WO2014136381A1 - Electron beam irradiation device, multi-electron beam irradiation device, adjustment method, and electron beam exposure apparatus - Google Patents

Electron beam irradiation device, multi-electron beam irradiation device, adjustment method, and electron beam exposure apparatus Download PDF

Info

Publication number
WO2014136381A1
WO2014136381A1 PCT/JP2014/000636 JP2014000636W WO2014136381A1 WO 2014136381 A1 WO2014136381 A1 WO 2014136381A1 JP 2014000636 W JP2014000636 W JP 2014000636W WO 2014136381 A1 WO2014136381 A1 WO 2014136381A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
electron
beam generation
generation source
beam irradiation
Prior art date
Application number
PCT/JP2014/000636
Other languages
French (fr)
Japanese (ja)
Inventor
明 小島
Original Assignee
株式会社クレステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレステック filed Critical 株式会社クレステック
Publication of WO2014136381A1 publication Critical patent/WO2014136381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06375Arrangement of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/065Source emittance characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31777Lithography by projection
    • H01J2237/31781Lithography by projection from patterned cold cathode

Definitions

  • the present invention relates to an electron beam irradiation apparatus, a multi-electron beam irradiation apparatus, an adjustment method, and an electron beam exposure apparatus.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-329220
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-245708
  • Non-Patent Document 1 PNMinh, LTTTuyen, T. Ono, H. Mimura, K. Yokoo and M. Esashi: Carbon nanotube on a Si tip for electron field emitter, Jpn. J. Appl.
  • Non-Patent Document 2 PNMinh, LTTTuyen, T. Ono, H. Miyashita, Y. Suzuki, H. Mimura and M. Esashi: Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters, J. Vac. Sci. Technol. B 21, 4, (2003), 1705-1709
  • Non-Patent Document 3 PNMinh, T. Ono, N. Sato, H. Mimura and M. Esashi: Microelectron field emitter array with focus lenses for multielectron beam lithography based on silicon on insulator wafer, J. Vac. Sci.
  • Non-Patent Document 4 JHBae, PNMinh, T. Ono and M. Esashi: Schottky emitter using boron-doped diamond, J. Vac. Sci. Technol., B22, 3 (2004) 1349-1352
  • Non-Patent Document 5 C.-H. Tsai, T. Ono and M. Esashi: Fabrication of diamond Schottky emitter array by using electrophoresis pre-treatment and hot-filament chemical vapor deposition, diamond and related materials, 16 (2007) 1398- 1402
  • the throughput of the electron beam exposure apparatus has decreased due to the miniaturization of the pattern to be drawn and the increase in the diameter of the semiconductor wafer.
  • the number of pixels to be drawn has increased by about 20,000 times in about 30 years, there has been a case where one semiconductor wafer is drawn over 10 hours or more.
  • the throughput there is a trend to downsize the electron beam generator.
  • field curvature or the like is generated, and the image to be drawn is distorted.
  • a condenser lens having a surface electron beam source in which a plurality of electron beam generation sources are arranged and a plurality of condenser lenses respectively provided corresponding to each of the plurality of electron beam generation sources An array, and an electron lens that receives a plurality of electron beams from the plurality of electron beam generation sources through the condenser lens array and reduces an image of the plurality of electron beams, and the plurality of electron beam generation sources,
  • the first electron beam source far from the center emits electrons with higher energy than the second electron beam source near the center, and the first condenser corresponding to the first electron beam source among the plurality of condenser lenses.
  • the lens includes an electron beam irradiation device and a multi-lens that have a longer focal length than the second condenser lens corresponding to the second electron beam generation source.
  • Child beam irradiation device provides an adjustment method, and an electron beam exposure apparatus.
  • a configuration example of an electron beam exposure apparatus 1000 according to the present embodiment is shown together with a semiconductor wafer 10.
  • a configuration example of an electron beam irradiation apparatus 100 according to the present embodiment is shown together with a semiconductor wafer 10.
  • a configuration example of an electron optical system before adjustment of the electron beam irradiation apparatus 100 according to the present embodiment is shown together with a semiconductor wafer 10.
  • a configuration example of the first adjusted stage with the semiconductor wafer 10 is shown for the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment.
  • a configuration example of the second adjusted stage with respect to the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment is shown together with the semiconductor wafer 10.
  • a configuration example of an electron optical system after adjustment of the electron beam irradiation apparatus 100 according to the present embodiment is shown together with a semiconductor wafer 10.
  • the structural example of the electron optical system of the electron beam irradiation apparatus 100 which concerns on this embodiment is shown with the slit part 610 and the detection part 620.
  • FIG. A modification of the electron beam exposure apparatus 1000 according to this embodiment is shown together with the semiconductor wafer 10.
  • FIG. 1 shows a configuration example of an electron beam exposure apparatus 1000 according to this embodiment together with a semiconductor wafer 10.
  • the electron beam exposure apparatus 1000 includes an electron beam irradiation apparatus 100 that irradiates a plurality of electron beams.
  • the electron beam irradiation apparatus 100 reduces distortion while correcting curvature of field of an image drawn by a plurality of electron beams.
  • the electron beam exposure apparatus 1000 draws a fine pattern on the semiconductor wafer 10 or the like using the electron beam irradiation apparatus 100.
  • the semiconductor wafer 10 may be a plate-like substrate formed by processing a crystal of a semiconductor material such as silicon, silicon carbide, germanium, gallium arsenide, gallium nitride, gallium phosphide, or indium phosphide.
  • the electron beam exposure apparatus 1000 includes an electron beam irradiation apparatus 100, a stage unit 110, a storage unit 120, a control unit 130, a communication unit 140, and a computer unit 150.
  • the electron beam irradiation apparatus 100 is an electron column that irradiates a plurality of electron beams.
  • the electron beam irradiation apparatus 100 draws a predetermined drawing pattern by irradiating the surface of the semiconductor wafer 10 with a plurality of electron beams. Details of the electron beam irradiation apparatus 100 will be described later.
  • the stage unit 110 places an object to be irradiated with an electron beam.
  • the object is a semiconductor wafer 10
  • the stage unit 110 moves the mounted semiconductor wafer 10 in the horizontal direction, and causes the electron beam irradiation apparatus 100 to draw a predetermined fine pattern on one surface of the semiconductor wafer 10 at a predetermined position.
  • the stage unit 110 includes, for example, an XY stage that moves on a horizontal plane of the stage.
  • the stage unit 110 may include a ⁇ stage that rotates around a predetermined rotation axis.
  • the stage unit 110 may further include a tilt stage that adjusts the horizontal position of the stage.
  • the stage unit 110 may further include a Z stage that moves the semiconductor wafer 10 in the vertical direction and adjusts the distance between the semiconductor wafer 10 and the electron beam irradiation apparatus 100.
  • the storage unit 120 stores drawing pattern information drawn by the electron beam irradiation apparatus 100.
  • the drawing pattern information may be position information on one surface of the semiconductor wafer 10, information on whether or not to irradiate an electron beam, and the like.
  • the storage unit 120 may store predetermined drawing pattern information in advance.
  • the control unit 130 is connected to the electron beam irradiation apparatus 100 and the storage unit 120, and transmits a control signal for causing the electron beam irradiation apparatus 100 to output a plurality of electron beams according to the drawing pattern information stored in the storage unit 120. To do.
  • the control unit 130 may be connected to the stage unit 110 and may transmit a control signal for moving the stage unit 110 according to the drawing pattern information stored in the storage unit 120.
  • the control unit 130 may transmit a control signal to the electron beam irradiation apparatus 100 and / or the stage unit 110 according to the instruction signal received via the communication unit 140.
  • the communication unit 140 connects the control unit 130 and the computer unit 150.
  • the communication unit 140 may have a general-purpose or dedicated interface, and the control unit 130 and the computer unit 150 may be connected to communicate with each other.
  • the communication unit 140 may use a general-purpose high-speed serial interface such as Ethernet (registered trademark), USB, Serial RapidIO, or a parallel interface.
  • the communication unit 140 may connect the control unit 130 and the computer unit 150 wirelessly.
  • the computer unit 150 transmits an instruction signal for operating the electron beam irradiation apparatus 100 and / or the stage unit 110 to the control unit 130.
  • the computer unit 150 may execute an operation program for operating the electron beam exposure apparatus 1000 and transmit an instruction signal according to the operation program.
  • the computer unit 150 may have an input device for inputting a user instruction, and may transmit an instruction signal according to the user instruction.
  • the computer unit 150 may be a personal computer or a server machine.
  • FIG. 2 shows a configuration example of the electron beam irradiation apparatus 100 according to the present embodiment together with the semiconductor wafer 10.
  • FIG. 2 shows a configuration example of a vertical cross section of the electron beam irradiation apparatus 100.
  • the electron beam irradiation apparatus 100 includes an electron beam generation apparatus 200, an acceleration electrode 230, an electron lens 240, and a condenser lens array 250.
  • the electron beam generator 200 generates a plurality of electron beams according to the control signal.
  • the electron beam generator 200 is a surface electron beam source in which a plurality of electron beam generation sources 212 are arranged.
  • the electron beam generator 200 includes a substrate 210 and an electronic circuit unit 220.
  • the substrate 210 is provided with a plurality of electron beam generation sources 212.
  • the plurality of electron beam generation sources 212 may be arranged in a matrix on one surface of the substrate 210. Instead, the plurality of electron beam generation sources 212 are concentric with respect to the center of the surface electron beam source. May be arranged. Details of the electron beam generation source 212 will be described later.
  • the substrate 210 is, for example, a semiconductor crystal such as silicon.
  • the electronic circuit unit 220 is formed on the other surface of the substrate 210 and outputs an electron beam from a plurality of electron beam generation sources 212.
  • a circuit for supplying a driving voltage for driving each of the plurality of electron beam generation sources 212 is formed.
  • the electronic circuit unit 220 receives a control signal from the control unit 130 and outputs an electron beam from the plurality of electron beam generation sources 212 according to the drawing pattern information.
  • the electronic circuit unit 220 may be formed of a semiconductor substrate such as silicon.
  • the electronic circuit unit 220 is substantially the same as the thermal expansion coefficient of the substrate 210 to such an extent that the substrate 210 or the electronic circuit unit 220 is not bent or peeled even when the temperature is increased by the driving of the electron beam generator 200. It may be formed of a material having a similar coefficient of thermal expansion.
  • the acceleration electrode 230 is provided on the side of the electron beam generator 200 that outputs the electron beam, and a voltage higher than that of the electrode that outputs the electron beam of the electron beam generator 200 is applied to accelerate the electron beam.
  • the acceleration electrode 230 is formed with a plurality of through holes respectively corresponding to the plurality of electron beam generation sources 212, and allows the plurality of electron beams to pass therethrough.
  • the accelerating electrode 230 may have a plurality of through holes arranged in a matrix corresponding to the plurality of electron beam generation sources 212, or may be arranged concentrically instead.
  • a constant voltage is applied to the acceleration electrode 230, and as an example, approximately 0V is applied.
  • the electron lens 240 irradiates the semiconductor wafer 10 as an object with a drawing pattern by a plurality of electron beams output from the electron beam generator 200 at a predetermined magnification. For example, the electron lens 240 reduces the drawing pattern drawn by a plurality of electron beams to 1/100 or less.
  • the electron lens 240 has a coil part 242, a lens part 244, and a speed reducing part 246.
  • the coil unit 242 controls the deflection of the plurality of electron beams in the XY directions. That is, the coil unit 242 controls the beam shape of the electron beam on the surface of the semiconductor wafer 10 where the electron beam is irradiated.
  • the coil unit 242 may be a rotation coil that corrects the correspondence between the X axis or Y axis of the electron beam irradiation apparatus 100 and the X axis or Y axis on the surface of the semiconductor wafer 10.
  • the coil unit 242 may correct the amplitudes of the beam diameter on the surface of the semiconductor wafer 10 in the X and Y directions.
  • the lens unit 244 images a plurality of electron beams on the surface of the semiconductor wafer 10.
  • the lens unit 244 may constitute a telecentric lens system and functions as an objective lens of the electron beam generator 200.
  • the deceleration unit 246 receives a deceleration voltage and applies a deceleration electric field corresponding to the deceleration voltage to the plurality of electron beams.
  • the decelerating unit 246 decelerates a plurality of electron beams and irradiates the semiconductor wafer 10 as an object with an electron beam having a predetermined energy.
  • the deceleration unit 246 sets the incident voltage to the semiconductor wafer 10 as a difference between the acceleration voltage of the acceleration electrode 230 and the deceleration voltage.
  • the condenser lens array 250 has a plurality of condenser lenses provided corresponding to each of the plurality of electron beam generation sources 212.
  • the plurality of condenser lenses may be arranged in a matrix corresponding to the plurality of electron beam generation sources 212. Instead, the plurality of condenser lenses are arranged concentrically with respect to the center of the surface electron beam source. May be.
  • the condenser lens has a through-hole through which the electron beam output from the corresponding electron beam generation source 212 passes, and functions as one or more electron lenses for the electron beam passing through the through-hole.
  • the condenser lens has a plurality of plate-like electrodes having through holes, and the plurality of electrodes are respectively arranged in parallel to the surface on which the electron beam generation source 212 is arranged.
  • the electron beam irradiation apparatus 100 includes the electron beam generation apparatus 200 that generates a plurality of electron beams, such as a surface electron beam source, and irradiates the sample with a plurality of electron beams from one electron column, thereby improving throughput. Improve.
  • FIG. 3 shows a configuration example of the electron optical system before adjustment of the electron beam irradiation apparatus 100 according to the present embodiment, together with the semiconductor wafer 10.
  • components that are substantially the same as the operations of the electron beam irradiation apparatus 100 according to the present embodiment shown in FIG.
  • the electron lens 240 and the condenser lens array 250 described in FIG. 2 form an electron optical system to form an image of an electron beam, in FIG. Show.
  • the condenser lens array 250 has a plurality of condenser lenses 252, condenses the electron beam output from the corresponding electron beam generation source 212, and outputs it to the electron lens 240.
  • FIG. 3 shows an example in which five electron beam generation sources 212a to 212e output electron beams toward the corresponding five condenser lenses 252a to 252e, respectively.
  • Each of the plurality of electron beam generation sources 212 includes an electron emission unit 300, a first electrode unit 310, a second electrode unit 320, an insulating unit 330, and a third electrode unit 350.
  • the electron emission unit 300 emits electrons according to the driving voltage.
  • Each of the plurality of electron emission units 300 includes, for example, a nanocrystal. In this case, the electron emission unit 300 is formed of nanocrystalline silicon.
  • the deposited polysilicon layer is anodically activated in a hydrogen fluoride (HF) aqueous solution by a CVD (Chemical Vapor Deposition) method or the like.
  • the polysilicon layer is subjected to an oxidation process using an RTO (Rapid-Thermal-Oxidation) method, an annealing process using an HWA (High-Pressure Water Annealing) method, and a drying process using an SCRD (Super Critical Rinse and Dry) method.
  • RTO Rapid-Thermal-Oxidation
  • HWA High-Pressure Water Annealing
  • SCRD Super Critical Rinse and Dry
  • Nanocrystalline silicon forms a surface oxide film that functions as an electron tunneling barrier, and a plurality of nanocrystalline silicons are arranged to form a row connecting the electron tunneling barriers.
  • a voltage is applied to the barriers, whereby electrons passing through the barriers can be controlled in a minute unit such as several units. Therefore, the electron emission part 300 can control the amount of electron emission precisely and with good reproducibility by having a nanocrystal.
  • the electron emission unit 300 when the electron emission unit 300 is formed of nanowires in which a plurality of such nanocrystalline silicons are arranged, the nanowires are not formed perpendicular to the surface that outputs electrons, and the output surface depends on the crystal orientation. May be tilted with respect to the normal. In this case, the electron emission unit 300 may output electrons in a direction different from the normal direction of the output surface. In this case, the electron emission unit 300 determines the electron emission amount by multiplying the distribution of the tunnel probability in a different direction with respect to the normal of the output surface and the distribution in which the nanowire emits electrons in the direction.
  • the electron emitting unit 300 may have a concave surface. As a result, more electrons can be output to the outside as an effective electron beam than the amount of electron emission when the concave surface is flat. For example, when the electron emission part 300 is formed in a flat shape by forming a direction in which the electron emission distribution is higher and / or a direction in which the tunnel probability distribution is higher in the direction in which the electron beam is output. More electrons can be output as an electron beam than the amount of emitted electrons.
  • each of the plurality of electron emission units 300 may include an insulating film that tunnels electrons to be emitted instead of the nanocrystal. Since such an insulating film can be adjusted by the probability of tunneling the amount of electrons emitted, the amount of electrons emitted can be controlled by the material, film thickness, and voltage applied to the insulating film. it can.
  • Each of the electron beam generation sources 212 includes a first electrode unit 310, a second electrode unit 320, an insulating unit 330, and a third electrode unit 350.
  • the first electrode unit 310 is provided corresponding to each of the plurality of electron emission units 300, and accelerates the electrons emitted by the corresponding electron emission units 300 to output them as electron beams.
  • Each of the plurality of first electrode portions 310 has an opening, is formed in a plate shape on one surface of the substrate 210 where the plurality of electron emitting portions 300 are provided, and the openings are formed by a potential difference with the corresponding electron emitting portion 300.
  • the electron beam is focused and output.
  • the opening is formed near the center of the first electrode unit 310 and / or the electron emission unit 300.
  • the opening may be a circular through hole.
  • the plurality of first electrode portions 310 are electrically insulated from each other, and a predetermined constant voltage is applied thereto.
  • the first electrode unit 310 is electrically connected to an electrode or the like provided outside the substrate 210 and has a connection unit to which a driving voltage is applied.
  • the connection portion may be an electrode portion that is electrically connected to the first electrode portion and in which a conductive substance is formed by plating or the like.
  • the connecting portion may be connected to an external electrode by wire bonding or the like.
  • the electrode part described in this embodiment may include nickel, gold, chromium, titanium, aluminum, tungsten, palladium, rhodium, platinum, copper, ruthenium, indium, iridium, osmium, and / or molybdenum. Further, the electrode portion may be an alloy of two or more materials including these materials.
  • the second electrode unit 320 is provided in each of the plurality of electron emission units 300 and is formed of a conductive material that covers the electron emission unit 300.
  • the second electrode unit 320 outputs electrons emitted from the electron emission unit 300 as an electron beam from the opening of the first electrode unit 310 due to a potential difference from the first electrode unit 310.
  • the second electrode unit 320 is formed to be thin enough to pass electrons emitted from the electron emission unit 300.
  • the plurality of second electrode portions 320 are electrically insulated from each other, and a predetermined constant voltage is applied thereto.
  • the first electrode unit 310 and the second electrode unit 320 may be applied with a driving voltage at which the potential difference between these electrodes is several tens to several hundreds V, respectively.
  • the first electrode unit 310 and the second electrode unit 320 are each applied with a driving voltage having a potential difference of several hundreds of volts.
  • the first electrode part 310 and the second electrode part 320 are each applied with a driving voltage with a potential difference of 150V.
  • the second electrode unit 320 includes, as an example, a connection unit that is electrically connected to an electrode or the like provided outside the substrate 210 and to which a driving voltage is applied.
  • the connection portion may be an electrode portion that is electrically connected to the second electrode portion and in which a conductive substance is formed by plating or the like.
  • the connecting portion may be connected to an external electrode by wire bonding or the like.
  • the insulating unit 330 is provided between each of the plurality of electron emitting units 300 and the corresponding first electrode unit 310, and is formed of an insulating material.
  • the insulating unit 330 separates a predetermined distance between the electron emission unit 300 and the corresponding first electrode unit 310 and supports the first electrode unit 310 while supporting the first electrode unit 310 and the second electrode unit 320. Is electrically insulated.
  • the insulating part 330 is formed between the adjacent electron emission part 300, the first electrode part 310, and the second electrode part 320, and insulates each other. That is, each of the plurality of electron beam generation sources 212 is electrically insulated from each other.
  • the insulating part 330 may be formed of a resin or the like, and may instead be a silicon oxide film formed by a CVD method or the like.
  • the third electrode unit 350 is formed on the lower surface of the substrate 210 opposite to the upper surface where the plurality of electron emission units 300 are formed, corresponding to each of the plurality of electron emission units 300.
  • the third electrode unit 350 is applied with a driving voltage for emitting electrons from the plurality of electron emission units 300.
  • the third electrode unit 350 is electrically connected to the electronic circuit unit 220.
  • the electronic circuit unit 220 is formed on the lower surface of the substrate 210 and individually supplies a driving voltage for emitting electrons from the plurality of electron emission units 300 to each of the plurality of electron emission units 300.
  • the electronic circuit unit 220 may be formed on a semiconductor substrate, and one surface of the semiconductor substrate may be attached to the substrate 210.
  • the electronic circuit unit 220 includes a plurality of electrode units corresponding to the third electrode unit 350 formed on the substrate 210, and the electrode unit is electrically connected to the corresponding third electrode unit 350. While being bonded to the substrate 210, a driving voltage is supplied through the electrode portion.
  • the electrode portions are formed at the same pitch as the third electrode portions 350 so as to correspond to the third electrode portions 350 formed on the substrate 210 at a pitch of about 100 ⁇ m.
  • the electronic circuit unit 220 may further include a plurality of connection units that are electrically connected to external electrodes and the like and to which a drive voltage, a power supply voltage, and the like are applied.
  • the connection portion may be connected to an external electrode by wire bonding or the like.
  • the electronic circuit unit 220 may further apply different offset biases depending on the arrangement of the plurality of electron emission units 300.
  • the plurality of electron emission units 300 are individually applied with a driving voltage to emit electrons, and the corresponding plurality of electron beam generation sources 212 generate a plurality of electron beams.
  • each of the plurality of electron beam generation sources 212 is electrically insulated, an offset bias is applied to each of the electron beam generation sources 212 for each combination with the corresponding condenser lens 252 of the condenser lens array 250. , Electrons of energy corresponding to the offset bias are emitted.
  • the plurality of electron beam generation sources 212 causes the generated plurality of electron beams to be imaged by the subsequent electron lens 240 to irradiate the semiconductor wafer 10 with a drawing pattern.
  • the electron beam generation source 212 described above applies the electric field generated by the drive voltage applied to the first electrode unit 310 and the second electrode unit 320 to the electrons emitted from the electron emission unit 300, respectively.
  • An electron beam is generated from the aperture of 310.
  • the electron beam generation source 212 may include an electron emission unit 300 formed in a planar shape, a concave shape, a spherical shape, or a parabolic shape. That is, the electron beam generation source 212 may be designed to have a shape in which the direction in which the electron emission unit 300 emits electrons is aligned with the direction of the opening so that the electron beam is easily focused on the opening. Can be increased.
  • the electron beam generation source 212 irradiates the semiconductor wafer 10 with the generated electron beam via the condenser lens array 250, the acceleration electrode 230, and the electron lens 240 in the subsequent stage.
  • the electronic circuit unit 220 applies a negative voltage of several tens of kV to the first electrode unit 310 and the second electrode unit 320.
  • the electronic circuit unit 220 applies ⁇ 20 kV to the second electrode unit 320 and ⁇ 20 kV + 150 V to the corresponding first electrode unit 310.
  • the electron beam generation source 212 generates an electron beam by applying an electric field generated by a potential difference of 150 V to electrons emitted from the electron emission unit 300, and the generated electron beam is generated with a potential difference of about 20 kV from the acceleration electrode 230. Accelerate. Further, the electronic circuit unit 220 applies a different offset bias for each electron beam generation source 212. That is, the electronic circuit unit 220 applies ⁇ 20 kV + nV to the corresponding second electrode unit and ⁇ 20 kV + 150 V + nV to the corresponding first electrode unit with respect to the electron beam generation source 212.
  • the electron beam generating apparatus 200 has a plurality of electron beam generation sources 212 and individually drives the plurality of electron beam generation sources 212 to output a plurality of electron beams.
  • the electron beam irradiation apparatus 100 including the electron beam generation apparatus 200 irradiates a target with a predetermined drawing pattern using a plurality of electron beams.
  • a plurality of first electrode portions 310, second electrode portions 320, and third electrode portions 350 of a plurality of electron beam generation sources 212 are provided with substantially the same offset bias.
  • a case where substantially the same drive voltage is applied to each of the electrode portions is shown in FIG. 3 as an example of a state before adjustment.
  • each of the plurality of electron beam generation sources 212 outputs electrons at substantially the same energy (speed), and the substantially parallel electron beams that have passed through the condenser lens array 250 and the acceleration electrode 230 are incident on the electron lens 240. .
  • the electron beam irradiation apparatus 100 has a path of the electron beam at a position away from the optical axis using the surface electron beam source, when an optical system based on such approximate calculation is used, An aberration occurs at the imaging position of the electron beam far from the optical axis with respect to the electron beam near the optical axis (off-axis aberration).
  • Such an off-axis aberration shows that an electron beam passing through a path away from the optical axis O′-O tends to have a larger aberration as the distance from the optical axis increases.
  • the electron beam generation source 212c outputs an electron beam that passes through the vicinity of the optical axis O′-O, the electron beam can be focused on the point O on the surface of the semiconductor wafer 10, while the electron beam The electron beam output from the generation source 212b is focused on the point B1, and the electron beam output from the electron beam generation source 212a is focused on the point A1.
  • the electron beam irradiation apparatus 100 draws an image having field curvature on the surface of the semiconductor wafer 10.
  • the electron beam irradiation apparatus 100 corrects the curvature of field. Further, the electron beam irradiation apparatus 100 reduces distortion associated with the correction of the field curvature.
  • FIG. 4 shows a configuration example of the first adjusted stage together with the semiconductor wafer 10 for the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment.
  • the same reference numerals are given to the substantially same operations as those of the electron beam irradiation apparatus 100 according to the present embodiment shown in FIGS. 2 and 3, and the description thereof is omitted.
  • the electron beam irradiation apparatus 100 performs the first adjustment to correct the curvature of field.
  • the first condenser lens corresponding to the first electron beam generation source far from the center is compared with the second condenser lens corresponding to the second electron beam generation source near the center.
  • the first condenser lens has a longer focal length than the second condenser lens, and the refraction angle at the electron lens 240 of the electron beam output from the first electron beam generation source and passing through the edge side of the electron lens 240. Without changing the focal length of the electron lens 240.
  • the condenser lens 252a and the condenser lens 252b corresponding to the electron beam generation source 212a and the electron beam generation source 212b that output an electron beam passing through a position away from the optical axis O′-O are The focal length is made longer than that of the condenser lens 252c corresponding to the electron beam generation source 212c that outputs an electron beam passing in the vicinity of '-O. That is, the condenser lens 252a and the condenser lens 252b have a smaller electron beam condensing effect and a longer focal length than the condenser lens 252c, and the refraction angle of the electron beam passing through the edge side of the electron lens 240 is increased. Without changing, the position where the image is formed by the electron lens 240 is extended.
  • the condenser lens 252a increases the focal length of the electron beam output from the electron beam generation source 212a and changes the position of the image formed by the electron lens 240 from the point A1 to the point A2 without changing the refraction angle of the electron beam. Stretch to a point.
  • the condenser lens 252b increases the focal length of the electron beam output from the electron beam generation source 212b, and changes the position of the image formed by the electron lens 240 without changing the refraction angle of the electron beam from the point B1 to the point B2. Stretch to a point.
  • the first adjustment increases the focal length of the condenser lens 252 as the distance from the optical axis increases, and the electron lens 240 does not change the refraction angle of the electron beam passing through the edge side of the electron lens 240.
  • the position to be imaged is extended according to the distance from the optical axis of the electron beam.
  • an image formed by forming a plurality of electron beams on the POQ curve can be formed on the surface of the semiconductor wafer 10. That is, the electron beam irradiation apparatus 100 according to the present embodiment can correct the curvature of field by executing the first adjustment.
  • the refraction angle by the electron lens 240 is not changed. Accordingly, for example, a plurality of equally spaced electron beams respectively output from the electron beam generation source 212a, the electron beam generation source 212b, and the electron beam generation source 212c are imaged on the surface of the semiconductor wafer 10 at unreasonable intervals. Become. In particular, since an electron beam passing through a path away from the optical axis of the electron optical system forms an image at a position farther from the center, a pincushion-shaped distortion occurs as the mounting area of the electron beam generation source 212 increases. Aberration will occur.
  • FIG. 5 shows a configuration example of the second adjusted stage together with the semiconductor wafer 10 for the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment. 5 that are substantially the same as those of the electron beam irradiation apparatus 100 according to the present embodiment shown in FIG. 2 and FIG.
  • the electron beam irradiation apparatus 100 performs the second adjustment to correct the curvature of field.
  • the first electron beam generation source far from the center emits electrons with higher energy than the second electron beam generation source near the center. That is, the first electron beam generation source emits electrons with higher energy than the second electron beam generation source, and is output from the first electron beam generation source and passes through the edge side of the electron lens 240.
  • the refraction angle in the electron lens 240 is reduced and the focal length in the electron lens 240 is increased.
  • the electron beam generation source 212a and the electron beam generation source 212b that output an electron beam that passes through a position away from the optical axis O′-O are an electron beam that passes in the vicinity of the optical axis O′-O.
  • electrons are emitted with higher energy. That is, the electron beam generation source 212a and the electron beam generation source 212b are applied with a higher offset voltage than the electron beam generation source 212c, and reduce the refraction angle of the electron beam passing through the edge side of the electron lens 240.
  • the position where the image is formed by the electron lens 240 is extended.
  • the electron beam generation source 212 a is applied with a higher offset voltage than the electron beam generation source 212 b and the electron beam generation source 212 c, and the output electron beam has a focal length while reducing the refraction angle by the electron lens 240. Therefore, the image forming position is adjusted from the A1 point to the A3 point. Further, the electron beam generation source 212b is applied with a higher offset voltage than the electron beam generation source 212c, and the output electron beam extends the focal length while reducing the refraction angle by the electron lens 240, so that an image is formed. The position to be adjusted is adjusted from point B1 to point B3.
  • the second adjustment increases the energy of electrons emitted from the electron beam generation source 212 and decreases the refraction angle of the electron beam passing through the edge side of the electron lens 240 as the distance from the optical axis increases. Meanwhile, the position where the image is formed by the electron lens 240 is extended according to the distance from the optical axis of the electron beam. As a result, an image formed by forming a plurality of electron beams on the POQ curve can be formed on the surface of the semiconductor wafer 10. That is, the electron beam irradiation apparatus 100 according to the present embodiment can correct the curvature of field by executing the second adjustment.
  • the refraction angle by the electron lens 240 decreases in proportion to the energy of the emitted electrons. Accordingly, for example, a plurality of equally spaced electron beams respectively output from the electron beam generation source 212a, the electron beam generation source 212b, and the electron beam generation source 212c are imaged on the surface of the semiconductor wafer 10 at unreasonable intervals. Become. In particular, since an electron beam passing through a path away from the optical axis of the electron optical system forms an image at a position closer to the center direction, a barrel-shaped distortion occurs as the mounting area of the electron beam generation source 212 increases. Aberration will occur.
  • FIG. 6 shows a configuration example of the electron optical system after adjustment of the electron beam irradiation apparatus 100 according to the present embodiment, together with the semiconductor wafer 10.
  • the same reference numerals are given to the substantially same operations as those of the electron beam irradiation apparatus 100 according to the present embodiment shown in FIGS. 2 and 3, and the description thereof is omitted.
  • the electron beam irradiation apparatus 100 reduces distortion associated with correction of field curvature.
  • the electron beam irradiation apparatus 100 combines the first adjustment and the second adjustment, and corrects the curvature of field while reducing distortion associated with the curvature of field. That is, the electron beam irradiation apparatus 100 causes the first electron beam generation source far from the center among the plurality of electron beam generation sources to emit electrons with higher energy compared to the second electron beam generation source near the center, Among the plurality of condenser lenses, the first condenser lens corresponding to the first electron beam generation source is made to have a longer focal length than the second condenser lens corresponding to the second electron beam generation source.
  • the electron beam passing through the path away from the optical axis of the electron optical system is adjusted in the direction in which the imaging position by the electron lens 240 is further extended.
  • the condenser lens 252a increases the focal length of the electron beam output from the electron beam generation source 212a, and extends the position where the image is formed by the electron lens 240 without changing the refraction angle of the electron beam.
  • the electron beam generation source 212a is applied with a higher offset voltage than the electron beam generation source 212b and the electron beam generation source 212c, and the output electron beam has a focal length while reducing the refraction angle by the electron lens 240. Stretch out.
  • the position where the electron beam output from the electron beam generation source 212a forms an image can be adjusted from the A1 point to the A4 point. it can.
  • the distance O-A4 from the point O on the surface of the semiconductor wafer 10 is longer than the distance between O-A3 in FIG. 5 and shorter than the distance between O-A2 in FIG.
  • the condenser lens 252b increases the focal length of the electron beam output from the electron beam generation source 212b, and extends the position where the image is formed by the electron lens 240 without changing the refraction angle of the electron beam.
  • the electron beam generation source 212b is applied with a higher offset voltage than the electron beam generation source 212c, and the output electron beam extends the focal length while reducing the refraction angle by the electron lens 240.
  • the position where the electron beam output from the electron beam generation source 212b forms an image can be adjusted from the B1 point to the B4 point. it can.
  • the distance O-B4 from the point O on the surface of the semiconductor wafer 10 can be longer than the distance between O-B3 in FIG. 5 and shorter than the distance between O-B2 in FIG. Further, the distance between O-B4 can be adjusted so as to substantially match the distance between B4-A4.
  • the electron beam irradiation apparatus 100 can correct the curvature of field by executing the first adjustment and the second adjustment. Further, the distortion aberration caused by the correction of the field curvature can be reduced by canceling out the distortion aberration caused by the first adjustment and the distortion aberration caused by the second adjustment.
  • FIG. 7 shows a configuration example of the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment, together with the slit portion 610 and the detection portion 620.
  • components that are substantially the same as the operations of the electron beam irradiation apparatus 100 according to the present embodiment illustrated in FIGS. 2 and 3 are assigned the same reference numerals, and descriptions thereof are omitted.
  • a method for adjusting the electron beam irradiation apparatus 100 will be described more specifically.
  • the electron lens 240 of the electron beam irradiation apparatus 100 disposes two orthogonal slits on the surface on which images of a plurality of electron beams are to be formed instead of the semiconductor wafer 10.
  • an x-axis slit that is formed in the x-axis direction and moves in the y-axis direction and a y-axis slit that is formed in the y-axis direction and moves in the x-axis direction are arranged in combination.
  • a square opening can be formed on the xy plane.
  • the opening can be moved in the fixed x-axis slit.
  • the opening can be moved in the fixed y-axis slit. Accordingly, by combining the x-axis slit and the y-axis slit to control the movement of each, the length of one side is equal to the slit length of the x-axis slit, and the length of the side perpendicular to the one side is the y-axis slit.
  • the opening can be moved within a rectangle or square equal to the slit length.
  • an x-axis slit having a slit length longer than the length in the x direction of the region and the length in the y direction of the region so that the electron beam irradiation apparatus 100 can move the opening in the region to be irradiated with the electron beam. It is desirable to arrange a y-axis slit having the above slit length. Further, it is desirable that the length of the two sides of the opening is approximately the same as the resolution of the electron beam irradiated by the electron beam irradiation apparatus 100.
  • the electron beam irradiation apparatus 100 can be adjusted by including the slit part 610 having such an x-axis slit and the y-axis slit and the detection part 620 that detects the electron beam that has passed through the slit part 610.
  • an electron beam is irradiated from a predetermined electron beam generation source 212 among the plurality of electron beam generation sources 212.
  • FIG. 7 shows an example in which an electron beam is output from the electron beam generation source 212c.
  • the detection unit 620 detects an electron beam passing through an opening formed by two orthogonal slits of the slit unit 610.
  • the detection of the electron beam is performed, for example, by moving the opening of the slit part 610 and setting the position of the opening where the detection result of the detection part 620 is maximum as the detection position.
  • the irradiation position of the electron beam is adjusted according to the difference. For example, as described with reference to FIG. 3, when an image formed by a plurality of electron beams in an unadjusted state forms a paraboloid, the correction of the curvature of field is performed by executing the correction described with reference to FIGS. 4 to 6. While correcting, the distortion due to the curvature of field can be reduced.
  • the irradiation position of the electron beam can be specifically detected by the combination of the slit part 610 and the detection part 620. Therefore, it can be adjusted similarly.
  • the focal length of one condenser lens 252 corresponding to one electron beam generation source 212 among the plurality of condenser lenses 252 is adjusted, and distortion of the third or higher order image plane of the one electron beam generation source 212 is reduced. Correct to distortion less than the third order. Thereby, the focal position of the electron beam can be expanded and contracted.
  • the energy of electrons irradiated by one electron beam generation source 212 is adjusted.
  • the focal position of the electron beam can be moved on the XY surface.
  • the electron beam irradiation apparatus 100 adjusts the focal position of the electron beam of the electron beam generation source 212 to an appropriate irradiation position, corrects the curvature of field, and corrects distortion. Can be reduced.
  • the electron emission unit 300 of the electron beam generation source 212 of the present modification includes a plurality of nanocrystal regions having a surface shape and a thickness determined in advance according to a crystal material to be a nanocrystal.
  • the electron emission unit 300 is formed of a nanowire, it is desirable that the direction in which the nanowire is formed and the direction in which the electron beam is emitted are in the same direction.
  • the nanowire is formed by etching a crystal material to be a nanocrystal
  • the nanowire is easily formed in a direction in which etching is easy. Therefore, it is desirable to form a film by aligning the orientation direction in which the crystal material is easily etched with the direction in which the nanowire is to be formed.
  • the crystal material has a plurality of directions that can be easily etched, when a plurality of nanowires are formed by etching a crystal having a volume larger than the size of the nanowires, the crystal materials may face a plurality of directions. Therefore, in order to form the nanowire in a predetermined direction, the length of the nanowire to be formed is set in the predetermined direction, and the length in the other directions is less than the length of the nanowire to be formed. A crystalline region is formed.
  • the emission direction of the electron beam is a vertically upward direction of the substrate 210
  • the emission direction is the thickness direction when a nanocrystalline material is formed.
  • the thickness is set to be equal to or larger than the length of the nanowire, and a plurality of cylindrical crystal materials having a diameter less than the length of the nanowire are formed in advance.
  • a plurality of nanowires facing in a direction can be formed.
  • a plurality of crystal materials having a quadrangular shape in which the cross-section of the crystal material is a diagonal line less than the length of the nanowire and having a thickness greater than or equal to the length of the nanowire may be formed as the electron emission portion 300. Good.
  • the length of the desired nanowire varies depending on the crystal material or the like. For example, in the case of a silicon nanowire, it is about several hundred nm to several ⁇ m, and more preferably 2 to 3 ⁇ m.
  • the material that occupies the interface region is a substance that undergoes a phase transition due to Joule heat when a large current flows, increases the resistivity, and suppresses the current, for example, a chalcogenide compound, etc.
  • the electrode may be prevented from being electrically short-circuited.
  • FIG. 8 shows a modification of the electron beam exposure apparatus 1000 according to the present embodiment together with the semiconductor wafer 10.
  • the electron beam exposure apparatus 1000 of this modification the same reference numerals are given to the same operations as those of the electron beam exposure apparatus 1000 according to the present embodiment shown in FIG.
  • the electron beam exposure apparatus 1000 includes a plurality of electron beam irradiation apparatuses 100 that irradiate a plurality of electron beams.
  • the electron beam exposure apparatus 1000 irradiates a plurality of electron beams and applies a drawing pattern corresponding to the drawing pattern information to the semiconductor wafer 10 that is an object. draw.
  • the electron beam irradiation apparatus 100 includes two or more electron beam exposure apparatuses 1000.
  • an electron beam irradiation apparatus 100 shows an example in which a horizontal sectional area is formed smaller than the surface area of the semiconductor wafer 10 and a plurality of electron beam exposure apparatuses 1000 are provided.
  • the plurality of electron beam irradiation apparatuses 100 draw a predetermined drawing pattern by irradiating the surface of the semiconductor wafer 10 with a plurality of electron beams, respectively.
  • the plurality of electron beam irradiation apparatuses 100 may execute each drawing in parallel. Details of the electron beam irradiation apparatus 100 have already been described with reference to FIGS.
  • the stage unit 110 moves the mounted semiconductor wafer 10 in the horizontal direction, and draws a predetermined fine pattern on one surface of the semiconductor wafer 10 at a predetermined position by the plurality of electron beam irradiation apparatuses 100.
  • the storage unit 120 stores drawing pattern information drawn by the plurality of electron beam irradiation apparatuses 100.
  • the control unit 130 is connected to each of the plurality of electron beam irradiation apparatuses 100, and receives a control signal for causing each of the plurality of electron beam irradiation apparatuses to output a plurality of electron beams according to the drawing pattern information stored in the storage unit 120. Send.
  • the electron beam irradiation apparatus 100 can be downsized, and the electron beam exposure apparatus 1000 can be downsized.
  • a plurality of electron beam irradiation apparatuses 100 can be mounted.
  • An electron beam exposure apparatus 1000 including two or more electron beam irradiation apparatuses 100 can irradiate the semiconductor wafer 10 with two or more drawing patterns in parallel, and has a throughput according to the number of electron beam irradiation apparatuses 100 to be mounted. Can be improved.

Abstract

In order to reduce the field curvature of an image rendered by electron beams from a planar electron beam source and correct distortion, provided is an electron beam irradiation device provided with: a planar electron beam source in which a plurality of electron beam generation sources are arranged; a condenser lens array which has a plurality of condenser lenses respectively provided to correspond to the plurality of electron beam generation sources; and an electron lens on which a plurality of electron beams from the plurality of electron beam generation sources are incident via the condenser lens array, and which scales down an image formed by the plurality of electron beams. Among the plurality of electron beam generation sources, a first electron beam generation source distant from the center emits electrons with higher energy than a second electron beam generation source close to the center does, and among the plurality of condenser lenses, the focal length of a first condenser lens corresponding to the first electron beam generation source is made longer than that of a second condenser lens corresponding to the second electron beam generation source.

Description

電子ビーム照射装置、マルチ電子ビーム照射装置、調整方法、および電子ビーム露光装置Electron beam irradiation apparatus, multi-electron beam irradiation apparatus, adjustment method, and electron beam exposure apparatus
 本発明は、電子ビーム照射装置、マルチ電子ビーム照射装置、調整方法、および電子ビーム露光装置に関する。 The present invention relates to an electron beam irradiation apparatus, a multi-electron beam irradiation apparatus, an adjustment method, and an electron beam exposure apparatus.
 従来、微細パターンが設けられる半導体集積回路は、電子ビーム露光装置を用い、パターンデータに応じて電子ビームを半導体基板に直接描画して当該微細パターンを形成していた(例えば、特許文献1および2参照)。
 特許文献1 特開2007-329220号公報
 特許文献2 特開平9-245708号公報
 非特許文献1 P.N.Minh, L.T.T.Tuyen, T.Ono, H.Mimura, K.Yokoo and M.Esashi : Carbon nanotube on a Si tip for electron field emitter, Jpn. J. Appl. Phys., 41 Part2, 12A (2002), L1409-L1411
 非特許文献2 P.N.Minh, L.T.T.Tuyen, T.Ono, H.Miyashita, Y.Suzuki, H.Mimura and M.Esashi : Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters, J. Vac. Sci. Technol. B 21, 4, (2003), 1705-1709
 非特許文献3 P.N.Minh, T.Ono, N.Sato, H.Mimura and M.Esashi : Microelectron field emitter array with focus lenses for multielectron beam lithography based on silicon on insulator wafer, J.Vac.Sci.Technol., B22, 3 (2004) 1273-1276
 非特許文献4 J.H.Bae, P.N.Minh, T.Ono and M.Esashi : Schottky emitter using boron-doped diamond, J.Vac.Sci.Technol., B22, 3 (2004) 1349-1352
 非特許文献5 C.-H.Tsai, T.Ono and M.Esashi : Fabrication of diamond Schottky emitter array by using electrophoresis pre-treatment and hot-filament chemical vapor deposition, diamond and related materials, 16 (2007) 1398-1402
Conventionally, in a semiconductor integrated circuit provided with a fine pattern, an electron beam exposure apparatus is used, and the electron beam is directly drawn on a semiconductor substrate in accordance with pattern data to form the fine pattern (for example, Patent Documents 1 and 2). reference).
Patent Document 1 Japanese Patent Application Laid-Open No. 2007-329220 Patent Document 2 Japanese Patent Application Laid-Open No. 9-245708 Non-Patent Document 1 PNMinh, LTTTuyen, T. Ono, H. Mimura, K. Yokoo and M. Esashi: Carbon nanotube on a Si tip for electron field emitter, Jpn. J. Appl. Phys., 41 Part2, 12A (2002), L1409-L1411
Non-Patent Document 2 PNMinh, LTTTuyen, T. Ono, H. Miyashita, Y. Suzuki, H. Mimura and M. Esashi: Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters, J. Vac. Sci. Technol. B 21, 4, (2003), 1705-1709
Non-Patent Document 3 PNMinh, T. Ono, N. Sato, H. Mimura and M. Esashi: Microelectron field emitter array with focus lenses for multielectron beam lithography based on silicon on insulator wafer, J. Vac. Sci. Technol., B22 , 3 (2004) 1273-1276
Non-Patent Document 4 JHBae, PNMinh, T. Ono and M. Esashi: Schottky emitter using boron-doped diamond, J. Vac. Sci. Technol., B22, 3 (2004) 1349-1352
Non-Patent Document 5 C.-H. Tsai, T. Ono and M. Esashi: Fabrication of diamond Schottky emitter array by using electrophoresis pre-treatment and hot-filament chemical vapor deposition, diamond and related materials, 16 (2007) 1398- 1402
 しかしながら、描画するパターンの微細化と、半導体ウェハの大口径化が進むことにより、電子ビーム露光装置のスループットが低下していた。例えば、描画すべき画素数が30年程度で2万倍程度に増加しているので、1枚の半導体ウェハを10時間以上かけて描画する場合も生じていた。このようなスループットを改善する目的で、電子ビーム発生装置を小型化する動向にあるが、実際に作製して動作させると像面湾曲等が生じ、描画すべき像に歪み生じさせていた。 However, the throughput of the electron beam exposure apparatus has decreased due to the miniaturization of the pattern to be drawn and the increase in the diameter of the semiconductor wafer. For example, since the number of pixels to be drawn has increased by about 20,000 times in about 30 years, there has been a case where one semiconductor wafer is drawn over 10 hours or more. For the purpose of improving the throughput, there is a trend to downsize the electron beam generator. However, when actually manufactured and operated, field curvature or the like is generated, and the image to be drawn is distorted.
 本発明の第1の態様においては、複数の電子ビーム発生源が配列された面電子ビーム源と、複数の電子ビーム発生源のそれぞれに対応してそれぞれ設けられた複数のコンデンサレンズを有するコンデンサレンズアレイと、複数の電子ビーム発生源からの複数の電子ビームがコンデンサレンズアレイを介して入射され、複数の電子ビームによる像を縮小する電子レンズと、を備え、複数の電子ビーム発生源のうち、中心から遠い第1電子ビーム発生源は中心から近い第2電子ビーム発生源と比較して高いエネルギーで電子を放出し、複数のコンデンサレンズのうち、第1電子ビーム発生源に対応する第1コンデンサレンズは、第2電子ビーム発生源に対応する第2コンデンサレンズと比較して焦点距離を長くする電子ビーム照射装置、マルチ電子ビーム照射装置、調整方法、および電子ビーム露光装置を提供する。 In the first aspect of the present invention, a condenser lens having a surface electron beam source in which a plurality of electron beam generation sources are arranged and a plurality of condenser lenses respectively provided corresponding to each of the plurality of electron beam generation sources An array, and an electron lens that receives a plurality of electron beams from the plurality of electron beam generation sources through the condenser lens array and reduces an image of the plurality of electron beams, and the plurality of electron beam generation sources, The first electron beam source far from the center emits electrons with higher energy than the second electron beam source near the center, and the first condenser corresponding to the first electron beam source among the plurality of condenser lenses. The lens includes an electron beam irradiation device and a multi-lens that have a longer focal length than the second condenser lens corresponding to the second electron beam generation source. Child beam irradiation device, provides an adjustment method, and an electron beam exposure apparatus.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態に係る電子ビーム露光装置1000の構成例を半導体ウェハ10と共に示す。A configuration example of an electron beam exposure apparatus 1000 according to the present embodiment is shown together with a semiconductor wafer 10. 本実施形態に係る電子ビーム照射装置100の構成例を半導体ウェハ10と共に示す。A configuration example of an electron beam irradiation apparatus 100 according to the present embodiment is shown together with a semiconductor wafer 10. 本実施形態に係る電子ビーム照射装置100の調整前の電子光学系の構成例を半導体ウェハ10と共に示す。A configuration example of an electron optical system before adjustment of the electron beam irradiation apparatus 100 according to the present embodiment is shown together with a semiconductor wafer 10. 本実施形態に係る電子ビーム照射装置100の電子光学系に対して、第1調整した段階の構成例を半導体ウェハ10と共に示す。A configuration example of the first adjusted stage with the semiconductor wafer 10 is shown for the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment. 本実施形態に係る電子ビーム照射装置100の電子光学系に対して、第2調整した段階の構成例を半導体ウェハ10と共に示す。A configuration example of the second adjusted stage with respect to the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment is shown together with the semiconductor wafer 10. 本実施形態に係る電子ビーム照射装置100の調整後の電子光学系の構成例を半導体ウェハ10と共に示す。A configuration example of an electron optical system after adjustment of the electron beam irradiation apparatus 100 according to the present embodiment is shown together with a semiconductor wafer 10. 本実施形態に係る電子ビーム照射装置100の電子光学系の構成例をスリット部610および検出部620と共に示す。The structural example of the electron optical system of the electron beam irradiation apparatus 100 which concerns on this embodiment is shown with the slit part 610 and the detection part 620. FIG. 本実施形態に係る電子ビーム露光装置1000の変形例を半導体ウェハ10と共に示す。A modification of the electron beam exposure apparatus 1000 according to this embodiment is shown together with the semiconductor wafer 10.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態に係る電子ビーム露光装置1000の構成例を半導体ウェハ10と共に示す。電子ビーム露光装置1000は、複数の電子ビームを照射する電子ビーム照射装置100を備える。本実施形態に係る電子ビーム照射装置100は、複数の電子ビームによって描画する像の像面湾曲を補正しつつ、歪曲収差を低減させる。電子ビーム露光装置1000は、当該電子ビーム照射装置100を用いて半導体ウェハ10等に微細パターンを描画する。 FIG. 1 shows a configuration example of an electron beam exposure apparatus 1000 according to this embodiment together with a semiconductor wafer 10. The electron beam exposure apparatus 1000 includes an electron beam irradiation apparatus 100 that irradiates a plurality of electron beams. The electron beam irradiation apparatus 100 according to the present embodiment reduces distortion while correcting curvature of field of an image drawn by a plurality of electron beams. The electron beam exposure apparatus 1000 draws a fine pattern on the semiconductor wafer 10 or the like using the electron beam irradiation apparatus 100.
 ここで半導体ウェハ10は、シリコン、シリコンカーバイド、ゲルマニウム、ガリウムヒ素、窒化ガリウム、ガリウム燐、またはインジウム燐等の半導体材料の結晶を加工して形成された板状の基板でよい。電子ビーム露光装置1000は、電子ビーム照射装置100と、ステージ部110と、記憶部120と、制御部130と、通信部140と、計算機部150とを備える。 Here, the semiconductor wafer 10 may be a plate-like substrate formed by processing a crystal of a semiconductor material such as silicon, silicon carbide, germanium, gallium arsenide, gallium nitride, gallium phosphide, or indium phosphide. The electron beam exposure apparatus 1000 includes an electron beam irradiation apparatus 100, a stage unit 110, a storage unit 120, a control unit 130, a communication unit 140, and a computer unit 150.
 電子ビーム照射装置100は、複数の電子ビームを照射する電子カラムである。電子ビーム照射装置100は、半導体ウェハ10の表面に複数の電子ビームを照射して予め定められた描画パターンを描画する。電子ビーム照射装置100の詳細は後に説明する。 The electron beam irradiation apparatus 100 is an electron column that irradiates a plurality of electron beams. The electron beam irradiation apparatus 100 draws a predetermined drawing pattern by irradiating the surface of the semiconductor wafer 10 with a plurality of electron beams. Details of the electron beam irradiation apparatus 100 will be described later.
 ステージ部110は、電子ビームを照射する対象物を載置する。図中において、当該対象物を半導体ウェハ10とした例を示す。ステージ部110は、載置した半導体ウェハ10を水平方向に移動させ、電子ビーム照射装置100によって半導体ウェハ10の一方の面に予め定められた微細パターンを予め定められた位置に描画させる。 The stage unit 110 places an object to be irradiated with an electron beam. In the figure, an example in which the object is a semiconductor wafer 10 is shown. The stage unit 110 moves the mounted semiconductor wafer 10 in the horizontal direction, and causes the electron beam irradiation apparatus 100 to draw a predetermined fine pattern on one surface of the semiconductor wafer 10 at a predetermined position.
 ステージ部110は、例えば、ステージの水平平面を移動するXYステージを有する。また、ステージ部110は、予め定められた回転軸を中心として回転移動するθステージを有してよい。また、ステージ部110は、ステージの水平位置を調整するチルトステージを更に有してよい。また、ステージ部110は、半導体ウェハ10を垂直方向に移動させ、半導体ウェハ10および電子ビーム照射装置100の間の距離を調節するZステージを更に有してよい。 The stage unit 110 includes, for example, an XY stage that moves on a horizontal plane of the stage. In addition, the stage unit 110 may include a θ stage that rotates around a predetermined rotation axis. The stage unit 110 may further include a tilt stage that adjusts the horizontal position of the stage. The stage unit 110 may further include a Z stage that moves the semiconductor wafer 10 in the vertical direction and adjusts the distance between the semiconductor wafer 10 and the electron beam irradiation apparatus 100.
 記憶部120は、電子ビーム照射装置100が描画する描画パターン情報を記憶する。ここで、描画パターン情報は、半導体ウェハ10の一方の面上の位置情報、および電子ビームを照射するか否かの情報等でよい。記憶部120は、予め定められた描画パターン情報を予め記憶してよい。 The storage unit 120 stores drawing pattern information drawn by the electron beam irradiation apparatus 100. Here, the drawing pattern information may be position information on one surface of the semiconductor wafer 10, information on whether or not to irradiate an electron beam, and the like. The storage unit 120 may store predetermined drawing pattern information in advance.
 制御部130は、電子ビーム照射装置100および記憶部120にそれぞれ接続され、記憶部120に記憶された描画パターン情報に応じて、電子ビーム照射装置100に複数の電子ビームを出力させる制御信号を送信する。また、制御部130は、ステージ部110にそれぞれ接続され、記憶部120に記憶された描画パターン情報に応じて、ステージ部110を移動させる制御信号を送信してよい。また、制御部130は、通信部140を介して受け取った指示信号に応じて、電子ビーム照射装置100および/またはステージ部110に制御信号を送信してよい。 The control unit 130 is connected to the electron beam irradiation apparatus 100 and the storage unit 120, and transmits a control signal for causing the electron beam irradiation apparatus 100 to output a plurality of electron beams according to the drawing pattern information stored in the storage unit 120. To do. The control unit 130 may be connected to the stage unit 110 and may transmit a control signal for moving the stage unit 110 according to the drawing pattern information stored in the storage unit 120. In addition, the control unit 130 may transmit a control signal to the electron beam irradiation apparatus 100 and / or the stage unit 110 according to the instruction signal received via the communication unit 140.
 通信部140は、制御部130と計算機部150とを接続する。通信部140は、汎用または専用のインターフェイスを有して、制御部130と計算機部150とを接続して通信させてよい。通信部140は、Ethernet(登録商標)、USB、Serial RapidIO等の汎用の高速シリアルインターフェースまたはパラレルインターフェースを用いてよい。また、通信部140は、無線で制御部130と計算機部150とを接続してよい。 The communication unit 140 connects the control unit 130 and the computer unit 150. The communication unit 140 may have a general-purpose or dedicated interface, and the control unit 130 and the computer unit 150 may be connected to communicate with each other. The communication unit 140 may use a general-purpose high-speed serial interface such as Ethernet (registered trademark), USB, Serial RapidIO, or a parallel interface. The communication unit 140 may connect the control unit 130 and the computer unit 150 wirelessly.
 計算機部150は、制御部130に電子ビーム照射装置100および/またはステージ部110を動作させる指示信号を送信する。計算機部150は、電子ビーム露光装置1000を動作させる動作プログラムを実行して、当該動作プログラムに応じて指示信号を送信してよい。また、計算機部150は、ユーザの指示を入力させる入力デバイスを有し、ユーザの指示に応じて指示信号を送信してよい。計算機部150は、パーソナルコンピュータまたはサーバマシンでよい。 The computer unit 150 transmits an instruction signal for operating the electron beam irradiation apparatus 100 and / or the stage unit 110 to the control unit 130. The computer unit 150 may execute an operation program for operating the electron beam exposure apparatus 1000 and transmit an instruction signal according to the operation program. The computer unit 150 may have an input device for inputting a user instruction, and may transmit an instruction signal according to the user instruction. The computer unit 150 may be a personal computer or a server machine.
 図2は、本実施形態に係る電子ビーム照射装置100の構成例を半導体ウェハ10と共に示す。図2は、電子ビーム照射装置100の縦断面の構成例を示す。電子ビーム照射装置100は、電子ビーム発生装置200と、加速電極230と、電子レンズ240と、コンデンサレンズアレイ250とを備える。 FIG. 2 shows a configuration example of the electron beam irradiation apparatus 100 according to the present embodiment together with the semiconductor wafer 10. FIG. 2 shows a configuration example of a vertical cross section of the electron beam irradiation apparatus 100. The electron beam irradiation apparatus 100 includes an electron beam generation apparatus 200, an acceleration electrode 230, an electron lens 240, and a condenser lens array 250.
 電子ビーム発生装置200は、制御信号に応じて、複数の電子ビームを発生させる。電子ビーム発生装置200は、複数の電子ビーム発生源212が配列された面電子ビーム源である。電子ビーム発生装置200は、基板210と、電子回路部220とを有する。 The electron beam generator 200 generates a plurality of electron beams according to the control signal. The electron beam generator 200 is a surface electron beam source in which a plurality of electron beam generation sources 212 are arranged. The electron beam generator 200 includes a substrate 210 and an electronic circuit unit 220.
 基板210は、複数の電子ビーム発生源212が設けられる。当該複数の電子ビーム発生源212は、基板210の一方の面にマトリクス状に配列されてよく、これに代えて、複数の電子ビーム発生源212は、面電子ビーム源の中心に対して同心円状に配置されてもよい。電子ビーム発生源212の詳細は後に説明する。基板210は、一例として、シリコン等の半導体結晶である。 The substrate 210 is provided with a plurality of electron beam generation sources 212. The plurality of electron beam generation sources 212 may be arranged in a matrix on one surface of the substrate 210. Instead, the plurality of electron beam generation sources 212 are concentric with respect to the center of the surface electron beam source. May be arranged. Details of the electron beam generation source 212 will be described later. The substrate 210 is, for example, a semiconductor crystal such as silicon.
 電子回路部220は、基板210の他方の面に形成され、複数の電子ビーム発生源212から電子ビームを出力させる。電子回路部220は、複数の電子ビーム発生源212のそれぞれを駆動する駆動電圧を供給する回路が形成される。電子回路部220は、制御部130から制御信号を受け取り、描画パターン情報に応じて、複数の電子ビーム発生源212から電子ビームを出力させる。 The electronic circuit unit 220 is formed on the other surface of the substrate 210 and outputs an electron beam from a plurality of electron beam generation sources 212. In the electronic circuit unit 220, a circuit for supplying a driving voltage for driving each of the plurality of electron beam generation sources 212 is formed. The electronic circuit unit 220 receives a control signal from the control unit 130 and outputs an electron beam from the plurality of electron beam generation sources 212 according to the drawing pattern information.
 電子回路部220の一方の面は、基板210と張り合わされる。電子回路部220は、シリコン等の半導体基板で形成されてよい。電子回路部220は、電子ビーム発生装置200が駆動して温度が上昇しても基板210または電子回路部220に撓みまたは剥がれ等が生じない程度に、基板210の熱膨張係数とほぼ同じか、同程度の熱膨張係数を有する材料で形成されてよい。 One surface of the electronic circuit unit 220 is bonded to the substrate 210. The electronic circuit unit 220 may be formed of a semiconductor substrate such as silicon. The electronic circuit unit 220 is substantially the same as the thermal expansion coefficient of the substrate 210 to such an extent that the substrate 210 or the electronic circuit unit 220 is not bent or peeled even when the temperature is increased by the driving of the electron beam generator 200. It may be formed of a material having a similar coefficient of thermal expansion.
 加速電極230は、電子ビーム発生装置200の電子ビームを出力する側に備わり、電子ビーム発生装置200の電子ビームを出力させる電極よりも高い電圧が印加され、当該電子ビームを加速する。加速電極230は、複数の電子ビーム発生源212にそれぞれ対応する複数の貫通孔が形成され、複数の電子ビームをそれぞれ通過させる。加速電極230は、複数の電子ビーム発生源212に対応して、複数の貫通孔がマトリクス状に配列されてよく、これに代えて、同心円状に配置されてもよい。加速電極230は、一定の電圧が印加され、一例として、略0Vが印加される。 The acceleration electrode 230 is provided on the side of the electron beam generator 200 that outputs the electron beam, and a voltage higher than that of the electrode that outputs the electron beam of the electron beam generator 200 is applied to accelerate the electron beam. The acceleration electrode 230 is formed with a plurality of through holes respectively corresponding to the plurality of electron beam generation sources 212, and allows the plurality of electron beams to pass therethrough. The accelerating electrode 230 may have a plurality of through holes arranged in a matrix corresponding to the plurality of electron beam generation sources 212, or may be arranged concentrically instead. A constant voltage is applied to the acceleration electrode 230, and as an example, approximately 0V is applied.
 電子レンズ240は、電子ビーム発生装置200から出力される複数の電子ビームによる描画パターンを予め定められた倍率にして対象物である半導体ウェハ10に照射する。例えば、電子レンズ240は、複数の電子ビームが描画する描画パターンを1/100以下に縮小する。電子レンズ240は、コイル部242と、レンズ部244と、減速部246とを有する。 The electron lens 240 irradiates the semiconductor wafer 10 as an object with a drawing pattern by a plurality of electron beams output from the electron beam generator 200 at a predetermined magnification. For example, the electron lens 240 reduces the drawing pattern drawn by a plurality of electron beams to 1/100 or less. The electron lens 240 has a coil part 242, a lens part 244, and a speed reducing part 246.
 コイル部242は、複数の電子ビームのXY方向の偏向を制御する。即ち、コイル部242は、半導体ウェハ10の電子ビームが照射される表面における当該電子ビームのビーム形状を制御する。コイル部242は、電子ビーム照射装置100のX軸またはY軸と、半導体ウェハ10の表面上のX軸またはY軸との対応を補正するローテーションコイルでよい。また、コイル部242は、半導体ウェハ10の表面上のビーム径のXおよびY方向の振幅を補正してもよい。 The coil unit 242 controls the deflection of the plurality of electron beams in the XY directions. That is, the coil unit 242 controls the beam shape of the electron beam on the surface of the semiconductor wafer 10 where the electron beam is irradiated. The coil unit 242 may be a rotation coil that corrects the correspondence between the X axis or Y axis of the electron beam irradiation apparatus 100 and the X axis or Y axis on the surface of the semiconductor wafer 10. The coil unit 242 may correct the amplitudes of the beam diameter on the surface of the semiconductor wafer 10 in the X and Y directions.
 レンズ部244は、半導体ウェハ10の表面上に複数の電子ビームを結像させる。レンズ部244は、テレセントリックレンズ系を構成してよく、電子ビーム発生装置200の対物レンズとして機能する。 The lens unit 244 images a plurality of electron beams on the surface of the semiconductor wafer 10. The lens unit 244 may constitute a telecentric lens system and functions as an objective lens of the electron beam generator 200.
 減速部246は、減速電圧が印加され、当該減速電圧に応じた減速電界を複数の電子ビームに印加する。減速部246は、複数の電子ビームを減速させて、予め定められたエネルギーの電子ビームを対象物である半導体ウェハ10に照射する。減速部246は、半導体ウェハ10への入射電圧を、加速電極230の加速電圧と当該減速電圧との差分とする。 The deceleration unit 246 receives a deceleration voltage and applies a deceleration electric field corresponding to the deceleration voltage to the plurality of electron beams. The decelerating unit 246 decelerates a plurality of electron beams and irradiates the semiconductor wafer 10 as an object with an electron beam having a predetermined energy. The deceleration unit 246 sets the incident voltage to the semiconductor wafer 10 as a difference between the acceleration voltage of the acceleration electrode 230 and the deceleration voltage.
 コンデンサレンズアレイ250は、複数の電子ビーム発生源212のそれぞれに対応してそれぞれ設けられた複数のコンデンサレンズを有する。複数のコンデンサレンズは、複数の電子ビーム発生源212に対応して、マトリクス状に配列されてよく、これに代えて、複数のコンデンサレンズは、面電子ビーム源の中心に対して同心円状に配置されてもよい。 The condenser lens array 250 has a plurality of condenser lenses provided corresponding to each of the plurality of electron beam generation sources 212. The plurality of condenser lenses may be arranged in a matrix corresponding to the plurality of electron beam generation sources 212. Instead, the plurality of condenser lenses are arranged concentrically with respect to the center of the surface electron beam source. May be.
 コンデンサレンズは、対応する電子ビーム発生源212が出力する電子ビームを通過させる貫通孔を有し、当該貫通孔を通過する電子ビームに対して1以上の電子レンズとして機能する。コンデンサレンズは、一例として、貫通孔を有する複数の板状の電極を有し、当該複数の電極が電子ビーム発生源212の配列される面に平行にそれぞれ配置される。 The condenser lens has a through-hole through which the electron beam output from the corresponding electron beam generation source 212 passes, and functions as one or more electron lenses for the electron beam passing through the through-hole. For example, the condenser lens has a plurality of plate-like electrodes having through holes, and the plurality of electrodes are respectively arranged in parallel to the surface on which the electron beam generation source 212 is arranged.
 以上の本実施形態に係る電子ビーム照射装置100は、複数の電子ビーム発生源212からの複数の電子ビームがコンデンサレンズアレイ250を介して電子レンズ240入射され、当該複数の電子ビームによる像を電子レンズ240が縮小する。このように、電子ビーム照射装置100は、面電子ビーム源等の複数の電子ビームを発生させる電子ビーム発生装置200を有し、1つの電子カラムから複数の電子ビームを試料に照射してスループットを向上させる。 In the electron beam irradiation apparatus 100 according to the above-described embodiment, a plurality of electron beams from the plurality of electron beam generation sources 212 are incident on the electron lens 240 through the condenser lens array 250, and an image by the plurality of electron beams is converted into an electron. The lens 240 is reduced. As described above, the electron beam irradiation apparatus 100 includes the electron beam generation apparatus 200 that generates a plurality of electron beams, such as a surface electron beam source, and irradiates the sample with a plurality of electron beams from one electron column, thereby improving throughput. Improve.
 図3は、本実施形態に係る電子ビーム照射装置100の調整前の電子光学系の構成例を半導体ウェハ10と共に示す。図3において、図2に示された本実施形態に係る電子ビーム照射装置100の動作と略同一のものには同一の符号を付け、説明を省略する。また、図2で説明した電子レンズ240およびコンデンサレンズアレイ250は、電子光学系を形成して電子ビームを結像するので、図3以降においては、光学レンズ等による光学系に類似させた表記で示す。 FIG. 3 shows a configuration example of the electron optical system before adjustment of the electron beam irradiation apparatus 100 according to the present embodiment, together with the semiconductor wafer 10. In FIG. 3, components that are substantially the same as the operations of the electron beam irradiation apparatus 100 according to the present embodiment shown in FIG. Further, since the electron lens 240 and the condenser lens array 250 described in FIG. 2 form an electron optical system to form an image of an electron beam, in FIG. Show.
 例えば、コンデンサレンズアレイ250は、複数のコンデンサレンズ252を有し、対応する電子ビーム発生源212が出力する電子ビームを集光して電子レンズ240に出力する。ここで、図3は、5つの電子ビーム発生源212a~212eが対応する5つのコンデンサレンズ252a~252eに向けてそれぞれ電子ビームを出力する例を示す。 For example, the condenser lens array 250 has a plurality of condenser lenses 252, condenses the electron beam output from the corresponding electron beam generation source 212, and outputs it to the electron lens 240. Here, FIG. 3 shows an example in which five electron beam generation sources 212a to 212e output electron beams toward the corresponding five condenser lenses 252a to 252e, respectively.
 複数の電子ビーム発生源212のそれぞれは、電子放出部300と、第1電極部310と、第2電極部320と、絶縁部330と、第3電極部350とを有する。電子放出部300は、駆動電圧に応じて電子をそれぞれ放出する。複数の電子放出部300のそれぞれは、例えば、ナノ結晶を有する。この場合、電子放出部300は、ナノ結晶シリコンで形成される。 Each of the plurality of electron beam generation sources 212 includes an electron emission unit 300, a first electrode unit 310, a second electrode unit 320, an insulating unit 330, and a third electrode unit 350. The electron emission unit 300 emits electrons according to the driving voltage. Each of the plurality of electron emission units 300 includes, for example, a nanocrystal. In this case, the electron emission unit 300 is formed of nanocrystalline silicon.
 より具体的には、電子放出部300は、CVD(Chemical Vapor Deposition:化学気相成長)法等によって、成膜されたポリシリコン層が、フッ化水素(HF)水溶液中において陽極活性される。そして、当該ポリシリコン層は、RTO(Rapid-Thermal-Oxidation)法による酸化工程、HWA(High-Pressure Water vapor Annealing)法によるアニール工程、およびSCRD(Super Critical Rinse and Dry)法による乾燥工程を経て、欠陥の少ないナノ結晶シリコンが形成される。 More specifically, in the electron emission portion 300, the deposited polysilicon layer is anodically activated in a hydrogen fluoride (HF) aqueous solution by a CVD (Chemical Vapor Deposition) method or the like. The polysilicon layer is subjected to an oxidation process using an RTO (Rapid-Thermal-Oxidation) method, an annealing process using an HWA (High-Pressure Water Annealing) method, and a drying process using an SCRD (Super Critical Rinse and Dry) method. , Nanocrystalline silicon with few defects is formed.
 ナノ結晶シリコンは、電子トンネル障壁として機能する表面酸化膜を形成し、当該ナノ結晶シリコンが複数並ぶことにより、電子トンネル障壁を接続した列が形成される。このような電子トンネル障壁の列は、当該障壁に電圧を印加することで、当該障壁を通過させる電子を、例えば数個の単位といった極微量な単位で制御することができる。したがって、電子放出部300は、ナノ結晶を有することで、電子の放出量を精密に、かつ、再現性よく制御することができる。 Nanocrystalline silicon forms a surface oxide film that functions as an electron tunneling barrier, and a plurality of nanocrystalline silicons are arranged to form a row connecting the electron tunneling barriers. In such an array of electron tunnel barriers, a voltage is applied to the barriers, whereby electrons passing through the barriers can be controlled in a minute unit such as several units. Therefore, the electron emission part 300 can control the amount of electron emission precisely and with good reproducibility by having a nanocrystal.
 また、電子放出部300は、このようなナノ結晶シリコンが複数並ぶナノワイヤで形成される場合、電子を出力する面に対して当該ナノワイヤが垂直に形成されずに、結晶方位に依存して出力面の法線に対して傾くことがある。この場合、電子放出部300は、出力面の法線方向とは異なる方向に電子を出力させることがある。この場合、電子放出部300は、出力面の法線に対して異なる方向のトンネル確率の分布と、当該方向にナノワイヤが電子を放出する分布との掛け算で、電子放出量が定まる。 Further, when the electron emission unit 300 is formed of nanowires in which a plurality of such nanocrystalline silicons are arranged, the nanowires are not formed perpendicular to the surface that outputs electrons, and the output surface depends on the crystal orientation. May be tilted with respect to the normal. In this case, the electron emission unit 300 may output electrons in a direction different from the normal direction of the output surface. In this case, the electron emission unit 300 determines the electron emission amount by multiplying the distribution of the tunnel probability in a different direction with respect to the normal of the output surface and the distribution in which the nanowire emits electrons in the direction.
 そこで、電子放出部300は、表面を凹面形状の凹部にしてもよい。これによって、当該凹面形状を平坦な形状にした場合の電子放出量に比べてより多くの電子を有効な電子ビームとして外部に出力させることができる。例えば、電子放出部300は、電子を放出する分布がより高い方向および/またはトンネル確率の分布がより高い方向を、電子ビームを出力する方向に向けて形成することで、平坦な形状にした場合の電子放出量に比べてより多くの電子を電子ビームとして出力させることができる。 Therefore, the electron emitting unit 300 may have a concave surface. As a result, more electrons can be output to the outside as an effective electron beam than the amount of electron emission when the concave surface is flat. For example, when the electron emission part 300 is formed in a flat shape by forming a direction in which the electron emission distribution is higher and / or a direction in which the tunnel probability distribution is higher in the direction in which the electron beam is output. More electrons can be output as an electron beam than the amount of emitted electrons.
 また、複数の電子放出部300のそれぞれは、ナノ結晶に代えて、放出する電子をトンネリングさせる絶縁膜を有してもよい。このような絶縁膜は、放出する電子の量をトンネルする確率によって調整することができるので、当該絶縁膜の材質、膜厚および絶縁膜に印加する電圧によって、電子の放出量を制御することができる。 In addition, each of the plurality of electron emission units 300 may include an insulating film that tunnels electrons to be emitted instead of the nanocrystal. Since such an insulating film can be adjusted by the probability of tunneling the amount of electrons emitted, the amount of electrons emitted can be controlled by the material, film thickness, and voltage applied to the insulating film. it can.
 また、電子ビーム発生源212のそれぞれは、第1電極部310と、第2電極部320と、絶縁部330と、第3電極部350とを含む。 Each of the electron beam generation sources 212 includes a first electrode unit 310, a second electrode unit 320, an insulating unit 330, and a third electrode unit 350.
 第1電極部310は、複数の電子放出部300のそれぞれに対応して設けられ、対応する電子放出部300が放出した電子を加速して電子ビームとして出力する。複数の第1電極部310のそれぞれは、開口を有し、基板210の複数の電子放出部300が設けられる一方の面に板状に形成され、対応する電子放出部300との電位差によって当該開口から電子ビームを集束させて出力させる。開口は、第1電極部310および/または電子放出部300の中心近辺に形成される。開口は、円形の貫通孔でよい。 The first electrode unit 310 is provided corresponding to each of the plurality of electron emission units 300, and accelerates the electrons emitted by the corresponding electron emission units 300 to output them as electron beams. Each of the plurality of first electrode portions 310 has an opening, is formed in a plate shape on one surface of the substrate 210 where the plurality of electron emitting portions 300 are provided, and the openings are formed by a potential difference with the corresponding electron emitting portion 300. The electron beam is focused and output. The opening is formed near the center of the first electrode unit 310 and / or the electron emission unit 300. The opening may be a circular through hole.
 複数の第1電極部310は、電気的にそれぞれ絶縁され、予め定められた定電圧がそれぞれ印加される。第1電極部310は、一例として、基板210の外部に備わる電極等と電気的に接続され、駆動電圧が印加される接続部を有する。当該接続部は、第1電極部と電気的に接続され、メッキ等で導電性物質が形成された電極部でよい。接続部は、ワイヤボンディング等によって外部の電極と接続されてよい。 The plurality of first electrode portions 310 are electrically insulated from each other, and a predetermined constant voltage is applied thereto. As an example, the first electrode unit 310 is electrically connected to an electrode or the like provided outside the substrate 210 and has a connection unit to which a driving voltage is applied. The connection portion may be an electrode portion that is electrically connected to the first electrode portion and in which a conductive substance is formed by plating or the like. The connecting portion may be connected to an external electrode by wire bonding or the like.
 ここで、本実施例で説明する電極部は、ニッケル、金、クロム、チタン、アルミニウム、タングステン、パラジウム、ロジウム、白金、銅、ルテニウム、インジウム、イリジウム、オスミウム、および/またはモリブデンを含んでよい。また、当該電極部は、これらの材料を含む2以上の材料の合金であってよい。 Here, the electrode part described in this embodiment may include nickel, gold, chromium, titanium, aluminum, tungsten, palladium, rhodium, platinum, copper, ruthenium, indium, iridium, osmium, and / or molybdenum. Further, the electrode portion may be an alloy of two or more materials including these materials.
 第2電極部320は、複数の電子放出部300のそれぞれに設けられ、当該電子放出部300を覆う導電性物質で形成される。第2電極部320は、電子放出部300から放出された電子を、第1電極部310との電位差によって第1電極部310の開口から電子ビームとして出力させる。ここで、第2電極部320は、電子放出部300から放出される電子を通過させる程度に薄く形成される。複数の第2電極部320は、電気的にそれぞれ絶縁され、予め定められた定電圧がそれぞれ印加される。 The second electrode unit 320 is provided in each of the plurality of electron emission units 300 and is formed of a conductive material that covers the electron emission unit 300. The second electrode unit 320 outputs electrons emitted from the electron emission unit 300 as an electron beam from the opening of the first electrode unit 310 due to a potential difference from the first electrode unit 310. Here, the second electrode unit 320 is formed to be thin enough to pass electrons emitted from the electron emission unit 300. The plurality of second electrode portions 320 are electrically insulated from each other, and a predetermined constant voltage is applied thereto.
 ここで、第1電極部310および第2電極部320は、これら電極間の電位差が数十から数百Vとなる駆動電圧がそれぞれ印加されてよい。好ましくは、第1電極部310および第2電極部320は、電位差が百数十Vとなる駆動電圧がそれぞれ印加される。一例として、第1電極部310および第2電極部320は、電位差が150Vとなる駆動電圧がそれぞれ印加される。 Here, the first electrode unit 310 and the second electrode unit 320 may be applied with a driving voltage at which the potential difference between these electrodes is several tens to several hundreds V, respectively. Preferably, the first electrode unit 310 and the second electrode unit 320 are each applied with a driving voltage having a potential difference of several hundreds of volts. As an example, the first electrode part 310 and the second electrode part 320 are each applied with a driving voltage with a potential difference of 150V.
 第2電極部320は、一例として、基板210の外部に備わる電極等と電気的に接続され、駆動電圧が印加される接続部を含む。当該接続部は、第2電極部に電気的に接続され、メッキ等で導電性物質が形成された電極部でよい。接続部は、ワイヤボンディング等によって外部の電極と接続されてよい。 The second electrode unit 320 includes, as an example, a connection unit that is electrically connected to an electrode or the like provided outside the substrate 210 and to which a driving voltage is applied. The connection portion may be an electrode portion that is electrically connected to the second electrode portion and in which a conductive substance is formed by plating or the like. The connecting portion may be connected to an external electrode by wire bonding or the like.
 絶縁部330は、複数の電子放出部300のそれぞれと、対応する第1電極部310の間に設けられ、絶縁材料で形成される。絶縁部330は、電子放出部300と対応する第1電極部310との予め定められた距離を離間させ、第1電極部310を支持しつつ、第1電極部310と第2電極部320とを電気的に絶縁する。 The insulating unit 330 is provided between each of the plurality of electron emitting units 300 and the corresponding first electrode unit 310, and is formed of an insulating material. The insulating unit 330 separates a predetermined distance between the electron emission unit 300 and the corresponding first electrode unit 310 and supports the first electrode unit 310 while supporting the first electrode unit 310 and the second electrode unit 320. Is electrically insulated.
 また、絶縁部330は、隣り合う電子放出部300、第1電極部310、および第2電極部320の間に形成され、それぞれを絶縁する。即ち、複数の電子ビーム発生源212のそれぞれは、互いに電気的に絶縁されることになる。絶縁部330は、樹脂等で形成されてよく、これに代えて、CVD法等によって成膜される酸化シリコン膜でよい。 Also, the insulating part 330 is formed between the adjacent electron emission part 300, the first electrode part 310, and the second electrode part 320, and insulates each other. That is, each of the plurality of electron beam generation sources 212 is electrically insulated from each other. The insulating part 330 may be formed of a resin or the like, and may instead be a silicon oxide film formed by a CVD method or the like.
 第3電極部350は、基板210の複数の電子放出部300が形成される上面とは反対側の下面に、複数の電子放出部300のそれぞれに対応して形成される。第3電極部350は、複数の電子放出部300から電子をそれぞれ放出させる駆動電圧がそれぞれ印加される。第3電極部350は、電子回路部220と電気的に接続される。 The third electrode unit 350 is formed on the lower surface of the substrate 210 opposite to the upper surface where the plurality of electron emission units 300 are formed, corresponding to each of the plurality of electron emission units 300. The third electrode unit 350 is applied with a driving voltage for emitting electrons from the plurality of electron emission units 300. The third electrode unit 350 is electrically connected to the electronic circuit unit 220.
 電子回路部220は、基板210の下面に形成され、複数の電子放出部300から電子を放出させる駆動電圧を、複数の電子放出部300のそれぞれに対して個別に供給する。電子回路部220は、半導体基板に形成され、当該半導体基板の一方の面は、基板210と張り合わされてよい。 The electronic circuit unit 220 is formed on the lower surface of the substrate 210 and individually supplies a driving voltage for emitting electrons from the plurality of electron emission units 300 to each of the plurality of electron emission units 300. The electronic circuit unit 220 may be formed on a semiconductor substrate, and one surface of the semiconductor substrate may be attached to the substrate 210.
 ここで電子回路部220は、一例として、基板210に形成される第3電極部350に対応する複数の電極部を有し、当該電極部が対応する第3電極部350と電気的に接続されつつ基板210と張り合わされ、当該電極部を介して駆動電圧を供給する。電極部は、例えば、100μmピッチ程度で基板210に形成される第3電極部350に対応させるべく、当該第3電極部350と同程度のピッチで形成される。 Here, as an example, the electronic circuit unit 220 includes a plurality of electrode units corresponding to the third electrode unit 350 formed on the substrate 210, and the electrode unit is electrically connected to the corresponding third electrode unit 350. While being bonded to the substrate 210, a driving voltage is supplied through the electrode portion. For example, the electrode portions are formed at the same pitch as the third electrode portions 350 so as to correspond to the third electrode portions 350 formed on the substrate 210 at a pitch of about 100 μm.
 電子回路部220は、外部に備わる電極等と電気的に接続され、駆動電圧および電源電圧等が印加される複数の接続部をさらに有してよい。当該接続部は、ワイヤボンディング等によって外部の電極と接続されてよい。 The electronic circuit unit 220 may further include a plurality of connection units that are electrically connected to external electrodes and the like and to which a drive voltage, a power supply voltage, and the like are applied. The connection portion may be connected to an external electrode by wire bonding or the like.
 電子回路部220は、複数の電子放出部300のそれぞれの配置に応じて、異なるオフセットバイアスを更に印加してよい。複数の電子放出部300は、それぞれ個別に駆動電圧を印加されて電子をそれぞれ放出し、対応する複数の電子ビーム発生源212は、複数の電子ビームを発生させる。 The electronic circuit unit 220 may further apply different offset biases depending on the arrangement of the plurality of electron emission units 300. The plurality of electron emission units 300 are individually applied with a driving voltage to emit electrons, and the corresponding plurality of electron beam generation sources 212 generate a plurality of electron beams.
 ここで、複数の電子ビーム発生源212がそれぞれ電気的に絶縁されているので、電子ビーム発生源212のそれぞれは、コンデンサレンズアレイ250の対応するコンデンサレンズ252との組み合わせ毎にオフセットバイアスが印加され、当該オフセットバイアスに応じたエネルギーの電子を放出する。複数の電子ビーム発生源212は、発生させた複数の電子ビームを後段の電子レンズ240によって結像させて、半導体ウェハ10に描画パターンを照射させる。 Here, since each of the plurality of electron beam generation sources 212 is electrically insulated, an offset bias is applied to each of the electron beam generation sources 212 for each combination with the corresponding condenser lens 252 of the condenser lens array 250. , Electrons of energy corresponding to the offset bias are emitted. The plurality of electron beam generation sources 212 causes the generated plurality of electron beams to be imaged by the subsequent electron lens 240 to irradiate the semiconductor wafer 10 with a drawing pattern.
 以上の電子ビーム発生源212は、電子放出部300が放出する電子に、第1電極部310と第2電極部320にそれぞれ印加される駆動電圧によって生じる電界を印加することによって、第1電極部310の開口から電子ビームを発生させる。ここで、電子ビーム発生源212は、平面状、凹面状、球面状、または放物面状に形成される電子放出部300を有してよい。即ち、電子ビーム発生源212は、電子放出部300が電子を放出する方向を開口の方向に合わせて、当該開口に集束させやすくする形状に設計されてよく、これによって発生する電子ビームの密度を高めることができる。 The electron beam generation source 212 described above applies the electric field generated by the drive voltage applied to the first electrode unit 310 and the second electrode unit 320 to the electrons emitted from the electron emission unit 300, respectively. An electron beam is generated from the aperture of 310. Here, the electron beam generation source 212 may include an electron emission unit 300 formed in a planar shape, a concave shape, a spherical shape, or a parabolic shape. That is, the electron beam generation source 212 may be designed to have a shape in which the direction in which the electron emission unit 300 emits electrons is aligned with the direction of the opening so that the electron beam is easily focused on the opening. Can be increased.
 電子ビーム発生源212は、発生させた電子ビームを後段のコンデンサレンズアレイ250、加速電極230、および電子レンズ240を介して半導体ウェハ10に照射させる。例えば、電子回路部220は、第1電極部310および第2電極部320に、数十kVの負電圧を印加する。一例として、電子回路部220は、第2電極部320に-20kVを、対応する第1電極部310に-20kV+150Vを印加する。 The electron beam generation source 212 irradiates the semiconductor wafer 10 with the generated electron beam via the condenser lens array 250, the acceleration electrode 230, and the electron lens 240 in the subsequent stage. For example, the electronic circuit unit 220 applies a negative voltage of several tens of kV to the first electrode unit 310 and the second electrode unit 320. As an example, the electronic circuit unit 220 applies −20 kV to the second electrode unit 320 and −20 kV + 150 V to the corresponding first electrode unit 310.
 この場合、電子ビーム発生源212は、150Vの電位差によって生じる電界を電子放出部300から放出する電子に印加して電子ビームを発生させ、発生した電子ビームを加速電極230との略20kVの電位差で加速させる。また、電子回路部220は、電子ビーム発生源212毎に異なるオフセットバイアスを印加する。即ち、電子回路部220は、電子ビーム発生源212に対して、対応する第2電極部に-20kV+nVを、対応する第1電極部に-20kV+150V+nVを印加する。 In this case, the electron beam generation source 212 generates an electron beam by applying an electric field generated by a potential difference of 150 V to electrons emitted from the electron emission unit 300, and the generated electron beam is generated with a potential difference of about 20 kV from the acceleration electrode 230. Accelerate. Further, the electronic circuit unit 220 applies a different offset bias for each electron beam generation source 212. That is, the electronic circuit unit 220 applies −20 kV + nV to the corresponding second electrode unit and −20 kV + 150 V + nV to the corresponding first electrode unit with respect to the electron beam generation source 212.
 以上の本実施例に係る電子ビーム発生装置200は、複数の電子ビーム発生源212を有し、当該複数の電子ビーム発生源212をそれぞれ個別に駆動して複数の電子ビームを出力させる。これによって、電子ビーム発生装置200を備える電子ビーム照射装置100は、複数の電子ビームによって予め定められた描画パターンを対象物に照射する。 The electron beam generating apparatus 200 according to the present embodiment described above has a plurality of electron beam generation sources 212 and individually drives the plurality of electron beam generation sources 212 to output a plurality of electron beams. As a result, the electron beam irradiation apparatus 100 including the electron beam generation apparatus 200 irradiates a target with a predetermined drawing pattern using a plurality of electron beams.
 ここで、本実施例に係る電子ビーム発生装置200において、複数の電子ビーム発生源212の第1電極部310、第2電極部320、および第3電極部350に、略同一のオフセットバイアスで複数の電極部毎に略同一の駆動電圧がそれぞれ印加される場合を、調整前の状態の例として図3に示す。この場合、複数の電子ビーム発生源212は、それぞれ略同一のエネルギー(速度)で電子を出力し、コンデンサレンズアレイ250および加速電極230を通過した互いに略平行な電子ビームが電子レンズ240に入射する。 Here, in the electron beam generating apparatus 200 according to the present embodiment, a plurality of first electrode portions 310, second electrode portions 320, and third electrode portions 350 of a plurality of electron beam generation sources 212 are provided with substantially the same offset bias. A case where substantially the same drive voltage is applied to each of the electrode portions is shown in FIG. 3 as an example of a state before adjustment. In this case, each of the plurality of electron beam generation sources 212 outputs electrons at substantially the same energy (speed), and the substantially parallel electron beams that have passed through the condenser lens array 250 and the acceleration electrode 230 are incident on the electron lens 240. .
 従来のシングルビーム出力の電子ビーム発生装置は、電子光学系の光軸に対して電子ビームが通過する経路が当該光軸近傍に集中するので、当該経路を計算する場合に、sin(θ)はθに、cos(θ)は1に、tan(θ)はθにそれぞれ略等しいとする近似(近軸近似)を用いて計算していた。本実施例に係る電子ビーム照射装置100は、面電子ビーム源を用いて光軸から離れた位置にも電子ビームの経路が存在するので、このような近似計算に基づく光学系を用いた場合、光軸近辺の電子ビームに対して、光軸から離れた電子ビームの結像位置に収差が発生する(軸外収差)。 In the conventional electron beam generator having a single beam output, the path through which the electron beam passes with respect to the optical axis of the electron optical system is concentrated near the optical axis. Therefore, when calculating the path, sin (θ) is Calculation was performed using an approximation (paraxial approximation) where θ, cos (θ) is 1, and tan (θ) is approximately equal to θ. Since the electron beam irradiation apparatus 100 according to the present embodiment has a path of the electron beam at a position away from the optical axis using the surface electron beam source, when an optical system based on such approximate calculation is used, An aberration occurs at the imaging position of the electron beam far from the optical axis with respect to the electron beam near the optical axis (off-axis aberration).
 このような軸外収差は、光軸O'-Oから離れた経路を通過する電子ビームは、光軸から離れれば離れるほど収差が大きくなる傾向を示す。例えば、電子ビーム発生源212cは、光軸O'-O近辺を通過する電子ビームを出力するので、半導体ウェハ10の表面上のO点に電子ビームを集光させることができる一方で、電子ビーム発生源212bから出力される電子ビームはB1点に、電子ビーム発生源212aから出力される電子ビームはA1点に集光してしまう。 Such an off-axis aberration shows that an electron beam passing through a path away from the optical axis O′-O tends to have a larger aberration as the distance from the optical axis increases. For example, since the electron beam generation source 212c outputs an electron beam that passes through the vicinity of the optical axis O′-O, the electron beam can be focused on the point O on the surface of the semiconductor wafer 10, while the electron beam The electron beam output from the generation source 212b is focused on the point B1, and the electron beam output from the electron beam generation source 212a is focused on the point A1.
 このように、面電子ビーム源から出力される複数の電子ビームによる像は、近軸近似を用いた電子光学系を用いると、一例として、図3のP-O-Q曲線に示すように、放物面状に結像することになる。したがって、従来の電子光学系を用いると、電子ビーム照射装置100は、像面湾曲を有する像を半導体ウェハ10の表面上に描画することになる。 As described above, when an electron optical system using paraxial approximation is used for an image by a plurality of electron beams output from a surface electron beam source, as shown in a POQ curve in FIG. The image is formed in a parabolic shape. Therefore, when the conventional electron optical system is used, the electron beam irradiation apparatus 100 draws an image having field curvature on the surface of the semiconductor wafer 10.
 そこで、本実施例に係る電子ビーム照射装置100は、当該像面湾曲を補正する。また、電子ビーム照射装置100は、当該像面湾曲の補正に伴う歪曲収差を低減させる。 Therefore, the electron beam irradiation apparatus 100 according to the present embodiment corrects the curvature of field. Further, the electron beam irradiation apparatus 100 reduces distortion associated with the correction of the field curvature.
 図4は、本実施形態に係る電子ビーム照射装置100の電子光学系に対して、第1調整した段階の構成例を半導体ウェハ10と共に示す。図4において、図2および図3に示された本実施形態に係る電子ビーム照射装置100の動作と略同一のものには同一の符号を付け、説明を省略する。電子ビーム照射装置100は、像面湾曲を補正すべく、第1調整を実行する。 FIG. 4 shows a configuration example of the first adjusted stage together with the semiconductor wafer 10 for the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment. In FIG. 4, the same reference numerals are given to the substantially same operations as those of the electron beam irradiation apparatus 100 according to the present embodiment shown in FIGS. 2 and 3, and the description thereof is omitted. The electron beam irradiation apparatus 100 performs the first adjustment to correct the curvature of field.
 第1調整として、複数のコンデンサレンズ252のうち、中心から遠い第1電子ビーム発生源に対応する第1コンデンサレンズは、中心から近い第2電子ビーム発生源に対応する第2コンデンサレンズと比較して焦点距離を長くする。即ち、第1コンデンサレンズは、第2コンデンサレンズよりも焦点距離を長くして、第1電子ビーム発生源から出力して電子レンズ240の縁部側を通る電子ビームの、電子レンズ240における屈折角を変えずに、電子レンズ240における焦点距離を伸ばす。 As a first adjustment, among the plurality of condenser lenses 252, the first condenser lens corresponding to the first electron beam generation source far from the center is compared with the second condenser lens corresponding to the second electron beam generation source near the center. To increase the focal length. That is, the first condenser lens has a longer focal length than the second condenser lens, and the refraction angle at the electron lens 240 of the electron beam output from the first electron beam generation source and passing through the edge side of the electron lens 240. Without changing the focal length of the electron lens 240.
 図4の例において、光軸O'-Oから離れた位置を通過する電子ビームを出力する電子ビーム発生源212aおよび電子ビーム発生源212bに対応するコンデンサレンズ252aおよびコンデンサレンズ252bは、光軸O'-Oの近傍を通過する電子ビームを出力する電子ビーム発生源212cに対応するコンデンサレンズ252cに比べて、焦点距離を長くする。即ち、コンデンサレンズ252aおよびコンデンサレンズ252bは、コンデンサレンズ252cに比べて、電子ビームの集光効果を弱くして焦点距離を長くし、電子レンズ240の縁部側を通過する電子ビームの屈折角を変えずに、電子レンズ240によって結像する位置を伸ばす。 In the example of FIG. 4, the condenser lens 252a and the condenser lens 252b corresponding to the electron beam generation source 212a and the electron beam generation source 212b that output an electron beam passing through a position away from the optical axis O′-O are The focal length is made longer than that of the condenser lens 252c corresponding to the electron beam generation source 212c that outputs an electron beam passing in the vicinity of '-O. That is, the condenser lens 252a and the condenser lens 252b have a smaller electron beam condensing effect and a longer focal length than the condenser lens 252c, and the refraction angle of the electron beam passing through the edge side of the electron lens 240 is increased. Without changing, the position where the image is formed by the electron lens 240 is extended.
 例えば、コンデンサレンズ252aは、電子ビーム発生源212aから出力される電子ビームの焦点距離を長くして、当該電子ビームの屈折角を変えずに、電子レンズ240によって結像する位置をA1点からA2点に伸ばす。また、コンデンサレンズ252bは、電子ビーム発生源212bから出力される電子ビームの焦点距離を長くして、当該電子ビームの屈折角を変えずに、電子レンズ240によって結像する位置をB1点からB2点に伸ばす。 For example, the condenser lens 252a increases the focal length of the electron beam output from the electron beam generation source 212a and changes the position of the image formed by the electron lens 240 from the point A1 to the point A2 without changing the refraction angle of the electron beam. Stretch to a point. Further, the condenser lens 252b increases the focal length of the electron beam output from the electron beam generation source 212b, and changes the position of the image formed by the electron lens 240 without changing the refraction angle of the electron beam from the point B1 to the point B2. Stretch to a point.
 このように、第1調整は、光軸から離れるにつれて、コンデンサレンズ252の焦点距離を長くし、電子レンズ240の縁部側を通過する電子ビームの屈折角を変えずに、電子レンズ240によって結像する位置を電子ビームの光軸からの距離に応じて伸ばす。これによって、複数の電子ビームがP-O-Q曲線に結像していた像を、半導体ウェハ10の表面上に結像させることができる。即ち、本実施例に係る電子ビーム照射装置100は、第1調整を実行することで像面湾曲を補正することができる。 As described above, the first adjustment increases the focal length of the condenser lens 252 as the distance from the optical axis increases, and the electron lens 240 does not change the refraction angle of the electron beam passing through the edge side of the electron lens 240. The position to be imaged is extended according to the distance from the optical axis of the electron beam. As a result, an image formed by forming a plurality of electron beams on the POQ curve can be formed on the surface of the semiconductor wafer 10. That is, the electron beam irradiation apparatus 100 according to the present embodiment can correct the curvature of field by executing the first adjustment.
 電子ビーム照射装置100が第1調整を実行した場合、電子レンズ240による屈折角は変更していない。したがって、例えば、電子ビーム発生源212a、電子ビーム発生源212b、および電子ビーム発生源212cからそれぞれ出力する等間隔の複数の電子ビームは、半導体ウェハ10の表面上に不当間隔に結像することになる。特に、電子光学系の光軸から離れた位置の経路を通過する電子ビームほど、中心からより離れた位置に結像するので、電子ビーム発生源212の実装面積の増加に伴い、糸巻き状の歪曲収差が発生することになる。 When the electron beam irradiation apparatus 100 performs the first adjustment, the refraction angle by the electron lens 240 is not changed. Accordingly, for example, a plurality of equally spaced electron beams respectively output from the electron beam generation source 212a, the electron beam generation source 212b, and the electron beam generation source 212c are imaged on the surface of the semiconductor wafer 10 at unreasonable intervals. Become. In particular, since an electron beam passing through a path away from the optical axis of the electron optical system forms an image at a position farther from the center, a pincushion-shaped distortion occurs as the mounting area of the electron beam generation source 212 increases. Aberration will occur.
 図5は、本実施形態に係る電子ビーム照射装置100の電子光学系に対して、第2調整した段階の構成例を半導体ウェハ10と共に示す。図5において、図2および図3に示された本実施形態に係る電子ビーム照射装置100の動作と略同一のものには同一の符号を付け、説明を省略する。電子ビーム照射装置100は、像面湾曲を補正すべく、第2調整を実行する。 FIG. 5 shows a configuration example of the second adjusted stage together with the semiconductor wafer 10 for the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment. 5 that are substantially the same as those of the electron beam irradiation apparatus 100 according to the present embodiment shown in FIG. 2 and FIG. The electron beam irradiation apparatus 100 performs the second adjustment to correct the curvature of field.
 第2調整として、複数の電子ビーム発生源212のうち、中心から遠い第1電子ビーム発生源は、中心から近い第2電子ビーム発生源と比較して高いエネルギーで電子を放出する。即ち、第1電子ビーム発生源は、第2電子ビーム発生源よりも高いエネルギーで電子を放出して、第1電子ビーム発生源から出力して電子レンズ240の縁部側を通る電子ビームの、電子レンズ240における屈折角を小さくすると共に、電子レンズ240における焦点距離を伸ばす。 As a second adjustment, among the plurality of electron beam generation sources 212, the first electron beam generation source far from the center emits electrons with higher energy than the second electron beam generation source near the center. That is, the first electron beam generation source emits electrons with higher energy than the second electron beam generation source, and is output from the first electron beam generation source and passes through the edge side of the electron lens 240. The refraction angle in the electron lens 240 is reduced and the focal length in the electron lens 240 is increased.
 図5の例において、光軸O'-Oから離れた位置を通過する電子ビームを出力する電子ビーム発生源212aおよび電子ビーム発生源212bは、光軸O'-Oの近傍を通過する電子ビームを出力する電子ビーム発生源212cに比べて、高いエネルギーで電子を放出する。即ち、電子ビーム発生源212aおよび電子ビーム発生源212bは、電子ビーム発生源212cに比べて、高いオフセット電圧が印加され、電子レンズ240の縁部側を通過する電子ビームの屈折角を小さくすると共に、電子レンズ240によって結像する位置を伸ばす。 In the example of FIG. 5, the electron beam generation source 212a and the electron beam generation source 212b that output an electron beam that passes through a position away from the optical axis O′-O are an electron beam that passes in the vicinity of the optical axis O′-O. As compared with the electron beam generation source 212c that outputs the electron, electrons are emitted with higher energy. That is, the electron beam generation source 212a and the electron beam generation source 212b are applied with a higher offset voltage than the electron beam generation source 212c, and reduce the refraction angle of the electron beam passing through the edge side of the electron lens 240. The position where the image is formed by the electron lens 240 is extended.
 例えば、電子ビーム発生源212aは、電子ビーム発生源212bおよび電子ビーム発生源212cに比べて高いオフセット電圧が印加され、出力された電子ビームは、電子レンズ240による屈折角を小さくしつつ、焦点距離を伸ばすので、結像する位置をA1点からA3点に調整される。また、電子ビーム発生源212bは、電子ビーム発生源212cに比べて高いオフセット電圧が印加され、出力された電子ビームは、電子レンズ240による屈折角を小さくしつつ、焦点距離を伸ばすので、結像する位置をB1点からB3点に調整される。 For example, the electron beam generation source 212 a is applied with a higher offset voltage than the electron beam generation source 212 b and the electron beam generation source 212 c, and the output electron beam has a focal length while reducing the refraction angle by the electron lens 240. Therefore, the image forming position is adjusted from the A1 point to the A3 point. Further, the electron beam generation source 212b is applied with a higher offset voltage than the electron beam generation source 212c, and the output electron beam extends the focal length while reducing the refraction angle by the electron lens 240, so that an image is formed. The position to be adjusted is adjusted from point B1 to point B3.
 このように、第2調整は、光軸から離れるにつれて、電子ビーム発生源212から放出される電子のエネルギーを高くして、電子レンズ240の縁部側を通過する電子ビームの屈折角を小さくしつつ、電子レンズ240によって結像する位置を電子ビームの光軸からの距離に応じて伸ばす。これによって、複数の電子ビームがP-O-Q曲線に結像していた像を、半導体ウェハ10の表面上に結像させることができる。即ち、本実施例に係る電子ビーム照射装置100は、第2調整を実行することで像面湾曲を補正することができる。 As described above, the second adjustment increases the energy of electrons emitted from the electron beam generation source 212 and decreases the refraction angle of the electron beam passing through the edge side of the electron lens 240 as the distance from the optical axis increases. Meanwhile, the position where the image is formed by the electron lens 240 is extended according to the distance from the optical axis of the electron beam. As a result, an image formed by forming a plurality of electron beams on the POQ curve can be formed on the surface of the semiconductor wafer 10. That is, the electron beam irradiation apparatus 100 according to the present embodiment can correct the curvature of field by executing the second adjustment.
 電子ビーム照射装置100が第2調整を実行した場合、電子レンズ240による屈折角は、放出される電子のエネルギーに比例して小さくなる。したがって、例えば、電子ビーム発生源212a、電子ビーム発生源212b、および電子ビーム発生源212cからそれぞれ出力する等間隔の複数の電子ビームは、半導体ウェハ10の表面上に不当間隔に結像することになる。特に、電子光学系の光軸から離れた位置の経路を通過する電子ビームほど、より中心方向に近づく位置に結像するので、電子ビーム発生源212の実装面積の増加に伴い、樽状の歪曲収差が発生することになる。 When the electron beam irradiation apparatus 100 performs the second adjustment, the refraction angle by the electron lens 240 decreases in proportion to the energy of the emitted electrons. Accordingly, for example, a plurality of equally spaced electron beams respectively output from the electron beam generation source 212a, the electron beam generation source 212b, and the electron beam generation source 212c are imaged on the surface of the semiconductor wafer 10 at unreasonable intervals. Become. In particular, since an electron beam passing through a path away from the optical axis of the electron optical system forms an image at a position closer to the center direction, a barrel-shaped distortion occurs as the mounting area of the electron beam generation source 212 increases. Aberration will occur.
 図6は、本実施形態に係る電子ビーム照射装置100の調整後の電子光学系の構成例を半導体ウェハ10と共に示す。図6において、図2および図3に示された本実施形態に係る電子ビーム照射装置100の動作と略同一のものには同一の符号を付け、説明を省略する。電子ビーム照射装置100は、像面湾曲の補正に伴う歪曲収差を低減させる。 FIG. 6 shows a configuration example of the electron optical system after adjustment of the electron beam irradiation apparatus 100 according to the present embodiment, together with the semiconductor wafer 10. In FIG. 6, the same reference numerals are given to the substantially same operations as those of the electron beam irradiation apparatus 100 according to the present embodiment shown in FIGS. 2 and 3, and the description thereof is omitted. The electron beam irradiation apparatus 100 reduces distortion associated with correction of field curvature.
 本実施形態に係る電子ビーム照射装置100は、上記第1調整と、上記第2調整とを組み合わせて、像面湾曲を補正しつつ、当該像面湾曲に伴う歪曲収差を低減させる。即ち、電子ビーム照射装置100は、複数の電子ビーム発生源のうち、中心から遠い第1電子ビーム発生源に、中心から近い第2電子ビーム発生源と比較して高いエネルギーで電子を放出させ、複数のコンデンサレンズのうち、第1電子ビーム発生源に対応する第1コンデンサレンズに、第2電子ビーム発生源に対応する第2コンデンサレンズと比較して焦点距離を長くさせる。 The electron beam irradiation apparatus 100 according to the present embodiment combines the first adjustment and the second adjustment, and corrects the curvature of field while reducing distortion associated with the curvature of field. That is, the electron beam irradiation apparatus 100 causes the first electron beam generation source far from the center among the plurality of electron beam generation sources to emit electrons with higher energy compared to the second electron beam generation source near the center, Among the plurality of condenser lenses, the first condenser lens corresponding to the first electron beam generation source is made to have a longer focal length than the second condenser lens corresponding to the second electron beam generation source.
 第1調整および第2調整の実行により、電子光学系の光軸から離れた位置の経路を通過する電子ビームほど、電子レンズ240による結像位置をより伸ばす方向に調整される。また、第1調整および第2調整の実行により、第1調整による糸巻き状の歪曲収差と、当該糸巻き状の歪曲収差とは傾向が逆の樽状の歪曲収差とを発生することができる。即ち、第1調整および第2調整の実行により、糸巻き状の歪曲収差と樽状の歪曲収差を同時に発生させて、歪曲収差を打ち消すことができる。 By performing the first adjustment and the second adjustment, the electron beam passing through the path away from the optical axis of the electron optical system is adjusted in the direction in which the imaging position by the electron lens 240 is further extended. In addition, by performing the first adjustment and the second adjustment, it is possible to generate a pincushion distortion due to the first adjustment and a barrel distortion whose tendency is opposite to that of the pincushion distortion. That is, by performing the first adjustment and the second adjustment, the pincushion-shaped distortion aberration and the barrel-shaped distortion aberration can be simultaneously generated to cancel the distortion aberration.
 例えば、コンデンサレンズ252aは、電子ビーム発生源212aから出力される電子ビームの焦点距離を長くして、当該電子ビームの屈折角を変えずに、電子レンズ240によって結像する位置を伸ばす。また、電子ビーム発生源212aは、電子ビーム発生源212bおよび電子ビーム発生源212cに比べて高いオフセット電圧が印加され、出力された電子ビームは、電子レンズ240による屈折角を小さくしつつ、焦点距離を伸ばす。 For example, the condenser lens 252a increases the focal length of the electron beam output from the electron beam generation source 212a, and extends the position where the image is formed by the electron lens 240 without changing the refraction angle of the electron beam. The electron beam generation source 212a is applied with a higher offset voltage than the electron beam generation source 212b and the electron beam generation source 212c, and the output electron beam has a focal length while reducing the refraction angle by the electron lens 240. Stretch out.
 コンデンサレンズ252aによる調整と、電子ビーム発生源212aのオフセット電圧による調整とを組み合わせることで、電子ビーム発生源212aから出力される電子ビームが結像する位置をA1点からA4点に調整することができる。ここで、半導体ウェハ10の表面上におけるO点からの距離O-A4は、図5におけるO-A3間の距離よりも長く、図4におけるO-A2間の距離よりも短くすることができる。 By combining the adjustment by the condenser lens 252a and the adjustment by the offset voltage of the electron beam generation source 212a, the position where the electron beam output from the electron beam generation source 212a forms an image can be adjusted from the A1 point to the A4 point. it can. Here, the distance O-A4 from the point O on the surface of the semiconductor wafer 10 is longer than the distance between O-A3 in FIG. 5 and shorter than the distance between O-A2 in FIG.
 同様に、コンデンサレンズ252bは、電子ビーム発生源212bから出力される電子ビームの焦点距離を長くして、当該電子ビームの屈折角を変えずに、電子レンズ240によって結像する位置を伸ばす。また、電子ビーム発生源212bは、電子ビーム発生源212cに比べて高いオフセット電圧が印加され、出力された電子ビームは、電子レンズ240による屈折角を小さくしつつ、焦点距離を伸ばす。 Similarly, the condenser lens 252b increases the focal length of the electron beam output from the electron beam generation source 212b, and extends the position where the image is formed by the electron lens 240 without changing the refraction angle of the electron beam. The electron beam generation source 212b is applied with a higher offset voltage than the electron beam generation source 212c, and the output electron beam extends the focal length while reducing the refraction angle by the electron lens 240.
 コンデンサレンズ252bによる調整と、電子ビーム発生源212bのオフセット電圧による調整とを組み合わせることで、電子ビーム発生源212bから出力される電子ビームが結像する位置をB1点からB4点に調整することができる。ここで、半導体ウェハ10の表面上におけるO点からの距離O-B4は、図5におけるO-B3間の距離よりも長く、図4におけるO-B2間の距離よりも短くすることができる。また、O-B4間の距離は、B4-A4間の距離にほぼ一致するように調整することができる。 By combining the adjustment by the condenser lens 252b and the adjustment by the offset voltage of the electron beam generation source 212b, the position where the electron beam output from the electron beam generation source 212b forms an image can be adjusted from the B1 point to the B4 point. it can. Here, the distance O-B4 from the point O on the surface of the semiconductor wafer 10 can be longer than the distance between O-B3 in FIG. 5 and shorter than the distance between O-B2 in FIG. Further, the distance between O-B4 can be adjusted so as to substantially match the distance between B4-A4.
 これによって、複数の電子ビームがP-O-Q曲線に結像していた像を、半導体ウェハ10の表面上に結像させることができる。即ち、本実施例に係る電子ビーム照射装置100は、第1調整および第2調整を実行することで像面湾曲を補正することができる。また、第1調整による歪曲収差と第2調整による歪曲収差とを相殺させて、像面湾曲の補正に伴う歪曲収差を低減させることができる。 Thereby, an image formed by forming a plurality of electron beams on the POQ curve can be formed on the surface of the semiconductor wafer 10. That is, the electron beam irradiation apparatus 100 according to the present embodiment can correct the curvature of field by executing the first adjustment and the second adjustment. Further, the distortion aberration caused by the correction of the field curvature can be reduced by canceling out the distortion aberration caused by the first adjustment and the distortion aberration caused by the second adjustment.
 図7は、本実施形態に係る電子ビーム照射装置100の電子光学系の構成例をスリット部610および検出部620と共に示す。図7において、図2および図3に示された本実施形態に係る電子ビーム照射装置100の動作と略同一のものには同一の符号を付け、説明を省略する。図7において、電子ビーム照射装置100を調整する方法をより具体的に説明する。 FIG. 7 shows a configuration example of the electron optical system of the electron beam irradiation apparatus 100 according to the present embodiment, together with the slit portion 610 and the detection portion 620. In FIG. 7, components that are substantially the same as the operations of the electron beam irradiation apparatus 100 according to the present embodiment illustrated in FIGS. 2 and 3 are assigned the same reference numerals, and descriptions thereof are omitted. In FIG. 7, a method for adjusting the electron beam irradiation apparatus 100 will be described more specifically.
 電子ビーム照射装置100の電子レンズ240が複数の電子ビームによる像を結像すべき面上に、半導体ウェハ10に代えて、直交する2つのスリットを配置する。一例として、x軸方向に形成され、y軸方向に移動するx軸スリットと、y軸方向に形成され、x軸方向に移動するy軸スリットを組み合わせて配置する。 The electron lens 240 of the electron beam irradiation apparatus 100 disposes two orthogonal slits on the surface on which images of a plurality of electron beams are to be formed instead of the semiconductor wafer 10. As an example, an x-axis slit that is formed in the x-axis direction and moves in the y-axis direction and a y-axis slit that is formed in the y-axis direction and moves in the x-axis direction are arranged in combination.
 このようなx軸スリットとy軸スリットを組み合わせることで、1辺の長さがx軸スリットのスリット幅に等しく、当該1辺に直交する辺の長さがy軸スリットのスリット幅に等しい長方形または正方形の開口を、xy平面上に形成することができる。 By combining such an x-axis slit and a y-axis slit, a rectangle whose length of one side is equal to the slit width of the x-axis slit and whose length perpendicular to the one side is equal to the slit width of the y-axis slit. Alternatively, a square opening can be formed on the xy plane.
 また、x軸スリットを固定しつつ、y軸スリットをx軸方向に移動することで、当該開口を、固定したx軸スリット内において移動することができる。同様に、y軸スリットを固定しつつ、x軸スリットをy軸方向に移動することで、当該開口を、固定したy軸スリット内において移動することができる。したがって、x軸スリットおよびy軸スリットを組み合わせてそれぞれの移動を制御することにより、1辺の長さがx軸スリットのスリット長に等しく、当該1辺に直交する辺の長さがy軸スリットのスリット長に等しい長方形または正方形内において、当該開口を移動させることができる。 Further, by moving the y-axis slit in the x-axis direction while fixing the x-axis slit, the opening can be moved in the fixed x-axis slit. Similarly, by moving the x-axis slit in the y-axis direction while fixing the y-axis slit, the opening can be moved in the fixed y-axis slit. Accordingly, by combining the x-axis slit and the y-axis slit to control the movement of each, the length of one side is equal to the slit length of the x-axis slit, and the length of the side perpendicular to the one side is the y-axis slit. The opening can be moved within a rectangle or square equal to the slit length.
 そこで、電子ビーム照射装置100が電子ビームを照射すべき領域において、当該開口を移動できるように、当該領域のx方向の長さ以上のスリット長のx軸スリットおよび当該領域のy方向の長さ以上のスリット長のy軸スリットを配置することが望ましい。また、開口の2辺の長さは、電子ビーム照射装置100が照射する電子ビームの分解能と同程度であることが望ましい。このようなx軸スリットおよびy軸スリットを有するスリット部610と、当該スリット部610を通過した電子ビームを検出する検出部620とを備えることで、電子ビーム照射装置100を調整することができる。 Therefore, an x-axis slit having a slit length longer than the length in the x direction of the region and the length in the y direction of the region so that the electron beam irradiation apparatus 100 can move the opening in the region to be irradiated with the electron beam. It is desirable to arrange a y-axis slit having the above slit length. Further, it is desirable that the length of the two sides of the opening is approximately the same as the resolution of the electron beam irradiated by the electron beam irradiation apparatus 100. The electron beam irradiation apparatus 100 can be adjusted by including the slit part 610 having such an x-axis slit and the y-axis slit and the detection part 620 that detects the electron beam that has passed through the slit part 610.
 例えば、複数の電子ビーム発生源212のうち、予め定められた一の電子ビーム発生源212から電子ビームを照射する。図7は、電子ビーム発生源212cから電子ビームを出力させた例を示す。次に、スリット部610の直交する2つのスリットによって形成される開口を通る電子ビームを検出部620で検出する。ここで、電子ビームの検出は、例えば、スリット部610の開口を移動し、検出部620の検出結果が最大となる開口の位置を検出位置とする。 For example, an electron beam is irradiated from a predetermined electron beam generation source 212 among the plurality of electron beam generation sources 212. FIG. 7 shows an example in which an electron beam is output from the electron beam generation source 212c. Next, the detection unit 620 detects an electron beam passing through an opening formed by two orthogonal slits of the slit unit 610. Here, the detection of the electron beam is performed, for example, by moving the opening of the slit part 610 and setting the position of the opening where the detection result of the detection part 620 is maximum as the detection position.
 電子ビームの検出位置と、電子ビーム発生源212が当該電子ビームを照射すべき位置とに差がある場合、当該差に応じて、当該電子ビームの照射位置を調整する。例えば、図3で説明したように、無調整の状態における複数の電子ビームによる像が放物面を形成する場合は、図4から図6で説明した補正を実行することで、像面湾曲を補正しつつ、像面湾曲に伴う歪曲収差を低減させることができる。 When there is a difference between the detection position of the electron beam and the position where the electron beam generation source 212 should irradiate the electron beam, the irradiation position of the electron beam is adjusted according to the difference. For example, as described with reference to FIG. 3, when an image formed by a plurality of electron beams in an unadjusted state forms a paraboloid, the correction of the curvature of field is performed by executing the correction described with reference to FIGS. 4 to 6. While correcting, the distortion due to the curvature of field can be reduced.
 また、電子ビームの照射位置が、複雑な電子光学系によってより複雑な歪みを有している場合においても、スリット部610および検出部620の組み合わせにより、電子ビームの照射位置を具体的に検出できるので、同様に調整することもできる。 Further, even when the irradiation position of the electron beam has more complicated distortion due to a complicated electron optical system, the irradiation position of the electron beam can be specifically detected by the combination of the slit part 610 and the detection part 620. Therefore, it can be adjusted similarly.
 例えば、複数のコンデンサレンズ252のうち、一の電子ビーム発生源212に対応する一のコンデンサレンズ252の焦点距離を調整して、一の電子ビーム発生源212の3次以上の像面の歪を、3次未満の歪に補正する。これによって、電子ビームの焦点位置を伸縮することができる。 For example, the focal length of one condenser lens 252 corresponding to one electron beam generation source 212 among the plurality of condenser lenses 252 is adjusted, and distortion of the third or higher order image plane of the one electron beam generation source 212 is reduced. Correct to distortion less than the third order. Thereby, the focal position of the electron beam can be expanded and contracted.
 また、次に、一の電子ビーム発生源212が照射する電子のエネルギーを調整する。これによって、電子ビームの焦点位置をXY表面上を含めて移動させることができる。ここで、このような第1調整および第2調整を必要に応じて繰り返してもよい。このように、本実施形態に係る電子ビーム照射装置100は、電子ビーム発生源212の電子ビームの焦点位置を、適切な照射位置に調整して、像面湾曲を補正し、かつ、歪曲収差を低減することができる。 Next, the energy of electrons irradiated by one electron beam generation source 212 is adjusted. Thereby, the focal position of the electron beam can be moved on the XY surface. Here, you may repeat such 1st adjustment and 2nd adjustment as needed. As described above, the electron beam irradiation apparatus 100 according to this embodiment adjusts the focal position of the electron beam of the electron beam generation source 212 to an appropriate irradiation position, corrects the curvature of field, and corrects distortion. Can be reduced.
 また、図7の電子ビーム発生源212は、本実施形態に係る電子ビーム発生源212の変形例を示す。即ち、本変形例の電子ビーム発生源212の電子放出部300は、ナノ結晶となる結晶材料に応じて予め定められた表面形状と厚さを有する複数のナノ結晶領域を含む。電子放出部300がナノワイヤで形成される場合、当該ナノワイヤが形成される向きと、電子ビームを放出する向きとが同一の方向を向くことが望ましい。 7 shows a modification of the electron beam generation source 212 according to the present embodiment. That is, the electron emission unit 300 of the electron beam generation source 212 of the present modification includes a plurality of nanocrystal regions having a surface shape and a thickness determined in advance according to a crystal material to be a nanocrystal. When the electron emission unit 300 is formed of a nanowire, it is desirable that the direction in which the nanowire is formed and the direction in which the electron beam is emitted are in the same direction.
 ここで、ナノワイヤは、ナノ結晶となる結晶材料をエッチングして形成される場合、エッチングが容易な方向に当該ナノワイヤが向いて形成されやすい。そこで、結晶材料のエッチングされやすい配向方向を、ナノワイヤを形成すべき方向に合わせて成膜することが望ましい。 Here, when the nanowire is formed by etching a crystal material to be a nanocrystal, the nanowire is easily formed in a direction in which etching is easy. Therefore, it is desirable to form a film by aligning the orientation direction in which the crystal material is easily etched with the direction in which the nanowire is to be formed.
 また、結晶材料は、エッチングが容易な方向を複数有するので、ナノワイヤのサイズに比べて大きな体積の結晶をエッチングして複数のナノワイヤを形成すると、複数の方向を向く場合が生じる。そこで、予め定められた方向にナノワイヤを形成すべく、予め定められた方向には形成すべきナノワイヤの長さを有し、それ以外の方向は形成すべきナノワイヤの長さ未満の長さにした結晶領域を形成する。 In addition, since the crystal material has a plurality of directions that can be easily etched, when a plurality of nanowires are formed by etching a crystal having a volume larger than the size of the nanowires, the crystal materials may face a plurality of directions. Therefore, in order to form the nanowire in a predetermined direction, the length of the nanowire to be formed is set in the predetermined direction, and the length in the other directions is less than the length of the nanowire to be formed. A crystalline region is formed.
 即ち、電子ビームの放出方向が基板210の垂直上向き方向とした場合、当該放出方向は、ナノ結晶の結晶材料を成膜する場合の厚さ方向となる。この場合、例えば、電子放出部300として、厚さをナノワイヤの長さ以上の厚さにし、ナノワイヤの長さ未満の直径を有する円柱形状の結晶材料を複数成膜することで、予め定められた方向を向くナノワイヤを複数形成することができる。これに代えて、電子放出部300として、結晶材料断面がナノワイヤの長さ未満の対角線となる四角形形状で、厚さをナノワイヤの長さ以上の厚さにした結晶材料を複数成膜してもよい。 That is, when the emission direction of the electron beam is a vertically upward direction of the substrate 210, the emission direction is the thickness direction when a nanocrystalline material is formed. In this case, for example, as the electron emission unit 300, the thickness is set to be equal to or larger than the length of the nanowire, and a plurality of cylindrical crystal materials having a diameter less than the length of the nanowire are formed in advance. A plurality of nanowires facing in a direction can be formed. Alternatively, a plurality of crystal materials having a quadrangular shape in which the cross-section of the crystal material is a diagonal line less than the length of the nanowire and having a thickness greater than or equal to the length of the nanowire may be formed as the electron emission portion 300. Good.
 この場合、仮に、異なる方向にナノワイヤが形成されても、当該ナノワイヤの一端および/または他端は、上部または下部電極から大きく離れることになり、当該ナノワイヤに注入される電流を小さく抑えることができ、電子ビームの放出方向とは異なる方向に放出される電子の量を低減することができる。ここで、望ましいナノワイヤの長さは、結晶材料等に応じて異なり、例えば、シリコンナノワイヤの場合、数百nmから数μm程度であり、より望ましくは、2~3μmである。 In this case, even if nanowires are formed in different directions, one end and / or the other end of the nanowires are far away from the upper or lower electrode, and the current injected into the nanowires can be kept small. The amount of electrons emitted in a direction different from the emission direction of the electron beam can be reduced. Here, the length of the desired nanowire varies depending on the crystal material or the like. For example, in the case of a silicon nanowire, it is about several hundred nm to several μm, and more preferably 2 to 3 μm.
 また、ナノワイヤの一端が下部電極と電気的に接触する界面領域に、大電流が流れる場合がある。そこで、当該界面領域を占める材料を、大電流が流れた場合のジュール熱によって相転移し、抵抗率が増大して電流を抑制する物質、例えばカルコゲナイド系化合物等にすることにより、上部電極と下部電極が電気的に短絡することを防止してもよい。 Also, a large current may flow in the interface region where one end of the nanowire is in electrical contact with the lower electrode. Therefore, the material that occupies the interface region is a substance that undergoes a phase transition due to Joule heat when a large current flows, increases the resistivity, and suppresses the current, for example, a chalcogenide compound, etc. The electrode may be prevented from being electrically short-circuited.
 図8は、本実施形態に係る電子ビーム露光装置1000の変形例を半導体ウェハ10と共に示す。本変形例の電子ビーム露光装置1000において、図1に示された本実施形態に係る電子ビーム露光装置1000の動作と略同一のものには同一の符号を付け、説明を省略する。電子ビーム露光装置1000は、複数の電子ビームを照射する電子ビーム照射装置100を複数有し、複数の電子ビームを照射して、描画パターン情報に応じた描画パターンを対象物である半導体ウェハ10に描画する。 FIG. 8 shows a modification of the electron beam exposure apparatus 1000 according to the present embodiment together with the semiconductor wafer 10. In the electron beam exposure apparatus 1000 of this modification, the same reference numerals are given to the same operations as those of the electron beam exposure apparatus 1000 according to the present embodiment shown in FIG. The electron beam exposure apparatus 1000 includes a plurality of electron beam irradiation apparatuses 100 that irradiate a plurality of electron beams. The electron beam exposure apparatus 1000 irradiates a plurality of electron beams and applies a drawing pattern corresponding to the drawing pattern information to the semiconductor wafer 10 that is an object. draw.
 電子ビーム照射装置100は、電子ビーム露光装置1000に2以上備わる。図中において、電子ビーム照射装置100は、水平方向の断面積が半導体ウェハ10の表面積よりも小さく形成され、電子ビーム露光装置1000に複数備わる例を示す。複数の電子ビーム照射装置100は、半導体ウェハ10の表面にそれぞれ複数の電子ビームを照射して予め定められた描画パターンを描画する。複数の電子ビーム照射装置100は、それぞれの描画を並行して実行してよい。電子ビーム照射装置100の詳細は既に図2から図7で説明した。 The electron beam irradiation apparatus 100 includes two or more electron beam exposure apparatuses 1000. In the drawing, an electron beam irradiation apparatus 100 shows an example in which a horizontal sectional area is formed smaller than the surface area of the semiconductor wafer 10 and a plurality of electron beam exposure apparatuses 1000 are provided. The plurality of electron beam irradiation apparatuses 100 draw a predetermined drawing pattern by irradiating the surface of the semiconductor wafer 10 with a plurality of electron beams, respectively. The plurality of electron beam irradiation apparatuses 100 may execute each drawing in parallel. Details of the electron beam irradiation apparatus 100 have already been described with reference to FIGS.
 ステージ部110は、載置した半導体ウェハ10を水平方向に移動させ、複数の電子ビーム照射装置100によって半導体ウェハ10の一方の面に予め定められた微細パターンを予め定められた位置に描画させる。記憶部120は、複数の電子ビーム照射装置100が描画する描画パターン情報を記憶する。制御部130は、複数の電子ビーム照射装置100にそれぞれ接続され、記憶部120に記憶された描画パターン情報に応じて、複数の電子ビーム照射装置のそれぞれに複数の電子ビームを出力させる制御信号を送信する。 The stage unit 110 moves the mounted semiconductor wafer 10 in the horizontal direction, and draws a predetermined fine pattern on one surface of the semiconductor wafer 10 at a predetermined position by the plurality of electron beam irradiation apparatuses 100. The storage unit 120 stores drawing pattern information drawn by the plurality of electron beam irradiation apparatuses 100. The control unit 130 is connected to each of the plurality of electron beam irradiation apparatuses 100, and receives a control signal for causing each of the plurality of electron beam irradiation apparatuses to output a plurality of electron beams according to the drawing pattern information stored in the storage unit 120. Send.
 このように、複数の電子ビーム発生源212が基板210に一体となって形成される電子ビーム発生装置200を用いることで、電子ビーム照射装置100を小型化することができ、電子ビーム露光装置1000は、複数の電子ビーム照射装置100を搭載することができる。2以上の電子ビーム照射装置100を備える電子ビーム露光装置1000は、半導体ウェハ10に、2以上の描画パターンを並行して照射することができ、搭載する電子ビーム照射装置100の数に応じてスループットを向上させることができる。 As described above, by using the electron beam generating apparatus 200 in which the plurality of electron beam generating sources 212 are formed integrally with the substrate 210, the electron beam irradiation apparatus 100 can be downsized, and the electron beam exposure apparatus 1000 can be downsized. A plurality of electron beam irradiation apparatuses 100 can be mounted. An electron beam exposure apparatus 1000 including two or more electron beam irradiation apparatuses 100 can irradiate the semiconductor wafer 10 with two or more drawing patterns in parallel, and has a throughput according to the number of electron beam irradiation apparatuses 100 to be mounted. Can be improved.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 半導体ウェハ、100 電子ビーム照射装置、110 ステージ部、120 記憶部、130 制御部、140 通信部、150 計算機部、200 電子ビーム発生装置、210 基板、212 電子ビーム発生源、220 電子回路部、230 加速電極、240 電子レンズ、242 コイル部、244 レンズ部、246 減速部、250 コンデンサレンズアレイ、252 コンデンサレンズ、300 電子放出部、310 第1電極部、320 第2電極部、330 絶縁部、350 第3電極部、610 スリット部、620 検出部、1000 電子ビーム露光装置 10 semiconductor wafer, 100 electron beam irradiation device, 110 stage unit, 120 storage unit, 130 control unit, 140 communication unit, 150 computer unit, 200 electron beam generation device, 210 substrate, 212 electron beam generation source, 220 electronic circuit unit, 230 accelerating electrode, 240 electron lens, 242 coil unit, 244 lens unit, 246 deceleration unit, 250 condenser lens array, 252 condenser lens, 300 electron emitting unit, 310 first electrode unit, 320 second electrode unit, 330 insulating unit, 350 3rd electrode part, 610 slit part, 620 detection part, 1000 electron beam exposure apparatus

Claims (14)

  1.  複数の電子ビーム発生源が配列された面電子ビーム源と、
     前記複数の電子ビーム発生源のそれぞれに対応してそれぞれ設けられた複数のコンデンサレンズを有するコンデンサレンズアレイと、
     前記複数の電子ビーム発生源からの前記複数の電子ビームが前記コンデンサレンズアレイを介して入射され、前記複数の電子ビームによる像を縮小する電子レンズと、
     を備え、
     前記複数の電子ビーム発生源のうち、中心から遠い第1電子ビーム発生源は中心から近い第2電子ビーム発生源と比較して高いエネルギーで電子を放出し、
     前記複数のコンデンサレンズのうち、前記第1電子ビーム発生源に対応する第1コンデンサレンズは、前記第2電子ビーム発生源に対応する第2コンデンサレンズと比較して焦点距離を長くする
     電子ビーム照射装置。
    A surface electron beam source in which a plurality of electron beam generation sources are arranged;
    A condenser lens array having a plurality of condenser lenses respectively provided corresponding to each of the plurality of electron beam generation sources;
    An electron lens that receives the plurality of electron beams from the plurality of electron beam generation sources through the condenser lens array, and reduces an image of the plurality of electron beams;
    With
    Among the plurality of electron beam generation sources, the first electron beam generation source far from the center emits electrons with higher energy than the second electron beam generation source near the center,
    Among the plurality of condenser lenses, the first condenser lens corresponding to the first electron beam generation source has a longer focal length than the second condenser lens corresponding to the second electron beam generation source. apparatus.
  2.  前記第1電子ビーム発生源は、前記第2電子ビーム発生源よりも高いエネルギーで電子を放出して、前記第1電子ビーム発生源から出力して前記電子レンズの縁部側を通る電子ビームの、前記電子レンズにおける屈折角を小さくすると共に、前記電子レンズにおける焦点距離を伸ばす請求項1に記載の電子ビーム照射装置。 The first electron beam generation source emits electrons with higher energy than the second electron beam generation source, outputs the electrons from the first electron beam generation source, and passes through the edge side of the electron lens. The electron beam irradiation apparatus according to claim 1, wherein a refraction angle in the electron lens is reduced and a focal length in the electron lens is extended.
  3.  前記第1コンデンサレンズは、前記第2コンデンサレンズよりも焦点距離を長くして、前記第1電子ビーム発生源から出力して前記電子レンズの縁部側を通る電子ビームの、前記電子レンズにおける屈折角を変えずに、前記電子レンズにおける焦点距離を伸ばす請求項1または2に記載の電子ビーム照射装置。 The first condenser lens has a longer focal length than the second condenser lens, and refracts the electron beam output from the first electron beam generation source and passing through the edge side of the electron lens in the electron lens. The electron beam irradiation apparatus according to claim 1, wherein the focal length of the electron lens is extended without changing the angle.
  4.  前記第1電子ビーム発生源および前記第2電子ビーム発生源は、前記面電子ビーム源の中心に対して同心円状に配置される請求項1から3のいずれか一項に記載の電子ビーム照射装置。 4. The electron beam irradiation apparatus according to claim 1, wherein the first electron beam generation source and the second electron beam generation source are arranged concentrically with respect to a center of the surface electron beam source. 5. .
  5.  前記複数の電子ビーム発生源のそれぞれは、互いに電気的に絶縁される請求項1から4のいずれか一項に記載の電子ビーム照射装置。 The electron beam irradiation apparatus according to any one of claims 1 to 4, wherein each of the plurality of electron beam generation sources is electrically insulated from each other.
  6.  前記複数の電子ビーム発生源のそれぞれは、前記コンデンサレンズアレイの対応するコンデンサレンズとの組み合わせ毎にオフセットバイアスが印加され、当該オフセットバイアスに応じたエネルギーの電子を放出する請求項5に記載の電子ビーム照射装置。 6. The electron according to claim 5, wherein each of the plurality of electron beam generation sources is applied with an offset bias for each combination with the corresponding condenser lens of the condenser lens array, and emits electrons having energy corresponding to the offset bias. Beam irradiation device.
  7.  前記複数の電子ビーム発生源は、マトリクス状に配列され、駆動電圧に応じて電子をそれぞれ放出する電子放出部をそれぞれ有する請求項1から6のいずれか一項に記載の電子ビーム照射装置。 The electron beam irradiation apparatus according to any one of claims 1 to 6, wherein the plurality of electron beam generation sources are arranged in a matrix and each have an electron emission unit that emits electrons according to a driving voltage.
  8.  前記電子放出部は、ナノ結晶を有する請求項7に記載の電子ビーム照射装置。 The electron beam irradiation apparatus according to claim 7, wherein the electron emission portion has a nanocrystal.
  9.  前記電子放出部は、ナノ結晶となる結晶材料に応じて予め定められた表面積と厚さを有する複数のナノ結晶領域を含む請求項8に記載の電子ビーム照射装置。 The electron beam irradiation apparatus according to claim 8, wherein the electron emission portion includes a plurality of nanocrystal regions having a predetermined surface area and thickness according to a crystal material to be a nanocrystal.
  10.  前記電子放出部は、放出する電子をトンネリングさせる絶縁膜を有する請求項7に記載の電子ビーム照射装置。 The electron beam irradiation apparatus according to claim 7, wherein the electron emission portion has an insulating film for tunneling emitted electrons.
  11.  請求項1から10のいずれか一項に記載の電子ビーム照射装置を複数備えるマルチ電子ビーム照射装置。 A multi-electron beam irradiation apparatus comprising a plurality of electron beam irradiation apparatuses according to any one of claims 1 to 10.
  12.  請求項1から10のいずれか一項に記載の電子ビーム照射装置を調整する方法であって、
     前記複数の電子ビーム発生源のうち、予め定められた一の電子ビーム発生源から電子ビームを照射する段階と、
     前記電子ビーム照射装置の前記電子レンズが前記複数の電子ビームによる像を結像すべき面上に、直交する2つのスリットを配置する段階と、
     前記直交する2つのスリットによって形成される開口を通る電子ビームを検出する段階と
     を備える調整方法。
    A method for adjusting the electron beam irradiation apparatus according to claim 1, comprising:
    Irradiating an electron beam from a predetermined one of the plurality of electron beam generation sources;
    Disposing two orthogonal slits on a surface on which the electron lens of the electron beam irradiation apparatus is to form an image of the plurality of electron beams;
    Detecting an electron beam passing through an opening formed by the two orthogonal slits.
  13.  前記複数のコンデンサレンズのうち、前記一の電子ビーム発生源に対応する一のコンデンサレンズの焦点距離を調整して、前記一の電子ビーム発生源の3次以上の像面の歪を、3次未満の歪に補正する段階と、
     前記一の電子ビーム発生源が照射する電子のエネルギーを調整して、像面湾曲を補正し、かつ、歪曲収差を低減する段階とを備える
     請求項12に記載の調整方法。
    By adjusting the focal length of one condenser lens corresponding to the one electron beam generation source among the plurality of condenser lenses, third-order or higher-order image plane distortion of the one electron beam generation source is reduced to a third order. Correcting the distortion to less than,
    The adjustment method according to claim 12, further comprising: adjusting energy of electrons irradiated by the one electron beam generation source to correct curvature of field and reducing distortion.
  14.  一以上の請求項1から10のいずれか一項に記載の電子ビーム照射装置と、
     前記一以上の電子ビームが描画する描画パターン情報を記憶する記憶部と、
     前記記憶部に記憶された描画パターン情報に応じて、前記電子ビーム照射装置に複数の電子ビームを出力させる制御信号を送信する制御部と、
     対象物を載置するステージ部と、
     を備え、
     前記複数の電子ビームを照射して、前記描画パターン情報に応じた描画パターンを前記対象物に描画する電子ビーム露光装置。
    One or more electron beam irradiation devices according to any one of claims 1 to 10;
    A storage unit for storing drawing pattern information drawn by the one or more electron beams;
    A control unit that transmits a control signal that causes the electron beam irradiation device to output a plurality of electron beams according to the drawing pattern information stored in the storage unit;
    A stage unit for placing the object;
    With
    An electron beam exposure apparatus that irradiates the plurality of electron beams and draws a drawing pattern corresponding to the drawing pattern information on the object.
PCT/JP2014/000636 2013-03-08 2014-02-06 Electron beam irradiation device, multi-electron beam irradiation device, adjustment method, and electron beam exposure apparatus WO2014136381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013047066A JP2016105428A (en) 2013-03-08 2013-03-08 Electron beam irradiation device, multi electron beam irradiation device, adjustment method, and electron beam exposure device
JP2013-047066 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014136381A1 true WO2014136381A1 (en) 2014-09-12

Family

ID=51490920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000636 WO2014136381A1 (en) 2013-03-08 2014-02-06 Electron beam irradiation device, multi-electron beam irradiation device, adjustment method, and electron beam exposure apparatus

Country Status (2)

Country Link
JP (1) JP2016105428A (en)
WO (1) WO2014136381A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777122A (en) * 2021-08-31 2021-12-10 中国科学院西安光学精密机械研究所 Parallel electron beam detection system based on nano electron source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288991A (en) * 1996-04-23 1997-11-04 Canon Inc Electron beam exposing device
JPH1187206A (en) * 1997-09-02 1999-03-30 Canon Inc Electron beam aligner and manufacture of device using the same
JP2002015991A (en) * 2000-04-27 2002-01-18 Canon Inc Charged particle beam exposure system and device- manufacturing method
JP2003332207A (en) * 2002-05-10 2003-11-21 Advantest Corp Aligner using electron beam and processing device using the electron beam
JP2012253093A (en) * 2011-05-31 2012-12-20 Canon Inc Lithography apparatus and manufacturing method of article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288991A (en) * 1996-04-23 1997-11-04 Canon Inc Electron beam exposing device
JPH1187206A (en) * 1997-09-02 1999-03-30 Canon Inc Electron beam aligner and manufacture of device using the same
JP2002015991A (en) * 2000-04-27 2002-01-18 Canon Inc Charged particle beam exposure system and device- manufacturing method
JP2003332207A (en) * 2002-05-10 2003-11-21 Advantest Corp Aligner using electron beam and processing device using the electron beam
JP2012253093A (en) * 2011-05-31 2012-12-20 Canon Inc Lithography apparatus and manufacturing method of article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777122A (en) * 2021-08-31 2021-12-10 中国科学院西安光学精密机械研究所 Parallel electron beam detection system based on nano electron source

Also Published As

Publication number Publication date
JP2016105428A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
TWI733920B (en) Electron beam lithography systems
JP6013089B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
JP6608367B2 (en) Field emission device, system and method
TW202113902A (en) Multiple charged-particle beam apparatus and methods of operating the same
JP6061741B2 (en) Multi-beam current adjustment method
TW202240638A (en) Charged particle system, method of processing a sample using a multi-beam of charged particles
WO2014136381A1 (en) Electron beam irradiation device, multi-electron beam irradiation device, adjustment method, and electron beam exposure apparatus
JP2016197503A (en) Electron beam device
WO2014136154A1 (en) Electron beam generating apparatus, electron beam irradiation apparatus, electron beam exposure apparatus, and manufacturing method
WO2013118517A1 (en) Electron beam generating appartus, electron beam irradaition apparatus, multi-electron beam irradiation apparatus, electron beam exposure apparatus, electron beam irradiation method, and manufacture method
JP6018386B2 (en) Electron beam irradiation apparatus, multi-electron beam irradiation apparatus, electron beam exposure apparatus, and electron beam irradiation method
JP6208451B2 (en) Circuit board, electron beam generator, electron beam irradiation apparatus, electron beam exposure apparatus, and manufacturing method
TWI737146B (en) Device and method for operating a charged particle device with multiple beamlets
US9557658B2 (en) Low energy electron beam lithography
JP3357874B2 (en) Electron beam writing apparatus and electron beam writing method
JP5994271B2 (en) Electron beam generation apparatus, electron beam irradiation apparatus, electron beam exposure apparatus, and manufacturing method
JP4327434B2 (en) Electron beam apparatus and electron beam writing method
JP2011146250A (en) Method for using emitter for electron gun
US20100148656A1 (en) Electron column using cnt-tip and method for alignment of cnt-tip
WO2014156171A1 (en) Circuit substrate reliably operating when controlling plurality of electron beams
US20230154725A1 (en) Emitter for emitting charged particles
WO2014156170A1 (en) Electron beam irradiation device
JP2014197652A (en) Circuit board, electron beam generating device, electron beam irradiation device, electron beam exposure device, and manufacturing method
TW202314768A (en) Multi-electron beam inspection apparatus, multipole array control method, and multi-electron beam inspection method
TW202316470A (en) Charged particle assessment system and method of aligning a sample in a charged particle assessment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP