WO2014133236A1 - Catalyst for fischer-tropsch synthesis supported by porous carbon material and method for preparing same - Google Patents

Catalyst for fischer-tropsch synthesis supported by porous carbon material and method for preparing same Download PDF

Info

Publication number
WO2014133236A1
WO2014133236A1 PCT/KR2013/007645 KR2013007645W WO2014133236A1 WO 2014133236 A1 WO2014133236 A1 WO 2014133236A1 KR 2013007645 W KR2013007645 W KR 2013007645W WO 2014133236 A1 WO2014133236 A1 WO 2014133236A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
porous carbon
carbon material
tropsch synthesis
Prior art date
Application number
PCT/KR2013/007645
Other languages
French (fr)
Korean (ko)
Inventor
하경수
곽근재
이진우
전기원
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2014133236A1 publication Critical patent/WO2014133236A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6447Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation

Definitions

  • the present invention relates to a Fischer-Tropsch synthesis catalyst carrying a uniform nano-sized metal-containing catalyst particles in a porous carbon material having a regular structure and a method of manufacturing the same.
  • One of the main objectives of the petrochemical process is to produce petrochemical products with high conversion and selectivity by optimizing the reaction catalyst, reactant composition, temperature and pressure.
  • metal catalysts such as iron, cobalt, molybdenum, tungsten, bismuth, nickel, and copper are often used as the reaction catalyst, and noble metal catalysts such as rhodium, gold, platinum, ruthenium, and rhenium may be used.
  • noble metal catalysts such as rhodium, gold, platinum, ruthenium, and rhenium may be used.
  • These metal catalysts are mainly used by uniformly dispersing and supporting the surface of a support such as alumina, silica, titania, etc. If necessary, precious metals such as platinum and palladium may be used as promoters to improve catalyst performance.
  • Such a catalyst is mainly supported on a support such as alumina ( ⁇ -Al 2 O 3, a-Al 2 O 3, etc.), silica (SiO 2 ), titania (TiO 2 ), magnesia (MgO), and carbon.
  • alumina ⁇ -Al 2 O 3, a-Al 2 O 3, etc.
  • silica SiO 2
  • titania TiO 2
  • MgO magnesia
  • carbon carbon
  • cobalt acid salt Co (NO 3 ) 2 H 2 O, etc.
  • salts such as Pt, Ru, and Re used as a cocatalyst
  • a suitable solvent to form
  • the dried catalyst is then calcined in an air or inert gas atmosphere to obtain catalyst particles in which metal oxide crystals are supported on a support.
  • a first aspect of the invention provides a porous carbon material of regular structure, wherein the mesopores have a mean diameter of nanoscale; And Fischer-Tropsch synthesis catalyst containing, in the pores of the porous carbon material, the average size of the nano-scale, containing, when the metal-containing catalyst particles are metal oxides, containing metal in the mesopores
  • the cross-sectional area of the catalyst particles occupies 85% to 95% of the mesopore cross-sectional area, and when the metal-containing catalyst particles are reduced metals, the cross-sectional area of the metal-containing catalyst particles in the mesopore occupies 65% to 95% of the mesopore cross-sectional area.
  • the present invention provides a catalyst for Fischer Tropsch synthesis.
  • the second aspect of the present invention comprises the steps of: 1) impregnating a catalyst precursor solution into a porous carbon material support having a regular structure having an average diameter of mesopores; 2) drying the impregnated support; 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And 4) provides a method for producing a Fischer Tropsch synthesis catalyst according to the first aspect of the present invention, comprising the step of firing the dried support.
  • the third aspect of the present invention is a porous carbon material support having a regular structure having an average diameter of mesopore cross-sectional area, wherein the pores are free of metal-containing catalyst particles on the outer surface without pore confinement effect.
  • a method for preparing a Fischer Tropsch synthesis catalyst containing metal-containing catalyst particles having a size that can exert a restraining effect comprising: 1) impregnating a catalyst precursor solution on the porous carbon material support; 2) drying the impregnated support; 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And 4) calcining the dried support, wherein in step 1) (i) using a porous carbon material support that has not been hydrophilized to prevent impregnation of the catalyst precursor solution on the outer surface, or (ii) Provided is a method for preparing a catalyst comprising using a porous carbon material support having a hydrophil
  • the fourth aspect of the present invention provides a catalyst for Fischer Tropsch synthesis, prepared according to the process of the third aspect.
  • a fourth aspect of the present invention is a method for producing a liquid hydrocarbon from syngas using a Fischer Tropsch synthesis reaction, Fischer-Tropsch synthesis catalyst of the first aspect or the fischer prepared according to the manufacturing method of the third aspect I) applying the Tropsch synthesis catalyst to a Fischer-Tropsch synthesis reactor, ii) reducing the catalyst to activate the Fischer-Tropsch synthesis catalyst, and the activated Fischer-Tropsch synthesis catalyst And iii) performing a Fischer-Tropsch synthesis reaction.
  • the porous carbon material support having a regular structure such as CMK-3 has an expanded pore structure such as nanochannels, and thus may serve as a nanochannel reactor when catalyst nanoparticles are loaded in the pores.
  • the present invention is to provide a Fischer Tropsch synthesis catalyst having excellent performance by using the pore restraint effect and hydrophobic properties of the porous carbon material support having a regular pore structure of the nano-scale.
  • Carbon materials are known to be somewhat inert to catalytically active materials. Strong interactions between the catalyst material and the support material can oxidize the metal, which leads to a loss of activity and selectivity of the catalyst.
  • the carbon support can enhance the performance of the Fischer-Tropsch synthesis catalyst, easily desorb byproduct water, dissipate heat of reaction, and help disperse the catalyst nanoparticles due to the high surface area (FIG. 10),
  • the number of active sites can be increased.
  • ordered mesoporous carbons OMCs
  • the present invention uses a porous carbon material as a support to minimize the interaction between the catalyst and the support, and impregnated and dried the catalyst precursor solution in the pores (mesopores) of the porous carbon material support having a regular structure by repeating the metal at least two times.
  • the metal-containing catalyst particles in the pores of the porous carbon material are formed at the same or similar nano size, i.e., uniform nano size, and the particle size of the metal-containing catalyst particles in the pores is grown to a certain size or more. It is characteristic to let.
  • metal-containing catalyst particles having a smaller size are formed in the pores of a regular structure of porous carbon material having a mesopore average diameter of nanoscale, the metal oxide-containing catalyst particles in the form of metal oxides must be grown to a certain size or larger than the pore cross-sectional area.
  • metal-containing catalyst particles in the form of metals reduced from metal oxides and smaller in volume are also maintained at a predetermined size or more, so that the reaction heat of Fischer Tropsch during the reaction of Fischer-Tropsch is not agglomeration or sintering due to the pore confinement effect. And maintain its performance against water produced as a by-product (FIG. 8).
  • the metal-containing catalyst particles not having a predetermined size or more relative to the pore cross-sectional area are oxidized or sintered by water generated as a by-product of extreme reaction heat and by-products during the Fischer Tropsch reaction, thereby decreasing activity.
  • the cross-sectional area of the metal-containing catalyst particles in the mesopores is preferably 85% to 95%, preferably 90% to 95% of the mesopore cross-sectional area.
  • the cross-sectional area of the metal-containing catalyst particles in the mesopores is 65% to 95%, preferably 70% to 95%, more preferably 80% to 95%, even more preferably 85% to 90%.
  • the metal-containing catalyst particles which are metal oxides
  • a porous carbon material support having a regular structure such as CMK-3 the metal oxide particles are restrained even when the metal oxide is reduced.
  • One nanochannel reactor structure is maintained and crystals are not sintering even after FT synthesis (FIG. 11).
  • Metal-containing catalyst particles in the present invention may be more than 15% by weight, preferably 20% by weight or more, preferably 50% by weight or less based on 100% by weight of Fischer Tropsch synthesis catalyst.
  • the inventors of the present invention suggest that the porous carbon material support having a regular structure in which the average diameter of the pore (mesopore) cross-sectional area is nanoscale has small chemical interaction, and there is no pore restraining effect on the outer surface of the porous carbon material support.
  • the catalyst crystals supported on the outer surface of are found to be very susceptible to agglomeration or sintering and, in severe cases, metal catalyst crystals may fall out of the support due to carbon deposition during the FT synthesis reaction.
  • the present invention provides Fischer Tropsch synthesis so that the pores contain metal-containing catalyst particles of a size capable of exerting a pore confinement effect, while almost no metal-containing catalyst particles are formed on the outer surface of the porous carbon material support. It is another feature to provide a catalyst for the process.
  • the Fischer Tropsch synthesis catalyst of the present invention is mainly supported by the metal-containing catalyst particles in the pores of the porous carbon material support having a regular structure of the average diameter of the pores (mesopores), the metal-containing catalyst particles are supported The interaction with is minimized and can have a high degree of dispersion.
  • the dispersion degree of the metal crystal measured by the X-ray diffraction method is 15% or more, more preferably 25% or more.
  • the Fischer Tropsch synthesis catalyst of the present invention in the method for producing the catalyst precursor solution impregnated with the porous carbon material support (i) the porous carbon material support is not hydrophilic treatment so that the catalyst precursor solution is not impregnated on the outer surface Or (ii) using a porous carbon material support that has been hydrophilically treated to the extent that the catalyst precursor solution is not chemically impregnated on the outer surface of the porous carbon material support, thereby resulting in no pore restraint effect and thus susceptible to agglomeration or sintering. Almost no metal-containing catalyst particles may be formed on the outer surface of the carbon material support.
  • the fact that the metal-containing catalyst particles were not formed on the outer surface of the porous carbon material support means that the metal-containing catalyst particles were not substantially formed.
  • the metal surface is substantially contained on the outer surface even though some metal-containing catalyst particles are formed on the outer surface of the porous carbon material support. It can be seen that no catalyst particles were formed.
  • the metal-containing catalyst particles may be in the form of metal oxides, or may be in the form of reduced metals therefrom.
  • the metal-containing catalyst particles are cobalt (Co), nickel (Ni), copper (Cu), iron (Fe), zinc (Zn), ruthenium (Ru), molybdenum (Mo), tungsten (W), bismuth (Bi) It may contain a metal selected from the group consisting of reniche (Re), rhodium (Rh), palladium (Pd), silver (Ag), platinum (Pt), combinations thereof.
  • the metal-containing catalyst particles are preferably 5 nm or less in average size.
  • the size of the metal-containing catalyst particles is the same as or similar to the pore size of the porous carbon material, and the metal-containing catalyst particles in the form of metal oxides are reduced to become metal particles, for example, small to 70 to 90% of the original size. Can lose.
  • the porous carbon material may be a mesoporous carbon material. Porous materials are divided into microporous and mesoporous materials according to the pore size of the material. In general, when the pore size is 2 nm or less, the microporous and the pore size are between 2 and 50 nm. It is called.
  • the porous carbon material of the present invention is not limited to the pore size, but is preferably a mesoporous carbon material for the production of nano-level metal particles.
  • the pore size of the mesoporous carbon material is preferably less than 10 nm.
  • the porous material may be, but is not limited to, carbon nanotubes, CMK-3, CMK-8, MSU-F-C, activated carbon, graphite fibers, activated carbon fibers or mixtures thereof.
  • the porous carbon material having a regular structure used in the present invention may have a uniform array of linear pore structures.
  • the pores are preferably connected to increase the material transfer performance.
  • CMK-3 has regular channels, the average pore size is about 4 nm, and the Brunauer. Emmmett. Teller (BET) surface area is about 1500 m 2 g ⁇ 1 .
  • BET Brunauer. Emmmett. Teller
  • the pore structure in the form of channels is formed by carbon rods connected to each other, and there are open slits on the sides of these carbon rods.
  • the porous carbon material used in the present invention comprises the steps of: a) filling a carbon precursor, which is a saccharide, hydrocarbon or alcohol, into pores of mesoporous silica and calcining; b) dissolving the silica structure using an acidic or basic material as the resultant material of step a); c) treating the resultant material of step b) by immersing it in an acidic material, followed by drying.
  • a carbon precursor which is a saccharide, hydrocarbon or alcohol
  • the saccharide refers to a compound having a relatively small molecule in carbohydrate and having a sweet taste in water.
  • sugars include glucose, fructose, galactose, glucose and sucrose.
  • a carbon precursor may include glucose, sucrose, furfuryl alcohol, and the like, but is not limited thereto.
  • mesoporous silica materials used in step a) include SBA-15, SBA-3, MSU-H, MCM-41, KIT-6, MCM-48, SBA-16, MSU-F, and the like. This is not restrictive. Any silica material having a regular microporous structure can be used.
  • the SBA-15, SBA-3, MSU-H and MCM-41 all have a structure in which bundles of long cylindrical shapes are gathered, and then the carbon precursor is impregnated into the cylinder.
  • the impregnation of the carbon precursor into the mesoporous silica in step a) may be performed by repeatedly impregnation and drying the carbon precursor into an aqueous solution. At this time, the carbon precursor is prepared in an aqueous solution and then impregnated with an acid catalyst such as sulfuric acid. Impregnation and drying are repeated until the carbon precursor is sufficiently impregnated, and when the drying is completed, firing may be completed to complete the silica-carbon composite.
  • step b) due to the acidic or basic substance, the silica is removed from the silica-carbon composite, leaving only the carbon structure. Since the carbon support having the regular structure thus prepared has a structure of silica and a replica, it has a surface area comparable to that of the mesoporous silica used, and the space filled with silica becomes a pore.
  • Non-limiting examples of acidic materials are HF, and non-limiting examples of basic materials are NaOH.
  • Step c) is a step of treating the resulting material of step b) with an acidic material and drying.
  • the acidic material may be all a strong acid solution nitric acid, sulfuric acid, hydrochloric acid, etc., it is used in the form of an aqueous solution, the concentration is preferably 0.01 to 1 M.
  • an aqueous solution of nitric acid may be used.
  • the treatment may be performed by dipping the support in an acidic aqueous solution at room temperature, through which the support may be more easily impregnated with the catalyst precursor.
  • the pores in the porous carbon material support may be in the form of nanochannels, and in step 1), impregnation of the catalyst precursor solution into the pores in the form of nanochannels results in capillary forces of the nanochannels or decompression or physical forces (eg, sonication) in the nanochannels. It can be done through.
  • step 1) (i) use a porous carbon material support that is not hydrophilic to prevent impregnation of the catalyst precursor solution on the outer surface, or (ii) chemical impregnation of the catalyst precursor solution on the outer surface of the porous carbon material support.
  • Preference is given to using porous carbon material supports which have been hydrophilized to such an extent that they are not. As a result, almost no metal-containing catalyst particles are formed on the outer surface of the porous carbon material support having no pore blocking effect.
  • a non-limiting example of the hydrophilic treatment of (ii) is the treatment of the porous carbon material support with an aqueous 0.01 M to 1 M strong acid solution.
  • porous carbon material support Treatment of the porous carbon material support with, for example, 1M aqueous solution of nitric acid forms a small amount of hydrophilic functional groups sufficient to impregnate the catalyst precursor solution inside the mesopores, but most surfaces remain hydrophobic.
  • the catalyst precursors are cobalt (Co), nickel (Ni), copper (Cu), iron (Fe), zinc (Zn), ruthenium (Ru), molybdenum (Mo), tungsten (W), bismuth (Bi), reniche (Re), rhodium (Rh), palladium (Pd), silver (Ag) and platinum (Pt) may be a metal-containing precursor containing at least one metal selected from the group consisting of, the metal-containing precursor is a water-soluble precursor Oxide salts, oxyhydroxide salts, chloride salts, carbonates, acetates, citrates, nitosilonitrates, nitrates of metals. Hydroxide salts. Alkoxy precursors containing hydrocarbons as soluble precursors, such as oxalate, carboxylate, and sulfate. Ammonium precursors and the like.
  • the impregnation may be carried out by incipient wetness impregnation, making the catalyst precursor a solution.
  • water or alcohol may be used as the solvent of the catalyst precursor solution.
  • Incipient wetness impregnation is the most widely used impregnation method and is prepared by supporting an impregnation solution corresponding to the pore volume of the catalyst support.
  • the impregnation may be repeated two or three times until the impregnation is sufficiently impregnated and goes through a drying process for each impregnation.
  • the support When impregnated, capillary force is used to the maximum, and when impregnation is difficult, the support may be used after vacuum treatment, or sonication may be used in combination.
  • Drying in step 2) may be performed for 5 to 24 hours at 110 ⁇ 150 °C.
  • Steps 1) and 2) above are carried out until the cross-sectional area of the metal-containing catalyst particles in the mesopores accounts for 85% to 95% of the mesopore cross-sectional area, e.g. Repeat until the content is at least 20% by weight.
  • Firing the dried support may be carried out under an inert gas atmosphere such as nitrogen, helium, argon, and the like.
  • the firing produces metal-containing catalyst particles of a size similar to or slightly smaller than the mesoporous pore size. Since the catalyst particles are constrained in an orderly mesoporous structure, due to the restraining effect of the support, the growth of the catalyst particles is suppressed to produce a uniform and uniform distribution in size.
  • the size of the catalyst was about 4 nm and the dispersity was 30.1%, which shows a remarkably improved dispersity compared to the existing catalyst.
  • the present invention provides a method for preparing a liquid hydrocarbon from syngas using the Fischer Tropsch synthesis reaction, the liquid hydrocarbon production method comprising: i) Fischer-Tropsch synthesis catalyst for Fischer Tropsch synthesis according to the present invention Applying to the reactor; ii) reducing the catalyst to activate it; And iii) performing a Fischer-Tropsch synthesis reaction with the activated Fischer-Tropsch synthesis catalyst.
  • the natural gas may be reformed to prepare syngas (CO / H 2 ).
  • the Fischer-Tropsch synthesis reactor may be a fixed bed, fluidized bed, or slurry reactor.
  • step ii) is a step of reducing the Fischer-Tropsch synthesis catalyst.
  • the catalyst particles in the form of metal oxides can be reduced to metals and the particle size thereof can be reduced to, for example, 75%, thereby preventing the movement and diffusion of reactants or products during the Fischer-Tropsch synthesis reaction. Will not.
  • the Fischer Tropsch synthesis reaction is preferably carried out while maintaining the hydrogen / carbon monoxide reaction ratio at 1.5 to 2.5 molar ratio.
  • iii) step may be carried out at 200 to 350 °C, reaction pressure 5 to 30kg / cm 3 , space velocity 1000-10000 h -1 .
  • liquid hydrocarbon production method according to the present invention may further comprise a step of reforming the Fischer Tropsch synthesis reaction product after step iii).
  • the Fisher-Tropsch synthesis reaction when performing the Fisher-Tropsch synthesis reaction using the Fischer-Tropsch synthesis catalyst of the present invention, the Fisher-Trop due to the high dispersion degree of the catalyst of the present invention, the appropriate crystal size does not oxidize or sinter the metal during the reaction The carbon monoxide conversion and liquid hydrocarbon selectivity of the synthesis reaction increase.
  • the nano-sized catalyst prepared by the production method according to the present invention maximizes the utilization of the catalyst due to the high dispersion degree, and the interaction with the support is minimized so that the intrinsic performance of the catalyst is expressed. Thus, the productivity of the Fischer-Tropsch synthesis reaction is increased. This is improved.
  • Example 1 is a result (a) and TEM image (b) of measuring the pore size of the ordered mesoporous carbon (OMC) prepared according to Example 1.
  • Figure 2 is a concept of a nanochannel reactor according to an embodiment of the present invention, a schematic diagram (a) of producing a synthetic petroleum from the synthesis gas in the nanochannel reactor (a), the appearance of the nanochannel reactor viewed in the direction (b), after firing TEM images (c), magnifications (d) and (e), showing that cobalt oxide nanoparticles are confined within elongated pores.
  • Figure 3 (a) and (b) shows the HR TEM image of the catalyst prepared according to Example 2.
  • C) of FIG. 3 shows EDX mapping of cobalt, oxygen, and carbon (cobalt: purple, oxygen: green, carbon: yellow), and (d) to (f) of FIG. (d) shows cobalt, (e) oxygen, and (f) shows elemental analysis images of carbon.
  • FIG. 4 shows XRD analysis data of catalysts having different weights of cobalt (10 Co / CMK-3, 15 Co / CMK-3, 20 Co / CMK-3) according to Comparative Example 1 and Example 2.
  • FIG. 4 As can be seen from FIGS. 3 (c) to (f) and FIG. 4, the distribution of the element Co is similar to that of the element O and most of the nanoparticles exist as CoO.
  • FIG 5 shows the results of the measurement of temperature programmed reduction (TPR) profile (a) and H 2 uptake profile (b) for each catalyst prepared according to Comparative Example 1 and Example 2.
  • TPR temperature programmed reduction
  • FIG. 6 shows a TEM image of Co / ⁇ -Al 2 O 3 catalyst particles supported on an aluminum support, prepared according to Comparative Example 2.
  • Figure 7 shows a TEM image of 20 Co / MSU-F-C prepared in Comparative Example 3.
  • Figure 8 shows the results of measuring the change in FT activity over time for each catalyst. 10 Co / CMK-3 and 15 Co / CMK-3, whose catalytic nanoparticle size is much smaller than mesopores, were gradually inactivated. Small catalyst nanoparticles can be easily transported around and sintered due to the exothermic and lack of spatial restriction during FT synthesis.
  • Figure 10 shows the pore size distribution and surface area of CMK-3 and MSU-F-C.
  • FIG. 11 shows TEM images of (a) 20 Co / CMK-3 and (b) 20 Co / MSU-F-C after 40 hours of FT synthesis reaction.
  • the pore size distribution of the OMC thus obtained was measured in FIG. 1A and the TEM image in FIG. 1B.
  • the OMC obtained had a surface area of about 1500 m 2 / g, a pore size of about 4 nm, and a very uniform array of linear pore structures.
  • the carbon material produced using SBA-15 as a template is also referred to as CMK-3.
  • OMC (CMK-3) prepared in Preparation Example 1 was treated with 1M aqueous nitric acid solution at room temperature for about 30 minutes. After washing and drying, the nitrate cobalt precursor was made into an ethanol solution so that about 20 wt% of cobalt catalyst particles were impregnated into the OMC pores by the incipient wetness impregnation method. Because the volume of the pores is limited, two or three impregnation processes are performed, and each impregnation process is followed by a drying process. At the time of impregnation, the capillary force is used to the maximum, and when impregnation is not performed well, the OMC support is vacuum-treated as necessary, or sonication is performed at the same time.
  • the dried catalyst was calcined at 400 ° C. for 5 hours in a nitrogen atmosphere to produce cobalt oxide crystals of a size similar to or slightly smaller than that of mesoporous pores.
  • the prepared cobalt oxide crystals are shown in FIG. 2.
  • an elemental analysis image of the prepared cobalt catalyst is shown in FIG. 3. Through this, it can be seen that the cobalt oxide crystals were manufactured in a very constant size, and the arrangement was also very orderly under the influence of the OMC pores.
  • the size of the cobalt oxide crystals obtained was about 4 nm, similar to the pore size. References R. D. Jones, C. H. Bartholomew, Appl. Catal.
  • the catalyst is reduced to activate the cobalt oxide, reducing its size to about 75% as the cobalt oxide is reduced to cobalt metal. Therefore, the catalyst prepared in this example does not significantly inhibit the movement and diffusion of the reactants or products, which was confirmed by the performance verification of the catalyst thereafter.
  • a 10 wt%, 15 wt cobalt-containing CMK-3 supported catalyst was prepared using the same method as the preparation method of Example 2, except that the weight content of the cobalt metal in the final catalyst particles was less than 20 wt%.
  • the CMK-3 supported catalyst containing 10 wt% of cobalt metal was designated as 10 Co / CMK-3 and the CMK-3 supported catalyst containing 15 wt% of 15 Co / CMK-3.
  • the TPR (temperature programmed reduction) profile and the H 2 uptake profile of each catalyst were measured and shown in FIG. 5.
  • the low peak of the reduced peak is appeared at 150 °C to 350 °C
  • the high peak of the reduction peak is appeared at 350 °C to 900 °C
  • the amount of H 2 uptake was increased when the amount of cobalt loading.
  • the reduction profile was divided into two parts, the peak in the low temperature region increased while the cobalt loading amount increased, while the peak in the high temperature region decreased. This is because, when the amount of cobalt supported is large, the interaction between the support and the catalyst material is weakened, thereby increasing the reducibility.
  • a cobalt-based catalyst was prepared by supporting a cobalt precursor on a gamma-alumina support.
  • the gamma-alumina used was alumina having a pore volume of 0.5 ml / g, pore size of 9-10 nm, and a surface area of about 170 m 2 / g measured by the BET method.
  • the impregnation method was used to form Co / ⁇ -Al 2 O 3 .
  • Catalyst particles were prepared. A TEM image of the prepared catalyst particles is shown in FIG. 5. XRD analysis showed that the average size of the cobalt oxide crystals in the prepared catalyst particles was about 14.4 nm, but the size of the cobalt oxide in black was not constant. It was also confirmed that the shape was obtained irregularly.
  • the size of the resulting oxide crystal was about 14.4 nm, resulting in oxide crystals larger than the pore size.
  • the metal oxide crystals are not only generated within the pores of the support but also outside the pores. This can be seen in the TEM image of Figure 6, it can be seen that the crystals are formed in the form of agglomeration or agglomerates on the surface of the alumina support.
  • a cobalt catalyst was prepared in the same manner as in Example 2, except that MSU-F-C was used as the porous carbon material (20 Co / MSU-F-C).
  • MSU-F-C is synthesized from “MSU-F-silica”, a mesoporous silica, and is a mesocellular structured porous carbon material having a large pore of about 30 nm and a small pore of 4 to 8 nm.
  • a TEM image of the 20 Co / MSU-F-C prepared above is shown in FIG. 7. The CoO crystal size was 8.7 nm at 20 Co / MSU-F-C.
  • the nanoparticles are much smaller than the large pores, so the confinement effect is negligible. Due to the weak confinement effect and the inert properties of carbon, cobalt nanocrystals have very weak interactions with the carbon support, and the weak confinement effect and the inert properties of carbon cause agglomeration or sintering of the nanoparticles during catalyst preparation or FT synthesis.
  • a catalyst was prepared in the same manner as in Comparative Example 2, but containing 0.05 wt% of Pt as a cocatalyst component and a cobalt content of 23 wt%.
  • Table 1 shows the sizes of the catalysts prepared in Example 2, Comparative Examples 2 and 3.
  • the 20 Co / CMK-3 catalyst of the present invention has a CO conversion rate, C 5 compared to the catalyst content (15 Co / CMK-3, 10 Co / CMK-3) is less than this + Selectivity and productivity (FT activity) was found to be higher. This is because if the crystal size of the catalyst metal does not grow to a certain size, the metal crystals are easily oxidized or sintered by the water generated as the extreme heat of reaction and by-products during the reaction, thereby greatly deactivating the activity.
  • the catalyst content of less than 20% of the catalyst is also lower than the conventionally widely used alumina support catalyst (20 Co / ⁇ -Al 2 O 3 ).
  • the conventionally widely used alumina support catalyst (20 Co / ⁇ -Al 2 O 3 ).
  • 10 Co / CMK-3 and 15 Co / CMK-3 have a small amount of cobalt added compared to 20 Co / ⁇ -Al 2 O 3
  • the value of the FT activity for calculating the yield compared to the cobalt metal added is similar or higher. high.
  • 20 Co / CMK-3 of the present invention has excellent performance in all aspects such as conversion rate, C 5+ selectivity, and productivity (FT activity), compared to conventional alumina supported catalysts, and has a low metal content of catalyst (15 Co / CMK-3, 10 Co / CMK-3) also showed excellent performance in all aspects.
  • the conversion rate was higher than that of the alumina supported catalyst to which the promoter was additionally added, and the performance was superior to the catalyst supported on the MSU-FC.
  • Fischer Tropsch synthesis reaction was carried out in the same manner as in Example 3, FT activity was measured over time and shown in FIG. As a result, the 20 Co / CMK-3 of the present invention was the most excellent FT activity, and remains stable after 35 hours, it was confirmed that the reoxidation does not occur. However, the catalyst with a low metal content of the catalyst (15 Co / CMK-3, 10 Co / CMK-3) could not be stabilized, and it was confirmed that FT activity was decreased by reoxidation or sintering as the reaction time passed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a catalyst for fischer-tropsch synthesis, containing: a porous carbon material having a regular structure wherein the average diameter of a mesopore is nano-sized; and metal-containing catalyst particles wherein the average size of a pore of the porous carbon material is nano-sized, and relates to a catalyst for fischer-tropsch synthesis, wherein when a metal-containing catalyst particle is a metallic oxide, the cross sectional area of the metal-containing catalyst particle accounts for 85-95% of the cross sectional area of the mesopore, and when the metal-containing catalyst particle is a deoxidized metal, the cross sectional area of a metal-containing catalyst particle accounts for 65-95% of the cross sectional area of the mesopore. According to the present invention, the catalyst for fischer-tropsch synthesis maximizes the use of the catalyst since nano-sized metal catalyst particles are supported by a porous carbon material, which is a supporter, in a high degree of dispersion, and has improved productivity of fischer-tropsch synthesis reaction for producing synthetic oil from synthetic gas since the interaction with the supporter is minimized and the natural efficiency of the catalyst is maximally expressed.

Description

다공성 탄소 물질에 담지된 피셔 트롭시 합성용 촉매 및 그 제조방법Fischer Tropsch synthesis catalyst supported on porous carbon material and preparation method thereof
본 발명은 규칙적 구조의 다공성 탄소 물질에 균일한 나노 크기의 금속 함유 촉매입자들이 담지된 피셔 트롭시 합성용 촉매 및 그 제조방법에 관한 것이다.The present invention relates to a Fischer-Tropsch synthesis catalyst carrying a uniform nano-sized metal-containing catalyst particles in a porous carbon material having a regular structure and a method of manufacturing the same.
석유화학 공정의 주목적 중 하나는 반응촉매, 반응물의 조성, 온도, 압력 등을 최적화하여 석유화학제품을 높은 전환율과 선택도로 제조하는 것이다. 이때 상기 반응촉매로서 많은 경우 철, 코발트, 몰리브덴, 텅스텐, 비스무스, 니켈, 구리와 같은 금속촉매들이 많이 사용되는데, 로듐, 금, 백금, 루테늄, 레니움 등 귀금속 촉매가 사용되기도 한다. 이러한 금속 촉매를 알루미나, 실리카, 티타니아 등과 같은 지지체 표면에 균일하게 분산, 담지시켜 주로 사용하며, 필요하다면 촉매 성능의 향상을 위해 백금, 팔라듐과 같은 귀금속이 조촉매로서 사용될 수도 있다One of the main objectives of the petrochemical process is to produce petrochemical products with high conversion and selectivity by optimizing the reaction catalyst, reactant composition, temperature and pressure. In this case, metal catalysts such as iron, cobalt, molybdenum, tungsten, bismuth, nickel, and copper are often used as the reaction catalyst, and noble metal catalysts such as rhodium, gold, platinum, ruthenium, and rhenium may be used. These metal catalysts are mainly used by uniformly dispersing and supporting the surface of a support such as alumina, silica, titania, etc. If necessary, precious metals such as platinum and palladium may be used as promoters to improve catalyst performance.
이러한 촉매는 주로 알루미나 (γ-Al2O3, a-Al2O3 등), 실리카 (SiO2), 티타니아 (TiO2), 마그네시아 (MgO), 탄소 등의 지지체에 담지되어 사용되고 있다. 대개 이러한 지지체에 incipient wetness 법, 함침법 등이 주로 사용된다. 피셔-트롭쉬 합성반응 촉매를 예로 들면, 촉매의 전구체인 코발트 산염(Co(NO3)2·H2O 등)과 조촉매로 사용하는 Pt, Ru, Re 등의 염을 적당한 용매에 녹여 전구체의 혼합 용액을 제조하여 지지체의 기공에 함침시킨 후 건조하는 과정을 되풀이하면서 원하는 만큼의 촉매물질을 담지시킨다. 이후 건조된 촉매는 공기 혹은 비활성 기체 분위기에서 소성과정을 거쳐 금속산화물 결정이 지지체에 담지된 형태의 촉매입자를 얻는다.Such a catalyst is mainly supported on a support such as alumina (γ-Al 2 O 3, a-Al 2 O 3, etc.), silica (SiO 2 ), titania (TiO 2 ), magnesia (MgO), and carbon. Usually, incipient wetness and impregnation methods are mainly used for these supports. Taking Fischer-Tropsch synthesis catalyst as an example, cobalt acid salt (Co (NO 3 ) 2 H 2 O, etc.), which is a precursor of the catalyst, and salts such as Pt, Ru, and Re used as a cocatalyst are dissolved in a suitable solvent to form To prepare a mixed solution of the impregnated in the pores of the support and then repeat the drying process to carry as many catalyst materials as desired. The dried catalyst is then calcined in an air or inert gas atmosphere to obtain catalyst particles in which metal oxide crystals are supported on a support.
하지만 이런 통상적인 방법으로는 촉매의 결정의 크기나 형태가 균일하게 얻어지지 않으며 금속 촉매 결정과 지지체 간의 상호작용으로 활성이나 선택성이 현저히 떨어질 수 있다.However, such a conventional method does not uniformly obtain the size or shape of the crystals of the catalyst and the activity or selectivity may be remarkably degraded due to the interaction between the metal catalyst crystal and the support.
본 발명의 목적은 피셔 트롭시 합성용 촉매 성능을 개선하기 위해, 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체의 기공에 구속 효과(confinement effect)를 발휘할 수 있는 균일한 나노크기의 촉매 입자들을 제공하는 것이다.It is an object of the present invention to improve the performance of the catalyst for Fischer Tropsch synthesis, uniform nano-sized to exert confinement effect on the pores of the porous carbon material support having a regular structure of the mesopore of the nano-scale average diameter To provide catalyst particles.
본 발명의 다른 목적은 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에서 구속 효과가 없는 외부 표면에는 금속 함유 촉매 입자가 형성되어 있지 아니하면서 기공 내 구속 효과를 발휘할 수 있는 크기의 금속 함유 촉매 입자를 함유한 피셔 트롭시 합성용 촉매를 제조하는 방법을 제공하는 것이다.It is another object of the present invention to provide a pore confinement effect while the metal-containing catalyst particles are not formed on the outer surface of the porous carbon material support having a regular structure in which the mesopores have an average diameter of nanoscale without the confinement effect. It is to provide a method for producing a Fischer Tropsch synthesis catalyst containing metal-containing catalyst particles.
본 발명의 제1양태는 메조포어(mesopore)의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질; 및 상기 다공성 탄소 물질의 기공 내 담지된, 평균크기가 나노 스케일인 금속 함유 촉매입자들;을 함유하는 피셔 트롭시 합성용 촉매로서, 상기 금속 함유 촉매입자가 금속산화물인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지하고, 상기 금속 함유 촉매입자가 환원된 금속인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 65 % 내지 95%를 차지하는 것을 특징으로 하는 피셔 트롭시 합성용 촉매를 제공한다.A first aspect of the invention provides a porous carbon material of regular structure, wherein the mesopores have a mean diameter of nanoscale; And Fischer-Tropsch synthesis catalyst containing, in the pores of the porous carbon material, the average size of the nano-scale, containing, when the metal-containing catalyst particles are metal oxides, containing metal in the mesopores The cross-sectional area of the catalyst particles occupies 85% to 95% of the mesopore cross-sectional area, and when the metal-containing catalyst particles are reduced metals, the cross-sectional area of the metal-containing catalyst particles in the mesopore occupies 65% to 95% of the mesopore cross-sectional area. The present invention provides a catalyst for Fischer Tropsch synthesis.
본 발명의 제2양태는 1) 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계; 2) 상기 함침된 지지체를 건조하는 단계; 3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및 4) 상기 건조된 지지체를 소성하는 단계를 포함하는, 본 발명의 제1양태에 따른 피셔 트롭시 합성용 촉매의 제조방법을 제공한다.The second aspect of the present invention comprises the steps of: 1) impregnating a catalyst precursor solution into a porous carbon material support having a regular structure having an average diameter of mesopores; 2) drying the impregnated support; 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And 4) provides a method for producing a Fischer Tropsch synthesis catalyst according to the first aspect of the present invention, comprising the step of firing the dried support.
본 발명의 제3양태는 메조포어 단면적의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에서, 기공 구속 효과(pore confinement effect)가 없는 외부 표면에는 금속 함유 촉매 입자가 형성되어 있지 아니하면서 기공 내 구속 효과를 발휘할 수 있는 크기의 금속 함유 촉매 입자를 함유한 피셔 트롭시 합성용 촉매를 제조하는 방법으로서, 1) 상기 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계; 2) 상기 함침된 지지체를 건조하는 단계; 3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및 4) 상기 건조된 지지체를 소성하는 단계를 포함하되, 단계 1)에서, (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 함침이 되지 않을 정도로만 친수성 처리를 한 다공성 탄소 물질 지지체를 사용하는 것을 특징으로 하는 촉매 제조방법을 제공한다.The third aspect of the present invention is a porous carbon material support having a regular structure having an average diameter of mesopore cross-sectional area, wherein the pores are free of metal-containing catalyst particles on the outer surface without pore confinement effect. A method for preparing a Fischer Tropsch synthesis catalyst containing metal-containing catalyst particles having a size that can exert a restraining effect, comprising: 1) impregnating a catalyst precursor solution on the porous carbon material support; 2) drying the impregnated support; 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And 4) calcining the dried support, wherein in step 1) (i) using a porous carbon material support that has not been hydrophilized to prevent impregnation of the catalyst precursor solution on the outer surface, or (ii) Provided is a method for preparing a catalyst comprising using a porous carbon material support having a hydrophilic treatment only to the extent that the catalyst precursor solution is not impregnated on an outer surface of the porous carbon material support.
본 발명의 제4양태는, 제3양태의 제조방법에 따라 제조된 피셔 트롭시 합성용 촉매를 제공한다.The fourth aspect of the present invention provides a catalyst for Fischer Tropsch synthesis, prepared according to the process of the third aspect.
본 발명의 제4양태는 피셔 트롭시 합성반응을 이용하여 합성가스로부터 액체 탄화수소를 제조하는 방법에 있어서, 제1양태의 피셔-트롭시 합성용 촉매 또는 제3양태의 제조방법에 따라 제조된 피셔 트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 i) 단계, 상기 촉매를 환원시켜 피셔-트롭시 합성용 촉매로 활성화시키는 ii) 단계, 및 상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 iii) 단계를 포함하는 것이 특징인 제조방법을 제공한다.A fourth aspect of the present invention is a method for producing a liquid hydrocarbon from syngas using a Fischer Tropsch synthesis reaction, Fischer-Tropsch synthesis catalyst of the first aspect or the fischer prepared according to the manufacturing method of the third aspect I) applying the Tropsch synthesis catalyst to a Fischer-Tropsch synthesis reactor, ii) reducing the catalyst to activate the Fischer-Tropsch synthesis catalyst, and the activated Fischer-Tropsch synthesis catalyst And iii) performing a Fischer-Tropsch synthesis reaction.
이하 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.
CMK-3과 같은 규칙적 구조의 다공성 탄소물질 지지체는 나노 채널과 같은 확장된 기공 구조를 가지고 있어서, 기공 안에 촉매 나노입자가 담지되면 나노채널 반응기 역할을 할 수 있다. 본 발명은 나노 스케일의 규칙적인 기공 구조를 가진 다공성 탄소물질 지지체의 기공 구속 효과와 소수성 특성을 이용하여 성능이 우수한 피셔 트롭시 합성용 촉매를 제공하고자 한다.The porous carbon material support having a regular structure such as CMK-3 has an expanded pore structure such as nanochannels, and thus may serve as a nanochannel reactor when catalyst nanoparticles are loaded in the pores. The present invention is to provide a Fischer Tropsch synthesis catalyst having excellent performance by using the pore restraint effect and hydrophobic properties of the porous carbon material support having a regular pore structure of the nano-scale.
탄소물질은 촉매 활성물질에 대해 다소 불활성인 것으로 알려져 있다. 촉매 물질과 지지체 물질 사이에 강한 상호작용은 금속을 산화시킬 수 있고 이는 촉매의 활성 및 선택도를 손실시킨다. Carbon materials are known to be somewhat inert to catalytically active materials. Strong interactions between the catalyst material and the support material can oxidize the metal, which leads to a loss of activity and selectivity of the catalyst.
탄소 지지체는 피셔-트롭시 합성용 촉매의 성능을 강화하고, 부산물인 물을 쉽게 탈착시키고, 반응열을 분산시킬 수 있고, 높은 표면적으로 인해 촉매 나노입자들을 분산시키는데 일조할 수 있고(도 10), 활성점(active sites)의 개수를 증가시킬 수 있다. 특히, 규칙적 구조의 메조포러스 탄소물질(ordered mesoporous carbons, OMCs)은, 활성탄소, 흑연과 같은 다른 다공성 탄소 보다, 더 높은 비표면적, 잘 발달된 상호연결된 기공들, 기공 크기를 조절할 수 있다는 점에서 우수하다.The carbon support can enhance the performance of the Fischer-Tropsch synthesis catalyst, easily desorb byproduct water, dissipate heat of reaction, and help disperse the catalyst nanoparticles due to the high surface area (FIG. 10), The number of active sites can be increased. In particular, ordered mesoporous carbons (OMCs) have a higher specific surface area, better developed interconnected pores and pore sizes than other porous carbons such as activated carbon and graphite. great.
본 발명은 촉매와 지지체와의 상호작용을 최소화하기 위해 다공성 탄소물질을 지지체로 사용하고, 규칙적 구조의 다공성 탄소물질 지지체의 기공(메조포어)에 촉매 전구체 용액 함침 및 건조를 2회 이상 반복하여 금속 함유 촉매입자들을 형성시킴으로써, 다공성 탄소물질의 기공 내 금속 함유 촉매입자들을 서로 동일 또는 유사한 나노 크기로, 즉 균일한 나노크기로 형성시키고, 기공 내 금속 함유 촉매입자들의 입자크기를 일정한 크기 이상으로 성장시키는 것이 특징이다.The present invention uses a porous carbon material as a support to minimize the interaction between the catalyst and the support, and impregnated and dried the catalyst precursor solution in the pores (mesopores) of the porous carbon material support having a regular structure by repeating the metal at least two times. By forming the containing catalyst particles, the metal-containing catalyst particles in the pores of the porous carbon material are formed at the same or similar nano size, i.e., uniform nano size, and the particle size of the metal-containing catalyst particles in the pores is grown to a certain size or more. It is characteristic to let.
메조포어 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질의 기공에 이보다 작은 크기의 금속 함유 촉매입자들을 형성시키는 경우라고 하더라도, 금속산화물 형태의 금속 함유 촉매입자들을 기공 단면적 대비 일정한 크기 이상으로 성장시켜야, 금속산화물로부터 환원되어 일부 그 부피가 작아진 금속 형태의 금속 함유 촉매입자들도 일정한 크기 이상을 유지하여, 기공 구속 효과에 의해 금속 함유 촉매입자가 agglomeration 또는 sintering되지 않고 피셔 트롭시 반응시 극심한 반응열 및 부산물로 생성되는 물에 대항하여 그 성능을 유지할 수 있다(도 8). 즉, 기공 단면적 대비 일정 크기 이상을 갖지 아니하는 금속 함유 촉매입자들은 피셔 트롭시 반응시 극심한 반응열 및 부산물로 생성되는 물에 의해 산화되거나 소결되어 활성이 떨어진다.Even when the metal-containing catalyst particles having a smaller size are formed in the pores of a regular structure of porous carbon material having a mesopore average diameter of nanoscale, the metal oxide-containing catalyst particles in the form of metal oxides must be grown to a certain size or larger than the pore cross-sectional area. In addition, metal-containing catalyst particles in the form of metals reduced from metal oxides and smaller in volume are also maintained at a predetermined size or more, so that the reaction heat of Fischer Tropsch during the reaction of Fischer-Tropsch is not agglomeration or sintering due to the pore confinement effect. And maintain its performance against water produced as a by-product (FIG. 8). That is, the metal-containing catalyst particles not having a predetermined size or more relative to the pore cross-sectional area are oxidized or sintered by water generated as a by-product of extreme reaction heat and by-products during the Fischer Tropsch reaction, thereby decreasing activity.
상기 금속 함유 촉매입자가 금속산화물인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%, 바람직하게는 90% 내지 95%를 차지하는 것이 좋다. When the metal-containing catalyst particles are metal oxides, the cross-sectional area of the metal-containing catalyst particles in the mesopores is preferably 85% to 95%, preferably 90% to 95% of the mesopore cross-sectional area.
또한, 상기 금속 함유 촉매입자가 환원된 금속인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 65 % 내지 95%, 바람직하게는 70 % 내지 95%, 더욱 바람직하게는 80 % 내지 95%, 더더욱 바람직하게는 85% 내지 90%를 차지하는 것이 좋다.In addition, when the metal-containing catalyst particles are reduced metals, the cross-sectional area of the metal-containing catalyst particles in the mesopores is 65% to 95%, preferably 70% to 95%, more preferably 80% to 95%, even more preferably 85% to 90%.
본 발명에 따라 CMK-3과 같은 규칙적 구조의 다공성 탄소물질 지지체에 금속산화물인 금속 함유 촉매입자가 기공 단면적의 65 % 내지 95%를 차지하고 있으면, 상기 금속 산화물이 환원되어도 구속된 금속 나노입자들을 구비한 나노채널 반응기 구조를 유지하고 , FT 합성 이후에도 결정은 sintering되지 않는다(도 11).According to the present invention, when the metal-containing catalyst particles, which are metal oxides, occupy 65% to 95% of the pore cross-sectional area on a porous carbon material support having a regular structure such as CMK-3, the metal oxide particles are restrained even when the metal oxide is reduced. One nanochannel reactor structure is maintained and crystals are not sintering even after FT synthesis (FIG. 11).
본 발명에서 금속 함유 촉매입자는 피셔 트롭시 합성용 촉매 100중량%를 기준으로 금속 함량 15 중량 % 초과, 바람직하게는 20 중량% 이상, 바람직하게는 50 중량% 이하일 수 있다.Metal-containing catalyst particles in the present invention may be more than 15% by weight, preferably 20% by weight or more, preferably 50% by weight or less based on 100% by weight of Fischer Tropsch synthesis catalyst.
한편, 본 발명자들은 기공(메조포어) 단면적의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체는 화학적 상호작용이 작고, 다공성 탄소 물질 지지체의 외부표면에는 기공 구속 효과도 없어서, 다공성 탄소 물질 지지체의 외부표면에 담지된 촉매 결정은 agglomeration 또는 sintering에 매우 취약하며, 심각한 경우 FT 합성 반응 중에 탄소 침적(carbon deposition)으로 인해 금속 촉매 결정이 지지체 외부로 떨어져 나갈 수도 있다는 것을 발견하였다. 이러한 발견에 기초하여, 본 발명은 기공 내에는 기공 구속 효과를 발휘할 수 있는 크기의 금속 함유 촉매 입자를 함유하면서, 다공성 탄소 물질 지지체의 외부 표면에는 금속 함유 촉매 입자가 거의 형성되지 않도록 피셔 트롭시 합성용 촉매를 제공하는 것이 또 다른 특징이다.On the other hand, the inventors of the present invention suggest that the porous carbon material support having a regular structure in which the average diameter of the pore (mesopore) cross-sectional area is nanoscale has small chemical interaction, and there is no pore restraining effect on the outer surface of the porous carbon material support. The catalyst crystals supported on the outer surface of are found to be very susceptible to agglomeration or sintering and, in severe cases, metal catalyst crystals may fall out of the support due to carbon deposition during the FT synthesis reaction. Based on these findings, the present invention provides Fischer Tropsch synthesis so that the pores contain metal-containing catalyst particles of a size capable of exerting a pore confinement effect, while almost no metal-containing catalyst particles are formed on the outer surface of the porous carbon material support. It is another feature to provide a catalyst for the process.
따라서, 본 발명의 피셔 트롭시 합성용 촉매는 기공(메조포어)의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체의 기공 내부에 주로 금속 함유 촉매입자들이 담지되어, 금속 함유 촉매입자들이 지지체와의 상호작용이 최소화되며 높은 분산도를 가질 수 있다. X선 회절법에 의해 측정한 금속 결정의 분산도는 15% 이상이며, 더욱 바람직하게는 25% 이상일 수 있다. 기존 알루미나 지지체 등에 금속 함유 촉매입자들을 담지시키는 경우, 금속 산화물의 결정 크기가 일정하지 않으며, 모양이 불규칙하게 생성되고, 고르게 분산되지 않는 문제점이 있다.Thus, the Fischer Tropsch synthesis catalyst of the present invention is mainly supported by the metal-containing catalyst particles in the pores of the porous carbon material support having a regular structure of the average diameter of the pores (mesopores), the metal-containing catalyst particles are supported The interaction with is minimized and can have a high degree of dispersion. The dispersion degree of the metal crystal measured by the X-ray diffraction method is 15% or more, more preferably 25% or more. When supporting the metal-containing catalyst particles in the existing alumina support or the like, there is a problem that the crystal size of the metal oxide is not constant, irregular shapes are generated, and evenly dispersed.
특히, 본 발명의 피셔 트롭시 합성용 촉매는 이의 제조방법에서, 다공성 탄소 물질 지지체에 촉매 전구체 용액 함침시 (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 화학적 함침이 되지 않을 정도로 친수성 처리를 한 다공성 탄소 물질 지지체를 사용함으로써, 이로 인해 기공 구속 효과가 없어서 agglomeration 또는 sintering에 취약한 다공성 탄소 물질 지지체의 외부 표면에는 금속 함유 촉매 입자가 거의 형성되지 않을 수 있다.In particular, the Fischer Tropsch synthesis catalyst of the present invention, in the method for producing the catalyst precursor solution impregnated with the porous carbon material support (i) the porous carbon material support is not hydrophilic treatment so that the catalyst precursor solution is not impregnated on the outer surface Or (ii) using a porous carbon material support that has been hydrophilically treated to the extent that the catalyst precursor solution is not chemically impregnated on the outer surface of the porous carbon material support, thereby resulting in no pore restraint effect and thus susceptible to agglomeration or sintering. Almost no metal-containing catalyst particles may be formed on the outer surface of the carbon material support.
본 발명에서, 다공성 탄소 물질 지지체의 외부 표면에 금속 함유 촉매 입자가 형성되어 있지 아니하였다는 의미는, 금속 함유 촉매 입자가 실질적으로 형성되어 있지 아니하였다는 의미로, 그 크기가 작아 X선 회절법에 의해 측정한 금속 결정의 분산도가 15% 이상, 바람직하게는 25% 이상을 유지할 수 있는 한, 비록 다공성 탄소 물질 지지체의 외부 표면에 금속 함유 촉매 입자가 일부 형성되더라도 실질적으로 외부 표면에 금속 함유 촉매 입자가 형성되어 있지 아니하였다고 볼 수 있다.In the present invention, the fact that the metal-containing catalyst particles were not formed on the outer surface of the porous carbon material support means that the metal-containing catalyst particles were not substantially formed. As long as the dispersity of the metal crystals measured by can maintain 15% or more, preferably 25% or more, the metal surface is substantially contained on the outer surface even though some metal-containing catalyst particles are formed on the outer surface of the porous carbon material support. It can be seen that no catalyst particles were formed.
본 발명에서, 금속 함유 촉매입자는 금속 산화물 형태일 수도 있고, 이로부터 환원된 금속 형태일 수도 있다.In the present invention, the metal-containing catalyst particles may be in the form of metal oxides, or may be in the form of reduced metals therefrom.
상기 금속 함유 촉매입자는 코발트(Co), 니켈(Ni), 구리(Cu), 철(Fe), 아연(Zn), 루테늄(Ru), 몰리브덴(Mo), 텅스텐(W), 비스무스(Bi), 레니윰(Re), 로듐(Rh), 팔라듐(Pd), 은(Ag), 백금(Pt), 이의 조합으로 이루어진 군으로부터 선택되는 금속을 함유할 수 있다.  The metal-containing catalyst particles are cobalt (Co), nickel (Ni), copper (Cu), iron (Fe), zinc (Zn), ruthenium (Ru), molybdenum (Mo), tungsten (W), bismuth (Bi) It may contain a metal selected from the group consisting of reniche (Re), rhodium (Rh), palladium (Pd), silver (Ag), platinum (Pt), combinations thereof.
본 발명에서 금속 함유 촉매입자들은 평균크기가 5 nm 이하인 것이 바람직하다. 상기 금속 함유 촉매입자들의 크기는 다공성 탄소물질의 기공 크기와 동일 또는 유사하며, 금속 산화물 형태의 금속 함유 촉매입자들은 환원 과정을 거쳐 금속 입자가 되면서, 예컨대 본래 크기의 70 내지 90% 수준으로, 작아질 수 있다. 이전 연구에 따르면 촉매활성 측면에서 촉매 결정의 적절한 크기는 약 6 ~ 8nm이고, 6nm 미만의 금속 결정을 갖는 촉매는 일반적으로 낮은 C5+ 선택도 및 높은 메탄 선택도를 가지며, 피셔-트롭시 합성동안 H2O 부산물이 작은 Co0 나노입자들을 재산화시키는 원인이 되고 재산화된 CoO 나노입자들은 환원되기 어렵다고 알려져 있다. 그러나, 실시예 2의 20 Co/CMK-3의 촉매활성은 정상 상태(steady state)에 이르러 20시간 후에도 거의 일정하게 유지되었으며, 이는 재산화가 발생하지 않았다는 것을 의미한다(도 8).In the present invention, the metal-containing catalyst particles are preferably 5 nm or less in average size. The size of the metal-containing catalyst particles is the same as or similar to the pore size of the porous carbon material, and the metal-containing catalyst particles in the form of metal oxides are reduced to become metal particles, for example, small to 70 to 90% of the original size. Can lose. Previous studies have shown that, in terms of catalytic activity, the appropriate size of catalyst crystals is about 6 to 8 nm, and catalysts with metal crystals of less than 6 nm generally have low C 5+ selectivity and high methane selectivity, and Fischer-Tropsch synthesis H 2 O by-products cause reoxidation of small Co 0 nanoparticles, and reoxidized CoO nanoparticles are known to be difficult to reduce. However, the catalytic activity of 20 Co / CMK-3 in Example 2 reached a steady state and remained almost constant after 20 hours, indicating that reoxidation did not occur (FIG. 8).
상기 다공성 탄소 물질은 메조포러스 탄소 물질일 수 있다. 다공성 물질은 물질 기공(pore) 크기에 따라 마이크로포러스(microporous), 메조포러스(mesoporous) 물질로 나뉘는데, 통상 기공 크기가 2 nm 이하인 경우 마이크로포러스, 기공 크기가 2 내지 50 nm 사이인 경우를 메조포러스라고 한다. 본 발명의 다공성 탄소 물질은 기공의 크기에 제한되지 아니하나, 나노수준의 금속 입자의 제조를 위해 메조포러스 탄소 물질인 것이 바람직하다. 메조포러스 탄소 물질의 기공 크기는 10 nm 미만인 것이 바람직하다.The porous carbon material may be a mesoporous carbon material. Porous materials are divided into microporous and mesoporous materials according to the pore size of the material. In general, when the pore size is 2 nm or less, the microporous and the pore size are between 2 and 50 nm. It is called. The porous carbon material of the present invention is not limited to the pore size, but is preferably a mesoporous carbon material for the production of nano-level metal particles. The pore size of the mesoporous carbon material is preferably less than 10 nm.
본 발명에서, 상기 다공성 물질은 탄소나노튜브, CMK-3, CMK-8, MSU-F-C, 활성탄(acticated carbon), 흑연 섬유, 활성 탄소 섬유 또는 이의 혼합물일 수 있으나 이에 제한되지 않는다. 본 발명에서 사용되는 규칙적 구조의 다공성 탄소 물질은 직선형 기공 구조체의 배열이 균일한 것일 수 있다. 또한, 기공이 연결되어 물질전달 성능을 높일 수 있는 것이 바람직하다.In the present invention, the porous material may be, but is not limited to, carbon nanotubes, CMK-3, CMK-8, MSU-F-C, activated carbon, graphite fibers, activated carbon fibers or mixtures thereof. The porous carbon material having a regular structure used in the present invention may have a uniform array of linear pore structures. In addition, the pores are preferably connected to increase the material transfer performance.
도 1에 도시된 바와 같이, CMK-3는 규칙적인 채널을 가지고 있으며, 기공의 평균 크기는 약 4nm이고, Brunauer.Emmett.Teller (BET) 표면적은 약 1500 m2 g-1이다. CMK-3에서, 채널 형태의 기공 구조는 서로 연결된 탄소 막대들(rods)에 의해 형성되어 있고, 이들 탄소 막대의 측면에는 개방형 슬릿들(slits)이 있다.As shown in FIG. 1, CMK-3 has regular channels, the average pore size is about 4 nm, and the Brunauer. Emmmett. Teller (BET) surface area is about 1500 m 2 g −1 . In CMK-3, the pore structure in the form of channels is formed by carbon rods connected to each other, and there are open slits on the sides of these carbon rods.
본 발명에서 사용되는 다공성 탄소 물질은, a) 당류, 탄화수소류 또는 알코올류인 탄소 전구체를 메조포러스한 실리카의 기공에 채우고 소성하는 단계; b) 상기 단계 a)의 결과 물질을 산성 또는 염기성 물질을 사용하여 실리카 구조를 녹이는 단계; c) 상기 단계 b)의 결과 물질을 산성물질에 침지시켜 처리한 후 건조하는 단계;를 포함하는 방법으로 제조될 수 있다.The porous carbon material used in the present invention comprises the steps of: a) filling a carbon precursor, which is a saccharide, hydrocarbon or alcohol, into pores of mesoporous silica and calcining; b) dissolving the silica structure using an acidic or basic material as the resultant material of step a); c) treating the resultant material of step b) by immersing it in an acidic material, followed by drying.
상기 당류(saccharide)는 탄수화물 중에서 비교적 분자가 작고, 물에 녹아서 단맛이 나는 화합물을 총칭한다. 당의 종류로는 포도당, 과당, 갈락토스, 글루코스, 수크로스 등이 있다. 본 발명에서 탄소전구체로 글루코스, 수크로스, furfuryl alcohol 등을 사용할 수 있으나 이에 제한되지 않는다. The saccharide refers to a compound having a relatively small molecule in carbohydrate and having a sweet taste in water. Examples of sugars include glucose, fructose, galactose, glucose and sucrose. In the present invention, a carbon precursor may include glucose, sucrose, furfuryl alcohol, and the like, but is not limited thereto.
상기 단계 a)에서 사용되는 메조포러스한 실리카 물질의 종류로는 SBA-15, SBA-3, MSU-H, MCM-41, KIT-6, MCM-48, SBA-16, MSU-F 등이 있으나, 이에 제한되지 않는다. 규칙적인 미세 다공성 구조를 가지는 실리카 물질이라면, 무엇이든 사용 가능하다. 상기 SBA-15, SBA-3, MSU-H 및 MCM-41 은 모두 긴 원통 형태의 다발이 모여 있는 구조를 가지고, 후에 원통 내부에 탄소 전구체가 함침된다. Examples of mesoporous silica materials used in step a) include SBA-15, SBA-3, MSU-H, MCM-41, KIT-6, MCM-48, SBA-16, MSU-F, and the like. This is not restrictive. Any silica material having a regular microporous structure can be used. The SBA-15, SBA-3, MSU-H and MCM-41 all have a structure in which bundles of long cylindrical shapes are gathered, and then the carbon precursor is impregnated into the cylinder.
상기 단계 a)에서 탄소 전구체의 메조포러스한 실리카 내부로의 함침은, 탄소 전구체를 수용액으로 만든 후 함침과 건조를 반복하여 수행할 수 있다. 이때 탄소 전구체를 수용액으로 제조한 후 함침시키며, 수용액에는 황산 등 산촉매를 첨가할 수 있다. 탄소 전구체가 충분히 함침될 때까지 함침과 건조를 반복하며, 건조가 완성되면 소성하여 실리카-탄소 복합체를 완성할 수 있다. The impregnation of the carbon precursor into the mesoporous silica in step a) may be performed by repeatedly impregnation and drying the carbon precursor into an aqueous solution. At this time, the carbon precursor is prepared in an aqueous solution and then impregnated with an acid catalyst such as sulfuric acid. Impregnation and drying are repeated until the carbon precursor is sufficiently impregnated, and when the drying is completed, firing may be completed to complete the silica-carbon composite.
상기 단계 b)는 산성물질 또는 염기성 물질로 인해, 실리카-탄소 복합체에서 실리카가 제거되고, 탄소 구조만 남게 된다. 이렇게 제조된 규칙적 구조의 탄소 지지체는 실리카의 구조와 레플리카 구조를 가지므로, 사용된 메조포러스 실리카와 대등한 표면적을 가지며, 실리카로 채워졌던 공간이 기공이 된다.In step b), due to the acidic or basic substance, the silica is removed from the silica-carbon composite, leaving only the carbon structure. Since the carbon support having the regular structure thus prepared has a structure of silica and a replica, it has a surface area comparable to that of the mesoporous silica used, and the space filled with silica becomes a pore.
이때 산성 물질의 비제한적인 예로는 HF이 있고, 염기성 물질의 비제한적인 예로는 NaOH이 있다.Non-limiting examples of acidic materials are HF, and non-limiting examples of basic materials are NaOH.
상기 단계 c)는 상기 단계 b)의 결과 물질을 산성물질로 처리하고 건조하는 단계이다. 이때 산성물질은 강산성 용액인 질산, 황산, 염산 등이 모두 가능하며, 수용액형태로 사용하고, 농도는 0.01 내지 1 M 인 것이 바람직하다. 대표적으로는 질산 수용액을 사용할 수 있다, 상기 처리는 상온에서 지지체를 산성 수용액에 담구는 방법으로 수행될 수 있으며, 상기 처리를 통해 지지체는 이후 촉매전구체의 함침이 더 용이해진다.Step c) is a step of treating the resulting material of step b) with an acidic material and drying. At this time, the acidic material may be all a strong acid solution nitric acid, sulfuric acid, hydrochloric acid, etc., it is used in the form of an aqueous solution, the concentration is preferably 0.01 to 1 M. Typically, an aqueous solution of nitric acid may be used. The treatment may be performed by dipping the support in an acidic aqueous solution at room temperature, through which the support may be more easily impregnated with the catalyst precursor.
한편, 본 발명에 따른 피셔 트롭시 합성용 촉매의 제조방법은 On the other hand, the manufacturing method of the Fischer Tropsch synthesis catalyst according to the present invention
1) 메조포어 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계;1) impregnating the catalyst precursor solution into a porous carbon material support having a regular structure having a mesopore average diameter of nanoscale;
2) 상기 함침된 지지체를 건조하는 단계;2) drying the impregnated support;
3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And
4) 상기 건조된 지지체를 소성하는 단계를 포함한다.4) calcining the dried support.
다공성 탄소 물질 지지체 내 기공은 나노채널 형태일 수 있고, 단계 1)에서, 나노채널 형태의 기공 내에 촉매 전구체 용액의 함침은 나노채널의 모세관 힘 또는 나노채널 내 감압 또는 물리적 힘(예, sonication)을 통해 수행될 수 있다.The pores in the porous carbon material support may be in the form of nanochannels, and in step 1), impregnation of the catalyst precursor solution into the pores in the form of nanochannels results in capillary forces of the nanochannels or decompression or physical forces (eg, sonication) in the nanochannels. It can be done through.
단계 1)에서, (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 화학적 함침이 되지 않을 정도로 친수성 처리를 한 다공성 탄소 물질 지지체를 사용하는 것이 바람직하다. 이로 인해 기공 구속 효과가 없는 다공성 탄소 물질 지지체의 외부 표면에는 금속 함유 촉매 입자가 거의 형성되지 않는다. (ii)의 친수성 처리의 비제한 적인 예는 0.01M 내지 1M의 강산 수용액으로 다공성 탄소 물질 지지체를 처리하는 것이다. 예컨대 1M의 질산 수용액으로 다공성 탄소 물질 지지체를 처리하면, 메조기공 내부에 촉매 전구체 용액이 함침될 수 있기에 충분한 소량의 친수성 기능기들을 형성시키나, 대부분의 표면은 소수성을 유지한다.In step 1), (i) use a porous carbon material support that is not hydrophilic to prevent impregnation of the catalyst precursor solution on the outer surface, or (ii) chemical impregnation of the catalyst precursor solution on the outer surface of the porous carbon material support. Preference is given to using porous carbon material supports which have been hydrophilized to such an extent that they are not. As a result, almost no metal-containing catalyst particles are formed on the outer surface of the porous carbon material support having no pore blocking effect. A non-limiting example of the hydrophilic treatment of (ii) is the treatment of the porous carbon material support with an aqueous 0.01 M to 1 M strong acid solution. Treatment of the porous carbon material support with, for example, 1M aqueous solution of nitric acid forms a small amount of hydrophilic functional groups sufficient to impregnate the catalyst precursor solution inside the mesopores, but most surfaces remain hydrophobic.
촉매 전구체는 코발트(Co), 니켈(Ni), 구리(Cu), 철(Fe), 아연(Zn), 루테늄(Ru), 몰리브덴(Mo), 텅스텐(W), 비스무스(Bi), 레니윰(Re), 로듐(Rh), 팔라듐(Pd), 은(Ag) 및 백금(Pt)으로 이루어진 군으로부터 선택되는 하나 이상의 금속을 함유하는 금속함유 전구체일 수 있으며, 상기 금속함유 전구체는 수용성 전구체로 금속의 산화물염, 옥시수산화물염, 염화물염, 탄산염, 초산염, 시트르산염, 니토로실질산염, 질산염. 수산화염. 옥살산염, 카르복시산염, 황산염 등, 지용성 전구체로 탄화수소가 포함된 알콕시 전구체. 암모늄 전구체 등을 포함하지만 이에 제한되지 않는다. The catalyst precursors are cobalt (Co), nickel (Ni), copper (Cu), iron (Fe), zinc (Zn), ruthenium (Ru), molybdenum (Mo), tungsten (W), bismuth (Bi), reniche (Re), rhodium (Rh), palladium (Pd), silver (Ag) and platinum (Pt) may be a metal-containing precursor containing at least one metal selected from the group consisting of, the metal-containing precursor is a water-soluble precursor Oxide salts, oxyhydroxide salts, chloride salts, carbonates, acetates, citrates, nitosilonitrates, nitrates of metals. Hydroxide salts. Alkoxy precursors containing hydrocarbons as soluble precursors, such as oxalate, carboxylate, and sulfate. Ammonium precursors and the like.
상기 함침은 촉매 전구체를 용액으로 만들어, 초기 습식 함침법(incipient wetness impregnation)으로 수행될 수 있다. 이때, 촉매 전구체 용액의 용매로는 물 또는 알코올을 사용할 수 있다. 초기 습식 함침법(incipient wetness impregnation)은 가장 널리 사용되는 함침법으로서 촉매 지지체의 세공 부피에 해당 하는 함침 용액을 담지하여 제조하며, 방법이 간단하다.The impregnation may be carried out by incipient wetness impregnation, making the catalyst precursor a solution. In this case, water or alcohol may be used as the solvent of the catalyst precursor solution. Incipient wetness impregnation is the most widely used impregnation method and is prepared by supporting an impregnation solution corresponding to the pore volume of the catalyst support.
상기 함침시 기공의 부피가 제한되어 있으므로, 충분히 함침 될 때까지 2번 또는 3번의 함침을 반복할 수 있으며 함침마다 건조 과정을 거친다. 함침시, 모세관 힘을 최대한 이용하며, 함침이 잘 되지 않는 경우는 지지체를 진공 처리 후 사용하거나, 함침시 sonication을 병행하는 방법을 사용할 수도 있다. Since the volume of the pores during the impregnation is limited, the impregnation may be repeated two or three times until the impregnation is sufficiently impregnated and goes through a drying process for each impregnation. When impregnated, capillary force is used to the maximum, and when impregnation is difficult, the support may be used after vacuum treatment, or sonication may be used in combination.
단계 2)에서 건조는 110 ~ 150℃에서 5 ~ 24시간 동안 이루어질 수 있다.Drying in step 2) may be performed for 5 to 24 hours at 110 ~ 150 ℃.
상기 단계 1) 및 2)는 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 예컨대 최종 피셔 트롭시 합성용 촉매(100중량% 기준) 내 촉매 금속의 함량이 20 중량% 이상이 될 때까지 반복한다. Steps 1) and 2) above are carried out until the cross-sectional area of the metal-containing catalyst particles in the mesopores accounts for 85% to 95% of the mesopore cross-sectional area, e.g. Repeat until the content is at least 20% by weight.
건조된 지지체를 소성하는 단계 4)는 질소, 헬륨, 아르곤 등과 같은 불활성 기체 분위기 하에서 수행할 수 있다. 상기 소성을 통해 메조포러스 기공 사이즈와 비슷하거나 조금 작은 사이즈의 금속 함유 촉매입자들이 생성된다. 촉매입자들은 질서정연한 메조포러스 구조 안에 구속되므로 지지체의 구속 효과로 인해, 촉매입자의 성장이 억제되어 사이즈가 일정하고 균일한 분포로 생성된다. 일 실시예에서 촉매의 사이즈는 약 4nm, 분산도는 30.1% 로 기존 촉매에 비하여 현저하게 개선된 분산도를 나타내었다. Firing the dried support may be carried out under an inert gas atmosphere such as nitrogen, helium, argon, and the like. The firing produces metal-containing catalyst particles of a size similar to or slightly smaller than the mesoporous pore size. Since the catalyst particles are constrained in an orderly mesoporous structure, due to the restraining effect of the support, the growth of the catalyst particles is suppressed to produce a uniform and uniform distribution in size. In one embodiment, the size of the catalyst was about 4 nm and the dispersity was 30.1%, which shows a remarkably improved dispersity compared to the existing catalyst.
나아가, 본 발명은 피셔 트롭시 합성반응을 이용하여 합성가스로부터 액체 탄화수소를 제조하는 방법을 제공하며, 상기 액체 탄화수소 제조 방법은 i) 본 발명에 따른 피셔 트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 단계; ii) 상기 촉매를 환원시켜 활성화시키는 단계; 및 iii) 상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 단계를 포함한다.Furthermore, the present invention provides a method for preparing a liquid hydrocarbon from syngas using the Fischer Tropsch synthesis reaction, the liquid hydrocarbon production method comprising: i) Fischer-Tropsch synthesis catalyst for Fischer Tropsch synthesis according to the present invention Applying to the reactor; ii) reducing the catalyst to activate it; And iii) performing a Fischer-Tropsch synthesis reaction with the activated Fischer-Tropsch synthesis catalyst.
본 발명에 따른 액체 탄화수소 제조방법은 적어도 iii) 단계 이전에, 천연가스를 개질하여 합성가스(CO/H2)를 준비할 수 있다. In the liquid hydrocarbon production method according to the present invention, at least before step iii), the natural gas may be reformed to prepare syngas (CO / H 2 ).
한편, 피셔-트롭시 합성 반응기는 고정층, 유동층 또는 슬러리 반응기일 수 있다. On the other hand, the Fischer-Tropsch synthesis reactor may be a fixed bed, fluidized bed, or slurry reactor.
본 발명에서, 상기 ii) 단계는 피셔-트롭시 합성용 촉매를 환원시키는 단계이다. 상기 환원과정에서, 금속 산화물 형태의 촉매 입자들이 금속으로 환원되면서 그 입자 크기가 예컨대 75% 수준으로 작아질 수 있는데, 이로 인해, 피셔-트롭시 합성반응시 반응물이나 생성물의 이동과 확산을 저해하지 않게 된다. In the present invention, step ii) is a step of reducing the Fischer-Tropsch synthesis catalyst. In the reduction process, the catalyst particles in the form of metal oxides can be reduced to metals and the particle size thereof can be reduced to, for example, 75%, thereby preventing the movement and diffusion of reactants or products during the Fischer-Tropsch synthesis reaction. Will not.
피셔 트롭시 합성 반응은 수소/일산화탄소 반응비를 1.5 내지 2.5 몰비로 유지하면서 수행하는 것이 바람직하다. iii) 단계는 200 내지 350℃, 반응 압력 5 내지 30kg/cm3, 공간속도 1000 - 10000 h-1 에서 수행될 수 있다.The Fischer Tropsch synthesis reaction is preferably carried out while maintaining the hydrogen / carbon monoxide reaction ratio at 1.5 to 2.5 molar ratio. iii) step may be carried out at 200 to 350 ℃, reaction pressure 5 to 30kg / cm 3 , space velocity 1000-10000 h -1 .
또한, 본 발명에 따른 액체 탄화수소 제조방법은 iii) 단계 이후 피셔 트롭시 합성 반응 생성물의 개질 반응 단계를 추가로 포함할 수 있다.In addition, the liquid hydrocarbon production method according to the present invention may further comprise a step of reforming the Fischer Tropsch synthesis reaction product after step iii).
상기와 같이, 본 발명의 피셔 트롭시 합성용 촉매를 사용하여 피셔 트롭시 합성 반응을 수행하는 경우, 본 발명 촉매의 높은 분산도, 반응 도중에 금속이 산화되거나 소결되지 않는 적당한 결정크기로 인해 피셔 트롭시 합성 반응의 일산화탄소 전환율 및 액체 탄화수소 선택성이 증가한다. As described above, when performing the Fisher-Tropsch synthesis reaction using the Fischer-Tropsch synthesis catalyst of the present invention, the Fisher-Trop due to the high dispersion degree of the catalyst of the present invention, the appropriate crystal size does not oxidize or sinter the metal during the reaction The carbon monoxide conversion and liquid hydrocarbon selectivity of the synthesis reaction increase.
본 발명에 따른 제조방법으로 제조된 나노 크기의 촉매는 높은 분산도로 인하여 촉매의 활용도가 극대화되며, 지지체와의 상호작용이 최소가 되어 촉매 본연의 성능이 최대한 발현되므로 피셔-트롭시 합성반응의 생산성이 향상된다.The nano-sized catalyst prepared by the production method according to the present invention maximizes the utilization of the catalyst due to the high dispersion degree, and the interaction with the support is minimized so that the intrinsic performance of the catalyst is expressed. Thus, the productivity of the Fischer-Tropsch synthesis reaction is increased. This is improved.
도 1은 실시예 1에 따라 제조된 규칙적 다공성 탄소물질(OMC; ordered mesoporous carbon)의 기공크기를 측정한 결과(a) 및 TEM 이미지(b)이다.1 is a result (a) and TEM image (b) of measuring the pore size of the ordered mesoporous carbon (OMC) prepared according to Example 1.
도 2는 본 발명의 일 구체예에 따른 나노채널 반응기의 개념으로, 나노채널 반응기에서 합성가스로부터 합성 석유를 제조하는 모식도(a), A 방향으로 바라본 나노채널 반응기의 모습(b), 소성 후 연장된 기공들 내에 코발트 산화물 나노 입자들이 구속되어 있는 것을 보여주는 TEM 이미지(c), 그 확대도 (d) 및 (e) 이다.Figure 2 is a concept of a nanochannel reactor according to an embodiment of the present invention, a schematic diagram (a) of producing a synthetic petroleum from the synthesis gas in the nanochannel reactor (a), the appearance of the nanochannel reactor viewed in the direction (b), after firing TEM images (c), magnifications (d) and (e), showing that cobalt oxide nanoparticles are confined within elongated pores.
도 2(b) ~ (e)는 CMK-3의 메조기공들 내부에 평균 기공크기가 약 4nm이고 CoO 결정들이 균일하게 분포되어있는 것을 보여준다.2 (b)-(e) show that the average pore size is about 4 nm and the CoO crystals are uniformly distributed inside the mesopores of CMK-3.
도 3의 (a) 및 (b)는 실시예 2에 따라 제조된 촉매의 HR TEM 이미지를 나타낸 것이다. 도 3의 (c)는 코발트, 산소, 탄소의 EDX mapping을 나타낸 것이며(코발트: 보라색, 산소: 초록색, 탄소: 노란색), 도 3의 (D) 내지 (f)는 (c) 분리하여 나타낸 것으로 (d)는 코발트, (e)는 산소, (f)는 탄소의 원소분석 이미지를 나타낸다.Figure 3 (a) and (b) shows the HR TEM image of the catalyst prepared according to Example 2. (C) of FIG. 3 shows EDX mapping of cobalt, oxygen, and carbon (cobalt: purple, oxygen: green, carbon: yellow), and (d) to (f) of FIG. (d) shows cobalt, (e) oxygen, and (f) shows elemental analysis images of carbon.
도 3(a)(b)에는 각 메조기공 내부에 Co 나노입자들이 다소 균일하고 등간격으로 이격되어 있는 것을 보여준다. 3 (a) and (b) show that Co nanoparticles are somewhat uniform and spaced at equal intervals inside each mesopore.
도 4는 비교예 1 및 실시예 2에 따라 코발트의 중량을 각기 다르게 한 촉매(10 Co/CMK-3, 15 Co/CMK-3, 20 Co/CMK-3)의 XRD 분석 데이터를 나타낸 것이다. 도 3(c) ~ (f) 및 도 4에서 알 수 있듯이, 원소 Co의 분포는 원소 O의 분포와 유사하고 대부분의 나노입자들은 CoO로 존재하는 것을 알 수 있다.4 shows XRD analysis data of catalysts having different weights of cobalt (10 Co / CMK-3, 15 Co / CMK-3, 20 Co / CMK-3) according to Comparative Example 1 and Example 2. FIG. As can be seen from FIGS. 3 (c) to (f) and FIG. 4, the distribution of the element Co is similar to that of the element O and most of the nanoparticles exist as CoO.
도 5는 비교예 1 및 실시예 2에 따라 제조된 각 촉매에 대하여 TPR(temperature programmed reduction) profile(a) 및 H2 uptake profile(b) 측정한 결과를 나타낸 것이다. Figure 5 shows the results of the measurement of temperature programmed reduction (TPR) profile (a) and H 2 uptake profile (b) for each catalyst prepared according to Comparative Example 1 and Example 2.
도 6은 비교예 2에 따라 제조된, 알루미늄 지지체에 담지된 Co/γ-Al2O3 촉매입자의 TEM 이미지를 나타낸 것이다.FIG. 6 shows a TEM image of Co / γ-Al 2 O 3 catalyst particles supported on an aluminum support, prepared according to Comparative Example 2. FIG.
도 7은 비교예 3에서 제조된 20 Co/MSU-F-C의 TEM 이미지를 나타낸 것이다. Figure 7 shows a TEM image of 20 Co / MSU-F-C prepared in Comparative Example 3.
도 8은 각 촉매에 대하여 시간에 따른 FT activity 변화를 측정한 결과를 나타낸 것이다. 촉매 나노입자 크기가 메조 기공보다 훨씬 작은 10 Co/CMK-3와 15 Co/CMK-3는 점차적으로 불활성화되었다. 작은 촉매 나노입자는 쉽게 주변으로 이동될 수 있고 FT 합성동안 발열 및 공간적 제한(spatial restriction)의 결여로 인해 sintering된다.Figure 8 shows the results of measuring the change in FT activity over time for each catalyst. 10 Co / CMK-3 and 15 Co / CMK-3, whose catalytic nanoparticle size is much smaller than mesopores, were gradually inactivated. Small catalyst nanoparticles can be easily transported around and sintered due to the exothermic and lack of spatial restriction during FT synthesis.
도 9는 CMK-3(a)와 MSU-F-C(b)의 SEM 이미지를 나타낸 것이다.9 shows SEM images of CMK-3 (a) and MSU-F-C (b).
도 10은, CMK-3과 MSU-F-C 기공 크기 분포 및 표면적을 나타낸 것이다. Figure 10 shows the pore size distribution and surface area of CMK-3 and MSU-F-C.
도 11은 FT 합성 반응 40시간 후, (a)20 Co/CMK-3 및 (b) 20 Co/MSU-F-C의 TEM 이미지를 나타낸 것이다. FIG. 11 shows TEM images of (a) 20 Co / CMK-3 and (b) 20 Co / MSU-F-C after 40 hours of FT synthesis reaction.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.Through the following examples will be described the present invention in more detail. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited by these examples.
실시예 1: OMC 지지체의 제조Example 1: Preparation of OMC Support
메조포러스 실리카 SBA-15 2g을 물 20g에 AlCl3 0.36g이 용해된 수용액에 함침시켜, Alumination시켰다(AlSBA-15). 만들어진 AlSBA-15 1g에 furfuryl alcohol 1.5 ml을 고루 문지른 후, 85℃에서 4시간 동안 열처리 과정을 거쳐 furfuryl alcohol을 중합시켰다. 중합이 끝난 후, Ar 가스 하에서 850 ℃에서 2시간 동안 탄화시켜 실리카-탄소 복합체를 완성하였다. 상온으로 식힌 후, HF 나 수산화나트륨 수용액을 사용하여 실리카 골격을 녹여내어 규칙적 구조의 메조포러스 탄소(OMC) 지지체를 완성하였다. 이렇게 얻어진 OMC의 기공 사이즈 분포를 측정한 결과를 도 1a에, TEM 이미지를 도 1b에 나타내었다. 얻어진 OMC는 표면적이 약 1500 m2/g에 달하며, 기공의 크기가 약 4 nm 정도이고, 직선형 기공 구조체의 배열이 매우 균일함을 확인할 수 있었다. 이와 같이 SBA-15를 주형으로 하여 제조한 탄소 물질은 CMK-3이라고도 한다. 2 g of mesoporous silica SBA-15 was impregnated in an aqueous solution in which 0.36 g of AlCl 3 was dissolved in 20 g of water, followed by alumination (AlSBA-15). After rubbing 1.5 ml of furfuryl alcohol evenly on 1 g of AlSBA-15, the furfuryl alcohol was polymerized by heat treatment at 85 ° C. for 4 hours. After the polymerization was completed, carbonization at 850 ℃ for 2 hours under Ar gas to complete the silica-carbon composite. After cooling to room temperature, the silica skeleton was dissolved using HF or aqueous sodium hydroxide solution to complete a mesoporous carbon (OMC) support having a regular structure. The pore size distribution of the OMC thus obtained was measured in FIG. 1A and the TEM image in FIG. 1B. The OMC obtained had a surface area of about 1500 m 2 / g, a pore size of about 4 nm, and a very uniform array of linear pore structures. The carbon material produced using SBA-15 as a template is also referred to as CMK-3.
실시예 2: OMC에 담지된 코발트 촉매의 제조Example 2: Preparation of Cobalt Catalyst Supported on OMC
상기 제조예 1에서 만든 OMC(CMK-3) 를 1M 질산 수용액으로 약 30분간 상온에서 처리하였다. 이후 세척과 건조를 마친 후, 약 20 wt %의 코발트 촉매입자가 되도록 질산염 코발트 전구체를 에탄올 용액상으로 만들어 incipient wetness impregnation 법으로 OMC 기공에 함침시켰다. 기공의 부피가 제한되어 있으므로 2번 혹은 3번의 함침과정을 거치며, 함침마다 건조 과정을 거쳤다. 함침시, 모세관 힘을 최대한 이용하며, 함침이 잘 되지 않는 경우 필요에 따라 OMC 지지체를 진공처리한 후 사용하거나, 함침시 sonication 등의 방법을 병행하였다. 건조된 촉매는 400 ℃에서 질소분위기로 5시간 소성하여 메조포러스 기공 사이즈와 비슷하거나 조금 작은 사이즈의 코발트 산화물 결정을 생성시켰다. 상기 제조된 코발트 산화물 결정을 도 2에 나타내었다. 또한, 제조된 코발트 촉매의 원소 분석 이미지를 도 3에 나타내었다. 이를 통해, 코발트 산화물 결정이 매우 일정한 크기로 제조된 것을 알 수 있으며, OMC 기공의 영향으로 배열 또한 매우 질서 정연한 것을 확인하였다. 얻어진 코발트 산화물 결정의 크기는 약 4 nm로서 기공 크기와 유사하였다. 참고문헌 R. D. Jones, C. H. Bartholomew, Appl. Catal. 1988, 39, 77-88를 참고하여 % Dispersion (%분산도 = 96.2/코발트 결정 사이즈)을 구하고, 그 값이 30.1 % 임을 확인하였다. 피셔 트롭시 합성 반응시 환원하여 촉매를 활성화시키는데, 이때 코발트 산화물이 코발트 금속으로 환원되면서 그 그 크기가 약 75% 수준으로 작아진다. 따라서, 본 실시예에서 제조된 촉매가 반응물이나 생성물의 이동과 확산을 크게 저해하지 않으며, 이는 이후 촉매의 성능 검증으로 확인하였다. OMC (CMK-3) prepared in Preparation Example 1 was treated with 1M aqueous nitric acid solution at room temperature for about 30 minutes. After washing and drying, the nitrate cobalt precursor was made into an ethanol solution so that about 20 wt% of cobalt catalyst particles were impregnated into the OMC pores by the incipient wetness impregnation method. Because the volume of the pores is limited, two or three impregnation processes are performed, and each impregnation process is followed by a drying process. At the time of impregnation, the capillary force is used to the maximum, and when impregnation is not performed well, the OMC support is vacuum-treated as necessary, or sonication is performed at the same time. The dried catalyst was calcined at 400 ° C. for 5 hours in a nitrogen atmosphere to produce cobalt oxide crystals of a size similar to or slightly smaller than that of mesoporous pores. The prepared cobalt oxide crystals are shown in FIG. 2. In addition, an elemental analysis image of the prepared cobalt catalyst is shown in FIG. 3. Through this, it can be seen that the cobalt oxide crystals were manufactured in a very constant size, and the arrangement was also very orderly under the influence of the OMC pores. The size of the cobalt oxide crystals obtained was about 4 nm, similar to the pore size. References R. D. Jones, C. H. Bartholomew, Appl. Catal. Referring to 1988, 39, 77-88,% Dispersion (% dispersion = 96.2 / cobalt crystal size) was obtained, and the value was found to be 30.1%. In the Fischer Tropsch synthesis reaction, the catalyst is reduced to activate the cobalt oxide, reducing its size to about 75% as the cobalt oxide is reduced to cobalt metal. Therefore, the catalyst prepared in this example does not significantly inhibit the movement and diffusion of the reactants or products, which was confirmed by the performance verification of the catalyst thereafter.
비교예 1: 코발트 함량이 20 wt% 미만인, CMK-3에 지지된 코발트 촉매의 제조Comparative Example 1 Preparation of a Cobalt Catalyst Supported in CMK-3 with a Cobalt Content of Less Than 20 Wt%
최종 촉매입자 내 코발트 금속의 무게 함량이 20 wt% 미만인 것을 제외하고는, 실시예 2의 제조방법과 동일한 방법을 사용하여 10 wt%, 15 wt 코발트 함유 CMK-3 담지 촉매를 제조하였다. 코발트 금속이 10 wt% 포함된 CMK-3 담지 촉매를 10 Co/CMK-3, 15 wt% 포함된 CMK-3 담지 촉매를 15 Co/CMK-3로 명명하였다. A 10 wt%, 15 wt cobalt-containing CMK-3 supported catalyst was prepared using the same method as the preparation method of Example 2, except that the weight content of the cobalt metal in the final catalyst particles was less than 20 wt%. The CMK-3 supported catalyst containing 10 wt% of cobalt metal was designated as 10 Co / CMK-3 and the CMK-3 supported catalyst containing 15 wt% of 15 Co / CMK-3.
상기 실시예 및 비교예의 10 Co/CMK-3, 15 Co/CMK-3 및 20 Co/CMK-3 촉매의 XRD 데이터를 도 4에 나타내었다. 그 결과 코발트 함량이 증가할수록, 45°근처의 주 피크의 폭이 좁아지며 더 뾰족해지는 것을 확인할 수 있었다. 이는 주 피크에서 계산한 FWHM(full width at half maximum, 피크 높이 중간 지점에서 피크 폭의 길이)가 더 짧다는 것으로, 촉매 결정의 크기가 커진다는 것을 의미한다(A.L.Patterson, Phys. Rev.,1939,56,978). 즉, 20 Co/CMK-3 코발트 산화물 결정의 크기가, 10 Co/CMK-3, 15 Co/CMK-3의 코발트 산화물 결정의 크기보다 크다는 것을 확인할 수 있었다. XRD data of the 10 Co / CMK-3, 15 Co / CMK-3 and 20 Co / CMK-3 catalysts of the Examples and Comparative Examples are shown in FIG. 4. As a result, as the cobalt content was increased, the width of the main peak near 45 ° was narrower and sharper. This means that the FWHM (full width at half maximum) calculated at the main peak is shorter, which means that the size of the catalyst crystal is increased (ALPatterson, Phys. Rev., 1939, 56,978). That is, it was confirmed that the size of the 20 Co / CMK-3 cobalt oxide crystal is larger than the size of the cobalt oxide crystals of 10 Co / CMK-3 and 15 Co / CMK-3.
또한, 각 촉매에 대하여 TPR(temperature programmed reduction) profile 및 H2 uptake profile을 측정하여 이를 도 5에 나타내었다. 그 결과 낮은 온도의 환원피크가 150℃ 내지 350℃에서 나타나며, 높은 온도의 환원 피크가 350℃ 내지 900℃에서 나타났으며 코발트 담지량이 많은 경우 H2 uptake 양이 증가하였다. 환원 profile을 두 부분으로 나누었을 때, 코발트 담지량이 많은 경우 저온 영역의 피크가 증가한 반면 높은 온도영역의 피크는 감소했다. 이는 코발트 담지량이 많은 경우 지지체와 촉매 물질과의 상호작용이 약해지고, 이로 인해 환원성이 증가했기 때문이다. In addition, the TPR (temperature programmed reduction) profile and the H 2 uptake profile of each catalyst were measured and shown in FIG. 5. As a result, the low peak of the reduced peak is appeared at 150 ℃ to 350 ℃, the high peak of the reduction peak is appeared at 350 ℃ to 900 ℃, the amount of H 2 uptake was increased when the amount of cobalt loading. When the reduction profile was divided into two parts, the peak in the low temperature region increased while the cobalt loading amount increased, while the peak in the high temperature region decreased. This is because, when the amount of cobalt supported is large, the interaction between the support and the catalyst material is weakened, thereby increasing the reducibility.
비교예 2: 알루미나 지지체를 사용한 코발트계 촉매의 제조 (20Co/γ-Al2O3) Comparative Example 2: Preparation of Cobalt-Based Catalyst Using Alumina Support (20 Co / γ-Al 2 O 3 )
감마-알루미나 지지체에 코발트 전구체를 담지하여 코발트계 촉매를 제조하였다. 사용한 감마-알루미나는 기공 부피가 0.5 ml/g, 기공 크기가 9-10 nm 이며 BET법으로 측정한 표면적이 약 170 m2/g 정도 되는 알루미나로서 Sasol puralox 제품을 사용하였다.A cobalt-based catalyst was prepared by supporting a cobalt precursor on a gamma-alumina support. The gamma-alumina used was alumina having a pore volume of 0.5 ml / g, pore size of 9-10 nm, and a surface area of about 170 m 2 / g measured by the BET method.
감마-알루미나 지지체에 약 20 wt%의 코발트 금속이 담지 되도록 질산염 코발트 전구체의 무게를 정량하여 용액으로 제조한 후(용매는 알코올, 물 등), 함침법으로 Co/γ-Al2O3 형태의 촉매입자를 제조하였다. 상기 제조된 촉매입자의 TEM 이미지를 도 5에 나타내었다. XRD 분석에 의하면 제조된 촉매입자에서 코발트 산화물 결정의 크기는 평균 약 14.4 nm 이지만, 도 5의 TEM 이미지를 살펴보면 검은색으로 나타난 코발트 산화물의 결정크기는 일정하지 않은 것을 알 수 있었다. 또한 그 모양 역시 불규칙적하게 얻어지는 것을 확인할 수 있었다. After the weight of the cobalt nitrate precursor was quantified to carry about 20 wt% of the cobalt metal on the gamma-alumina support (solvent is alcohol, water, etc.), the impregnation method was used to form Co / γ-Al 2 O 3 . Catalyst particles were prepared. A TEM image of the prepared catalyst particles is shown in FIG. 5. XRD analysis showed that the average size of the cobalt oxide crystals in the prepared catalyst particles was about 14.4 nm, but the size of the cobalt oxide in black was not constant. It was also confirmed that the shape was obtained irregularly.
또한, 사용한 지지체의 기공 크기가 9-10 nm인 반면 생성된 산화물 결정의 크기는 약 14.4 nm로, 기공 크기보다도 큰 산화물 결정이 생성되었다. 이는 금속 산화물 결정이 지지체의 기공 내에서만 생성된 것이 아니라 기공 외부에도 생성되었다는 것을 의미한다. 이는 도 6는 TEM 이미지에서도 확인할 수 있는데, 결정이 뭉쳐진 모양으로 생성되거나 알루미나 지지체 표면에 덩어리로 생성된 것을 확인할 수 있다. 참고문헌 R. D. Jones, C. H. Bartholomew, Appl. Catal. 1988, 39, 77-88에 의하여 구한 % 분산도는 8.9 % 였다.In addition, while the pore size of the support used was 9-10 nm, the size of the resulting oxide crystal was about 14.4 nm, resulting in oxide crystals larger than the pore size. This means that the metal oxide crystals are not only generated within the pores of the support but also outside the pores. This can be seen in the TEM image of Figure 6, it can be seen that the crystals are formed in the form of agglomeration or agglomerates on the surface of the alumina support. References R. D. Jones, C. H. Bartholomew, Appl. Catal. The% dispersion obtained by 1988, 39 and 77-88 was 8.9%.
20Co/γ-Al2O3는 또한, 환원시 어느정도 sintering이 되어 환원 전 금속 결정입자 크기는 10.8nm이었는데 환원된 후 16.0nm로 증가하였다.20Co / γ-Al 2 O 3 was also sintered to some extent during reduction, and the metal grain size before reduction was 10.8 nm, but increased to 16.0 nm after reduction.
비교예 3: MSU-F-C에 담지된 코발트 촉매의 제조Comparative Example 3: Preparation of Cobalt Catalyst Supported on MSU-F-C
다공성 탄소 물질로 MSU-F-C를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 코발트 촉매를 제조하였다(20 Co/MSU-F-C). MSU-F-C는 메조포러스 실리카인 "MSU-F-silica"로부터 합성된 것으로서, 약 30 nm의 큰 기공과 기공 구조 사이에 4 내지 8 nm의 작은 기공을 갖는 메조셀룰러 구조의 다공성 탄소 물질이다. 상기 제조된 20 Co/MSU-F-C의 TEM 이미지를 도 7에 나타내었다. 20 Co/MSU-F-C에서 CoO 결정 크기는 8.7nm이었다. 20 Co/MSU-F-C에서 나노 입자들은 큰 기공 보다 훨씬 작으므로, 구속 효과(confinement effect)가 미비하다고 할 수 있다. 약한 구속 효과와 탄소의 불활성 특성으로 인해, 코발트 나노 결정들은 탄소 지지체와 매우 약한 상호작용을 하며, 약한 구속 효과와 탄소의 불활성 특성은 촉매 제조 또는 FT 합성 동안 나노입자들의 agglomeration 또는 sintering이 일어난다.A cobalt catalyst was prepared in the same manner as in Example 2, except that MSU-F-C was used as the porous carbon material (20 Co / MSU-F-C). MSU-F-C is synthesized from “MSU-F-silica”, a mesoporous silica, and is a mesocellular structured porous carbon material having a large pore of about 30 nm and a small pore of 4 to 8 nm. A TEM image of the 20 Co / MSU-F-C prepared above is shown in FIG. 7. The CoO crystal size was 8.7 nm at 20 Co / MSU-F-C. At 20 Co / MSU-F-C, the nanoparticles are much smaller than the large pores, so the confinement effect is negligible. Due to the weak confinement effect and the inert properties of carbon, cobalt nanocrystals have very weak interactions with the carbon support, and the weak confinement effect and the inert properties of carbon cause agglomeration or sintering of the nanoparticles during catalyst preparation or FT synthesis.
비교예 4: 알루미나 지지체를 사용하며, 조촉매를 첨가한 코발트계 촉매의 제조 (0.05Pt-23Co/γ-Al2O3) Comparative Example 4 Preparation of Cobalt-Based Catalyst Using Alumina Support and Adding Cocatalyst (0.05Pt-23Co / γ-Al 2 O 3 )
비교예 2와 동일한 방법으로 촉매를 제조하되, 0.05 wt%의 Pt를 조촉매 성분으로 포함하며, 코발트의 함량이 23 wt%가 되도록 제조하였다. A catalyst was prepared in the same manner as in Comparative Example 2, but containing 0.05 wt% of Pt as a cocatalyst component and a cobalt content of 23 wt%.
실시예 3: 촉매 성능 테스트Example 3: Catalyst Performance Test
하기 표 1에는 상기 실시예 2, 비교예 2 및 3에서 제조된 촉매의 크기를 나타내었다.Table 1 shows the sizes of the catalysts prepared in Example 2, Comparative Examples 2 and 3.
표 1
Catalyst XRD로부터 측정한 입자크기 (nm) Co0의 입자 크기 (nm) % Dispersion96.2/d(Co0)
실시예 2 OMC 촉매 (20 Co/CMK-3) 4.0 (CoO) 3.2 30.1
비교예 2 알루미나 지지촉매(20Co/γ-Al2O3) 8.7 (CoO) 7.0 11.1
비교예 3 20 Co/MSU-F-C 14.4 (Co3O4) 10.8 8.9
Table 1
Catalyst Particle size measured from XRD (nm) Particle Size of Co 0 (nm) % Dispersion96.2 / d (Co 0 )
Example 2 OMC Catalyst (20 Co / CMK-3) 4.0 (CoO) 3.2 30.1
Comparative Example 2 Alumina Support Catalyst (20Co / γ-Al 2 O 3 ) 8.7 (CoO) 7.0 11.1
Comparative Example 3 20 Co / MSU-FC 14.4 (Co 3 O 4 ) 10.8 8.9
또한, 상기 제조된 실시예 및 비교예 1 내지 4의 촉매의 성능을 비교하기 위해, 상기 촉매를 이용하여 피셔 트롭시 합성 반응을 실시하였다. 이때 반응 조건은, 합성가스 공간속도(GHSV) = 4000 ml/g-cat/h, 온도(T) = 220℃, 압력(P) = 2.0 MPa, H2/CO ratio = 2.0, 합성가스 조성(H2/CO/CO2/Ar) = 57.3/28.4/9.3/5.0 (mol%)로 설정하였다. 상기 피셔 트롭시 합성반응 결과를 하기 표 2에 나타내었다.In addition, in order to compare the performance of the catalysts of Examples and Comparative Examples 1 to 4 prepared above, the Fischer Tropsch synthesis reaction was carried out using the catalyst. At this time, the reaction conditions, the syngas space velocity (GHSV) = 4000 ml / g-cat / h, temperature (T) = 220 ℃, pressure (P) = 2.0 MPa, H 2 / CO ratio = 2.0, syngas composition ( H 2 / CO / CO 2 / Ar) = 57.3 / 28.4 / 9.3 / 5.0 (mol%). Fischer Tropsch synthesis reaction results are shown in Table 2 below.
표 2
Catalyst CO 전환율 (%) FT activity(10-5molCOgCo -1s-1) 선택도 (%)
CH4 C5+
실시예 2 OMC 촉매 (20 Co/CMK-3) 81.3 5.73 2.7 93.6
비교예 1 OMC 촉매 (15 Co/CMK-3) 48.1 3.83 10.3 80.8
비교예 1 OMC 촉매 (10 Co/CMK-3) 35.5 4.94 10.8 82.1
비교예 2 알루미나 지지촉매(20Co/γ-Al2O3) 54.9 3.86 4.7 90.3
비교예 3 20 Co/MSU-F-C 24.4 1.72 5.4 89.5
비교예 4 0.05Pt-23Co/γ-Al2O3 62.9 3.85 4.3 90.9
TABLE 2
Catalyst CO conversion rate (%) FT activity (10 -5 mol CO g Co -1 s -1 ) Selectivity (%)
CH 4 C 5+
Example 2 OMC Catalyst (20 Co / CMK-3) 81.3 5.73 2.7 93.6
Comparative Example 1 OMC Catalyst (15 Co / CMK-3) 48.1 3.83 10.3 80.8
Comparative Example 1 OMC Catalyst (10 Co / CMK-3) 35.5 4.94 10.8 82.1
Comparative Example 2 Alumina Support Catalyst (20Co / γ-Al 2 O 3 ) 54.9 3.86 4.7 90.3
Comparative Example 3 20 Co / MSU-FC 24.4 1.72 5.4 89.5
Comparative Example 4 0.05Pt-23Co / γ-Al 2 O 3 62.9 3.85 4.3 90.9
상기 표 2를 통해 알 수 있듯이, 본 발명의 20 Co/CMK-3 촉매는 촉매의 함량이 이에 미치지 못한 촉매(15 Co/CMK-3, 10 Co/CMK-3)에 비해 CO 전환율, C5+ 선택도 및 생산성(FT activity)이 더 높은 것을 확인할 수 있었다. 이는 촉매금속의 결정크기가 일정한 크기로 성장하지 못하면, 반응시 극심한 반응열과 부산물로 생성되는 물에 의하여 금속 결정이 쉽게 산화되거나 소결되어 활성이 크게 떨어지기 때문이다.As can be seen from Table 2, the 20 Co / CMK-3 catalyst of the present invention has a CO conversion rate, C 5 compared to the catalyst content (15 Co / CMK-3, 10 Co / CMK-3) is less than this + Selectivity and productivity (FT activity) was found to be higher. This is because if the crystal size of the catalyst metal does not grow to a certain size, the metal crystals are easily oxidized or sintered by the water generated as the extreme heat of reaction and by-products during the reaction, thereby greatly deactivating the activity.
표 2에 나타난 바와 같이, 20 Co/CMK-3 촉매(실시예 2)는 20 Co/γ-Al2O3 (비교예 2)보다 CO 전환율 및 C5+ 선택도가 더 높다.As shown in Table 2, 20 Co / CMK-3 catalyst (Example 2) has higher CO conversion and C 5+ selectivity than 20 Co / γ-Al 2 O 3 (Comparative Example 2).
뿐만 아니라 촉매의 함량이 20%에 미치지 못하는 촉매는, 기존에 널리 사용되는 알루미나 지지촉매(20 Co/γ-Al2O3)와 비교하여도 전환율과 선택도가 떨어진다. 다만 10 Co/CMK-3, 15 Co/CMK-3 는 투입된 코발트의 양이 20 Co/γ-Al2O3에 비해 작으므로, 투입된 코발트 금속 대비 생산량을 계산하는 FT activity의 값은 비슷하거나 더 높다.In addition, the catalyst content of less than 20% of the catalyst, the conversion and selectivity is also lower than the conventionally widely used alumina support catalyst (20 Co / γ-Al 2 O 3 ). However, since 10 Co / CMK-3 and 15 Co / CMK-3 have a small amount of cobalt added compared to 20 Co / γ-Al 2 O 3 , the value of the FT activity for calculating the yield compared to the cobalt metal added is similar or higher. high.
그러나 본 발명의 20 Co/CMK-3는 기존 알루미나 지지촉매와 비교하여도 전환율, C5+ 선택도, 생산성(FT activity)등 모든 면에서 성능이 뛰어나며, 촉매의 금속함량이 낮은 촉매(15 Co/CMK-3, 10 Co/CMK-3)에 비해서도 모든 면에서 성능이 뛰어남을 확인할 수 있었다. 또한, 조촉매가 추가로 첨가된 알루미나 지지촉매보다도 전환율이 뛰어나며, MSU-F-C에 담지된 촉매보다도 성능이 뛰어남을 확인할 수 있었다. However, 20 Co / CMK-3 of the present invention has excellent performance in all aspects such as conversion rate, C 5+ selectivity, and productivity (FT activity), compared to conventional alumina supported catalysts, and has a low metal content of catalyst (15 Co / CMK-3, 10 Co / CMK-3) also showed excellent performance in all aspects. In addition, it was confirmed that the conversion rate was higher than that of the alumina supported catalyst to which the promoter was additionally added, and the performance was superior to the catalyst supported on the MSU-FC.
실시예 4: 시간에 따른 촉매의 활성 측정Example 4 Determination of Activity of Catalysts Over Time
상기 실시예 3과 동일한 방법으로 피셔 트롭시 합성 반응을 수행하고, 시간에 따른 FT activity를 측정하고 이를 도 8에 나타내었다. 그 결과 본 발명의 20 Co/CMK-3는 FT activity가 가장 뛰어나고, 35시간 이후부터 안정한 상태로 유지되며, 재산화가 일어나지 않는 것을 확인할 수 있었다. 그러나, 촉매의 금속 함량이 낮은 촉매는(15 Co/CMK-3, 10 Co/CMK-3) 안정화되지 못하며, 반응 시간이 흐를수록 재산화되거나 소결되어 FT activity가 감소하는 것을 확인할 수 있었다. Fischer Tropsch synthesis reaction was carried out in the same manner as in Example 3, FT activity was measured over time and shown in FIG. As a result, the 20 Co / CMK-3 of the present invention was the most excellent FT activity, and remains stable after 35 hours, it was confirmed that the reoxidation does not occur. However, the catalyst with a low metal content of the catalyst (15 Co / CMK-3, 10 Co / CMK-3) could not be stabilized, and it was confirmed that FT activity was decreased by reoxidation or sintering as the reaction time passed.

Claims (17)

  1. 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질; 및 상기 다공성 탄소 물질의 기공 내 담지된, 평균크기가 나노 스케일인 금속 함유 촉매입자들;을 함유하는 피셔 트롭시 합성용 촉매로서,Porous carbon materials of regular structure with an average diameter of mesopores at nanoscale; A catalyst for Fischer Tropsch synthesis, comprising; and metal-containing catalyst particles having an average size of nanoscales supported in pores of the porous carbon material.
    상기 금속 함유 촉매입자가 금속산화물인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지하고,When the metal-containing catalyst particles are metal oxides, the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area,
    상기 금속 함유 촉매입자가 환원된 금속인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 65 % 내지 95%를 차지하는 것을 특징으로 하는 피셔 트롭시 합성용 촉매.If the metal-containing catalyst particles is a reduced metal, Fischer Tropsch synthesis catalyst, characterized in that the cross-sectional area of the metal-containing catalyst particles in the mesopore occupies 65% to 95% of the mesopore cross-sectional area.
  2. 제1항에 있어서, 상기 금속 함유 촉매입자는 피셔 트롭시 합성용 촉매 100중량%를 기준으로 금속 함량 20 중량% 이상 담지된 것을 특징으로 하는 피셔 트롭시 합성용 촉매.The catalyst for the synthesis of Fischer Tropsch according to claim 1, wherein the metal-containing catalyst particles are loaded with a metal content of 20% by weight or more based on 100% by weight of Fischer Tropsch synthesis catalyst.
  3. 제1항에 있어서, 상기 금속 함유 촉매입자들은 평균 입경이 5 nm 이하인 것을 특징으로 하는 피셔 트롭시 합성용 촉매.2. The catalyst for Fischer Tropsch synthesis according to claim 1, wherein the metal-containing catalyst particles have an average particle diameter of 5 nm or less.
  4. 제1항에 있어서, 규칙적 구조의 다공성 탄소 물질은 직선형 기공 구조체의 배열이 균일한 것을 특징으로 하는 촉매.The catalyst of claim 1 wherein the porous carbon material of regular structure has a uniform array of linear pore structures.
  5. 제1항에 있어서, 상기 금속 함유 촉매입자는 코발트(Co), 니켈(Ni), 구리(Cu), 철(Fe), 아연(Zn), 루테늄(Ru), 몰리브덴(Mo), 텅스텐(W), 비스무스(Bi), 레니윰(Re), 로듐(Rh), 팔라듐(Pd), 은(Ag), 백금(Pt), 및 이의 조합으로 이루어진 군으로부터 선택되는 금속을 포함하는 것을 특징으로 하는 촉매.The method of claim 1, wherein the metal-containing catalyst particles are cobalt (Co), nickel (Ni), copper (Cu), iron (Fe), zinc (Zn), ruthenium (Ru), molybdenum (Mo), tungsten (W) ), Bismuth (Bi), renibium (Re), rhodium (Rh), palladium (Pd), silver (Ag), platinum (Pt), and combinations thereof. catalyst.
  6. 제1항에 있어서, 다공성 탄소 물질 지지체의 외부 표면에 금속 함유 촉매 입자들이 없어서 X선 회절법에 의해 측정한 금속 결정의 분산도가 15% 이상인 것을 특징으로 하는 피셔 트롭시 합성용 촉매.2. The catalyst for Fischer Tropsch synthesis according to claim 1, wherein the dispersity of the metal crystals measured by X-ray diffraction method is 15% or more because there are no metal-containing catalyst particles on the outer surface of the porous carbon material support.
  7. 제1항에 있어서, 상기 다공성 탄소 물질은 The method of claim 1, wherein the porous carbon material is
    a) 당류, 탄화수소류 또는 알코올류인 탄소 전구체를 메조포러스한 실리카의 기공에 채우고 소성하는 단계;a) filling a carbon precursor, which is a saccharide, hydrocarbon or alcohol, into the pores of mesoporous silica and calcining;
    b) 상기 단계 a)의 결과 물질을 산성 또는 염기성 물질을 사용하여 실리카 구조를 녹이는 단계;b) dissolving the silica structure using an acidic or basic material as the resultant material of step a);
    c) 상기 단계 b)의 결과 물질을 산성물질에 침지시켜 처리한 후 건조하는 단계;c) treating the resultant material of step b) with an acidic material and then drying;
    를 포함하는 방법으로 제조된 것을 특징으로 하는 촉매. Catalyst, characterized in that prepared by the method comprising a.
  8. 제7항에 있어서, 단계 c)에서 사용되는 산성물질은 농도가 0.01M 내지 1M인 강산성 수용액인 것을 특징으로 하는 촉매. 8. The catalyst of claim 7, wherein the acidic material used in step c) is a strongly acidic aqueous solution having a concentration of 0.01M to 1M.
  9. 제1항에 있어서, 상기 다공성 탄소 물질은 CMK-3인 것을 특징으로 하는 촉매.The catalyst of claim 1 wherein the porous carbon material is CMK-3.
  10. 1) 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계;1) impregnating the catalyst precursor solution into a porous carbon material support having a regular structure having an average diameter of the mesopores;
    2) 상기 함침된 지지체를 건조하는 단계;2) drying the impregnated support;
    3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And
    4) 상기 건조된 지지체를 소성하는 단계 4) calcining the dried support
    를 포함하는, 제1항 내지 제9항 중 어느 한 항에 기재된 피셔 트롭시 합성용 촉매의 제조방법.The manufacturing method of the catalyst for Fischer-Tropsch synthesis | combination in any one of Claims 1-9 containing.
  11. 제10항에 있어서, 단계 1)에서, (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 함침이 되지 않을 정도로만 친수성 처리를 한 다공성 탄소 물질 지지체를 사용하며,The method of claim 10, wherein in step 1) (i) a porous carbon material support is used that is not hydrophilic to prevent impregnation of the catalyst precursor solution on the outer surface, or (ii) a catalyst on the outer surface of the porous carbon material support Using a porous carbon material support treated only to the extent that the precursor solution is not impregnated,
    이로 인해 기공 구속 효과(pore confinement effect)가 없는 다공성 탄소 물질 지지체의 외부 표면에는 금속 함유 촉매 입자가 형성되어 있지 아니한 피셔 트롭시 합성용 촉매를 제조하는 것을 특징으로 하는 촉매 제조방법.Thus, the method for preparing a catalyst for producing a Fischer Tropsch synthesis catalyst in which no metal-containing catalyst particles are formed on an outer surface of a porous carbon material support having no pore confinement effect.
  12. 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에서, 기공 구속 효과(pore confinement effect)가 없는 외부 표면에는 금속 함유 촉매 입자가 형성되어 있지 아니하면서 기공 내 구속 효과를 발휘할 수 있는 크기의 금속 함유 촉매 입자를 함유한 피셔 트롭시 합성용 촉매를 제조하는 방법으로서,In a porous carbon material support having a regular structure of mesopores with a nano-scale diameter, the pore confinement effect can be exerted without forming metal-containing catalyst particles on the outer surface without the pore confinement effect. As a method of preparing a Fischer Tropsch synthesis catalyst containing the metal-containing catalyst particles,
    1) 상기 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계;1) impregnating a catalyst precursor solution on the porous carbon material support;
    2) 상기 함침된 지지체를 건조하는 단계;2) drying the impregnated support;
    3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And
    4) 상기 건조된 지지체를 소성하는 단계 를 포함하되, 4) calcining the dried support,
    단계 1)에서, (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 함침이 되지 않을 정도로만 친수성 처리를 한 다공성 탄소 물질 지지체를 사용하는 것을 특징으로 하는 촉매 제조방법.In step 1), (i) use a porous carbon material support that is not hydrophilic to impregnate the catalyst precursor solution on the outer surface, or (ii) the catalyst precursor solution is not impregnated on the outer surface of the porous carbon material support. A method of producing a catalyst, characterized by using a porous carbon material support treated with hydrophilicity only.
  13. 제12항에 있어서, 다공성 탄소 물질 지지체 내 기공은 나노채널을 형성하는 것이고, The method of claim 12, wherein the pores in the porous carbon material support form nanochannels,
    단계 1)에서, 나노채널 형태의 기공 내에 촉매 전구체 용액의 함침은 나노채널의 모세관 힘 또는 나노채널 내 감압 또는 물리적 힘을 통해 수행되는 것을 특징으로 하는 촉매 제조 방법.In step 1), impregnation of the catalyst precursor solution into the nanochannel-shaped pores is carried out through the capillary force of the nanochannel or the decompression or physical force in the nanochannel.
  14. 제12항에 있어서, (ii)의 친수성 처리는 0.01M 내지 1M의 강산 수용액으로 다공성 탄소 물질 지지체를 처리하는 것을 특징으로 하는 촉매 제조 방법.The method of claim 12, wherein the hydrophilic treatment of (ii) is characterized in that the porous carbon material support is treated with an aqueous 0.01 M to 1 M strong acid solution.
  15. 제12항 내지 제14항 중 어느 한 항의 제조방법으로 제조된 피셔 트롭시 합성용 촉매.Fischer Tropsch synthesis catalyst prepared by the method of any one of claims 12-14.
  16. 피셔 트롭시 합성반응을 이용하여 합성가스로부터 액체 탄화수소를 제조하는 방법에 있어서,In the method for producing a liquid hydrocarbon from syngas using Fischer Tropsch synthesis reaction,
    i) 제1항 내지 제9항 중 어느 한 항에 기재된 피셔 트롭시 합성용 촉매 또는 제12항 내지 제14항 중 어느 한 항의 제조방법으로 제조된 피셔 트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 단계;i) Fischer-Tropsch synthesis of the Fischer-Tropsch synthesis catalyst according to any one of claims 1 to 9 or the Fischer-Tropsch synthesis catalyst prepared by the method according to any one of claims 12 to 14. Applying to the reactor;
    ii) 상기 촉매를 환원시켜 활성화시키는 단계; 및 ii) reducing the catalyst to activate it; And
    iii) 상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 단계를 포함하는 것이 특징인 제조방법.iii) performing a Fischer-Tropsch synthesis reaction with the activated Fischer-Tropsch synthesis catalyst.
  17. 제16항에 있어서, iii) 단계는 200 내지 350℃, 반응 압력 5 내지 30kg/cm3, 공간속도 1000 - 10000 h-1 에서 수행되는 것인 제조방법.The method according to claim 16, wherein step iii) is carried out at 200 to 350 ° C, a reaction pressure of 5 to 30 kg / cm 3 , and a space velocity of 1000 to 10000 h −1 .
PCT/KR2013/007645 2013-02-28 2013-08-27 Catalyst for fischer-tropsch synthesis supported by porous carbon material and method for preparing same WO2014133236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130021745 2013-02-28
KR10-2013-0021745 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133236A1 true WO2014133236A1 (en) 2014-09-04

Family

ID=51428475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007645 WO2014133236A1 (en) 2013-02-28 2013-08-27 Catalyst for fischer-tropsch synthesis supported by porous carbon material and method for preparing same

Country Status (2)

Country Link
KR (1) KR20140109224A (en)
WO (1) WO2014133236A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9687825B1 (en) 2016-06-27 2017-06-27 Chevron U.S.A. Inc. Stable tungsten-phosphorus modified support for a Fischer-Tropsch catalyst
CN107754793A (en) * 2017-11-23 2018-03-06 中科合成油技术有限公司 Fischer-tropsch synthetic catalyst of porous carbon load and its preparation method and application
CN112533698A (en) * 2018-06-05 2021-03-19 沙特基础全球技术有限公司 Bulk metal crystal transition metal based heterogeneous catalyst, preparation method and application thereof
WO2022120824A1 (en) * 2020-12-11 2022-06-16 北京光合新能科技有限公司 Method for producing hydrocarbon molecule by means of energy radiation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102168444B1 (en) * 2019-01-23 2020-10-21 한국화학연구원 Bi-functional Catalyst for Carbon dioxide Hydrogenation and Method of Producing Hydrocarbon Using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040073119A (en) * 2003-02-13 2004-08-19 삼성에스디아이 주식회사 Carbon molecular sieve and preparation method thereof
KR20090038267A (en) * 2007-10-15 2009-04-20 한국화학연구원 Preparation method of direct synthesis of light hydrocarbons from natural gas
KR20120072386A (en) * 2009-10-27 2012-07-03 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 Tungsten carbide catalyst supported on mesoporous carbon, preparation and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040073119A (en) * 2003-02-13 2004-08-19 삼성에스디아이 주식회사 Carbon molecular sieve and preparation method thereof
KR20090038267A (en) * 2007-10-15 2009-04-20 한국화학연구원 Preparation method of direct synthesis of light hydrocarbons from natural gas
KR20120072386A (en) * 2009-10-27 2012-07-03 달리안 인스티튜트 오브 케미컬 피직스, 차이니즈 아카데미 오브 사이언시즈 Tungsten carbide catalyst supported on mesoporous carbon, preparation and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIE, WEI ET AL.: "Effect of catalyst confinement and pore size on Fischer- Tropsch synthesis over cobalt supported on carbon nanotubes", SCIENCE CHINA CHEMISTRY, vol. 55, no. 9, September 2012 (2012-09-01), pages 1811 - 1818 *
YANG, YIFEI ET AL.: "Fischer-Tropsch Synthesis over Ordered Mesoporous Carbon Supported Cobalt Catalysts: The Role of Amount of Carbon Precursor in Catalytic Performance", CATALYSIS LETTERS, vol. 142, 2012, pages 195 - 204 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9687825B1 (en) 2016-06-27 2017-06-27 Chevron U.S.A. Inc. Stable tungsten-phosphorus modified support for a Fischer-Tropsch catalyst
CN107754793A (en) * 2017-11-23 2018-03-06 中科合成油技术有限公司 Fischer-tropsch synthetic catalyst of porous carbon load and its preparation method and application
WO2019100497A1 (en) * 2017-11-23 2019-05-31 中科合成油技术有限公司 Porous carbon-supported fischer-tropsch synthesis catalyst, preparation method therefor, and use thereof
CN107754793B (en) * 2017-11-23 2020-04-17 中科合成油技术有限公司 Porous carbon loaded Fischer-Tropsch synthesis catalyst and preparation method and application thereof
CN112533698A (en) * 2018-06-05 2021-03-19 沙特基础全球技术有限公司 Bulk metal crystal transition metal based heterogeneous catalyst, preparation method and application thereof
WO2022120824A1 (en) * 2020-12-11 2022-06-16 北京光合新能科技有限公司 Method for producing hydrocarbon molecule by means of energy radiation

Also Published As

Publication number Publication date
KR20140109224A (en) 2014-09-15

Similar Documents

Publication Publication Date Title
CN109304178B (en) Synthesis method of alkane compound
WO2014133236A1 (en) Catalyst for fischer-tropsch synthesis supported by porous carbon material and method for preparing same
EP1963010B1 (en) Metal nitrate conversion method
US9527061B2 (en) Catalysts
RU2414296C1 (en) Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
EP2911785B1 (en) Process for preparing a fischer-tropsch catalyst
RU2437717C2 (en) Method of metal nitrate conversion
US9776172B2 (en) Porous silicon carbide nanocomposite structure comprising nanowires and method of preparing the same
US9346038B2 (en) Fischer-tropsch catalyst comprising cobalt, magnesium and precious metal
WO2014129722A1 (en) Cobalt catalyst for fischer-tropsch synthesis, production method and method for producing liquid hydrocarbon using same
WO2014070116A1 (en) Encapsulated Nanoparticles
AU2012264468B2 (en) Catalytic process for the conversion of a synthesis gas to hydrocarbons
KR102068691B1 (en) Catalyst for converting natural or entrained gas into syngas in autothermal reforming process and preparation method thereof
US20220355282A1 (en) Porous material composite comprising alloy nanoparticles, composite catalyst comprising same, and manufacturing method therefor
CN110756197A (en) Ni @ Au core-shell type nano-catalyst and synthesis and application thereof
EP2758170B1 (en) Process for preparing a cobalt - containing fischer tropsch catalyst
EP3628400A1 (en) Fischer-tropsch process, supported fischer-tropsch synthesis catalyst and uses thereof
WO2010110447A1 (en) Mesoporous silica-supported gold cluster, catalyst comprising same, and process for producing same
CN1017781B (en) Alumina-based catalysts, their production and use
EP3856872B1 (en) Fischer-tropsch process
CN110961097B (en) Fischer-Tropsch synthesis catalyst, preparation method thereof and Fischer-Tropsch synthesis process
CN110961095B (en) Fischer-Tropsch synthesis catalyst and preparation method and application thereof
WO2014128203A1 (en) Catalyst manufacturing method
US11364488B2 (en) Supported cobalt-containing fischer-tropsch catalyst, process for preparing the same and uses thereof
CN108409520B (en) Treatment method of cyclohexene catalyst precursor prepared by benzene hydrogenation, preparation method of catalyst and cyclohexene preparation method by benzene hydrogenation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876390

Country of ref document: EP

Kind code of ref document: A1