WO2014136649A1 - Pressure control valve - Google Patents

Pressure control valve Download PDF

Info

Publication number
WO2014136649A1
WO2014136649A1 PCT/JP2014/054891 JP2014054891W WO2014136649A1 WO 2014136649 A1 WO2014136649 A1 WO 2014136649A1 JP 2014054891 W JP2014054891 W JP 2014054891W WO 2014136649 A1 WO2014136649 A1 WO 2014136649A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
valve
flow path
pressure
high pressure
Prior art date
Application number
PCT/JP2014/054891
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 靖丈
高史 山口
Original Assignee
豊興工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊興工業株式会社 filed Critical 豊興工業株式会社
Publication of WO2014136649A1 publication Critical patent/WO2014136649A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/024Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/10Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with auxiliary valve for fluid operation of the main valve
    • F16K17/105Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with auxiliary valve for fluid operation of the main valve using choking or throttling means to control the fluid operation of the main valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure

Definitions

  • the present invention relates to a pressure control of a balance piston type including at least two valve bodies.
  • a pilot operated balance piston type pressure control valve described in Patent Document 1 controls a main valve that opens and closes a main flow path with two valve bodies.
  • a check valve is provided in a pilot flow path that connects a pressure receiving portion that forms a high pressure chamber of a main valve and a pilot pressure receiving portion that forms a working chamber of the main valve.
  • the check valve prevents the working fluid from flowing from the pilot pressure receiving portion to the pressure receiving portion.
  • the check valve does not control the flow rate of the working fluid flowing from the pressure receiving portion toward the pilot pressure receiving portion, and also prevents the working fluid from flowing from the pilot pressure receiving portion to the pressure receiving portion.
  • the main valve body easily generates chattering that repeatedly opens and closes the main flow path.
  • One aspect of the present invention is a pilot-operated pressure control valve having a main valve body that opens and closes a main flow path, a main high pressure chamber provided on one end side in the moving direction of the main valve body, A main working chamber provided on the other end side of the valve body in the moving direction, and a first pilot channel connecting the main high pressure chamber and the main working chamber, and a pressure difference between the main high pressure chamber and the main working chamber.
  • a first valve having a main valve for actuating the main valve body and a first valve body for opening and closing a flow path connecting the first pilot flow path to the low pressure side, on one end side in the moving direction of the first valve body
  • a first high pressure chamber provided, a first working chamber provided on the other end side in the moving direction of the first valve body, and a second pilot flow path connecting the first high pressure chamber and the first working chamber, and
  • the first valve in which the first valve body operates in accordance with the pressure difference between the first high pressure chamber and the first working chamber.
  • a second valve body that opens and closes the third pilot flow path connecting the second pilot flow path to the low pressure side, and the high pressure side fluid pressure in the direction to open the third pilot flow path is A second valve acting on the two-valve body, and a first throttle portion provided in the first pilot flow path, which throttles a part of the first pilot flow path, and includes a first pilot flow
  • the passage is characterized by allowing both a fluid flow from the main high pressure chamber side to the main action chamber side and a fluid flow from the main action chamber side to the main high pressure chamber side.
  • the flow rate of the fluid flowing in the first pilot flow path can be controlled by the first restrictor, and the fluid flows from the main high pressure chamber side to the main working chamber side in the first pilot flow path. Since both the fluid flow toward the main fluid chamber and the fluid flow toward the main high pressure chamber from the main working chamber side are possible, occurrence of chattering at the main valve can be suppressed.
  • valve 11 ... main valve body 11A ... main high pressure chamber 11B ... main low pressure chamber 11C ... main valve port 11E ... valve seat 11D ... main working chamber 12 ... check valve 20 ... first valve 21 1st valve body 21A ⁇ ⁇ 1st high pressure chamber 21B ⁇ ⁇ 1 1st low pressure chamber 21C 1st valve port 21E ...
  • Valve seat part 21D 1st working chamber 21G piston part 30 2nd valve 31 ⁇ 2nd valve body 31A ... Second High Pressure Chamber 31B... Second Low Pressure Chamber 31D... Piston Part 31C... Second Valve Port 31E... Valve Seat Part L1... Main Channel L2... First Pilot Channel R1... First Throttle Unit R2... Second Throttle Unit L5 ... 2nd pilot flow path L6 ... 3rd pilot flow path
  • the pressure control valve according to the present invention is applied to a relief valve for a hydraulic circuit.
  • (First embodiment) 1. Configuration of pressure control valve (see Fig. 1)
  • the pressure control valve 1 includes a main valve 10, a first valve 20, a second valve 30, and the like.
  • the pressure control valve 1 is a pilot operated valve in which these valves 10, 20, 30 are integrated.
  • the main valve 10 opens and closes the main flow path L1 through which the working fluid that drives the fluid circuit flows.
  • the main flow path L1 refers to a flow path from the high pressure generation source P on the high pressure side to the tank T on the low pressure side via P1 and P2.
  • the main valve body 11 opens and closes the main flow path L1.
  • a valve body (not shown) of the main valve 10 is provided with a main high pressure chamber 11A, a main low pressure chamber 11B, a main valve port 11C, a main working chamber 11D, and the like.
  • the main high pressure chamber 11A is provided on one end side of the main valve body 11 in the moving direction and is connected to the high pressure side.
  • the main low pressure chamber 11B is connected to the low pressure side.
  • the main high pressure chamber 11A and the main low pressure chamber 11B can communicate with each other through the main valve port 11C.
  • the main valve body 11 opens and closes the main valve port 11C by separating or abutting against a valve seat portion 11E provided at the outer edge of the main valve port 11C. Specifically, when the main valve body 11 is separated from the valve seat portion 11E, the main valve port 11C is opened. On the other hand, when the main valve body 11 contacts the valve seat portion 11E, the main valve port 11C is closed.
  • the main working chamber 11D is provided on the other end side of the main valve body 11 in the moving direction.
  • the main working chamber 11D is shut off from the main low pressure chamber 11B by the main valve body 11.
  • the valve body of the main valve 10 is provided with a first pilot flow path L2 that connects the main high pressure chamber 11A and the main working chamber 11D.
  • the first pilot flow path L2 connects the main high pressure chamber 11A and the main working chamber 11D via P2, P3, P4, and P5.
  • the first throttle channel R2 is provided with a first throttle portion R1.
  • the first restricting portion R1 is a fluid resistance portion that restricts a part of the first pilot flow path L2.
  • a pressure loss may occur before and after the first throttle portion R1. That is, when a fluid flow is generated in the first pilot flow path L2, the outlet side pressure of the first throttle portion R1 becomes lower than the inlet side pressure.
  • the fluid pressure in the main high pressure chamber 11A causes the main valve body 11 to act in a direction that opens the main valve port 11C.
  • the fluid pressure in the main working chamber 11 ⁇ / b> D causes the main valve body 11 to have a force in a direction to close the main valve port 11 ⁇ / b> C.
  • the spring 11F provided in the main working chamber 11D causes the main valve body 11 to act with an elastic force in a direction to close the main valve port 11C.
  • valve opening force the force for opening force.
  • the force in the direction of closing the main valve port 11C including the elastic force of the spring 11F is referred to as valve closing force.
  • the area where the main valve body 11 receives pressure from the working fluid in the main high pressure chamber 11A is smaller than the area where the main valve body 11 receives pressure from the working fluid in the main working chamber 11D.
  • the main valve body 11 operates according to the pressure difference between the main high-pressure chamber 11A and the main working chamber 11D.
  • the valve closing force exceeds the valve opening force, and the main valve port 11C is closed.
  • the flow path L4 connecting the first pilot flow path L2 to the low pressure side is opened and a fluid flow is generated in the first pilot flow path L2, the pressure in the main working chamber 11D is lower than the pressure in the main high pressure chamber 11A.
  • the main valve port 11C opens.
  • the flow path L4 connecting the first pilot flow path L2 to the low pressure side is closed, the pressure in the main working chamber 11D increases.
  • the main valve port 11C is closed.
  • the flow path L4 is a flow path that connects the first pilot flow path L2 to the low pressure side via P3 and the first high pressure chamber 21A.
  • a second throttle portion R2 is provided in series with the first throttle portion R1.
  • the second throttle portion R2 is provided closer to the main working chamber 11D than the first throttle portion R1, and throttles a part of the first pilot flow path L2. For this reason, when a fluid flow occurs in the first pilot flow path L2, a pressure difference also occurs before and after the second throttle portion R2.
  • the second diaphragm portion R2 is a variable diaphragm whose throttle opening is adjustable. For this reason, the person who manages the pressure control valve 1 can adjust the throttle opening of the second throttle portion R2.
  • a check valve 12 is provided in the bypass flow path L3 that bypasses the second throttle portion R2 and connects the inlet side P4 and the outlet side P5 of the second throttle portion R2.
  • the check valve 12 prevents the working fluid from flowing from the main high pressure chamber 11A side to the main working chamber 11D side, and allows the working fluid to flow from the main working chamber 11D side to the main high pressure chamber 11A side.
  • the first pilot flow path L2 is not provided with valves that control the flow direction of the fluid, which corresponds to a check valve. For this reason, in the first pilot flow path L2, both a fluid flow from the main high pressure chamber 11A side to the main action chamber 11D side and a fluid flow from the main action chamber 11D side to the main high pressure chamber 11A side can occur.
  • the first valve 20 opens and closes a flow path L4 that connects the first pilot flow path L2 to the low pressure side.
  • the structure of the first valve 20 according to the present embodiment is the same as the structure of the main valve 10.
  • the first valve body 21 opens and closes the flow path L4.
  • a valve body (not shown) of the first valve 20 is provided with a first high pressure chamber 21A, a first low pressure chamber 21B, a first valve port 21C, a first working chamber 21D, and the like.
  • the first high-pressure chamber 21A is provided on one end side in the moving direction of the first valve body 21 and is connected to the high-pressure side.
  • the first low pressure chamber 21B is connected to the low pressure side.
  • the first high pressure chamber 21A and the first low pressure chamber 21B can communicate with each other through the first valve port 21C.
  • the first valve body 21 opens and closes the first valve port 21C by being separated from or in contact with a valve seat portion 21E provided at the outer edge of the first valve port 21C. That is, when the first valve body 21 is separated from the valve seat portion 21E, the first valve port 21C is opened. When the first valve body 21 contacts the valve seat portion 21E, the first valve port 21C is closed.
  • the first working chamber 21D is provided on the other end side in the moving direction of the first valve body 21, and is shut off from the first low-pressure chamber 21B by the first valve body 21.
  • the valve body of the first valve 20 is provided with a second pilot flow path L5 that connects the first high pressure chamber 21A and the first working chamber 21D.
  • the second pilot flow path L5 connects the first high pressure chamber 21A and the first working chamber 21D via P6.
  • the third pilot portion R3 is provided in the second pilot channel L5.
  • the third restricting portion R3 is a fluid resistance portion that restricts a part of the second pilot flow path L5.
  • pressure loss may occur before and after the third throttle portion R3.
  • the outlet side pressure of the third throttle portion R3 becomes lower than the inlet side pressure.
  • the fluid pressure in the first high-pressure chamber 21A causes the first valve body 21 to have a force that opens the first valve port 21C.
  • the fluid pressure in the first working chamber 21 ⁇ / b> D causes the first valve body 21 to have a force in a direction to close the first valve port 21 ⁇ / b> C.
  • the spring 21F provided in the first working chamber 21D acts on the first valve body 21 with an elastic force in a direction to close the first valve port 21C.
  • the force that opens the first valve port 21C is referred to as valve opening force.
  • a force for closing the first valve port 21C including the elastic force of the spring 21F is referred to as a valve closing force.
  • the area where the first valve body 21 receives pressure from the working fluid in the first high pressure chamber 21A is smaller than the area where the first valve body 21 receives pressure from the working fluid in the first working chamber 21D.
  • the first valve body 21 operates according to the pressure difference between the first high pressure chamber 21A and the first working chamber 21D.
  • the first valve port 21C When the valve closing force falls below the valve opening force, the first valve port 21C is opened. When the third pilot flow path L6 is closed, the pressure in the first working chamber 21D increases. When the pressure in the first working chamber 21D becomes the same as the pressure in the first high pressure chamber 21A, the first valve port 21C is closed.
  • the second pilot flow path L5 is provided with a fourth throttle portion R4 in series with the third throttle portion R3.
  • the fourth throttle portion R4 is provided closer to the first working chamber 21D than the third throttle portion R3 and throttles a part of the second pilot flow path L5. For this reason, when a fluid flow occurs in the second pilot flow path L5, a pressure difference also occurs before and after the fourth throttle portion R4.
  • the second valve 30 opens and closes the third pilot flow path L6.
  • the second valve body 31 opens and closes the third pilot flow path L6.
  • the valve body (not shown) of the second valve 30 is provided with a second high pressure chamber 31A, a second low pressure chamber 31B, a second valve port 31C, and the like.
  • the second high pressure chamber 31A is partitioned into two spaces A and B by a piston portion 31D that can move in the second high pressure chamber 31A.
  • the piston portion 31D is displaced integrally with the second valve body 31.
  • the working fluid on the high pressure side is guided to the space A on the one end side in the displacement direction of the piston portion 31D. For this reason, the fluid pressure in the space A causes a force to open the third pilot flow path L6 to act on the piston portion 31D.
  • the space A may have a size such that the volume becomes substantially zero when the second valve port 31C is closed.
  • the working fluid on the high pressure side is guided to the space B on the other end side in the displacement direction of the piston portion 31D through the third pilot flow path L6.
  • the fluid pressure in the space B causes the force in the direction of closing the third pilot flow path L6 to act on the piston portion 31D, and the force in the direction of opening to act on the head of the second valve body 31, and the second The valve body 31 is balanced.
  • the area where the second valve body 31 receives pressure from the working fluid in the space A through the piston portion 31D is the pressure from the working fluid in the space B through the piston portion 31D. Greater than the area you receive.
  • a first diaphragm portion R1, a third diaphragm portion R3, and the like are provided as a diaphragm portion that restricts a part.
  • the second low pressure chamber 31B is connected to the low pressure side, and can communicate with the space B of the second high pressure chamber 31A through the second valve port 31C.
  • the second valve body 31 opens or closes the second valve port 31C by being separated from or abutting against a valve seat portion 31E provided at the outer edge of the second valve port 31C.
  • the second valve port 31C When the second valve body 31 is separated from the valve seat portion 31E, the second valve port 31C is opened. When the second valve body 31 comes into contact with the valve seat portion 31E, the second valve port 31C is closed.
  • the spring 31F provided in the second low-pressure chamber 31B causes the second valve body 31 to exert an elastic force in a direction to close the second valve port 31C.
  • valve opening force the force due to the fluid pressure acting on the space A
  • valve closing force the force due to the fluid pressure acting on the space A
  • the elastic force of the spring 31F hereinafter referred to as valve closing force
  • the third pilot flow path L6 opens. Therefore, as described above, since the first valve port 21C is opened, the flow path L4 is opened and the main valve port 11C is opened.
  • a part of the high-pressure supply flow path connecting the first high-pressure chamber 21A and the high-pressure side P that is, a part of the flow path from the high-pressure side P to the first high-pressure chamber 21A via P1, P2, P3 and the first high-pressure chamber.
  • a part of one pilot flow path L2 is shared.
  • squeeze part R1 is provided in the site
  • the flow rate of the working fluid flowing through the first pilot flow path L2 can be controlled by the first throttle portion R1.
  • the working fluid can flow from the main high pressure chamber 11A side to the main working chamber 11D side, and can flow from the main working chamber 11D side to the main high pressure chamber 11A side. Therefore, chattering can be prevented from occurring in the main valve 10.
  • the first pilot channel L2 is provided with a second throttle part R2 that throttles a part of the first pilot channel L2.
  • the second diaphragm portion R2 is a variable diaphragm whose throttle opening is adjustable.
  • a check valve 12 that prevents the working fluid from flowing from the main high pressure chamber 11A side to the main working chamber 11D side is provided in the bypass flow path L3 that bypasses the second throttle portion R2. It is characterized by. Thereby, when the main flow path L1 opens, the working fluid in the main working chamber 11D can be quickly discharged, so that the responsiveness of the main valve body 11 can be improved.
  • the working fluid on the high-pressure side P is guided to the one end side in the displacement direction of the piston portion 31D to act to open the third pilot flow path.
  • the working fluid on the high pressure side is guided to the other end side in the displacement direction of the piston portion 31D via the third pilot flow path L6.
  • the first throttle part R1 and the third throttle part R3 are provided as throttle parts that throttle down a part of the flow path. It is characterized by.
  • the present embodiment differs from the first embodiment in the position of the first aperture portion R1. Specifically, in the present embodiment, the working fluid supplied to the space A of the second valve 30 is also decompressed by the first throttle portion R1.
  • the present embodiment has the following features.
  • (A) The first high pressure chamber 21A of the first valve 20 is partitioned into two spaces A and B by the piston portion 21G, similarly to the second valve 30 according to the first embodiment.
  • (B) The second valve 30 is configured as a so-called direct-acting poppet valve that opposes the pressure on the high-pressure side P only by the elastic force of the spring 31F.
  • the working fluid on the high pressure side is guided to the space A on the one end side in the displacement direction of the piston portion 21G. For this reason, the working fluid pressure in the space A causes the piston portion 21G to exert a force in a direction to open the first pilot flow path L2.
  • the space A may have a size such that the volume becomes substantially zero when the first valve port 21C is closed.
  • the working fluid on the high pressure side is guided to the space B on the other end side in the displacement direction of the piston portion 21G via the first pilot flow path L2. For this reason, the working fluid pressure in the space B causes the force in the direction of closing the first pilot flow path L2 to act on the piston portion 21G, and the force in the direction of opening to act on the head of the first valve body 21, One valve body 21 is balanced.
  • the area where the first valve body 21 receives pressure from the working fluid in the space A through the piston portion 21G is the pressure from the working fluid in the space B through the piston portion 21G. Greater than the area you receive.
  • the 2nd valve 30 concerning the above-mentioned embodiment was a system which changes relief pressure by adjusting the elastic force of a spring
  • the present invention is not limited to this.
  • a system may be used in which a force corresponding to the elastic force of the spring is generated by an electromagnetic force using a solenoid coil, and the relief pressure is changed by adjusting the electromagnetic force.
  • the diaphragm described in the claims is configured by the first diaphragm R1 and the third diaphragm R3, but the present invention is not limited to this.
  • the present invention is not limited to the above-described embodiment as long as it matches the gist of the invention described in the claims. That is, the configuration is not limited to the pressure control valve shown in the above-described embodiment, and the configurations shown in the above-described first to third embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Safety Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

A pilot-operated pressure control valve is provided with a main valve, a first valve, and a first throttle section. The main valve has: a main valve body which opens and closes a main flow passage; a main high-pressure chamber which is provided on one end side of the main valve in the direction of movement thereof; a main action chamber which is provided on the other end side of the main valve body in the direction of movement thereof; and a first pilot flow passage which connects the main high-pressure chamber and the main action chamber. The first pilot flow passage permits both a fluid flow from the main high-pressure chamber side to the main action chamber side and a fluid flow from the main action chamber side to the main high-pressure chamber side.

Description

圧力制御弁Pressure control valve 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2013年3月7日に日本国特許庁に出願した日本国特許出願第2013-45548号に基づく優先権を主張するものであり、日本国特許出願第2013-45548号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2013-45548 filed with the Japan Patent Office on March 7, 2013. All of Japanese Patent Application No. 2013-45548 The contents are incorporated into this international application.
 本発明は、少なくとも2個の弁体を備えるバランスピストン型の圧力制御に関する。 The present invention relates to a pressure control of a balance piston type including at least two valve bodies.
 例えば、特許文献1に記載のパイロット操作方式のバランスピストン型の圧力制御弁は、メイン流路を開閉するメインバルブを2つの弁体にて制御している。 For example, a pilot operated balance piston type pressure control valve described in Patent Document 1 controls a main valve that opens and closes a main flow path with two valve bodies.
特開平3-265770号公報JP-A-3-265770
 特許文献1の圧力制御弁には、メインバルブの高圧室をなす受圧部とメインバルブの作用室をなすパイロット受圧部とを繋ぐパイロット流路に逆止弁が設けられている。当該逆止弁は、パイロット受圧部から受圧部に作動流体が流通することを阻止する。 In the pressure control valve of Patent Document 1, a check valve is provided in a pilot flow path that connects a pressure receiving portion that forms a high pressure chamber of a main valve and a pilot pressure receiving portion that forms a working chamber of the main valve. The check valve prevents the working fluid from flowing from the pilot pressure receiving portion to the pressure receiving portion.
 ところで、逆止弁は、受圧部からパイロット受圧部に向けて流通する作動流体の流量制御するものではなく、かつ、パイロット受圧部から受圧部に作動流体が流通することを阻止するため、メインバルブの主弁体がメイン流路の開閉を繰り返すチャタリングを発生し易い。 By the way, the check valve does not control the flow rate of the working fluid flowing from the pressure receiving portion toward the pilot pressure receiving portion, and also prevents the working fluid from flowing from the pilot pressure receiving portion to the pressure receiving portion. The main valve body easily generates chattering that repeatedly opens and closes the main flow path.
 少なくとも2個の弁体を備えるバランスピストン型の圧力制御弁において、主弁体のチャタリング発生を抑制することが望ましい。 ¡In a balanced piston type pressure control valve having at least two valve bodies, it is desirable to suppress chattering in the main valve body.
 一局面の本発明は、パイロット操作方式の圧力制御弁において、メイン流路を開閉する主弁体を有するメインバルブであって、主弁体の移動方向一端側に設けられたメイン高圧室、主弁体の移動方向他端側に設けられたメイン作用室、及びメイン高圧室とメイン作用室とを繋ぐ第1パイロット流路を有し、かつ、メイン高圧室とメイン作用室との圧力差に応じて主弁体が作動するメインバルブと、第1パイロット流路を低圧側に繋ぐ流路を開閉する第1弁体を有する第1バルブであって、第1弁体の移動方向一端側に設けられた第1高圧室、第1弁体の移動方向他端側に設けられた第1作用室、及び第1高圧室と第1作用室とを繋ぐ第2パイロット流路を有し、かつ、第1高圧室と第1作用室との圧力差に応じて第1弁体が作動する第1バルブと、第2パイロット流路を低圧側に繋ぐ第3パイロット流路を開閉する第2弁体を有する第2バルブであって、当該第3パイロット流路を開く向きの高圧側流体圧が第2弁体に作用する第2バルブと、第1パイロット流路に設けられた第1絞り部であって、第1パイロット流路の一部を絞る第1絞り部とを備え、第1パイロット流路は、メイン高圧室側からメイン作用室側に向かう流体流れ、及びメイン作用室側からメイン高圧室側に向かう流体流れのいずれも許容することを特徴とする。 One aspect of the present invention is a pilot-operated pressure control valve having a main valve body that opens and closes a main flow path, a main high pressure chamber provided on one end side in the moving direction of the main valve body, A main working chamber provided on the other end side of the valve body in the moving direction, and a first pilot channel connecting the main high pressure chamber and the main working chamber, and a pressure difference between the main high pressure chamber and the main working chamber. And a first valve having a main valve for actuating the main valve body and a first valve body for opening and closing a flow path connecting the first pilot flow path to the low pressure side, on one end side in the moving direction of the first valve body A first high pressure chamber provided, a first working chamber provided on the other end side in the moving direction of the first valve body, and a second pilot flow path connecting the first high pressure chamber and the first working chamber, and The first valve in which the first valve body operates in accordance with the pressure difference between the first high pressure chamber and the first working chamber. And a second valve body that opens and closes the third pilot flow path connecting the second pilot flow path to the low pressure side, and the high pressure side fluid pressure in the direction to open the third pilot flow path is A second valve acting on the two-valve body, and a first throttle portion provided in the first pilot flow path, which throttles a part of the first pilot flow path, and includes a first pilot flow The passage is characterized by allowing both a fluid flow from the main high pressure chamber side to the main action chamber side and a fluid flow from the main action chamber side to the main high pressure chamber side.
 これにより、一局面の本発明では、第1パイロット流路に流れる流体を第1絞り部で流量制御可能であり、かつ、流体は第1パイロット流路において、メイン高圧室側からメイン作用室側に向かう流体流れ、及びメイン作用室側からメイン高圧室側に向かう流体流れのいずれも可能であるので、メインバルブにてチャタリングが発生することを抑制できる。 Thus, in the present invention of one aspect, the flow rate of the fluid flowing in the first pilot flow path can be controlled by the first restrictor, and the fluid flows from the main high pressure chamber side to the main working chamber side in the first pilot flow path. Since both the fluid flow toward the main fluid chamber and the fluid flow toward the main high pressure chamber from the main working chamber side are possible, occurrence of chattering at the main valve can be suppressed.
 以下、本発明の実施形態を図面と共に説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の第1実施形態に係る圧力制御弁を示す図である。It is a figure which shows the pressure control valve which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る圧力制御弁を示す図である。It is a figure which shows the pressure control valve which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る圧力制御弁を示す図である。It is a figure which shows the pressure control valve which concerns on 3rd Embodiment of this invention.
 1… 圧力制御弁 10… メインバルブ 11… 主弁体 11A… メイン高圧室 11B… メイン低圧室 11C… メイン弁口 11E… 弁座部 11D… メイン作用室 12… 逆止弁 20… 第1バルブ 21… 第1弁体 21A… 第1高圧室 21B… 第1低圧室 21C… 第1弁口 21E… 弁座部 21D… 第1作用室 21G… ピストン部 30… 第2バルブ 31… 第2弁体 31A… 第2高圧室 31B… 第2低圧室 31D… ピストン部 31C… 第2弁口 31E… 弁座部 L1… メイン流路 L2… 第1パイロット流路 R1… 第1絞り部 R2… 第2絞り部 L5… 第2パイロット流路L6… 第3パイロット流路 1 ... pressure control valve 10 ... main valve 11 ... main valve body 11A ... main high pressure chamber 11B ... main low pressure chamber 11C ... main valve port 11E ... valve seat 11D ... main working chamber 12 ... check valve 20 ... first valve 21 1st valve body 21A 高 圧 1st high pressure chamber 21B 低 圧 1 1st low pressure chamber 21C 1st valve port 21E ... Valve seat part 21D 1st working chamber 21G piston part 30 2nd valve 31 弁 2nd valve body 31A … Second High Pressure Chamber 31B… Second Low Pressure Chamber 31D… Piston Part 31C… Second Valve Port 31E… Valve Seat Part L1… Main Channel L2… First Pilot Channel R1… First Throttle Unit R2… Second Throttle Unit L5 ... 2nd pilot flow path L6 ... 3rd pilot flow path
 以下に説明する「発明の実施形態」は実施形態の一例を示すものである。つまり、特許請求の範囲に記載された発明特定事項等は、下記の実施形態に示された具体的手段や構造等に限定されるものではない。 The “embodiment of the invention” described below shows an example of the embodiment. In other words, the invention specific items described in the claims are not limited to the specific means and structures shown in the following embodiments.
 そして、本実施形態は、油圧回路用のリリーフ弁に本発明に係る圧力制御弁を適用したものである。
 (第1実施形態)
 1.圧力制御弁の構成(図1参照)
 圧力制御弁1は、メインバルブ10、第1バルブ20及び第2バルブ30等を有する。圧力制御弁1は、これらのバルブ10、20、30が一体化されたパイロット操作方式のバルブである。
In this embodiment, the pressure control valve according to the present invention is applied to a relief valve for a hydraulic circuit.
(First embodiment)
1. Configuration of pressure control valve (see Fig. 1)
The pressure control valve 1 includes a main valve 10, a first valve 20, a second valve 30, and the like. The pressure control valve 1 is a pilot operated valve in which these valves 10, 20, 30 are integrated.
 1.1 メインバルブ
 メインバルブ10は、流体回路を駆動する作動流体が流通するメイン流路L1を開閉する。メイン流路L1は、高圧側である高圧発生源PからP1、P2を経由して低圧側であるタンクTに至る流路をいう。
1.1 Main Valve The main valve 10 opens and closes the main flow path L1 through which the working fluid that drives the fluid circuit flows. The main flow path L1 refers to a flow path from the high pressure generation source P on the high pressure side to the tank T on the low pressure side via P1 and P2.
 主弁体11は、メイン流路L1を開閉する。メインバルブ10のバルブボディ(図示せず。)には、メイン高圧室11A、メイン低圧室11B、メイン弁口11C及びメイン作用室11D等が設けられている。 The main valve body 11 opens and closes the main flow path L1. A valve body (not shown) of the main valve 10 is provided with a main high pressure chamber 11A, a main low pressure chamber 11B, a main valve port 11C, a main working chamber 11D, and the like.
 メイン高圧室11Aは、主弁体11の移動方向一端側に設けられて高圧側に接続されている。メイン低圧室11Bは、低圧側に接続されている。メイン高圧室11Aとメイン低圧室11Bとは、メイン弁口11Cを通して連通可能である。 The main high pressure chamber 11A is provided on one end side of the main valve body 11 in the moving direction and is connected to the high pressure side. The main low pressure chamber 11B is connected to the low pressure side. The main high pressure chamber 11A and the main low pressure chamber 11B can communicate with each other through the main valve port 11C.
 主弁体11は、メイン弁口11Cの外縁に設けられた弁座部11Eに対して離間又は当接することにより、メイン弁口11Cを開閉する。具体的には、主弁体11が弁座部11Eから離間すると、メイン弁口11Cが開かれる。一方、主弁体11が弁座部11Eに当接するとメイン弁口11Cが閉じられる。 The main valve body 11 opens and closes the main valve port 11C by separating or abutting against a valve seat portion 11E provided at the outer edge of the main valve port 11C. Specifically, when the main valve body 11 is separated from the valve seat portion 11E, the main valve port 11C is opened. On the other hand, when the main valve body 11 contacts the valve seat portion 11E, the main valve port 11C is closed.
 メイン作用室11Dは、主弁体11の移動方向他端側に設けられている。メイン作用室11Dは、主弁体11によりメイン低圧室11Bと遮断されている。メインバルブ10のバルブボディには、メイン高圧室11Aとメイン作用室11Dとを繋ぐ第1パイロット流路L2が設けられている。第1パイロット流路L2は、P2、P3、P4、P5を経由してメイン高圧室11Aとメイン作用室11Dとを繋ぐ。 The main working chamber 11D is provided on the other end side of the main valve body 11 in the moving direction. The main working chamber 11D is shut off from the main low pressure chamber 11B by the main valve body 11. The valve body of the main valve 10 is provided with a first pilot flow path L2 that connects the main high pressure chamber 11A and the main working chamber 11D. The first pilot flow path L2 connects the main high pressure chamber 11A and the main working chamber 11D via P2, P3, P4, and P5.
 第1パイロット流路L2には、第1絞り部R1が設けられている。第1絞り部R1は、第1パイロット流路L2の一部を絞った流体抵抗部である。第1パイロット流路L2に流体流れが生じたときに、第1絞り部R1の前後で圧力損失が発生し得る。つまり、第1パイロット流路L2に流体流れが生じると、第1絞り部R1の出口側圧力は、入口側圧力よりも低くなる。 The first throttle channel R2 is provided with a first throttle portion R1. The first restricting portion R1 is a fluid resistance portion that restricts a part of the first pilot flow path L2. When a fluid flow occurs in the first pilot flow path L2, a pressure loss may occur before and after the first throttle portion R1. That is, when a fluid flow is generated in the first pilot flow path L2, the outlet side pressure of the first throttle portion R1 becomes lower than the inlet side pressure.
 メイン高圧室11Aの流体圧は、メイン弁口11Cを開く向きの力を主弁体11に作用させる。メイン作用室11Dの流体圧は、メイン弁口11Cを閉じる向きの力を主弁体11に作用させる。メイン作用室11D内に設けられたばね11Fは、メイン弁口11Cを閉じる向きの弾性力を主弁体11に作用させる。以下、メイン弁口11Cを開く向きの力を開弁力という。ばね11Fの弾性力も含めてメイン弁口11Cを閉じる向きの力を閉弁力という。 The fluid pressure in the main high pressure chamber 11A causes the main valve body 11 to act in a direction that opens the main valve port 11C. The fluid pressure in the main working chamber 11 </ b> D causes the main valve body 11 to have a force in a direction to close the main valve port 11 </ b> C. The spring 11F provided in the main working chamber 11D causes the main valve body 11 to act with an elastic force in a direction to close the main valve port 11C. Hereinafter, the force for opening the main valve port 11C is referred to as valve opening force. The force in the direction of closing the main valve port 11C including the elastic force of the spring 11F is referred to as valve closing force.
 主弁体11において、主弁体11がメイン高圧室11Aの作動流体から圧力を受ける面積は、主弁体11がメイン作用室11Dの作動流体から圧力を受ける面積より小さい。主弁体11は、メイン高圧室11Aとメイン作用室11Dとの圧力差に応じて作動する。 In the main valve body 11, the area where the main valve body 11 receives pressure from the working fluid in the main high pressure chamber 11A is smaller than the area where the main valve body 11 receives pressure from the working fluid in the main working chamber 11D. The main valve body 11 operates according to the pressure difference between the main high-pressure chamber 11A and the main working chamber 11D.
 メイン高圧室11Aとメイン作用室11Dとが同一圧力であるときには、閉弁力が開弁力を上回り、メイン弁口11Cは閉じた状態となる。第1パイロット流路L2を低圧側に繋ぐ流路L4が開かれて第1パイロット流路L2に流体流れが生じると、メイン作用室11D内の圧力がメイン高圧室11A内の圧力より低下する。 When the main high pressure chamber 11A and the main working chamber 11D are at the same pressure, the valve closing force exceeds the valve opening force, and the main valve port 11C is closed. When the flow path L4 connecting the first pilot flow path L2 to the low pressure side is opened and a fluid flow is generated in the first pilot flow path L2, the pressure in the main working chamber 11D is lower than the pressure in the main high pressure chamber 11A.
 これによって閉弁力が開弁力を下回ると、メイン弁口11Cが開く。第1パイロット流路L2を低圧側に繋ぐ流路L4が閉じられると、メイン作用室11D内の圧力が上昇する。メイン作用室11D内の圧力がメイン高圧室11A内の圧力と同じになると、メイン弁口11Cは閉じる。流路L4は、P3、第1高圧室21Aを経由して第1パイロット流路L2を低圧側に繋ぐ流路である。 When this causes the valve closing force to fall below the valve opening force, the main valve port 11C opens. When the flow path L4 connecting the first pilot flow path L2 to the low pressure side is closed, the pressure in the main working chamber 11D increases. When the pressure in the main working chamber 11D becomes the same as the pressure in the main high pressure chamber 11A, the main valve port 11C is closed. The flow path L4 is a flow path that connects the first pilot flow path L2 to the low pressure side via P3 and the first high pressure chamber 21A.
 第1パイロット流路L2には、第1絞り部R1と直列に第2絞り部R2が設けられている。第2絞り部R2は、第1絞り部R1よりメイン作用室11D側に設けられて第1パイロット流路L2の一部を絞る。このため、第1パイロット流路L2に流体流れが生じたときには、第2絞り部R2の前後においても圧力差が生じる。 In the first pilot flow path L2, a second throttle portion R2 is provided in series with the first throttle portion R1. The second throttle portion R2 is provided closer to the main working chamber 11D than the first throttle portion R1, and throttles a part of the first pilot flow path L2. For this reason, when a fluid flow occurs in the first pilot flow path L2, a pressure difference also occurs before and after the second throttle portion R2.
 第2絞り部R2は、絞り開度が調整自在な可変絞りである。このため、圧力制御弁1を管理等する者は、第2絞り部R2の絞り開度を調整できる。第2絞り部R2を迂回して第2絞り部R2の入口側P4と出口側P5とを繋ぐバイパス流路L3には、逆止弁12が設けられている。 The second diaphragm portion R2 is a variable diaphragm whose throttle opening is adjustable. For this reason, the person who manages the pressure control valve 1 can adjust the throttle opening of the second throttle portion R2. A check valve 12 is provided in the bypass flow path L3 that bypasses the second throttle portion R2 and connects the inlet side P4 and the outlet side P5 of the second throttle portion R2.
 逆止弁12は、メイン高圧室11A側からメイン作用室11D側に作動流体が流通することを阻止し、メイン作用室11D側からメイン高圧室11A側に作動流体が流通することを許容する。 The check valve 12 prevents the working fluid from flowing from the main high pressure chamber 11A side to the main working chamber 11D side, and allows the working fluid to flow from the main working chamber 11D side to the main high pressure chamber 11A side.
 本実施形態に係る第1パイロット流路L2には、逆止弁に相当する、流体の流通方向を制御するバルブ類は設けられていない。このため、第1パイロット流路L2においては、メイン高圧室11A側からメイン作用室11D側に向かう流体流れ、及びメイン作用室11D側からメイン高圧室11A側に向かう流体流れのいずれも生じ得る。 The first pilot flow path L2 according to the present embodiment is not provided with valves that control the flow direction of the fluid, which corresponds to a check valve. For this reason, in the first pilot flow path L2, both a fluid flow from the main high pressure chamber 11A side to the main action chamber 11D side and a fluid flow from the main action chamber 11D side to the main high pressure chamber 11A side can occur.
 1.2 第1バルブ
 第1バルブ20は、第1パイロット流路L2を低圧側に繋ぐ流路L4を開閉する。本実施形態に係る第1バルブ20の構造は、メインバルブ10の構造と同様である。
1.2 First Valve The first valve 20 opens and closes a flow path L4 that connects the first pilot flow path L2 to the low pressure side. The structure of the first valve 20 according to the present embodiment is the same as the structure of the main valve 10.
 第1弁体21は、流路L4を開閉する。第1バルブ20のバルブボディ(図示せず。)には、第1高圧室21A、第1低圧室21B、第1弁口21C及び第1作用室21D等が設けられている。 The first valve body 21 opens and closes the flow path L4. A valve body (not shown) of the first valve 20 is provided with a first high pressure chamber 21A, a first low pressure chamber 21B, a first valve port 21C, a first working chamber 21D, and the like.
 第1高圧室21Aは、第1弁体21の移動方向一端側に設けられて高圧側に接続されている。第1低圧室21Bは、低圧側に接続されている。第1高圧室21Aと第1低圧室21Bとは、第1弁口21Cを通して連通可能である。 The first high-pressure chamber 21A is provided on one end side in the moving direction of the first valve body 21 and is connected to the high-pressure side. The first low pressure chamber 21B is connected to the low pressure side. The first high pressure chamber 21A and the first low pressure chamber 21B can communicate with each other through the first valve port 21C.
 第1弁体21は、第1弁口21Cの外縁に設けられた弁座部21Eに対して離間又は当接することにより、第1弁口21Cを開閉する。つまり、第1弁体21が弁座部21Eから離間すると、第1弁口21Cが開かれる。第1弁体21が弁座部21Eに当接すると第1弁口21Cが閉じられる。 The first valve body 21 opens and closes the first valve port 21C by being separated from or in contact with a valve seat portion 21E provided at the outer edge of the first valve port 21C. That is, when the first valve body 21 is separated from the valve seat portion 21E, the first valve port 21C is opened. When the first valve body 21 contacts the valve seat portion 21E, the first valve port 21C is closed.
 第1作用室21Dは、第1弁体21の移動方向他端側に設けられ、かつ、第1弁体21により第1低圧室21Bと遮断されている。そして、第1バルブ20のバルブボディには、第1高圧室21Aと第1作用室21Dとを繋ぐ第2パイロット流路L5が設けられている。第2パイロット流路L5は、P6を経由して第1高圧室21Aと第1作用室21Dとを繋ぐ。 The first working chamber 21D is provided on the other end side in the moving direction of the first valve body 21, and is shut off from the first low-pressure chamber 21B by the first valve body 21. The valve body of the first valve 20 is provided with a second pilot flow path L5 that connects the first high pressure chamber 21A and the first working chamber 21D. The second pilot flow path L5 connects the first high pressure chamber 21A and the first working chamber 21D via P6.
 第2パイロット流路L5には、第3絞り部R3が設けられている。第3絞り部R3は、第2パイロット流路L5の一部を絞った流体抵抗部である。第2パイロット流路L5に流体流れが生じたときに、第3絞り部R3の前後で圧力損失が発生し得る。第2パイロット流路L5に流体流れが生じると、第3絞り部R3の出口側圧力は、入口側圧力よりも低くなる。 The third pilot portion R3 is provided in the second pilot channel L5. The third restricting portion R3 is a fluid resistance portion that restricts a part of the second pilot flow path L5. When a fluid flow occurs in the second pilot flow path L5, pressure loss may occur before and after the third throttle portion R3. When a fluid flow is generated in the second pilot flow path L5, the outlet side pressure of the third throttle portion R3 becomes lower than the inlet side pressure.
 第1高圧室21Aの流体圧は、第1弁口21Cを開く向きの力を第1弁体21に作用させる。第1作用室21Dの流体圧は、第1弁口21Cを閉じる向きの力を第1弁体21に作用させる。 The fluid pressure in the first high-pressure chamber 21A causes the first valve body 21 to have a force that opens the first valve port 21C. The fluid pressure in the first working chamber 21 </ b> D causes the first valve body 21 to have a force in a direction to close the first valve port 21 </ b> C.
 第1作用室21D内に設けられたばね21Fは、第1弁口21Cを閉じる向きの弾性力を第1弁体21に作用させる。以下、第1弁口21Cを開く向きの力を開弁力という。ばね21Fの弾性力を含む、第1弁口21Cを閉じる向きの力を閉弁力という。 The spring 21F provided in the first working chamber 21D acts on the first valve body 21 with an elastic force in a direction to close the first valve port 21C. Hereinafter, the force that opens the first valve port 21C is referred to as valve opening force. A force for closing the first valve port 21C including the elastic force of the spring 21F is referred to as a valve closing force.
 第1弁体21において、第1弁体21が第1高圧室21Aの作動流体から圧力を受ける面積は、第1弁体21が第1作用室21Dの作動流体から圧力を受ける面積より小さい。第1弁体21は、第1高圧室21Aと第1作用室21Dとの圧力差に応じて作動する。 In the first valve body 21, the area where the first valve body 21 receives pressure from the working fluid in the first high pressure chamber 21A is smaller than the area where the first valve body 21 receives pressure from the working fluid in the first working chamber 21D. The first valve body 21 operates according to the pressure difference between the first high pressure chamber 21A and the first working chamber 21D.
 第1高圧室21Aと第1作用室21Dとが同一圧力であるときには、閉弁力が開弁力を上回り、第1弁口21Cは閉じた状態となる。第2パイロット流路L5を低圧側に繋ぐ第3パイロット流路L6が開かれて第2パイロット流路L5に流体流れが生じると、第1作用室21D内の圧力が第1高圧室21A内の圧力より低下する。 When the first high pressure chamber 21A and the first working chamber 21D have the same pressure, the valve closing force exceeds the valve opening force, and the first valve port 21C is closed. When the third pilot flow path L6 connecting the second pilot flow path L5 to the low pressure side is opened and a fluid flow is generated in the second pilot flow path L5, the pressure in the first working chamber 21D is increased in the first high pressure chamber 21A. Lower than pressure.
 これによって閉弁力が開弁力を下回ると、第1弁口21Cが開く。第3パイロット流路L6が閉じられると、第1作用室21D内の圧力が上昇する。第1作用室21D内の圧力が第1高圧室21A内の圧力と同じになると、第1弁口21Cは閉じる。 When the valve closing force falls below the valve opening force, the first valve port 21C is opened. When the third pilot flow path L6 is closed, the pressure in the first working chamber 21D increases. When the pressure in the first working chamber 21D becomes the same as the pressure in the first high pressure chamber 21A, the first valve port 21C is closed.
 第2パイロット流路L5には、第3絞り部R3と直列に第4絞り部R4が設けられている。第4絞り部R4は、第3絞り部R3より第1作用室21D側に設けられて第2パイロット流路L5の一部を絞る。このため、第2パイロット流路L5に流体流れが生じたときには、第4絞り部R4の前後においても圧力差が生じる。 The second pilot flow path L5 is provided with a fourth throttle portion R4 in series with the third throttle portion R3. The fourth throttle portion R4 is provided closer to the first working chamber 21D than the third throttle portion R3 and throttles a part of the second pilot flow path L5. For this reason, when a fluid flow occurs in the second pilot flow path L5, a pressure difference also occurs before and after the fourth throttle portion R4.
 1.3 第2バルブ
 第2バルブ30は、第3パイロット流路L6を開閉する。具体的には、第2弁体31は、第3パイロット流路L6を開閉する。第2バルブ30のバルブボディ(図示せず。)には、第2高圧室31A、第2低圧室31B及び第2弁口31C等が設けられている。
1.3 Second Valve The second valve 30 opens and closes the third pilot flow path L6. Specifically, the second valve body 31 opens and closes the third pilot flow path L6. The valve body (not shown) of the second valve 30 is provided with a second high pressure chamber 31A, a second low pressure chamber 31B, a second valve port 31C, and the like.
 第2高圧室31Aは、第2高圧室31A内を移動可能なピストン部31Dにより2つの空間A、Bに仕切られている。ピストン部31Dは、第2弁体31と一体的に変位する。
 ピストン部31Dの変位方向一端側の空間Aには、高圧側の作動流体が導かれている。このため、空間A内の流体圧は、第3パイロット流路L6を開く向きの力をピストン部31Dに作用させる。空間Aは、第2弁口31Cが閉じられたときに、体積が略0となるような大きさであってもよい。
The second high pressure chamber 31A is partitioned into two spaces A and B by a piston portion 31D that can move in the second high pressure chamber 31A. The piston portion 31D is displaced integrally with the second valve body 31.
The working fluid on the high pressure side is guided to the space A on the one end side in the displacement direction of the piston portion 31D. For this reason, the fluid pressure in the space A causes a force to open the third pilot flow path L6 to act on the piston portion 31D. The space A may have a size such that the volume becomes substantially zero when the second valve port 31C is closed.
 ピストン部31Dの変位方向他端側の空間Bには、第3パイロット流路L6を介して高圧側の作動流体が導かれている。このため、空間B内の流体圧は、第3パイロット流路L6を閉じる向きの力をピストン部31Dに作用させると共に、開く向きの力を第2弁体31の頭部に作用させ、第2弁体31に平衡作用する。 The working fluid on the high pressure side is guided to the space B on the other end side in the displacement direction of the piston portion 31D through the third pilot flow path L6. For this reason, the fluid pressure in the space B causes the force in the direction of closing the third pilot flow path L6 to act on the piston portion 31D, and the force in the direction of opening to act on the head of the second valve body 31, and the second The valve body 31 is balanced.
 第2弁体31において、第2弁体31がピストン部31Dを介して空間Aの作動流体から圧力を受ける面積は、第2弁体31がピストン部31Dを介して空間Bの作動流体から圧力を受ける面積より大きい。 In the second valve body 31, the area where the second valve body 31 receives pressure from the working fluid in the space A through the piston portion 31D is the pressure from the working fluid in the space B through the piston portion 31D. Greater than the area you receive.
 高圧側Pからピストン部31Dの変位方向他端側に至る流路、つまり、高圧側PからP1、P2、P3、P6を経由して空間Bに至る流路L7には、当該流路L7の一部を絞る絞り部として、第1絞り部R1及び第3絞り部R3等が設けられている。 The flow path from the high pressure side P to the other end side in the displacement direction of the piston portion 31D, that is, the flow path L7 from the high pressure side P to the space B via P1, P2, P3, P6, A first diaphragm portion R1, a third diaphragm portion R3, and the like are provided as a diaphragm portion that restricts a part.
 第2低圧室31Bは、低圧側に接続され、第2弁口31Cを通して第2高圧室31Aの空間Bと連通可能である。第2弁体31は、第2弁口31Cの外縁に設けられた弁座部31Eに対して離間又は当接することにより、第2弁口31Cを開閉する。 The second low pressure chamber 31B is connected to the low pressure side, and can communicate with the space B of the second high pressure chamber 31A through the second valve port 31C. The second valve body 31 opens or closes the second valve port 31C by being separated from or abutting against a valve seat portion 31E provided at the outer edge of the second valve port 31C.
 第2弁体31が弁座部31Eから離間すると、第2弁口31Cが開かれる。第2弁体31が弁座部31Eに当接すると第2弁口31Cが閉じられる。第2低圧室31B内に設けられたばね31Fは、第2弁口31Cを閉じる向きの弾性力を第2弁体31に作用させる。 When the second valve body 31 is separated from the valve seat portion 31E, the second valve port 31C is opened. When the second valve body 31 comes into contact with the valve seat portion 31E, the second valve port 31C is closed. The spring 31F provided in the second low-pressure chamber 31B causes the second valve body 31 to exert an elastic force in a direction to close the second valve port 31C.
 第2弁口31Cを開く向きの力、つまり空間Aに作用する流体圧による力(以下、開弁力という。)が、ばね31Fの弾性力(以下、閉弁力という。)より大きくなると、第2弁口31Cが開く。ばね31Fの弾性力を変更すると、第2弁口31Cが開く圧力(以下、この圧力をリリーフ圧という。)を変更できる。 When the force for opening the second valve port 31C, that is, the force due to the fluid pressure acting on the space A (hereinafter referred to as valve opening force) becomes larger than the elastic force of the spring 31F (hereinafter referred to as valve closing force), The second valve port 31C is opened. When the elastic force of the spring 31F is changed, the pressure at which the second valve port 31C opens (hereinafter, this pressure is referred to as relief pressure) can be changed.
 高圧側Pの圧力がリリーフ圧より大きくなると、第3パイロット流路L6が開く。このため、上述したように、第1弁口21Cが開くため、流路L4が開き、メイン弁口11Cが開く。 When the pressure on the high pressure side P becomes higher than the relief pressure, the third pilot flow path L6 opens. Therefore, as described above, since the first valve port 21C is opened, the flow path L4 is opened and the main valve port 11C is opened.
 本実施形態では、第1高圧室21Aと高圧側Pとを繋ぐ高圧供給流路、つまり高圧側PからP1、P2、P3を経由して第1高圧室21Aに至る流路の一部と第1パイロット流路L2の一部とは共通化されている。そして、第1絞り部R1は、第1パイロット流路L2のうち高圧供給流路と共通化された部位に設けられている。 In the present embodiment, a part of the high-pressure supply flow path connecting the first high-pressure chamber 21A and the high-pressure side P, that is, a part of the flow path from the high-pressure side P to the first high-pressure chamber 21A via P1, P2, P3 and the first high-pressure chamber. A part of one pilot flow path L2 is shared. And 1st aperture | diaphragm | squeeze part R1 is provided in the site | part shared with the high voltage | pressure supply flow path among the 1st pilot flow paths L2.
 2.本実施形態に係る圧力制御弁の特徴
 本実施形態では、第1パイロット流路L2に流れる作動流体を第1絞り部R1で流量制御可能である。作動流体は、第1パイロット流路L2において、メイン高圧室11A側からメイン作用室11D側に向かって流れることができ、及びメイン作用室11D側からメイン高圧室11A側に向かって流れることができるので、メインバルブ10にてチャタリングが発生することを抑制できる。
2. Features of Pressure Control Valve According to this Embodiment In this embodiment, the flow rate of the working fluid flowing through the first pilot flow path L2 can be controlled by the first throttle portion R1. In the first pilot flow path L2, the working fluid can flow from the main high pressure chamber 11A side to the main working chamber 11D side, and can flow from the main working chamber 11D side to the main high pressure chamber 11A side. Therefore, chattering can be prevented from occurring in the main valve 10.
 本実施形態では、第1パイロット流路L2には、第1パイロット流路L2の一部を絞る第2絞り部R2が設けられていることを特徴とする。これにより、メインバルブ10にてチャタリングが発生することを更に抑制できる。 In the present embodiment, the first pilot channel L2 is provided with a second throttle part R2 that throttles a part of the first pilot channel L2. As a result, the occurrence of chattering in the main valve 10 can be further suppressed.
 本実施形態では、第2絞り部R2は、絞り開度が調整自在な可変絞りであることを特徴とする。これにより、第1パイロット流路L2を流通する流量を容易に最適化できる。延いては、様々な仕様に容易に対応できる。 In the present embodiment, the second diaphragm portion R2 is a variable diaphragm whose throttle opening is adjustable. Thereby, the flow volume which distribute | circulates the 1st pilot flow path L2 can be optimized easily. As a result, it can easily cope with various specifications.
 本実施形態では、第2絞り部R2を迂回するバイパス流路L3に、メイン高圧室11A側からメイン作用室11D側に作動流体が流通することを阻止する逆止弁12が設けられていることを特徴とする。これにより、メイン流路L1が開くときに、メイン作用室11D内の作動流体を迅速に排出できるので、主弁体11の応答性を向上させることができる。 In the present embodiment, a check valve 12 that prevents the working fluid from flowing from the main high pressure chamber 11A side to the main working chamber 11D side is provided in the bypass flow path L3 that bypasses the second throttle portion R2. It is characterized by. Thereby, when the main flow path L1 opens, the working fluid in the main working chamber 11D can be quickly discharged, so that the responsiveness of the main valve body 11 can be improved.
 本実施形態では、ピストン部31Dの変位方向一端側には、高圧側Pの作動流体が導かれて第3パイロット流路を開く向きの力が作用している。ピストン部31Dの変位方向他端側には、第3パイロット流路L6を介して高圧側の作動流体が導かれている。そして、高圧側からピストン部31Dの変位方向他端側に至る流路には、当該流路の一部を絞る絞り部として、第1絞り部R1及び第3絞り部R3が設けられていることを特徴とする。 In the present embodiment, the working fluid on the high-pressure side P is guided to the one end side in the displacement direction of the piston portion 31D to act to open the third pilot flow path. The working fluid on the high pressure side is guided to the other end side in the displacement direction of the piston portion 31D via the third pilot flow path L6. And in the flow path from the high pressure side to the other end side in the displacement direction of the piston part 31D, the first throttle part R1 and the third throttle part R3 are provided as throttle parts that throttle down a part of the flow path. It is characterized by.
 これにより、本実施形態では、チャタリングの発生を抑制しつつ、第2バルブ30において、高圧側Pの作動流体が直接的に低圧側(タンクT)に流通しないので、圧力制御弁1のオーバライド特性を向上させることができる。 Thereby, in this embodiment, since the working fluid on the high pressure side P does not flow directly to the low pressure side (tank T) in the second valve 30 while suppressing the occurrence of chattering, the override characteristic of the pressure control valve 1 Can be improved.
 (第2実施形態)
 本実施形態は、図2に示すように、第1実施形態と比較して第1絞り部R1の位置が異なっている。具体的には、本実施形態では、第2バルブ30の空間Aに供給される作動流体も第1絞り部R1により減圧される構成とされている。
(Second Embodiment)
As shown in FIG. 2, the present embodiment differs from the first embodiment in the position of the first aperture portion R1. Specifically, in the present embodiment, the working fluid supplied to the space A of the second valve 30 is also decompressed by the first throttle portion R1.
 (第3実施形態)
 本実施形態は、図3に示すように、以下の特徴を有する。
(a)第1バルブ20の第1高圧室21Aが、第1実施形態に係る第2バルブ30と同様に、ピストン部21Gにより2つの空間A、Bに仕切られる。
(b)第2バルブ30が、ばね31Fの弾性力のみで高圧側Pの圧力に対向する、いわゆる直動式のポペット弁として構成される。
(Third embodiment)
As shown in FIG. 3, the present embodiment has the following features.
(A) The first high pressure chamber 21A of the first valve 20 is partitioned into two spaces A and B by the piston portion 21G, similarly to the second valve 30 according to the first embodiment.
(B) The second valve 30 is configured as a so-called direct-acting poppet valve that opposes the pressure on the high-pressure side P only by the elastic force of the spring 31F.
 ピストン部21Gの変位方向一端側の空間Aには、高圧側の作動流体が導かれている。このため、空間A内の作動流体圧は、第1パイロット流路L2を開く向きの力をピストン部21Gに作用させる。空間Aは、第1弁口21Cが閉じられたときに、体積が略0となるような大きさであってもよい。 The working fluid on the high pressure side is guided to the space A on the one end side in the displacement direction of the piston portion 21G. For this reason, the working fluid pressure in the space A causes the piston portion 21G to exert a force in a direction to open the first pilot flow path L2. The space A may have a size such that the volume becomes substantially zero when the first valve port 21C is closed.
 ピストン部21Gの変位方向他端側の空間Bには、第1パイロット流路L2を介して高圧側の作動流体が導かれている。このため、空間B内の作動流体圧は、第1パイロット流路L2を閉じる向きの力をピストン部21Gに作用させると共に、開く向きの力を第1弁体21の頭部に作用させ、第1弁体21に平衡作用する。 The working fluid on the high pressure side is guided to the space B on the other end side in the displacement direction of the piston portion 21G via the first pilot flow path L2. For this reason, the working fluid pressure in the space B causes the force in the direction of closing the first pilot flow path L2 to act on the piston portion 21G, and the force in the direction of opening to act on the head of the first valve body 21, One valve body 21 is balanced.
 第1弁体21において、第1弁体21がピストン部21Gを介して空間Aの作動流体から圧力を受ける面積は、第1弁体21がピストン部21Gを介して空間Bの作動流体から圧力を受ける面積より大きい。 In the first valve body 21, the area where the first valve body 21 receives pressure from the working fluid in the space A through the piston portion 21G is the pressure from the working fluid in the space B through the piston portion 21G. Greater than the area you receive.
 (その他の実施形態)
 上述の実施形態に係る第2バルブ30は、ばねの弾性力を調整することによってリリーフ圧を変更する方式であったが、本発明はこれに限定されるものではない。例えば、ソレノイドコイルを利用した電磁力により、上記ばねの弾性力に相当する力を発生させるとともに、当該電磁力を調整することによってリリーフ圧を変更する方式であってもよい。
(Other embodiments)
Although the 2nd valve 30 concerning the above-mentioned embodiment was a system which changes relief pressure by adjusting the elastic force of a spring, the present invention is not limited to this. For example, a system may be used in which a force corresponding to the elastic force of the spring is generated by an electromagnetic force using a solenoid coil, and the relief pressure is changed by adjusting the electromagnetic force.
 上述の実施形態では、特許請求の範囲に記載された絞り部は、第1絞り部R1及び第3絞り部R3により構成されていたが、本発明はこれに限定されるものではない。
 本発明は、特許請求の範囲に記載された発明の趣旨に合致するものであればよく、上述の実施形態に限定されるものではない。つまり、上述の実施形態に示された圧力制御弁に限定されるものではなく、上述の第1~第3実施形態に示された構成を適宜組み合わせてもよい。
In the above-described embodiment, the diaphragm described in the claims is configured by the first diaphragm R1 and the third diaphragm R3, but the present invention is not limited to this.
The present invention is not limited to the above-described embodiment as long as it matches the gist of the invention described in the claims. That is, the configuration is not limited to the pressure control valve shown in the above-described embodiment, and the configurations shown in the above-described first to third embodiments may be appropriately combined.

Claims (6)

  1.  パイロット操作方式の圧力制御弁において、
     メイン流路を開閉する主弁体を有するメインバルブであって、前記主弁体の移動方向一端側に設けられたメイン高圧室、前記主弁体の移動方向他端側に設けられたメイン作用室、及び前記メイン高圧室と前記メイン作用室とを繋ぐ第1パイロット流路を有し、かつ、前記メイン高圧室と前記メイン作用室との圧力差に応じて前記主弁体が作動するメインバルブと、
     前記第1パイロット流路を低圧側に繋ぐ流路を開閉する第1弁体を有する第1バルブであって、前記第1弁体の移動方向一端側に設けられた第1高圧室、前記第1弁体の移動方向他端側に設けられた第1作用室、及び前記第1高圧室と前記第1作用室とを繋ぐ第2パイロット流路を有し、かつ、前記第1高圧室と前記第1作用室との圧力差に応じて前記第1弁体が作動する第1バルブと、
     前記第2パイロット流路を低圧側に繋ぐ第3パイロット流路を開閉する第2弁体を有する第2バルブであって、当該第3パイロット流路を開く向きの高圧側流体圧が前記第2弁体に作用する第2バルブと、
     前記第1パイロット流路に設けられた第1絞り部であって、前記第1パイロット流路の一部を絞る第1絞り部とを備え、
     前記第1パイロット流路は、前記メイン高圧室側から前記メイン作用室側に向かう流体流れ、及び前記メイン作用室側から前記メイン高圧室側に向かう流体流れのいずれも許容することを特徴とする圧力制御弁。
    In the pilot operated pressure control valve,
    A main valve having a main valve body for opening and closing a main flow path, a main high pressure chamber provided on one end side in the moving direction of the main valve body, and a main action provided on the other end side in the moving direction of the main valve body A main pilot body that has a first pilot flow path connecting the main high pressure chamber and the main working chamber, and the main valve element operates in accordance with a pressure difference between the main high pressure chamber and the main working chamber. A valve,
    A first valve having a first valve body that opens and closes a flow path connecting the first pilot flow path to a low pressure side, the first high pressure chamber provided on one end side in the moving direction of the first valve body; A first working chamber provided on the other end side of the one valve body in the moving direction; a second pilot flow path connecting the first high pressure chamber and the first working chamber; and the first high pressure chamber A first valve that operates the first valve body in accordance with a pressure difference with the first working chamber;
    A second valve having a second valve body that opens and closes a third pilot flow path connecting the second pilot flow path to the low pressure side, wherein the high pressure side fluid pressure in the direction of opening the third pilot flow path is the second valve. A second valve acting on the valve body;
    A first throttle part provided in the first pilot channel, the first throttle part throttles a part of the first pilot channel,
    The first pilot flow path allows both a fluid flow from the main high pressure chamber side to the main working chamber side and a fluid flow from the main working chamber side to the main high pressure chamber side. Pressure control valve.
  2.  前記第1パイロット流路には、前記第1パイロット流路の一部を絞る第2絞り部が設けられていることを特徴とする請求項1に記載の圧力制御弁。 2. The pressure control valve according to claim 1, wherein the first pilot flow path is provided with a second throttle portion that throttles a part of the first pilot flow path.
  3.  前記第2絞り部は、絞り開度が調整自在な可変絞りであることを特徴とする請求項2に記載の圧力制御弁。 The pressure control valve according to claim 2, wherein the second throttle part is a variable throttle whose throttle opening is adjustable.
  4.  前記第2絞り部を迂回して前記第2絞り部の入口側と出口側とを繋ぐバイパス流路に設けられた逆止弁であって、前記メイン高圧室側から前記メイン作用室側に流体が流通することを阻止する逆止弁を備えることを特徴とする請求項2又は3に記載の圧力制御弁。 A check valve provided in a bypass flow path that bypasses the second restrictor and connects the inlet side and the outlet side of the second restrictor, the fluid flowing from the main high pressure chamber side to the main working chamber side The pressure control valve according to claim 2, further comprising a check valve that prevents the gas from flowing.
  5.  前記第1高圧室と高圧側とを繋ぐ高圧供給流路の一部と前記第1パイロット流路の一部とは共通化されており、
     前記第1絞り部は、前記第1パイロット流路のうち前記高圧供給流路と共通化された部位に設けられていることを特徴とする請求項1ないし4のいずれか1項に記載の圧力制御弁。
    A part of the high-pressure supply flow path connecting the first high-pressure chamber and the high-pressure side and a part of the first pilot flow path are shared.
    5. The pressure according to claim 1, wherein the first throttle portion is provided in a portion of the first pilot flow path that is shared with the high pressure supply flow path. Control valve.
  6.  前記第2バルブは、前記第2弁体と一体的に変位するピストン部を有し、
     前記ピストン部の変位方向一端側には、高圧側の流体が導かれて前記第3パイロット流路を開く向きの力が作用し、
     前記ピストン部の変位方向他端側には、前記第3パイロット流路を介して高圧側の流体が導かれ、
     さらに、高圧側から前記ピストン部の変位方向他端側に至る流路には、当該流路の一部を絞る絞り部が設けられていることを特徴とする請求項5に記載の圧力制御弁。
    The second valve has a piston portion that is integrally displaced with the second valve body,
    On the one end side in the displacement direction of the piston portion, a high-pressure fluid is guided to open the third pilot flow path,
    The high pressure side fluid is guided to the other end side in the displacement direction of the piston part via the third pilot flow path,
    The pressure control valve according to claim 5, further comprising: a throttle portion that throttles a part of the flow path from the high pressure side to the other end side in the displacement direction of the piston portion. .
PCT/JP2014/054891 2013-03-07 2014-02-27 Pressure control valve WO2014136649A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013045548A JP6068203B2 (en) 2013-03-07 2013-03-07 Pressure control valve
JP2013-045548 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014136649A1 true WO2014136649A1 (en) 2014-09-12

Family

ID=51491168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054891 WO2014136649A1 (en) 2013-03-07 2014-02-27 Pressure control valve

Country Status (2)

Country Link
JP (1) JP6068203B2 (en)
WO (1) WO2014136649A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105805073A (en) * 2016-05-29 2016-07-27 浙江大学 Cartridge overflow valve main valve with directional damper
EP3377738A4 (en) * 2015-11-19 2019-08-28 Wärtsilä Finland Oy Pressure regulating arrangement and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172726A (en) * 1974-12-20 1976-06-23 Toyooki Kogyo Kk ATSURYOKUS EIGYOBEN
JPS5738901U (en) * 1980-08-16 1982-03-02
JPS58173855U (en) * 1982-05-18 1983-11-21 ヤンマーディーゼル株式会社 Hydraulic control device for hydraulic reduction/reversing machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815964B2 (en) * 1990-03-15 1998-10-27 石川島播磨重工業株式会社 Relief valve device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172726A (en) * 1974-12-20 1976-06-23 Toyooki Kogyo Kk ATSURYOKUS EIGYOBEN
JPS5738901U (en) * 1980-08-16 1982-03-02
JPS58173855U (en) * 1982-05-18 1983-11-21 ヤンマーディーゼル株式会社 Hydraulic control device for hydraulic reduction/reversing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3377738A4 (en) * 2015-11-19 2019-08-28 Wärtsilä Finland Oy Pressure regulating arrangement and method
CN105805073A (en) * 2016-05-29 2016-07-27 浙江大学 Cartridge overflow valve main valve with directional damper
CN105805073B (en) * 2016-05-29 2017-08-25 浙江大学 A kind of plug-in overflow valve main valve that there is orientation to damp

Also Published As

Publication number Publication date
JP6068203B2 (en) 2017-01-25
JP2014173644A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
US8256739B2 (en) Poppet valve operated by an electrohydraulic poppet pilot valve
US7984890B2 (en) Pilot operated valve with fast closing poppet
JP5461986B2 (en) Bidirectional force feedback poppet valve
WO2015041095A1 (en) Damping valve
JP6603560B2 (en) Pressure compensation unit
JP5452993B2 (en) Electromagnetic proportional directional flow control valve with pressure compensation
CN102878236B (en) There is adjustable damping valve arrangement of emergency operation valve
JP6023093B2 (en) 2-stage variable force solenoid
JP2010038348A (en) Damping force adjustable shock absorber
WO2013111503A1 (en) Actuator
CN105339700B (en) Valve arrangement
JP6368610B2 (en) Aircraft hydraulic valve
WO2014136649A1 (en) Pressure control valve
JP3703265B2 (en) Hydraulic control device
US10400849B2 (en) Adjustable damping valve device
US7784488B2 (en) Valve for allocating available fluid to high priority functions of a hydraulic system
JP2004019873A (en) Hydraulic control device and industrial vehicle with the hydraulic control device
WO2015166628A1 (en) Pilot-type flow control valve
KR102342222B1 (en) Flow control valve and valve structure
US10564652B2 (en) Valve with flow control and pressure limitation function
JP4998375B2 (en) Priority valve
CN108884947B (en) Proportional sequence valve with pressure amplification device
US9528620B2 (en) Pressure reducing valve
WO2010091851A2 (en) Variable flow poppet valve
JP2015140814A (en) Pressure reduction valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759832

Country of ref document: EP

Kind code of ref document: A1