WO2014136732A1 - Slide bearing - Google Patents

Slide bearing Download PDF

Info

Publication number
WO2014136732A1
WO2014136732A1 PCT/JP2014/055342 JP2014055342W WO2014136732A1 WO 2014136732 A1 WO2014136732 A1 WO 2014136732A1 JP 2014055342 W JP2014055342 W JP 2014055342W WO 2014136732 A1 WO2014136732 A1 WO 2014136732A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing body
bearing
mass
parts
resin composition
Prior art date
Application number
PCT/JP2014/055342
Other languages
French (fr)
Japanese (ja)
Inventor
隆規 井上
啓二 浅井
Original Assignee
旭有機材工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材工業株式会社 filed Critical 旭有機材工業株式会社
Priority to JP2015504303A priority Critical patent/JPWO2014136732A1/en
Publication of WO2014136732A1 publication Critical patent/WO2014136732A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/80Thermosetting resins
    • F16C2208/90Phenolic resin

Definitions

  • the present invention relates to a plain bearing.
  • Linear motion bearings (linear bearings that slide in the axial direction) used in industrial equipment, office equipment, transportation equipment, etc., are rolling bearings that incorporate rolling elements capable of rolling motion, and slides that do not have rolling elements.
  • a plain bearing does not have rolling elements and is in surface contact with the shaft, so it has a large frictional resistance to the rolling bearings, but the structure is simple and the shaft may be damaged by rolling element defects (rusting, etc.). Has the advantage of not.
  • a metal bearing is generally used from the viewpoint of wear resistance and strength.
  • the weight is large, there is a problem that it becomes a bottleneck in reducing the weight of the device.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a resin-made plain bearing that is excellent in strength and sliding properties and can be used as a substitute for a metal bearing.
  • a slide bearing having a cylindrical bearing body and sliding in the axial direction,
  • the bearing body is formed of a resin composition containing a phenol resin and carbon fiber,
  • the ratio of the minimum inner diameter of the bearing body to the maximum thickness of the bearing body is 2 or more and 4.5 or less,
  • the bearing body is mounted on a horizontal plane, and the cross-sectional shape change rate when a load of 8.33 N / mm per unit length is applied downward from the upper part to the entire length of the bearing body is 0.5% or less.
  • the bearing body is formed of a resin composition containing a phenol resin and carbon fiber, the slide bearing has a small friction coefficient and excellent sliding properties.
  • the ratio of the minimum inner diameter of the bearing body to the maximum wall thickness of the bearing body is not more than the above upper limit, and the rate of change in cross-sectional shape when a load is applied in the vertical direction is not more than the above upper limit.
  • the ratio of the minimum inner diameter to the maximum wall thickness of the bearing body is equal to or more than the above lower limit, it can be suitably used as an alternative bearing for a metal bearing having a small wall thickness.
  • the magnitude of the load applied to the bearing body when obtaining the cross-sectional shape change rate is 8.33 N / mm.
  • a metal rolling bearing having an inner diameter of 25 mm and an axial length of 60 mm is generally used, and the basic dynamic load rating of a metal rolling bearing close to this dimension is 980 N in accordance with ISO 14728-1 (for example, Japan (Refer to the catalog of “SLIDE BUSH SM type” of Bearing Co., Ltd.).
  • the “basic dynamic load rating” is a load that can obtain a rated life of 50 km in a linear bearing.
  • the safety factor was set to 2
  • the load applied to the bearing when determining the cross-sectional shape change rate was set to 500 N, which is about 1 ⁇ 2 of the basic dynamic load rating 980N.
  • 500 N is divided by the axial length of the metal rolling bearing of 60 mm, a load magnitude of 8.33 N / mm is obtained.
  • the content of carbon fiber with respect to 100 parts by mass of the phenol resin in the resin composition is preferably 30 parts by mass or more and 150 parts by mass or less.
  • strength and a sliding characteristic can be provided with sufficient balance with respect to a bearing main body.
  • the resin composition may further contain an elastomer. Moreover, as content of the elastomer with respect to 100 mass parts of phenol resins of the said resin composition, 2 to 30 mass parts is preferable. In this way, by incorporating an elastomer into the resin composition and keeping the elastomer content within the above range, defects such as chipping during molding of the bearing body while maintaining the sliding characteristics and strength of the bearing body are maintained. Occurrence can be prevented.
  • the resin composition may further contain graphite.
  • the total content of carbon fiber and graphite with respect to 100 parts by mass of the phenol resin in the resin composition is preferably 50 parts by mass or more and 250 parts by mass or less.
  • the resin composition contains graphite, and the total content of carbon fiber and graphite is within the above range, so that the friction coefficient is reduced while maintaining the strength of the bearing body, and the wear amount due to sliding is reduced. Can be further reduced.
  • the resin composition may further contain a boron compound.
  • a boron compound in the resin composition, the amount of wear due to sliding of the bearing body can be further reduced, and the sliding characteristics can be further improved.
  • the bearing body has a tapered portion that expands outward at the end of the inner peripheral surface. Further, the ratio of the axial length of the tapered portion to the axial length of the bearing body is preferably less than 0.25. Since a plain bearing has no rolling elements, the bearing body and shaft are in contact with each other. However, if the bearing inner diameter and shaft diameter are close to each other, it is difficult to insert the shaft, and if the bearing inner diameter is larger than the shaft diameter, the shaft tilts. There is a possibility that the edge of the bearing abuts against the shaft and damages the shaft or the bearing itself.
  • the shaft can be smoothly inserted, and further, the shaft can follow the inclination of the shaft when it is movable.
  • the ratio of the length of the taper portion in the bearing direction to the bearing length of the bearing body less than the above upper limit, the contact area between the shaft and the bearing body can be increased even if the taper portion is provided.
  • the shaft can be supported.
  • a seal ring disposed near the end of the inner peripheral surface of the bearing body may be further provided.
  • the bearing body has a groove in the central portion of the inner peripheral surface.
  • a bearing main body has a groove part, abrasion powder can be stored in this groove part and scattering of the abrasion powder to the exterior can be prevented.
  • a sliding material disposed in the groove is further provided, and the sliding material is formed of a resin impregnated with lubricating oil.
  • the bearing region of the inner peripheral surface of the bearing body is 40% or more and 95% or less of the entire inner peripheral surface.
  • an O-ring arranged in the vicinity of the end portion of the outer peripheral surface of the bearing body.
  • the “cross-sectional shape change rate” is (d1 ⁇ d2) / d1 ⁇ using the minimum inner diameter d1 of the bearing body before applying a load and the minimum inner diameter d2 of the bearing body when applying a load. It is a numerical value obtained by 100.
  • the “bearing region” means a region where the normal line is perpendicular to the axial direction on the inner peripheral surface of the bearing body, and when the groove portion is formed on the inner peripheral surface of the bearing body, it means a region excluding the groove portion. .
  • the plain bearing of the present invention is excellent in strength and sliding characteristics while being made of resin, and can be suitably used as a substitute for a metal bearing.
  • FIG. 1 is a schematic cross-sectional view showing a plain bearing according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a usage state of the plain bearing of one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a slide bearing of an embodiment different from the slide bearing of FIG.
  • [First embodiment] 1 is a bearing that slides in an axial direction with respect to a shaft to be supported, and includes a cylindrical bearing body 2 and a seal ring 3 disposed in the vicinity of the end portion of the inner peripheral surface of the bearing body 2. And an O-ring 4 disposed in the vicinity of the end of the outer peripheral surface of the bearing body 2.
  • the bearing body 2 is formed in a cylindrical shape, and includes a tapered portion 5 that is formed at an end portion of the inner peripheral surface and expands outward, and a groove portion 6 that is formed in a central portion of the inner peripheral surface.
  • the bearing body 2 is formed of a resin composition containing a phenol resin and carbon fiber.
  • any phenol resin commonly used as a material for a sliding member can be used without any particular limitation.
  • examples of such phenol resins include novolak type phenol resins and resol type phenol resins, and among these, novolak type phenol resins are preferred in that they have a low wear amount and a high PV value.
  • examples of the resol type phenol resin include methylol type and dimethylene ether type, and among them, dimethylene ether type phenol resin is preferable because of less occurrence of chipping during processing.
  • These phenol resins may be solid or liquid, and may be used alone or in combination of two or more.
  • the lower limit of the number average molecular weight (Mn) of the phenol resin is preferably 400, more preferably 600.
  • the upper limit of the number average molecular weight (Mn) of the phenol resin is preferably 1200, more preferably 1000.
  • the lower limit of the weight average molecular weight (Mw) of the phenol resin is preferably 400, more preferably 1000.
  • the upper limit of the weight average molecular weight (Mw) of the phenol resin is preferably 5000 and more preferably 4000.
  • the upper limit of the total content of the phenolic monomer and the phenolic dimer is preferably 10% by mass, and more preferably 5% by mass.
  • the lower limit of the dispersion ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the phenol resin is preferably 1.1.
  • the upper limit of the dispersion ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the phenol resin is preferably 3.0 and more preferably 2.8.
  • the phenol resin has a total content of phenolic monomers and phenolic dimers of 10% by mass or less, and the dispersion ratio (Mw / Mn) is 1.1 or more and 3.0 or less. Particularly preferred.
  • the resin composition forming the bearing body 2 contains carbon fiber, it is excellent in strength retention and strength in a high temperature environment. Moreover, since the carbon fiber does not damage the counterpart material compared to other fibers, the resin composition is also excellent in slidability.
  • the carbon fiber include PAN-based and pitch-based carbon fibers, but it is preferable to use PAN-based carbon fibers. When a PAN-based carbon fiber is used for the bearing, gas generation during sliding is reduced, so that the sliding characteristics of the bearing body 2 are further improved.
  • the lower limit of the average length of the carbon fibers is preferably 0.01 mm, more preferably 0.05 mm, and further preferably 0.1 mm.
  • the upper limit of the average length of the carbon fibers is preferably 1 mm, more preferably 0.75 mm, and even more preferably 0.5 mm.
  • the average length of the carbon fiber is less than the above lower limit, the mechanical strength of the bearing body 2 may be reduced.
  • the average length of the carbon fibers exceeds the above upper limit, the carbon fibers are easily peeled during sliding, and the sliding characteristics of the bearing body 2 may be deteriorated.
  • the said average length means the average value of the long diameter in carbon fiber.
  • the carbon fiber content of carbon fiber to 100 mass parts of phenol resins As a minimum of content of carbon fiber to 100 mass parts of phenol resins, 30 mass parts are preferred, 40 mass parts are more preferred, and 50 mass parts are still more preferred.
  • an upper limit of content of the carbon fiber with respect to 100 mass parts of phenol resins 150 mass parts is preferable, 100 mass parts is more preferable, and 70 mass parts is more preferable.
  • the carbon fiber content is less than the above lower limit, the strength of the bearing body 2 may be reduced.
  • the carbon fiber content exceeds the above upper limit the fluidity of the resin composition forming the bearing body 2 is lowered, and the moldability may be lowered.
  • the resin composition forming the bearing body 2 preferably contains graphite (graphite).
  • the upper limit of the graphite content relative to 100 parts by mass of the phenol resin is preferably 200 parts by mass, and more preferably 150 parts by mass.
  • the graphite content is less than the lower limit, the friction coefficient of the bearing body 2 is increased, and the wear amount may be increased.
  • the graphite content exceeds the above upper limit, the strength of the bearing body 2 under a high temperature environment may be reduced.
  • the upper limit of the total content of carbon fiber and graphite with respect to 100 parts by mass of the phenol resin is preferably 250 parts by mass, more preferably 200 parts by mass, and even more preferably 150 parts by mass.
  • the friction coefficient of the bearing body 2 is increased, and the wear amount may be increased.
  • the fluidity of the resin composition forming the bearing body 2 is lowered, and the moldability may be lowered.
  • the resin composition forming the bearing body 2 further contains an elastomer.
  • the elastomer include acrylonitrile butadiene rubber (NBR), urethane rubber, styrene-butadiene rubber (SBR), acrylic rubber, silicone rubber, and polybutadiene.
  • NBR acrylonitrile butadiene rubber
  • SBR styrene-butadiene rubber
  • acrylic rubber silicone rubber
  • silicone rubber polybutadiene.
  • urethane rubber urethane rubber
  • silicone rubber are preferable in that the elastic modulus of the resin composition can be effectively reduced, and the elastic modulus is reduced without reducing the sliding characteristics.
  • acrylonitrile butadiene rubber (NBR) is more preferable.
  • These elastomers may be used individually by 1 type, and may use 2 or more types together.
  • the lower limit of the elastomer content relative to 100 parts by mass of the phenol resin is preferably 2 parts by mass and more preferably 5 parts by mass.
  • an upper limit of content of the elastomer with respect to 100 mass parts of phenol resins 30 mass parts is preferable, 20 mass parts is more preferable, and 10 mass parts is more preferable.
  • the content of the elastomer is less than the lower limit, the aggressiveness to the shaft during sliding of the bearing body 2 may not be suppressed and the wear amount may increase, or the workability improvement effect may be insufficient.
  • the content of the elastomer exceeds the above upper limit, the elastic modulus of the bearing body 2 is excessively decreased, and the creep resistance may be decreased.
  • the resin composition forming the bearing body 2 further contains a boron compound.
  • the boron compound include boric acid, borate, boric acid ester, boron oxide, and borax.
  • borates include metal salts such as metaboric acid and tetraboric acid, and specific examples include zinc borate.
  • boric acid, borate and boron oxide are preferable, and boric acid, zinc borate and boron oxide are more preferable.
  • These boron compounds may be used alone or in combination of two or more.
  • the upper limit of the content of the boron compound with respect to 100 parts by mass of the phenol resin is preferably 10 parts by mass, and more preferably 7.0 parts by mass.
  • the content of the boron compound is less than the above lower limit, the wear amount of the bearing body 2 may increase.
  • the content of the boron compound exceeds the above upper limit, the mechanical strength and formability of the bearing body 2 may be reduced.
  • the resin composition forming the bearing body 2 can contain other additives as long as the effects of the present invention are not impaired.
  • additives include a curing agent (for example, hexamethylenetetramine), a mold release agent (for example, calcium stearate, zinc stearate), a curing accelerator (magnesium oxide, slaked lime, etc.), a coupling agent, a solvent, and the like.
  • Other examples include calcium carbonate, clay, talc, silica, alumina, and aramid fiber. These may be used alone or in combination of two or more.
  • the lower limit of the bending strength at 150 ° C. of the resin composition forming the bearing body 2 is preferably 70 MPa, more preferably 80 MPa, and even more preferably 90 MPa.
  • the bending strength at 150 ° C. of the resin composition is less than the lower limit, the strength of the sliding bearing 1 may be lowered when the temperature is increased by sliding.
  • the bending strength is a value measured according to JIS-K7171: 2008.
  • the lower limit of the ratio of the bending strength at 150 ° C. to the bending strength at 23 ° C. of the resin composition forming the bearing body 2 is preferably 80% and more preferably 82%.
  • the slide bearing 1 may be greatly deformed when the temperature rises.
  • Various known methods can be used as a method for producing the resin composition for forming the bearing body 2. Specifically, for example, the above-mentioned various components are heated and melted with a pressure kneader, a mixing roll, a twin screw extruder, and the like, kneaded, and then the obtained kneaded product is formed into a sheet shape. Furthermore, it can manufacture by grind
  • the lower limit of the ratio (d / t) of the minimum inner diameter d of the bearing body 2 to the maximum wall thickness t of the bearing body 2 is 2, and 2.5 is more preferable.
  • the upper limit of the ratio of the minimum inner diameter d of the bearing body 2 to the maximum wall thickness t of the bearing body 2 is 4.5, and 4 is more preferable.
  • the ratio of the minimum inner diameter d to the maximum wall thickness t is less than the above lower limit, the wall thickness becomes too large, and the slide bearing 1 may not meet the dimensional standard of the metal bearing.
  • the ratio of the minimum inner diameter d to the maximum wall thickness t exceeds the upper limit, the strength and handleability of the plain bearing 1 may be reduced.
  • the maximum wall thickness t of the bearing body 2 is not particularly limited, and can be, for example, 3 mm or more and 25 mm or less.
  • the minimum inner diameter d of the bearing body 2 is not particularly limited, and can be, for example, 6 mm or more and 120 mm or less.
  • the axial length L of the bearing body 2 can be set to, for example, 6 mm or more and 200 mm or less.
  • the tapered portions 5 are respectively formed at both ends of the inner peripheral surface of the bearing body 2 so as to expand the diameter outward.
  • the contact area between the shaft and the bearing body 2 can be suppressed and stabilized as a bearing.
  • the end diameter of the slide bearing 1 is widened, the shaft can be inserted smoothly.
  • the sliding bearing 1 may be inclined with respect to the shaft by receiving stress when it is movable, but this inclination can be followed by the tapered portion 5.
  • the ratio (L ′ / L) of the axial length L ′ of the tapered portion 5 to the axial length L of the bearing body 2 is preferably less than 0.25, and more preferably less than 0.20.
  • the ratio of the axial length L ′ of the tapered portion 5 to the axial length L of the bearing body 2 is equal to or greater than the above upper limit, the contact area between the shaft and the bearing body 2 becomes small and the shaft support becomes unstable. There is a fear.
  • the lower limit of the taper ratio (the increase rate of the diameter with respect to the length) of the tapered portion 5 is preferably 0.1 / 10, and more preferably 0.2 / 10.
  • an upper limit of the taper rate of the taper part 5 2/10 is preferable and 1/10 is more preferable.
  • the groove 6 is a groove formed in a circumferential shape in the center of the inner peripheral surface of the bearing body 2. It is possible to accumulate wear powder and foreign matter generated by repeating the sliding motion in the groove 6, and that the wear powder and foreign matter are present on the contact surface between the shaft and the slide bearing 1 to cause scratches. Can be prevented. Further, the contact area between the shaft and the bearing body 2 can be reduced by the groove 6. Further, for example, if only the central portion of the bearing body 2 is in contact with the shaft, rattling and stress concentration of the bearing body 2 occur, but contact surfaces are formed at two locations on the end side of the bearing body 2 by the groove 6. Therefore, rattling and stress concentration can be prevented while reducing the contact area.
  • the lower limit of the width (axial length) of the groove 6 is preferably 8% of the axial length L of the bearing body 2 and more preferably 10%.
  • the upper limit of the width of the groove 6 is preferably 20% of the axial length L of the bearing body 2 and more preferably 15%.
  • the width of the groove 6 is less than the lower limit, the effect of accumulating wear powder or the like may not be sufficiently obtained.
  • the width of the groove 6 exceeds the above upper limit, the contact area between the shaft and the bearing body 2 becomes too small, and the stability of the shaft support may be lowered.
  • the lower limit of the depth of the groove 6 is preferably 8% of the maximum wall thickness t of the bearing body 2 and more preferably 10%.
  • the upper limit of the depth of the groove 6 is preferably 30% of the maximum thickness t of the bearing body 2 and more preferably 25%.
  • the lower limit of the ratio of the support area to the entire inner peripheral surface of the inner peripheral surface of the bearing body 2 is preferably 40%, more preferably 50%, and even more preferably 60%.
  • the upper limit of the ratio of the bearing region to the entire inner peripheral surface of the inner peripheral surface of the bearing body 2 is preferably 95%, more preferably 90%, and even more preferably 85%. If the ratio of the bearing area is less than the lower limit, fretting due to vibration may occur, and the shaft may not be supported stably. On the contrary, when the ratio of the bearing area exceeds the upper limit, the frictional resistance of the bearing body 2 is increased and the sliding characteristics may be deteriorated.
  • the upper limit of the cross-sectional shape change rate when the bearing body 2 is placed on a horizontal plane and a load of 8.33 N / mm is applied downward from the top to the entire length of the bearing body 2 is 0.5%. 45% is more preferable, and 0.4% is more preferable.
  • the bearing body 2 may be deformed by an axial load when the slide bearing 1 is used, and may not function as a bearing.
  • the seal ring 3 is a ring disposed one by one in a seal groove formed in the vicinity of both end portions of the inner peripheral surface of the bearing body 2.
  • the lubricating oil can be held between the inner peripheral surface of the bearing body 2 and the sealing ring 3 by the seal ring 3.
  • splashing of the lubricating oil to other devices can be prevented. Further, it is possible to prevent foreign matters from entering the inside of the bearing body 2.
  • the position in the axial direction in which the seal ring 3 is disposed (forms a seal groove) is preferably in the region where the tapered portion 5 is formed. Due to the presence of the seal ring 3 in the region where the taper portion 5 is formed, a relatively wide space portion sandwiched between the bearing body 2 and the shaft X can be formed inside the seal ring 3 as shown in FIG. As a result, the lubricating oil is stored in this space and the lubricating oil is always present in the vicinity of the seal ring 3, so that the lubricating oil necessary for sliding can be reliably supplied to the seal ring 3, and an efficient slip can be realized. it can.
  • the tapered portion 5 has a function of following the inclination of the shaft, but on the other hand, there is a risk of occurrence of fretting due to a reduction in the contact area with the shaft. Therefore, by providing the seal ring 3 in the formation region of the tapered portion 5, the following function and the contact area with the shaft can be secured in a balanced manner, and the bearing performance of the sliding bearing 1 can be effectively improved. .
  • the lower limit of the ratio (h1 / L) of the distance h1 from the end of the bearing body 2 to the seal ring 3 with respect to the axial length L of the bearing body 2 is preferably 0.05, and more preferably 0.10.
  • the upper limit of the ratio of the distance h1 from the end of the bearing body 2 to the seal ring 3 with respect to the axial length L of the bearing body 2 is preferably 0.20, and more preferably 0.15.
  • the depth of the seal groove in which the seal ring 3 is disposed is determined according to the crushing rate (deformation rate) of the seal ring 3, and may be, for example, 1 mm or more and 4 mm or less. Moreover, as a width
  • Examples of the cross-sectional shape of the seal ring 3 include an O shape and an X shape.
  • the X shape is preferable, in which sealing is performed at two points and the ring is less likely to be twisted when sliding in the axial direction.
  • the material of the seal ring 3 is not particularly limited, and a known material such as a synthetic resin or rubber can be used.
  • the O-ring 4 is a ring arranged one by one in the ring groove formed in the vicinity of both ends of the outer peripheral surface of the bearing body 2.
  • the sliding bearing 1 can be accurately fitted and fixed to the housing Y as shown in FIG. 2 without having to adjust the dimensional difference between the outer diameter of the bearing body 2 and the inner diameter of the housing Y with high precision. it can. As a result, the insertion cost of the bearing body 2 into the housing Y can be reduced.
  • the ratio (h2 / L) of the distance h2 from the end of the bearing body 2 to the center position of the O-ring 4 with respect to the axial length L of the bearing body 2 is not particularly limited. It can be. By making the ratio of the distance h2 from the end of the bearing body 2 to the center position of the O-ring 4 with respect to the axial length L of the bearing body 2 within the above range, the ease of mounting the slide bearing 1 to the housing is improved. Can be improved.
  • the depth of the seal groove in which the O-ring 4 is disposed is determined according to the crushing rate (deformation rate) of the O-ring 4, and can be, for example, 1 mm or more and 4 mm or less. Moreover, as a width
  • the material of the O-ring 4 is not particularly limited, and a known material such as a synthetic resin or rubber can be used.
  • the slide bearing 1 can be manufactured, for example, by the following method.
  • the bearing body 2 is formed by molding the resin composition forming the bearing body 2 described above into a cylindrical shape with an injection molding machine.
  • the injection-molded bearing body 2 is cut using a machining center, a lathe or the like to form a taper portion 5, a groove portion 6, a seal ring groove, and an O-ring groove.
  • the said sliding bearing 1 can be obtained by inserting the seal ring 3 and the O-ring 4 in a groove
  • the bearing body 2 is formed of a resin composition containing a phenol resin and carbon fiber
  • the plain bearing 1 has a small friction coefficient and excellent slidability.
  • the ratio of the minimum inner diameter d of the bearing body 2 to the maximum wall thickness t of the bearing body 2 is not more than a certain value and the rate of change in cross-sectional shape when a load is applied in the vertical direction is not more than a certain value, Sufficient strength.
  • the ratio of the minimum inner diameter d to the maximum wall thickness t of the bearing body 2 is a certain value or more, it can be suitably used as an alternative bearing for a metal bearing having a small wall thickness.
  • [Second Embodiment] 3 is a bearing that slides in the axial direction with respect to a shaft to be supported, and includes a cylindrical bearing body 2 and a seal ring 3 disposed in the vicinity of the end portion of the inner peripheral surface of the bearing body 2. And an O-ring 4 disposed in the vicinity of the end portion of the outer peripheral surface of the bearing body 2 and a sliding member 7 disposed in the groove 6 included in the bearing body 2. Since the bearing body 2, the seal ring 3, and the O-ring 4 are the same as the sliding bearing 1 of the first embodiment, the same reference numerals are given and the description thereof is omitted.
  • the sliding member 7 is disposed along the groove portion 6 of the bearing body 2 and is made of a resin impregnated with lubricating oil.
  • the lubricating oil is supplied in an appropriate amount into the bearing body 2 for a long time, so that the sliding characteristics of the sliding bearing 11 are improved. Can be improved.
  • the lubricating oil supplied from the sliding member 7 can be retained inside the bearing body 2 by the seal ring 3.
  • the material of the sliding member 7 is not particularly limited, and for example, a synthetic resin such as polyamide, polyacetal, polytetrafluoroethylene can be used.
  • the inner diameter of the sliding member 7 is larger than the inner diameter of the bearing body 2 so as not to contact the shaft. In this way, by making the inner diameter of the sliding material 7 larger than the inner diameter of the bearing body 2, the sliding material 7 can be removed from the sliding material 7 in the leveling operation of the sliding surface of the sliding bearing 11 (inner peripheral surface of the bearing body 2). It can be prevented that the lubricating oil oozes out and the sliding surface becomes insufficiently smoothed.
  • the tapered portion, the groove portion, the seal ring, and the O-ring are provided.
  • these are not indispensable components, and a slide bearing that does not include these is also within the intended scope of the present invention.
  • the taper portion, the seal ring, and the O-ring are not necessarily disposed at both end portions, and may be disposed only at one end portion. Three or more O-rings may be provided.
  • a plurality of groove portions may be provided in the bearing body, and a sliding material may be further provided in each groove portion.
  • methyl isobutyl ketone was added to the reaction mixture with stirring and mixing to dissolve the condensation product. Thereafter, stirring and mixing were stopped, and the contents were transferred to a separation flask and allowed to stand, and separated into a methyl isobutyl ketone solution layer (upper layer) and a phosphoric acid aqueous solution layer (lower layer). Next, the phosphoric acid aqueous solution layer was removed, and the methyl isobutyl ketone solution was washed with water several times to remove phosphoric acid, and then the contents were returned to the reaction vessel again, and methyl isobutyl ketone was completely removed by distillation under reduced pressure. 5 parts of a novolak type phenolic resin was obtained.
  • This novolac type phenol resin had a number average molecular weight of 755, a weight average molecular weight of 1,227, and a dispersion ratio of 1.63.
  • Examples 1 to 3 and Comparative Example 1 Of the resin compositions A, B, and C obtained as described above, the resin compositions shown in Table 2 are each compression-molded at a molding temperature of 180 ° C. and a molding pressure of 15 t using a 20-ton press machine, and then cut. Thus, cylindrical slide bearings of Examples 1 to 3 and Comparative Example 1 having dimensions shown in Table 2 were obtained.
  • Example 2 A cylindrical plain bearing having the same dimensions as in Example 1 was prepared in the same procedure as in Example 1 except that a cloth-impregnated phenol resin (“# 250” manufactured by Oiles Kogyo Co., Ltd.) was used instead of the resin composition. Obtained.
  • Example 3 A cylindrical plain bearing having the same dimensions as in Example 1 was obtained by cutting a pipe material obtained by injection-molding a pellet of polyphenylene sulfide (PPS) (“Torelina” manufactured by Toray Industries, Inc.).
  • PPS polyphenylene sulfide
  • the slide bearings of Examples 1 to 3 and Comparative Examples 1 to 3 and the reference example are fixed, and a rod made of SUJ2 (high carbon chromium bearing steel) is hard chromium plated in the bearing body.
  • the sliding property when a load of 1000 N was applied to the bearing main body was evaluated with the following index while the shaft of the shaft was reciprocated 100 mm at 0.83 m / s. The evaluation results are shown in Table 2.
  • B Smoke was observed.
  • C Melt deformation was observed in the bearing body.
  • the plain bearings of Examples 1 to 3 have a high cross-sectional shape change rate with respect to a load of 8.33 N / m of 0.5% or less and high strength, and are excellent in slidability.
  • the plain bearing of the present invention is excellent in strength and sliding characteristics while being made of resin, and can be suitably used as a substitute for a metal bearing.

Abstract

The purpose of the present invention is to provide a resin slide bearing with excellent strength and sliding properties and capable of being used as a substitute for metal bearings. This slide bearing is provided with a cylindrical bearing body and slides in the axial direction. The bearing body is characterized in: being formed from a resin composition comprising a phenol resin and carbon fibers; the ratio of the minimum internal diameter of the bearing body with respect to the maximum wall thickness of the bearing body being 2 to 4.5; and the percentage of change in cross-sectional shape when the bearing body is placed on a horizontal surface and a load of 8.33 N/mm per unit length is applied downward from above over the entire length of the bearing body being 0.5% or less. The content of carbon fiber with respect to 100 parts by mass of the phenol resin in the resin composition is preferably 30 parts by mass to 150 parts by mass. It is preferable that the resin composition also comprises an elastomer.

Description

すべり軸受Plain bearing
 本発明は、すべり軸受に関する。 The present invention relates to a plain bearing.
 産業機器、事務機器、輸送機器等に用いられる直動軸受(軸方向に摺動するリニア軸受)には、転がり運動が可能な転動体が内蔵された転がり軸受と、転動体を有さないすべり軸受とがある。すべり軸受は、転動体を有さず軸と面接触するため転がり軸受に対して摩擦抵抗は大きいが、構造が簡潔であり、また転動体の不具合(発錆等)によって軸が傷つけられるおそれがないという利点を有する。 Linear motion bearings (linear bearings that slide in the axial direction) used in industrial equipment, office equipment, transportation equipment, etc., are rolling bearings that incorporate rolling elements capable of rolling motion, and slides that do not have rolling elements. There is a bearing. A plain bearing does not have rolling elements and is in surface contact with the shaft, so it has a large frictional resistance to the rolling bearings, but the structure is simple and the shaft may be damaged by rolling element defects (rusting, etc.). Has the advantage of not.
 このような直動すべり軸受としては、耐摩耗性や強度の観点から金属製の軸受が一般に用いられているが、重量が大きいため機器の軽量化においてネックになるという課題があった。 As such a linear motion plain bearing, a metal bearing is generally used from the viewpoint of wear resistance and strength. However, since the weight is large, there is a problem that it becomes a bottleneck in reducing the weight of the device.
 一方、樹脂を用いた軽量なすべり軸受も提案されている(特開平7-208463号公報参照)。しかし、すべり軸受はドライ環境中や潤滑油が切れた場合に発熱が大きくなることから、高温下でも軸荷重に耐えられる十分な強度が必要となるため、上記樹脂製のすべり軸受では一定の強度を得るために肉厚を大きくしなければならない。その結果、従来の軸受の寸法規格に適合できず、金属製軸受の代替品として容易に用いることができなかった。 On the other hand, lightweight sliding bearings using resin have also been proposed (see Japanese Patent Laid-Open No. 7-208463). However, since a slide bearing generates a large amount of heat in a dry environment or when the lubricating oil runs out, it must have sufficient strength to withstand axial loads even at high temperatures. In order to obtain, you must increase the wall thickness. As a result, it was not possible to conform to the dimensional standard of the conventional bearing, and it could not be easily used as a substitute for the metal bearing.
 また、直動軸受では大きな圧縮荷重が加わる中で軸との摺動が生じるため、優れた摺動特性(摩擦係数の低さ)が必要となるが、従来の樹脂製すべり軸受は摺動特性が十分とは言い難い。 In addition, since linear bearings slide with the shaft while a large compressive load is applied, excellent sliding characteristics (low coefficient of friction) are required, but conventional resin plain bearings have sliding characteristics. Is not enough.
特開平7-208463号公報JP 7-208463 A
 本発明は、上記事情に基づいてなされたものであり、強度及び摺動特性に優れ、金属製軸受の代替品として使用することのできる樹脂製のすべり軸受を提供することを目的とする。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a resin-made plain bearing that is excellent in strength and sliding properties and can be used as a substitute for a metal bearing.
 上記課題を解決するためになされた発明は、
 円筒状の軸受本体を備え、軸方向に摺動するすべり軸受であって、
 上記軸受本体がフェノール樹脂及び炭素繊維を含有する樹脂組成物で形成され、
 上記軸受本体の最大肉厚に対する軸受本体の最小内径の比が2以上4.5以下であり、
 上記軸受本体を水平面に載置し、軸受本体の全長にわたって上部から下方に単位長さ当たり8.33N/mmの荷重を加えた際の断面形状変化率が0.5%以下であることを特徴とする。
The invention made to solve the above problems is
A slide bearing having a cylindrical bearing body and sliding in the axial direction,
The bearing body is formed of a resin composition containing a phenol resin and carbon fiber,
The ratio of the minimum inner diameter of the bearing body to the maximum thickness of the bearing body is 2 or more and 4.5 or less,
The bearing body is mounted on a horizontal plane, and the cross-sectional shape change rate when a load of 8.33 N / mm per unit length is applied downward from the upper part to the entire length of the bearing body is 0.5% or less. And
 当該すべり軸受は、軸受本体がフェノール樹脂及び炭素繊維を含有する樹脂組成物で形成されるため、摩擦係数が小さく優れた摺動性を有する。また、軸受本体の最大肉厚に対する軸受本体の最小内径の比が上記上限以下であり、かつ荷重を上下方向に加えた際の断面形状変化率が上記上限以下であるため、軸受として十分な強度を有する。さらに、軸受本体の最大肉厚に対する最小内径の比が上記下限以上であることで、肉厚が小さい金属製軸受の代替軸受として好適に使用することができる。 Since the bearing body is formed of a resin composition containing a phenol resin and carbon fiber, the slide bearing has a small friction coefficient and excellent sliding properties. In addition, the ratio of the minimum inner diameter of the bearing body to the maximum wall thickness of the bearing body is not more than the above upper limit, and the rate of change in cross-sectional shape when a load is applied in the vertical direction is not more than the above upper limit. Have Furthermore, when the ratio of the minimum inner diameter to the maximum wall thickness of the bearing body is equal to or more than the above lower limit, it can be suitably used as an alternative bearing for a metal bearing having a small wall thickness.
 ここで、断面形状変化率を求める際の軸受本体に加える荷重の大きさ8.33N/mmについて説明する。まず、内径が25mm、軸方向長さが60mmの金属製転がり軸受が一般的であり、この寸法に近い金属製転がり軸受の基本動定格荷重はISO14728-1に準拠して980Nとなる(例えば日本ベアリング株式会社の「SLIDE BUSH SM型」のカタログを参照)。ここで、「基本動定格荷重」とは、リニア軸受では50kmの定格寿命が得られる荷重である。この基本動定格荷重を元に安全率を2とし、断面形状変化率を求める際の軸受に加える荷重を上記基本動定格荷重980Nの約1/2である500Nとした。この500Nを金属製転がり軸受の軸方向長さ60mmで除すると、8.33N/mmの荷重の大きさが得られる。 Here, the magnitude of the load applied to the bearing body when obtaining the cross-sectional shape change rate is 8.33 N / mm. First, a metal rolling bearing having an inner diameter of 25 mm and an axial length of 60 mm is generally used, and the basic dynamic load rating of a metal rolling bearing close to this dimension is 980 N in accordance with ISO 14728-1 (for example, Japan (Refer to the catalog of “SLIDE BUSH SM type” of Bearing Co., Ltd.). Here, the “basic dynamic load rating” is a load that can obtain a rated life of 50 km in a linear bearing. Based on this basic dynamic load rating, the safety factor was set to 2, and the load applied to the bearing when determining the cross-sectional shape change rate was set to 500 N, which is about ½ of the basic dynamic load rating 980N. When this 500 N is divided by the axial length of the metal rolling bearing of 60 mm, a load magnitude of 8.33 N / mm is obtained.
 上記樹脂組成物のフェノール樹脂100質量部に対する炭素繊維の含有量としては30質量部以上150質量部以下が好ましい。このように炭素繊維の含有量を上記範囲内とすることで、軸受本体に対して強度及び摺動特性をバランスよく付与することができる。 The content of carbon fiber with respect to 100 parts by mass of the phenol resin in the resin composition is preferably 30 parts by mass or more and 150 parts by mass or less. Thus, by making content of carbon fiber into the said range, intensity | strength and a sliding characteristic can be provided with sufficient balance with respect to a bearing main body.
 上記樹脂組成物がエラストマーをさらに含有するとよい。また、上記樹脂組成物のフェノール樹脂100質量部に対するエラストマーの含有量としては2質量部以上30質量部以下が好ましい。このように上記樹脂組成物にエラストマーを含有させ、エラストマーの含有量を上記範囲内とすることで、軸受本体の摺動特性や強度を維持したまま、軸受本体の成型加工時における欠け等の欠陥発生を防止することができる。 The resin composition may further contain an elastomer. Moreover, as content of the elastomer with respect to 100 mass parts of phenol resins of the said resin composition, 2 to 30 mass parts is preferable. In this way, by incorporating an elastomer into the resin composition and keeping the elastomer content within the above range, defects such as chipping during molding of the bearing body while maintaining the sliding characteristics and strength of the bearing body are maintained. Occurrence can be prevented.
 上記樹脂組成物がグラファイトをさらに含有するとよい。また、上記樹脂組成物のフェノール樹脂100質量部に対する炭素繊維及びグラファイトの合計含有量としては50質量部以上250質量部以下が好ましい。このように上記樹脂組成物にグラファイトを含有させ、炭素繊維及びグラファイトの合計含有量を上記範囲内とすることで、軸受本体の強度を維持したまま、摩擦係数を低下させて摺動による摩耗量をさらに低減することができる。 The resin composition may further contain graphite. The total content of carbon fiber and graphite with respect to 100 parts by mass of the phenol resin in the resin composition is preferably 50 parts by mass or more and 250 parts by mass or less. As described above, the resin composition contains graphite, and the total content of carbon fiber and graphite is within the above range, so that the friction coefficient is reduced while maintaining the strength of the bearing body, and the wear amount due to sliding is reduced. Can be further reduced.
 上記樹脂組成物がホウ素化合物をさらに含有するとよい。このように樹脂組成物にホウ素化合物を含有させることで、軸受本体の摺動による摩耗量をさらに低減し、摺動特性をより向上させることができる。 The resin composition may further contain a boron compound. Thus, by including a boron compound in the resin composition, the amount of wear due to sliding of the bearing body can be further reduced, and the sliding characteristics can be further improved.
 上記軸受本体が内周面の端部に外側に拡径するテーパー部を有するとよい。また、軸受本体の軸方向長さに対する上記テーパー部の軸方向長さの比としては、0.25未満が好ましい。すべり軸受は転動体が無いため軸受本体と軸とが面で接触するが、軸受内径と軸径との寸法が近いと軸の挿入が難しく、また軸受内径が軸径よりも大きいと軸が傾き軸受のエッジが軸に当接して軸や軸受自体が傷つく可能性がある。これに対し、軸受本体がテーパー部を有することで、軸の挿入をスムーズにすることができ、さらには可動時の軸の傾きに追従することができる。また、軸受本体の軸受長さに対するテーパー部の軸受方向長さの比を上記上限未満とすることで、テーパー部を有していても軸と軸受本体との接触面積を大きくでき、安定して軸を支承することができる。 It is preferable that the bearing body has a tapered portion that expands outward at the end of the inner peripheral surface. Further, the ratio of the axial length of the tapered portion to the axial length of the bearing body is preferably less than 0.25. Since a plain bearing has no rolling elements, the bearing body and shaft are in contact with each other. However, if the bearing inner diameter and shaft diameter are close to each other, it is difficult to insert the shaft, and if the bearing inner diameter is larger than the shaft diameter, the shaft tilts. There is a possibility that the edge of the bearing abuts against the shaft and damages the shaft or the bearing itself. On the other hand, since the bearing body has a tapered portion, the shaft can be smoothly inserted, and further, the shaft can follow the inclination of the shaft when it is movable. In addition, by making the ratio of the length of the taper portion in the bearing direction to the bearing length of the bearing body less than the above upper limit, the contact area between the shaft and the bearing body can be increased even if the taper portion is provided. The shaft can be supported.
 上記軸受本体の内周面の端部近傍に配設されるシールリングをさらに備えるとよい。このようにシールリングを備えることで、軸受内部への外部からの異物の侵入を防ぎ、さらに摩耗粉、潤滑油等が軸受内部から漏出して軸受装置の周囲を汚染することを防ぐことができる。 A seal ring disposed near the end of the inner peripheral surface of the bearing body may be further provided. By providing the seal ring in this way, it is possible to prevent foreign matter from entering the inside of the bearing and further prevent wear powder, lubricating oil, etc. from leaking out from the inside of the bearing and contaminating the periphery of the bearing device. .
 上記軸受本体が内周面の中央部分に溝部を有するとよい。このように軸受本体が溝部を有することで、この溝部に磨耗粉を溜めることができ、摩耗粉の外部への飛散を防止することができる。 It is preferable that the bearing body has a groove in the central portion of the inner peripheral surface. Thus, since a bearing main body has a groove part, abrasion powder can be stored in this groove part and scattering of the abrasion powder to the exterior can be prevented.
 上記溝部に配設される摺動材をさらに備え、この摺動材が潤滑油を含浸させた樹脂で形成されているとよい。このように摺動材を備えることで、一定量の潤滑油を軸受内部に供給できるため、当該すべり軸受の摺動特性を効果的に向上させることができる。 It is preferable that a sliding material disposed in the groove is further provided, and the sliding material is formed of a resin impregnated with lubricating oil. By providing the sliding material in this way, a certain amount of lubricating oil can be supplied to the inside of the bearing, so that the sliding characteristics of the sliding bearing can be effectively improved.
 上記軸受本体の内周面のうち支承領域が内周面全体の40%以上95%以下であることが好ましい。このように内周面における支承領域の割合を上記範囲内とすることで、振動等によるフレッチングを防止して軸の支承を安定させつつ、軸受本体の摩擦係数をさらに低減させることができる。 It is preferable that the bearing region of the inner peripheral surface of the bearing body is 40% or more and 95% or less of the entire inner peripheral surface. Thus, by setting the ratio of the bearing area on the inner peripheral surface within the above range, the friction coefficient of the bearing body can be further reduced while fretting due to vibration or the like is prevented to stabilize the bearing of the shaft.
 上記軸受本体の外周面の端部近傍に配置されるOリングをさらに備えるとよい。このようにOリングを備えることで、当該すべり軸受とハウジングとの寸法公差を精度よく調整しなくともハウジングに容易に取り付けることができる。また、寸法公差を大きくとることができることとOリングの弾性とによって当該すべり軸受の軸の傾きに対する追従性を高めることができる。 It is preferable to further include an O-ring arranged in the vicinity of the end portion of the outer peripheral surface of the bearing body. By providing the O-ring in this way, it can be easily attached to the housing without adjusting the dimensional tolerance between the sliding bearing and the housing with high accuracy. In addition, the ability to increase the dimensional tolerance and the elasticity of the O-ring can improve the followability to the inclination of the shaft of the slide bearing.
 ここで、「断面形状変化率」とは、荷重を加える前の軸受本体の最小内径d1と、荷重を加えた際の軸受本体の最小内径d2とを用いて、(d1-d2)/d1×100で求められる数値である。「支承領域」とは、軸受本体の内周面において法線が軸方向と垂直な領域を意味し、軸受本体の内周面に溝部が形成される場合には溝部を除いた領域を意味する。 Here, the “cross-sectional shape change rate” is (d1−d2) / d1 × using the minimum inner diameter d1 of the bearing body before applying a load and the minimum inner diameter d2 of the bearing body when applying a load. It is a numerical value obtained by 100. The “bearing region” means a region where the normal line is perpendicular to the axial direction on the inner peripheral surface of the bearing body, and when the groove portion is formed on the inner peripheral surface of the bearing body, it means a region excluding the groove portion. .
 以上説明したように、本発明のすべり軸受は、樹脂製でありながら強度及び摺動特性に優れ、金属製軸受の代替品として好適に使用することができる。 As described above, the plain bearing of the present invention is excellent in strength and sliding characteristics while being made of resin, and can be suitably used as a substitute for a metal bearing.
図1は、本発明の一実施形態のすべり軸受を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a plain bearing according to an embodiment of the present invention. 図2は、本発明の一実施形態のすべり軸受の使用状態を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a usage state of the plain bearing of one embodiment of the present invention. 図3は、図1のすべり軸受とは異なる実施形態のすべり軸受を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a slide bearing of an embodiment different from the slide bearing of FIG.
 以下、本発明に係るすべり軸受の各実施形態について図面を参照しつつ詳説する。 Hereinafter, embodiments of the slide bearing according to the present invention will be described in detail with reference to the drawings.
[第一実施形態]
 図1のすべり軸受1は、支承する軸に対し軸方向に摺動する軸受であり、円筒状の軸受本体2と、軸受本体2の内周面の端部近傍に配設されるシールリング3と、軸受本体2の外周面の端部近傍に配置されるOリング4とを備える。
[First embodiment]
1 is a bearing that slides in an axial direction with respect to a shaft to be supported, and includes a cylindrical bearing body 2 and a seal ring 3 disposed in the vicinity of the end portion of the inner peripheral surface of the bearing body 2. And an O-ring 4 disposed in the vicinity of the end of the outer peripheral surface of the bearing body 2.
 <軸受本体>
 軸受本体2は、円筒状に形成され、内周面の端部に形成され外側に拡径するテーパー部5と、内周面の中央部分に形成された溝部6とを有する。また軸受本体2は、フェノール樹脂及び炭素繊維を含有する樹脂組成物で形成されている。
<Bearing body>
The bearing body 2 is formed in a cylindrical shape, and includes a tapered portion 5 that is formed at an end portion of the inner peripheral surface and expands outward, and a groove portion 6 that is formed in a central portion of the inner peripheral surface. The bearing body 2 is formed of a resin composition containing a phenol resin and carbon fiber.
(軸受本体の形成組成物)
 上記フェノール樹脂としては、摺動部材の材料として慣用されているフェノール樹脂であれば特に制限なく用いることができる。このようなフェノール樹脂としては、例えばノボラック型フェノール樹脂、レゾール型フェノール樹脂等が挙げられ、これらの中でも摩耗量が少なくPV値が高い点でノボラック型フェノール樹脂が好ましい。また、レゾール型フェノール樹脂としては、メチロール型、ジメチレンエーテル型等が挙げられ、これらの中でも加工時の欠けの発生が少ない点でジメチレンエーテル型フェノール樹脂が好ましい。これらのフェノール樹脂は、固体状でも液体状でもよく、また、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Forming composition of bearing body)
As the phenol resin, any phenol resin commonly used as a material for a sliding member can be used without any particular limitation. Examples of such phenol resins include novolak type phenol resins and resol type phenol resins, and among these, novolak type phenol resins are preferred in that they have a low wear amount and a high PV value. Examples of the resol type phenol resin include methylol type and dimethylene ether type, and among them, dimethylene ether type phenol resin is preferable because of less occurrence of chipping during processing. These phenol resins may be solid or liquid, and may be used alone or in combination of two or more.
 上記フェノール樹脂の数平均分子量(Mn)の下限としては、400が好ましく、600がより好ましい。一方、上記フェノール樹脂の数平均分子量(Mn)の上限としては、1200が好ましく、1000がより好ましい。フェノール樹脂の数平均分子量を上記範囲内とすることにより軸受本体2の耐ヒートショック性を高めることができる。 The lower limit of the number average molecular weight (Mn) of the phenol resin is preferably 400, more preferably 600. On the other hand, the upper limit of the number average molecular weight (Mn) of the phenol resin is preferably 1200, more preferably 1000. By setting the number average molecular weight of the phenol resin within the above range, the heat shock resistance of the bearing body 2 can be improved.
 上記フェノール樹脂の重量平均分子量(Mw)の下限としては、400が好ましく、1000がより好ましい。一方、上記フェノール樹脂の重量平均分子量(Mw)の上限としては、5000が好ましく、4000がより好ましい。フェノール樹脂の重量平均分子量を上記範囲内とすることにより軸受本体2の安定性及び成形性を向上することができる。 The lower limit of the weight average molecular weight (Mw) of the phenol resin is preferably 400, more preferably 1000. On the other hand, the upper limit of the weight average molecular weight (Mw) of the phenol resin is preferably 5000 and more preferably 4000. By making the weight average molecular weight of the phenol resin within the above range, the stability and moldability of the bearing body 2 can be improved.
 上記フェノール樹脂において、フェノール類モノマーとフェノール類ダイマーとの合計含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。フェノール樹脂中のフェノール類モノマーとフェノール類ダイマーとの合計含有量を上記範囲内とすることにより、軸受本体2の摩擦係数を低下させ、摩耗量を減少させることができる。また、上記合計含有量を上記範囲内とすることによって、軸受本体2の耐熱性及び寸法精度を向上することができる。なお、フェノール樹脂中のフェノール類モノマーとフェノール類ダイマーとの合計含有量は0質量%でもよい。また、上記合計含有量はゲル濾過クロマトグラフの面積法による測定値である。 In the above phenol resin, the upper limit of the total content of the phenolic monomer and the phenolic dimer is preferably 10% by mass, and more preferably 5% by mass. By setting the total content of the phenolic monomer and the phenolic dimer in the phenolic resin within the above range, the friction coefficient of the bearing body 2 can be reduced and the wear amount can be reduced. Moreover, the heat resistance and dimensional accuracy of the bearing body 2 can be improved by setting the total content within the above range. The total content of the phenolic monomer and the phenolic dimer in the phenolic resin may be 0% by mass. Moreover, the said total content is a measured value by the area method of a gel filtration chromatograph.
 上記フェノール樹脂の重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)の下限としては、1.1が好ましい。一方、上記フェノール樹脂の重量平均分子量(Mw)と数平均分子量(Mn)との分散比(Mw/Mn)の上限としては、3.0が好ましく、2.8がより好ましい。フェノール樹脂の分散比(Mw/Mn)を上記範囲内とすることにより、軸受本体2の安定性及び成形性を向上することができ、耐熱性及び寸法精度を向上することができる。なお、上記分散比(Mw/Mn)は、ゲル濾過クロマトグラフ測定による測定値である。 The lower limit of the dispersion ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the phenol resin is preferably 1.1. On the other hand, the upper limit of the dispersion ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the phenol resin is preferably 3.0 and more preferably 2.8. By setting the dispersion ratio (Mw / Mn) of the phenol resin within the above range, the stability and moldability of the bearing body 2 can be improved, and the heat resistance and dimensional accuracy can be improved. The dispersion ratio (Mw / Mn) is a value measured by gel filtration chromatography.
 なかでも、上記フェノール樹脂は、フェノール類モノマーとフェノール類ダイマーとの合計含有量が10質量%以下であり、かつ上記分散比(Mw/Mn)が1.1以上3.0以下であることが特に好ましい。このようにフェノール類モノマーとフェノール類ダイマーとの合計含有量及び上記分散比(Mw/Mn)を共に上記範囲内とすることにより、軸受本体2の摩擦係数をより低下させ、摩耗量をより減少することができる。 Among them, the phenol resin has a total content of phenolic monomers and phenolic dimers of 10% by mass or less, and the dispersion ratio (Mw / Mn) is 1.1 or more and 3.0 or less. Particularly preferred. Thus, by making the total content of the phenolic monomer and the phenolic dimer and the dispersion ratio (Mw / Mn) both within the above range, the friction coefficient of the bearing body 2 is further reduced and the wear amount is further reduced. can do.
 軸受本体2を形成する樹脂組成物は炭素繊維を含有するため、高温環境下での強度保持率や強度に優れる。また炭素繊維は他の繊維に比べ相手材を傷つけないため上記樹脂組成物は摺動性にも優れる。この炭素繊維としては、PAN系、ピッチ系等が挙げられるが、PAN系の炭素繊維を用いることが好ましい。PAN系の炭素繊維を軸受に用いると摺動時のガスの発生が少なくなるため軸受本体2の摺動特性がより向上する。 Since the resin composition forming the bearing body 2 contains carbon fiber, it is excellent in strength retention and strength in a high temperature environment. Moreover, since the carbon fiber does not damage the counterpart material compared to other fibers, the resin composition is also excellent in slidability. Examples of the carbon fiber include PAN-based and pitch-based carbon fibers, but it is preferable to use PAN-based carbon fibers. When a PAN-based carbon fiber is used for the bearing, gas generation during sliding is reduced, so that the sliding characteristics of the bearing body 2 are further improved.
 上記炭素繊維の平均長さの下限としては、0.01mmが好ましく、0.05mmがより好ましく、0.1mmがさらに好ましい。一方、上記炭素繊維の平均長さの上限としては、1mmが好ましく、0.75mmがより好ましく、0.5mmがさらに好ましい。炭素繊維の平均長さが上記下限未満の場合、軸受本体2の機械的強度が低下するおそれがある。逆に、炭素繊維の平均長さが上記上限を超える場合、摺動時に炭素繊維が剥がれやすく、軸受本体2の摺動特性を低下させるおそれがある。なお、上記平均長さとは、炭素繊維における長径の平均値をいう。 The lower limit of the average length of the carbon fibers is preferably 0.01 mm, more preferably 0.05 mm, and further preferably 0.1 mm. On the other hand, the upper limit of the average length of the carbon fibers is preferably 1 mm, more preferably 0.75 mm, and even more preferably 0.5 mm. When the average length of the carbon fiber is less than the above lower limit, the mechanical strength of the bearing body 2 may be reduced. On the other hand, when the average length of the carbon fibers exceeds the above upper limit, the carbon fibers are easily peeled during sliding, and the sliding characteristics of the bearing body 2 may be deteriorated. In addition, the said average length means the average value of the long diameter in carbon fiber.
 フェノール樹脂100質量部に対する炭素繊維の含有量の下限としては、30質量部が好ましく、40質量部がより好ましく、50質量部がさらに好ましい。一方、フェノール樹脂100質量部に対する炭素繊維の含有量の上限としては、150質量部が好ましく、100質量部がより好ましく、70質量部がより好ましい。炭素繊維の含有量が上記下限未満の場合、軸受本体2の強度が低下するおそれがある。一方、炭素繊維の含有量が上記上限を超える場合、軸受本体2を形成する樹脂組成物の流動性が低下し、成形性が低下するおそれがある。 As a minimum of content of carbon fiber to 100 mass parts of phenol resins, 30 mass parts are preferred, 40 mass parts are more preferred, and 50 mass parts are still more preferred. On the other hand, as an upper limit of content of the carbon fiber with respect to 100 mass parts of phenol resins, 150 mass parts is preferable, 100 mass parts is more preferable, and 70 mass parts is more preferable. When the carbon fiber content is less than the above lower limit, the strength of the bearing body 2 may be reduced. On the other hand, when the carbon fiber content exceeds the above upper limit, the fluidity of the resin composition forming the bearing body 2 is lowered, and the moldability may be lowered.
 また、軸受本体2を形成する樹脂組成物には炭素繊維に加えてグラファイト(黒鉛)を含有させることが好ましい。 In addition to the carbon fiber, the resin composition forming the bearing body 2 preferably contains graphite (graphite).
 フェノール樹脂100質量部に対するグラファイトの含有量の下限としては、5質量部が好ましく、10質量部がより好ましく、50質量部がより好ましい。一方、フェノール樹脂100質量部に対するグラファイトの含有量の上限としては、200質量部が好ましく、150質量部がより好ましい。グラファイトの含有量が上記下限未満の場合、軸受本体2の摩擦係数が上昇し、摩耗量が増加するおそれがある。一方、グラファイトの含有量が上記上限を超える場合、軸受本体2の高温環境下での強度が低下するおそれがある。 As a minimum of content of graphite with respect to 100 mass parts of phenol resins, 5 mass parts are preferred, 10 mass parts are more preferred, and 50 mass parts are more preferred. On the other hand, the upper limit of the graphite content relative to 100 parts by mass of the phenol resin is preferably 200 parts by mass, and more preferably 150 parts by mass. When the graphite content is less than the lower limit, the friction coefficient of the bearing body 2 is increased, and the wear amount may be increased. On the other hand, when the graphite content exceeds the above upper limit, the strength of the bearing body 2 under a high temperature environment may be reduced.
 フェノール樹脂100質量部に対する炭素繊維及びグラファイトの合計含有量の下限としては、50質量部が好ましく、80質量部がより好ましく、100質量部がさらに好ましい。一方、フェノール樹脂100質量部に対する炭素繊維及びグラファイトの合計含有量の上限としては、250質量部が好ましく、200質量部がより好ましく、150質量部がさらに好ましい。炭素繊維及びグラファイトの合計含有量が上記下限未満の場合、軸受本体2の摩擦係数が上昇し、摩耗量が増加するおそれがある。一方、炭素繊維及びグラファイトの合計含有量が上記上限を超える場合、軸受本体2を形成する樹脂組成物の流動性が低下し、成形性が低下するおそれがある。 As a minimum of the total content of carbon fiber and graphite to 100 mass parts of phenol resin, 50 mass parts are preferred, 80 mass parts are more preferred, and 100 mass parts are still more preferred. On the other hand, the upper limit of the total content of carbon fiber and graphite with respect to 100 parts by mass of the phenol resin is preferably 250 parts by mass, more preferably 200 parts by mass, and even more preferably 150 parts by mass. When the total content of carbon fiber and graphite is less than the above lower limit, the friction coefficient of the bearing body 2 is increased, and the wear amount may be increased. On the other hand, when the total content of carbon fiber and graphite exceeds the above upper limit, the fluidity of the resin composition forming the bearing body 2 is lowered, and the moldability may be lowered.
 軸受本体2を形成する樹脂組成物にはエラストマーをさらに含有させることが好ましい。このエラストマーとしては、例えばアクリロニトリルブタジエンゴム(NBR)、ウレタンゴム、スチレン-ブタジエンゴム(SBR)、アクリルゴム、シリコーンゴム、ポリブタジエン等が挙げられる。これらの中でも、上記樹脂組成物の弾性率を効果的に低下させることができる点でアクリロニトリルブタジエンゴム(NBR)、ウレタンゴム、シリコーンゴムが好ましく、摺動特性を低下させることなく弾性率を低下させることができる点でアクリロニトリルブタジエンゴム(NBR)がより好ましい。これらのエラストマーは1種を単独で用いてもよく、2種以上を併用してもよい。 It is preferable that the resin composition forming the bearing body 2 further contains an elastomer. Examples of the elastomer include acrylonitrile butadiene rubber (NBR), urethane rubber, styrene-butadiene rubber (SBR), acrylic rubber, silicone rubber, and polybutadiene. Among these, acrylonitrile butadiene rubber (NBR), urethane rubber, and silicone rubber are preferable in that the elastic modulus of the resin composition can be effectively reduced, and the elastic modulus is reduced without reducing the sliding characteristics. In view of this, acrylonitrile butadiene rubber (NBR) is more preferable. These elastomers may be used individually by 1 type, and may use 2 or more types together.
 フェノール樹脂100質量部に対するエラストマーの含有量の下限としては、2質量部が好ましく、5質量部がより好ましい。一方、フェノール樹脂100質量部に対するエラストマーの含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、10質量部がより好ましい。エラストマーの含有量が上記下限未満の場合、軸受本体2の摺動時の軸への攻撃性が抑制されず摩耗量が増加するおそれや、加工性向上効果が不十分となるおそれがある。一方、エラストマーの含有量が上記上限を超える場合、軸受本体2の弾性率が低下し過ぎて耐クリープ性が低下するおそれがある。 The lower limit of the elastomer content relative to 100 parts by mass of the phenol resin is preferably 2 parts by mass and more preferably 5 parts by mass. On the other hand, as an upper limit of content of the elastomer with respect to 100 mass parts of phenol resins, 30 mass parts is preferable, 20 mass parts is more preferable, and 10 mass parts is more preferable. When the content of the elastomer is less than the lower limit, the aggressiveness to the shaft during sliding of the bearing body 2 may not be suppressed and the wear amount may increase, or the workability improvement effect may be insufficient. On the other hand, when the content of the elastomer exceeds the above upper limit, the elastic modulus of the bearing body 2 is excessively decreased, and the creep resistance may be decreased.
 軸受本体2を形成する樹脂組成物にはホウ素化合物をさらに含有させることが好ましい。上記ホウ素化合物としては、例えばホウ酸、ホウ酸塩、ホウ酸エステル、酸化ホウ素、ホウ砂等が挙げられる。ホウ酸塩としては、例えばメタホウ酸、四ホウ酸等の金属塩が挙げられ、具体的にはホウ酸亜鉛等が挙げられる。これらの中でも、ホウ酸、ホウ酸塩及び酸化ホウ素が好ましく、ホウ酸、ホウ酸亜鉛及び酸化ホウ素がより好ましい。これらのホウ素化合物は1種を単独で用いてもよく、2種以上を併用してもよい。 It is preferable that the resin composition forming the bearing body 2 further contains a boron compound. Examples of the boron compound include boric acid, borate, boric acid ester, boron oxide, and borax. Examples of borates include metal salts such as metaboric acid and tetraboric acid, and specific examples include zinc borate. Among these, boric acid, borate and boron oxide are preferable, and boric acid, zinc borate and boron oxide are more preferable. These boron compounds may be used alone or in combination of two or more.
 フェノール樹脂100質量部に対するホウ素化合物の含有量の下限としては、0.5質量部が好ましく、1.0質量部が好ましい。一方、フェノール樹脂100質量部に対するホウ素化合物の含有量の上限としては、10質量部が好ましく、7.0質量部がより好ましい。ホウ素化合物の含有量が上記下限未満の場合、軸受本体2の摩耗量が増加するおそれがある。一方、ホウ素化合物の含有量が上記上限を超える場合、軸受本体2の機械的強度や成形性が低下するおそれがある。 As a minimum of content of a boron compound to 100 mass parts of phenol resins, 0.5 mass part is preferred and 1.0 mass part is preferred. On the other hand, the upper limit of the content of the boron compound with respect to 100 parts by mass of the phenol resin is preferably 10 parts by mass, and more preferably 7.0 parts by mass. When the content of the boron compound is less than the above lower limit, the wear amount of the bearing body 2 may increase. On the other hand, when the content of the boron compound exceeds the above upper limit, the mechanical strength and formability of the bearing body 2 may be reduced.
 軸受本体2を形成する樹脂組成物には、本発明の効果を損なわない範囲でその他の添加剤を含有することができる。その他の添加剤としては、例えば硬化剤(例えばヘキサメチレンテトラミン等)、離型剤(例えばステアリン酸カルシウム、ステアリン酸亜鉛等)、硬化促進剤(酸化マグネシウム、消石灰等)、カップリング剤、溶剤等の他に、炭酸カルシウム、クレー、タルク、シリカ、アルミナ、アラミド繊維等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 The resin composition forming the bearing body 2 can contain other additives as long as the effects of the present invention are not impaired. Examples of other additives include a curing agent (for example, hexamethylenetetramine), a mold release agent (for example, calcium stearate, zinc stearate), a curing accelerator (magnesium oxide, slaked lime, etc.), a coupling agent, a solvent, and the like. Other examples include calcium carbonate, clay, talc, silica, alumina, and aramid fiber. These may be used alone or in combination of two or more.
 軸受本体2を形成する樹脂組成物の150℃における曲げ強度の下限としては、70MPaが好ましく、80MPaがより好ましく、90MPaがさらに好ましい。上記樹脂組成物の150℃における曲げ強度が上記下限未満の場合、摺動により温度が上昇した時に当該すべり軸受1の強度が低下するおそれがある。なお、曲げ強度とは、JIS-K7171:2008に準拠して計測される値である。 The lower limit of the bending strength at 150 ° C. of the resin composition forming the bearing body 2 is preferably 70 MPa, more preferably 80 MPa, and even more preferably 90 MPa. When the bending strength at 150 ° C. of the resin composition is less than the lower limit, the strength of the sliding bearing 1 may be lowered when the temperature is increased by sliding. The bending strength is a value measured according to JIS-K7171: 2008.
 また、軸受本体2を形成する樹脂組成物の23℃における曲げ強度に対する150℃における曲げ強度の比の下限としては、80%が好ましく、82%がより好ましい。上記樹脂組成物の23℃における曲げ強度に対する150℃における曲げ強度の比が上記下限未満の場合、温度上昇時に当該すべり軸受1が大きく変形するおそれがある。 The lower limit of the ratio of the bending strength at 150 ° C. to the bending strength at 23 ° C. of the resin composition forming the bearing body 2 is preferably 80% and more preferably 82%. When the ratio of the bending strength at 150 ° C. to the bending strength at 23 ° C. of the resin composition is less than the lower limit, the slide bearing 1 may be greatly deformed when the temperature rises.
 軸受本体2を形成する樹脂組成物の製造方法としては、公知の各種方法を用いることができる。具体的には、例えば上述の各種成分を加圧ニーダー、ミキシングロール、二軸押出機等で加熱溶融させて、混練した後、得られる混練物をシート状に成形し、このシート状成形品をさらにペレタイザー、パワーミル等を用いて粉砕することによって製造することができる。 Various known methods can be used as a method for producing the resin composition for forming the bearing body 2. Specifically, for example, the above-mentioned various components are heated and melted with a pressure kneader, a mixing roll, a twin screw extruder, and the like, kneaded, and then the obtained kneaded product is formed into a sheet shape. Furthermore, it can manufacture by grind | pulverizing using a pelletizer, a power mill, etc.
 (軸受本体の寸法等)
 軸受本体2の最大肉厚tに対する軸受本体2の最小内径dの比(d/t)の下限としては、2であり、2.5がより好ましい。一方、軸受本体2の最大肉厚tに対する軸受本体2の最小内径dの比の上限としては、4.5であり、4がより好ましい。最大肉厚tに対する最小内径dの比が上記下限未満の場合、肉厚が大きくなりすぎて、当該すべり軸受1が金属軸受の寸法規格に適合できないおそれがある。逆に、最大肉厚tに対する最小内径dの比が上記上限を超える場合、当該すべり軸受1の強度や取扱い性が低下するおそれがある。
(Bearing body dimensions, etc.)
The lower limit of the ratio (d / t) of the minimum inner diameter d of the bearing body 2 to the maximum wall thickness t of the bearing body 2 is 2, and 2.5 is more preferable. On the other hand, the upper limit of the ratio of the minimum inner diameter d of the bearing body 2 to the maximum wall thickness t of the bearing body 2 is 4.5, and 4 is more preferable. When the ratio of the minimum inner diameter d to the maximum wall thickness t is less than the above lower limit, the wall thickness becomes too large, and the slide bearing 1 may not meet the dimensional standard of the metal bearing. On the contrary, when the ratio of the minimum inner diameter d to the maximum wall thickness t exceeds the upper limit, the strength and handleability of the plain bearing 1 may be reduced.
 軸受本体2の最大肉厚tとしては、特に限定されず、例えば3mm以上25mm以下とすることができる。同様に、軸受本体2の最小内径dとしては、特に限定されず、例えば6mm以上120mm以下とすることができる。また、軸受本体2の軸方向長さLは、例えば6mm以上200mm以下とすることができる。 The maximum wall thickness t of the bearing body 2 is not particularly limited, and can be, for example, 3 mm or more and 25 mm or less. Similarly, the minimum inner diameter d of the bearing body 2 is not particularly limited, and can be, for example, 6 mm or more and 120 mm or less. Further, the axial length L of the bearing body 2 can be set to, for example, 6 mm or more and 200 mm or less.
 (テーパー部)
 テーパー部5は、外側に拡径するように軸受本体2の内周面の両端部にそれぞれ形成される。このテーパー部5を設けることで軸と軸受本体2との接触面積を抑えて軸受として安定させることができる。また、当該すべり軸受1の端部口径が広がるため軸の挿入がスムーズになる。さらに、可動時に当該すべり軸受1が応力を受けることで軸に対して傾くことがあるが、テーパー部5によってこの傾きに追従することができる。
(Taper part)
The tapered portions 5 are respectively formed at both ends of the inner peripheral surface of the bearing body 2 so as to expand the diameter outward. By providing the taper portion 5, the contact area between the shaft and the bearing body 2 can be suppressed and stabilized as a bearing. Further, since the end diameter of the slide bearing 1 is widened, the shaft can be inserted smoothly. Furthermore, the sliding bearing 1 may be inclined with respect to the shaft by receiving stress when it is movable, but this inclination can be followed by the tapered portion 5.
 軸受本体2の軸方向長さLに対するテーパー部5の軸方向長さL’の比(L’/L)としては、0.25未満が好ましく、0.20未満がより好ましい。軸受本体2の軸方向長さLに対するテーパー部5の軸方向長さL’の比が上記上限以上の場合、軸と軸受本体2との接触面積が小さくなって軸の支承が不安定になるおそれがある。 The ratio (L ′ / L) of the axial length L ′ of the tapered portion 5 to the axial length L of the bearing body 2 is preferably less than 0.25, and more preferably less than 0.20. When the ratio of the axial length L ′ of the tapered portion 5 to the axial length L of the bearing body 2 is equal to or greater than the above upper limit, the contact area between the shaft and the bearing body 2 becomes small and the shaft support becomes unstable. There is a fear.
 テーパー部5のテーパー率(長さに対する直径の増加率)の下限としては、0.1/10が好ましく、0.2/10がより好ましい。一方、テーパー部5のテーパー率の上限としては、2/10が好ましく、1/10がより好ましい。テーパー部5のテーパー率を上記下限以上とすることで、軸の装入を容易にすることができる。また、テーパー部5のテーパー率を上記上限以下とすることで、後述するシールリング3の脱落を防止し易くできる。 The lower limit of the taper ratio (the increase rate of the diameter with respect to the length) of the tapered portion 5 is preferably 0.1 / 10, and more preferably 0.2 / 10. On the other hand, as an upper limit of the taper rate of the taper part 5, 2/10 is preferable and 1/10 is more preferable. By setting the taper ratio of the taper portion 5 to be equal to or higher than the above lower limit, it is possible to easily insert the shaft. Further, by setting the taper ratio of the taper portion 5 to be equal to or less than the above upper limit, it is possible to easily prevent the seal ring 3 to be described later from falling off.
 (溝部)
 溝部6は、軸受本体2の内周面の中央部に円周状に形成された溝である。この溝部6にすべり運動を繰り返すことで生じる磨耗粉や異物を溜めることができ、磨耗粉や異物が軸と当該すべり軸受1との接触面に存在したまますべり運動することで傷が生じることを防止できる。また溝部6によって軸と軸受本体2との接触面積を小さくすることができる。また、例えば軸受本体2の中央部のみが軸に接触しているだけになると軸受本体2のガタツキや応力集中が生じるが、溝部6によって軸受本体2の端部側の2箇所に接触面が形成されるため、接触面積を小さくしつつガタツキや応力集中を防止できる。
(Groove)
The groove 6 is a groove formed in a circumferential shape in the center of the inner peripheral surface of the bearing body 2. It is possible to accumulate wear powder and foreign matter generated by repeating the sliding motion in the groove 6, and that the wear powder and foreign matter are present on the contact surface between the shaft and the slide bearing 1 to cause scratches. Can be prevented. Further, the contact area between the shaft and the bearing body 2 can be reduced by the groove 6. Further, for example, if only the central portion of the bearing body 2 is in contact with the shaft, rattling and stress concentration of the bearing body 2 occur, but contact surfaces are formed at two locations on the end side of the bearing body 2 by the groove 6. Therefore, rattling and stress concentration can be prevented while reducing the contact area.
 溝部6の幅(軸方向長さ)の下限としては、軸受本体2の軸方向長さLの8%が好ましく、10%がより好ましい。一方、溝部6の幅の上限としては、軸受本体2の軸方向長さLの20%が好ましく、15%がより好ましい。溝部6の幅が上記下限未満の場合、摩耗粉等を溜める効果が十分得られないおそれがある。逆に、溝部6の幅が上記上限を超える場合、軸と軸受本体2との接触面積が小さくなり過ぎて軸の支承の安定性が低下するおそれがある。 The lower limit of the width (axial length) of the groove 6 is preferably 8% of the axial length L of the bearing body 2 and more preferably 10%. On the other hand, the upper limit of the width of the groove 6 is preferably 20% of the axial length L of the bearing body 2 and more preferably 15%. When the width of the groove 6 is less than the lower limit, the effect of accumulating wear powder or the like may not be sufficiently obtained. On the other hand, when the width of the groove 6 exceeds the above upper limit, the contact area between the shaft and the bearing body 2 becomes too small, and the stability of the shaft support may be lowered.
 溝部6の深さの下限としては、軸受本体2の最大肉厚tの8%が好ましく、10%がより好ましい。一方、溝部6の深さの上限としては、軸受本体2の最大肉厚tの30%が好ましく、25%がより好ましい。溝部6の深さが上記下限未満の場合、摩耗粉等を溜める効果が十分得られないおそれがある。逆に、溝部6の深さが上記上限を超える場合、軸受本体2の溝部6を設けた個所の強度が低下するおそれがある。 The lower limit of the depth of the groove 6 is preferably 8% of the maximum wall thickness t of the bearing body 2 and more preferably 10%. On the other hand, the upper limit of the depth of the groove 6 is preferably 30% of the maximum thickness t of the bearing body 2 and more preferably 25%. When the depth of the groove part 6 is less than the said minimum, there exists a possibility that the effect which accumulates abrasion powder etc. cannot fully be acquired. Conversely, when the depth of the groove 6 exceeds the upper limit, the strength of the portion of the bearing body 2 where the groove 6 is provided may be reduced.
 軸受本体2の内周面における支承領域の内周面全体に対する割合の下限としては、40%が好ましく、50%がより好ましく、60%がさらに好ましい。一方、軸受本体2の内周面における支承領域の内周面全体に対する割合の上限としては、95%が好ましく、90%がより好ましく、85%がさらに好ましい。支承領域の割合が上記下限未満の場合、振動によるフレッチングが発生するなどして軸を安定して支承できないおそれがある。逆に、支承領域の割合が上記上限を超える場合、軸受本体2の摩擦抵抗が大きくなって摺動特性が低下するおそれがある。 The lower limit of the ratio of the support area to the entire inner peripheral surface of the inner peripheral surface of the bearing body 2 is preferably 40%, more preferably 50%, and even more preferably 60%. On the other hand, the upper limit of the ratio of the bearing region to the entire inner peripheral surface of the inner peripheral surface of the bearing body 2 is preferably 95%, more preferably 90%, and even more preferably 85%. If the ratio of the bearing area is less than the lower limit, fretting due to vibration may occur, and the shaft may not be supported stably. On the contrary, when the ratio of the bearing area exceeds the upper limit, the frictional resistance of the bearing body 2 is increased and the sliding characteristics may be deteriorated.
 軸受本体2を水平面に載置し、軸受本体2の全長にわたって上部から下方に8.33N/mmの荷重を加えた際の断面形状変化率の上限としては、0.5%であり、0.45%がより好ましく、0.4%がさらに好ましい。軸受本体2の断面形状変化率が上記上限を超える場合、当該すべり軸受1の使用時に軸荷重により軸受本体2が変形し軸受として機能しないおそれがある。 The upper limit of the cross-sectional shape change rate when the bearing body 2 is placed on a horizontal plane and a load of 8.33 N / mm is applied downward from the top to the entire length of the bearing body 2 is 0.5%. 45% is more preferable, and 0.4% is more preferable. When the cross-sectional shape change rate of the bearing body 2 exceeds the above upper limit, the bearing body 2 may be deformed by an axial load when the slide bearing 1 is used, and may not function as a bearing.
 <シールリング>
 シールリング3は、軸受本体2の内周面の両端部近傍にそれぞれ形成されたシール溝に1つずつ配設されるリングである。潤滑油を当該すべり軸受1に用いた場合、シールリング3によって潤滑油を軸受本体2の内周面とシールリング3との間に保持しておくことができるため、潤滑油の使用量を抑え、かつ他の機器への潤滑油の飛散を防止することができる。また、外部からの異物が軸受本体2内部へ侵入することを防止することができる。
<Seal ring>
The seal ring 3 is a ring disposed one by one in a seal groove formed in the vicinity of both end portions of the inner peripheral surface of the bearing body 2. When lubricating oil is used for the sliding bearing 1, the lubricating oil can be held between the inner peripheral surface of the bearing body 2 and the sealing ring 3 by the seal ring 3. In addition, splashing of the lubricating oil to other devices can be prevented. Further, it is possible to prevent foreign matters from entering the inside of the bearing body 2.
 シールリング3を配設する(シール溝を形成する)軸方向の位置としては、テーパー部5が形成されている領域内が好ましい。テーパー部5の形成領域にシールリング3が存在することにより、図2に示すようにシールリング3の内側に軸受本体2と軸Xとに挟まれる比較的広い空間部を形成することができる。その結果、この空間部に潤滑油が貯まりシールリング3付近に常に潤滑油が存在することでシールリング3へ摺動に必要な潤滑油を確実に供給でき、効率の良いすべりを実現させることができる。また、テーパー部5は上述したように軸の傾きに対する追従機能を有するが、一方で軸との接触面積が低減することによるフレッチング発生等のリスクを有する。そこでシールリング3をテーパー部5の形成領域に設けることで、追従機能と軸との接触面積とをバランスよく確保することができ、当該すべり軸受1の軸受性能を効果的に向上させることができる。 The position in the axial direction in which the seal ring 3 is disposed (forms a seal groove) is preferably in the region where the tapered portion 5 is formed. Due to the presence of the seal ring 3 in the region where the taper portion 5 is formed, a relatively wide space portion sandwiched between the bearing body 2 and the shaft X can be formed inside the seal ring 3 as shown in FIG. As a result, the lubricating oil is stored in this space and the lubricating oil is always present in the vicinity of the seal ring 3, so that the lubricating oil necessary for sliding can be reliably supplied to the seal ring 3, and an efficient slip can be realized. it can. Further, as described above, the tapered portion 5 has a function of following the inclination of the shaft, but on the other hand, there is a risk of occurrence of fretting due to a reduction in the contact area with the shaft. Therefore, by providing the seal ring 3 in the formation region of the tapered portion 5, the following function and the contact area with the shaft can be secured in a balanced manner, and the bearing performance of the sliding bearing 1 can be effectively improved. .
 軸受本体2の軸方向長さLに対する軸受本体2の端部からシールリング3までの距離h1の比(h1/L)の下限としては、0.05が好ましく、0.10がより好ましい。一方、軸受本体2の軸方向長さLに対する軸受本体2の端部からシールリング3までの距離h1の比の上限としては、0.20が好ましく、0.15がより好ましい。軸受本体2の軸方向長さLに対する軸受本体2の端部からシールリング3までの距離h1の比が上記下限未満の場合、シールリング3が軸受本体2の端部に近づき過ぎて、テーパー部5による軸の挿入容易化機能が阻害されるおそれがある。また、軸受本体2端部及びシールリング3間の部位が薄くなりこの部位が割れ易くなるおそれがある。逆に、軸受本体2の軸方向長さLに対する軸受本体2の端部からシールリング3までの距離h1の比が上記上限を超える場合、軸受本体2の端部からシールリング3までの距離が大きくなり過ぎて、異物混入防止効果が十分得られないおそれがある。 The lower limit of the ratio (h1 / L) of the distance h1 from the end of the bearing body 2 to the seal ring 3 with respect to the axial length L of the bearing body 2 is preferably 0.05, and more preferably 0.10. On the other hand, the upper limit of the ratio of the distance h1 from the end of the bearing body 2 to the seal ring 3 with respect to the axial length L of the bearing body 2 is preferably 0.20, and more preferably 0.15. When the ratio of the distance h1 from the end of the bearing body 2 to the seal ring 3 with respect to the axial length L of the bearing body 2 is less than the lower limit, the seal ring 3 is too close to the end of the bearing body 2 and the tapered portion. There is a possibility that the function of facilitating the insertion of the shaft by 5 is hindered. Further, the portion between the end portion of the bearing main body 2 and the seal ring 3 may become thin, and this portion may be easily broken. Conversely, when the ratio of the distance h1 from the end of the bearing body 2 to the seal ring 3 with respect to the axial length L of the bearing body 2 exceeds the upper limit, the distance from the end of the bearing body 2 to the seal ring 3 is There is a possibility that the effect of preventing contamination by foreign matters cannot be obtained sufficiently because the size becomes too large.
 シールリング3が配設されるシール溝の深さはシールリング3のつぶし率(変形率)に応じて決定されるが、例えば1mm以上4mm以下とすることができる。また、シールリング3の幅(軸方向長さ)としては、例えば1mm以上4mm以下とすることができる。 The depth of the seal groove in which the seal ring 3 is disposed is determined according to the crushing rate (deformation rate) of the seal ring 3, and may be, for example, 1 mm or more and 4 mm or less. Moreover, as a width | variety (axial direction length) of the seal ring 3, it is 1 mm or more and 4 mm or less, for example.
 シールリング3の断面形状としては、例えばO形状、X形状等が挙げられる。これらの中でも、2点でシールが行われ、軸方向にすべり運動をさせる際にリングのねじれが生じにくいX形状が好ましい。 Examples of the cross-sectional shape of the seal ring 3 include an O shape and an X shape. Among these, the X shape is preferable, in which sealing is performed at two points and the ring is less likely to be twisted when sliding in the axial direction.
 シールリング3の材質は特に限定されず、合成樹脂やゴム等のシールリングの材質として公知のものを用いることができる。 The material of the seal ring 3 is not particularly limited, and a known material such as a synthetic resin or rubber can be used.
 <Oリング>
 Oリング4は、軸受本体2の外周面の両端部近傍にそれぞれ形成されたリング溝に1つずつ配置されるリングである。このOリング4によって、軸受本体2の外径とハウジングYの内径との寸法差を精度よく調整する必要なく、図2に示すように当該すべり軸受1をハウジングYに精度よく嵌入固定することができる。その結果、軸受本体2のハウジングYへの嵌入コストを低減することができる。
<O-ring>
The O-ring 4 is a ring arranged one by one in the ring groove formed in the vicinity of both ends of the outer peripheral surface of the bearing body 2. With this O-ring 4, the sliding bearing 1 can be accurately fitted and fixed to the housing Y as shown in FIG. 2 without having to adjust the dimensional difference between the outer diameter of the bearing body 2 and the inner diameter of the housing Y with high precision. it can. As a result, the insertion cost of the bearing body 2 into the housing Y can be reduced.
 軸受本体2の軸方向長さLに対する軸受本体2の端部からOリング4の中心位置までの距離h2の比(h2/L)としては特に限定されず、例えば0.1以上0.4以下とすることができる。軸受本体2の軸方向長さLに対する軸受本体2の端部からOリング4の中心位置までの距離h2の比を上記範囲内とすることで、当該すべり軸受1のハウジングへの取付容易性を向上させることができる。 The ratio (h2 / L) of the distance h2 from the end of the bearing body 2 to the center position of the O-ring 4 with respect to the axial length L of the bearing body 2 is not particularly limited. It can be. By making the ratio of the distance h2 from the end of the bearing body 2 to the center position of the O-ring 4 with respect to the axial length L of the bearing body 2 within the above range, the ease of mounting the slide bearing 1 to the housing is improved. Can be improved.
 Oリング4が配設されるシール溝の深さはOリング4のつぶし率(変形率)に応じて決定されるが、例えば1mm以上4mm以下とすることができる。また、Oリング4の幅(軸方向長さ)としては、例えば1mm以上4mm以下とすることができる。 The depth of the seal groove in which the O-ring 4 is disposed is determined according to the crushing rate (deformation rate) of the O-ring 4, and can be, for example, 1 mm or more and 4 mm or less. Moreover, as a width | variety (axial direction length) of the O-ring 4, it can be 1 mm or more and 4 mm or less, for example.
 Oリング4の材質は特に限定されず、合成樹脂やゴム等のOリングの材質として公知のものを用いることができる。 The material of the O-ring 4 is not particularly limited, and a known material such as a synthetic resin or rubber can be used.
 <すべり軸受の製造方法>
 当該すべり軸受1は、例えば以下の方法で製造することができる。まず、上述した軸受本体2を形成する樹脂組成物を射出成形機で筒状に成形することで軸受本体2を形成する。この射出成型した軸受本体2にマシニングセンタ、旋盤等を用いて切削加工を行い、テーパー部5、溝部6、並びにシールリング用の溝及びOリング用の溝を形成する。その後、シールリング3及びOリング4をそれぞれ溝に嵌入することで、当該すべり軸受1を得ることができる。
<Slide bearing manufacturing method>
The slide bearing 1 can be manufactured, for example, by the following method. First, the bearing body 2 is formed by molding the resin composition forming the bearing body 2 described above into a cylindrical shape with an injection molding machine. The injection-molded bearing body 2 is cut using a machining center, a lathe or the like to form a taper portion 5, a groove portion 6, a seal ring groove, and an O-ring groove. Then, the said sliding bearing 1 can be obtained by inserting the seal ring 3 and the O-ring 4 in a groove | channel, respectively.
 <利点>
 当該すべり軸受1は、軸受本体2がフェノール樹脂及び炭素繊維を含有する樹脂組成物で形成されるため、摩擦係数が小さく優れた摺動性を有する。また、軸受本体2の最大肉厚tに対する軸受本体2の最小内径dの比が一定値以下であり、かつ荷重を上下方向に加えた際の断面形状変化率が一定値以下であるため、軸受として十分な強度を有する。さらに、軸受本体2の最大肉厚tに対する最小内径dの比が一定値以上であることで、肉厚が小さい金属製軸受の代替軸受として好適に使用することができる。
<Advantages>
Since the bearing body 2 is formed of a resin composition containing a phenol resin and carbon fiber, the plain bearing 1 has a small friction coefficient and excellent slidability. Further, since the ratio of the minimum inner diameter d of the bearing body 2 to the maximum wall thickness t of the bearing body 2 is not more than a certain value and the rate of change in cross-sectional shape when a load is applied in the vertical direction is not more than a certain value, Sufficient strength. Furthermore, since the ratio of the minimum inner diameter d to the maximum wall thickness t of the bearing body 2 is a certain value or more, it can be suitably used as an alternative bearing for a metal bearing having a small wall thickness.
 [第二実施形態]
 図3のすべり軸受11は、支承する軸に対し軸方向に摺動する軸受であり、円筒状の軸受本体2と、軸受本体2の内周面の端部近傍に配設されるシールリング3と、軸受本体2の外周面の端部近傍に配置されるOリング4と、軸受本体2が有する溝部6に配設される摺動材7とを備える。軸受本体2、シールリング3及びOリング4は上記第一実施形態のすべり軸受1と同様であるため、同一符号を付して説明を省略する。
[Second Embodiment]
3 is a bearing that slides in the axial direction with respect to a shaft to be supported, and includes a cylindrical bearing body 2 and a seal ring 3 disposed in the vicinity of the end portion of the inner peripheral surface of the bearing body 2. And an O-ring 4 disposed in the vicinity of the end portion of the outer peripheral surface of the bearing body 2 and a sliding member 7 disposed in the groove 6 included in the bearing body 2. Since the bearing body 2, the seal ring 3, and the O-ring 4 are the same as the sliding bearing 1 of the first embodiment, the same reference numerals are given and the description thereof is omitted.
 <摺動材>
 摺動材7は、軸受本体2が有する溝部6に沿って配設され、潤滑油を含浸した樹脂から形成されている。このように潤滑油を含浸させた樹脂からなる摺動材7を配設することで、潤滑油が長時間にわたり軸受本体2内部に適量に供給されるため、当該すべり軸受11の摺動特性を向上させることができる。この摺動材7から供給される潤滑油は、シールリング3によって軸受本体2の内部に留めることができる。
<Sliding material>
The sliding member 7 is disposed along the groove portion 6 of the bearing body 2 and is made of a resin impregnated with lubricating oil. By disposing the sliding material 7 made of the resin impregnated with the lubricating oil in this way, the lubricating oil is supplied in an appropriate amount into the bearing body 2 for a long time, so that the sliding characteristics of the sliding bearing 11 are improved. Can be improved. The lubricating oil supplied from the sliding member 7 can be retained inside the bearing body 2 by the seal ring 3.
 摺動材7の材質は特に限定されず、例えばポリアミド、ポリアセタール、ポリテトラフルオロエチレン等の合成樹脂を用いることができる。 The material of the sliding member 7 is not particularly limited, and for example, a synthetic resin such as polyamide, polyacetal, polytetrafluoroethylene can be used.
 なお、当該すべり軸受11の製造時に、上記摺動材7の内径を軸受本体2の内径よりも大きくし、軸に当接しないようにしておくことが好ましい。このように摺動材7の内径を軸受本体2の内径よりも大きくすることで、当該すべり軸受11の摺動面(軸受本体2の内周面)のならし運転において、摺動材7から潤滑油が染み出して摺動面のならしが不十分となることを防止することができる。 It should be noted that when the sliding bearing 11 is manufactured, it is preferable that the inner diameter of the sliding member 7 is larger than the inner diameter of the bearing body 2 so as not to contact the shaft. In this way, by making the inner diameter of the sliding material 7 larger than the inner diameter of the bearing body 2, the sliding material 7 can be removed from the sliding material 7 in the leveling operation of the sliding surface of the sliding bearing 11 (inner peripheral surface of the bearing body 2). It can be prevented that the lubricating oil oozes out and the sliding surface becomes insufficiently smoothed.
 [その他の実施例]
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Examples]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configuration of the embodiment described above, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims. The
 上記各実施形態では、テーパー部、溝部、シールリング及びOリングを備えていたが、これらは必須の構成要素ではなく、これらを備えていないすべり軸受も本発明の意図する範囲内である。また、テーパー部、シールリング及びOリングは必ずしも両端部に配設する必要はなく、一方の端部のみに配設されていてもよい。なお、Oリングは3つ以上配設してもよい。また、溝部を軸受本体に複数設けてもよく、さらに摺動材をそれぞれの溝部に配設してもよい。 In each of the above embodiments, the tapered portion, the groove portion, the seal ring, and the O-ring are provided. However, these are not indispensable components, and a slide bearing that does not include these is also within the intended scope of the present invention. Further, the taper portion, the seal ring, and the O-ring are not necessarily disposed at both end portions, and may be disposed only at one end portion. Three or more O-rings may be provided. Further, a plurality of groove portions may be provided in the bearing body, and a sliding material may be further provided in each groove portion.
 以下、本発明を実施例によりさらに詳細に説明するが、これらの実施例によって本発明が限定されるものではない。なお、実施例に記載の「部」及び「%」は特に断らない限り「質量部」及び「質量%」を示す。また、本明細書において質量部を用いて配合量を説明する場合、フェノール樹脂100質量部に対する質量部として記載する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” and “%” indicate “parts by mass” and “% by mass” unless otherwise specified. Moreover, when describing a compounding quantity using a mass part in this specification, it describes as a mass part with respect to 100 mass parts of phenol resins.
(ノボラック型フェノール樹脂の製造)
 温度計、攪拌装置及びコンデンサーを備えた反応容器内に、フェノール(P)を193部、92%パラホルムアルデヒド(F)を57部(F/P(モル比)=0.85)、89%リン酸を116部(60%/P)、そしてエチレングリコールを96.5部(50%/P)、それぞれ仕込んだ後、攪拌混合を行った。次いで、攪拌混合により形成された白濁状態(二相混合物)の下で、徐々に還流温度まで昇温し、さらに同温度で10時間縮合反応を行なった。反応停止後、攪拌混合しながらメチルイソブチルケトンを反応混合物に添加して縮合生成物を溶解した。その後、攪拌混合を停止して内容物を分液フラスコ内に移して静置し、メチルイソブチルケトン溶液層(上層)とリン酸水溶液層(下層)とに分離させた。次いで、リン酸水溶液層を除去し、メチルイソブチルケトン溶液を数回水洗してリン酸を除いた後、再び内容物を反応容器内に戻し、減圧蒸留によりメチルイソブチルケトンを完全に除去して213.5部のノボラック型フェノール樹脂を得た。このノボラック型フェノール樹脂は、数平均分子量が755、重量平均分子量が1227であり、分散比が1.63であった。なお、東ソー株式会社製ゲル濾過クロマトグラフSC-8020シリーズビルドアップシステム(カラム:G2000Hxl+G4000Hxl、検出器:UV254nm、キャリヤー:テトラヒドロフラン1ml/分、カラム温度:38℃)を用いて標準ポリスチレン換算の重量平均分子量(Mw)及び数平均分子量(Mn)を求め、分散比(Mw/Mn)を算出した。また、分子量分布の全面積に対するフェノール類モノマー及びフェノール類ダイマーの面積を百分率で表示する面積法によって測定したところ、0.3%及び3.3%であった。
(Manufacture of novolac type phenolic resin)
In a reaction vessel equipped with a thermometer, a stirrer and a condenser, 193 parts of phenol (P), 57 parts of 92% paraformaldehyde (F) (F / P (molar ratio) = 0.85), 89% phosphorus 116 parts (60% / P) of acid and 96.5 parts (50% / P) of ethylene glycol were charged, and then stirred and mixed. Next, under a cloudy state (two-phase mixture) formed by stirring and mixing, the temperature was gradually raised to the reflux temperature, and a condensation reaction was further performed at the same temperature for 10 hours. After the reaction was stopped, methyl isobutyl ketone was added to the reaction mixture with stirring and mixing to dissolve the condensation product. Thereafter, stirring and mixing were stopped, and the contents were transferred to a separation flask and allowed to stand, and separated into a methyl isobutyl ketone solution layer (upper layer) and a phosphoric acid aqueous solution layer (lower layer). Next, the phosphoric acid aqueous solution layer was removed, and the methyl isobutyl ketone solution was washed with water several times to remove phosphoric acid, and then the contents were returned to the reaction vessel again, and methyl isobutyl ketone was completely removed by distillation under reduced pressure. 5 parts of a novolak type phenolic resin was obtained. This novolac type phenol resin had a number average molecular weight of 755, a weight average molecular weight of 1,227, and a dispersion ratio of 1.63. The weight average molecular weight in terms of standard polystyrene using a gel filtration chromatograph SC-8020 series build-up system manufactured by Tosoh Corporation (column: G2000Hxl + G4000Hxl, detector: UV254 nm, carrier: tetrahydrofuran 1 ml / min, column temperature: 38 ° C.) (Mw) and number average molecular weight (Mn) were determined, and the dispersion ratio (Mw / Mn) was calculated. Moreover, it was 0.3% and 3.3% when it measured by the area method which displays the area of the phenolic monomer and phenolic dimer with respect to the whole area of molecular weight distribution by a percentage.
(樹脂組成物Aの製造)
 表1に示すように、上記ノボラック型フェノール樹脂100質量部、グラファイト(黒鉛)(日本黒鉛工業株式会社製)100質量部、PAN系炭素繊維(東レ株式会社製、「TA008A」、繊維長3mm)50質量部、ホウ酸(日本電工株式会社製)3質量部、アクリロニトリルブタジエンゴム(NBR)(JSR株式会社製、「PNC-38」)7.5質量部、硬化剤(ヘキサメチレンテトラミン)11質量部、離型剤(ステアリン酸カルシウム)4質量部を配合し、均一に混合した。その後、得られた混合物を熱ロールにて均一に加熱混練してシート状にし、冷却後、パワーミルで粉砕してグラニュール状の樹脂組成物Aを得た。
(Production of resin composition A)
As shown in Table 1, 100 parts by mass of the novolak type phenol resin, 100 parts by mass of graphite (made by Nippon Graphite Industries Co., Ltd.), PAN-based carbon fiber (manufactured by Toray Industries, Inc., “TA008A”, fiber length 3 mm) 50 parts by mass, boric acid (manufactured by Nippon Electric Works) 3 parts by mass, acrylonitrile butadiene rubber (NBR) (manufactured by JSR Corporation, “PNC-38”) 7.5 parts by mass, curing agent (hexamethylenetetramine) 11 parts by mass Part and a release agent (calcium stearate) 4 parts by mass were mixed uniformly. Thereafter, the obtained mixture was uniformly heated and kneaded with a hot roll to form a sheet, cooled, and then pulverized with a power mill to obtain a granular resin composition A.
(樹脂組成物Bの製造)
 表1に示すように、NBRの代わりにシリコーンゴム(信越化学工業株式会社製、「KMP-597」)7.5質量部を配合した以外は上記樹脂組成物Aと同様の配合及び加工条件を用いて、グラニュール状の樹脂組成物Bを得た。
(Production of resin composition B)
As shown in Table 1, the same composition and processing conditions as those of the resin composition A except that 7.5 parts by mass of silicone rubber (“KMP-597” manufactured by Shin-Etsu Chemical Co., Ltd.) were used instead of NBR. By using, a granular resin composition B was obtained.
(樹脂組成物Cの製造)
 表1に示すように、ホウ酸の代わりに酸化ホウ素(日東電工株式会社製)3質量部を配合した以外は上記樹脂組成物Aと同様の配合及び加工条件を用いて、グラニュール状の樹脂組成物Cを得た。
(Production of resin composition C)
As shown in Table 1, a granulated resin was prepared using the same formulation and processing conditions as the resin composition A except that 3 parts by mass of boron oxide (manufactured by Nitto Denko Corporation) was used instead of boric acid. Composition C was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1~3及び比較例1>
 上述のようにして得られた樹脂組成物A,B,Cのうち、表2に示す樹脂組成物をそれぞれ20tプレス機を用いて成形温度180℃、成型圧力15tで圧縮成形したのち切削加工することで表2に記載の寸法の実施例1~3及び比較例1の円筒状のすべり軸受を得た。
<Examples 1 to 3 and Comparative Example 1>
Of the resin compositions A, B, and C obtained as described above, the resin compositions shown in Table 2 are each compression-molded at a molding temperature of 180 ° C. and a molding pressure of 15 t using a 20-ton press machine, and then cut. Thus, cylindrical slide bearings of Examples 1 to 3 and Comparative Example 1 having dimensions shown in Table 2 were obtained.
<比較例2>
 上記樹脂組成物の代わりに布含浸フェノール樹脂(オイレス工業社製、「♯250」)を用いた以外は、上記実施例1と同様の手順で実施例1と同寸法の円筒状のすべり軸受を得た。
<Comparative example 2>
A cylindrical plain bearing having the same dimensions as in Example 1 was prepared in the same procedure as in Example 1 except that a cloth-impregnated phenol resin (“# 250” manufactured by Oiles Kogyo Co., Ltd.) was used instead of the resin composition. Obtained.
<比較例3>
 ポリフェニレンサルファイド(PPS)のペレット(東レ株式会社製、「トレリナ」)を射出成型したパイプ素材を切削することで実施例1と同寸法の円筒状のすべり軸受を得た。
<Comparative Example 3>
A cylindrical plain bearing having the same dimensions as in Example 1 was obtained by cutting a pipe material obtained by injection-molding a pellet of polyphenylene sulfide (PPS) (“Torelina” manufactured by Toray Industries, Inc.).
<参考例>
 上述のようにして得られた樹脂組成物Aを20tプレス機を用いて成形温度180℃、成型圧力15tで圧縮成形したのち切削加工することで表2に記載の寸法の参考例の円筒状のすべり軸受を得た。
<Reference example>
The resin composition A obtained as described above is compression-molded at a molding temperature of 180 ° C. and a molding pressure of 15 t using a 20-t press machine, and then cut to form a cylindrical example of a reference example having dimensions shown in Table 2. A sliding bearing was obtained.
(評価)
 上記実施例1~3、比較例1~3及び参考例のすべり軸受について、JIS-Z2507:2000に記載の圧縮装置を用い、軸受本体を水平面に載置し、軸受本体の全長にわたって上部から下方に8.33N/mmの荷重を加えた際の軸受内径を計測した。この計測結果を表2に示す。
(Evaluation)
For the slide bearings of Examples 1 to 3 and Comparative Examples 1 to 3 and Reference Example, the compression body described in JIS-Z2507: 2000 was used, the bearing body was placed on a horizontal plane, and the entire length of the bearing body was lowered from the top. The inner diameter of the bearing was measured when a load of 8.33 N / mm was applied. The measurement results are shown in Table 2.
 また、上記実施例1~3、比較例1~3及び参考例のすべり軸受を固定し、軸受本体内にSUJ2(高炭素クロム軸受鋼鋼材)製の棒材に硬質クロムメッキを施した直径25mmのシャフトを0.83m/sで100mm直動往復させつつ、軸受本体に1000Nの荷重を加えた際の摺動性を以下の指標で評価した。この評価結果を表2に示す。
 A:問題なく摺動した。
 B:発煙が見られた。
 C:軸受本体に溶融変形が見られた。
Also, the slide bearings of Examples 1 to 3 and Comparative Examples 1 to 3 and the reference example are fixed, and a rod made of SUJ2 (high carbon chromium bearing steel) is hard chromium plated in the bearing body. The sliding property when a load of 1000 N was applied to the bearing main body was evaluated with the following index while the shaft of the shaft was reciprocated 100 mm at 0.83 m / s. The evaluation results are shown in Table 2.
A: Slided without problems.
B: Smoke was observed.
C: Melt deformation was observed in the bearing body.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~3のすべり軸受は、8.33N/mの荷重に対する断面形状変化率が0.5%以下であり高い強度を有すると共に、摺動性にも優れる。 As shown in Table 2, the plain bearings of Examples 1 to 3 have a high cross-sectional shape change rate with respect to a load of 8.33 N / m of 0.5% or less and high strength, and are excellent in slidability.
 以上のように、本発明のすべり軸受は、樹脂製でありながら強度及び摺動特性に優れ、金属製軸受の代替品として好適に使用することができる。 As described above, the plain bearing of the present invention is excellent in strength and sliding characteristics while being made of resin, and can be suitably used as a substitute for a metal bearing.
1、11 すべり軸受
2 軸受本体
3 シールリング
4 Oリング
5 テーパー部
6 溝部
7 摺動材
1, 11 Sliding bearing 2 Bearing body 3 Seal ring 4 O-ring 5 Taper portion 6 Groove portion 7 Sliding material

Claims (11)

  1.  円筒状の軸受本体を備え、軸方向に摺動するすべり軸受であって、
     上記軸受本体がフェノール樹脂及び炭素繊維を含有する樹脂組成物で形成され、
     上記軸受本体の最大肉厚に対する軸受本体の最小内径の比が2以上4.5以下であり、
     上記軸受本体を水平面に載置し、軸受本体の全長にわたって上部から下方に単位長さ当たり8.33N/mmの荷重を加えた際の断面形状変化率が0.5%以下であることを特徴とするすべり軸受。
    A slide bearing having a cylindrical bearing body and sliding in the axial direction,
    The bearing body is formed of a resin composition containing a phenol resin and carbon fiber,
    The ratio of the minimum inner diameter of the bearing body to the maximum thickness of the bearing body is 2 or more and 4.5 or less,
    The bearing body is mounted on a horizontal plane, and the cross-sectional shape change rate when a load of 8.33 N / mm per unit length is applied downward from the upper part to the entire length of the bearing body is 0.5% or less. And plain bearings.
  2.  上記樹脂組成物のフェノール樹脂100質量部に対する炭素繊維の含有量が30質量部以上150質量部以下である請求項1に記載のすべり軸受。 The plain bearing according to claim 1, wherein the content of the carbon fiber with respect to 100 parts by mass of the phenol resin of the resin composition is 30 parts by mass or more and 150 parts by mass or less.
  3.  上記樹脂組成物がエラストマーをさらに含有し、上記樹脂組成物のフェノール樹脂100質量部に対するエラストマーの含有量が2質量部以上30質量部以下である請求項1に記載のすべり軸受。 The plain bearing according to claim 1, wherein the resin composition further contains an elastomer, and the content of the elastomer with respect to 100 parts by mass of the phenol resin of the resin composition is 2 parts by mass or more and 30 parts by mass or less.
  4.  上記樹脂組成物がグラファイトをさらに含有し、上記樹脂組成物のフェノール樹脂100質量部に対する炭素繊維及びグラファイトの合計含有量が50質量部以上250質量部以下である請求項1に記載のすべり軸受。 The plain bearing according to claim 1, wherein the resin composition further contains graphite, and the total content of carbon fiber and graphite with respect to 100 parts by mass of the phenol resin of the resin composition is 50 parts by mass or more and 250 parts by mass or less.
  5.  上記樹脂組成物がホウ素化合物をさらに含有する請求項1に記載のすべり軸受。 The plain bearing according to claim 1, wherein the resin composition further contains a boron compound.
  6.  上記軸受本体が内周面の端部に外側に拡径するテーパー部を有し、
     軸受本体の軸方向長さに対する上記テーパー部の軸方向長さの比が0.25未満である請求項1に記載のすべり軸受。
    The bearing body has a tapered portion that expands outward at the end of the inner peripheral surface;
    The plain bearing according to claim 1, wherein a ratio of an axial length of the tapered portion to an axial length of the bearing body is less than 0.25.
  7.  上記軸受本体の内周面の端部近傍に配設されるシールリングをさらに備える請求項1に記載のすべり軸受。 The slide bearing according to claim 1, further comprising a seal ring disposed in the vicinity of an end portion of the inner peripheral surface of the bearing body.
  8.  上記軸受本体が内周面の中央部分に溝部を有する請求項1に記載のすべり軸受。 The plain bearing according to claim 1, wherein the bearing body has a groove at the center of the inner peripheral surface.
  9.  上記溝部に配設される摺動材をさらに備え、この摺動材が潤滑油を含浸させた樹脂で形成されている請求項8に記載のすべり軸受。 The sliding bearing according to claim 8, further comprising a sliding material disposed in the groove, wherein the sliding material is formed of a resin impregnated with a lubricating oil.
  10.  上記軸受本体の内周面のうち支承領域が内周面全体の40%以上95%以下である請求項1に記載のすべり軸受。 The plain bearing according to claim 1, wherein a bearing area of the inner peripheral surface of the bearing body is 40% or more and 95% or less of the entire inner peripheral surface.
  11.  上記軸受本体の外周面の端部近傍に配置されるOリングをさらに備える請求項1に記載のすべり軸受。 The plain bearing according to claim 1, further comprising an O-ring arranged in the vicinity of an end portion of the outer peripheral surface of the bearing body.
PCT/JP2014/055342 2013-03-04 2014-03-03 Slide bearing WO2014136732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015504303A JPWO2014136732A1 (en) 2013-03-04 2014-03-03 Plain bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013042033 2013-03-04
JP2013-042033 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014136732A1 true WO2014136732A1 (en) 2014-09-12

Family

ID=51491249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055342 WO2014136732A1 (en) 2013-03-04 2014-03-03 Slide bearing

Country Status (2)

Country Link
JP (1) JPWO2014136732A1 (en)
WO (1) WO2014136732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512331A (en) * 2015-03-31 2018-05-17 ローベルト ボッシュ オートモーティブ ステアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングRobert Bosch Automotive Steering GmbH Ball screw and steering of an automobile equipped with the ball screw

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180835A (en) * 1982-04-17 1983-10-22 Taiho Kogyo Co Ltd Bush
JPH0647727U (en) * 1992-12-07 1994-06-28 ソネック工機株式会社 Linear bush
JPH0712123A (en) * 1993-06-25 1995-01-17 Nippon Seiko Kk Sliding bearing with seal
JPH07208463A (en) * 1994-01-28 1995-08-11 Nippon Seiko Kk Sliding bearing
JPH11280765A (en) * 1998-03-31 1999-10-15 Kyocera Corp Sliding member
JP2005350569A (en) * 2004-06-10 2005-12-22 Ntn Corp Sliding material
JP2006225649A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Heat-resistant sliding resin composition, its production method and use
JP2010196894A (en) * 2010-03-15 2010-09-09 Oiles Ind Co Ltd Under-water sliding member and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180835A (en) * 1982-04-17 1983-10-22 Taiho Kogyo Co Ltd Bush
JPH0647727U (en) * 1992-12-07 1994-06-28 ソネック工機株式会社 Linear bush
JPH0712123A (en) * 1993-06-25 1995-01-17 Nippon Seiko Kk Sliding bearing with seal
JPH07208463A (en) * 1994-01-28 1995-08-11 Nippon Seiko Kk Sliding bearing
JPH11280765A (en) * 1998-03-31 1999-10-15 Kyocera Corp Sliding member
JP2005350569A (en) * 2004-06-10 2005-12-22 Ntn Corp Sliding material
JP2006225649A (en) * 2005-01-21 2006-08-31 Showa Denko Kk Heat-resistant sliding resin composition, its production method and use
JP2010196894A (en) * 2010-03-15 2010-09-09 Oiles Ind Co Ltd Under-water sliding member and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512331A (en) * 2015-03-31 2018-05-17 ローベルト ボッシュ オートモーティブ ステアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングRobert Bosch Automotive Steering GmbH Ball screw and steering of an automobile equipped with the ball screw

Also Published As

Publication number Publication date
JPWO2014136732A1 (en) 2017-02-09

Similar Documents

Publication Publication Date Title
US9458885B2 (en) Sliding bearing and image forming apparatus
JP6193114B2 (en) Phenol resin molding material and method for producing the same
WO2015119231A1 (en) Plain bearing
KR20130141684A (en) Resin composition and sliding member using same
US20190226525A1 (en) Sliding member
JP4589154B2 (en) Seal ring
WO2014136732A1 (en) Slide bearing
JP2011116956A (en) Phenol resin-molding material and sliding member
WO2011052127A1 (en) Phenol resin molding material and phenol resin molded article
JPH03292366A (en) Wear-resistant resin composition
JP2015196312A (en) Sliding member and method for manufacturing sliding member
JP2012025940A (en) Phenol resin molding material and phenol resin molded article
JP2007107614A (en) Cage for rolling bearing
EP1860144B1 (en) Resin pulley
JP2015148285A (en) slide bearing
WO2015093443A1 (en) Sliding member resin composition, and sliding member
US9428642B2 (en) Molding material for sliding member, and sliding member
JP3131973B2 (en) Resin composition for preventing creep of bearings
KR100730252B1 (en) Seal ring and seal device
JP6317057B2 (en) Plain bearing
CN100510446C (en) Retainer for bearing
JP5560649B2 (en) Resin composition for sliding member and resin sliding member
JP2543819B2 (en) Solid lubricants and sliding equipment
JP2016217388A (en) Slide member, its method of application and slide structure
JP2018059085A (en) Sliding member and method of producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504303

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759752

Country of ref document: EP

Kind code of ref document: A1