
 〔実施例22:抗GM1IgG抗体陽性の血清と他の糖鎖固定化蛍光性ナノ粒子とを用いた凝集実験〕
 本実施例では、抗GM1IgG抗体陽性の血清を、GM1の糖鎖以外の糖鎖を固定化した糖鎖固定化蛍光性ナノ粒子と混和することによって、交差反応性の有無を確認した。
 ELISA法で抗GM1IgG抗体陽性の血清としては、実施例18においてGM1-FNPと反応させた結果が陰性であった血清(図35において「-」を付した7サンプル。図46、47において「SFNPで陰性のサンプル」と記載)および、実施例18においてGM1-FNPと反応させた結果が擬陽性であった血清(図35において「+/-」を付した3サンプル。図46、47において「SFNPで擬陽性のサンプル」と記載)を用いた。
 各血清サンプルをそれぞれ5μL、200μL容量のプラスチックチューブに入れ、そこに実施例19で調製したGD1a-FNPのPBS溶液(0.1μM)を5μL加えた。上記チューブをボルテックスミキサーで撹拌後、暗所に4℃で3時間静置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、写真撮影を行った。
 図46は、ELISA法で抗GM1IgG抗体陽性、かつ、実施例18においてGM1-FNPと反応させた結果が陰性または擬陽性であった血清と、GD1a-FNPとを混和した凝集実験の結果を示す図である。図46に示すように、凝集体は観察されなかった。すなわち、GD1a-FNPは、抗GM1IgG抗体と交差反応性を示さなかった。
 次に、GD1aの糖鎖とGM1の糖鎖とを、両者の比が50モル%となるように用い、固定化した蛍光性ナノ粒子である、GD1a-GM1糖鎖固定化蛍光性ナノ粒子(GD1a-GM1-FNPと称する)を調製し、同様の実験に供した。
 GD1a-GM1-FNPは以下の方法によって調製した。すなわち、実施例13で調製したGM1-f-mono(1mM、12.5μL)と実施例19で調製したGD1a-f-mono(1mM、12.5μL)との混合液に、NaBHの水溶液(10mM、25μL)を室温で混合し、10分間静置した。この場合、GM1とGD1aとのモル比は5:5となる。実施例3で調製したCdTe/CdS core/shell QD溶液を超純水で5倍に薄めた溶液50μLを、上記10分間静置した溶液に加え、暗所で室温にて24時間撹拌した。未反応の糖鎖リガンド複合体はAmicon Ultra 10 K(Millipore、MA、USA)を用いた遠心限外濾過(14000×g、5min)を3回行うことによって除去し、沈殿物を最後にPBSに懸濁させることによって、GM1糖鎖と、GD1a糖鎖とが固定化された蛍光性ナノ粒子(GD1a-GM1-FNP)の溶液を調製した。
 図47は、ELISA法で抗GM1IgG抗体陽性、かつ、実施例18においてGM1-FNPと反応させた結果が陰性または擬陽性であった血清と、GD1a-GM1-FNPとを混和した凝集実験の結果を示す図である。図47に示すように、凝集体は観察されなかった。すなわち、GD1a-GM1-FNPは、抗GM1IgG抗体と交差反応性を示さなかった。
 〔実施例23:GQ1b-Glc糖鎖の合成〕
 本実施例では、GQ1b糖鎖の還元末端にさらにグルコースを1つ結合させた化学式16に示す糖鎖(GQ1b-Glc糖鎖)を合成した。
 図48は、GQ1b-Glc糖鎖を合成する際の中間体の合成経路を示す図である。すなわち、図48では、GQ1b-コアとなる七糖構造(式gに示す)を調製した。まず、NeuAcα2-8NeuAcα2-3Gal三糖構造(式aに示す)を対応するグリコシド供与体(式bに示す)に、4ステップで導いた。一方、CpZrClおよびAgOTfの存在下、ガラクトサミン誘導体(式cに示す)と上記のNeuAcα2-8NeuAcα2-3Gal三糖構造(式aに示す)とを縮合させることによって、NeuAcα2-8NeuAcα2-3[GalNβ1-4]Gal四糖構造(式dに示す)を85%の収率で調製した。続いて、これを2ステップで四糖グリコシル受容体(式eに示す)に導いた。次に、上記で得られた三糖グリコシル供与体(式bに示す)と四糖グリコシル受容体(式eに示す)とをTMSOTfの存在下で縮合させることによって、GQ1b-コアとなる七糖構造(式fに示す)を得た。さらにこの七糖構造から、対応するグリコシル供与体(式gに示す)を4ステップで導いた。
 図49は、GQ1b-Glc糖鎖を合成するためのグリコシデーションと脱保護とを示す経路を表す図である。上述したGQ1b-コアである七糖構造のグリコシル供与体(式gに示す)とゲンチオビオース受容体(式11に示す)とをジクロロメタン中、TMSOTfの存在下で反応させ、望むβ‐グリコシド(式hに示す)を80%の収率で得た。
 次いで、アシル系の保護基を除去した後、最後にベンジル基を水素化分解してGQ1b-Glc糖鎖(式16)を83%(2ステップ)の収率で得た。
 式16に示すGQ1b-Glc糖鎖のスペクトルデータは以下の通りである。
[α]=-3.7° (c 0.4、 HO); H-NMR (600 MHz、 DO) δ 5.20 (d、 1 H、 J1、2=3.4 Hz、 H-1 of Glc unit)、 4.71 (m、anomer H)、4.63 (d、 1 H、 J1、2=8.2 Hz、 H-1 of Glc unit)、 4.58 (m、anomer H)、 4.52 (d、 1 H、 J1、2=8.2 Hz、 anomer H)、 4.50 (d、 1 H、 J1、2=7.5 Hz、 anomer H)、 4.47 (d、 1 H、 J1、2=8.2 Hz、 anomer H)、 3.51 (dd、 1 H、 J1、2=3.4 Hz、 J2、3=10.3 Hz、 H-2 of Glc unit)、 3.44 (t、 1 H、 J2、3=J3、4=8.9 Hz、 H-3 of Glc unit)、 3.40-3.30 (m、3 H、 3 H-2)、 3.22 (near t、 1 H、 J1、2=8.2 Hz、 J2、3=8.9 Hz、 H-2)、 2.76-2.62 (m、4 H、 4 H-3eq of Neu5Ac unit)、 2.04、2.03、2.02、2.00 (4 s、 15 H、 5 NAc)、 1.78-1.69 (m、4 H、 4 H-3ax of Neu5Ac unit)、 13C-NMR (150 MHz、 DO-(CDCO=10:1) δ 165.9、 164.8-163.9、 95.3、 93.8、 93.6、 93.5、 92.0-90.9、 87.0、83.1、 71.0、 69.2、 69.1、 66.7、 66.4、 65.9、 65.8、 65.8、 65.6、 65.3、 65.2、 65.1、 65.1、 64.8、 63.7、 62.7、 62.4、 61.4、 60.6、 60.5、 60.4、 60.2、 59.8、 59.6、 59.4、 59.3、 59.2、 59.0、 58.6、 53.6、 52.5、 52.4、 52.0、 52.0、 51.6、 51.0、 43.3、 43.2、 42.8、 42.1、 31.6、 31.5、 30.7、 30.2、 13.6、 13.4、 13.3、 13.1; ESI MS: m/z: calcd for C7612358: 507.4143; found: 507.4145 [M-4H4-
 〔実施例24:GQ1b-Glc固定化糖鎖リガンド複合体の調製、GQ1b-Glc糖鎖を固定化した蛍光性ナノ粒子の調製〕
 図50は、GQ1b-Glc固定化糖鎖リガンド複合体(GQ1b-Glc-f-mono)の合成経路を示す図である。実施例23で合成した還元末端に6-グルコースを有するGQ1b糖鎖(GQ1b-Glc、1.00mg、0.49μmol)を超純水20μLに溶解し、上述した式(30)に示す独自開発の蛍光性リンカー化合物(f-mono:0.16mg、0.54μmol)のN、N-ジメチルホルムアミド30μL溶液に加え、さらに酢酸6μLを加えた。
 40℃で6時間放置した後、NaBHCN(0.31mg、4.91μmol)を10μLの超純水に溶解させた溶液を加え、40℃で3日間放置し、凍結乾燥した。この凍結乾燥残渣を超純水に溶解させ、ODSカラムで精製した(溶出溶媒:水/メタノール 1/1(v/v))。溶出画分を凍結乾燥し、図50に式34として示すGQ1b-Glc固定化糖鎖リガンド複合体(以下、「GQ1b-Glc-f-mono」と略)を白色粉末として得た。GQ1b-Glc-f-monoの収量は0.57mg(収率50%)であった。
 次に、GM1-Glc-f-monoの代わりにGQ1b-Glc-f-monoを用いること以外は実施例3と同じ方法によって、GQ1b-Glc糖鎖固定化蛍光性ナノ粒子(GQ1b-Glc-FNP)のPBS溶液を調製した。
 図51は、GQ1b-Glc-FNP溶液の蛍光およびUV-Visスペクトルを測定した結果を示す図である。図52は、GQ1b-Glc-FNPのDLS測定による粒径分布を示す図である。図52に示すように、実施例3と同じ機器を用いて測定した結果、GQ1b-Glc-FNPの平均粒子径は9.7nmであった。
 〔実施例25:GQ1b-Glc-FNPのMALDI-TOF/MSによる確認〕
 実施例24で調製したGQ1b-Glc-FNPのPBS溶液1μLを飽和DHBA溶液(水/メタノール 1/1溶液)10μLと混合し、1μLを測定プレートに載せ、自然乾燥させた。そのプレートをVoyager-DE-PRO(Applied Biosystems、CA、USA)の測定部へ入れ、質量分析を行った。
 図53は、GQ1b-Glc-FNPのPositive modeによるMALDI-TOF/MS分析の結果を示す図であり、図54は、GQ1b-Glc-FNPのNegative modeによるMALDI-TOF/MS分析の結果を示す図である。
 図53と図54とに示すように、実施例24で調製したGQ1b-Glc固定化糖鎖リガンド複合体と同じ質量数を有するピーク(m/Z値)が得られ、蛍光性ナノ粒子にGQ1b-Glc糖鎖が固定化されていることが確認された。
 〔実施例26:GQ1b-Glc-FNPの蛋白質結合能の確認〕
 ConA、PNA、RCA120、ジャッカリン、WGA、フォン・ビルブランド因子(vWF)に対するGQ1b-Glc-FNPの結合活性を調べた。なお、ジャッカリンの結合糖鎖はαGalである。
 ConA、RCA120,WGAを20μM、ジャッカリンを10μM、PNAを3.6μMの濃度となるように、それぞれPBSに溶解させ、その5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例24で調製したGQ1b-Glc-FNPのPBS溶液(0.1μM)を5μL加え、ボルテックスミキサーで撹拌後暗所に4℃で12時間放置し、14000Gで5分間遠心分離を行った。上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った後、上清の蛍光スペクトルを測定した。
 図55は、GQ1b-Glc-FNPと糖鎖結合性タンパク質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図であり、図56は、上記遠心分離後の上澄みの蛍光スペクトルを示す図である。
 図55に示すように、WGAを用いた場合のみ、目視で判別可能な蛍光を発する沈殿が生じた。また図56に示すように、WGAの上澄みの蛍光強度だけが大きく減少した。図55および図56より、GQ1b-Glc-FNPの糖鎖が特異的にWGAと結合し、その結果、会合体を形成したことが分かる。
 〔実施例27:GQ1b-Glc-FNPと患者血清との反応〕
 ギラン・バレー症候群の患者を含めた免疫性末梢神経障害症の患者血清5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例13で調製したGQ1b-Glc糖鎖固定化蛍光性ナノ粒子(GQ1b-Glc-FNP)の0.1μMのPBS溶液を5μL加え、ボルテックスミキサーで撹拌後、4℃で暗所に3時間または12時間静置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った。
 図57は、GQ1b-Glc-FNPと免疫性末梢神経障害症の患者の血清との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。図57の(a)は3時間静置した場合、(b)は12時間静置した場合の結果である。図57中の数字はサンプル番号である。
 13923および13938はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陰性の血清を用いた結果を、13934はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陽性の血清を用いた結果を、14078、14151および14192は、ELISA法で抗GM1抗体陽性の血清を用いた結果を、14992、15056および15090はELISA法で抗GQ1b抗体陽性の血清を用いた結果を、それぞれ示している。
 図57に示すように、実施例15等に示したような凝集体は観察されなかった。これは、抗GQ1b抗体は、ガングリオシド全体、または、糖鎖とセラミド部分とを認識しており、抗GM1抗体や抗GD1a抗体と異なり、糖鎖部分を認識しているのではないことを示唆している。つまり、もし糖鎖のみを認識している抗体が存在するなら、GM1やGD1aと同様に、ガングリオシド糖鎖固定化蛍光性ナノ粒子で凝集体が形成すると考えられる。あるいは、もし糖鎖部分を認識する抗体が存在するとしても、糖鎖との親和性が凝集体が生成しないほど非常に低いと考えられる。
 〔実施例28:ZAISをコアに持つZAIS/ZnS core/shell ナノ粒子にGM1糖鎖を固定化した蛍光性ナノ粒子の調製〕
 図58は、ZAISをコアに持つZAIS/ZnS core/shell ナノ粒子にGM1糖鎖を固定化した蛍光性ナノ粒子(GM1-FNP2)の調製法を示す概略図である。
 まず、N,N-ジエチルジチオカルバミド酸ナトリウム(563mg、2.50mmol)を三角フラスコに移し、超純水50mLに溶解した。別の三角フラスコに、AgNO(95.6mg、0.563mmol)、In(NO・3HO(200mg、0.563mmol)、Zn(NO・6HO(37.2mg、2.50mmol)を入れ、超純水50mLに溶解し、上記で調製した溶液50mLを遮光下で滴下し、5分間攪拌した。得られた金属塩を遠心分離(3500rpm、5min)し、沈殿物を超純水で4回、メタノールで2回洗浄した後、減圧乾燥した。乾燥粉末50mgを二口丸底フラスコに移し、アルゴン下、180℃で30分間加熱後、オレイルアミン3mLを加え、アルゴン下、180℃で5分間加熱した。放冷後、溶液を遠心分離(3500rpm、5min)し、上澄みをメンブレン濾過(0.45μm)した後、濾液にメタノールを加えてZAISナノ粒子を沈殿させた。沈殿物をオレイルアミン2mLに懸濁し、アルゴン下、180℃で30分間加熱した。放冷後、溶液に酢酸亜鉛無水和物(10.3mg、56.3μmol)とチオアセトアミド(4.22mg、56.3μmol)を加え、アルゴン雰囲気下、180℃で30分間加熱した。その溶液にメタノールを加え、沈殿物をクロロホルム3mLに再懸濁した。
 そして、その溶液0.5mLをガラス遠沈管に移し、クロロホルム1.5mLを加えた後、3-MPAエタノール溶液(0.2M)1mLと水酸化カリウムエタノール溶液(0.3M)1mLを加え、0℃、遮光下で一晩(12時間)攪拌した。
 その溶液を遠心分離(3500rpm、5min)し、沈殿物を超純水2mLに再懸濁した。別に二口丸底フラスコに、酢酸亜鉛無水和物(20.6mg、112μmol)およびチオアセトアミド(8.44mg、112μmol)を加え、超純水2mLに溶解し、TGA(7.96μL、112 μmol)を加え、上記の溶液を5倍希釈した溶液を2mLを加え、80℃で5時間加温した。未反応の試薬は、Amicon Ultra 10 K(Millipore、MA、USA)を用いた遠心限外濾過(14000×g、5min)によって除去し、さらに引き続いて超純水で6回洗浄し、沈殿物を最後に超純水に懸濁させることによってZAIS/ZnS core/shell ナノ粒子を得た。
 次に、図58に示すように、実施例13で調製したGM1-f-mono(10mM、12.5μL)にNaBHの水溶液(100mM、12.5μL)を室温で混合し、10分間放置した。その後、ZAIS/ZnS core/shell ナノ粒子溶液を超純水で8倍に薄めた溶液100μLを、上記10分間放置した溶液に加え、暗所で50℃にて2時間加温した。未反応の糖鎖リガンド複合体はAmicon Ultra 10 K(Millipore、MA、USA)を用いた遠心限外濾過(14000×g、5min)によって除去し、さらに引き続いて超純水で4回洗浄し、沈殿物を最後にPBSに懸濁させることによってGM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP2)溶液を調製した。
 〔実施例29:GM1a-FNP2と患者血清および蛋白質との反応〕
 ギラン・バレー症候群の患者を含めた免疫性末梢神経障害症の患者血清およびPNAをPBSに4μMの濃度で溶解させた溶液、5μLを200μLの容量のプラスチックチューブに移した。そこに、実施例28で調製したZAIS/ZnS core/shell ナノ粒子をコアに持つGM1糖鎖固定化蛍光性ナノ粒子(GM1-FNP2)の3μMのPBS溶液を5μL加え、ボルテックスミキサーで撹拌後、4℃で暗所に一晩(12時間)放置し、14000Gで5分間遠心分離を行った。次に、上記チューブに紫外光を照射し、沈殿物の蛍光を観測して写真撮影を行った。
 図59は、GM1-FNP2と免疫性末梢神経障害症の患者の血清および蛋白質との凝集実験における遠心分離後の沈殿物の蛍光発光の結果を示す図である。
 図59中の5ケタの数字はサンプル番号であり、13938はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陰性の血清を用いた結果を、13934はELISA法で抗GM1抗体陰性、かつ抗GD1a抗体陽性の血清を用いた結果を、14078および14192は、ELISA法で抗GM1抗体陽性の血清を用いた結果をそれぞれ示している。
 図59に示すように、ELISA法で抗GM1抗体陽性の血清を用いた場合およびPNAに、蛍光を発する沈殿物の形成が確認された(14078および14192)。
 以上の結果から、ZAIS/ZnS core/shell ナノ粒子にGM1糖鎖を固定化した蛍光性ナノ粒子(GM1-FNP2)を用いた場合も、GM1-Glc糖鎖固定化蛍光性ナノ粒子(GM1-Glc-FNP)を用いた場合と同様に、抗GM1抗体を検出できることが明らかとなった。
 以上の結果より、ガングリオシドの糖鎖部分を固定化した、本発明に係る糖鎖固定化蛍光性ナノ粒子については、ギラン・バレー症候群やフィッシャー症候群など免疫性末梢神経障害症の迅速・簡便な検出手段または診断法として、医療現場での利用可能性が大いに期待される。

Claims (9)

  1.  ガングリオシド由来の糖鎖を含有する1種または2種以上の糖鎖と、主鎖に炭化水素鎖または炭化水素誘導鎖を備えた1種または2種以上のリンカー化合物とからなり、上記リンカー化合物の主鎖が、その一端に上記糖鎖と結合したアミノ基を有し、その他端に硫黄原子を含む炭化水素構造を備えている糖鎖リガンド複合体と、
     第一および第二の金属成分からなる粒子コアが第一および第三の金属成分からなる層によって被覆された蛍光性ナノ粒子と、を含有し、
     上記炭化水素構造が上記層に固定化されてなることを特徴とする、糖鎖固定化蛍光性ナノ粒子。
  2.  上記ガングリオシドが、GM1、GD1a、およびGQ1bからなる群より選ばれる1種または2種以上のガングリオシドであることを特徴とする、請求項1に記載の糖鎖固定化蛍光性ナノ粒子。
  3.  上記ガングリオシド由来の糖鎖を含有する1種または2種以上の糖鎖が、以下の化学式1、14~16に示す糖鎖から選ばれることを特徴とする請求項2に記載の糖鎖固定化蛍光性ナノ粒子。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  4.  アミノ化されたオリゴエチレングリコールと、主鎖に炭化水素鎖または炭化水素誘導鎖を備えたリンカー化合物と、からなり、上記リンカー化合物の主鎖が、その一端に上記アミノ化されたオリゴエチレングリコールと結合したカルボキシル基を有し、その他端に硫黄原子を含む炭化水素構造を備えている複合体、をさらに含有し、
     上記炭化水素構造が上記層に固定化されてなることを特徴とする、請求項1から3の何れか1項に記載の糖鎖固定化蛍光性ナノ粒子。
  5.  上記第一の金属成分が、カドミウム、亜鉛、銀、インジウムおよび硫黄からなる群より選ばれることを特徴とする請求項1から4の何れか1項に記載の糖鎖固定化蛍光性ナノ粒子。
  6.  上記第二の金属成分が、テルルおよび硫黄からなる群より選ばれることを特徴とする請求項1から5の何れか1項に記載の糖鎖固定化蛍光性ナノ粒子。
  7.  上記第三の金属成分が、カドミウム、硫黄および亜鉛からなる群より選ばれることを特徴とする請求項1から6の何れか1項に記載の糖鎖固定化蛍光性ナノ粒子。
  8.  請求項1から7の何れか1項に記載の糖鎖固定化蛍光性ナノ粒子と、被検体とを混和することによって、上記糖鎖固定化蛍光性ナノ粒子に固定化された、ガングリオシド由来の糖鎖を含有する糖鎖と、上記被検体中に含まれる抗ガングリオシド抗体とを反応させる工程を含むことを特徴とする、抗ガングリオシド抗体の検出方法。
  9.  請求項1から7の何れか1項に記載の糖鎖固定化蛍光性ナノ粒子を含有することを特徴とする、免疫性末梢神経障害症の検出試薬または診断薬。
PCT/JP2014/056073 2013-03-07 2014-03-07 免疫性末梢神経障害症由来抗体を認識する組成物とその利用 WO2014136974A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-044851 2013-03-07
JP2013044851A JP2016105041A (ja) 2013-03-07 2013-03-07 免疫性末梢神経障害症由来抗体を認識する組成物とその利用

Publications (1)

Publication Number Publication Date
WO2014136974A1 true WO2014136974A1 (ja) 2014-09-12

Family

ID=51491481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056073 WO2014136974A1 (ja) 2013-03-07 2014-03-07 免疫性末梢神経障害症由来抗体を認識する組成物とその利用

Country Status (2)

Country Link
JP (1) JP2016105041A (ja)
WO (1) WO2014136974A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358546A (zh) * 2021-04-21 2021-09-07 贵州安康医学检验中心有限公司 一种自身免疫性周围神经病相关抗体的联合检测方法
WO2022224035A3 (en) * 2021-04-20 2022-12-01 Polyneuron Pharmaceuticals Ag Anti-gm1 antibody binding compounds

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142404A (ja) * 1997-11-07 1999-05-28 Otsuka Pharmaceut Co Ltd メニエール病特異抗原及びその医学的用途
US20050130240A1 (en) * 2003-02-19 2005-06-16 Academia Sinica Carbohydrate encapsulated nanoparticles
US20060068506A1 (en) * 2004-09-24 2006-03-30 Uyeda Harry T Field of modular multifunctional ligands
US20080039816A1 (en) * 2004-03-22 2008-02-14 The Government of the United States of America as represented by the Secretary, Department of Carbohydrate-Encapsulated Quantum Dots for Bilogical Imaging
JP2008105978A (ja) * 2006-10-24 2008-05-08 Japan Science & Technology Agency 糖類の直接的な表面固定化方法、糖類とタンパク質との間の相互作用を検出する方法
JP2010122011A (ja) * 2008-11-18 2010-06-03 Kaneka Corp 臓器組織別ガングリオシドを用いた相互作用解析法
JP2011209282A (ja) * 2010-03-10 2011-10-20 Kagoshima Univ 糖鎖固定化蛍光性ナノ粒子、およびその製造方法
JP2013040970A (ja) * 2006-12-18 2013-02-28 Japan Science & Technology Agency ウイルスと糖鎖との相互作用の測定方法およびリガンド複合体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142404A (ja) * 1997-11-07 1999-05-28 Otsuka Pharmaceut Co Ltd メニエール病特異抗原及びその医学的用途
US20050130240A1 (en) * 2003-02-19 2005-06-16 Academia Sinica Carbohydrate encapsulated nanoparticles
US20080039816A1 (en) * 2004-03-22 2008-02-14 The Government of the United States of America as represented by the Secretary, Department of Carbohydrate-Encapsulated Quantum Dots for Bilogical Imaging
US20060068506A1 (en) * 2004-09-24 2006-03-30 Uyeda Harry T Field of modular multifunctional ligands
JP2008105978A (ja) * 2006-10-24 2008-05-08 Japan Science & Technology Agency 糖類の直接的な表面固定化方法、糖類とタンパク質との間の相互作用を検出する方法
JP2013040970A (ja) * 2006-12-18 2013-02-28 Japan Science & Technology Agency ウイルスと糖鎖との相互作用の測定方法およびリガンド複合体
JP2010122011A (ja) * 2008-11-18 2010-06-03 Kaneka Corp 臓器組織別ガングリオシドを用いた相互作用解析法
JP2011209282A (ja) * 2010-03-10 2011-10-20 Kagoshima Univ 糖鎖固定化蛍光性ナノ粒子、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUKI N ET AL.: "Animal model of axonal Guillain- Barre' syndrome induced by sensitization with GM1 ganglioside", ANN NEUROL, vol. 9, no. 6, pages 712 - 720 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224035A3 (en) * 2021-04-20 2022-12-01 Polyneuron Pharmaceuticals Ag Anti-gm1 antibody binding compounds
CN113358546A (zh) * 2021-04-21 2021-09-07 贵州安康医学检验中心有限公司 一种自身免疫性周围神经病相关抗体的联合检测方法

Also Published As

Publication number Publication date
JP2016105041A (ja) 2016-06-09

Similar Documents

Publication Publication Date Title
Compostella et al. Glyco-gold nanoparticles: synthesis and applications
Barrientos et al. Gold glyconanoparticles: synthetic polyvalent ligands mimicking glycocalyx‐like surfaces as tools for glycobiological studies
JP5215298B2 (ja) グリコシル化された基質から切断される末端単糖の固相検出
US20120040872A1 (en) Preparing carbohydrate microarrays and conjugated nanoparticles
KR102654470B1 (ko) 용액-기반 플라스몬 특이적-결합 파트너 검정 및 금속성 나노구조체
Babu et al. Sugar− quantum dot conjugates for a selective and sensitive detection of lectins
JP6083649B2 (ja) 未分化細胞検出方法及び複合糖質検出方法
US20130252843A1 (en) Method of making and using fluorescent-tagged nanoparticles and microarrays
WO2011105721A9 (ko) 항원고정화 면역형광 슬라이드의 제조방법 및 그에 의해 제조되는 면역형광 슬라이드
JP7083643B2 (ja) 分子インプリントポリマー
JP7293296B2 (ja) 溶液ベースのプラズモン特異的結合パートナーアッセイにおけるシグナル増幅
Huang et al. Fabrication of highly stable glyco‐gold nanoparticles and development of a glyco‐gold nanoparticle‐based oriented immobilized antibody microarray for lectin (GOAL) assay
Fratila et al. Recent advances in biosensing using magnetic glyconanoparticles
Li et al. Genetically encoded chemical crosslinking of carbohydrate
US8067393B2 (en) Sugar-immobilized metal nanoparticle, method for measuring sugar-protein interaction using the same and method for recovering protein from sugar-protein interactant
WO2014136974A1 (ja) 免疫性末梢神経障害症由来抗体を認識する組成物とその利用
WO2006121230A1 (en) Fabrication of carbohydrate chips by immobilizing unmodified carbohydrates on derivatized solid surfaces, and their uses
Huang Glyconanoparticles-an update
US9086416B2 (en) Removable saccharide-benzimidazole (BIM) tags and conjugates thereof via 1H-position of the benzimidazoles
JP5700336B2 (ja) 糖鎖固定化蛍光性ナノ粒子、およびその製造方法
CN106986906B (zh) 复合体及其制备方法
US20230304998A1 (en) Cellular material detection probes
keung Chan Synthesis And Functionality Study of Novel Biomimetic N-glycan Polymers
Chan Synthesis and Functionality Study of Novel Biomimetic N-Glycan Polymers
JP2015219108A (ja) 細胞結合性の組成物とその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP