WO2014134994A1 - 一种无轴螺轮发电装置 - Google Patents

一种无轴螺轮发电装置 Download PDF

Info

Publication number
WO2014134994A1
WO2014134994A1 PCT/CN2014/071914 CN2014071914W WO2014134994A1 WO 2014134994 A1 WO2014134994 A1 WO 2014134994A1 CN 2014071914 W CN2014071914 W CN 2014071914W WO 2014134994 A1 WO2014134994 A1 WO 2014134994A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
force
ring
convex ring
generating device
Prior art date
Application number
PCT/CN2014/071914
Other languages
English (en)
French (fr)
Inventor
王军
Original Assignee
Wang Jun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Jun filed Critical Wang Jun
Publication of WO2014134994A1 publication Critical patent/WO2014134994A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/25Geometry three-dimensional helical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the present invention relates to a shaftless spiral power generating device capable of converting motive power into electrical energy, which is more efficient than conventional steam units, steam turbines, turbines, and turbomachines. A lot of improvement, while making up for other defects in existing power generation technologies, such as: shaft wear, turbine surge.
  • the motive force here is not limited to heat energy including water energy, wind energy, ocean energy, solar heat energy, burning heat energy, and nuclear reaction.
  • the power generation field from the initial steam unit, the turbine unit, to the steam turbine unit, to the turbine unit is constantly pursuing efficient energy conversion as a goal, although the power generation efficiency is improved to varying degrees, but the improvement The proportion is small and the highest overall efficiency is no more than 51%.
  • the associated defects caused by the prior art are also increasingly rampant. For example, the leakage of the axle causes damage to the generator, and the wear of the shaft causes the auxiliary maintenance to increase the operating efficiency, and the operating noise seriously exceeds the occupational health standard of the human body.
  • the steam engine drives the crankshaft to drive the centrifugal wheel through the piston to generate electricity.
  • the crankshaft wear increases the motive power loss, and the inner wall of the piston is also worn seriously, resulting in loss of prime mover.
  • the turbine shaft and shaft bear the negative self-weight and inertia eccentric force of the entire steam turbine. Therefore, when the shaft system is abnormal, the shaft temperature is as high as 95 °C or more, so that its auxiliary parts are destroyed. Even if it works normally, it is between 77 85 °C, that is, the room temperature increases. Also because the large axis is long, the entire load is concentrated in this center, and even slight deformation can cause eccentricity.
  • the large shaft subjected to the maximum area of high pressure steam has a minimum line speed, and long-term work will accumulate hot scale, resulting in increased shaft friction and narrowing of the passage, resulting in loss of prime mover and serious machine failure.
  • Wind turbine power generation technology in addition to shaft loss, often faces surge damage. Usually, the vibration causes a large vibration, which leads to cracks in the root of the blade. When the repeated surge is severe, the blade will break and the whole device will be paralyzed. Moreover, when the wind reaches a certain level, the tangential component of the distal end of the blade is also increased, the shaft wear is increased, the primary power loss is increased, but the rotational speed is no longer increased, and if the wind speed is increased again, the inherent distortion force of the blade is destroyed.
  • the motive force causes a loss after the turbine blade is hit, and a tangential component occurs in the centrifugal action to be useless. Since the root width of the blade is smaller than the width of the distal end of the blade, when the counter-water hammer is encountered, the blade is easily damaged or broken instantaneously.
  • Tesla turbine technology although it replaces the blades with a set of smooth discs, solves the abnormality of steam turbine blades that are often subjected to water hammer, but it also requires the shaft to transmit energy at the center of the disc, and still has shaft clearance and shaft wear defects.
  • Existing invention Patent No. 201010595601.
  • a shaftless ocean current turbine generator comprising a casing unit and a turbine drive unit; wherein the casing unit is provided with a cooperating generator stator unit and a generator rotor unit, characterized in that
  • the casing unit includes a casing having a hollow cylindrical shape; the turbine driving unit is located in the casing, the generator rotor unit is fixedly mounted on the turbine driving unit; and the turbine driving unit and the generator stator unit are The connection is made by a constrained balance unit.
  • the generator rotor is directly mounted on the driving part (turbine drive unit), and the connection limit between the driving part and the generator stator is realized by the constraint balancing unit, so that the generator stator and the generator rotor cooperate to generate electricity, and the ingenious
  • the power-driven drive section is integrated with the generator to form a shaftless design that avoids shafting vibration problems, balance problems, and wear caused by complex shafting.
  • the present invention relates to a shaftless spiral power generation device, which can convert the motive power into electric energy, and the conversion efficiency is much higher than that of the conventional steam unit, the steam turbine unit, the water turbine unit, and the turbine unit.
  • the defects of the prior art such as: turbine surge, shaft wear.
  • a shaftless spiral power generating device is characterized by: at least comprising: a circular tube as a whole, a circular hollow through hole and a casing (6) sealed around the hole at the axial center position, in the rotor (2) a hollow circular through hole at the front and rear of the axial center, the spiral wheel (1) for receiving the motive force is fixed at the inner wall of the rotor through hole, and the induction unit (5) is embedded in the sealed casing to sense the outer wall of the rotor ( 3) The purpose of generating the induced current is achieved, and the rotor is fixed to the input port of the housing through the front and rear bearings (4)
  • the spiral wheel (1.1, 1. 2) has the following structural features: at least, a spiral wheel lead (L) is larger than the axial length of the sensing unit, and the second pitch (D) is smaller than the spiral wheel lead minus 2
  • the angle (G) with the cross section of the rotor is greater than 0 degrees and less than 90 degrees.
  • the outer wall of the rotor (3) is characterized by: at least: a magnetic pole having a fixing device protected in a vacuum-tight non-magnetic sleeve, and having a radial distribution of at least one pair of ⁇ and S poles, or an inductive structure motor can be a conductive material generated by an induced current, or an auxiliary component mounted in a sealed non-magnetic magnetic sleeve to cooperate with brushless excitation, and secondly mounted with a front convex ring (11) and a rear convex ring (12) outside the sensing unit region,
  • the front end is fixed at the inner end of the radially sliding front elastic pad (22), and the rear end is fixed at the inner end of the radially sliding rear elastic pad (13), and the four ends are fixed in the inner ring of the bearing.
  • the structure of the housing is characterized in that: at least, a central through-hole material is made of a non-magnetic material, that is, a material other than iron or susceptibility, and the integrated casting or the fastener is sealed and sealed into a shell shape, and the inside of the housing is A plurality of sensors (10) for sensing temperature, humidity, pressure, and rotor speed, and a multi-function interface (7) composed of a signal data line and a power output line outside the center through hole of the housing, and four through holes in the center of the housing
  • the thickness of the inner wall at the position is smaller than the effective radius of the electromagnetic coil of the induction unit and the magnetic field line of the rotor.
  • the five fixed high-speed turntables (15) are fixedly mounted, and the coupling unit (14) capable of rotating the rotor and the high-speed turntable is fixed.
  • the outer ends of the front elastic pad and the outer end of the rear elastic pad are fixedly connected near the two ends of the through hole of the center hole, and the vacuuming and heat insulation measures for adapting to high temperature are arranged near the axial center to prevent all unit components in the housing from coming from the motive environment. Thermal damage.
  • the sensing unit is characterized in that it comprises: at least one electromagnetic coil winding is fixed around the central hole, two electromagnetic coils for brushless excitation power generation are fixed, and three electric power knives are directly connected with the electromagnetic coil,
  • a sensor system is fixed, that is, a sensor that can sense its own temperature, humidity, pressure, and abnormal information.
  • the connecting structure of the spiral wheel and the inner wall of the rotor is characterized by: at least, one casting integration, two embedded riveting, three welding, four cold and hot tight fitting.
  • the structure of the front convex ring and the rear convex ring is as follows: one is corresponding to the front and rear of the plurality of coupling units, and the frictional force of the sliding contact between the two front convex rings and the coupling unit can reach the brake, and can also drive the coupling unit to drive the high-speed turntable,
  • the friction coefficient of the sag ring is smaller than that of the front cam ring to ensure that the high speed turntable effectively drives the rotor to release energy.
  • the structural characteristics of the coupling unit are as follows: one has different gear sets that cooperate with each other, and the second has a certain dynamic balance clearance with the front convex ring and the rear convex ring, and the third has lubrication for ensuring sliding contact friction between the front convex ring and the rear convex ring. System, four can only drive the load under the action of friction after sliding contact with the front or rear convex ring
  • the bearing structure for supporting the rotor and the casing is characterized in that: at least, a radial gap is controlled within a range of volume relief, and two radial gaps of the upper and lower protection ball end caps are controlled within a volume pressure relief range. Inside, the end cap can withstand more than 2 times the axial thrust without falling off, and the three inner rings and the outer ring have a certain axial displacement.
  • the structure of the front elastic pad and the rear elastic pad is characterized in that: a front elastic pad and a rear elastic pad are annular rings that are transparent before and after the side sealing, and have a certain radial free sliding friction coefficient at the two ends of the contact with the rotor.
  • the axial elastic force of the pad is greater than the axial elastic force of the front elastic pad to ensure that the rotor slides into contact with the slanting ring when the rest position is activated without contacting the front convex ring, three in the prime mover axial thrust, all friction, all gravity, all Under the action of the elastic force F, the front elastic pad and the rear elastic pad can keep the displacement of the rotor track S in the position of the dynamic equilibrium running section (near 0), and the dynamic trajectory process is realized by combining the trajectory S and the resultant force F function image as shown in Fig. 11. as follows:
  • the rotor displacement trajectory S is in the dynamic equilibrium region, the gpo point attachment moves, and the vestibular ring does not contact the coupling unit after the convex ring.
  • the axial resultant component F increases, breaking the dynamic balance running section 2b, causing the rotor to move from the vicinity of 0 to +b, and after reaching +b, it slides with the front convex ring.
  • the contact causes the coupling unit to drive the inertia of the rotor to drive the high-speed turntable, and at the same time, the sliding contact has a certain frictional force, even if the rotor automatically acts as a brake.
  • the bearing that supports the normal rotation of the spiral wheel is fixed on the outer diameter of the rotor of the spiral wheel, so the inner diameter is larger, that is, the gravity of the rotor and the spiral wheel can be distributed on the joint points of the bearing in the largest area. Therefore, the support The force is reduced compared to conventional structural bearings, resulting in reduced mechanical wear.
  • the static friction of the bearing is larger than that of the conventional structure, the temperature rise is low because of its large volume distribution, that is, the heat generated by its own wear cannot be accumulated.
  • the axial motive force entering the spiral wheel is converted into radial rotation by the force helical surface, and the axial force component is small, and the objective displacement formed is small, but the displacement of this normal distribution can be used as the detecting rotor excess.
  • the coupling point during operation can be used to calculate the starting brake and recovery time, and to provide a basis for maintaining the axial elastic force at the rated speed.
  • the housing has a non-contact sensing system that directly senses the actual running attitude, temperature, humidity, pressure and speed from the spiral wheel, and feeds this information back to the control system in time for computer analysis and processing to ensure that the operation is always under control. status.
  • the sensing unit has a sensing system that senses actual temperature, humidity, pressure, and various types of abnormal information, and then feeds this information back to the control system for computer analysis and processing to ensure that the operation is always under control.
  • the energy conversion of the stator coil and rotor of the induction unit follows the principle of induction generator, and the principle of DC brushless generator, the principle of high efficiency permanent magnet generator, and the principle of brushless excitation synchronous generator.
  • the outer wall of the spiral wheel has a structure adapted to different environments, that is, a non-magnetic magnetic sleeve with a vacuum, and a closed coil composed of a wire with high temperature resistance is fixed as a rotor, which can be adapted to a motive environment of 38 CTC or more;
  • the rotor is designed to adapt to the motive environment of natural wind and water flow.
  • a high-speed turntable (commonly known as mechanical battery) in the housing, which uses mechanical storage to directly store mechanical energy. That is, when the coupling unit is in contact with the front convex ring of the outer wall of the rotor, it can drive its own high-speed running energy storage, and then the sliding contact between the rear convex ring and the outer convex ring of the outer wall of the rotor drives the rotor to rotate and release its own energy.
  • the internal detection system of the housing immediately transmits the information to the control system, and the control system instantaneously outputs the shutdown command to the prime mover control terminal to protect the back end until the abnormality End.
  • the dynamic balance of the front end is used to ensure the higher efficiency of the electric power output, and the wind power of the high and low speed can be collected at low altitude.
  • the product of the invention can be installed vertically to make the airflow enter from the bottom and the airflow from the upper part, and a certain height of the wind wall is set at a high position directly above, so that the airflow is intercepted horizontally from the horizontal.
  • the spiral wheel input port that enters the ground after accumulating in the downward direction. Since the housing is completely sealed, there is no possibility of rain seeping, so it will not cause electrical damage.
  • the accumulated wind power or rainwater will increase the motive force after accumulating, that is, improve the conversion efficiency of the spiral wheel, without the need of the traditional wind power gear conversion system, and also avoid the eccentricity of the rotor and the spiral wheel's own gravity on the axial direction.
  • the product of the invention When the steam is used as the motive force, the product of the invention is vertically installed, so that the steam flow enters from the bottom to the bottom, so that the water droplets in the high-pressure gas increase the downward flow speed due to the combined force of gravity and gas pressure, and can also be driven by gravity.
  • the spiral wheel can also reduce its influence on the narrowing of the air duct, and also avoid the eccentric influence of the gravity of the rotor and the spiral wheel on the axial direction.
  • the product of the invention is installed vertically to make the water flow from the top to the bottom, which can increase the driving force of the gravity of the water flow to the spiral wheel, and also avoid the influence of the gravity of the rotor and the spiral wheel on the axial eccentricity. .
  • the direction and diameter of the spiral wheel can be matched with the spiral diversion tank, which automatically increases the energy density of the hydrodynamic environment to achieve higher power generation efficiency.
  • FIG. 1 is a schematic diagram of a horizontal stereoscopic view of the product structure of the present invention:
  • Front elastic pad Figure 3 Schematic diagram of the radial A-A cross section of the induction coil section of the product of the invention
  • Shell Figure 4 Schematic diagram of the radial B-B section of the high-speed turntable section of the product of the invention
  • L The lead of the spiral wheel, that is, the length of the rotor, is equivalent to the length of the induction solenoid. Since the axial length of the high-speed disk group is small, it can be ignored.
  • T single wheel thickness of the spiral wheel
  • G the angle at which the spiral wheel rises, that is, the angle between the force of the wheel and the cross section of the rotor
  • T thickness of the spiral wheel
  • FIG. 8 Wind power installation diagram of the product of the invention, wherein the left figure is a perspective view of the installed wind wall, and the right figure is an axial section of the installed wind wall.
  • Figure 10 Electrical block diagram of the standard product of the present invention
  • Spiral wheel It includes rotor silicon steel sheet, connecting fixture and spiral wheel fixing.
  • the magnetic pole or induction coil of the rotor that is, the motive force is radially distributed with at least one pair of permanent magnet materials at normal temperature, and the motive force is welded at both ends with metal strips at a high temperature, that is, a squirrel cage shape. It also includes a sleeve that is sealed rather than magnetically guided with an auxiliary part that cooperates with the brushless excitation structure.
  • stator induction coil / excitation coil including excitation solenoid winding, power knife, its own sensor system.
  • Sensor This includes the sensor system unit.
  • the prime mover control end that is, the system that can accept the control signal and turn off the prime mover.
  • Rectifier/inverter/storage/control system including inverter circuit matched with brushless DC generator stator, induced current rectification, power storage unit and independently operable control system, providing each to the induction unit Kind of power supply.
  • Power grid Includes public power platforms, and independently assignable power networks.
  • Figure 11 Dynamic balance force F and displacement S coordinate image of the product of the invention
  • the present invention relates to a product in which the motive power enters from the input port (8) and drives the spiral wheel (1) to rotate radially. Since the spiral wheel is fixedly embedded in the inner wall of the rotor (2), Rotate synchronously. The outer wall of the rotor (3) itself has a magnetic force or an induced magnetic force. According to the right-hand rule, by inductively, the non-magnetically permeable material penetrates the coil of the induction unit (5) fixed in the casing to instantaneously induce an electric current.
  • the multi-function interface (7) output of the body (6) can be transmitted to the power grid after being rectified and stored, and the unpowered motive power is discharged from the spiral wheel output port (9).
  • the control system can also consider transmitting a power knife to the induction unit, cutting off the rear end, and preventing high voltage from burning the back end electrical facilities.
  • the vestibular ring contacts the coupling unit, that is, the energy originally stored on the high-speed turntable along the coupling unit starts to rotate the spiral ring until the energy is released, and enters a stationary state, waiting for normal start.
  • the front end prime mover starts to input again, and the rotor returns to the displacement of the normal distribution in advance.
  • the power knife in the sensing unit can instantaneously cut off the output of the induced current to protect the induction coil in the housing from being burnt.
  • the knife automatically returns to normal.
  • the blade width (K) and thickness (T) are as small as possible while ensuring sufficient torque at the root of the spiral wheel.
  • K can be smaller than T, which is beneficial to reduce the weight and fully receive the front surface.
  • Motive force is beneficial to reduce the weight and fully receive the front surface.
  • the height H cannot be equal to only the radius of the spiral wheel, that is, the coefficient of friction of the ambient viscosity according to the motive force, which is guaranteed.
  • the principle of permanent magnet synchronous generator or the principle of brushless DC generator is adopted, that is, the magnetic pole of the outer wall of the rotor is fixed in the vacuum sealed non-magnetic sleeve, and the radial distribution At least 1 pair of N and S poles.
  • the component, and the stator sensing unit specifically correspond to the excitation solenoid and the power source.
  • the product of the invention can improve the power generation efficiency by adopting an appropriate installation method under different environments.
  • the motive force is high pressure steam
  • the installation adopts the inlet upward upwards and the vertical downward direction
  • the water droplets in the high pressure gas increase the downward flow speed due to the combined force of gravity and gas pressure
  • the gravity wheel can also be driven by gravity. It reduces its influence on the narrowing of the air duct, and also avoids the eccentric influence of the gravity of the rotor and the spiral wheel on the axial direction. Since the pressure of the steam is usually more than 2.
  • the product of the invention can directly adopt the axial spiral wheel with multiple rounds of high power to satisfy the absorption and conversion of the motive force at one time, and from the residual steam discharged from the second stage, the spiral wheel with a low number of wheels can be used. Because it is installed vertically, the water droplets of the secondary steam are higher, and the gravity of the water increases the gravitational potential energy, which naturally increases the thrust of the motive force, thereby increasing the power generation efficiency.
  • the wind power is used as the motive force, in order to capture the high-altitude wind energy, as shown in Fig.
  • the product of the present invention can be vertically installed to make the airflow from the top to the bottom, and a wind wall with a certain height is raised at a high position directly above it.
  • the airflow intercepts the spiral wheel input port that accumulates in the direction perpendicular to the vertical direction and enters the ground. Electrical damage is not caused by the fact that the casing is completely sealed without the possibility of rain seeping.
  • the vertical wind or rain water will increase the motive force after accumulating, that is, improve the conversion efficiency of the spiral wheel, and also avoid the eccentric influence of the gravity of the rotor and the spiral wheel on the axial direction.
  • the front-end dynamic balance is used to ensure higher-efficiency electric power output, and the wind power motive force is directly collected at low altitude.
  • the windward surface is concave, which has the function of collecting wind
  • the wind wall is concave with a vertical angle Q, which is an acute angle, concentric with the spiral wheel, so the wind flows automatically downward, and then enters the input port of the ground spiral wheel after accumulation (8) .
  • the height of the wind wall and the width of the windward side can be increased without affecting the weather and ecology of the ground, and the Q angle can be increased as much as possible without being damaged by the wind, but not greater than 45 degree.
  • the different windforms of low sag and bulge or the natural wind direction of the building group it can be installed in the vertical direction according to Figure 7.
  • the raised sun surface and the low sun surface are installed vertically, and the motive power is output from the lower input to the upper output.
  • the power generation efficiency is higher; the raised backlight surface and the low-lying backlight surface are vertically installed, and the motive power is output from the upper input to the lower output. Higher.
  • the windward area of the sail on the surface of the ship can be installed vertically according to Figure 7, so that the motive power is from the top to the bottom, and the power generation efficiency is high.
  • the canyon zone According to the front and rear wind direction of the canyon zone, it can be installed horizontally according to Figure 1, and parallel with the undulating surface of the terrain wind, so that the motive force is advanced and the power generation efficiency is the highest.
  • the motive force is water flow
  • it can be installed in the vertical direction according to Figure 7, so that the water flow can flow from the top to the bottom, which can increase the driving force of the gravity of the water flow to the spiral wheel, and also avoid the influence of the gravity of the rotor and the spiral wheel on the axial eccentricity. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

本发明是涉及一种无轴螺轮发电装置,它能够将原动力转化成电能,且转化效率比传统的蒸汽机组、汽轮机组、水轮机组、涡轮机组提高很多,同时弥补现有技术缺陷,如:轮机喘振、轴磨损。它是改进了原动力的作用点、力的作用路线、力的传递方式和改进发电结构以及控制***组成,即利用轴向推力转径向转子(2)旋转力的螺旋原理,并将转子嵌入在壳体(6)空心的轴向感应单元中心,这样也使整个发电空间体积缩小、用材减少、和维护工作量降低,以及自动控制能够快速反应。同时具有无轴接、无泄漏、自刹车、可扩展、免维护、长寿命的特点。这里的原动力不仅限于包括水能、风能、海洋能、燃烧的热能、以及核反应的热能。

Description

-种无轴螺轮发电装置 所属技术领域 本发明型专利是涉及一种无轴螺轮发电装置, 它能够将原动力转化成电能, 转化效率比传统的蒸汽机组、汽轮机组、 水轮机组、涡轮机组提高很多, 同时弥 补现有发电技术的其它缺陷, 如: 轴磨损、轮机喘振。 它是通过改进原动力的作 用点、 力的作用路线、 力的传递方式和改进发电结构以及控制***组成实现的, 即利用原动力轴向压力驱动螺旋轮转子(简称螺轮)旋转的螺旋原理, 并将转子 嵌入在空心的轴向感应单元中心,同时也使得整个发电空间体积缩小、用材减少、 和维护工作量降低, 以及自动控制快速反应的目的。这里的原动力不仅限于包括 水能、 风能、 海洋能、 太阳热能、 燃烧的热能、 核反应的热能。 背景技术 目前, 发电领域从最初的蒸汽机组、水轮机组, 到汽轮机组, 再到涡轮机组, 都是在不断追求高效的能量转化为目标, 尽管发电效率都在不同程度地有所提 升, 但是提升比例较小, 最高的整体效率也没有超过 51%。 而且现有技术带来的 连带缺陷, 也在日益泛滥, 如: 轮轴的泄露导致发电机损坏, 轴磨损严重导致辅 助维护增加运行效率下降, 运行噪音严重超过人体职业健康标准。
蒸汽机带动曲轴通过活塞往复驱动离心轮子发电, 其曲轴磨损增加了原动力 损耗, 而且活塞内壁磨损也很严重, 导致原动力损耗。
水轮机、 汽轮机带动中心大轴旋转驱动发电机发电时, 传递能量的大轴与轴 封之间有一定的正常转动间隙, 这本身就是泄露损失了一部分原动力。再经过运 行过程的轴磨擦, 轴封则逐渐被磨损, 导致间隙再次加大, 泄露再次加大, 即原 动力损耗继续加大。而且当轴和轴封间隙变大后, 泄露的原动力冲击破坏其附近 的轴承, 受到严重的轴向力冲击后该轴承间隙和摆度逐渐增大, 从而又增加了轴 磨损, 如此恶性循环, 导致原动力的损耗比例持续增加。
汽轮机、 涡轮机工作时, 由于轴的偏心和摩擦会发出很高的噪音。 特别是汽 轮机正常工作时, 在机房里整体噪音会超过 100分贝, 有些甚至达到 115分贝,为 了减少对长期工作人员职业健康的损害, 经常采取增添很庞大的隔音设施。
汽轮机轴和轴承担负了整个汽轮的自重、 惯性偏心力, 所以轴***异常时轴 温度高达 95°C以上, 以致破坏其辅助部件。 即便正常工作, 也在 77 85 °C之间, 即室温增高。也因大轴较长, 整个负重集中到这个中心, 即便出现微量形变也会 导致偏心。
汽轮机发电时, 其叶片经常受到高压气体里面的落水击打背面, 气嘴吹转过 来后, 在背面再次击打, 反复几次, 日积月累就会导致叶片根部裂缝, 严重时就 会导致叶片断裂, 整个设备瘫痪。 由于汽轮机和发电机组分别位于不同的区域, 所以后端遇到通道故障时就无法及时向前端反馈, 导致汽轮机前端的压气机喘 振, 从而引发***故障。 受到最大面积高压蒸汽的大轴由于线速度最小, 长期工 作会堆积热垢, 导致轴摩擦增大和通道变窄, 于是产生原动力损耗, 严重时引发 机器故障。 风力涡轮机发电技术, 除了有轴损耗外, 还有经常面临喘振危害, 通常因喘 振产生大幅度的震动, 导致叶片根部裂缝, 反复喘振严重时就会导致叶片断裂, 整个设备瘫痪。 而且, 当风力达到一定级别时, 叶片的远端切线分量也在增加, 轴磨损更加增大, 原动力损耗加大, 可是转速不再提高, 而且若风速再在增加, 叶片的固有扭曲力被破坏裂缝,甚至断裂,转速迅速下降,发电机无法正常进行, 即***故障。 风力面积在直径 5米以下, 由于风力的弱小和不稳定以及轴磨损能 量消耗, 通常发电机几乎没有电流输出。 只有在很大的涡旋面积下, 才有电功率 输出, 但这样对地面气候和生态带来破坏。
水轮机发电时, 除了有轴磨损外, 由于叶轮的边沿效应, 即叶片远端外沿的 离心力加大了泥砂和内壁的摩擦, 即原动力损耗加大。 同时, 增加了叶片的根部 扭力,严重时, 叶片根部裂缝或断裂, 引发设备瘫痪。水下软体异物进入水轮后, 经常缠绕叶片和主轴, 即增加阻力消耗原动力, 严重时引发***故障。 当水封被 特大的轴向力磨损后, 很短时间可导致发电机机组浸水烧毁,严重时导致机房被 水淹。 当采用离心式结构时, 原动力对涡轮叶片撞击后产生损耗, 而且在离心作 用下发生切线分量做无用功。 由于叶片根部宽度小于叶片远端宽度, 再遇到反水 锤时, 叶片容易瞬间损伤或折断。
特斯拉涡轮技术, 尽管是由一组光滑圆盘替代叶片, 解决了汽轮机叶片经常 受水击的异常,但是它同样需要圆盘中心的轴传递能量, 依然有轴间隙和轴磨损 缺陷。 现有发明 (专利号 201010595601. 3 ) 无轴海流涡轮发电机, 它包括外壳单元 和涡轮驱动单元;所述的外壳单元内设有相互配合的发电机定子单元和发电机转 子单元, 其特征在于: 所述的外壳单元包括呈中空筒状的外壳; 所述的涡轮驱动 单元位于外壳内,所述的发电机转子单元固定安装在涡轮驱动单元上; 所述的涡 轮驱动单元与发电机定子单元之间经约束平衡单元配合连接。将发电机转子直接 安装在该驱动部分 (涡轮驱动单元)上,通过约束平衡单元实现驱动部分与发电机 定子之间的连接限位, 实现发电机定子和发电机转子配合工作发电, 巧妙的将提 供动力的驱动部分设置为与发电机为一个整体, 就形成了无轴系设计结构,避免 了采用复杂轴系所带来的轴系振动问题、平衡问题以及磨损等问题。但是没有改 变涡轮叶片的受力点,和发电机结构,即没有解决叶片损坏和原动力损失的缺陷。
发明内容 为了弥补现有发电技术缺陷, 本发明是涉及一种无轴螺轮发电装置, 它能够 将原动力转化成电能, 且转化效率比传统的蒸汽机组、 汽轮机组、 水轮机组、涡 轮机组提高很多, 同时弥补现有技术缺陷, 如: 轮机喘振、 轴磨损。 它是改进了 原动力的作用点, 力的作用路线, 力的传递方式和改进发电结构以及控制***组 成, 即利用轴向推力转径向转子旋转力的螺旋原理, 并将转子嵌入在空心的轴向 感应单元中心,这样也使整个发电空间体积缩小、用材减少、和维护工作量降低, 以及快速反应自动控制的目的。 同时具有无轴接、 无泄漏、 自刹车、 可扩展、免 维护、 长寿命的特点。这里的原动力不仅限于包括水能、风能、 海洋能、 燃烧的 热能、 以及核反应的热能。 其主要结构特征如下:
1、 一种无轴螺轮发电装置结构特征在于: 至少包括, 整体呈圆形管状, 在轴向 中心位置前后有圆形空心通孔和孔四周密封的壳体 (6) , 在转子 (2) 轴向 中心前后有空心的圆形通孔, 用于接受原动力的螺旋轮(1 )固定在转子通孔 内壁位置, 感应单元 (5 ) 嵌入在密封式的壳体里, 以感应转子外壁 (3) 达 到产生感生电流的目的, 且转子通过前后两个轴承(4)固定在壳体的输入口
(8) 和输出口 (9) 的中心孔位置。
2、 螺旋轮(1. 1、 1. 2) , 其结构特征在于: 至少包括, 一螺旋轮导程 (L)大于 感应单元轴向长度, 二螺距 (D) 小于螺旋轮导程减去 2倍的根部厚度 (T) , S卩 D<L-2T,三螺旋轮的轮数至少 1轮,四多轮的径向扇角角度相加之和至少大 于 2 π, 五轮的被推面与转子横截面的夹角 (G) 大于 0度而小于 90度。
3、 转子外壁(3) 结构特征在于: 至少包括, 一有固定装置在真空密闭非导磁套 里保护的磁极, 且径向分布至少 1对 Ν和 S极, 或者是感应式结构电机可被感应 电流产生的导电材料, 或有装在密闭非导磁套里配合无刷励磁的辅助部件, 二在感应单元区域外固定装有前凸环 (11 ) 和后凸环 (12) , 三在前端固定 径向滑动的前弹垫 (22 ) 内端, 后端固定径向滑动的后弹垫 (13) 内端, 四 两端固定在轴承的内圈里。
4、 壳体结构特征在于: 至少包括, 一中心通孔材质采用非导磁性材料, 即铁或 感磁性以外的材料, 一体化浇铸或紧固件配合密封成壳状, 二在壳体内部有 多个感应温度、 湿度、 压力、 转子速度的传感器 (10) , 三在壳体中心通孔 以外处有信号数据线和电能输出线组成的多功能接口 (7), 四在壳体中心通 孔位置处的内壁厚度小于感应单元的电磁线圈和转子磁力线的有效半径, 五 固定装有有多组高速转盘 (15) , 六固定装有能够使转子和高速转盘相互带 动的耦合单元 (14) , 七中心通孔两端附近固定连接着前弹垫外端和后弹垫 外端, 八靠近轴向中心有适应高温的抽真空和隔热措施, 以防止壳体里所有 单元部件来自原动力环境的热损坏。
5、 感应单元结构特征在于: 至少包括, 一在中心孔的周围固定有电磁线圈绕组, 二固定有用于无刷励磁发电的电磁线圈, 三固定有电力闸刀直接和该电磁线 圈串接, 四固定有传感***, 即能够感知自身的温度、 湿度、 压力和异常信 息的感应器。
6、 螺旋轮与转子内壁连接结构特征在于: 至少包括, 一浇铸一体化, 二嵌入式 铆接, 三焊接, 四冷热紧配合。
7、 前凸环和后凸环结构特征在于: 一与多组耦合单元前后对应, 二前凸环与耦 合单元滑动接触的摩擦力既能达到刹车, 也能带动配合耦合单元驱动高速转 盘, 三后凸环的摩擦系数小于前凸环, 以保证高速转盘有效地带动转子释放 能量。
8、 耦合单元结构特征在于: 一有不同的齿轮组相互配合, 二与前凸环和后凸环 配合有一定的动态平衡间隙, 三有保证前凸环和后凸环滑动接触摩擦力的润 滑***, 四只有前凸环或后凸环滑动接触后才可以在摩擦力的作用下带动负 载
9、 用于支撑转子和壳体的轴承结构特征在于: 至少包括, 一径向间隙控制在容 积泄压允许范围内, 二上下保护滚珠端盖的径向两圈间隙控制在容积泄压允 许范围内, 且该端盖可以承受轴向 2倍以上额定推力而不脱落,三内圈和外圈 有一定的轴向位移量。 10、 前弹垫和后弹垫结构特征在于: 一前弹垫和后弹垫都是侧面密闭前后通 透的环形, 且和转子接触两端具有一定径向自由滑动的摩擦系数, 二后弹垫 的轴向弹力大于前弹垫轴向弹力, 以保证转子在启动静止位置时滑动接触到 后凸环而没有接触到前凸环,三在原动力轴向推力、所有摩擦力、所有重力、 所有弹力的合力 F作用下, 前弹垫和后弹垫可以使转子轨迹 S位移保持在动态 平衡运行段位置 (0附近) , 且结合轨迹 S与合力 F函数图像如附图 11, 实现 动态平衡过程如下:
先假定转子位移轨迹 S就在动态平衡区, gpo点附件运动, 且前凸环后凸 环后都没有接触到耦合单元。 当前端原动力驱动螺旋轮超过额定转速转动 时, 轴向合力分量 F增加, 打破了动态平衡运行段 2b内, 使转子从原来的 0附 近向 +b移动, 抵达 +b后即与前凸环滑动接触, 使耦合单元将转子的转速惯 量带动高速转盘储能, 同时由于滑动接触具有一定的摩擦力, 即使转子自动 起到刹车作用。 当运行到 +a时, 储能完成, 即等同于抵达再启动静止点 _a。 此时转子和后凸环滑动接触, 原动力被强制关闭轴向推力消失, 合力分量 F 改变方向, 由最大的前弹垫和后弹垫的弹力合力替代, 而且高速转盘由耦合 单元带动转子继续转动, 即释放能量, 直到释放完毕。 当正常启动后, 合力 F再次改变方向, 轴向推力逐渐替代克服弹力合力, 前凸环逐渐离开耦合单 元, 转子开始从 _a向 _b点移动, 到达 _b时, 此时耦合单元完全离开前凸环, 轴向推力远远大于弹力合力, 使转子二次进入动态平衡区。
+a: 刹车结束位移点
+b: 动态平衡位移起点
0: 合力 F最小位移点
-a: 启动静止位移点
-b: 动态平衡位移反向位移起
F与 S的函数图像如附图 11所示。
本发明产品结构特征还包括如下内容:
3、 支撑螺旋轮正常转动的轴承, 固定在螺旋轮转子外径上, 所以其内径较大, 即承受的转子和螺旋轮自身重力可以最大面积地被分布在轴承各个结合点 上, 因此, 支撑受力压强比传统结构轴承降低, 从而机械磨损降低。 尽管该 轴承的静态摩擦力比传统结构较大, 但由于其体积分布较大, 即自身磨损产 生的热量无法堆积, 因此温升较低。
4、 进入螺旋轮的轴向原动力, 通过受力螺旋轮面转化到径向旋转, 其轴向力的 分量很小, 形成的客观位移很小, 但这个正态分布的位移可作为探测转子超 额运转时的耦合点,通过此位移的计算可以给启动刹车和回复时间提供依据, 同时为维持额定转速时的轴向弹垫弹力提供依据。 、 壳体中有直接感知来自螺旋轮的实际运行姿态、 温度、 湿度、 压力和速度的 非接触传感***, 并及时将这些信息反馈给控制***, 以便计算机分析处理, 确保运行一直处于被控制状态。
、 感应单元中有感知实际温度、 湿度、 压力和各类异常信息的传感***, 并及 时将这些信息反馈给控制***, 以便计算机分析处理, 确保运行一直处于被 控制状态。
、 感应单元的定子线圈和转子的能量转换, 遵循感应型发电机原理, 和直流无 刷发电机原理、 高效永磁发电机原理、 无刷励磁同步发电机原理。
、 螺旋轮外壁上有适应不同环境的结构, 即有抽真空的非导磁套, 固定装有以 耐高温的导线组成的闭合线圈作为转子, 可以适应 38CTC以上原动力环境;若 固定以永磁材料组成的转子, 可以适应自然风和水流的原动力环境。
、 壳体内有高速转盘 (俗称机械电池) , 采用机械式直接储存机械能量。 即当 耦合单元与转子外壁前凸环接触可带动自身高速运转储能, 再利用后凸环与 转子外壁的后凸环滑动接触带动转子转动释放自身能量。
0、 在原动力处于不稳定状态时, 除了维持前端动态平衡外, 在必要时发电 机直接输出功率还需通过蓄电池贮存, 以确保上电力网前的稳定输出。
1、 原动力水中的软体异物, 进入螺旋轮后, 不会像传统叶片那样被缠绕, 而是直接被转动的惯量和原动力的压力从输出口排出。
2、 当前端有超额定转速的原动力持续一定时间的异常时, 则壳体内部检测系 统立即传递该信息到控制***, 则控制***瞬时输出关机指令给原动力控制 终端, 以保护后端, 直到异常结束。
3、 当后端输出电流负载出现异常或短路时, 控制***的切断指令传递给感应 单元里的电力闸刀, 可以瞬间切断感应电流的输出, 以保护定子感应线圈不 被烧毁。 但当后端故障排除后, 该闸刀可自动恢复正常。
4、 针对较大可控的原动力, 可以连续串联连接, 而且通道之间的连接缝隙无 需考虑动摩擦, 直到泄压后的原动力无法再利用为止。
5、 风力做原动力时, 利用前端的动态平衡保证较高效率的电功率输出, 即可 在低空采集忽高忽低的风能原动力。
6、 风力做原动力时, 为捕获高空风能, 可采取垂直安装本发明产品使气流从 上进入从下出来, 并在其正上方较高处树立一定高度的风墙, 使气流从水平 截获沿垂直夹角下行方向积累后进入地面的螺旋轮输入口。 由于壳体全密闭 没有雨水渗进的可能, 所以不会导致电气损坏。 而且落下来的风力或雨水经 过累计后会增加原动力, 即提高螺旋轮的转化效率, 无需传统风电齿轮变换 ***, 同时也可避免转子和螺旋轮自身重力对轴向的偏心影响。
7、 蒸汽做原动力时,采用垂直安装本发明产品,使蒸汽流从上进入从下出来, 这样高压气体中的水滴因重力和气体压力的合力而增加向下流动速度, 也可 利用其重力驱动螺旋轮, 也可减少其对风道变窄的影响, 同时也可避免转子 和螺旋轮自身重力对轴向的偏心影响。
8、 水流做原动力时, 采用垂直安装本发明产品, 使水流从上进入从下出来, 可增加水流自身重力对螺旋轮的驱动, 同时也可避免转子和螺旋轮自身重力 对轴向的偏心影响。
9、 螺旋轮的旋转方向和直径可以和螺旋导流水槽匹配, 这样自动提高了水力 环境原动力的能量密度, 以达到提高发电效率。
0、 螺旋轮可以利用深水区漩涡能量, 自动增加原动力密度, 以提高发电效率。 附图说明 图 1 : 本发明产品结构卧式立体示意图 注解:
1. 1、 螺旋轮
2、 转子
4、 轴承
6、 壳体
7、 多功能口
8、 输入口 图 2: 本发明产品轴向剖面图
注解:
1、 螺旋轮
2、 转子
3、 转子外壁
4、 轴承
5、 感应单元
6、 壳体
7、 多功能接口
8、 输入口
9、 输出口
10、 传感器
11、 前凸环
12、 后凸环
13、 后弹垫
14、 耦合单元
15、 高速转盘
22、 前弹垫 图 3: 本发明产品感应线圈段径向 A-A截面示意图 注解:
1、 螺旋轮
2、 转子
3、 转子外壁
5、 感应单元
6、 壳体 图 4: 本发明产品高速转盘段径向 B-B截面示意图 注解:
1、 螺旋轮
2、 转子 6、 壳体
14、 耦合单元
15、 高速转盘 图 5: 本发明产品中螺旋轮的轴向剖面图
注解:
1. 1、 螺旋轮 1
1. 2、 螺旋轮 2
L: 螺旋轮的导程, 即转子的长度, 也等效为感应电磁线圈的长度, 由于高速转 盘组的轴向长度很小, 可以忽略不计。
D: 螺距, 即螺旋之间的间距
T: 螺旋轮的单轮厚度
G: 螺旋轮上升夹角, 即轮的受力被推面与转子横截面的夹角
Φ : 螺旋轮的直径 图 6: 本发明产品中螺旋轮, 左是径向截面图, 右是一轮单圈立体示意图 注解:
H :螺旋轮的高度
K :螺旋轮刃部宽度
T: 螺旋轮的厚度
Φ : 螺旋轮的直径, Φ ¾≡2Η 图 7: 本发明产品立式安装剖面图
注解:
8、 输入口
9、 输出口
16、 水平固定单元
17、 本发明产品 图 8: 本发明产品风力发电安装图, 其中左图是加装风墙立体图, 右图是加装风 墙轴向剖面图。
注解:
18、 输入口
19、 输出口
1、 轨道连接单元
2、 本发明产品
3、 迎风面
4、 背风面
5、 导航风向标
Q : 风墙垂直夹角 图 9: 本发明产品风力发电安装鸟瞻图
注解: 迎背轨导
风风航道
Figure imgf000010_0001
风面面
图 10: 本发明标产品电气原理框图
16、 螺旋轮: 包括转子硅钢片、 连接固定件、 螺旋轮固定件。
17、 转子的磁极或感应线圈: 即原动力在常温下用永磁材料径向分布至少一对, 原动力在高温下用金属成条形两端焊接, 即鼠笼状。也包括有密闭而非导磁的套 筒里装有配合无刷励磁结构的辅助部件。
18、 定子的感应线圈 /励磁线圈: 包括励磁电磁线圈绕组、 电力闸刀、 自身的传 感器***。
19、 传感器: 即包括传感器***单元。
20、 原动力控制端: 即能够接受控制信号和关闭打开原动力的***。
21、 整流 /逆变 /蓄电 /控制***: 包括与无刷直流发电机定子匹配的逆变电路, 感生电流的整流, 蓄电单元和可独立工作的控制***, 向感应单元里提供各种电 源。
22、 电力网: 包括公共电力平台, 和独立可以分配的电力网络。 图 11 : 本发明产品动态平衡合力 F与位移 S坐标图像
+a: 刹车结束位移点
+b: 动态平衡位移起点
0: 合力 F最小位移点
-a: 启动静止位移点
-b: 动态平衡位移反向位移起点 具体实施方式 下面结合附图对实施本发明产品的进一步说明。 依照附图 10的原理框图,本发明涉及产品正常情况下,原动力从输入口(8) 进入, 带动螺旋轮 (1 ) 径向转动, 由于螺旋轮是固定嵌入在转子 (2) 内壁里, 于是同步转动。 转子外壁 (3 ) 自身具有磁力或感生的磁力, 依据右手法则, 通 过感应方式, 穿透非导磁材料使壳体内固定着的感应单元 (5 ) 线圈瞬间得到感 生电流, 该电流从壳体 (6) 的多功能接口 (7) 输出, 经过整流和储存积累后, 就可以传递给电力网, 不能再利用的原动力从螺旋轮输出口 (9) 排出。 同时, 在整流块中有控制***, 以随时通过传感器监控和管理整个发电过程, 以确保其 按照预期的程序进行。若壳体里面或螺旋轮转子出现异常, 分布在不同区域的传 感器 (10) 即刻传递信息给控制***, 有控制***综合判定后发出相应的指令, 以达到排除异常或调整相关动作, 保证回复到原来状态继续工作。
当前端有超过额定转速的原动力异常时, 轴向力瞬时增加,转子位移量超过预先 设定的正态分布位移点, 前凸环 (11 )被接触, 即通过耦合单元(14)使高速转 盘 ( 15)启动, 其效果表现为螺旋轮刹车和高速转盘储能。 若该异常持续一定时 间后, 壳体内部检测***立即传递该信息到控制***, 则控制***瞬时输出关机 指令给原动力控制终端, 直到原动力结束。 当前端恢复正常时, 即通过轴向前弹 垫 (22 ) 和后弹垫 (13 ) 的弹力合力推至和后凸环 (12 ) 接触, 转子回到起点。 但是, 当有超大的原动力异常时, 而且持续时间很长, 则控制***也可以考虑传 指令给感应单元的电力闸刀, 切断后端, 防止高电压烧毁后端电气设施。
另外, 螺旋轮的原动力被停车后, 后凸环接触耦合单元, 即原来储存在高速转盘 上的能量沿耦合单元, 开始带动螺旋环转动, 直到该能量释放完毕, 进入静止状 态, 等待正常启动。 或未静止时, 前端原动力再次开始输入, 转子提前恢复正态 分布的位移处。
若当后端输出电流或负载出现异常或短路时,感应单元里的电力闸刀可以瞬间切 断感应电流的输出, 以保护壳体里的感应线圈不被烧毁。 但当后端故障排除后, 该闸刀自动恢复正常。 为了最大的获取原动力, 在保证螺旋轮根部足够的扭力下, 其刃部宽度 (K) 和 厚度(T)尽可能小, 同时 K可小于 T,有利于减轻自身重量, 也能完全接收正面的 原动力。
为了保证螺旋轮的实际运行磨损导致高度 H下降而不影响整体发电效率,则高度 H 不能仅仅等于螺旋轮半径, 即依照原动力不同的环境粘度摩擦系数, 保证
/2。
在小功率的原动力场合, 可以卧式安装, 如附图 1所示, 因为螺旋轮和转子的自 重不会给前后支撑轴 (4 ) 带来很大的磨损。 而且这个轴承内径较大, 所以承载 压强较小, 接触空气面积很大, 所以轴温升也不会升高。 原动力的不同环境温度, 决定采用适当的能量转化过程。 常温 -40°C〜+120°C 条件,采用永磁同步发电原理或无刷直流发电机原理, 即转子外壁采用永磁材料 和启动绕组。 在 +120°C~+380°C温度条件, 采用永磁同步发电机原理或无刷直流 发电机原理, 即转子外壁有固定装置在真空密闭非导磁套里保护的磁极, 且径向 分布至少 1对 N和 S极。超过 380°C高温条件, 采用感应型发电机原理, 或无刷励磁 发电机原理, 即转子外壁用导线做成鼠笼状,和装在密闭非导磁套里配合无刷励 磁线圈和整流管辅助部件, 以及定子感应单元专门对应的励磁电磁线圈和电源。 本发明产品在不同的环境下, 采取适当的安装方式, 可以提高发电效率。如: 当原动力为高压蒸汽, 安装采用进口朝上出口朝下垂直方式, 则高压气体中 的水滴因重力和气体压力的合力而增加向下流动速度,也可利用其重力驱动螺旋 轮, 也可减少其对风道变窄的影响, 同时也可避免转子和螺旋轮自身重力对轴向 的偏心影响。 由于蒸汽的压力通常超过 2. 5MPa, 而传统的汽轮机组漏气严重导致 在 L OMPa 下效率较高, 往往需要多级串接。 本发明产品可以直接采用轴向螺旋 轮多轮数高功率一次满足原动力的吸收与转化, 而从二次排出的剩余蒸汽中,可 用低轮数的螺旋轮。 由于是垂直安装, 所以二次蒸汽的水滴成分较高, 水重力增 加了重力势能, 自然增添了原动力的推力, 从而增加了发电效率。 当风力做原动力时, 为捕获高空风能, 如附图 8所示, 可采取垂直安装本发 明产品使气流从上进入从下出来, 并在其正上方较高处树立一定高度的风墙,使 气流从水平截获沿垂直夹角方向积累后进入地面的螺旋轮输入口。由于壳体全密 闭没有雨水渗进的可能,所以不会导致电气损坏。而且垂直下来的风力或雨水经 过累计后会增加原动力, 即提高螺旋轮的转化效率, 同时也避免了转子和螺旋轮 自身重力对轴向的偏心影响。 利用前端的动态平衡来保证较高效率的电功率输 出, 直接在低空采集忽高忽低的风能原动力。
依据附图 8和 9, 风墙下面有与螺旋轮同心的圆形轨道 (21 ) , 遇到不同方 向风力后, 风墙会自动旋转找准定位方向。 由于风墙背风面(19)有连体固定的 导航风向标(20), 在风力的作用下, 它无法自由静止平衡在风的上游, 而是始 终被风力推到背风区域, 在它的扭力下风墙的背风面就会在轨道连接单元 (16) 和轨道的自由转动配合下, 被强制拉进背风区, 即迎风面 (18 ) 对着迎风区。而 迎风面是凹面, 具有收集风力作用, 而且风墙是凹面有垂直夹角 Q, 其为锐角, 与螺旋轮同心, 于是风力自动朝下流动, 积累后进入地面螺旋轮的输入口 (8 ) 。 为了提高风能的累积量, 在不影响地面气候和生态情况下,可以使风墙的高度和 迎风面上边宽度增加, 而且在不被风力破坏的情况下, 尽可能的增加 Q角度, 但不大于 45度。
依据低洼和凸起不同地貌或建筑群的自然风力走向,可按照附图 7垂直方向 安装。凸起阳光面和低洼阳光面的高处垂直安装, 原动力从下输入到上面输出则 发电效率较高; 凸起背光面和低洼背光面高处垂直安装, 原动力从上输入到下面 输出则发电效率较高。
依照风力帆船区域水面季风的特定风向, 在船面靠帆的迎风区域,可按照附 图 7垂直安装, 使原动力从上入下出, 则发电效率较高。
依照峡谷地带的前后风向, 可按照附图 1, 卧式安装, 并和地形风力的起伏 面平行时, 使原动力前进后出, 发电效率最高。 原动力为水流时, 可按照附图 7垂直方向安装, 使水流从上进入从下出来, 可增加水流自身重力对螺旋轮的驱动,同时也可避免转子和螺旋轮自身重力对轴 向的偏心影响。
另外, 深水库区域, 受到科里奥利力 (Coriol is force ) 的影响, 原动力大 部分情况会自动产生漩涡, 当螺旋轮入口的螺旋方向与它同向时(北半球逆时针 下, 南半球顺时针下, 赤道附近不旋转) , 即增加了原动力的能量, 直接等效增 加原动力的推动力, 使螺旋轮转速增加从而提高发电效率。 但在水坝浅水区域, 进入螺旋轮前需要增加和其同方向的 "螺旋"导流槽, 以提高发电效率。
依照河道水流自然水平推力方向, 可按照附图 1, 卧式水平安装, 使原动力 前进后出, 则发电效率最高。但在水头高度超过本发明产品的长度时, 按照附图 7垂直安装, 原动力从上进下出, 增加了重力势能, 则发电效率较高。 在此已经涉及到的和未来涉及到本发明产品的各种应用, 其改进、接近或类 似装置, 则视为与本发明雷同。也包括联想到类似结构和不同用途而产生的其它 结构产品, 则也视为与本发明雷同。

Claims

权 利 要 求 书
、 一种无轴螺轮发电装置结构特征在于: 至少包括, 整体呈圆形管状, 在轴向中心位置前 后有圆形空心通孔和孔四周密封的壳体(6) , 在转子 (2) 轴向中心前后有空心的圆形 通孔, 用于接受原动力的螺旋轮 (1 ) 固定在转子通孔内壁位置, 感应单元 (5)嵌入在 密封式的壳体里, 以感应转子外壁 (3 ) 达到产生感生电流的目的, 且转子通过前后两 个轴承 (4) 固定在壳体的输入口 (8) 和输出口 (9) 的中心孔位置。
、 根据权利 1所述的一种无轴螺轮发电装置中成型后的螺旋轮 (1. 1、 1. 2) , 其结构特征 在于: 至少包括, 一螺旋轮导程 (L) 大于感应单元轴向长度, 二螺距(D) 小于螺旋轮 导程减去 2倍的根部厚度 (T) , gPD <L-2T,三螺旋轮的轮数至少 1轮, 四多轮的径向扇 角角度相加之和至少大于 2 π, 五轮的被推面与转子横截面的夹角 (G) 大于 0度而小于 90度。
、 根据权利 1所述的一种无轴螺轮发电装置的转子外壁 (3) 结构特征在于: 至少包括, 一 有固定装置在真空密闭非导磁套里保护的磁极, 且径向分布至少 1对 Ν和 S极, 或者是感 应式结构电机可被感应电流产生的金属材料, 或有装在密闭非导磁套里配合无刷励磁的 辅助部件, 二在感应单元区域外固定装有前凸环 (11 ) 和后凸环 (12) , 三在前端固定 径向滑动的前弹垫 (22) 内端, 后端固定径向滑动的后弹垫 (13) 内端, 四两端固定在 轴承的内圈里。
、 根据权利 1所述的一种无轴螺轮发电装置中的壳体 (6) , 其结构特征在于: 至少包括, 一中心通孔材质采用非导磁性材料, 即铁或感磁性以外的材料, 一体化浇铸或紧固件配 合密封成壳状, 二在壳体内部有多个感应温度、 湿度、 压力、转子速度的传感器(10) , 三在壳体中心通孔以外处有信号数据线和电能输出线组成的多功能接口 (7) , 四在壳 体中心通孔位置处的内壁厚度小于感应单元的电磁线圈和转子磁力线的有效半径, 五固 定装有有多组高速转盘(15) , 六固定装有能够使转子和高速转盘相互带动的耦合单元
( 14) , 七中心通孔两端附近固定连接着前弹垫外端和后弹垫外端, 八靠近轴向中心有 适应高温的抽真空和隔热措施, 以防止壳体里所有单元部件来自原动力环境的热损坏, 九中心通孔前后两端附近固定轴承的外圈上。
、 根据权利 1所述的一种无轴螺轮发电装置中的感应单元(5) , 其结构特征在于: 至少包 括, 一在中心孔的周围固定有电磁线圈绕组, 二固定有用于无刷励磁发电的电磁线圈, 三固定有电力闸刀直接和该电磁线圈串接,四固定有传感***,即能够感知自身的温度、 湿度、 压力和异常信息的感应器。
、 根据权利 1所述的一种无轴螺轮发电装置中的螺旋轮(1 ) , 其与转子内壁连接结构特征 在于: 至少包括, 一浇铸一体化, 二嵌入式铆接, 三焊接, 四冷热紧配合。
、 根据权利 3所述的一种无轴螺轮发电装置中的转子外部的前凸环 (11 ) 和后凸环 (12) , 其结构特征在于: 一与多组耦合单元前后对应, 二前凸环与耦合单元滑动接触的摩擦力 既能达到刹车,也能带动配合耦合单元驱动高速转盘,三后凸环的摩擦系数小于前凸环, 以保证高速转盘有效地带动转子释放能量。
、 根据权利 4所述的一种无轴螺轮发电装置中的壳体里的耦合单元 (14) , 其结构特征在 于: 一有不同的齿轮组相互配合, 二与前凸环和后凸环配合有一定的动态平衡间隙, 三 有保证前凸环和后凸环滑动接触摩擦力的润滑***, 四只有前凸环或后凸环滑动接触后 才可以在摩擦力的作用下带动负载。
、 根据权利 1所述的一种无轴螺轮发电装置中的轴承 (4) , 其结构特征在于: 至少包括, 一径向间隙控制在容积泄压允许范围内, 二上下保护滚珠端盖的径向两圈间隙控制在容 积泄压允许范围内, 且该端盖可以承受轴向 2倍以上额定推力而不脱落, 三内圈和外圈 有一定的轴向位移量。 根据权利 3所述的一种无轴螺轮发电装置中转子外壁滑动接触的前弹垫 (22 ) 和后 弹垫 (13 ) , 其结构特征在于: 一前弹垫和后弹垫都是侧面密闭前后通透的环形, 且和 转子接触两端具有一定径向自由滑动的摩擦系数,二后弹垫的轴向弹力大于前弹垫轴向 弹力, 以保证转子在启动静止位置时滑动接触到后凸环而没有接触到前凸环,三在原动 力轴向推力、 所有摩擦力、 所有重力、 所有弹力的合力 F作用下, 前弹垫和后弹垫可以 使转子轨迹 S位移保持在动态平衡运行段位置(0附近), 且结合轨迹 S与合力 F函数图像 实现动态平衡过程如下:
先假定转子位移轨迹 S就在动态平衡区, gpo点附件运动, 且前凸环后凸环后都没有 接触到耦合单元。 当前端原动力驱动螺旋轮超过额定转速转动时, 轴向合力分量 F增加, 打破了动态平衡运行段 2b内,使转子从原来的 0附近向 +b移动, 抵达 +b后即与前凸环滑 动接触, 使耦合单元将转子的转速惯量带动高速转盘储能, 同时由于滑动接触具有一定 的摩擦力, 即使转子自动起到刹车作用。 当运行到 +a时, 储能完成, 即等同于抵达再启 动静止点 _a。此时转子和后凸环滑动接触, 原动力被强制关闭轴向推力消失, 合力分量 F改变方向, 由最大的前弹垫和后弹垫的弹力合力替代, 而且高速转盘由耦合单元带动 转子继续转动, 即释放能量, 直到释放完毕。 当正常启动后, 合力 F再次改变方向, 轴 向推力逐渐替代克服弹力合力, 前凸环逐渐离开耦合单元, 转子开始从 _a向 -b点移动, 到达 -b时, 此时耦合单元完全离开前凸环, 轴向推力远远大于弹力合力, 使转子二次进 入动态平衡区, 如附图 11所示。
PCT/CN2014/071914 2013-03-04 2014-02-10 一种无轴螺轮发电装置 WO2014134994A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310069483.6A CN104037959B (zh) 2013-03-04 2013-03-04 一种无轴螺轮发电装置
CN201310069483.6 2013-03-04

Publications (1)

Publication Number Publication Date
WO2014134994A1 true WO2014134994A1 (zh) 2014-09-12

Family

ID=51468610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071914 WO2014134994A1 (zh) 2013-03-04 2014-02-10 一种无轴螺轮发电装置

Country Status (2)

Country Link
CN (1) CN104037959B (zh)
WO (1) WO2014134994A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041549A (zh) * 2015-04-21 2015-11-11 李德生 高压动力螺旋环发电***
CN106257047A (zh) * 2015-06-17 2016-12-28 詹平治 一种水能源冷热风机组及其发电装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041550A (zh) * 2015-04-21 2015-11-11 李德生 高速外传螺旋环驱动发电***
CN104989583A (zh) * 2015-04-21 2015-10-21 李德生 高压螺旋凹壁发电***
CN104976029A (zh) * 2015-04-21 2015-10-14 李德生 空心涡轮外传驱动发电***
CN104976062A (zh) * 2015-04-21 2015-10-14 李德生 高压外传螺旋凹壁发电***
CN105003387A (zh) * 2015-04-21 2015-10-28 李德生 高压螺旋凹槽发电***
CN105003388A (zh) * 2015-04-21 2015-10-28 李德生 高速动力介齿螺旋环发电***
CN104976040A (zh) * 2015-04-23 2015-10-14 李德生 漩涡涡轮发电装备
CN104976041A (zh) * 2015-04-23 2015-10-14 李德生 漩涡无障碍凹槽发电装备
CN104976036A (zh) * 2015-04-23 2015-10-14 李德生 漩涡无障碍凹壁外驱发电装备
CN107940526A (zh) * 2017-12-14 2018-04-20 汪弘轩 一种电磁无轴向心式连续涡叶吸排油烟机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176283A (en) * 1977-11-23 1979-11-27 Mclaren Richard H Water powered generator
CN201902282U (zh) * 2010-11-10 2011-07-20 赵国豪 水流式发电机
WO2012016283A1 (en) * 2010-08-03 2012-02-09 Gregory Mark Webber Screw turbine and method of power generation
US20120175881A1 (en) * 2008-07-02 2012-07-12 Rosefsky Jonathan B Ribbon drive power generation and method of use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230442B (zh) * 2010-12-09 2013-03-27 胡彬 无轴海流涡轮发电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176283A (en) * 1977-11-23 1979-11-27 Mclaren Richard H Water powered generator
US20120175881A1 (en) * 2008-07-02 2012-07-12 Rosefsky Jonathan B Ribbon drive power generation and method of use
WO2012016283A1 (en) * 2010-08-03 2012-02-09 Gregory Mark Webber Screw turbine and method of power generation
CN201902282U (zh) * 2010-11-10 2011-07-20 赵国豪 水流式发电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105041549A (zh) * 2015-04-21 2015-11-11 李德生 高压动力螺旋环发电***
CN106257047A (zh) * 2015-06-17 2016-12-28 詹平治 一种水能源冷热风机组及其发电装置

Also Published As

Publication number Publication date
CN104037959A (zh) 2014-09-10
CN104037959B (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
WO2014134994A1 (zh) 一种无轴螺轮发电装置
US8690526B2 (en) Hydroelectric turbine with passive braking
CN101922418B (zh) 海上风力及洋流发电***
WO2016000609A1 (zh) 潮流能发电装置
TWI541435B (zh) 風力發電設備
CN105465003A (zh) 立式屏蔽泵的轴向力测试***及方法
US10495051B2 (en) Power generating device having hollow structures
CN201568231U (zh) 风电机组的齿轮箱冷却***
CN103423096B (zh) 带有储能飞轮的风力发电机组
CN103174584A (zh) 新型自启动式Darrieus-Savonius组合式垂直轴风力机
CN102185413A (zh) 2兆瓦风力发电机轴承结构
JP2009275690A (ja) 風力制御式風力発電装置
CN205260355U (zh) 立式屏蔽泵的轴向力测试***
CN205876603U (zh) 一种改进结构的垂直式风力发电机
CN205805619U (zh) 一种低转速低压差的背压式汽轮机
JP2011012588A (ja) 直線翼複数軌道配置垂直軸型タービン及び発電装置。
CN113915062B (zh) 一种扭矩自调节式减磨风力发电机转子组件
CN210919331U (zh) 一种新能源用机电控制装置
KR20090077105A (ko) 풍력발전기
JP2005299626A (ja) 昇降ローター式風力原動機による風力発電システムユニット。
JP2019504242A (ja) 水力発電タービンのシステム及び水力発電タービンの制御方法
CN205089529U (zh) 一种水平轴磁悬浮风力发电机
CN111102015A (zh) 一种涡轮发电机叶片的限速保护装置
CN205478078U (zh) 一种双轴伸无推力卧式混流水轮发电机组
Mayurappriyan et al. Performance improvement in an Indian wind farm by implementing design modifications in yaw and hub hydraulic systems—A case study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760272

Country of ref document: EP

Kind code of ref document: A1