WO2014131867A1 - Verbundmagnet - Google Patents

Verbundmagnet Download PDF

Info

Publication number
WO2014131867A1
WO2014131867A1 PCT/EP2014/053905 EP2014053905W WO2014131867A1 WO 2014131867 A1 WO2014131867 A1 WO 2014131867A1 EP 2014053905 W EP2014053905 W EP 2014053905W WO 2014131867 A1 WO2014131867 A1 WO 2014131867A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet according
magnet
magnetic material
plastic carrier
mass
Prior art date
Application number
PCT/EP2014/053905
Other languages
English (en)
French (fr)
Inventor
Norman Wittke
Michael Svec
Original Assignee
Ms-Schramberg Holding Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ms-Schramberg Holding Gmbh & Co. Kg filed Critical Ms-Schramberg Holding Gmbh & Co. Kg
Priority to EP14707163.3A priority Critical patent/EP2962311A1/de
Publication of WO2014131867A1 publication Critical patent/WO2014131867A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds

Definitions

  • the invention relates to a magnet with bonded in a thermosetting plastic carrier material powdered magnetic material.
  • a magnet of this type is specified in EP 1 146 526 B1.
  • this known magnet is a magnetic material, for. B. a rare earth material of the Nd-Fe-B type, incorporated in a resin binder of unsaturated polyester resin.
  • the powdery magnetic material has an anisotropic magnetic field, wherein 50% by weight or more of the magnetic powder particles have a particle size of 100 ⁇ m or less.
  • the composition comprising the magnetic powder and the resin binder is molded by injection molding, injection molding, transfer molding or transfer molding. Numerous additives are given for the processing and adjustment of the properties of the resin binder in the form of the unsaturated polyester.
  • Numerous additives are given for the processing and adjustment of the properties of the resin binder in the form of the unsaturated polyester.
  • DE 102 17 998 A1 discloses a magnet which is pressed from magnetic powder and a binder system which comprises a combination of a metallic binder and a thermosetting epoxy-based organic binder as binder.
  • a binder system which comprises a combination of a metallic binder and a thermosetting epoxy-based organic binder as binder.
  • EP 2 234 123 A1 likewise discloses plastic-bonded pressed magnets with powdered rare-earth magnetic materials.
  • the binder in particular, an epoxy-based resin is preferable.
  • DE 10 2008 049 888 A1 is a magnetic system of compressed magnetic powders of a rare earth magnetic material with duroplastic binder between magnetic powder grains.
  • thermosets are produced with thermoplastic synthetic material. These have, compared to thermosets, a relatively high viscosity, and they can process relatively well injection molding and molding. The advantages of thermosets are their low viscosity, good flow behavior, low shrinkage behavior and chemical resistance.
  • the invention has for its object to provide a magnet of the type mentioned above, which offers good adaptability to given requirements with a stable structure.
  • BMC Bulk Molding Compound.
  • the thermosetting BMC plastic polymer matrix gives the magnet a stable, dimensionally stable structure at the said high degree of filling of magnetic material, which achieves high magnetic efficiency, and the magnet can advantageously be adapted to different circumstances.
  • the short fibers contained in the BMC molding compound (such as, for example, glass fibers or carbon fibers) substantially contribute to the mechanical stability of the magnet or component, with good formability and dimensional stability at the same time. In preliminary experiments, it has been shown that the magnet thus produced and a particularly good chemical resistance to fuels such. B. bioethanol results.
  • the magnetic material is a rare earth magnetic material or a hard ferrite magnetic material or is a mixture of both.
  • the magnetic material is an Al-NiCo material - optionally in combination with other magnetic materials.
  • the plastic carrier material has a share of up to 20% by mass of the entire magnet, wherein in addition to the fibers of the BMC molding compound further fillers and / or additives are added.
  • the rare earth magnetic material has a plate-like particle shape (eg, length to thickness ratio of between 3 and 50), the morphology of the powder particles with a relatively low attack surface against corrosive effects and hence increased resistance compared to a lower ratio of Length to thickness (L / D ratio or form factor or aspect ratio).
  • L / D ratio or form factor or aspect ratio the ratio of Length to thickness
  • the measure is advantageous in that the magnetic material is formed from a mixture with different particle size distributions, since thus a particularly high packing density of the platelet-like particles can be achieved.
  • the particle sizes are in a range from about 50 pm to about 600 pm, preferably between 100 pm and 400 pm, wherein two or more average values of particle sizes with respective statistical scattering about the mean value can be specified for the different particle distributions ( through sieves with different mesh sizes).
  • a particularly good performance of the magnet is obtained in that the degree of filling of magnetic material between 85 and 98 mass% (on the entire mixture of the magnet) is.
  • Advantageous embodiments also result from the fact that the proportion of the plastic carrier material is between 2 and 15% by mass (based on the entire mixture of substances).
  • the mechanical stability and further properties of the magnet can also advantageously be varied in that the BMC molding composition contains glass fibers and micro-hollow glass beads and / or mineral fillers are added as further fillers.
  • the properties of the magnet can furthermore be advantageously influenced by adding dispersants, deaerators, release additives, surface modifiers and / or thermoplastics (PMMA) as additives.
  • PMMA thermoplastics
  • additives can advantageously achieve a shrinkage setting between -0.3% and 0.1%, and this also depends on the degree of filling and the type of magnetic material and the other fillers and additives.
  • An advantageous construction of the magnet is furthermore achieved by the fact that the plastic carrier material is produced from a molding compound based on unsaturated polyesters.
  • the molding material is injected.
  • SE materials such as Nd-Fe-B material
  • SE materials such as Nd-Fe-B material
  • the low viscosity in the magnet production makes it possible to align the magnetic particles in the desired manner, so that it is possible to produce anisotropic magnets advantageously in addition to isotropic magnets.
  • the plastic carrier material on the basis of a BMC polymer matrix in comparison to a plastic carrier based on an epoxy resin, it is possible to set a lower viscosity and better crosslinking capability and achieve significantly better processing in the case of the present composite (compound).
  • a production by pressing in particular also transfer presses in question.
  • As an insert in case of components made with said magnet is z.
  • steel advantageous.
  • the selection of a magnetic powder is advantageous platelet-like morphology.
  • length to thickness or form factor or aspect ratio L / D greater than 3 has a relatively low, by the plastic carrier material well wettable and coverable surface, wherein the resin based on the BMC polymer matrix also good in coordination with the other constituents of the compound and the operational requirements can be coordinated.
  • the specific surface of the magnetic powder or powdered magnetic material is reduced as far as possible in coordination with the wetting by the BMC polymer matrix and the other components of the compound, on the other hand, the magnetic properties of the compound to be achieved are not adversely affected.
  • the viscosity of the plastic polymer matrix can be advantageously influenced by adding special additives, such as dispersants, wetting and rheology modifiers, in very small amounts.
  • the z. B. have a length of less than 1 or 2 mm.
  • the BMC molding compound allows a variety of precise shapes with high dimensional accuracy.
  • micro-glass bubbles and / or mineral fillers can be added.
  • the incorporation of the powdery magnetic material (magnetic powder) into the plastic matrix from the BMC molding compound takes place through the compounding process.
  • the magnetic powder and the BMC molding compound are compounded in the hot kneader or in the twin-screw extruder and then granulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung bezieht sich auf einen Magnet mit in einem duroplastischen Kunststoffträgermaterial gebundenem pulverförmigem Magnetmaterial, dessen Füllgrad mindestens 80 Massen-% an dem gesamten Magnet beträgt. Ein stabiler Aufbau wird dadurch erreicht, dass das Kunststoffträgermaterial durch eine Kunststoffpolymermatrix gebildet ist, die aus einer BMC-Formmasse hergestellt ist.

Description

VERBUNDMAGNET
Die Erfindung bezieht sich auf einen Magnet mit in einem duroplastischen Kunststoffträgermaterial gebundenem pulverförmigem Magnetmaterial.
Ein Magnet dieser Art ist in der EP 1 146 526 B1 angegeben. Bei diesem bekannten Magnet ist ein Magnetmaterial, z. B. ein Seltenerd-Material des Nd-Fe-B-Typs, in einen Harzbinder aus ungesättigtem Polyesterharz eingebunden. Das pulverförmige magnetische Material besitzt ein anisotropes Magnetfeld, wobei 50 Gew.-% oder mehr der Partikel des magnetischen Pulvers eine Partikelgröße von 100 pm oder weniger aufweisen. Die das magnetische Pulver und den Harzbinder umfassende Zusammensetzung wird durch Spritzgießen, Spritzformpressen, Spritzpressen oder Transferpressen geformt. Für die Verarbeitung und Einstellung der Eigenschaften des Harzbinders in Form des ungesättigten Polyesters sind zahlreiche Additive an- gegeben. Bei den erforderlichen hohen Füllgraden an pulverförmigem Magnetmaterial zum Erreichen einer gewünschten magnetischen Leistungsfähigkeit ist es andererseits schwierig, gute chemische, physikalische und insbesondere auch mechanische Eigenschaften sicherzustellen.
In der DE 102 17 998 A1 ist ein Magnet offenbart, der aus Magnetpulver und einem Bindersystem gepresst ist, der eine Kombination aus einem metallischen Binder und einem duroplastischen organischen Binder auf Epoxidbasis als Bindemittel umfasst. Die Herstellung von Magneten durch Pressen lässt zwar einen hohen Füllgrad zu, schränkt aber die Formgebungsmöglichkeiten gegenüber gespritzten Magneten wesentlich ein. Ferner sind die magnetischen Pulverteilchen bei gepressten Magneten erhöhten korrosiven Einflüssen ausgesetzt, da sie mehr Angriffsfläche als gespritzte Magnete bieten. In der EP 2 234 123 A1 sind ebenfalls kunststoffgebundene gepresste Magnete mit pulverförmigen Seltenerd-Magnetmaterialien offenbart. Als Bindemittel wird insbesondere ein Harz auf Epoxid-Basis bevorzugt.
Ein weiterer Magnet ist in der DE 10 2008 049 888 A1 genannt, wobei es sich um ein Magnetsystem aus verpressten Magnetpulvern eines Seltenerdmagnetwerkstoffes mit duroplastischem Bindemittel zwischen Magnetpulverkörnern handelt.
In der DE 1 646 885 A1 ist ein weiterer kunststoffgebundener Magnet angegeben, wobei als magnetisches Material feinkörniges Ferritpulver verwendet ist, das mit ei- nem Kunststoff-Bindemittel aus einem flüssigen Duroplast gebunden ist. Nähere Angaben zur Herstellung und zum Aufbau der so gefertigten kunststoffgebundenen Magnete sind nicht gemacht. In der Praxis erweist sich die Herstellung in vielen Fällen als schwierig. Üblicherweise werden kunststoffgebundene Magnete mit thermoplastischem Kunst- stoffmaterial hergestellt. Diese besitzen, verglichen mit Duroplasten, eine relativ hohe Viskosität, wobei sie sich spritztechnisch relativ gut verarbeiten und formen lassen. Als Vorteile von Duroplasten sind deren niedrige Viskosität, gutes Fließverhalten, geringes Schrumpfverhalten und chemische Beständigkeit bekannt.
Der Erfindung liegt die Aufgabe zugrunde, einen Magnet der eingangs genannten Art bereitzustellen, der bei stabilem Aufbau gute Anpassungsmöglichkeiten an gegebene Anforderungen bietet.
Diese Aufgabe wird mit den Merkmalen des Anspruches 1 gelöst. Hierbei ist vorgesehen, dass das Kunststoffträgermaterial durch eine Kunststoffpolymermatrix gebil- det ist, die aus einer BMC-Formmasse (BMC = Bulk Molding Compound) hergestellt ist. Die duroplastische BMC-Kunststoffpolymermatrix gibt dem Magnet bei dem genannten hohen Füllgrad an Magnetmaterial, durch den eine hohe magnetische Leistungsfähigkeit erreicht wird, eine stabile, maßhaltige Struktur, wobei der Magnet sich vorteilhaft an unterschiedliche Gegebenheiten anpassen lässt. Dabei tragen die in der BMC-Formmasse enthaltenen Kurzfasern (wie z. B. Glasfasern oder Kohlenstofffasern) zu der mechanischen Stabilität des Magneten bzw. Bauteils bei gleichzeitig guter Formbarkeit und Maßhaltigkeit wesentlich bei. In Vorversuchen hat sich gezeigt, dass der so hergestellte Magnet auch eine besonders gute chemische Beständigkeit gegenüber Kraftstoffen, wie z. B. Bioethanol, ergibt.
Alternative Ausgestaltungsvarianten für unterschiedliche Anwendungszwecke bestehen darin, dass das Magnetmaterial ein Seltenerd-Magnetmaterial oder ein Hartferrit- Magnetmaterial ist oder eine Mischung aus beiden ist. Eine weitere Ausführungsvariante besteht darin, dass das Magnetmaterial ein Al- NiCo-Material - gegebenenfalls in Kombination mit anderen Magnetmaterialien - ist. Zu einem stabilen Aufbau und vorteilhaften Eigenschaften des Magneten tragen ferner die Maßnahmen bei, dass das Kunststoffträgermaterial einen Anteil von bis zu 20 Massen-% an dem gesamten Magneten besitzt, wobei außer den Fasern der BMC- Formmasse weitere Füllstoffe und/oder Additive zugegeben sind.
Ist vorgesehen, dass das Seltenerd-Magnetmaterial eine plättchenartige Teilchenform aufweist (z. B. Verhältnis Länge zu Dicke zwischen 3 und 50), so ergibt sich eine Morphologie der Pulverteilchen mit relativ geringer Angriffsfläche gegenüber korrosiven Einflüssen und damit erhöhte Beständigkeit verglichen mit geringerem Verhältnis von Länge zu Dicke (L/D-Verhältnis bzw. Formfaktor oder Aspektverhältnis). Die bessere Einbettung mit weniger Angriffsfläche für korrosive Einwirkungen ergibt insbesondere für Nd-Fe-B-Magnetmaterial wesentliche Vorteile.
Dabei ist weiterhin die Maßnahme von Vorteil, dass das Magnetmaterial aus einer Mischung mit unterschiedlichen Teilchengrößenverteilungen gebildet ist, da damit eine besonders hohe Packungsdichte der plättchenartigen Teilchen erreicht werden kann. Beispielsweise liegen die Teilchengrößen in einem Bereich von ca. 50 pm bis ca. 600 pm, bevorzugt zwischen 100 pm und 400 pm, wobei für die unterschiedlichen Teilchenverteilungen zwei oder mehr Mittelwerte von Teilchengrößen mit jewei- ligen statistischen Streuungen um den Mittelwert vorgegeben werden können (durch Siebe mit verschiedenen Maschenweiten).
Eine besonders gute Leistungsfähigkeit des Magneten wird dadurch erhalten, dass der Füllgrad an Magnetmaterial zwischen 85 und 98 Massen-% (an dem gesamten Stoffgemisch des Magneten) beträgt. Vorteilhafte Ausführungen ergeben sich ferner dadurch, dass der Anteil an dem Kunststoffträgermaterial zwischen 2 und 15 Massen-% (an dem gesamten Stoffgemisch) beträgt. Die mechanische Stabilität und weitere Eigenschaften des Magneten lassen sich ferner vorteilhaft dadurch variieren, dass die BMC-Formmasse Glasfasern enthält und als weitere Füllstoffe Mikro-Glashohlkugeln und/oder mineralische Füllstoffe zugegeben sind. Die Eigenschaften des Magneten können weiterhin vorteilhaft dadurch beeinflusst werden, dass als Additive Dispergatoren, Entlüfter, Trennadditive, Oberflächenmodi- fizierer und/oder Thermoplaste (PMMA) zugegeben sind. Beispielsweise lässt sich mit Additiven vorteilhaft eine Schwundeinstellung zwischen -0,3 % bis 0,1 % erreichen, wobei dies auch von dem Füllgrad und der Art des Magnetmaterials sowie den weiteren Füllstoffen und Additiven abhängt.
Ein vorteilhafter Aufbau des Magneten wird ferner dadurch erreicht, dass das Kunststoffträgermaterial aus einer Formmasse auf Basis von ungesättigten Polyestern hergestellt ist.
Für die Herstellung und Formgebung ist weiterhin vorteilhaft, dass die Formmasse gespritzt ist. Hierdurch lassen sich besonders vielfältige Formgebungen der Magnete bzw. Bauteile erreichen, wobei die Magnete eine kompakte dichte Struktur mit den eingebetteten Magnetteilchen besitzen, die auch unter korrosiven Bedingungen kaum Angriffsstellen bieten, was insbesondere bei SE-Materialien (wie Nd-Fe-B- Material) von wesentlicher Bedeutung ist. Mit einem Magneten des vorstehend genannten Aufbaus lassen sich präzise Bauteile in großer Formenvielfalt mit dauerhaft guten magnetischen und mechanischen Eigenschaften und auch chemischer Beständigkeit (etwa gegenüber Bioethanol) herstellen, wie z. B. Teile von elektrischen Maschinen oder Sensoren.
Die niedrige Viskosität bei der Magnetfertigung ermöglicht es, die magnetischen Teilchen in gewünschter Weise auszurichten, so dass sich in vorteilhafter Weise außer isotropen Magneten auch anisotrope Magnete herstellen lassen. Dabei lässt sich aber insbesondere durch die Verwendung des Kunststoffträgermaterials auf der Ba- sis einer BMC-Polymermatrix im Vergleich zu einem Kunststoffträger auf Basis eines Epoxidharzes eine geringere Viskosität und bessere Vernetzungsfähigkeit einstellen und bei dem vorliegenden Verbundstoff (Compound) eine wesentlich bessere Verarbeitung erreichen. Neben dem vorstehend genannten bevorzugten Herstellungsprozess unter Spritzgießen kommt - falls die eingangs genannten Einschränkungen der Formbarkeit und Korrosionsbeständigkeit in Kauf genommen werden können - auch ein Herstellen durch Pressen, insbesondere auch Transferpressen, in Frage. Als Einsatz (insert) bei mit dem genannten Magnet hergestellten Bauteilen ist z. B. Stahl vorteilhaft.
Für eine einfache Entformung kann es günstig sein, eine geringe Schwindung einzustellen.
Wie Grundversuche im Zusammenhang mit der Erzielung höherer Füllgrade (von über 70 Masse-%, vorzugsweise über 80 oder 85 Masse-%) gezeigt haben, ist die Auswahl eines magnetischen Pulvers (insbesondere sogenannte Strip-Cast- Legierungen) von Vorteil, das aufgrund seiner plättchenartigen Morphologie (Ver- hältnis Länge zu Dicke bzw. Formfaktor oder Aspektverhältnis L/D größer als 3) eine relativ geringe, durch das Kunststoffträgermaterial gut benetzbare und abdeckbare Oberfläche aufweist, wobei das Harz auf der Basis der BMC-Polymermatrix auch gut in Abstimmung auf die übrigen Bestandteile des Compounds und die Einsatzerfor- dernisse abgestimmt werden kann. Die spezifische Oberfläche des magnetischen Pulvers bzw. pulverförmigen Magnetmaterials wird in Abstimmung auf die Benetzung durch die BMC-Polymermatrix und die übrigen Bestandteile des Compounds möglichst weit reduziert, wobei andererseits die zu erzielenden magnetischen Eigenschaften des Compounds nicht negativ beeinflusst werden. Dies wird durch Einstel- len der optimalen Packungsdichte des Magnetmaterials erreicht, wobei vorzugsweise Pulverteilchen mit unterschiedlicher mittlerer Teilchengröße bzw. spezifischen Oberfläche vermischt werden. Gleichzeitig kann die Viskosität der Kunststoffpolymermatrix durch Zugabe spezieller Additive, wie Dispergatoren, Benetzungs- und Rheo- logiemodifizierer in sehr geringen Mengen vorteilhaft beeinflusst werden.
Zu der mechanischen Stabilität tragen die in der BMC-Formmasse enthaltenen Füllstoffe, insbesondere die Kurzfasern, insbesondere Glas-Kurzfasern, wesentlich bei, die z. B. eine Länge von weniger als 1 oder 2 mm besitzen. Wie sich in Vorversuchen herausgestellt hat, lässt die BMC-Formmasse vielfältige präzise Formgebungen bei hoher Maßhaltigkeit zu. Um die mechanische Stabilität für bestimmte Einsatzzwecke vorteilhaft zu beeinflussen, können zudem Mikro-Glashohlkugeln und/oder mineralische Füllstoffe zugefügt werden.
Die Einarbeitung des pulverförmigen Magnetmaterials (Magnetpulvers) in die Kunst- stoffmatrix aus der BMC-Formmasse erfolgt durch den Prozess des Compoundie- rens. Dabei werden das Magnetpulver und die BMC-Formmasse im Heißkneter oder im Doppelschneckenextruder compoundiert und anschließend granuliert.

Claims

n s p r ü c h e
Magnet mit in einem duroplastischem Kunststoffträgermaterial gebundenem pulverförmigem Magnetmaterial, dessen Füllgrad mindestens 80 Massen-% an dem gesamten Magnet beträgt,
dadurch gekennzeichnet,
dass das Kunststoffträgermaterial durch eine Kunststoffpolymermatrix gebildet ist, die aus einer BMC-Formmasse hergestellt ist.
Magnet nach Anspruch 1 ,
dadurch gekennzeichnet,
dass das gebundene pulverförmige Magnetmaterial isotrop ist.
Magnet nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass das Magnetmaterial ein Seltenerd-Magnetmaterial oder ein Hartferrit- Magnetmaterial ist oder eine Mischung aus beiden ist.
Magnet nach Anspruch 3,
dadurch gekennzeichnet,
dass das Seltenerd-Magnetmaterial eine plättchenartige Teilchenform aufweist.
Magnet nach Anspruch 4,
dadurch gekennzeichnet, dass das Magnetmaterial aus einer Mischung mit unterschiedlichen Teilchengrößenverteilungen gebildet ist.
Magnet nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Magnetmaterial ein AINiCo-Material ist.
Magnet nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Kunststoffträgermaterial einen Anteil von bis zu 20 Massen-% an dem gesamten Magneten besitzt, wobei außer den Fasern der BMC- Formmasse weitere Füllstoffe und/oder Additive zugegeben sind.
Magnet nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Füllgrad an Magnetmaterial zwischen 85 und 98 Massen-% beträgt.
Magnet nach Anspruch 7 oder 8,
dadurch gekennzeichnet,
dass der Anteil an dem Kunststoffträgermaterial zwischen 2 und 15 Massen-% beträgt.
Magnet nach Anspruch 7, 8 oder 9,
dadurch gekennzeichnet,
dass die BMC-Formmasse Glasfasern enthält und als weitere Füllstoffe Mikro- Glashohlkugeln und/oder mineralische Füllstoffe zugegeben sind.
11. Magnet nach einem der Ansprüche 7 bis10,
dadurch gekennzeichnet,
dass als Additive Dispergatoren, Entlüfter, Trennadditive, Oberflächenmodifi- zierer und/oder Thermoplaste (PMMA) zugegeben sind.
12. Magnet nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Kunststoffträgermaterial auf Basis von ungesättigten Polyestern hergestellt ist.
13. Magnet nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Formmasse gespritzt ist. 14. Bauteil mit einem Magnet nach einem der vorhergehenden Ansprüche.
PCT/EP2014/053905 2013-03-01 2014-02-28 Verbundmagnet WO2014131867A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14707163.3A EP2962311A1 (de) 2013-03-01 2014-02-28 Verbundmagnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202013100895.8 2013-03-01
DE202013100895U DE202013100895U1 (de) 2013-03-01 2013-03-01 Magnet

Publications (1)

Publication Number Publication Date
WO2014131867A1 true WO2014131867A1 (de) 2014-09-04

Family

ID=48129413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/053905 WO2014131867A1 (de) 2013-03-01 2014-02-28 Verbundmagnet

Country Status (3)

Country Link
EP (1) EP2962311A1 (de)
DE (1) DE202013100895U1 (de)
WO (1) WO2014131867A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818443A (zh) * 2019-12-06 2020-02-21 和也健康科技有限公司 一种轻质磁性球及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0175535A1 (de) * 1984-09-12 1986-03-26 Polyplastics Co. Ltd. Magnetischer Verbundstoff
US20030155548A1 (en) * 2000-04-28 2003-08-21 Satoshi Ozawa Hydraulic-composition bond magnet
US20060208383A1 (en) * 2005-03-17 2006-09-21 Thomas Aisenbrey Low cost magnets and magnetic devices manufactured from ferromagnetic conductively doped resin-based materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1646885A1 (de) 1966-08-31 1971-08-05 Philips Patentverwaltung Verfahren zur Herstellung von Bindemittel-Dauermagneten aus Ferrit
DE102008049888B4 (de) 2008-10-02 2013-05-08 Vacuumschmelze Gmbh & Co. Kg In einer Ummantelung positioniertes Magnetsystem und Verfahren zur Herstellung eines Magnetsystems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0175535A1 (de) * 1984-09-12 1986-03-26 Polyplastics Co. Ltd. Magnetischer Verbundstoff
US20030155548A1 (en) * 2000-04-28 2003-08-21 Satoshi Ozawa Hydraulic-composition bond magnet
US20060208383A1 (en) * 2005-03-17 2006-09-21 Thomas Aisenbrey Low cost magnets and magnetic devices manufactured from ferromagnetic conductively doped resin-based materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110818443A (zh) * 2019-12-06 2020-02-21 和也健康科技有限公司 一种轻质磁性球及其制备方法

Also Published As

Publication number Publication date
EP2962311A1 (de) 2016-01-06
DE202013100895U1 (de) 2013-03-18

Similar Documents

Publication Publication Date Title
DE2713299C2 (de) Dynamoelektrische Maschine mit in eine gefüllte Harzmasse eingebetteten Wicklungen und Kern
DE69619460T2 (de) Seltenerd-Verbundmagnet und Zusammensetzung dafür
DE69627610T2 (de) Selten Erd-Verbundmagnet, magnetische Selten-Erd-Zusammensetzung und Herstellungsverfahren desselben
DE102009053965B4 (de) Mit einer Vergussmasse vergossene Gradientenspule
DE102010022523B4 (de) Gradientenspule mit in einer Vergussmasse vergossenen Spulenwicklungen
WO2010000549A1 (de) Verbundmaterial mit nano-pulver und verwendung des verbundmaterials
WO1995034902A1 (de) Zusammensetzung auf polymerbasis zur herstellung von magnetischen und magnetisierbaren formkörpern
EP3670470A1 (de) Beschichtungszusammensetzung für bodenbeläge
DE212013000158U1 (de) Verbundwerkstoffe zur Nutzung in Spritzguss-Verfahren
EP2962311A1 (de) Verbundmagnet
DE102005059845A1 (de) Befestigungsmassen und -elemente mit nanoskaligen Füllstoffen
WO2000067992A1 (de) Kunststoffformkörper
EP3334779B1 (de) Kunststoffzusammensetzung, herstellungsverfahren und verwendung
DE69309135T2 (de) Magnetisch permeabele Zusammensetzung und weichmagnetisches Teil
DE10159116A1 (de) Verfahren zur Herstellung von Elektrodenplatten durch Spritzgießen aus mit Graphit od. dgl. beladenem Kunststoff
WO2018220083A1 (de) Compound
WO2001096458A1 (de) Füllstoff für wärmeleitende kunststoffe, wärmeleitender kunststoff und herstellungsverfahren dazu
DE10232874A1 (de) Platte und Verfahren zur Herstellung einer Platte
DE3228989A1 (de) Rieselfaehige, mikrofasern enthaltende formmassen in granulatform, verfahren zu ihrer herstellung und ihre verwendung
DE10222459A1 (de) Kompositmaterial zur Abschirmung von elektromagnetischen Höchstfrequenzfeldern und Verfahren zu seiner Herstellung sowie zu seiner Verwendung
DE10356964A1 (de) Verfahren und Mischwerkstoff zur Herstellung eines kunststoffgebundenen Magneten sowie derartiger Magnet
DE102021122896A1 (de) Kompositwerkstoff, Schirmelement und Verfahren zur Herstellung des Schirmelements, sowie Steckverbinder und Steckverbindermodul aufweisend einen Kompositwerkstoff
DE2014433A1 (en) Electrically conductive resin moulding comp - positions
WO2024133561A1 (de) Kunststoffzusammensetzung, verwendung der kunststoffzusammensetzung und verfahren zur herstellung eines formkörpers
DE69302081T2 (de) Zusammensetzung zum Giessen von Verbundmagneten und Verbundmagnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14707163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014707163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE