WO2014132309A1 - Production method and production device for metal siding - Google Patents

Production method and production device for metal siding Download PDF

Info

Publication number
WO2014132309A1
WO2014132309A1 PCT/JP2013/006829 JP2013006829W WO2014132309A1 WO 2014132309 A1 WO2014132309 A1 WO 2014132309A1 JP 2013006829 W JP2013006829 W JP 2013006829W WO 2014132309 A1 WO2014132309 A1 WO 2014132309A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
heating
water
metal siding
plate
Prior art date
Application number
PCT/JP2013/006829
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 正樹
成寿 鈴木
大 平工
杉田 修一
祐一 岡田
真弘 渡辺
Original Assignee
日新製鋼株式会社
日新総合建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社, 日新総合建材株式会社 filed Critical 日新製鋼株式会社
Publication of WO2014132309A1 publication Critical patent/WO2014132309A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials

Definitions

  • the present invention relates to a method and apparatus for manufacturing metal siding.
  • a metal siding having a back material, a core material, and a metal plate in this order is known as a building exterior material (see, for example, Patent Document 1).
  • the metal plate may be embossed before being laminated with a core or the like.
  • the surface of the metal plate of the metal siding may be further coated with a paint (hereinafter, the metal siding before having the coating film is particularly applied).
  • a paint hereinafter, the metal siding before having the coating film is particularly applied.
  • water-based paints such as printing water-based paints and water-based clear paints are used as the paint.
  • the paint applied to the metal plate of the metal siding original plate is usually heated and dried using a far-infrared furnace or hot air furnace that irradiates far-infrared rays.
  • a method of irradiating the paint applied on the surface of the metal plate with near-infrared rays or mid-infrared rays to heat and dry for example, see Patent Document 3
  • a method is known in which a water-based paint applied to a metal plate is irradiated with near-infrared or mid-infrared radiation, and then the water-based paint is heated and dried in a hot air furnace or a far-infrared furnace (see, for example, Patent Document 4).
  • near-infrared or mid-infrared irradiation is performed for the purpose of shortening the baking time of the paint.
  • JP 2005-193481 A Japanese Patent Laid-Open No. 2003-53258 Japanese Patent Laid-Open No. 10-109062 JP-A-4-330966
  • the ultimate temperature of the metal plate is 100 ° C. or more for 3 minutes It is necessary to maintain the above. If the heating at this time is insufficient, the film-forming aid is not sufficiently removed from the water-based paint, and the adhesion and water resistance of the coating film may be insufficient.
  • the core material of the metal siding original plate is usually made of a synthetic resin foam such as polyurethane. For this reason, when the metal siding original plate is heated under the above conditions, the metal siding warpage, the interface peeling of the metal plate and the core material, the swelling of the back surface material, wrinkles of the back material, etc. is there.
  • the water-based paint contains water in addition to the film forming aid. Since water has a boiling point lower than that of the film-forming aid, it tends to evaporate prior to the film-forming aid during heating and drying. For this reason, in order to sufficiently evaporate the film-forming aid from the water-based paint, a long heating time of 3 minutes or more is required even when using near infrared rays or mid infrared rays. Therefore, it is possible to shorten the heating time even if a heating method using near infrared rays or mid infrared rays is adopted for drying the water-based paint applied to the metal plate side surface of the metal siding. Shape defects may still occur.
  • the present invention provides a method for producing a metal siding having a coating film excellent in water resistance and adhesion, and capable of suppressing deformation due to heat drying of the paint. Moreover, this invention provides the apparatus which can manufacture the said metal siding.
  • the inventor In heating and drying the water-based paint applied to the surface of the metal siding original plate, the inventor first heated the metal siding original plate coated with the water-based paint under mild conditions that do not cause deformation of the metal siding original plate. Next, by irradiating the water-based paint with near-infrared or mid-infrared rays and selectively heating only the metal plate of the metal siding original plate for a short time, the solvent in the water-based paint is balanced from the paint without deforming the metal siding original plate The inventors found that it can be distilled off and completed the present invention. That is, the present invention provides the following metal siding manufacturing method and manufacturing apparatus.
  • a method for producing a metal siding having a coating film formed from the water-based paint by heating in a first heating step and a second heating step, In the first heating step, the ultimate temperature of the metal plate is maintained at 60 to 100 ° C.
  • a metal siding original plate having a metal plate, a core material, and a back surface material in this order, and having a surface of the metal plate side coated with a water-based paint containing resin, water, and a film-forming aid.
  • a first heating furnace for heating so as to maintain an ultimate temperature of 60 to 100 ° C.
  • a second for heating the metal siding original plate so as to maintain the ultimate temperature of the metal plate at 120 to 200 ° C.
  • the second heating furnace is a near-infrared furnace for irradiating the water-based paint with near-infrared light having a maximum energy wavelength of 0.8 ⁇ m or more and less than 1.8 ⁇ m, or the water-based paint has a maximum energy wavelength of 1.8 to 3.0 ⁇ m.
  • a mid-infrared furnace that emits some mid-infrared radiation, The transfer device maintains the temperature reached in the first heating furnace for 1 to 10 minutes, and moves the metal siding original plate so as to reach the temperature reached in the second heating furnace in a heating time of 1 to 30 seconds.
  • Metal siding manufacturing equipment for transportation. [4] The metal siding manufacturing apparatus according to [3], wherein the second heating furnace is the mid-infrared furnace.
  • the water in the water-type paint is distilled off by heating at a temperature at which the core material is not thermally deformed, and then the film-forming aid in the water-based paint is obtained by irradiating near infrared rays or mid-infrared rays for a short time. Distill off. Therefore, according to the present invention, it is possible to produce a metal siding that has a coating film excellent in water resistance and adhesion, and that prevents deformation of the paint due to heat drying.
  • the method for producing metal siding according to the present invention comprises heating a metal siding original plate with a water-based paint applied to the surface by a first heating step and a second heating step, and performing a metal siding having a coating film formed from the water-based paint. To manufacture.
  • the metal siding original plate has a metal plate, a core material, and a back surface material in this order.
  • the metal siding original plate is configured in the same manner as a known metal siding except that it does not have a coating film to be formed on the surface of the metal siding on the metal plate side.
  • the metal siding original plate may further include other members known as components of metal siding other than the metal plate, the core material, and the back surface material.
  • the metal siding original plate can be manufactured by a known method for manufacturing metal siding. Moreover, a commercially available metal siding can be used as it is for the metal siding original plate.
  • the metal plate may be a plated metal plate with a plated metal plate surface or a painted metal plate with a painted metal plate surface.
  • the metal plate may be a flat plate or a molded metal plate such as an embossed metal plate.
  • Examples of the metal plate include a hot-dip zinc-5% aluminum alloy-plated steel plate, a hot-dip zinc-55% aluminum alloy-plated steel plate, an aluminum alloy plate, a stainless steel plate, and those coated.
  • the core material a known synthetic resin foam can be used. Examples of the core material include polyurethane foam, polystyrene foam, polyisocyanurate foam, phenol urethane foam, phenol foam and urea foam.
  • a sheet-like member usually used as a back material of metal siding such as laminated paper
  • the back material include laminated paper of aluminum foil and kraft paper, kraft paper heat-sealed with polyethylene, laminated paper of calcium carbonate impregnated paper and aluminum foil, and iron plate.
  • the water-based paint is applied to the surface of the metal siding original plate on the metal plate side.
  • the water-based paint contains a resin, a film forming aid and water.
  • the water-based paint may further contain other components as long as the effects of the present invention are obtained.
  • a resin that is usually used for forming a coating film on the surface of metal siding can be used.
  • resins include polyester resins, alkyd resins, acrylic resins, acrylic-styrene resins, styrene resins, silicone resins, epoxy resins, phenol resins, fluororesins, urea resins, melamine resins, benzoguanamine resins, and these resins. Modified resins modified with urethane, silicone or epoxy are included.
  • the content of the resin in the water-based paint is not particularly limited as long as the effect of the present invention can be obtained, but is, for example, 30 to 60 parts by weight in 100 parts by weight of the water-based paint.
  • the film-forming aid is a solvent that is mixed with water and has a boiling point higher than that of water.
  • the film-forming aid is preferably selected from alcohol components having a boiling point of 100 ° C. to 270 ° C.
  • the film formability film forming property
  • the film-forming aid tends to remain in the coating film even when the water-based paint is heated, resulting in insufficient water resistance and adhesion of the coating film.
  • film-forming aids include ethylene glycol monobutyl ether (butyl cellosolve, molecular weight 118, boiling point 171 ° C.), diethylene glycol monobutyl ether (butyl carbitol, molecular weight 162, boiling point 230 ° C.), diethylene glycol monobutyl ether acetate (butyl carbitol acetate, Molecular weight 206, boiling point 246 ° C.), propylene glycol monomethyl ether (molecular weight 90, boiling point 120 ° C.), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (texanol, molecular weight 216, boiling point 248 ° C.) and Diethylene glycol dibutyl ether (dibutyl carbitol, molecular weight 218, boiling point 254 ° C.) is included.
  • the film-forming aid may be one of these or a mixture of two or more.
  • the content of the film-forming aid in the water-based paint is not particularly limited as long as the effect of the present invention is obtained.
  • the content of the film-forming auxiliary is preferably 0.3 to 11.5 parts by mass per 100 parts by mass of the water-based paint. If the content of the film-forming aid in the water-based paint is less than 0.3 parts by mass, the amount of the film-forming aid in the coating film becomes too small, and a sufficient film-forming effect may not be obtained. If the content of the film-forming aid in the water-based paint exceeds 11.5 parts by mass, the amount of the film-forming aid in the coating film is too large, and the adhesion and water resistance of the coating film may be insufficient. is there.
  • the water content in the water-based paint is not particularly limited as long as the effects of the present invention are obtained.
  • the water content in the water-based paint is preferably 29 to 70 parts by weight per 100 parts by weight of the water-based paint.
  • the water content in the water-based paint is less than 29 parts by mass, the solid content concentration of the water-based paint is too high, so that the solid content in the water-based paint tends to settle and the storage stability of the water-based paint decreases. There is.
  • the content of water in the water-based paint exceeds 70 parts by mass, the solid content concentration of the water-based paint becomes too low, and the film thickness of the coating film formed by one application may become thin.
  • the water-based paint may further contain other components than the above-described components within a range where the effects of the present invention can be obtained.
  • other components include waxes, matting agents, antifoaming agents, surface conditioners, thickeners and antioxidants.
  • the thickness of the coating film formed on the surface of the metal siding on the metal plate side can be appropriately determined within a range in which the effect of the coating film can be obtained.
  • the thickness of the coating film is, for example, 3 to 30 ⁇ m, for example, from the viewpoint of covering the surface of the metal plate and not causing poor appearance.
  • the first heating step is a step of heating the metal siding original plate so that the ultimate temperature of the metal siding original plate is maintained at 60 to 100 ° C. for 1 to 10 minutes.
  • the reached temperature of the metal plate is the highest temperature among the temperatures of the metal plate in the metal siding original plate reached by the heating process. If the ultimate temperature in the first heating step is less than 60 ° C., the low boiling point component (mainly water) having a boiling point of 100 ° C. or less in the water-based paint may not be sufficiently removed from the water-based paint. If the ultimate temperature in the first heating step exceeds 100 ° C., the core material may be deformed and the shape of the metal siding original plate may be defective. If the time at which the temperature is maintained in the first heating step is less than 1 minute, the low boiling point component may not be sufficiently removed from the water-based paint, and if it exceeds 10 minutes, the shape of the metal siding original plate may be poor. May occur.
  • the heating conditions of the first heating process are relatively mild. For this reason, even if the metal siding original plate is heated in the first heating step, heat enough to thermally deform the core material is not transmitted to the core material. Moreover, the low boiling point component in the water-based paint is sufficiently evaporated from the water-based paint by the first heating step. Therefore, the low boiling point component in the water-based paint is sufficiently removed from the water-based paint without deformation of the metal siding original plate.
  • a 1st heating process can be implemented using the well-known heating furnace which can implement
  • Examples of the heating furnace for the first heating step include a hot air furnace that sends heated gas (air) to the painted surface of the metal siding original plate, and a far infrared ray that irradiates far infrared rays toward the painted surface of the metal siding original plate.
  • far infrared rays are electromagnetic waves having a maximum energy wavelength in the range of 3.0 to 50 ⁇ m.
  • the maximum energy wavelength is a wavelength having the maximum energy in the wavelength range of electromagnetic waves.
  • the water-based paint of the metal siding raw plate heated in the first heating step is irradiated with near-infrared rays or mid-infrared rays, and the temperature of the metal plate is 120 to 200 ° C. with a heating time of 1 to 30 seconds.
  • This is a step of heating the metal siding original plate so as to reach. If the ultimate temperature in the second heating step is less than 120 ° C., the film-forming aid in the aqueous paint may not be sufficiently removed from the aqueous paint. If the ultimate temperature in the second heating step exceeds 200 ° C., the core material may be deformed and the shape of the metal siding original plate may be defective.
  • the film-forming aid may not be sufficiently removed from the water-based paint, and if it exceeds 30 seconds, the shape of the metal siding original plate is poor. May occur.
  • the maximum energy wavelength of infrared rays applied to the water-based paint is 0.8 to 3.0 ⁇ m.
  • the near infrared ray is an electromagnetic wave having a maximum energy wavelength of 0.8 ⁇ m or more and less than 1.8 ⁇ m
  • the middle infrared ray is an electromagnetic wave having a maximum energy wavelength of 1.8 to 3.0 ⁇ m.
  • the maximum energy wavelength of near-infrared is more preferably 0.8 to 1.5 ⁇ m
  • the maximum energy wavelength of mid-infrared is more preferably 2.0 to 2.7 ⁇ m.
  • the second heating step it is preferable to irradiate mid-infrared rays from the viewpoint of easier control of the process speed and heating conditions and from the viewpoint of long life of the light source lamp.
  • the heating condition in the second heating step can be achieved by the wavelength of near-infrared or mid-infrared, irradiation amount, irradiation distance, and the like.
  • the metal plate and the water-based paint are locally heated in the stacking direction of the metal siding original plate so as to be substantially limited to the metal plate and the water-based paint.
  • the core material and the back material are hardly heated by the irradiated infrared rays. Therefore, the core material is not thermally deformed.
  • the second heating step promotes hardening of the surface of the water-based paint, while the inside of the water-based paint is composed of a composition having an appropriate fluidity by the remaining film-forming aid, and the water-based paint is appropriate. Spread on the metal plate. Then, the film-forming aid for the water-based paint is removed from the water-based paint. Thus, a coating film having good spread and hardness is formed.
  • the second heating step can be performed using a known heating furnace capable of realizing the above heating conditions.
  • the heating furnace for the second heating step include a mid-infrared furnace that irradiates the painted surface of the metal siding original plate with mid-infrared rays, and a near-infrared furnace that irradiates the painted surface of the metal siding original plate with near-infrared rays. .
  • FIG. 1 is a graph showing the relationship between the temperature of the metal plate, the core material and the back surface material and the heating time in the second heating step. Each temperature was monitored by a commercially available K thermocouple.
  • A (the highest temperature line) indicates the temperature of the metal plate
  • B (middle line) indicates the temperature of the back surface material
  • C (the lowest temperature line) indicates the temperature of the core material. Indicates. A and B were measured by attaching thermocouples to the front and back surfaces, and C was measured by inserting a thermocouple at the center in the thickness direction of the core material.
  • the ultimate temperature of the metal plate is the temperature at the front end of the gently decreasing portion indicated by the arrow F in the A line. As shown in FIG.
  • the temperature of the metal plate rises to about 150 ° C. about 5 seconds after the start of the second heating step, and finishes the heating at the point F when the temperature reached the metal plate is reached.
  • the temperature of the metal plate falls slowly.
  • the gradual decrease in the temperature of the metal plate even after the end of heating is due to the effect of the heat insulating effect by the core material.
  • the temperature of a metal plate will be at least less than 100 degreeC after 1 minute from a heating.
  • the temperature of the back material and the temperature of the core material are both substantially constant from the start of the second heating step, and no increase in these temperatures due to the second step is observed. Also, the temperature does not rise even after a long time has passed.
  • the metal siding original plate since only the metal plate of the metal siding original plate is heated in a limited manner in the stacking direction, the metal siding original plate is not deformed by heat. Moreover, since the metal plate is not exposed to a high temperature for a long time, peeling of the metal plate and the core material can be suppressed.
  • the method for producing metal siding according to the present invention may further include other steps than the first heating step and the second heating step within a range where the effects of the present invention can be obtained.
  • the metal siding manufacturing method according to the present invention may further include a step of applying the water-based paint to the surface of the metal siding original plate on the metal plate side.
  • the step of applying the water-based paint can be performed by a known printing method selected according to the state of the metal plate or the water-based paint. Examples of printing methods include flexographic printing, sponge roll coating, gravure offset printing, screen printing, and inkjet printing. In particular, inkjet printing can easily form a complex multicolor pattern in a short time.
  • the metal siding manufacturing method may further include a step of forming a base coating film on the surface of the metal siding original plate on the metal plate side before applying the water-based paint.
  • the type of base coating material and the method for forming the coating film are not particularly limited.
  • the step of forming the base coating film can be performed by a known technique.
  • a UV curable coating can be used as the base coating, and UV irradiation can be employed as a method for forming the base coating.
  • the formation of such a base coating film by UV curing is a viewpoint of forming a coating film without changing the temperature of the metal siding original plate, a viewpoint of rapidly forming the base coating film, and a viewpoint of further enhancing the aesthetics of the metal siding. From the above, it is preferable.
  • the metal siding manufacturing method when a coating film is formed by heating and drying from a water-based paint applied to the surface of the metal siding original plate, a low-boiling component in the water-based paint is transformed into a core material.
  • the film-forming aid having a higher boiling point is removed from the water-based paint by intense heating limited to the metal plate in the laminating direction. Therefore, the metal siding which has the coating film which is excellent in water resistance and adhesiveness on the surface by the side of a metal plate is obtained. Further, the resulting metal siding is not substantially deformed by heat.
  • the method for producing metal siding according to the present invention can be preferably carried out by the following production apparatus.
  • the metal siding manufacturing apparatus includes a first heating furnace, a second heating furnace, and a transfer apparatus.
  • the first heating furnace is a heating furnace that performs the first heating step.
  • the first heating furnace the above-described hot air furnace or far-infrared furnace may be used.
  • the second heating furnace is a heating furnace that performs the second heating step.
  • the aforementioned mid-infrared furnace or near-infrared furnace can be used.
  • the second heating furnace is preferably a mid-infrared furnace from the viewpoint of easier control of the process speed and heating conditions and the long life of the light source lamp.
  • the 1st heating furnace and the 2nd heating furnace may be isolate
  • the first heating furnace and the second heating furnace may be batch-type heating furnaces in which the inside of the furnace is hermetically sealed, but from the viewpoint of process speed control and productivity, the moving metal siding original plate is heated.
  • a continuous heating furnace is preferable.
  • the first heating furnace and the second heating furnace have a near-infrared ray or a mid-infrared ray in a range where the effects of the present invention can be obtained, such as a blower for discharging the solvent vapor generated by heating from the inside of the furnace to the outside. You may have apparatuses other than an irradiation apparatus.
  • the transfer device performs at least the carrying of the metal siding original plate into the first heating furnace to the carrying out of the second heating furnace. More specifically, the transport device transports the metal siding original plate so that the temperature reached in the first heating furnace is maintained for 1 to 10 minutes and the temperature reached in the second heating furnace is raised in 1 to 30 seconds. .
  • the temperature raising time to reach the target temperature is such that the apparatus for conveying the metal siding original plate at a constant speed is used for the conveying apparatus, and the conveying distance by the conveying apparatus in the furnace is used for the first heating furnace and the second heating furnace. Can be realized by using a heating furnace having an appropriate length for realizing the maintenance time and the temperature raising time.
  • the temperature maintaining time and the temperature raising time can be realized by using an apparatus that can freely adjust the conveying speed in the furnaces of the first heating furnace and the second heating furnace.
  • the transport device is more preferably the latter device.
  • the transfer device can be constituted by, for example, a robot arm, a turntable, one or a plurality of belt conveyors, and a combination thereof.
  • the metal siding manufacturing apparatus may further include devices other than the first heating furnace, the second heating furnace, and the conveying device within a range in which the effects of the present invention are obtained.
  • Examples of other devices include a base coater for applying a base paint to the surface of the metal siding original plate on the metal plate side, a base coat forming apparatus for curing the base paint to form a base coat, And an overcoating device for applying the water-based paint to the surface of the metal siding original plate on the metal plate side.
  • the metal siding manufacturing apparatus according to the present invention can be configured by a combination of the above-described apparatuses.
  • Examples of the metal siding manufacturing apparatus according to the present invention include the apparatus shown in FIGS. 2A to 2D.
  • the apparatus shown in FIG. 2A is arranged on four conveyor belts 11 to 14 for conveying a metal siding original plate at speed, and on the conveyor belt 12, and the water-based paint of the metal siding original plate on the conveyor belt 12 is already applied.
  • a hot blast furnace 15 for sending hot air to the surface of the metal plate that heats the metal siding original plate, and the metal belt side surface of the metal siding original plate on the conveyor belt 13 that is disposed on the conveyor belt 13
  • a mid-infrared furnace 16 for heating the metal siding base plate.
  • the apparatus shown in FIG. 2B is arranged on the conveyor belt 11 in addition to the conveyor belts 11 to 14, the hot stove 15 and the mid-infrared furnace 16 in the apparatus of FIG. 2A, and the metal plate of the metal siding original plate on the conveyor belt 11.
  • a spray nozzle 17 for spraying paint on the side surface is further provided.
  • the apparatus shown in FIG. 2C includes, in addition to the conveyor belts 11 to 14, the hot blast furnace 15, and the mid-infrared furnace 16 in the apparatus of FIG. 2A, a conveyor belt 18 that conveys the metal siding original plate at a speed toward the conveyor belt 11. And a gravure offset printing device 19 that applies a coating material to the metal plate side surface of the metal siding original plate conveyed by the conveyance belt 18 and sends a plate-shaped conveyance object to the conveyance belt 11.
  • the gravure offset printing apparatus 19 includes a gravure plate roll 19a, an offset roll 19b, and a cleaning roll 19c.
  • the gravure plate roll 19a is formed according to the pattern to be applied, and has a concave portion for accommodating a water-based paint on the peripheral surface.
  • the offset roll 19b carries the water-based paint of the concave portion transferred from the gravure plate roll 19a on the peripheral surface, and transfers it to the metal plate side surface of the metal siding original plate.
  • the cleaning roll 19c removes the water-based paint remaining on the peripheral surface of the offset roll 19b after the transfer of the water-based paint to the metal siding original plate from the peripheral surface.
  • the apparatus shown in FIG. 2D is arranged on the spray nozzle 17, the conveyor belt 18, and the conveyor belt 18 in addition to the conveyor belts 11 to 14, the hot stove 15 and the mid-infrared furnace 16 in the apparatus of FIG.
  • An inkjet nozzle 20 that sprays a UV curable coating onto the surface of the metal siding original plate on the belt 18 and a UV lamp 21 that irradiates ultraviolet rays onto the surface of the metal plate coated with the UV curable coating are further provided. .
  • the metal siding manufacturing apparatus can implement the above-described metal siding manufacturing method. Therefore, it is possible to produce a metal siding that has a coating film excellent in water resistance and adhesion and that does not undergo substantial deformation due to heating.
  • a hot-dip Zn-55% Al alloy-plated steel plate having a thickness of 0.27 mm and a coating adhesion amount of 90 g / m 2 per side was used as a coating original plate.
  • a coating type chromate treatment solution (NRC300NS (manufactured by Nippon Paint Co., Ltd.) was applied as Cr so as to have an adhesion amount of 50 mg / m 2 ) was performed.
  • the coating original plate was heated so that the final temperature of the coating original plate was 225 ° C., and the top coating film was baked.
  • a film was formed on the back surface of the coated original plate by coating a commercially available epoxy resin-based paint (SKB0 manufactured by Nippon Fine Coatings Co., Ltd.) with a roll coater so that the dry film thickness was 4 ⁇ m.
  • a coated steel sheet for surface was obtained by forming the coating film and the coating film on the plated steel sheet.
  • the aluminum kraft paper was sent out on the foaming polyisocyanurate raw material layer. Then, by heating, pressurizing, and foaming in a state where the polyisocyanurate raw material layer is sandwiched between the embossed surface-coated steel sheet and aluminum kraft paper, the surface-coated steel sheet, core material and aluminum craft paper are A metal siding base plate having this order was manufactured.
  • the thickness of the core material was 17 mm. The thickness of the core material was adjusted by the distance between the double conveyors that sandwich the metal siding original plate in the stacking direction during the heating and pressurization.
  • the detailed foaming conditions of the polyisocyanurate raw material are as follows. Line speed 40m / min Flow rate 6kg / min Liquid temperature 30 °C Preheat temperature of coated steel sheet for surface 35 °C Oven cure temperature 50 °C Foaming machine Low pressure agitator mixing foaming machine
  • paint 1 is a water-based clear paint as described in JP 2010-234366 A.
  • Acrylic resin varnish (Acreset (registered trademark of Nippon Shokubai Co., Ltd.) EX-40, heating residue 43%, manufactured by Nippon Shokubai Co., Ltd.) is used as the binder, and a nonionic surfactant (Adecouplerone) is used as the thermal gelling agent.
  • MPC-800 cloud point of about 30 ° C., manufactured by ADEKA Corporation
  • butyl cellosolve ethylene glycol monobutyl ether
  • benzotriazole compound TINUVIN (registered by BASF) as an ultraviolet absorber) Trademark
  • 1130 manufactured by BASF
  • polyacrylonitrile-based beads Teoughtick (registered trademark of Toyobo Co., Ltd.) A-20, manufactured by Toyobo Co., Ltd.) as the matting agent
  • polymer-type special nonion as the thickener Compound
  • the nonionic emulsifier 1 is Neugen EA-130T (Daiichi Kogyo Seiyaku Co., Ltd.), the nonionic emulsifier 2 is Neugen EA-170S (Daiichi Kogyo Seiyaku Co., Ltd.), and the anionic emulsifier is Rebenol WZ ( Kao Corporation) and Pluronic P-84 (ADEKA Corporation) were used as the polyoxyethylene-polyoxypropylene block copolymer.
  • emulsion for paint 2 An emulsion containing particles (hereinafter also referred to as “emulsion for paint 2”) was obtained.
  • the average particle size of the fluorine-containing copolymer particles in the emulsion for paint 2 was 110 nm.
  • Veova 9 registered trademark of Japan Chemtech Co., Ltd., manufactured by Japan Chemtech Co., Ltd. was used as the following neonanonic acid vinyl ester.
  • titanium oxide paste (2. Preparation of titanium oxide paste) The materials shown below were stirred at 6000 rpm for 20 minutes with the following composition at a high speed homomixer, filtered through 100 mesh polyethylene, then stirred again at 6000 rpm for 20 minutes, filtered through 100 mesh polyethylene, and solid.
  • a titanium oxide paste having a content of 72.3% and PWC of 98.4% (hereinafter also referred to as “titanium oxide paste for paint 2”) was obtained. Titanium oxide 69.30% by mass Pigment dispersant 7.90% by mass 25% ammonia water 0.07% by mass Antifoaming agent 0.13% by mass Water 22.60% by mass
  • TIPAQUE CR-97 (Ishihara Sangyo Co., Ltd.) is used for titanium oxide
  • WATERSOL AM-273 DI Co., Ltd.
  • SN deformer 373 (San Nopco Co., Ltd.) is used as an antifoaming agent. Were used respectively.
  • DBDG Diethylene glycol dibutyl ether
  • WATERSOL AM-274 manufactured by DIC Corporation
  • 50 masses of Aquanate AQ-100 is used as an aqueous polyisocyanate.
  • % Aqueous dispersions manufactured by Nippon Polyurethane Co., Ltd. were used.
  • Azisper PB-821 (manufactured by Ajinomoto Fine Techno Co., Ltd.) is used as the polymer dispersant
  • OXT211 (manufactured by Toa Gosei Co., Ltd.) is used as the oxetane compound
  • Cyanine Blue 4044 (Sanyo dye shares is used as Pigment Blue 15: 4). Each) were used.
  • Photopolymerizable compound epoxidized linseed oil
  • Oxetane compound 2 8.9% by mass
  • N-ethyldiethanolamine 0.05% by mass
  • Perfluoroalkyl group-containing acrylic oligomer 0.025% by mass
  • Perfluoroalkyl group-containing ethylene oxide adduct 0.025% by mass Glycol ether 10% by mass Triphenylsulfonium salt 5% by mass
  • the photopolymerizable compound is Vikoflex 9040 (manufactured by ATOFINA), the oxetane compound 1 is OXT221 (manufactured by Toa Gosei Co., Ltd.), the oxetane compound 2 is OXT211 (manufactured by Toa Gosei Co., Ltd.), and a perfluoroalkyl group-containing acrylic.
  • Mega-Fax F178k (manufactured by DIC Corporation) is used for oligomers
  • Mega-Fac F1405 (manufactured by DIC Corporation) is used for perfluoroalkyl group-containing ethylene oxide adducts
  • Highsolve BDB (manufactured by Toho Chemical Industry Co., Ltd.) is used for glycol ethers.
  • UV16992 (manufactured by Dow Chemical Co., Ltd.) were used for the triphenylsulfonium salt.
  • Example 1 The surface of the coated steel sheet for the surface of the metal siding original plate was coated with the paint 1 by airless spraying so as to have a dry mass of 30 g / m 2 . Thereafter, the coated metal siding original plate was heated in the first heating step and the second heating step, thereby forming a coating film of the paint 1 on the surface of the coated steel sheet for surface production, thereby producing the metal siding 1.
  • a hot stove was used for the first heating process, and a mid-infrared furnace was used for the second heating process.
  • the heating conditions of the first heating step are as follows: the plate surface wind speed (the wind speed at the surface of the surface coated steel sheet) is 10 m / second, the ultimate temperature of the surface coated steel sheet is 80 ° C., and the holding time (the temperature of the surface coated steel sheet) For 3 minutes). Moreover, the heating conditions of the 2nd heating process made the plate
  • Example 2 and 3 Metal sidings 2 and 3 were produced in the same manner as in Example 1 except that the temperature raising time in the second heating step was changed to 10 seconds and 30 seconds, respectively. The temperature raising time was changed by adjusting the conveyance speed of the metal siding original plate and the output of the infrared heater (irradiation amount of mid-infrared rays).
  • Example 1 except that the ultimate temperature of the surface coated steel sheet in the first heating step was 60 ° C, the holding time in the first heating step was 10 minutes, and the ultimate temperature in the second heating step was 150 ° C. A metal siding 4 was produced. Moreover, it is the same as that of Example 1 except that the ultimate temperature of the coated steel sheet for surface in the first heating step is 100 ° C., the holding time in the first heating step is 1 minute, and the ultimate temperature in the second heating step is 150 ° C. Thus, metal siding 6 was produced.
  • Example 5 and 7 Metal sidings 5 and 7 were carried out in the same manner as in Example 1 except that the ultimate temperature of the coated steel sheet for surface use in the second heating step was 150 ° C. and the temperature raising time in the second heating step was changed to 5 seconds and 10 seconds, respectively. Was made.
  • Example 8 and 9 Metal sidings 8 and 9 were produced in the same manner as in Example 1 except that the ultimate temperature in the second heating step was 200 ° C. and the temperature raising time in the second heating step was changed to 5 seconds and 10 seconds, respectively.
  • Example 10 For the second heating step, a near infrared furnace was used instead of the mid-infrared furnace, the ultimate temperature of the surface coated steel sheet in the second heating step was 150 ° C., and the temperature raising time in the second heating step was changed to 3 seconds Produced a metal siding 10 in the same manner as in Example 1.
  • Example 11 A metal siding 11 was produced in the same manner as in Example 1 except that a far-infrared furnace was used in the first heating step instead of a hot air furnace, and the ultimate temperature of the surface coated steel sheet in the second heating step was changed to 150 ° C. did.
  • Example 1 Example 1 except that the ultimate temperature of the surface coated steel sheet in the first heating step was 60 ° C, the holding time in the first heating step was 11 minutes, and the ultimate temperature in the second heating step was 150 ° C. A metal siding 12 was produced.
  • Example 2 Example 1 except that the ultimate temperature of the surface coated steel sheet in the first heating step was 100 ° C., the holding time in the first heating step was 0.5 minutes, and the ultimate temperature in the second heating step was 150 ° C. Thus, metal siding 13 was produced.
  • a metal siding 15 was produced in the same manner as in Example 1 except that the ultimate temperature of the coated steel sheet for surface use in the first heating step was 110 ° C. and the second heating step was not performed.
  • Metal sidings 16 and 17 were produced in the same manner as in Example 1 except that the ultimate temperature and the heating time of the coated steel sheet for surface in the second heating step were changed to 110 ° C., 10 seconds, 120 ° C., and 35 seconds, respectively. .
  • Example 7 A near-infrared furnace was used instead of the mid-infrared furnace for the second heating step, the ultimate temperature of the coated steel sheet for surface use in the second heating step was 210 ° C., and the temperature raising time in the second heating step was changed to 5 seconds Produced a metal siding 18 in the same manner as in Example 1.
  • Example 12 The surface of the coated steel sheet for the surface of the metal siding original plate was coated with the paint 2 by a gravure offset printing apparatus so as to have a dry mass of 20 g / m 2 according to the undulation of the surface.
  • a gravure offset printing apparatus an apparatus having a gravure plate roll, an offset roll, and a cleaning roll as described in JP-A-2002-86036 was used (see FIG. 2).
  • the gravure roll rotates while holding the paint supplied to the cell part (concave part) having a different depth according to the density of the image.
  • the offset roll has a surface layer made of silicone rubber having a rubber hardness of 35 degrees, is in contact with the gravure plate roll in a freely rotating manner, and after carrying the paint held on the gravure plate roll, the metal siding original plate Transcript to.
  • the cleaning roll is rotatably in contact with the offset roll, and removes untransferred paint remaining on the surface of the offset roll from the surface.
  • the metal siding original plate coated with the paint 2 was heated in the first heating step and the second heating step under the same conditions as in Example 1 to form a coating film of the paint 2 to produce a metal siding 19.
  • Examples 13 to 22 and Comparative Examples 8 to 14 Metal siding was performed in the same manner as in Example 10 except that the metal siding original plate coated with paint 2 was heated in the first heating step and the second heating step under the same conditions as in Examples 2 to 11 and Comparative Examples 1 to 7, respectively. 20 to 36 were produced.
  • Example 23 Sandstone matched to the embossed pattern on the surface of the coated steel sheet for metal siding using paint 3 and 50% of the surface area of the coated steel sheet for surface coating using an ink jet printer (patterning jet; Tritech Co., Ltd.). Tone design was inkjet printed. The conditions for inkjet printing are shown below. (Conditions for inkjet printing) Nozzle diameter of inkjet head 35 ⁇ m Head heating temperature for inkjet printing 45 ° C Applied voltage 11.5V Pulse width 10.0 ⁇ s Drive frequency 3483Hz Ink drop volume 42pL Resolution 360 dpi Ink application amount 8.4 g / m 2
  • the surface of the coated steel sheet for ink jet printing was irradiated with ultraviolet rays to cure the paint 3, and a coating film of the paint 3 was formed on the surface of the coated steel sheet for surface in the metal siding original plate.
  • the conditions for ultraviolet irradiation are shown below.
  • the following integrated light quantity was measured with an infrared light quantity meter UV-351-25 (manufactured by Oak Manufacturing Co., Ltd.). (Conditions for UV irradiation) Light source High pressure mercury lamp (H bulb; Fusion UV Systems Japan Ltd.) Lamp output 200W / cm Integrated light quantity 600mJ / cm 2
  • the surface of the coating film of the paint 3 was coated with the paint 1 in the same manner as in Example 1. Then, the coated metal siding original plate is heated in the first heating step and the second heating step under the same conditions as in Example 1 to form the coating film of the coating material 1 on the coating film of the coating material 3, and the metal siding 37 was produced.
  • Example 24 to 33 and Comparative Examples 15 to 21 Example except that the metal siding original plate with the paint 3 surface coated with paint 1 is heated in the first heating step and the second heating step under the same conditions as in Examples 2 to 11 and Comparative Examples 1 to 7, respectively. In the same manner as in Example No. 23, metal sidings 38 to 54 were produced.
  • the production conditions for metal sidings 1 to 18 are shown in Table 1, the production conditions for metal sidings 19 to 36 are shown in Table 2, and the production conditions for metal sidings 37 to 54 are shown in Table 3, respectively.
  • the core material and the backside paper are peeled off from the metal siding, and the surface coated steel sheet having the coating film prepared in the above-mentioned examples or comparative examples is immersed in boiling ion-exchanged water at 98 ° C. or higher for 2 hours, and then at room temperature. Let dry for hours. Then, the adhesion evaluation test described above was performed and evaluated according to the following criteria. ⁇ If it is above, it is at a usable level.
  • X The number of exfoliated sections is 5 or more
  • metal siding 1 to 18 The evaluation of metal siding 1 to 18 is shown in Table 4, the evaluation of metal siding 19 to 36 is shown in Table 5, and the production conditions of metal siding 37 to 54 are shown in Table 6.
  • the coating film was excellent in adhesion, scratch hardness and water-resistant adhesion, and warped, swollen or wrinkled, and Good metal siding with no peeling at the interface was obtained.
  • the amount of heating in the second heating step was smaller, the adhesion of the coating film tended to be slightly lowered, and when the amount of heating in the second heating step was larger, the warp tended to be slightly increased.
  • a variety of designs are required for building exterior materials, and metal siding is also required to diversify its decorative patterns.
  • a decorative pattern can be further added to a commercially available metal siding.
  • a metal siding having a coated surface can be produced in a short heating time. Therefore, according to the present invention, further development of an exterior material rich in decorativeness and its spread are expected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Drying Of Solid Materials (AREA)
  • Laminated Bodies (AREA)
  • Finishing Walls (AREA)

Abstract

A metal siding having a coating film having excellent water resistance and excellent adhesiveness and having suppressed deformation caused by heat drying can be produced as a result of the present invention, whereby: the temperature reached by a metal plate in a metal siding original plate having a water-based paint containing a film forming aid coated on the metal plate-side surface thereof is held at 60-100°C for 1-10 minutes; near infrared or mid-wavelength infrared rays having a maximum energy wavelength of 0.8-3.0 µm are then irradiated on the coated water-based paint; and the temperature of the metal plate is caused to reach 120-200°C for a heat increasing time of 1-30 seconds.

Description

金属サイディングの製造方法および製造装置Metal siding manufacturing method and manufacturing apparatus
 本発明は、金属サイディングの製造方法および製造装置に関する。 The present invention relates to a method and apparatus for manufacturing metal siding.
 建築物の外装材には、裏面材、芯材および金属板をこの順で有する金属サイディングが知られている(例えば、特許文献1参照)。金属板は、芯材などと積層される前にエンボス加工されることがある。この場合、エンボス柄と装飾模様とを同調させるために、または上塗り塗膜として、金属サイディングの金属板の表面を塗料によってさらに塗装することがある(以後、塗膜を有する前の金属サイディングを特に「金属サイディング原板」とも言う)。上記塗料には、印刷用水系塗料および水系クリアー塗料などの水系塗料が用いられる。水系塗料には、造膜助剤として、沸点100℃~270℃のアルコール成分から選ばれた少なくとも一つを含有する塗料が知られている(例えば、特許文献2参照)。金属サイディング原板の金属板に塗布された塗料は、通常、遠赤外線を照射する遠赤外線炉または熱風炉を用いて加熱、乾燥される。 A metal siding having a back material, a core material, and a metal plate in this order is known as a building exterior material (see, for example, Patent Document 1). The metal plate may be embossed before being laminated with a core or the like. In this case, in order to synchronize the embossed pattern and the decorative pattern, or as a top coat film, the surface of the metal plate of the metal siding may be further coated with a paint (hereinafter, the metal siding before having the coating film is particularly applied). Also called “metal siding”. Water-based paints such as printing water-based paints and water-based clear paints are used as the paint. As the water-based paint, a paint containing at least one selected from alcohol components having a boiling point of 100 ° C. to 270 ° C. is known as a film forming aid (see, for example, Patent Document 2). The paint applied to the metal plate of the metal siding original plate is usually heated and dried using a far-infrared furnace or hot air furnace that irradiates far-infrared rays.
 一方、金属板表面における塗料の一般的な乾燥方法には、金属板の表面に塗布された塗料に近赤外線または中赤外線を照射して加熱、乾燥する方法(例えば、特許文献3参照)や、まず、金属板に塗布された水系塗料に近赤外線または中赤外線を照射し、次いで熱風炉または遠赤外線炉で上記水系塗料を加熱、乾燥する方法が知られている(例えば、特許文献4参照)。これらの方法において、近赤外線または中赤外線の照射は、塗料の焼成時間の短縮を目的として行われる。 On the other hand, as a general drying method of the paint on the surface of the metal plate, a method of irradiating the paint applied on the surface of the metal plate with near-infrared rays or mid-infrared rays to heat and dry (for example, see Patent Document 3), First, a method is known in which a water-based paint applied to a metal plate is irradiated with near-infrared or mid-infrared radiation, and then the water-based paint is heated and dried in a hot air furnace or a far-infrared furnace (see, for example, Patent Document 4). . In these methods, near-infrared or mid-infrared irradiation is performed for the purpose of shortening the baking time of the paint.
特開2005-193481号公報JP 2005-193481 A 特開2003-53258号公報Japanese Patent Laid-Open No. 2003-53258 特開平10-109062号公報Japanese Patent Laid-Open No. 10-109062 特開平4-330966号公報JP-A-4-330966
 ところで、上記金属サイディング原板の金属板側表面に水系塗料の塗膜を形成する場合、塗布された水系塗料による塗膜を形成するためには、上記金属板の到達温度を100℃以上に3分間以上維持することが必要である。このときの加熱が不十分であると、水系塗料から造膜助剤が十分に除去されず、塗膜の密着性や耐水性などが不十分になることがある。しかしながら、金属サイディング原板の上記芯材は、通常、ポリウレタンなどの合成樹脂の発泡体で構成される。このため、金属サイディング原板を上記の条件で加熱すると、金属サイディングの反り、金属板および芯材の界面剥離、裏面材の膨れ、裏面材のシワなどの金属サイディングの形状の不良が発生することがある。 By the way, in the case of forming a water-based paint film on the surface of the metal siding original plate on the metal plate side, in order to form a coating film with the applied water-based paint, the ultimate temperature of the metal plate is 100 ° C. or more for 3 minutes It is necessary to maintain the above. If the heating at this time is insufficient, the film-forming aid is not sufficiently removed from the water-based paint, and the adhesion and water resistance of the coating film may be insufficient. However, the core material of the metal siding original plate is usually made of a synthetic resin foam such as polyurethane. For this reason, when the metal siding original plate is heated under the above conditions, the metal siding warpage, the interface peeling of the metal plate and the core material, the swelling of the back surface material, wrinkles of the back material, etc. is there.
 金属サイディング原板の加熱時間を短縮する方法としては、近赤外線または中赤外線の照射による加熱の利用が考えられる。しかしながら、水系塗料は、造膜助剤の他に水を含む。水は、造膜助剤よりも沸点が低いため、加熱乾燥時に造膜助剤よりも先に蒸発しやすい。このため、水系塗料から造膜助剤を十分に蒸発させるためには、近赤外線または中赤外線を利用しても、3分間以上の長い加熱時間が必要である。よって、金属サイディングの金属板側表面に塗布された水系塗料の乾燥に、近赤外線または中赤外線による加熱方法を採用しても、加熱時間を短縮することは可能であるが、前述した金属サイディングの形状の不良が依然として発生することがある。 As a method for shortening the heating time of the metal siding original plate, it is conceivable to use heating by irradiation with near infrared rays or mid infrared rays. However, the water-based paint contains water in addition to the film forming aid. Since water has a boiling point lower than that of the film-forming aid, it tends to evaporate prior to the film-forming aid during heating and drying. For this reason, in order to sufficiently evaporate the film-forming aid from the water-based paint, a long heating time of 3 minutes or more is required even when using near infrared rays or mid infrared rays. Therefore, it is possible to shorten the heating time even if a heating method using near infrared rays or mid infrared rays is adopted for drying the water-based paint applied to the metal plate side surface of the metal siding. Shape defects may still occur.
 本発明は、耐水性および密着性に優れる塗膜を有し、塗料の加熱乾燥による変形が抑制される金属サイディングを製造する方法を提供する。
 また、本発明は、上記金属サイディングを製造することができる装置を提供する。
The present invention provides a method for producing a metal siding having a coating film excellent in water resistance and adhesion, and capable of suppressing deformation due to heat drying of the paint.
Moreover, this invention provides the apparatus which can manufacture the said metal siding.
 本発明者は、金属サイディング原板の金属板側表面に塗布された水系塗料を加熱乾燥するにあたり、まず水系塗料が塗布された金属サイディング原板を金属サイディング原板の変形が生じない穏和な条件で加熱し、次いで水系塗料へ近赤外線または中赤外線を照射して金属サイディング原板の金属板のみを選択的に短時間加熱することによって、金属サイディング原板を変形させることなく水系塗料中の溶剤をバランスよく塗料から留去することができることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の金属サイディングの製造方法および製造装置を提供する。
In heating and drying the water-based paint applied to the surface of the metal siding original plate, the inventor first heated the metal siding original plate coated with the water-based paint under mild conditions that do not cause deformation of the metal siding original plate. Next, by irradiating the water-based paint with near-infrared or mid-infrared rays and selectively heating only the metal plate of the metal siding original plate for a short time, the solvent in the water-based paint is balanced from the paint without deforming the metal siding original plate The inventors found that it can be distilled off and completed the present invention.
That is, the present invention provides the following metal siding manufacturing method and manufacturing apparatus.
 [1] 金属板、芯材および裏面材をこの順で有する金属サイディング原板の金属板側の表面に、樹脂、水および造膜助剤を含有する水系塗料が塗布された金属サイディング原板を、少なくとも第1加熱工程および第2加熱工程で加熱して、前記水系塗料から形成された塗膜を有する金属サイディングを製造する方法であって、
 前記第1加熱工程は、前記金属板の到達温度を60~100℃に1~10分間維持し、前記第2加熱工程は、最大エネルギー波長が0.8~3.0μmである近赤外線または中赤外線を前記水系塗料に照射して、前記金属板の温度を昇温時間1~30秒で120~200℃に到達させる、金属サイディングの製造方法。
 [2] 前記第2加熱工程は、中赤外線を前記水系塗料に照射する、[1]に記載の金属サイディングの製造方法。
 [3] 金属板、芯材および裏面材をこの順で有し、金属板側の表面に、樹脂、水および造膜助剤を含有する水系塗料が塗布された金属サイディング原板を、前記金属板の到達温度を60~100℃に維持するように加熱するための第1加熱炉と、前記金属板の到達温度を120~200℃に維持するように前記金属サイディング原板を加熱するための第2加熱炉と、前記金属サイディング原板の少なくとも前記第1加熱炉への搬入から前記第2加熱炉からの搬出までを行う搬送装置と、を有し、
 前記第2加熱炉は、前記水系塗料に最大エネルギー波長が0.8μm以上1.8μm未満である近赤外線を照射する近赤外線炉または前記水系塗料に最大エネルギー波長が1.8~3.0μmである中赤外線を照射する中赤外線炉であり、
 前記搬送装置は、前記第1加熱炉における前記到達温度を1~10分間維持し、前記第2加熱炉における前記到達温度に昇温時間1~30秒で到達するように、前記金属サイディング原板を搬送する、金属サイディングの製造装置。
 [4] 前記第2加熱炉は、前記中赤外線炉である、[3]に記載の金属サイディングの製造装置。
[1] At least a metal siding original plate in which a water-based paint containing resin, water and a film-forming aid is applied to the surface of the metal plate side of the metal siding original plate having a metal plate, a core material and a back material in this order, A method for producing a metal siding having a coating film formed from the water-based paint by heating in a first heating step and a second heating step,
In the first heating step, the ultimate temperature of the metal plate is maintained at 60 to 100 ° C. for 1 to 10 minutes, and in the second heating step, the near-infrared ray or medium having a maximum energy wavelength of 0.8 to 3.0 μm A method for producing metal siding, wherein the water-based paint is irradiated with infrared rays so that the temperature of the metal plate reaches 120 to 200 ° C. in a heating time of 1 to 30 seconds.
[2] The method for producing metal siding according to [1], wherein the second heating step irradiates the water-based paint with mid-infrared rays.
[3] A metal siding original plate having a metal plate, a core material, and a back surface material in this order, and having a surface of the metal plate side coated with a water-based paint containing resin, water, and a film-forming aid. A first heating furnace for heating so as to maintain an ultimate temperature of 60 to 100 ° C., and a second for heating the metal siding original plate so as to maintain the ultimate temperature of the metal plate at 120 to 200 ° C. A heating furnace, and a conveying device that performs at least the loading of the metal siding original plate into the first heating furnace to the unloading from the second heating furnace,
The second heating furnace is a near-infrared furnace for irradiating the water-based paint with near-infrared light having a maximum energy wavelength of 0.8 μm or more and less than 1.8 μm, or the water-based paint has a maximum energy wavelength of 1.8 to 3.0 μm. A mid-infrared furnace that emits some mid-infrared radiation,
The transfer device maintains the temperature reached in the first heating furnace for 1 to 10 minutes, and moves the metal siding original plate so as to reach the temperature reached in the second heating furnace in a heating time of 1 to 30 seconds. Metal siding manufacturing equipment for transportation.
[4] The metal siding manufacturing apparatus according to [3], wherein the second heating furnace is the mid-infrared furnace.
 本発明によれば、まず芯材が熱変形しない温度の加熱によって水形塗料中の水が留去し、次いで近赤外線または中赤外線を短時間照射することによって水系塗料中の造膜助剤が留去する。したがって、本発明によれば、耐水性および密着性に優れる塗膜を有し、塗料の加熱乾燥による変形が抑制される金属サイディングを製造することが可能となる。 According to the present invention, first, the water in the water-type paint is distilled off by heating at a temperature at which the core material is not thermally deformed, and then the film-forming aid in the water-based paint is obtained by irradiating near infrared rays or mid-infrared rays for a short time. Distill off. Therefore, according to the present invention, it is possible to produce a metal siding that has a coating film excellent in water resistance and adhesion, and that prevents deformation of the paint due to heat drying.
第2加熱工程における金属板、芯材および裏面材の温度と加熱時間との関係を示すグラフである。It is a graph which shows the relationship between the temperature of a metal plate in a 2nd heating process, a core material, and a back surface material, and heating time. 本発明に係る金属サイディングの製造装置の例を模式的に示す図である。It is a figure which shows typically the example of the manufacturing apparatus of the metal siding based on this invention.
 [金属サイディングの製造方法]
 本発明に係る金属サイディングの製造方法は、表面に水系塗料が塗布された金属サイディング原板を、第1加熱工程および第2加熱工程によって加熱し、水系塗料から形成された塗膜を有する金属サイディングを製造する。
[Metallic siding manufacturing method]
The method for producing metal siding according to the present invention comprises heating a metal siding original plate with a water-based paint applied to the surface by a first heating step and a second heating step, and performing a metal siding having a coating film formed from the water-based paint. To manufacture.
 上記金属サイディング原板は、金属板、芯材および裏面材をこの順で有する。金属サイディング原板は、金属サイディングの金属板側の表面に形成されるべき塗膜を有さない以外は、公知の金属サイディングと同様に構成される。金属サイディング原板は、金属板、芯材および裏面材以外の、金属サイディングの構成要素として公知の他の部材をさらに有していてもよい。金属サイディング原板は、金属サイディングを製造する公知の方法によって製造することができる。また、金属サイディング原板には、市販の金属サイディングをそのまま用いることができる。 The metal siding original plate has a metal plate, a core material, and a back surface material in this order. The metal siding original plate is configured in the same manner as a known metal siding except that it does not have a coating film to be formed on the surface of the metal siding on the metal plate side. The metal siding original plate may further include other members known as components of metal siding other than the metal plate, the core material, and the back surface material. The metal siding original plate can be manufactured by a known method for manufacturing metal siding. Moreover, a commercially available metal siding can be used as it is for the metal siding original plate.
 上記金属板は、金属板の表面がめっきされためっき金属板であってもよいし、金属板の表面が塗装された塗装金属板であってもよい。また金属板は、平板であってもよいし、エンボス加工された金属板などの、成形された金属板であってもよい。金属板の例には、溶融亜鉛-5%アルミニウム合金めっき鋼板、溶融亜鉛-55%アルミニウム合金めっき鋼板、アルミ合金板、ステンレス鋼板およびこれらの塗装されたものが含まれる。上記芯材には、公知の合成樹脂の発泡体を用いることができる。芯材の例には、ポリウレタンフォーム、ポリスチレンフォーム、ポリイソシアヌレートフォーム、フェノールウレタンフォーム、フェノールフォームおよび尿素フォームが含まれる。裏面材には、ラミネート紙などの、金属サイディングの裏面材として通常使用されるシート状の部材を用いることができる。裏面材の例には、アルミ箔とクラフト紙のラミネート紙、ポリエチレンが熱融着されたクラフト紙、炭酸カルシウム含浸紙とアルミ箔のラミネート紙および鉄板が含まれる。 The metal plate may be a plated metal plate with a plated metal plate surface or a painted metal plate with a painted metal plate surface. The metal plate may be a flat plate or a molded metal plate such as an embossed metal plate. Examples of the metal plate include a hot-dip zinc-5% aluminum alloy-plated steel plate, a hot-dip zinc-55% aluminum alloy-plated steel plate, an aluminum alloy plate, a stainless steel plate, and those coated. As the core material, a known synthetic resin foam can be used. Examples of the core material include polyurethane foam, polystyrene foam, polyisocyanurate foam, phenol urethane foam, phenol foam and urea foam. As the back material, a sheet-like member usually used as a back material of metal siding, such as laminated paper, can be used. Examples of the back material include laminated paper of aluminum foil and kraft paper, kraft paper heat-sealed with polyethylene, laminated paper of calcium carbonate impregnated paper and aluminum foil, and iron plate.
 上記水系塗料は、金属サイディング原板の金属板側の表面に塗布される。上記水系塗料は、樹脂、造膜助剤および水を含有する。上記水系塗料は、本発明の効果が得られる範囲において、他の成分をさらに含有していてもよい。 The water-based paint is applied to the surface of the metal siding original plate on the metal plate side. The water-based paint contains a resin, a film forming aid and water. The water-based paint may further contain other components as long as the effects of the present invention are obtained.
 上記樹脂には、金属サイディングの表面の塗膜を構成するのに通常使用される樹脂を用いることができる。樹脂の例には、ポリエステル樹脂、アルキド樹脂、アクリル樹脂、アクリル-スチレン樹脂、スチレン樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、フッ素樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、および、これらの樹脂をウレタン変性、シリコーン変性もしくはエポキシ変性した変性樹脂、が含まれる。樹脂の水系塗料中の含有量は、本発明の効果が得られる範囲であれば特に限定されないが、例えば水系塗料100質量部中、30~60質量部である。 As the above resin, a resin that is usually used for forming a coating film on the surface of metal siding can be used. Examples of resins include polyester resins, alkyd resins, acrylic resins, acrylic-styrene resins, styrene resins, silicone resins, epoxy resins, phenol resins, fluororesins, urea resins, melamine resins, benzoguanamine resins, and these resins. Modified resins modified with urethane, silicone or epoxy are included. The content of the resin in the water-based paint is not particularly limited as long as the effect of the present invention can be obtained, but is, for example, 30 to 60 parts by weight in 100 parts by weight of the water-based paint.
 上記造膜助剤は、水と混合し、かつ水の沸点以上の高い沸点を有する溶剤である。造膜助剤は、沸点が100℃~270℃のアルコール成分から好ましくは選ばれる。造膜助剤の沸点が100℃より低いと、塗膜の形成性(造膜性)が不十分となることがある。また、造膜助剤の沸点が270℃よりも高いと、水系塗料を加熱しても造膜助剤が塗膜中に残存しやすくなり、塗膜の耐水性および密着性が不十分となることがある。 The film-forming aid is a solvent that is mixed with water and has a boiling point higher than that of water. The film-forming aid is preferably selected from alcohol components having a boiling point of 100 ° C. to 270 ° C. When the film forming auxiliary has a boiling point lower than 100 ° C., the film formability (film forming property) may be insufficient. If the boiling point of the film-forming aid is higher than 270 ° C., the film-forming aid tends to remain in the coating film even when the water-based paint is heated, resulting in insufficient water resistance and adhesion of the coating film. Sometimes.
 造膜助剤の例には、エチレングリコールモノブチルエーテル(ブチルセロソルブ、分子量118、沸点171℃)、ジエチレングリコールモノブチルエーテル(ブチルカルビトール、分子量162、沸点230℃)、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート、分子量206、沸点246℃)、プロピレングリコールモノメチルエーテル(分子量90、沸点120℃)、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート(テキサノール、分子量216、沸点248℃)およびジエチレングリコールジブチルエーテル(ジブチルカルビトール、分子量218、沸点254℃)が含まれる。造膜助剤は、これらのうちの一種でもよいし、二種以上の混合物であってもよい。 Examples of film-forming aids include ethylene glycol monobutyl ether (butyl cellosolve, molecular weight 118, boiling point 171 ° C.), diethylene glycol monobutyl ether (butyl carbitol, molecular weight 162, boiling point 230 ° C.), diethylene glycol monobutyl ether acetate (butyl carbitol acetate, Molecular weight 206, boiling point 246 ° C.), propylene glycol monomethyl ether (molecular weight 90, boiling point 120 ° C.), 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (texanol, molecular weight 216, boiling point 248 ° C.) and Diethylene glycol dibutyl ether (dibutyl carbitol, molecular weight 218, boiling point 254 ° C.) is included. The film-forming aid may be one of these or a mixture of two or more.
 水系塗料中の造膜助剤の含有量は、本発明の効果が得られる範囲であれば、特に制限されない。たとえば造膜助剤の含有量は、水系塗料100質量部あたり、0.3~11.5質量部であることが好ましい。水系塗料中の造膜助剤の含有量が0.3質量部未満であると、塗膜中の造膜助剤の量が少なくなりすぎ、十分な造膜効果が得られないことがある。水系塗料中の造膜助剤の含有量が11.5質量部を超えると、塗膜中の造膜助剤の量が多すぎ、塗膜の密着性と耐水性が不十分となることがある。 The content of the film-forming aid in the water-based paint is not particularly limited as long as the effect of the present invention is obtained. For example, the content of the film-forming auxiliary is preferably 0.3 to 11.5 parts by mass per 100 parts by mass of the water-based paint. If the content of the film-forming aid in the water-based paint is less than 0.3 parts by mass, the amount of the film-forming aid in the coating film becomes too small, and a sufficient film-forming effect may not be obtained. If the content of the film-forming aid in the water-based paint exceeds 11.5 parts by mass, the amount of the film-forming aid in the coating film is too large, and the adhesion and water resistance of the coating film may be insufficient. is there.
 水系塗料中の水の含有量は、本発明の効果が得られる範囲であれば特に限定されない。上記水系塗料中の水の含有量は、水系塗料100質量部あたり、29~70質量部であることが好ましい。水系塗料中の水の含有量が29質量部未満であると、水系塗料の固形分濃度が高すぎて、水系塗料中の固形分が沈降しやすくなり、水系塗料の貯蔵安定性が低下することがある。水系塗料中の水の含有量が70質量部を超えると、水系塗料の固形分濃度が低くなりすぎて、1回の塗布で形成される塗膜の膜厚が薄くなることがある。 The water content in the water-based paint is not particularly limited as long as the effects of the present invention are obtained. The water content in the water-based paint is preferably 29 to 70 parts by weight per 100 parts by weight of the water-based paint. When the water content in the water-based paint is less than 29 parts by mass, the solid content concentration of the water-based paint is too high, so that the solid content in the water-based paint tends to settle and the storage stability of the water-based paint decreases. There is. When the content of water in the water-based paint exceeds 70 parts by mass, the solid content concentration of the water-based paint becomes too low, and the film thickness of the coating film formed by one application may become thin.
 水系塗料は、本発明の効果が得られる範囲において、前述した成分以外の他の成分をさらに含有していてもよい。他の成分の例には、ワックス、艶消し剤、消泡剤、表面調整剤、増粘剤、酸化防止剤が含まれる。 The water-based paint may further contain other components than the above-described components within a range where the effects of the present invention can be obtained. Examples of other components include waxes, matting agents, antifoaming agents, surface conditioners, thickeners and antioxidants.
 上記金属サイディングの金属板側表面に形成される塗膜の厚さは、塗膜の効果が得られる範囲内で適宜に決められうる。塗膜の厚さは、例えば金属板の表面を被覆し、かつ外観の不良を生じない観点から、例えば3~30μmである。 The thickness of the coating film formed on the surface of the metal siding on the metal plate side can be appropriately determined within a range in which the effect of the coating film can be obtained. The thickness of the coating film is, for example, 3 to 30 μm, for example, from the viewpoint of covering the surface of the metal plate and not causing poor appearance.
 上記第1加熱工程は、金属サイディング原板の金属板の到達温度を60~100℃に1~10分間維持するように金属サイディング原板を加熱する工程である。金属板の到達温度とは、加熱工程によって到達する金属サイディング原板における金属板の温度のうちの最高温度である。第1加熱工程における到達温度が60℃未満であると、水系塗料中の沸点が100℃以下の低沸点成分(主に水)が水系塗料から十分に除去されないことがある。第1加熱工程における到達温度が100℃を超えると、芯材の変形などが生じ、金属サイディング原板の形状の不良が生じることがある。第1加熱工程において上記到達温度に維持される時間が1分未満であると、水系塗料から低沸点成分が十分に除去されないことがあり、10分を超えると、金属サイディング原板の形状の不良が生じることがある。 The first heating step is a step of heating the metal siding original plate so that the ultimate temperature of the metal siding original plate is maintained at 60 to 100 ° C. for 1 to 10 minutes. The reached temperature of the metal plate is the highest temperature among the temperatures of the metal plate in the metal siding original plate reached by the heating process. If the ultimate temperature in the first heating step is less than 60 ° C., the low boiling point component (mainly water) having a boiling point of 100 ° C. or less in the water-based paint may not be sufficiently removed from the water-based paint. If the ultimate temperature in the first heating step exceeds 100 ° C., the core material may be deformed and the shape of the metal siding original plate may be defective. If the time at which the temperature is maintained in the first heating step is less than 1 minute, the low boiling point component may not be sufficiently removed from the water-based paint, and if it exceeds 10 minutes, the shape of the metal siding original plate may be poor. May occur.
 第1加熱工程の加熱条件は、比較的穏和である。このため、金属サイディング原板が第1加熱工程で加熱されても、芯材には芯材を熱変形させる程の熱は伝わらない。また、第1加熱工程によって、水系塗料中の低沸点成分が水系塗料から十分に蒸発する。よって、金属サイディング原板の変形を伴わずに水系塗料中の低沸点成分が水系塗料から十分に除去される。第1加熱工程は、上記の加熱条件を実現可能な公知の加熱炉を用いて実施することができる。第1加熱工程用の加熱炉の例には、金属サイディング原板の塗装面に加熱されたガス(空気)を送る熱風炉、および、金属サイディング原板の塗装面に向けて遠赤外線を照射する遠赤外線炉、が含まれる。なお、本発明において、遠赤外線とは、最大エネルギー波長が3.0~50μmの範囲内にある電磁波である。最大エネルギー波長とは、電磁波の波長域中、エネルギーが最大の波長である。 The heating conditions of the first heating process are relatively mild. For this reason, even if the metal siding original plate is heated in the first heating step, heat enough to thermally deform the core material is not transmitted to the core material. Moreover, the low boiling point component in the water-based paint is sufficiently evaporated from the water-based paint by the first heating step. Therefore, the low boiling point component in the water-based paint is sufficiently removed from the water-based paint without deformation of the metal siding original plate. A 1st heating process can be implemented using the well-known heating furnace which can implement | achieve said heating conditions. Examples of the heating furnace for the first heating step include a hot air furnace that sends heated gas (air) to the painted surface of the metal siding original plate, and a far infrared ray that irradiates far infrared rays toward the painted surface of the metal siding original plate. Furnace. In the present invention, far infrared rays are electromagnetic waves having a maximum energy wavelength in the range of 3.0 to 50 μm. The maximum energy wavelength is a wavelength having the maximum energy in the wavelength range of electromagnetic waves.
 上記第2加熱工程は、第1加熱工程で加熱された金属サイディング原板の上記水系塗料に近赤外線または中赤外線を照射して、金属板の温度が昇温時間1~30秒で120~200℃に到達するように、金属サイディング原板を加熱する工程である。第2加熱工程における到達温度が120℃未満であると、水系塗料中の造膜助剤が水系塗料から十分に除去されないことがある。第2加熱工程における到達温度が200℃を超えると、芯材の変形などが生じ、金属サイディング原板の形状の不良が生じることがある。第2加熱工程において上記到達温度まで昇温する時間が1秒未満であると、水系塗料から造膜助剤が十分に除去されないことがあり、30秒を超えると、金属サイディング原板の形状の不良が生じることがある。 In the second heating step, the water-based paint of the metal siding raw plate heated in the first heating step is irradiated with near-infrared rays or mid-infrared rays, and the temperature of the metal plate is 120 to 200 ° C. with a heating time of 1 to 30 seconds. This is a step of heating the metal siding original plate so as to reach. If the ultimate temperature in the second heating step is less than 120 ° C., the film-forming aid in the aqueous paint may not be sufficiently removed from the aqueous paint. If the ultimate temperature in the second heating step exceeds 200 ° C., the core material may be deformed and the shape of the metal siding original plate may be defective. If the time for raising the temperature to the above-mentioned temperature in the second heating step is less than 1 second, the film-forming aid may not be sufficiently removed from the water-based paint, and if it exceeds 30 seconds, the shape of the metal siding original plate is poor. May occur.
 第2加熱工程において上記水系塗料に照射される赤外線の最大エネルギー波長は0.8~3.0μmである。本発明において、近赤外線とは、最大エネルギー波長が0.8μm以上1.8μm未満にある電磁波であり、中赤外線とは、最大エネルギー波長が1.8~3.0μmにある電磁波である。近赤外線の最大エネルギー波長は、0.8~1.5μmであることがより好ましく、中赤外線の最大エネルギー波長は、2.0~2.7μmであることがより好ましい。第2加熱工程では、中赤外線を照射することが、プロセス速度および加熱条件の制御がより容易である観点、および、光源ランプの寿命が長い観点、から好ましい。第2加熱工程における上記加熱条件は、近赤外線または中赤外線の波長、照射量、および照射距離などによって達成されうる。 In the second heating step, the maximum energy wavelength of infrared rays applied to the water-based paint is 0.8 to 3.0 μm. In the present invention, the near infrared ray is an electromagnetic wave having a maximum energy wavelength of 0.8 μm or more and less than 1.8 μm, and the middle infrared ray is an electromagnetic wave having a maximum energy wavelength of 1.8 to 3.0 μm. The maximum energy wavelength of near-infrared is more preferably 0.8 to 1.5 μm, and the maximum energy wavelength of mid-infrared is more preferably 2.0 to 2.7 μm. In the second heating step, it is preferable to irradiate mid-infrared rays from the viewpoint of easier control of the process speed and heating conditions and from the viewpoint of long life of the light source lamp. The heating condition in the second heating step can be achieved by the wavelength of near-infrared or mid-infrared, irradiation amount, irradiation distance, and the like.
 第2加熱工程では、金属サイディング原板の積層方向において、金属板および水系塗料に実質的に限定されるほど局所的に、金属板および水系塗料が加熱される。芯材および裏面材は、照射される赤外線によってはほとんど加熱されない。よって、芯材が熱変形しない。また、第2加熱工程によって、水系塗料の表面の硬化が促進される一方で、水系塗料の内部は、残存する造膜助剤によって適度な流動性を有する組成物で構成され、水系塗料が適切に金属板上を拡がる。そして、水系塗料の造膜助剤が水系塗料から除去される。こうして、良好な広がりと硬さとを有する塗膜が形成される。 In the second heating step, the metal plate and the water-based paint are locally heated in the stacking direction of the metal siding original plate so as to be substantially limited to the metal plate and the water-based paint. The core material and the back material are hardly heated by the irradiated infrared rays. Therefore, the core material is not thermally deformed. Further, the second heating step promotes hardening of the surface of the water-based paint, while the inside of the water-based paint is composed of a composition having an appropriate fluidity by the remaining film-forming aid, and the water-based paint is appropriate. Spread on the metal plate. Then, the film-forming aid for the water-based paint is removed from the water-based paint. Thus, a coating film having good spread and hardness is formed.
 第2加熱工程は、上記の加熱条件を実現可能な公知の加熱炉を用いて実施することができる。第2加熱工程用の加熱炉の例には、金属サイディング原板の塗装面に中赤外線を照射する中赤外線炉、および、金属サイディング原板の塗装面に近赤外線を照射する近赤外線炉、が含まれる。 The second heating step can be performed using a known heating furnace capable of realizing the above heating conditions. Examples of the heating furnace for the second heating step include a mid-infrared furnace that irradiates the painted surface of the metal siding original plate with mid-infrared rays, and a near-infrared furnace that irradiates the painted surface of the metal siding original plate with near-infrared rays. .
 図1は、第2加熱工程における金属板、芯材および裏面材の温度と加熱時間との関係を示すグラフである。各温度は市販のK熱電対によってモニターした。図1中、A(最も高温側の線)は、金属板の温度を示し、B(中央の線)は、裏面材の温度を示し、C(最も低温側の線)は、芯材の温度を示す。AおよびBは表面および裏面に熱電対を貼り付け、Cは芯材の厚さ方向の中心部に熱電対を挿入して測定した。金属板の到達温度は、A線のうち、矢印Fで示される、緩やかな減少部分の前端の温度である。図1に示されるように、金属板の温度は、第2加熱工程の開始から約5秒後に約150℃まで上昇し、金属板の到達温度に達したFの時点で加熱を終了し、その後、金属板の温度は緩やかに降下する。金属板の温度の降下が加熱終了後も緩やかなのは、芯材による断熱効果の影響による。そして適切な加熱量であれば、加熱から1分後には、金属板の温度は、少なくとも100℃未満となる。一方で、裏面材の温度および芯材の温度は、いずれも、第2加熱工程の開始からほぼ一定であり、第2工程によるこれらの温度の上昇は見られない。また長時間経過後も温度が上昇することはない。このように、積層方向において金属サイディング原板の金属板のみが限定して加熱されるので、金属サイディング原板が熱によって変形しない。また、金属板も長時間高温に曝されることがないので、金属板と芯材の剥離を抑制することができる。 FIG. 1 is a graph showing the relationship between the temperature of the metal plate, the core material and the back surface material and the heating time in the second heating step. Each temperature was monitored by a commercially available K thermocouple. In FIG. 1, A (the highest temperature line) indicates the temperature of the metal plate, B (middle line) indicates the temperature of the back surface material, and C (the lowest temperature line) indicates the temperature of the core material. Indicates. A and B were measured by attaching thermocouples to the front and back surfaces, and C was measured by inserting a thermocouple at the center in the thickness direction of the core material. The ultimate temperature of the metal plate is the temperature at the front end of the gently decreasing portion indicated by the arrow F in the A line. As shown in FIG. 1, the temperature of the metal plate rises to about 150 ° C. about 5 seconds after the start of the second heating step, and finishes the heating at the point F when the temperature reached the metal plate is reached. The temperature of the metal plate falls slowly. The gradual decrease in the temperature of the metal plate even after the end of heating is due to the effect of the heat insulating effect by the core material. And if it is a suitable heating amount, the temperature of a metal plate will be at least less than 100 degreeC after 1 minute from a heating. On the other hand, the temperature of the back material and the temperature of the core material are both substantially constant from the start of the second heating step, and no increase in these temperatures due to the second step is observed. Also, the temperature does not rise even after a long time has passed. Thus, since only the metal plate of the metal siding original plate is heated in a limited manner in the stacking direction, the metal siding original plate is not deformed by heat. Moreover, since the metal plate is not exposed to a high temperature for a long time, peeling of the metal plate and the core material can be suppressed.
 本発明に係る金属サイディングの製造方法は、本発明の効果が得られる範囲において、第1加熱工程および第2加熱工程以外の他の工程をさらに含んでいてもよい。たとえば、本発明に係る金属サイディングの製造方法は、金属サイディング原板の金属板側の表面に上記水系塗料を塗布する工程をさらに含んでいてもよい。具体的には、水系塗料を塗布する工程は、金属板の状態や水系塗料に応じて選ばれる公知の印刷方法によって行うことができる。印刷方法の例には、フレキソ印刷、スポンジロール塗装、グラビアオフセット印刷、スクリーン印刷、およびインクジェット印刷が含まれる。中でも、インクジェット印刷は、複雑な多色の模様を短時間で容易に形成することが可能である。 The method for producing metal siding according to the present invention may further include other steps than the first heating step and the second heating step within a range where the effects of the present invention can be obtained. For example, the metal siding manufacturing method according to the present invention may further include a step of applying the water-based paint to the surface of the metal siding original plate on the metal plate side. Specifically, the step of applying the water-based paint can be performed by a known printing method selected according to the state of the metal plate or the water-based paint. Examples of printing methods include flexographic printing, sponge roll coating, gravure offset printing, screen printing, and inkjet printing. In particular, inkjet printing can easily form a complex multicolor pattern in a short time.
 また、本発明に係る金属サイディングの製造方法は、金属サイディング原板の金属板側の表面に、上記水系塗料を塗布する前に下地塗膜を形成する工程をさらに含んでいてもよい。下地塗膜を形成する工程において、下地用の塗料の種類や塗膜の形成方法は、特に限定されない。下地塗膜を形成する工程は、公知の技術によって行うことができる。下地用の塗料には、UV硬化性塗料を用いることができ、下地塗膜の形成方法には、UV照射を採用することができる。このようなUV硬化による下地塗膜の形成は、金属サイディング原板の温度変化を伴わないで塗膜を形成する観点、下地塗膜を迅速に形成する観点、および、金属サイディングの美観をさらに高める観点、などから好ましい。 The metal siding manufacturing method according to the present invention may further include a step of forming a base coating film on the surface of the metal siding original plate on the metal plate side before applying the water-based paint. In the step of forming the base coating film, the type of base coating material and the method for forming the coating film are not particularly limited. The step of forming the base coating film can be performed by a known technique. A UV curable coating can be used as the base coating, and UV irradiation can be employed as a method for forming the base coating. The formation of such a base coating film by UV curing is a viewpoint of forming a coating film without changing the temperature of the metal siding original plate, a viewpoint of rapidly forming the base coating film, and a viewpoint of further enhancing the aesthetics of the metal siding. From the above, it is preferable.
 本発明に係る金属サイディングの製造方法は、金属サイディング原板の金属板側表面に塗布された水系塗料から加熱乾燥によって塗膜を形成するにあたり、水系塗料中の低沸点成分を、芯材の変形が生じない穏和な加熱によって水系塗料から除去し、より高い沸点を有する造膜助剤を、積層方向において金属板に限定される強い加熱によって水系塗料から除去する。よって、耐水性および密着性に優れる塗膜を金属板側の表面に有する金属サイディングが得られる。また、得られる金属サイディングには、熱による変形が実質的に生じない。 In the metal siding manufacturing method according to the present invention, when a coating film is formed by heating and drying from a water-based paint applied to the surface of the metal siding original plate, a low-boiling component in the water-based paint is transformed into a core material. The film-forming aid having a higher boiling point is removed from the water-based paint by intense heating limited to the metal plate in the laminating direction. Therefore, the metal siding which has the coating film which is excellent in water resistance and adhesiveness on the surface by the side of a metal plate is obtained. Further, the resulting metal siding is not substantially deformed by heat.
 本発明に係る金属サイディングの製造方法は、以下の製造装置によって好適に実施することができる。 The method for producing metal siding according to the present invention can be preferably carried out by the following production apparatus.
 [金属サイディングの製造装置]
 本発明に係る金属サイディングの製造装置は、第1加熱炉、第2加熱炉および搬送装置を有する。
[Metal siding manufacturing equipment]
The metal siding manufacturing apparatus according to the present invention includes a first heating furnace, a second heating furnace, and a transfer apparatus.
 上記第1加熱炉は、上記第1加熱工程を実施する加熱炉である。第1加熱炉には、前述した熱風炉または遠赤外線炉が用いられうる。また、上記第2加熱炉は、上記第2加熱工程を実施する加熱炉である。第2加熱炉には、前述した中赤外線炉または近赤外線炉が用いられうる。第2加熱炉は、プロセス速度および加熱条件の制御がより容易である観点、および、光源ランプの寿命が長い観点から、中赤外線炉であることが好ましい。第1加熱炉および第2加熱炉は、分離していてもよいし、一体的に構成されていてもよい。また、第1加熱炉および第2加熱炉は、炉内部が密閉されるバッチ式の加熱炉であってもよいが、プロセス速度の制御や生産性などの観点から、移動する金属サイディング原板を加熱する連続式の加熱炉であることが好ましい。さらに、第1加熱炉および第2加熱炉は、加熱によって発生する溶剤の蒸気を炉内から外部へ排出するための送風装置など、本発明の効果が得られる範囲において、近赤外線または中赤外線の照射装置以外の他の装置を有していてもよい。 The first heating furnace is a heating furnace that performs the first heating step. As the first heating furnace, the above-described hot air furnace or far-infrared furnace may be used. The second heating furnace is a heating furnace that performs the second heating step. As the second heating furnace, the aforementioned mid-infrared furnace or near-infrared furnace can be used. The second heating furnace is preferably a mid-infrared furnace from the viewpoint of easier control of the process speed and heating conditions and the long life of the light source lamp. The 1st heating furnace and the 2nd heating furnace may be isolate | separated, and may be comprised integrally. In addition, the first heating furnace and the second heating furnace may be batch-type heating furnaces in which the inside of the furnace is hermetically sealed, but from the viewpoint of process speed control and productivity, the moving metal siding original plate is heated. A continuous heating furnace is preferable. Further, the first heating furnace and the second heating furnace have a near-infrared ray or a mid-infrared ray in a range where the effects of the present invention can be obtained, such as a blower for discharging the solvent vapor generated by heating from the inside of the furnace to the outside. You may have apparatuses other than an irradiation apparatus.
 上記搬送装置は、上記金属サイディング原板を少なくとも第1加熱炉への搬入から第2加熱炉からの搬出までを行う。より具体的には、搬送装置は、第1加熱炉における到達温度を1~10分間維持し、第2加熱炉における到達温度に1~30秒間で昇温するように、金属サイディング原板を搬送する。このような到達温度への昇温時間は、搬送装置には、金属サイディング原板を一定速度で搬送する装置を用い、第1加熱炉および第2加熱炉には、炉内部における搬送装置による搬送距離が上記の維持時間および昇温時間を実現するのに適当な長さである加熱炉を用いることによって実現することが可能である。または、上記到達温度の維持時間および昇温時間は、搬送装置には、第1加熱炉および第2加熱炉の炉内部における搬送速度を自在に調整可能な装置を用いることによっても実現することが可能である。搬送装置は、後者の装置であることがより好ましい。搬送装置は、例えば、ロボットアーム、ターンテーブル、単数または複数のベルトコンベア、および、これらの組み合わせによって構成されうる。 The transfer device performs at least the carrying of the metal siding original plate into the first heating furnace to the carrying out of the second heating furnace. More specifically, the transport device transports the metal siding original plate so that the temperature reached in the first heating furnace is maintained for 1 to 10 minutes and the temperature reached in the second heating furnace is raised in 1 to 30 seconds. . The temperature raising time to reach the target temperature is such that the apparatus for conveying the metal siding original plate at a constant speed is used for the conveying apparatus, and the conveying distance by the conveying apparatus in the furnace is used for the first heating furnace and the second heating furnace. Can be realized by using a heating furnace having an appropriate length for realizing the maintenance time and the temperature raising time. Alternatively, the temperature maintaining time and the temperature raising time can be realized by using an apparatus that can freely adjust the conveying speed in the furnaces of the first heating furnace and the second heating furnace. Is possible. The transport device is more preferably the latter device. The transfer device can be constituted by, for example, a robot arm, a turntable, one or a plurality of belt conveyors, and a combination thereof.
 本発明に係る金属サイディングの製造装置は、本発明の効果が得られる範囲において、第1加熱炉、第2加熱炉および搬送装置以外の他の装置をさらに有していてもよい。他の装置の例には、金属サイディング原板の金属板側の表面に下地用の塗料を塗布する下地用塗布装置、下地用の塗料を硬化させて下地塗膜を形成する下地塗膜形成装置、および、金属サイディング原板の金属板側の表面に上記水系塗料を塗布する上塗り用塗布装置、が含まれる。 The metal siding manufacturing apparatus according to the present invention may further include devices other than the first heating furnace, the second heating furnace, and the conveying device within a range in which the effects of the present invention are obtained. Examples of other devices include a base coater for applying a base paint to the surface of the metal siding original plate on the metal plate side, a base coat forming apparatus for curing the base paint to form a base coat, And an overcoating device for applying the water-based paint to the surface of the metal siding original plate on the metal plate side.
 本発明に係る金属サイディングの製造装置は、前述した装置の組み合わせによって構成されうる。本発明に係る金属サイディングの製造装置の例には、図2A~図2Dに示される装置が含まれる。図2Aに示される装置は、金属サイディング原板を速度自在に搬送する四つの搬送ベルト11~14と、搬送ベルト12上に配置され、搬送ベルト12上の、金属サイディング原板の水系塗料が既に塗布されている金属板側表面に熱風を送って金属サイディング原板を加熱する熱風炉15と、搬送ベルト13上に配置され、搬送ベルト13上の金属サイディング原板の金属板側表面に中赤外線を照射して金属サイディング原板を加熱する中赤外線炉16とを有する。 The metal siding manufacturing apparatus according to the present invention can be configured by a combination of the above-described apparatuses. Examples of the metal siding manufacturing apparatus according to the present invention include the apparatus shown in FIGS. 2A to 2D. The apparatus shown in FIG. 2A is arranged on four conveyor belts 11 to 14 for conveying a metal siding original plate at speed, and on the conveyor belt 12, and the water-based paint of the metal siding original plate on the conveyor belt 12 is already applied. A hot blast furnace 15 for sending hot air to the surface of the metal plate that heats the metal siding original plate, and the metal belt side surface of the metal siding original plate on the conveyor belt 13 that is disposed on the conveyor belt 13 And a mid-infrared furnace 16 for heating the metal siding base plate.
 図2Bに示される装置は、図2Aの装置における搬送ベルト11~14、熱風炉15および中赤外線炉16に加えて、搬送ベルト11上に配置され、搬送ベルト11上の金属サイディング原板の金属板側表面に塗料を吹き付けるスプレーノズル17をさらに有する。 The apparatus shown in FIG. 2B is arranged on the conveyor belt 11 in addition to the conveyor belts 11 to 14, the hot stove 15 and the mid-infrared furnace 16 in the apparatus of FIG. 2A, and the metal plate of the metal siding original plate on the conveyor belt 11. A spray nozzle 17 for spraying paint on the side surface is further provided.
 図2Cに示される装置は、図2Aの装置における搬送ベルト11~14、熱風炉15および中赤外線炉16に加えて、搬送ベルト11に向けて金属サイディング原板を速度自在に搬送する搬送ベルト18と、搬送ベルト18で搬送された金属サイディング原板の金属板側表面に塗料を塗布して搬送ベルト11に板状搬送物を送り出すグラビアオフセット印刷装置19とをさらに有する。グラビアオフセット印刷装置19は、グラビア版ロール19aと、オフセットロール19bと、クリーニングロール19cとを有する。グラビア版ロール19aは、塗布すべき模様に応じて形成され、水系塗料を収容する凹部を周面に有する。オフセットロール19bは、グラビア版ロール19aから転写された上記凹部の水系塗料を周面に担持し、それを金属サイディング原板の金属板側表面に転写する。クリーニングロール19cは、金属サイディング原板への水系塗料の転写後におけるオフセットロール19bの周面に残存する水系塗料を当該周面から除去する。 The apparatus shown in FIG. 2C includes, in addition to the conveyor belts 11 to 14, the hot blast furnace 15, and the mid-infrared furnace 16 in the apparatus of FIG. 2A, a conveyor belt 18 that conveys the metal siding original plate at a speed toward the conveyor belt 11. And a gravure offset printing device 19 that applies a coating material to the metal plate side surface of the metal siding original plate conveyed by the conveyance belt 18 and sends a plate-shaped conveyance object to the conveyance belt 11. The gravure offset printing apparatus 19 includes a gravure plate roll 19a, an offset roll 19b, and a cleaning roll 19c. The gravure plate roll 19a is formed according to the pattern to be applied, and has a concave portion for accommodating a water-based paint on the peripheral surface. The offset roll 19b carries the water-based paint of the concave portion transferred from the gravure plate roll 19a on the peripheral surface, and transfers it to the metal plate side surface of the metal siding original plate. The cleaning roll 19c removes the water-based paint remaining on the peripheral surface of the offset roll 19b after the transfer of the water-based paint to the metal siding original plate from the peripheral surface.
 図2Dに示される装置は、図2Aの装置における搬送ベルト11~14、熱風炉15および中赤外線炉16に加えて、スプレーノズル17と、搬送ベルト18と、搬送ベルト18上に配置され、搬送ベルト18上の金属サイディング原板の金属板側表面にUV硬化性の塗料を吹き付けるインクジェットノズル20と、UV硬化性塗料が塗布された当該金属板側表面に紫外線を照射するUVランプ21とをさらに有する。 The apparatus shown in FIG. 2D is arranged on the spray nozzle 17, the conveyor belt 18, and the conveyor belt 18 in addition to the conveyor belts 11 to 14, the hot stove 15 and the mid-infrared furnace 16 in the apparatus of FIG. An inkjet nozzle 20 that sprays a UV curable coating onto the surface of the metal siding original plate on the belt 18 and a UV lamp 21 that irradiates ultraviolet rays onto the surface of the metal plate coated with the UV curable coating are further provided. .
 本発明に係る金属サイディングの製造装置は、前述した金属サイディングの製造方法を実施することが可能である。よって、耐水性および密着性に優れる塗膜を有し、加熱による実質的な変形が生じない金属サイディングを製造することができる。 The metal siding manufacturing apparatus according to the present invention can implement the above-described metal siding manufacturing method. Therefore, it is possible to produce a metal siding that has a coating film excellent in water resistance and adhesion and that does not undergo substantial deformation due to heating.
 以下、実施例を参照して本発明を詳細に説明するが、本発明はこれらの実施例により限定されない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 [表面用塗装鋼板の製造]
 板厚0.27mm、片面当たりめっき付着量90g/mの溶融Zn-55%Al合金めっき鋼板を塗装原板として使用した。塗装原板をアルカリ脱脂した後、塗布型クロメート処理液(NRC300NS(日本ペイント株式会社製)をCrとして50mg/mの付着量となるように塗布した)を行った。次いで、下塗り塗料として市販のポリエステル系プライマー塗料(日本ファインコーティングス株式会社製700P)を乾燥膜厚が5μmとなるようにロールコーターでクロメート処理された塗装原板に塗装した後、塗装原板の到達温度が215℃となるように当該塗装原板を加熱し、下塗り塗膜を焼き付けた。次いで、上塗り塗料として、市販のポリエステル系塗料(日本ファインコーティングス株式会社製NX-K、ポリエステルの数平均分子量:5,000)を乾燥膜厚18μmとなるように下塗りされた塗装原板にロールコーターで塗装した後、塗装原板の到達温度が225℃になるように当該塗装原板を加熱し、上塗り塗膜を焼き付けた。また、上塗りされた塗装原板の裏面に、市販のエポキシ樹脂系塗料(日本ファインコーティングス株式会社製SKB0)を乾燥膜厚が4μmとなるようにロールコーターで塗装して皮膜を形成した。こうして、上記めっき鋼板に上記皮膜および塗膜を形成してなる表面用塗装鋼板を得た。
[Manufacture of coated steel sheet for surface]
A hot-dip Zn-55% Al alloy-plated steel plate having a thickness of 0.27 mm and a coating adhesion amount of 90 g / m 2 per side was used as a coating original plate. After the coating original plate was degreased with alkali, a coating type chromate treatment solution (NRC300NS (manufactured by Nippon Paint Co., Ltd.) was applied as Cr so as to have an adhesion amount of 50 mg / m 2 ) was performed. Next, after applying a commercially available polyester primer coating (700P manufactured by Nihon Fine Coatings Co., Ltd.) as an undercoat coating on a coated original plate that has been chromated with a roll coater so that the dry film thickness is 5 μm, the temperature reached by the coated original plate Was heated to 215 ° C., and the undercoat film was baked. Next, as a top coat, a roll coater is applied to a coating original plate that has been primed with a commercially available polyester paint (NX-K manufactured by Nippon Fine Coatings Co., Ltd., number average molecular weight of polyester: 5,000) to a dry film thickness of 18 μm. After coating, the coating original plate was heated so that the final temperature of the coating original plate was 225 ° C., and the top coating film was baked. A film was formed on the back surface of the coated original plate by coating a commercially available epoxy resin-based paint (SKB0 manufactured by Nippon Fine Coatings Co., Ltd.) with a roll coater so that the dry film thickness was 4 μm. Thus, a coated steel sheet for surface was obtained by forming the coating film and the coating film on the plated steel sheet.
 [金属サイディング原板の製造]
 アンコイラーに巻かれた表面用塗装鋼板を連続的に送り出し、エンボス成形機により、ブリック柄のエンボス形状に表面用塗装鋼板を連続して成形し、御影石擬似柄の外観を有する表面用塗装鋼板を形成した。次いで、形成された表面用塗装鋼板の裏面に、芯材となるポリイソシアヌレート原料として、ソフランR-HIPとトーヨーソフランR746-19D(いずれも株式会社ソフランウィズ製)とを、発泡機によって質量比10対7で混合しながら混合押出機により吐出した。また、発泡するポリイソシアヌレート原料層上にアルミクラフト紙を送り出した。そして、エンボス加工された表面塗装鋼板とアルミクラフト紙との間にポリイソシアヌレート原料層をサンドイッチした状態で加熱、加圧し、発泡成形することにより、表面用塗装鋼板、芯材およびアルミクラフト紙をこの順で有する金属サイディング原板を製造した。なお、芯材の厚みは、17mmとした。芯材の厚みは、上記加熱、加圧時に金属サイディング原板をその積層方向に挟持するダブルコンベア間の距離によって調整した。
 ポリイソシアヌレート原料の詳細な発泡条件は以下の通りである。
 ラインスピード 40m/min
 流量 6kg/min
 液温 30℃
 表面用塗装鋼板のプレヒート温度 35℃
 オーブンキュアー温度 50℃
 発泡機 低圧型アジテータミキシング発泡機
[Manufacture of metal siding base plate]
The coated steel sheet for the surface wound around the uncoiler is continuously sent out, and the coated steel sheet for the surface is continuously formed into the embossed shape of the brick pattern by the embossing machine to form the coated steel sheet for the surface having the appearance of a granite pseudo pattern. did. Next, Soflan R-HIP and Toyo Sofuran R746-19D (both manufactured by Soflan With Co., Ltd.) as a polyisocyanurate raw material to be a core material are formed on the back surface of the formed coated steel sheet for surface using a foaming machine. The mixture was discharged by a mixing extruder while mixing 10 to 7. Moreover, the aluminum kraft paper was sent out on the foaming polyisocyanurate raw material layer. Then, by heating, pressurizing, and foaming in a state where the polyisocyanurate raw material layer is sandwiched between the embossed surface-coated steel sheet and aluminum kraft paper, the surface-coated steel sheet, core material and aluminum craft paper are A metal siding base plate having this order was manufactured. The thickness of the core material was 17 mm. The thickness of the core material was adjusted by the distance between the double conveyors that sandwich the metal siding original plate in the stacking direction during the heating and pressurization.
The detailed foaming conditions of the polyisocyanurate raw material are as follows.
Line speed 40m / min
Flow rate 6kg / min
Liquid temperature 30 ℃
Preheat temperature of coated steel sheet for surface 35 ℃
Oven cure temperature 50 ℃
Foaming machine Low pressure agitator mixing foaming machine
 [水系クリアー塗料(塗料1)の調製]
 以下に示す材料を以下に示す組成でディスパーによって混合することにより、特開2010-234366号公報に記載されているような水系クリアー塗料である塗料1を調製した。
 結合剤                     68.0質量%
 感熱ゲル化剤                   0.1質量%
 造膜助剤                     6.0質量%
 紫外線吸収剤                   0.4質量%
 酸化防止剤                    0.2質量%
 増粘剤                      4.5質量%
 艶消し剤                     0.5質量%
 消泡剤                      0.4質量%
 水                       19.9質量%
[Preparation of water-based clear paint (paint 1)]
The following materials were mixed with a disperser having the following composition to prepare paint 1 which is a water-based clear paint as described in JP 2010-234366 A.
Binder 68.0% by mass
Thermosensitive gelling agent 0.1% by mass
Film-forming aid 6.0% by mass
UV absorber 0.4% by mass
Antioxidant 0.2% by mass
Thickener 4.5% by mass
Matting agent 0.5% by mass
Antifoaming agent 0.4% by mass
19.9% by mass of water
 結合剤にはアクリル樹脂ワニス(アクリセット(日本触媒株式会社の登録商標)EX-40、加熱残分43%、日本触媒株式会社製)を、感熱ゲル化剤にはノニオン性界面活性剤(アデカプラノンMPC-800、曇点約30℃、株式会社ADEKA製)を、造膜助剤にはブチルセルソルブ(エチレングリコールモノブチルエーテル)を、紫外線吸収剤にはベンゾトリアゾール系化合物(TINUVIN(BASF社の登録商標)1130、BASF社製)を、艶消し剤にはポリアクリロニトリル系ビーズ(タフチック(東洋紡株式会社の登録商標)A-20、東洋紡株式会社製)を、増粘剤には高分子型特殊ノニオン系化合物(アデカノールUH540、株式会社ADEKA製)を、そして、消泡剤にはシリコーン系コンパウンド乳化剤(SNデフォーマー381、サンノプコ株式会社製)を、それぞれ用いた。 Acrylic resin varnish (Acreset (registered trademark of Nippon Shokubai Co., Ltd.) EX-40, heating residue 43%, manufactured by Nippon Shokubai Co., Ltd.) is used as the binder, and a nonionic surfactant (Adecouplerone) is used as the thermal gelling agent. MPC-800, cloud point of about 30 ° C., manufactured by ADEKA Corporation), butyl cellosolve (ethylene glycol monobutyl ether) as a film-forming aid, and benzotriazole compound (TINUVIN (registered by BASF) as an ultraviolet absorber) Trademark) 1130 (manufactured by BASF), polyacrylonitrile-based beads (Toughtick (registered trademark of Toyobo Co., Ltd.) A-20, manufactured by Toyobo Co., Ltd.) as the matting agent, and polymer-type special nonion as the thickener Compound (Adecanol UH540, manufactured by ADEKA Corporation), and silicone compound emulsifier for antifoaming agent SN Defoamer 381, the San Nopco Co., Ltd.), were used, respectively.
 [グラビアオフセット印刷用塗料(塗料2)の調製]
 (1.エマルションの調製)
 窒素で内部を置換した2リットルのステンレス製オートクレーブに、以下に示す材料を以下に示す組成で投入し、攪拌し、溶解した。
 ノニオン系乳化剤1               2.26質量%
 ノニオン系乳化剤2               2.83質量%
 アニオン系乳化剤                4.52質量%
 ポリオキシエチレン-ポリオキシプロピレンブロック共重合体
                                                  2.26質量%
 Borax(テトラボレートナトリウム10水和物)
                                                  0.57質量%
 0.5%塩化鉄(III)6水和物水溶液       0.34質量%
 水                      87.22質量%
[Preparation of gravure offset printing paint (paint 2)]
(1. Preparation of emulsion)
In a 2 liter stainless steel autoclave whose interior was replaced with nitrogen, the following materials were charged in the composition shown below, stirred and dissolved.
Nonionic emulsifier 1 2.26% by mass
Nonionic emulsifier 2 2.83 mass%
Anionic emulsifier 4.52% by mass
Polyoxyethylene-polyoxypropylene block copolymer 2.26% by mass
Borax (tetraborate sodium decahydrate)
0.57% by mass
0.5% iron (III) chloride hexahydrate aqueous solution 0.34% by mass
87.22% by mass of water
 ノニオン系乳化剤1にはノイゲンEA-130T(第一工業製薬株式会社製)を、ノニオン系乳化剤2にはノイゲンEA-170S(第一工業製薬株式会社製)を、アニオン系乳化剤にはレベノールWZ(花王株式会社製)を、そして、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体にはプルロニックP-84(株式会社ADEKA製)を、それぞれ用いた。 The nonionic emulsifier 1 is Neugen EA-130T (Daiichi Kogyo Seiyaku Co., Ltd.), the nonionic emulsifier 2 is Neugen EA-170S (Daiichi Kogyo Seiyaku Co., Ltd.), and the anionic emulsifier is Rebenol WZ ( Kao Corporation) and Pluronic P-84 (ADEKA Corporation) were used as the polyoxyethylene-polyoxypropylene block copolymer.
 次に、クロロトリフルオロエチレン360質量部を当該オートクレーブに仕込み、混合液を攪拌しながら60℃に昇温した後、当該混合液に、以下に示す組成の混合液1(440質量部)を2時間かけて滴下し、次いで、以下に示す組成の混合液2(114質量部)を2.5時間かけて滴下し、さらに、以下に示す組成の混合液3(114質量部)を2.5時間かけて滴下した。その後、得られた混合液を常温へ冷却し、減圧により未反応モノマーを当該混合液から留去し、当該混合液中の不揮発分を50%に調整し、水酸基を有する含フッ素共重合体の粒子を含むエマルション(以下、「塗料2用エマルション」とも言う)を得た。塗料2用エマルション中の当該含フッ素共重合体の粒子の平均粒径は、110nmであった。下記ネオナノン酸ビニルエステルには、ベオバ9(ジャパンケムテック株式会社の登録商標、ジャパンケムテック株式会社製)を用いた。
 (混合液1)
 n-ブチルビニルエーテル             49.1質量%
 ヒドロキシブチルビニルエーテル          18.2質量%
 ネオナノン酸ビニルエステル            32.7質量%
 (混合液2)
 過硫酸ナトリウム                  3.5質量%
 水                        96.5質量%
 (混合液3)
 ナトリウムホルムアルデヒドスルホキシレート水和物  3.5質量%
 水                        96.5質量%
Next, 360 parts by mass of chlorotrifluoroethylene was charged into the autoclave, and the mixture was heated to 60 ° C. while stirring. Then, the mixture 1 was mixed with 2 liquids (440 parts by mass) having the following composition. The mixture was added dropwise over a period of time, and then a mixture 2 (114 parts by mass) having the following composition was added dropwise over 2.5 hours, and a mixture 3 (114 parts by mass) having the following composition was further added to 2.5. It was added dropwise over time. Thereafter, the resulting mixed solution is cooled to room temperature, unreacted monomers are distilled off from the mixed solution by reducing the pressure, the nonvolatile content in the mixed solution is adjusted to 50%, and the fluorine-containing copolymer having a hydroxyl group is obtained. An emulsion containing particles (hereinafter also referred to as “emulsion for paint 2”) was obtained. The average particle size of the fluorine-containing copolymer particles in the emulsion for paint 2 was 110 nm. Veova 9 (registered trademark of Japan Chemtech Co., Ltd., manufactured by Japan Chemtech Co., Ltd.) was used as the following neonanonic acid vinyl ester.
(Mixed liquid 1)
n-Butyl vinyl ether 49.1% by mass
Hydroxybutyl vinyl ether 18.2% by mass
Neonanoic acid vinyl ester 32.7% by mass
(Mixed liquid 2)
Sodium persulfate 3.5% by mass
96.5% by mass of water
(Mixed liquid 3)
Sodium formaldehyde sulfoxylate hydrate 3.5% by mass
96.5% by mass of water
 (2.酸化チタンペーストの調製)
 以下に示す材料を以下に示す組成で高速ホモミキサーにて6000rpmで20分間攪拌し、100メッシュポリネットで濾過した後、再度、6000rpmで20分間攪拌し、100メッシュポリネットで濾過して、固形分72.3%、PWC98.4%の酸化チタンペースト(以下、「塗料2用酸化チタンペースト」とも言う)を得た。
 酸化チタン                    69.30質量%
 顔料分散剤                     7.90質量%
 25%アンモニア水                 0.07質量%
 消泡剤                       0.13質量%
 水                        22.60質量%
(2. Preparation of titanium oxide paste)
The materials shown below were stirred at 6000 rpm for 20 minutes with the following composition at a high speed homomixer, filtered through 100 mesh polyethylene, then stirred again at 6000 rpm for 20 minutes, filtered through 100 mesh polyethylene, and solid. A titanium oxide paste having a content of 72.3% and PWC of 98.4% (hereinafter also referred to as “titanium oxide paste for paint 2”) was obtained.
Titanium oxide 69.30% by mass
Pigment dispersant 7.90% by mass
25% ammonia water 0.07% by mass
Antifoaming agent 0.13% by mass
Water 22.60% by mass
 酸化チタンにはTIPAQUE CR-97(石原産業株式会社製)を、顔料分散剤にはWATERSOL AM-273(DIC株式会社製)を、そして、消泡剤にはSNデフォーマー373(サンノプコ株式会社製)を、それぞれ用いた。 TIPAQUE CR-97 (Ishihara Sangyo Co., Ltd.) is used for titanium oxide, WATERSOL AM-273 (DIC Co., Ltd.) is used as a pigment dispersant, and SN deformer 373 (San Nopco Co., Ltd.) is used as an antifoaming agent. Were used respectively.
 (3.グラビアオフセット印刷用水性塗料(塗料2)の調製)
 以下に示す材料を以下に示す組成で混合し、特開2005-36024号公報に記載されているようなグラビアオフセット印刷用塗料(塗料2)を調製した。
 塗料2用エマルション              57.4質量%
 造膜助剤                     2.9質量%
 塗料2用酸化チタンペースト           24.9質量%
 アルカリ増粘型増粘剤               2.9質量%
 25%アンモニア水                0.3質量%
 水性ポリイソシアネート             11.6質量%
(3. Preparation of water-based paint for gravure offset printing (paint 2))
The materials shown below were mixed in the following composition to prepare a gravure offset printing paint (paint 2) as described in JP-A-2005-36024.
Emulsion for paint 2 57.4% by mass
Film-forming aid 2.9% by mass
Titanium oxide paste for paint 2 24.9% by mass
Alkali thickener 2.9% by mass
25% ammonia water 0.3% by mass
Aqueous polyisocyanate 11.6% by mass
 造膜助剤にはジエチレングリコールジブチルエーテル(DBDG)を、アルカリ増粘型増粘剤にはWATERSOL AM-274(DIC株式会社製)を、そして、水性ポリイソシアネートにはアクアネートAQ-100の50質量%水分散液(日本ポリウレタン株式会社製)を、それぞれ用いた。 Diethylene glycol dibutyl ether (DBDG) is used as a film-forming aid, WATERSOL AM-274 (manufactured by DIC Corporation) is used as an alkali thickener, and 50 masses of Aquanate AQ-100 is used as an aqueous polyisocyanate. % Aqueous dispersions (manufactured by Nippon Polyurethane Co., Ltd.) were used.
 [カチオン重合型のUVインキ(塗料3)の調製]
 ガラス瓶に、以下に示す材料を以下に示す組成で投入し、また、直径1mmのジルコニアビーズを投入し、密栓した。次いで、ペイントシェーカーで4時間分散処理した。分散処理後、上記ジルコニアビーズを除去して4色の顔料分散体を得た。
 高分子分散剤                     9質量%
 オキセタン化合物                  71質量%
 下記に示す4種の色顔料のいずれか一つ        20質量%
 (色顔料)
 ブラック:Pigment Black 7
 シアン:Pigment Blue 15:4
 イエロー:Pigment Yellow 138
 マゼンタ:Pigment Red 122
[Preparation of cationic polymerization type UV ink (paint 3)]
The following materials were charged into a glass bottle with the following composition, and zirconia beads having a diameter of 1 mm were charged and sealed. Next, dispersion treatment was performed for 4 hours using a paint shaker. After the dispersion treatment, the zirconia beads were removed to obtain a four-color pigment dispersion.
Polymer dispersant 9% by mass
Oxetane compound 71% by mass
20% by mass of any one of the following four color pigments
(Color pigment)
Black: Pigment Black 7
Cyan: Pigment Blue 15: 4
Yellow: Pigment Yellow 138
Magenta: Pigment Red 122
 高分子分散剤にはアジスパーPB-821(味の素ファインテクノ株式会社製)を、オキセタン化合物にはOXT211(東亜合成株式会社製)を、そして、Pigment Blue 15:4にはCyanine Blue 4044(山陽色素株式会社製)を、それぞれ用いた。 Azisper PB-821 (manufactured by Ajinomoto Fine Techno Co., Ltd.) is used as the polymer dispersant, OXT211 (manufactured by Toa Gosei Co., Ltd.) is used as the oxetane compound, and Cyanine Blue 4044 (Sanyo dye shares is used as Pigment Blue 15: 4). Each) were used.
 得られた顔料分散体14質量%に、以下に示す材料を以下に示す組成で添加して混合し、カチオン重合型のUVインキ(塗料3)を調製した。
 光重合性化合物(エポキシ化亜麻仁油)          4質量%
 下記式(1)で表される化合物             34質量%
 オキセタン化合物1                  24質量%
 オキセタン化合物2                 8.9質量%
 N-エチルジエタノールアミン           0.05質量%
 パーフルオロアルキル基含有アクリルオリゴマー  0.025質量%
 パーフルオロアルキル基含有エチレンオキサイド付加物
                                                 0.025質量%
 グリコールエーテル                  10質量%
 トリフェニルスルホニウム塩               5質量%
The material shown below was added to 14% by mass of the obtained pigment dispersion with the following composition and mixed to prepare a cationic polymerization type UV ink (paint 3).
Photopolymerizable compound (epoxidized linseed oil) 4% by mass
34 mass% of compound represented by following formula (1)
Oxetane compound 1 24% by mass
Oxetane compound 2 8.9% by mass
N-ethyldiethanolamine 0.05% by mass
Perfluoroalkyl group-containing acrylic oligomer 0.025% by mass
Perfluoroalkyl group-containing ethylene oxide adduct 0.025% by mass
Glycol ether 10% by mass
Triphenylsulfonium salt 5% by mass
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 光重合性化合物にはVikoflex9040(ATOFINA社製)を、オキセタン化合物1にはOXT221(東亜合成株式会社製)を、オキセタン化合物2にはOXT211(東亜合成株式会社製)を、パーフルオロアルキル基含有アクリルオリゴマーにはメガファックF178k(DIC株式会社製)を、パーフルオロアルキル基含有エチレンオキサイド付加物にはメガファックF1405(DIC株式会社製)を、グリコールエーテルにはハイソルブBDB(東邦化学工業株式会社製)を、そして、トリフェニルスルホニウム塩にはUV16992(ダウケミカル株式会社製)を、それぞれ用いた。 The photopolymerizable compound is Vikoflex 9040 (manufactured by ATOFINA), the oxetane compound 1 is OXT221 (manufactured by Toa Gosei Co., Ltd.), the oxetane compound 2 is OXT211 (manufactured by Toa Gosei Co., Ltd.), and a perfluoroalkyl group-containing acrylic. Mega-Fax F178k (manufactured by DIC Corporation) is used for oligomers, Mega-Fac F1405 (manufactured by DIC Corporation) is used for perfluoroalkyl group-containing ethylene oxide adducts, and Highsolve BDB (manufactured by Toho Chemical Industry Co., Ltd.) is used for glycol ethers. And UV16992 (manufactured by Dow Chemical Co., Ltd.) were used for the triphenylsulfonium salt.
 [実施例1]
 金属サイディング原板の表面用塗装鋼板の表面を、乾燥質量30g/mとなるようにエアーレススプレーによって塗料1で塗装した。その後、塗装した金属サイディング原板を第1加熱工程および第2加熱工程で加熱することによって、表面用塗装鋼板の表面に塗料1の塗膜を形成し、金属サイディング1を作製した。第1加熱工程には熱風炉を用い、第2加熱工程には中赤外線炉を用いた。第1加熱工程の加熱条件は、板面風速(表面用塗装鋼板の表面での風速)を10m/秒とし、表面用塗装鋼板の到達温度を80℃とし、保持時間(表面用塗装鋼板の温度を上記到達温度に維持する時間)を3分間とした。また、第2加熱工程の加熱条件は、板面風速を0.5m/秒とし、表面用塗装鋼板の到達温度を120℃とし、昇温時間を5秒間とした。
[Example 1]
The surface of the coated steel sheet for the surface of the metal siding original plate was coated with the paint 1 by airless spraying so as to have a dry mass of 30 g / m 2 . Thereafter, the coated metal siding original plate was heated in the first heating step and the second heating step, thereby forming a coating film of the paint 1 on the surface of the coated steel sheet for surface production, thereby producing the metal siding 1. A hot stove was used for the first heating process, and a mid-infrared furnace was used for the second heating process. The heating conditions of the first heating step are as follows: the plate surface wind speed (the wind speed at the surface of the surface coated steel sheet) is 10 m / second, the ultimate temperature of the surface coated steel sheet is 80 ° C., and the holding time (the temperature of the surface coated steel sheet) For 3 minutes). Moreover, the heating conditions of the 2nd heating process made the plate | board surface wind speed 0.5 m / sec, the ultimate temperature of the surface coated steel plate was 120 degreeC, and the temperature rising time was 5 second.
 [実施例2および3]
 第2加熱工程における昇温時間を10秒間および30秒間にそれぞれ変更した以外は実施例1と同様にして、金属サイディング2および3を作製した。なお、昇温時間は、金属サイディング原板の搬送速度および赤外線ヒーターの出力(中赤外線の照射量)を調整することによって変化させた。
[Examples 2 and 3]
Metal sidings 2 and 3 were produced in the same manner as in Example 1 except that the temperature raising time in the second heating step was changed to 10 seconds and 30 seconds, respectively. The temperature raising time was changed by adjusting the conveyance speed of the metal siding original plate and the output of the infrared heater (irradiation amount of mid-infrared rays).
 [実施例4および6]
 第1加熱工程における表面用塗装鋼板の到達温度を60℃とし、第1加熱工程における保持時間を10分間とし、第2加熱工程における到達温度を150℃とした以外は実施例1と同様にして、金属サイディング4を作製した。
 また、第1加熱工程における表面用塗装鋼板の到達温度を100℃とし、第1加熱工程における保持時間を1分間とし、第2加熱工程における到達温度を150℃とした以外は実施例1と同様にして、金属サイディング6を作製した。
[Examples 4 and 6]
Example 1 except that the ultimate temperature of the surface coated steel sheet in the first heating step was 60 ° C, the holding time in the first heating step was 10 minutes, and the ultimate temperature in the second heating step was 150 ° C. A metal siding 4 was produced.
Moreover, it is the same as that of Example 1 except that the ultimate temperature of the coated steel sheet for surface in the first heating step is 100 ° C., the holding time in the first heating step is 1 minute, and the ultimate temperature in the second heating step is 150 ° C. Thus, metal siding 6 was produced.
 [実施例5および7]
 第2加熱工程における表面用塗装鋼板の到達温度を150℃とし、第2加熱工程における昇温時間を5秒間および10秒間にそれぞれ変更した以外は実施例1と同様にして、金属サイディング5および7を作製した。
[Examples 5 and 7]
Metal sidings 5 and 7 were carried out in the same manner as in Example 1 except that the ultimate temperature of the coated steel sheet for surface use in the second heating step was 150 ° C. and the temperature raising time in the second heating step was changed to 5 seconds and 10 seconds, respectively. Was made.
 [実施例8および9]
 第2加熱工程における到達温度を200℃とし、第2加熱工程における昇温時間を5秒間および10秒間にそれぞれ変更した以外は実施例1と同様にして、金属サイディング8および9を作製した。
[Examples 8 and 9]
Metal sidings 8 and 9 were produced in the same manner as in Example 1 except that the ultimate temperature in the second heating step was 200 ° C. and the temperature raising time in the second heating step was changed to 5 seconds and 10 seconds, respectively.
 [実施例10]
 第2加熱工程に、中赤外線炉に代えて近赤外線炉を用い、第2加熱工程における表面用塗装鋼板の到達温度を150℃とし、第2加熱工程における昇温時間を3秒間に変更した以外は実施例1と同様にして、金属サイディング10を作製した。
[Example 10]
For the second heating step, a near infrared furnace was used instead of the mid-infrared furnace, the ultimate temperature of the surface coated steel sheet in the second heating step was 150 ° C., and the temperature raising time in the second heating step was changed to 3 seconds Produced a metal siding 10 in the same manner as in Example 1.
 [実施例11]
 第1加熱工程に、熱風炉に代えて遠赤外線炉を用い、第2加熱工程における表面用塗装鋼板の到達温度を150℃に変更した以外は実施例1と同様にして、金属サイディング11を作製した。
[Example 11]
A metal siding 11 was produced in the same manner as in Example 1 except that a far-infrared furnace was used in the first heating step instead of a hot air furnace, and the ultimate temperature of the surface coated steel sheet in the second heating step was changed to 150 ° C. did.
 [比較例1]
 第1加熱工程における表面用塗装鋼板の到達温度を60℃とし、第1加熱工程における保持時間を11分間とし、第2加熱工程における到達温度を150℃とした以外は実施例1と同様にして、金属サイディング12を作製した。
[Comparative Example 1]
Example 1 except that the ultimate temperature of the surface coated steel sheet in the first heating step was 60 ° C, the holding time in the first heating step was 11 minutes, and the ultimate temperature in the second heating step was 150 ° C. A metal siding 12 was produced.
 [比較例2]
 第1加熱工程における表面用塗装鋼板の到達温度を100℃とし、第1加熱工程における保持時間を0.5分間とし、第2加熱工程における到達温度を150℃とした以外は実施例1と同様にして、金属サイディング13を作製した。
[Comparative Example 2]
Example 1 except that the ultimate temperature of the surface coated steel sheet in the first heating step was 100 ° C., the holding time in the first heating step was 0.5 minutes, and the ultimate temperature in the second heating step was 150 ° C. Thus, metal siding 13 was produced.
 [比較例3]
 第2加熱工程を行わない以外は実施例1と同様にして、金属サイディング14を作製した。
[Comparative Example 3]
A metal siding 14 was produced in the same manner as in Example 1 except that the second heating step was not performed.
 [比較例4]
 第1加熱工程における表面用塗装鋼板の到達温度を110℃とし、第2加熱工程を行わない以外は実施例1と同様にして、金属サイディング15を作製した。
[Comparative Example 4]
A metal siding 15 was produced in the same manner as in Example 1 except that the ultimate temperature of the coated steel sheet for surface use in the first heating step was 110 ° C. and the second heating step was not performed.
 [比較例5および6]
 第2加熱工程における表面用塗装鋼板の到達温度と昇温時間を110℃、10秒間および120℃、35秒間にそれぞれ変更した以外は実施例1と同様にして、金属サイディング16および17を作製した。
[Comparative Examples 5 and 6]
Metal sidings 16 and 17 were produced in the same manner as in Example 1 except that the ultimate temperature and the heating time of the coated steel sheet for surface in the second heating step were changed to 110 ° C., 10 seconds, 120 ° C., and 35 seconds, respectively. .
 [比較例7]
 第2加熱工程に、中赤外線炉に代えて近赤外線炉を用い、第2加熱工程における表面用塗装鋼板の到達温度を210℃とし、第2加熱工程における昇温時間を5秒間に変更した以外は実施例1と同様にして、金属サイディング18を作製した。
[Comparative Example 7]
A near-infrared furnace was used instead of the mid-infrared furnace for the second heating step, the ultimate temperature of the coated steel sheet for surface use in the second heating step was 210 ° C., and the temperature raising time in the second heating step was changed to 5 seconds Produced a metal siding 18 in the same manner as in Example 1.
 [実施例12]
 金属サイディング原板の表面用塗装鋼板の表面を、表面の起伏に合わせて、乾燥質量20g/mとなるようにグラビアオフセット印刷装置によって塗料2で塗装した。グラビアオフセット印刷装置には、特開2002-86036号公報に記載されているような、グラビア版ロール、オフセットロールおよびクリーニングロールを有する装置を用いた(図2参照)。グラビア版ロールは、画像の濃度に応じて異なる深さを有するセル部(凹部)に供給される塗料を保持して回転する。オフセットロールは、その表面層がゴム硬度35度のシリコーンゴムで構成されており、該グラビア版ロールに回転自在に接しており、該グラビア版ロールに保持されている塗料を担持した後に金属サイディング原板に転写する。クリーニングロールは、オフセットロールに回転自在に接しており、オフセットロール表面に残る未転写塗料を当該表面から除去する。
[Example 12]
The surface of the coated steel sheet for the surface of the metal siding original plate was coated with the paint 2 by a gravure offset printing apparatus so as to have a dry mass of 20 g / m 2 according to the undulation of the surface. As the gravure offset printing apparatus, an apparatus having a gravure plate roll, an offset roll, and a cleaning roll as described in JP-A-2002-86036 was used (see FIG. 2). The gravure roll rotates while holding the paint supplied to the cell part (concave part) having a different depth according to the density of the image. The offset roll has a surface layer made of silicone rubber having a rubber hardness of 35 degrees, is in contact with the gravure plate roll in a freely rotating manner, and after carrying the paint held on the gravure plate roll, the metal siding original plate Transcript to. The cleaning roll is rotatably in contact with the offset roll, and removes untransferred paint remaining on the surface of the offset roll from the surface.
 塗料2で塗装した金属サイディング原板を、実施例1と同じ条件の第1加熱工程および第2加熱工程で加熱することによって塗料2の塗膜を形成し、金属サイディング19を作製した。 The metal siding original plate coated with the paint 2 was heated in the first heating step and the second heating step under the same conditions as in Example 1 to form a coating film of the paint 2 to produce a metal siding 19.
 [実施例13~22および比較例8~14]
 塗料2で塗装した金属サイディング原板を、実施例2~11および比較例1~7と同じ条件の第1加熱工程および第2加熱工程でそれぞれ加熱する以外は実施例10と同様にして、金属サイディング20~36をそれぞれ作製した。
[Examples 13 to 22 and Comparative Examples 8 to 14]
Metal siding was performed in the same manner as in Example 10 except that the metal siding original plate coated with paint 2 was heated in the first heating step and the second heating step under the same conditions as in Examples 2 to 11 and Comparative Examples 1 to 7, respectively. 20 to 36 were produced.
 [実施例23]
 金属サイディング原板の表面用塗装鋼板の表面に、塗料3を用いて、インクジェットプリンター(パターニングジェット;株式会社トライテック)により、表面用塗装鋼板の表面積の50%の部分に、エンボス柄に合わせた砂岩調のデザインをインクジェット印刷した。インクジェット印刷の条件を以下に示す。
 (インクジェット印刷の条件)
 インクジェットヘッドのノズル径 35μm
 インクジェット印刷時のヘッド加熱温度 45℃
 印加電圧 11.5V
 パルス幅 10.0μs
 駆動周波数 3483Hz
 インク滴の体積 42pL
 解像度 360dpi
 インク塗布量 8.4g/m
[Example 23]
Sandstone matched to the embossed pattern on the surface of the coated steel sheet for metal siding using paint 3 and 50% of the surface area of the coated steel sheet for surface coating using an ink jet printer (patterning jet; Tritech Co., Ltd.). Tone design was inkjet printed. The conditions for inkjet printing are shown below.
(Conditions for inkjet printing)
Nozzle diameter of inkjet head 35μm
Head heating temperature for inkjet printing 45 ° C
Applied voltage 11.5V
Pulse width 10.0μs
Drive frequency 3483Hz
Ink drop volume 42pL
Resolution 360 dpi
Ink application amount 8.4 g / m 2
 次いで、インクジェット印刷を行った表面用塗装鋼板の表面に紫外線を照射して、塗料3を硬化させ、金属サイディング原板における表面用塗装鋼板の表面に、塗料3の塗膜を形成した。紫外線照射の条件を以下に示す。下記積算光量は、赤外線光量計UV-351-25(株式会社オーク製作所製)で測定した。
 (紫外線照射の条件)
 光源 高圧水銀ランプ(Hバルブ;フュージョンUVシステムズ・ジャパン株式会社)
 ランプ出力 200W/cm
 積算光量 600mJ/cm
Next, the surface of the coated steel sheet for ink jet printing was irradiated with ultraviolet rays to cure the paint 3, and a coating film of the paint 3 was formed on the surface of the coated steel sheet for surface in the metal siding original plate. The conditions for ultraviolet irradiation are shown below. The following integrated light quantity was measured with an infrared light quantity meter UV-351-25 (manufactured by Oak Manufacturing Co., Ltd.).
(Conditions for UV irradiation)
Light source High pressure mercury lamp (H bulb; Fusion UV Systems Japan Ltd.)
Lamp output 200W / cm
Integrated light quantity 600mJ / cm 2
 次いで、塗料3の塗膜の表面を塗料1で実施例1と同様に塗装した。そして、塗装した金属サイディング原板を、実施例1と同じ条件の第1加熱工程および第2加熱工程で加熱することによって、塗料3の塗膜の上に塗料1の塗膜を形成し、金属サイディング37を作製した。 Next, the surface of the coating film of the paint 3 was coated with the paint 1 in the same manner as in Example 1. Then, the coated metal siding original plate is heated in the first heating step and the second heating step under the same conditions as in Example 1 to form the coating film of the coating material 1 on the coating film of the coating material 3, and the metal siding 37 was produced.
 [実施例24~33および比較例15~21]
 塗料3の塗膜の表面を塗料1で塗装した金属サイディング原板を、実施例2~11および比較例1~7と同じ条件の第1加熱工程および第2加熱工程でそれぞれ加熱する以外は実施例23と同様にして、金属サイディング38~54をそれぞれ作製した。
[Examples 24 to 33 and Comparative Examples 15 to 21]
Example except that the metal siding original plate with the paint 3 surface coated with paint 1 is heated in the first heating step and the second heating step under the same conditions as in Examples 2 to 11 and Comparative Examples 1 to 7, respectively. In the same manner as in Example No. 23, metal sidings 38 to 54 were produced.
 金属サイディング1~18の作製条件を表1に、金属サイディング19~36の作製条件を表2に、金属サイディング37~54の作製条件を表3に、それぞれ示す。 The production conditions for metal sidings 1 to 18 are shown in Table 1, the production conditions for metal sidings 19 to 36 are shown in Table 2, and the production conditions for metal sidings 37 to 54 are shown in Table 3, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [評価]
 (1.密着性)
 JIS K 5600-5-6に従い、間隔1mmで10×10=100個の碁盤目状に金属サイディングの表面の塗膜に切れ目を入れ、切れ目を入れた部分にセロハンテープを貼り、勢いよく剥がし、塗膜の剥離した切片の数を数え、以下の基準で評価した。○以上であれば使用可能なレベルである。
 ◎:剥離した切片の数が5未満
 ○:剥離した切片の数が5~29
 ×:剥離した切片の数が30以上
[Evaluation]
(1. Adhesiveness)
In accordance with JIS K 5600-5-6, 10 × 10 = 100 grids with 1 mm spacing are cut into the coating on the surface of the metal siding, and cellophane tape is applied to the cut part, and peeled off vigorously. The number of sections from which the coating film was peeled was counted and evaluated according to the following criteria. ○ If it is above, it is a usable level.
A: The number of exfoliated sections is less than 5. B: The number of exfoliated sections is 5-29.
X: The number of exfoliated sections is 30 or more
 (2.引っかき硬度)
 JIS K5600-5-4に規定された測定方法に従って、金属サイディングの表面の塗膜の鉛筆硬度を測定し、以下の基準で評価した。○以上であれば使用可能なレベルにある。
 ◎:H以上
 ○:HB~F
 ×:B以下
(2. Scratch hardness)
The pencil hardness of the coating film on the surface of the metal siding was measured according to the measurement method specified in JIS K5600-5-4, and evaluated according to the following criteria. ○ If it is above, it is at a usable level.
◎: H or more ○: HB to F
×: B or less
 (3.耐水密着性)
 金属サイディングから芯材および裏面紙を剥がし、上記の実施例または比較例で作製した塗膜を有する表面用塗装鋼板を、98℃以上の沸騰したイオン交換水中に2時間浸漬した後、室温で2時間乾燥させた。その後、前述した密着性の評価試験を行い、以下の基準で評価した。○以上であれば使用可能なレベルにある。
 ◎:剥離した切片の数が0
 ○:剥離した切片の数が1~4
 ×:剥離した切片の数が5以上
(3. Water-resistant adhesion)
The core material and the backside paper are peeled off from the metal siding, and the surface coated steel sheet having the coating film prepared in the above-mentioned examples or comparative examples is immersed in boiling ion-exchanged water at 98 ° C. or higher for 2 hours, and then at room temperature. Let dry for hours. Then, the adhesion evaluation test described above was performed and evaluated according to the following criteria. ○ If it is above, it is at a usable level.
A: The number of exfoliated sections is 0
○: The number of exfoliated sections is 1 to 4
X: The number of exfoliated sections is 5 or more
 (4.反り)
 金属サイディング(働き幅381mm、長さ3,788mm)を、第1加熱工程前と第2加熱工程後に、それぞれ定盤の上に置き、金属サイディング端面の定盤からの高さを測定した。そして、塗装焼成(第1加熱工程と第2加熱工程の両方を合わせた工程)前後における、金属サイディングの表面の端縁の定盤からの高さ変化量を求め、以下の基準で評価した。○以上であれば使用可能なレベルにある。
 ◎:1mm未満
 ○:1mm以上2mm未満
 ×:2mm以上
(4. Warping)
Metal siding (working width 381 mm, length 3,788 mm) was placed on the surface plate before the first heating step and after the second heating step, respectively, and the height of the metal siding end surface from the surface plate was measured. And the amount of height change from the surface plate of the edge of the surface of a metal siding before and after coating baking (process which combined both the 1st heating process and the 2nd heating process) was calculated | required, and the following references | standards evaluated. ○ If it is above, it is at a usable level.
◎: less than 1 mm ○: 1 mm or more and less than 2 mm ×: 2 mm or more
 (5.裏面紙の膨れ、シワ)
 作製した金属サイディングの裏面紙の膨れ、シワの状態を目視で観察し、以下の基準で評価した。
 ○:膨れおよびシワ無し
 ×:膨れおよびシワ有り
(5. Backside paper bulge, wrinkles)
The produced metal siding was visually observed for swelling and wrinkle on the backside paper, and evaluated according to the following criteria.
○: No swelling or wrinkle ×: With swelling or wrinkle
 (6.表面用塗装鋼板と芯材との界面状態)
 作製した金属サイディングの表面用塗装鋼板と芯材との界面を目視で観察し、以下の基準で評価した。
 ○:剥離無し
 ×:剥離有り
(6. Interface state between coated steel sheet for surface and core material)
The interface between the prepared coated steel sheet for metal siding and the core material was visually observed and evaluated according to the following criteria.
○: No peeling ×: With peeling
 金属サイディング1~18の評価を表4に、金属サイディング19~36の評価を表5に、金属サイディング37~54の作製条件を表6に、それぞれ示す。 The evaluation of metal siding 1 to 18 is shown in Table 4, the evaluation of metal siding 19 to 36 is shown in Table 5, and the production conditions of metal siding 37 to 54 are shown in Table 6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 熱風炉による第1加熱工程と、中赤外線炉による第2加熱工程とを行った実施例では、塗膜の密着性、引っかき硬度および耐水密着性に優れ、かつ、反り、膨れまたはシワ、および、界面での剥離のない良好な金属サイディングが得られた。第2加熱工程を近赤外線炉で行った場合(実施例10、21および32)、および、第1加熱工程を遠赤外線炉によって行った場合(実施例11、22および33)でも、良好な金属サイディングが得られた。第2加熱工程の加熱量がより少ないと、塗膜の密着性などが若干低下する傾向が見られ、第2加熱工程の加熱量がより多いと、反りが若干大きくなる傾向が見られた。 In the example in which the first heating step by the hot air furnace and the second heating step by the mid-infrared furnace were performed, the coating film was excellent in adhesion, scratch hardness and water-resistant adhesion, and warped, swollen or wrinkled, and Good metal siding with no peeling at the interface was obtained. Even when the second heating step is performed in a near-infrared furnace (Examples 10, 21 and 32) and when the first heating step is performed in a far-infrared furnace (Examples 11, 22 and 33), a good metal Siding was obtained. When the amount of heating in the second heating step was smaller, the adhesion of the coating film tended to be slightly lowered, and when the amount of heating in the second heating step was larger, the warp tended to be slightly increased.
 一方、第1加熱工程の表面処理鋼板の到達温度が60℃で、保持時間が11分と長い比較例(比較例1、8および15)ではサイディングに反りが発生した。これは、低い温度でも長時間保持すると芯材まで熱が伝わり、芯材が変形したためと考えられる。第1加熱工程の表面処理鋼板の到達温度が100℃で、保持時間が0.5分と短い比較例(比較例2、9および16)では塗膜の密着性、引っかき硬度および耐水密着性のいずれも不良であった。これは、第1加熱工程の到達温度が高くても保持時間が短すぎたことから塗料の水分が十分に除去されなかったためと考えられる。第2加熱工程を行わなかった比較例(比較例3、10および17)では、塗膜の密着性、引っかき硬度および耐水密着性のいずれも不良であった。これは、塗料から造膜助剤が十分に除去されなかったためと考えられる。また、第2加熱工程を行わず、さらに第1加熱工程の加熱量をより増やした比較例(比較例4、11および18)では、金属サイディングの熱変形が大きくなった。これは、芯材まで熱が伝わり、芯材が変形、膨張したためと考えられる。さらに、第2加熱工程を行ったもののその加熱量が少なかった比較例(比較例5、12および19)では、塗膜の密着性などに不良が生じた。これは、塗料からの造膜助剤の除去が依然として不十分であったためと考えられる。さらに、第2加熱工程での加熱量が多すぎた比較例(比較例6、13および20と、比較例7、14および21)では、芯材の膨れまたはシワは生じないものの、金属サイディングの熱変形による不良が生じた。これは、加熱されている鋼板への芯材の接合力が弱まり、鋼板の熱膨張と芯材の熱膨張との差による変形が生じたためと考えられる。 On the other hand, in the comparative examples (Comparative Examples 1, 8 and 15) where the ultimate temperature of the surface-treated steel sheet in the first heating step was 60 ° C. and the holding time was 11 minutes, warping occurred in siding. This is presumably because heat was transferred to the core material when held for a long time even at a low temperature, and the core material was deformed. In the comparative examples (Comparative Examples 2, 9 and 16) where the ultimate temperature of the surface-treated steel sheet in the first heating step is 100 ° C. and the holding time is as short as 0.5 minutes, the coating film adhesion, scratch hardness and water resistance adhesion Both were bad. This is considered to be because the moisture of the paint was not sufficiently removed because the holding time was too short even if the temperature reached in the first heating step was high. In the comparative examples in which the second heating step was not performed (Comparative Examples 3, 10 and 17), all of the adhesion, scratch hardness and water-resistant adhesion of the coating film were poor. This is presumably because the film-forming aid was not sufficiently removed from the paint. Further, in the comparative examples (comparative examples 4, 11 and 18) in which the second heating step was not performed and the heating amount in the first heating step was further increased, the thermal deformation of the metal siding became large. This is presumably because heat was transmitted to the core material and the core material was deformed and expanded. Furthermore, in the comparative examples (Comparative Examples 5, 12, and 19) in which the second heating step was performed but the heating amount was small, the adhesion of the coating film was poor. This is presumably because removal of the film-forming aid from the paint was still insufficient. Furthermore, in the comparative examples (Comparative Examples 6, 13, and 20, and Comparative Examples 7, 14, and 21) in which the heating amount in the second heating step is too large, the core material does not swell or wrinkle, but the metal siding Failure due to thermal deformation occurred. This is presumably because the bonding force of the core material to the heated steel plate was weakened, and deformation occurred due to the difference between the thermal expansion of the steel plate and the thermal expansion of the core material.
 2013年2月28日出願の特願2013-038876の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The entire disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2013-038876 filed on February 28, 2013 is incorporated herein by reference.
 建物の外装材には多様なデザインが求められており、金属サイディングもその装飾模様の多様化が要求されている。本発明によれば、例えば市販の金属サイディングに装飾模様をさらに付することが可能である。さらに、本発明によれば、表面が塗装された金属サイディングを短い加熱時間で製造することが可能である。よって、本発明によれば、装飾性に富んだ外装材のさらなる開発およびその普及が期待される。 A variety of designs are required for building exterior materials, and metal siding is also required to diversify its decorative patterns. According to the present invention, for example, a decorative pattern can be further added to a commercially available metal siding. Furthermore, according to the present invention, a metal siding having a coated surface can be produced in a short heating time. Therefore, according to the present invention, further development of an exterior material rich in decorativeness and its spread are expected.
 11~14、18 搬送ベルト
 15 熱風炉
 16 中赤外線炉
 17 スプレーノズル
 19 グラビアオフセット印刷装置
 19a グラビア版ロール
 19b オフセットロール
 19c クリーニングロール
 20 インクジェットノズル
 21 UVランプ
 
11-14, 18 Conveyor belt 15 Hot air furnace 16 Middle infrared furnace 17 Spray nozzle 19 Gravure offset printing device 19a Gravure plate roll 19b Offset roll 19c Cleaning roll 20 Inkjet nozzle 21 UV lamp

Claims (4)

  1.  金属板、芯材および裏面材をこの順で有する金属サイディング原板の金属板側の表面に、樹脂、水および造膜助剤を含有する水系塗料が塗布された金属サイディング原板を、少なくとも第1加熱工程および第2加熱工程で加熱して、前記水系塗料から形成された塗膜を有する金属サイディングを製造する方法であって、
     前記第1加熱工程は、前記金属板の到達温度を60~100℃に1~10分間維持し、前記第2加熱工程は、最大エネルギー波長が0.8~3.0μmである近赤外線または中赤外線を前記水系塗料に照射して、前記金属板の温度を昇温時間1~30秒間で120~200℃に到達させる、金属サイディングの製造方法。
    At least a first heating is performed on the metal siding original plate in which a water-based paint containing resin, water, and a film-forming aid is applied to the surface of the metal siding original plate having the metal plate, the core material, and the back surface material in this order. A method of manufacturing a metal siding having a coating film formed from the water-based paint by heating in the step and the second heating step,
    In the first heating step, the ultimate temperature of the metal plate is maintained at 60 to 100 ° C. for 1 to 10 minutes, and in the second heating step, the near-infrared ray or medium having a maximum energy wavelength of 0.8 to 3.0 μm is used. A method for producing metal siding, wherein the water-based paint is irradiated with infrared rays so that the temperature of the metal plate reaches 120 to 200 ° C. in a temperature rising time of 1 to 30 seconds.
  2.  前記第2加熱工程は、中赤外線を前記水系塗料に照射する、請求項1に記載の金属サイディングの製造方法。 The metal siding manufacturing method according to claim 1, wherein the second heating step irradiates the water-based paint with mid-infrared rays.
  3.  金属板、芯材および裏面材をこの順で有し、金属板側の表面に、樹脂、水および造膜助剤を含有する水系塗料が塗布された金属サイディング原板を、前記金属板の到達温度を60~100℃に維持するように加熱するための第1加熱炉と、前記金属板の到達温度を120~200℃にするように前記金属サイディング原板を加熱するための第2加熱炉と、前記金属サイディング原板の少なくとも前記第1加熱炉への搬入から前記第2加熱炉からの搬出までを行う搬送装置と、を有し、
     前記第2加熱炉は、前記水系塗料に最大エネルギー波長が0.8μm以上1.8μm未満である近赤外線を照射する近赤外線炉または前記水系塗料に最大エネルギー波長が1.8~3.0μmである中赤外線を照射する中赤外線炉であり、
     前記搬送装置は、前記第1加熱炉における前記到達温度を1~10分間維持し、前記第2加熱炉における前記到達温度に昇温時間1~30秒間で到達するように、前記金属サイディング原板を搬送する、金属サイディングの製造装置。
    A metal siding base plate having a metal plate, a core material, and a back surface material in this order, and a surface of the metal plate side coated with a water-based paint containing resin, water, and a film-forming aid, is reached by the temperature reached by the metal plate A first heating furnace for heating the metal siding raw plate so that the ultimate temperature of the metal plate is 120 to 200 ° C., and a second heating furnace for heating the metal siding original plate to 120 to 200 ° C. A conveying device that performs at least the loading of the metal siding original plate into the first heating furnace to the unloading from the second heating furnace,
    The second heating furnace is a near-infrared furnace for irradiating the water-based paint with near-infrared light having a maximum energy wavelength of 0.8 μm or more and less than 1.8 μm, or the water-based paint has a maximum energy wavelength of 1.8 to 3.0 μm. A mid-infrared furnace that emits some mid-infrared radiation,
    The transport device maintains the ultimate temperature in the first heating furnace for 1 to 10 minutes and moves the metal siding original plate so as to reach the ultimate temperature in the second heating furnace in a heating time of 1 to 30 seconds. Metal siding manufacturing equipment for transportation.
  4.  前記第2加熱炉は、前記中赤外線炉である、請求項3に記載の金属サイディングの製造装置。
     
    The metal siding manufacturing apparatus according to claim 3, wherein the second heating furnace is the mid-infrared furnace.
PCT/JP2013/006829 2013-02-28 2013-11-20 Production method and production device for metal siding WO2014132309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013038876A JP5567167B1 (en) 2013-02-28 2013-02-28 Metal siding manufacturing method and manufacturing apparatus
JP2013-038876 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014132309A1 true WO2014132309A1 (en) 2014-09-04

Family

ID=51427170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006829 WO2014132309A1 (en) 2013-02-28 2013-11-20 Production method and production device for metal siding

Country Status (2)

Country Link
JP (1) JP5567167B1 (en)
WO (1) WO2014132309A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466874B2 (en) * 2016-03-03 2019-02-06 日新製鋼株式会社 Manufacturing method of decorative building board
KR20220021234A (en) * 2020-08-13 2022-02-22 엘지전자 주식회사 Hydrophilic coating composition, fin for heat exchanger and heat exchanger including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656269A (en) * 1979-10-15 1981-05-18 Matsushita Electric Works Ltd Coating method of water-soluble paint
JPH0330875A (en) * 1989-06-28 1991-02-08 Okuno Seiyaku Kogyo Kk Method for baking aqueous inorganic coating material
JPH0531442A (en) * 1991-07-26 1993-02-09 Okuno Seiyaku Kogyo Kk Method for hardening aqueous alkali silicate-based inorganic coating material
JPH10109062A (en) * 1996-10-07 1998-04-28 Kansai Paint Co Ltd Method for drying coating film
JP2003053258A (en) * 2001-06-04 2003-02-25 Kansai Paint Co Ltd Method for forming metal siding structure having high design effect and metal siding structure formed thereby
JP2003340361A (en) * 2002-05-29 2003-12-02 Nippon Paint Co Ltd Method for drying coating film
JP2007503994A (en) * 2003-09-03 2007-03-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multi-stage process for drying and curing substrates coated with aqueous basecoat and topcoat

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656269A (en) * 1979-10-15 1981-05-18 Matsushita Electric Works Ltd Coating method of water-soluble paint
JPH0330875A (en) * 1989-06-28 1991-02-08 Okuno Seiyaku Kogyo Kk Method for baking aqueous inorganic coating material
JPH0531442A (en) * 1991-07-26 1993-02-09 Okuno Seiyaku Kogyo Kk Method for hardening aqueous alkali silicate-based inorganic coating material
JPH10109062A (en) * 1996-10-07 1998-04-28 Kansai Paint Co Ltd Method for drying coating film
JP2003053258A (en) * 2001-06-04 2003-02-25 Kansai Paint Co Ltd Method for forming metal siding structure having high design effect and metal siding structure formed thereby
JP2003340361A (en) * 2002-05-29 2003-12-02 Nippon Paint Co Ltd Method for drying coating film
JP2007503994A (en) * 2003-09-03 2007-03-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multi-stage process for drying and curing substrates coated with aqueous basecoat and topcoat

Also Published As

Publication number Publication date
JP5567167B1 (en) 2014-08-06
JP2014166606A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
WO2015079596A1 (en) Process for producing decorative building board
JP2010106619A (en) Building board
JP6088712B1 (en) Manufacturing method of decorative building board
TWI685420B (en) Laminated body, laminated body with colored layer, manufacturing method of laminated body, manufacturing method of laminated body with colored layer, and ink recording method
EP2962845B1 (en) Material, printed material, and coated material
US10751751B2 (en) Pretreatment method for coating or printing
US10737293B2 (en) Pretreatment method for coating or printing
EP3890989B1 (en) Inkjet printing on polycarbonate substrates
JP2010112073A (en) Building plate
JP5893878B2 (en) Manufacturing method of colored plate
JP6105327B2 (en) Printing materials and coating materials
JP5567167B1 (en) Metal siding manufacturing method and manufacturing apparatus
JP2018535326A (en) Surface-treated metal material with easy adjustment of gloss and method for producing the same
JP6153030B2 (en) Manufacturing method of decorative building board
JP6466874B2 (en) Manufacturing method of decorative building board
JP6230568B2 (en) Manufacturing method of decorative building board
JP6378709B2 (en) Manufacturing method of decorative building board
JP2015123588A (en) Coated metal plate, coated metal plate molding and method for producing the same
JP7417800B2 (en) Paints for metals, metal base materials for printing obtained from the same and methods for producing the same, and coated metal materials
JP7402397B2 (en) Manufacturing method of painted metal plate
KR20140066313A (en) Embossed color steel sheet and manufacturing method thereof
JP2014101748A (en) Building board
JP2022127243A (en) Metal base material to be printed and method for manufacturing the same, and coated metal material
KR101459363B1 (en) Method of manufacturing ultraviolet ray curable color painted steel sheet with self-leveling
KR20140046102A (en) Inkjet print color steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876629

Country of ref document: EP

Kind code of ref document: A1