WO2014131248A1 - 电容式内嵌触摸屏及显示装置 - Google Patents

电容式内嵌触摸屏及显示装置 Download PDF

Info

Publication number
WO2014131248A1
WO2014131248A1 PCT/CN2013/075704 CN2013075704W WO2014131248A1 WO 2014131248 A1 WO2014131248 A1 WO 2014131248A1 CN 2013075704 W CN2013075704 W CN 2013075704W WO 2014131248 A1 WO2014131248 A1 WO 2014131248A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal line
signal
electrode
array substrate
Prior art date
Application number
PCT/CN2013/075704
Other languages
English (en)
French (fr)
Inventor
木素真
胡明
Original Assignee
合肥京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 合肥京东方光电科技有限公司
Priority to US14/357,905 priority Critical patent/US9465496B2/en
Publication of WO2014131248A1 publication Critical patent/WO2014131248A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the invention relates to a capacitive in-cell touch screen and a display device. Background technique
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an add-on touch panel, an on-cell touch panel, and an in-cell touch panel.
  • the external touch screen is produced by separately separating the touch screen from the liquid crystal display (LCD), and then bonding them together to form a liquid crystal display with touch function.
  • the external touch screen has disadvantages such as high production cost, low light transmittance, and thick module.
  • the in-cell touch panel embeds the touch electrodes of the touch screen in the interior of the liquid crystal display, thereby reducing the overall thickness of the module and greatly reducing the manufacturing cost of the touch screen, and thus is favored by various panel manufacturers.
  • the touch driving electrode and the touch sensing electrode are disposed inside the liquid crystal cell, and a coupling capacitance is formed between the touch driving electrode and the touch sensing electrode.
  • the electric field of the human body affects the capacitance value of the mutual capacitance, thereby changing the voltage signal coupled by the touch sensing electrode.
  • the position of the contact can be determined based on the change in the voltage signal.
  • it is generally required to separately arrange corresponding touch read signal lines for each touch sensing electrode in the TFT array substrate, and separately arrange corresponding touch scan signal lines for each touch driving electrode.
  • the structural design of the capacitive in-cell touch panel requires simultaneous control of the touch read signal line and the normal display signal line (such as a data signal line) by using two driving chips (ICs) at a high cost.
  • Embodiments of the present invention provide a capacitive in-cell touch panel and a display device for implementing a capacitive in-cell touch panel having a lower cost.
  • a capacitive in-cell touch panel provided by an embodiment of the present invention includes a thin film transistor TFT array substrate having a plurality of data signal lines and a common electrode layer,
  • the common electrode layer includes a plurality of touch sensing electrodes and a plurality of touch driving electrodes insulated from each other;
  • the at least one data signal line is used as a touch-reading signal line in the touch period, and has a plurality of signal switching units in the array substrate, and each of the touch-reading signal lines passes through at least one of the signal switching units and corresponding touches. Controlled sensing electrodes are connected;
  • the touch driving electrode and the touch sensing electrode are applied with a common electrode signal
  • the touch driving signal is applied to the touch driving electrode, the signal switching unit is turned on, and the touch sensing signal coupled by the touch sensing electrode is turned on by the conductive signal switching unit. Output to the touch read signal line.
  • a display device includes a capacitive in-cell touch panel provided by an embodiment of the invention.
  • the present invention provides a capacitive in-cell touch panel and a display device, which are configured to divide a common electrode layer connected to the entire surface of the array substrate to form mutually insulated touch sensing electrodes and touch driving electrodes. At least one data signal line in the array substrate is used as a touch read signal line, and each touch read signal line is connected to a corresponding touch sensing electrode through at least one signal switching unit.
  • the common driving signal is applied to the touch driving electrode and the touch sensing electrode to realize the normal display function.
  • the touch driving electrode is applied with the touch scanning signal, and the signal switching unit is turned on.
  • the touch scanning signal coupled by the touch sensing electrode is output to the touch reading signal line, thereby implementing the touch function. Due to the use of data signal lines Time multiplexing, as the touch reading signal line receives the voltage signal coupled by the touch sensing electrode, to realize the touch function, and thus can be manufactured on the basis of the existing array substrate preparation process without adding an additional process Into the touch screen, thereby saving production costs and improving production efficiency. Moreover, by using the data signal line as the touch read signal line, it is possible to avoid adding an IC that individually controls the touch read signal line, which can save manufacturing costs.
  • FIG. 1 is a schematic diagram of a common electrode layer pattern in a touch screen according to an embodiment of the present invention
  • FIG. 2 is another schematic diagram of a common electrode layer pattern in a touch screen according to an embodiment of the present invention
  • FIG. 3 is a structure of a second embodiment of the present invention. schematic diagram
  • Figure 4 is a schematic structural view of a first embodiment of the present invention.
  • FIG. 5 is a timing diagram of a first embodiment of the present invention.
  • FIG. 6 is a timing diagram of a second embodiment of the present invention.
  • the technical solutions of the embodiments of the present invention will be clearly and completely described in the following with reference to the accompanying drawings. It is apparent that the described embodiments are part of the embodiments of the invention, rather than all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the described embodiments of the present invention without departing from the scope of the invention are within the scope of the invention.
  • each layer of the film in the drawings does not reflect the true scale of the array substrate, and the purpose is merely to illustrate the contents of the embodiments of the present invention.
  • a capacitive in-cell touch panel provided by an embodiment of the invention includes an array substrate having a data signal line and a common electrode layer;
  • the common electrode layer includes a plurality of touch sensing electrodes and a plurality of touch driving electrodes insulated from each other; at least one data signal line serves as a touch reading signal line during the touch period, and has a plurality of signal switching units in the array substrate, Each of the touch read signal lines is connected to the corresponding touch sensing electrode through at least one signal switching unit;
  • applying a common electrode signal to the touch sensing electrode unit during the display period may be implemented by: applying a gray scale signal and a common electrode signal to the data signal line in a time division manner, and loading the common electrode signal on the data signal line.
  • the common electrode signal loaded by the data signal line is output to the touch sensing electrode through the turned-on signal switching unit.
  • the capacitive in-cell touch panel provided by the embodiment of the present invention uses a data signal line for time division multiplexing, and receives a voltage signal coupled to the touch sensing electrode as a touch reading signal line to implement a touch function, thereby enabling On the basis of some array substrate preparation processes, the touch screen can be fabricated without adding an additional process, thereby saving production costs and improving production efficiency.
  • the data signal line as the touch read signal line, it is possible to avoid adding an IC that individually controls the touch read signal line, that is, the touch function can be realized by using the existing IC that controls the data signal line, thereby saving production. cost.
  • the capacitive touch panel provided by the embodiment of the present invention divides a common electrode layer connected to the entire surface of the array substrate to form a touch sensing electrode and a touch driving electrode that are insulated from each other.
  • the common electrode is utilized.
  • Each touch sensing electrode formed in the layer generally extends along a column direction of the pixel unit in the array substrate, and each touch driving electrode generally extends along a row direction of the pixel unit in the array substrate; or, each touch formed by the common electrode layer
  • the sensing electrodes generally extend along the row direction of the pixel unit in the array substrate, and the touch driving electrodes generally extend along the column direction of the pixel unit in the array substrate.
  • the extending directions of the touch sensing electrodes and the touch driving electrodes may also In other directions, there is no limit here.
  • each touch sensing electrode extends along the column direction of the pixel unit in the array substrate
  • each touch driving electrode extends along the row direction of the pixel unit in the array substrate as an example.
  • the touch driving electrode and the touch sensing electrode disposed in the common electrode layer may be a diamond electrode (as shown in FIG. 1 ), a finger electrode (shown in FIG. 2 ) or a strip electrode (as shown in FIG. 3 ). Show).
  • the interdigitated electrode refers to a dressing structure in which the opposite sides of the touch driving electrode and the touch sensing electrode respectively have a staggered arrangement.
  • the touch sensing electrodes Rx shown in FIGS. 1 to 3 are arranged along the column direction of the array substrate in the drawing, and the touch driving electrodes Tx are wired along the row direction of the array substrate in the drawing.
  • each of the sensing driving electrodes is divided into a plurality of touch sensing sub-electrodes insulated from each other.
  • a touch sensing electrode Rx is composed of six touch sensing sub-electrodes, and in the strip electrode shown in FIG. 3, two touch sensing sub-electrodes form a touch. Control the sensing electrode Rx.
  • the touch driving electrodes are divided into a plurality of touch sensing sub-electrodes insulated from each other.
  • four touch driving sub-electrodes constitute one touch driving electrode Tx, that is, FIG. 2 a, Tx3 b , Tx3 c and Tx3 d form Tx3.
  • a plurality of touch driving signal lines 01 located between adjacent pixel units in the TFT array substrate, each of the touch driving driving electrodes Tx and at least one touch driving signal line may be disposed in the array substrate.
  • 01 is electrically connected, for example, as shown in FIG. 3, electrically connected through a plurality of vias.
  • the function of the touch driving signal line 01 is: inputting a common electrode signal to the touch driving electrode Tx connected thereto through the touch driving signal line 01 during the display time period in one frame; in the touch time period in one frame, The touch scan signal is input to the touch driving electrode Tx connected thereto through the touch driving signal line 01.
  • signals can be loaded on each touch driving signal line 01 at the same time.
  • each of the touch driving electrodes Tx is divided into a plurality of touch driving sub-electrodes insulated from each other, that is, each of the touch driving electrodes is composed of a plurality of touch driving sub-electrodes insulated from each other
  • the control driving signal lines connect the touch driving sub-electrodes constituting the same touch driving electrode to input the common electrode signal or the touch scanning signal, that is, each touch driving electrode and one touch driving signal.
  • the touch driving signal lines may be respectively disposed on the touch driving sub-electrodes constituting the same touch driving electrode, so as to input the common electrode signal or the touch scanning signal, that is, each touch, in a time-sharing manner.
  • the control driving electrode is electrically connected to the plurality of touch driving signal lines, which is not limited herein.
  • the touch driving signal line 01 when the touch driving signal line 01 is disposed, as shown in FIG. 3, the touch driving signal line 01 can be designed to be the same as the gate signal line Gate in the array substrate. Of course, the touch can also be touched.
  • the driving signal line is designed to be the same as the data signal line wiring direction in the array substrate, which is not limited herein. However, in a specific implementation, the wiring direction of the touch driving signal line and the extending direction of the touch driving electrode are generally disposed in the same direction.
  • each touch driving signal line can be disposed in the same layer as the gate signal line, and no additional preparation process is needed in preparing the array substrate, and the touch driving signal line and the gate signal can be formed only by one patterning process.
  • the pattern of the line thereby saving manufacturing costs and increasing product added value.
  • the accuracy of the touch screen is usually in the order of millimeters, and the density and width of the touch driving electrodes and the touch sensing electrodes can be selected according to the required touch precision to ensure the required touch precision.
  • the touch driving electrodes and the touch are generally used.
  • the width of the sensing electrode is preferably controlled at 5-7 mm.
  • the accuracy of the liquid crystal display is usually on the order of micrometers.
  • a touch driving electrode and a touch sensing electrode cover a pixel unit of a plurality of rows or columns of liquid crystal displays.
  • the precision referred to in the embodiment of the present invention refers to the size of a touch unit of a touch screen or a pixel unit of a display screen.
  • one touch sensing electrode since one touch sensing electrode covers a plurality of columns of pixel units, a touch sensing electrode generally covers a gap between the plurality of columns of pixel units, then, one touch The control sensing electrode may correspond to a data signal line as a touch reading signal line, or may correspond to a plurality of data signal lines as a touch reading signal line.
  • one touch sensing electrode Rx is composed of two touch sensing sub-electrodes, each touch sensing electrode Rx covers two columns of pixel units, and one touch sensing electrode Rx corresponds to one touch read signal line.
  • 02 data signal line Data.
  • a touch-reading signal line 02 can be connected to a touch sensing electrode Rx through a signal switching unit 03, or can be connected to a touch sensing electrode Rx through a plurality of signal switching units 03.
  • the common electrode layer is generally made of an ITO material, and the resistance of the ITO material is relatively high, after a touch-reading signal line made of metal is connected to a touch sensing electrode through a plurality of signal switching units, The ITO electrode and a plurality of metal resistors composed of touch-reading signal lines are connected in parallel, so that the resistance of the touch sensing electrode can be minimized, thereby improving the signal-to-noise ratio when the electrode transmits signals.
  • the common electrode layer may have a common electrode Vcom at the gap between the touch sensing electrode Rx and the touch driving electrode Tx, the common electrode Vcom and the touch sensing electrode Rx and the touch driving The electrodes Tx are insulated from each other, and the common electrode Vcom is connected to the common electrode signal during operation to ensure that the pixel unit in the corresponding region of the common electrode Vcom can Enough for normal display work.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • At least one gate signal line Gate in the array substrate can be used as the touch scan signal line 04 in the touch period; correspondingly, the signal switching unit 03 can be a P-type TFT device; as shown in FIG.
  • the source of the TFT device is electrically connected to the touch-reading signal line 02, the drain is electrically connected to the touch-sensing electrode Rx, and the gate is electrically connected to the touch-scanning signal line 04.
  • the TFT devices in which the data signal lines Data and the pixel electrodes are connected in the array substrate are generally N-type TFT devices.
  • the N-type TFT device is turned on when a gate signal line connected thereto is loaded with a high level signal (a positive voltage signal), and the P-type TFT device is loaded with a low power at a gate signal line connected thereto as a touch scan signal line.
  • the flat signal (which is a negative voltage signal) is turned on, and the P-type TFT device and the N-type TFT device generally do not turn on when the gate signal line connected thereto is loaded with a voltage signal close to zero volt. Therefore, the nature of the TFT device can be utilized to implement a single selection of the N-type TFT device connected to the gate signal line by applying a different voltage signal, or to open the P-type TFT device connected thereto.
  • the P-type TFT device as the signal switching unit may be a top gate type structure or a bottom gate type structure, which is not limited herein.
  • the driving sequence of the touch screen provided by the embodiment of the present invention is as shown in FIG. 5, which is specifically as follows:
  • the time of displaying each frame (V-sync) of the touch screen is divided into a display time period (Display) and a touch time period (Touch).
  • the time of displaying one frame of the touch screen is 16.7 ms, and 5 ms is selected as the touch time.
  • the other 11.7 ms is used as the display time period.
  • the duration of the two chips can be appropriately adjusted according to the processing capability of the IC chip, and is not specifically limited herein.
  • a gate scan signal of a low level can be simultaneously applied to each gate signal line Gatet, Gate2, ... Gate n in the touch screen.
  • the P-type TFT device applies a common electrode signal to the data signal line Data, and the common electrode signal can be output to the touch sensing electrode through the turned-on P-type TFT device.
  • a gate scan signal of a high level is sequentially applied to each of the gate signal lines Gatet, Gate2, ..., Gate n in the touch screen, and a gray scale signal is applied to the data signal line Data to realize normal display.
  • a high-level gate scan signal to each of the gate signal lines Gatel, Gate2, ..., Gate n in the touch screen, and the gate signal line as the touch scan line is loaded with a high-level gate.
  • a low-level gate scan signal is applied, the P-type TFT device is turned on, and a common electrode signal is applied to the data signal line Data, and the common electrode signal can be output through the turned-on P-type TFT device.
  • the IC chip connected to the touch driving electrode simultaneously supplies the touch scan signal to each touch driving electrode, and at the same time, the touch scanning signal lines connected to the P-type TFT device are sequentially loaded low.
  • the level of the gate scan signal, the P-type TFT device ie, the signal switching unit
  • the touch scan signal coupled to the touch sensing electrode is output to the touch read signal line through the turned-on P-type TFT device. , to achieve touch function.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a plurality of touch scan signal lines 04 located between adjacent pixel units in the TFT array substrate are added to the TFT array substrate;
  • the signal switching unit 03 is a TFT device, and may be a P-type TFT device or an N-type TFT device, which is not limited herein.
  • the source of the TFT device is electrically connected to the touch-reading signal line 02.
  • the drain is electrically connected to the touch sensing electrode Rx, and the gate is electrically connected to the newly added touch scanning signal line 04.
  • the conduction state of the signal switching unit 03 is separately controlled by the added touch scanning signal line 04, that is, when the signal switching unit 03 is a P-type TFT device, when the touch scanning signal line 04 is loaded with a low-level signal, the signal switching unit is turned on.
  • the signal switching unit 03 is an N-type TFT device
  • the signal switching unit 03 is turned on when the touch scanning signal line 04 is loaded with a high level signal.
  • the TFT device as the signal switching unit may be a top gate type structure or a bottom gate type structure, which is not limited herein.
  • the touch scan signal line 04 added on the TFT array substrate may be the same as the gate signal line Gate in the array substrate, or may be connected to the data signal line in the array substrate.
  • the Data wiring direction is the same and is not limited here. However, in a specific implementation, the wiring direction of the touch scanning signal line and the extending direction of the gate signal line are generally disposed in the same direction.
  • each touch driving signal line can be disposed in the same layer as the gate signal line, and no additional preparation process is needed in preparing the array substrate, but only a patterning process can be used to form the touch scanning signal line and the gate.
  • the pattern of the extreme signal lines thereby saving manufacturing costs and increasing product added value.
  • the driving timing of the touch panel provided by the embodiment of the present invention is as shown in FIG. 6.
  • the time of displaying each frame (V-sync) of the touch screen is divided into a display time period (Display) and a touch time period (Touch).
  • the time of displaying one frame of the touch screen is 16.7 ms, and 5 ms is selected as the touch time.
  • the other 11.7 ms is used as the display time period.
  • the duration of the two chips can be appropriately adjusted according to the processing capability of the IC chip, and is not specifically limited herein.
  • M2 ⁇ ⁇ Mn simultaneously loads the signal, turns on the signal switching unit, and simultaneously applies the common electrode signal to the data signal line Data, and outputs the common electrode signal to the touch sensing electrode through the turned-on signal switching unit. Then, a gate scan signal of a high level is sequentially applied to each of the gate signal lines Gate1, Gate2, ..., Gate n in the touch screen, and a gray scale signal is applied to the data signal line Data to realize normal display.
  • a high-level gate scan signal to each of the gate signal lines Gatet, Gate2, ..., Gate n in the touch screen, and to apply a high-level gate to the gate signal lines of adjacent rows.
  • a time gap is reserved, a signal is applied to the touch scan signal lines M1, M2, ... Mn, the signal switching unit is turned on, and a common electrode signal is applied to the data signal line Data, and the conductive signal is turned on.
  • the P-type TFT device can output the common electrode signal to the touch sensing electrode.
  • the IC chip connected to the touch driving electrode is driven to each touch
  • the electrodes respectively provide a touch scan signal, and at the same time, through the touch scan signal lines M1, M2, ...
  • the Mn sequentially loads the signal, and turns on the TFT device as the signal switching unit connected thereto, and outputs the touch scan signal coupled to the touch sensing electrode to the touch reading signal line through the turned-on signal switching unit to realize the touch.
  • an embodiment of the present invention further provides a display device, including the above-mentioned capacitive in-cell touch panel provided by the embodiment of the present invention.
  • a display device including the above-mentioned capacitive in-cell touch panel provided by the embodiment of the present invention.
  • the display device refer to the embodiment of the capacitive in-cell touch panel described above, I won't go into details here.
  • a capacitive in-cell touch panel and a display device are provided, and the common electrode layer connected to the entire surface of the array substrate is divided to form mutually insulated touch sensing electrodes and touch driving electrodes, and the array substrate is At least one data signal line is used as a touch read signal line, and each touch read signal line is connected to a corresponding touch sensing electrode through at least one signal switching unit.
  • the touch sensing signal line receives the voltage signal coupled by the touch sensing electrode to realize the touch function, so that the existing array substrate preparation process can be performed without adding extra
  • the process can be made into a touch screen, which saves production costs and improves production efficiency.
  • the data signal line as the touch-reading signal line, it is possible to avoid adding an IC that individually controls the touch-reading signal line, which can save manufacturing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本发明实施例公开了一种电容式内嵌触摸屏及显示装置,其配置成,将阵列基板中整面的公共电极层分割成相互绝缘的触控感应电极和触控驱动电极;将至少一条数据信号线分时复用作为触控读取信号线,从而能节省生产成本,提高生产效率;各触控读取信号线通过至少一个信号切换单元与对应的触控感应电极相连。在显示时间段,触控驱动电极和触控感应电极被施加公共电极信号,以实现正常显示功能;在触控时间段,触控驱动电极被施加触控扫描信号,信号切换单元被导通,并通过导通的信号切换单元将触控感应电极耦合的触控扫描信号输出到触控读取信号线。

Description

电容式内嵌触摸屏及显示装置 技术领域
本发明涉及一种电容式内嵌触摸屏及显示装置。 背景技术
随着显示技术的飞速发展, 触摸屏( Touch Screen Panel ) 已经逐渐遍及 人们的生活中。 目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add on Mode Touch Panel )、 覆盖表面式触摸屏 ( On Cell Touch Panel )、 以及内嵌式 触摸屏( In Cell Touch Panel )。 其中, 外挂式触摸屏是将触摸屏与液晶显示 屏(Liquid Crystal Display, LCD )分开生产, 然后贴合到一起成为具有触摸 功能的液晶显示屏。然而,外挂式触摸屏存在制作成本较高、光透过率较低、 模组较厚等缺点。 内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内 部, 由此可以减少模组整体的厚度, 又可以大大降低触摸屏的制作成本, 因 此受到各大面板厂家的青睐。
目前, 电容式内嵌(In cell )触摸屏的设计方案有很多种。 通常是将触 摸驱动电极和触摸感应电极设置于液晶盒内部,使触摸驱动电极和触摸感应 电极之间形成耦合电容。 当有人体接触触摸屏时, 人体电场就会影响互电容 的电容值,进而改变触控感应电极耦合出的电压信号。根据电压信号的变化, 就可以确定触点位置。 为了实现上述电容式内嵌触摸屏的结构设计, 一般需 要在 TFT阵列基板中对各触控感应电极单独布置对应的触控读取信号线,对 各触摸驱动电极单独布置对应的触控扫描信号线, 因此导致在制作过程中增 加新的工艺, 使生产成本增加, 不利于提高生产效率。 并且, 上述电容式内 嵌触摸屏的结构设计, 需要同时利用两个驱动芯片 (IC )分别控制触控读取 信号线以及正常的显示用信号线(诸如数据信号线等), 成本较高。 发明内容
本发明实施例提供了一种电容式内嵌触摸屏及显示装置, 用以实现成本 较低的电容式内嵌触摸屏。
本发明实施例提供的一种电容式内嵌触摸屏, 包括具有多个数据信号线 和公共电极层的薄膜晶体管 TFT阵列基板,
所述公共电极层包括相互绝缘的多个触控感应电极和多个触控驱动电 极;
至少一条数据信号线在触控时间段作为触控读取信号线,在所述阵列基 板中具有多个信号切换单元,各触控读取信号线通过至少一个所述信号切换 单元与对应的触控感应电极相连;
在显示时间段, 所述触控驱动电极和所述触控感应电极被施加公共电极 信号;
在触控时间段, 所述触控驱动电极被施加触控扫描信号, 信号切换单元 被导通, 并且通过导通的信号切换单元, 所述触控感应电极耦合的所述触控 扫描信号被输出到触控读取信号线。
本发明实施例提供的一种显示装置, 包括本发明实施例提供的电容式内 嵌触摸屏。
本发明实施例的有益效果包括:
本发明实施例提供的一种电容式内嵌触摸屏及显示装置, 其被配制成, 将阵 列基板中整面连接的公共电极层进行分割, 形成相互绝缘的触控感应电极和 触控驱动电极, 将阵列基板中的至少一条数据信号线作为触控读取信号线, 各触控读取信号线通过至少一个信号切换单元与对应的触控感应电极相连。 在显示时间段, 触控驱动电极和触控感应电极被施加公共电极信号, 以实现 正常显示功能; 在触控时间段, 触控驱动电极被施加触控扫描信号, 信号切 换单元被导通, 并通过导通的信号切换单元, 触控感应电极耦合的触控扫描 信号被输出到触控读取信号线, 从而实现触控功能。 由于使用数据信号线分 时复用, 作为触控读取信号线接收触控感应电极耦合的电压信号, 来实现触 控功能, 因而能在现有的阵列基板制备工艺的基础上, 不需要增加额外的工 艺即可制成触摸屏, 由此节省了生产成本, 提高了生产效率。 并且, 使用数 据信号线作为触控读取信号线, 可以避免增加单独控制触控读取信号线的 IC, 能节省制作成本。 附图说明 为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图 作筒单地介绍, 显而易见地, 下面描述中的附图仅仅涉及本发明的一些实施 例, 而非对本发明的限制。 图 1为本发明实施例提供的触摸屏中公共电极层图形的一个示意图; 图 2为本发明实施例提供的触摸屏中公共电极层图形的另一个示意图; 图 3为本发明第二实施例的结构示意图;
图 4为本发明的第一实施例的结构示意图;
图 5为本发明第一实施例的时序示意图;
图 6为本发明第二实施例的时序示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权 利要求书中使用的 "第一"、 "第二" 以及类似的词语并不表示任何顺序、 数 量或者重要性, 而只是用来区分不同的组成部分。 同样, "一个" 或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括" 或者 "包 含" 等类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵 盖出现在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排 除其他元件或者物件。 "连接" 或者 "相连" 等类似的词语并非限定于物理 的或者机械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右" 等仅用于表示相对位置关系, 当被描述对象的绝 对位置改变后, 则该相对位置关系也可能相应地改变。 下面结合附图,对本发明实施例提供的电容式内嵌触摸屏及显示装置的 具体实施方式进行详细地说明。
附图中各层薄膜厚度和形状不反映阵列基板的真实比例, 目的只是示意 说明本发明实施例的内容。
本发明实施例提供的一种电容式内嵌触摸屏, 包括具有数据信号线和公 共电极层的阵列基板;
公共电极层包括相互绝缘的多个触控感应电极和多个触控驱动电极; 至少一条数据信号线在触控时间段作为触控读取信号线,在阵列基板中 具有多个信号切换单元,各触控读取信号线通过至少一个信号切换单元与对 应的触控感应电极相连;
在显示时间段, 对触控驱动电极和触控感应电极施加公共电极信号; 在触控时间段,对触控驱动电极施加触控扫描信号,导通信号切换单元, 并通过导通的信号切换单元将触控感应电极耦合的触控扫描信号输出到触 控读取信号线。
进一步地, 在显示时间段, 对触控感应电极单元施加公共电极信号, 可 以通过如下方式实现: 对数据信号线分时地施加灰阶信号和公共电极信号, 并在数据信号线加载公共电极信号时,通过导通的信号切换单元将数据信号 线加载的公共电极信号输出到触控感应电极。 本发明实施例提供的上述电容式内嵌触摸屏, 由于使用数据信号线分时 复用, 作为触控读取信号线接收触控感应电极耦合的电压信号, 来实现触控 功能, 从而能在现有的阵列基板制备工艺的基础上, 不需要增加额外的工艺 即可制成触摸屏, 由此, 节省了生产成本, 提高了生产效率。 并且, 使用数 据信号线作为触控读取信号线, 可以避免增加单独控制触控读取信号线的 IC, 即采用现有的控制数据信号线的 IC即可实现触控功能, 从而能节省制 作成本。
具体地,本发明实施例提供的上述电容式触摸屏是将阵列基板中整面连 接的公共电极层进行分割, 形成相互绝缘的触控感应电极和触控驱动电极, 在具体实施时, 利用公共电极层形成的各触控感应电极一般沿着阵列基板中 像素单元的列方向延伸,各触控驱动电极一般沿着阵列基板中像素单元的行 方向延伸; 或者, 利用公共电极层形成的各触控感应电极一般沿着阵列基板 中像素单元的行方向延伸,各触控驱动电极一般沿着阵列基板中像素单元的 列方向延伸; 当然, 触控感应电极和触控驱动电极的延伸方向也可以沿着其 他方向, 在此不做限定。
下面以各触控感应电极沿着阵列基板中像素单元的列方向延伸,各触控 驱动电极沿着阵列基板中像素单元的行方向延伸为例进行说明。
具体地,在公共电极层中布置的触控驱动电极和触控感应电极可以为菱 形电极(如图 1所示)、 插指电极(如图 2所示)或条状电极(如图 3所示)。 插指电极是指触控驱动电极和触控感应电极相对的一侧分别具有交错设置 的梳妆结构。 其中, 在图 1至图 3中示出的触控感应电极 Rx沿着图中的阵 列基板的列方向布线, 触控驱动电极 Tx沿着图中的阵列基板的行方向方向 布线。 由于触控感应电极 Rx和触控驱动电极 Tx在同层布置,各条感应驱动 电极分割成相互绝缘的多个触控感应子电极。 例如, 如图 1所示的菱形电极 中, 由 6个触控感应子电极组成一条触控感应电极 Rx, 如图 3所示的条状 电极中, 由 2个触控感应子电极组成一条触控感应电极 Rx。 也可以将各条 触控驱动电极分割成相互绝缘的多个触控感应子电极, 例如, 如图 2所示的 插指电极中由 4个触控驱动子电极组成一条触控驱动电极 Tx,即图 2中 Τχ3 a, Tx3 b , Tx3 c和 Tx3 d组成 Tx3。
例如,如图 3所示,可以在阵列基板中设置位于 TFT阵列基板中相邻像 素单元之间的多条触控驱动信号线 01 , 每一个触控驱动电极 Tx与至少一条 触控驱动信号线 01电性相连, 例如图 3所示, 通过多个过孔电性相连。 触 控驱动信号线 01 的作用为: 在一帧中的显示时间段, 通过触控驱动信号线 01向与其连接的触控驱动电极 Tx输入公共电极信号; 在一帧中的触控时间 段,通过触控驱动信号线 01向与其连接的触控驱动电极 Tx输入触控扫描信 号。 一般情况下, 可以同时对各触控驱动信号线 01加载信号。
并且, 如果各条触控驱动电极 Tx被分割成相互绝缘的多个触控驱动子 电极时, 即各条触控驱动电极由相互绝缘的多个触控驱动子电极组成时, 可 以通过一条触控驱动信号线将组成同一条触控驱动电极的各触控驱动子电 极连接, 以便分时地对其输入公共电极信号或触控扫描信号, 即每一个触控 驱动电极与一条触控驱动信号线电性相连; 也可以对组成同一条触控驱动电 极的各触控驱动子电极分别设置触控驱动信号线, 以便分时地对其输入公共 电极信号或触控扫描信号, 即每一个触控驱动电极与多条触控驱动信号线电 性相连, 在此不做限定。
进一步地, 在设置触控驱动信号线 01时, 如图 3所示, 可以将触控驱 动信号线 01设计为与阵列基板中的栅极信号线 Gate布线方向相同, 当然, 也可以将触控驱动信号线设计为与阵列基板中的数据信号线布线方向相同, 在此不做限定。 不过, 在具体实施时, 一般将触控驱动信号线的布线方向和 触控驱动电极的延伸方向同向设置。
这样, 各触控驱动信号线就可以与栅极信号线同层设置, 在制备阵列基 板时不需要增加额外的制备工序, 只需要通过一次构图工艺即可形成触控驱 动信号线和栅极信号线的图形, 由此能够节省制备成本, 提升产品附加值。 一般地, 触摸屏的精度通常在毫米级, 可以根据所需的触控精度选择触 控驱动电极和触控感应电极的密度和宽度以保证所需的触控精度,通常触控 驱动电极和触控感应电极的宽度控制在 5-7mm为佳。 而液晶显示的精度通 常在微米级, 因此, 一般一个触控驱动电极和触控感应电极会覆盖多行或多 列液晶显示的像素单元。本发明实施例中所指的精度是指的触摸屏的一个触 控单元或者显示屏的像素单元的尺寸。
这样, 在本发明实施例提供的上述触摸屏中, 由于一个触控感应电极会 覆盖多列像素单元, 因此, 一个触控感应电极一般也会覆盖多列像素单元之 间的间隙, 那么, 一个触控感应电极可以对应一条作为触控读取信号线的数 据信号线,也可以对应多条作为触控读取信号线的数据信号线。例如图 3中, 一个触控感应电极 Rx 由两个触控感应子电极组成, 每个触控感应电极 Rx 相对覆盖两列像素单元, 一个触控感应电极 Rx对应一条作为触控读取信号 线 02的数据信号线 Data。 并且, 一条触控读取信号线 02可以通过一个信号 切换单元 03与一个触控感应电极 Rx相连, 也可以通过多个信号切换单元 03与一个触控感应电极 Rx相连。
进一步地, 由于公共电极层一般由 ITO材料制成,而 ITO材料的电阻较 高 ,在一条由金属制备的触控读取信号线通过多个信号切换单元与一个触控 感应电极相连后,相当于将 ITO电极和多个由触控读取信号线组成的金属电 阻并联, 这样能最大限度的减少触控感应电极的电阻, 从而提高电极传递信 号时的信噪比。
进一步地, 由于触摸屏的精度通常在毫米级, 而液晶显示的精度通常在 米级, 因此, 在设置触控感应电极和触控驱动电极时, 两者之间会存在几 列像素单元的间隙, 这样, 如图 2 所示, 在公共电极层位于触控感应电极 Rx和触控驱动电极 Tx之间的间隙处还可以具有公共电极 Vcom, 该公共电 极 Vcom与触控感应电极 Rx和触控驱动电极 Tx相互绝缘, 公共电极 Vcom 在工作时接入公共电极信号, 保证在公共电极 Vcom对应区域的像素单元能 够进行正常的显示工作。
下面通过具体实例对上述触摸屏中连接触控读取信号线与触控感应电 极的信号切换单元的具体结构进行详细的说明。
实施例一:
具体地, 可以将阵列基板中的至少一条栅极信号线 Gate在触控时间段 作为触控扫描信号线 04; 对应地, 信号切换单元 03可以为 P型 TFT器件; 如图 4所示, 其中, TFT器件的源极与触控读取信号线 02电性相连, 漏极 与触控感应电极 Rx电性相连,栅极与触控扫描信号线 04电性相连。 而在阵 列基板中连接数据信号线 Data和像素电极的 TFT器件一般都为 N型 TFT器 件。 N型 TFT器件在与其连接的栅极信号线加载高电平信号(为正值的电压 信号 )时开启, P型 TFT器件在与其连接的作为触控扫描信号线的栅极信号 线加载低电平信号 (为负值的电压信号) 时开启, 而 P型 TFT器件和 N型 TFT器件在与其连接的栅极信号线加载接近零伏的电压信号时,一般都不会 开启。 因此, 可以利用 TFT器件的性质, 采用对栅极信号线加载不同电压信 号的方式实现单一选择开启与其连接的 N型 TFT器件, 还是开启与其连接 的 P型 TFT器件。
例如, 作为信号切换单元的 P型 TFT器件可以是顶栅型结构也可以是 底栅型结构, 在此不做限定。
在信号切换单元为实施例一的结构时, 本发明实施例提供的上述触摸屏 的驱动时序如图 5所示, 具体为:
首先, 将触摸屏显示每一帧(V-sync )的时间分成显示时间段(Display ) 和触控时间段(Touch ), 例如触摸屏的显示一帧的时间为 16.7ms, 选取其中 5ms作为触控时间段, 其他的 11.7ms作为显示时间段, 当然也可以根据 IC 芯片的处理能力适当的调整两者的时长, 在此不做具体限定。
在显示时间段(Display ), 如图 5所示, 首先, 可以对触摸屏中的每条 栅极信号线 Gatel , Gate2... ... Gate n同时施加低电平的栅极扫描信号, 导通 P型 TFT器件, 与此同时, 对数据信号线 Data施加公共电极信号, 通过导 通的 P型 TFT器件就可以将公共电极信号输出到触控感应电极上。 然后, 对触摸屏中的每条栅极信号线 Gatel , Gate2…… Gate n依次施加高电平的栅 扫描信号, 对数据信号线 Data施加灰阶信号, 实现正常显示。
当然, 也可以对触摸屏中的每条栅极信号线 Gatel , Gate2…… Gate n依 次施加高电平的栅扫描信号, 并且, 作为触控扫描线的栅极信号线在加载高 电平的栅极扫描信号之后或之前, 加载低电平的栅极扫描信号, 导通 P 型 TFT器件,同时对数据信号线 Data施加公共电极信号,通过导通的 P型 TFT 器件就可以将公共电极信号输出到触控感应电极上。
在触控时间段(Touch ), 与触控驱动电极连接的 IC芯片向各触控驱动 电极同时提供触控扫描信号, 同时, 通过与 P型 TFT器件连接的各触控扫 描信号线依次加载低电平的栅极扫描信号的方式, 导通 P型 TFT器件(即 信号切换单元 ), 通过导通的 P型 TFT器件将触控感应电极耦合的触控扫描 信号输出到触控读取信号线, 实现触控功能。
实施例二:
如图 3所示, 在 TFT阵列基板中增加位于 TFT阵列基板中相邻像素单 元之间的多条触控扫描信号线 04;
具体地, 信号切换单元 03为 TFT器件, 可以是 P型 TFT器件, 也可以 是 N型 TFT器件, 在此不做限定; 其中, TFT器件的源极与触控读取信号 线 02电性相连, 漏极与触控感应电极 Rx电性相连,栅极与新增的触控扫描 信号线 04电性相连。通过增加的触控扫描信号线 04单独控制信号切换单元 03的导通情况, 即在信号切换单元 03为 P型 TFT器件时, 触控扫描信号线 04加载低电平信号时信号切换单元导通; 在信号切换单元 03为 N型 TFT 器件时, 触控扫描信号线 04加载高电平信号时信号切换单元 03导通。
例如,作为信号切换单元的 TFT器件可以是顶栅型结构也可以是底栅型 结构, 在此不做限定。 进一步地, 例如, 如图 3所示, 在 TFT阵列基板上新增的触控扫描信号 线 04可以与阵列基板中的栅极信号线 Gate布线方向相同, 也可以与阵列基 板中的数据信号线 Data布线方向相同, 在此不做限定。 不过, 在具体实施 时, 一般将触控扫描信号线的布线方向和栅极信号线的延伸方向同向设置。
这样, 各触控驱动信号线就可以与栅极信号线同层设置, 在制备阵列基 板时不需要增加额外的制备工序, 而是只需要通过一次构图工艺即可形成触 控扫描信号线和栅极信号线的图形, 由此能够节省制备成本, 提升产品附加 值。
在信号切换单元为实施例二的结构时, 本发明实施例提供的上述触摸屏 的驱动时序如图 6所示。
首先, 将触摸屏显示每一帧(V-sync )的时间分成显示时间段(Display ) 和触控时间段(Touch ), 例如触摸屏的显示一帧的时间为 16.7ms, 选取其中 5ms作为触控时间段, 其他的 11.7ms作为显示时间段, 当然也可以根据 IC 芯片的处理能力适当的调整两者的时长, 在此不做具体限定。
在显示时间段(Display ),如图 6所示,首先,对各触控扫描信号线 Ml、
M2 ··· ··· Mn同时加载信号, 导通信号切换单元, 同时对数据信号线 Data施 加公共电极信号,通过导通的信号切换单元就可以将公共电极信号输出到触 控感应电极上。 然后, 对触摸屏中的每条栅极信号线 Gatel , Gate2…… Gate n依次施加高电平的栅极扫描信号, 对数据信号线 Data施加灰阶信号, 实现 正常显示。
当然, 也可以对触摸屏中的每条栅极信号线 Gatel , Gate2…… Gate n依 次施加高电平的栅极扫描信号, 并且, 在相邻行的栅极信号线加载高电平的 栅极扫描信号之间, 预留时间间隙, 对触控扫描信号线 Ml、 M2... ... Mn加 载信号, 导通信号切换单元, 同时对数据信号线 Data施加公共电极信号, 通过导通的 P型 TFT器件就可以将公共电极信号输出到触控感应电极上。
在触控时间段(Touch ), 与触控驱动电极连接的 IC芯片向各触控驱动 电极分别提供触控扫描信号, 同时, 通过对各触控扫描信号线 Ml、 M2... ...
Mn依次加载信号的方式, 导通与其连接的作为信号切换单元的 TFT器件, 通过导通的信号切换单元将触控感应电极耦合的触控扫描信号输出到触控 读取信号线, 实现触控功能。
基于同一发明构思, 本发明实施例还提供了一种显示装置, 包括本发明 实施例提供的上述电容式内嵌触摸屏,该显示装置的实施可以参见上述电容 式内嵌触摸屏的实施例, 重复之处不再赘述。
本发明实施例提供的一种电容式内嵌触摸屏及显示装置,将阵列基板中 整面连接的公共电极层进行分割, 形成相互绝缘的触控感应电极和触控驱动 电极, 并且将阵列基板中的至少一条数据信号线作为触控读取信号线, 各触 控读取信号线通过至少一个信号切换单元与对应的触控感应电极相连。在显 示时间段, 对触控驱动电极和触控感应电极施加公共电极信号, 实现正常显 示功能; 在触控时间段, 对触控驱动电极施加触控扫描信号, 导通信号切换 单元, 并通过导通的信号切换单元将触控感应电极耦合的触控扫描信号输出 到触控读取信号线, 实现触控功能。 由于使用数据信号线分时复用, 作为触 控读取信号线接收触控感应电极耦合的电压信号, 实现触控功能, 因而能在 现有的阵列基板制备工艺的基础上, 不需要增加额外的工艺即可制成触摸 屏, 从而节省了生产成本, 提高了生产效率。 并且, 使用数据信号线作为触 控读取信号线,可以避免增加单独控制触控读取信号线的 IC, 能节省制作成 本。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种电容式内嵌触摸屏, 包括具有多条数据信号线和公共电极层的 阵列基板, 其中,
所述公共电极层包括相互绝缘的多个触控感应电极和多个触控驱动电 极;
至少一条数据信号线在触控时间段作为触控读取信号线,在所述阵列基 板中具有多个信号切换单元,各触控读取信号线通过至少一个所述信号切换 单元与对应的触控感应电极相连;
在显示时间段, 所述触控驱动电极和所述触控感应电极被施加公共电极 信号;
在触控时间段, 所述触控驱动电极被施加触控扫描信号, 信号切换单元 被导通, 并通过导通的信号切换单元, 所述触控感应电极耦合的所述触控扫 描信号被输出到触控读取信号线。
2、 如权利要求 1所述的触摸屏, 其中, 在显示时间段, 所述数据信号 线被分时地施加灰阶信号和公共电极信号, 并在所述数据信号线加载公共电 极信号时, 通过导通的信号切换单元, 所述数据信号线加载的公共电极信号 被输出到触控感应电极。
3、 如权利要求 1-2 中任一项所述的触摸屏, 其中, 阵列基板中的至少 一条栅极信号线在触控时间段作为触控扫描信号线;
所述信号切换单元为 P型 TFT器件; 其中, 所述 TFT器件的源极与触 控读取信号线电性相连, 漏极与触控感应电极电性相连, 栅极与所述触控扫 描信号线电性相连。
4、 如权利要求 1-2 中任一项所述的触摸屏, 其中, 所述阵列基板具有 位于所述阵列基板中相邻像素单元之间的多条触控扫描信号线;
所述信号切换单元为 TFT器件; 其中, 所述 TFT器件的源极与触控读 取信号线电性相连, 漏极与触控感应电极电性相连, 栅极与所述触控扫描信 号线电性相连。
5、 如权利要求 1-4 中任一项所述的触摸屏, 其中, 所述触控扫描信号 线与所述阵列基板中的栅极信号线布线方向相同。
6、 如权利要求 1-4 中任一项所述的触摸屏, 其中, 所述阵列基板具有 位于所述阵列基板中相邻像素单元之间的多条触控驱动信号线,每一个触控 驱动电极与至少一条所述触控驱动信号线电性相连。
7、 如权利要求 6所述的触摸屏, 其中, 所述触控驱动信号线与所述阵 列基板中的栅极信号线布线方向相同。
8、 如权利要求 1-7任一项所述的触摸屏, 其中, 各所述触控驱动电极 沿着所述阵列基板中像素单元的行方向延伸,各所述触控感应电极沿着所述 阵列基板中像素单元的列方向延伸; 或,
各所述触控驱动电极沿着所述阵列基板中像素单元的列方向延伸,各所 述触控感应电极沿着所述阵列基板中像素单元的行方向延伸。
9、 如权利要求 1-8 中任一项所述的触摸屏, 其中, 所述触控驱动电极 和所述触控感应电极为条状电极、 菱形电极或插指电极。
10、 如权利要求 1-9中任一项所述的触摸屏, 其中, 在所述公共电极层 位于所述触控感应电极和所述触控驱动电极之间的间隙处还具有公共电极, 所述公共电极与所述触控感应电极和触控驱动电极相互绝缘。
11、一种显示装置, 其中, 包括如权利要求 1-10任一项所述的电容式内 嵌触摸屏。
PCT/CN2013/075704 2013-03-01 2013-05-16 电容式内嵌触摸屏及显示装置 WO2014131248A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/357,905 US9465496B2 (en) 2013-03-01 2013-05-16 Capacitive in-cell touch panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310066016.8 2013-03-01
CN201310066016.8A CN103150069B (zh) 2013-03-01 2013-03-01 一种电容式内嵌触摸屏及显示装置

Publications (1)

Publication Number Publication Date
WO2014131248A1 true WO2014131248A1 (zh) 2014-09-04

Family

ID=48548185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075704 WO2014131248A1 (zh) 2013-03-01 2013-05-16 电容式内嵌触摸屏及显示装置

Country Status (3)

Country Link
US (1) US9465496B2 (zh)
CN (1) CN103150069B (zh)
WO (1) WO2014131248A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218097B (zh) * 2013-04-07 2016-07-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN104252274A (zh) * 2013-06-28 2014-12-31 奇景光电股份有限公司 内嵌式触控屏幕及其驱动装置
CN103500747B (zh) 2013-09-30 2017-01-25 京东方科技集团股份有限公司 阵列基板、阵列基板驱动方法和显示装置
CN103677427A (zh) 2013-12-26 2014-03-26 京东方科技集团股份有限公司 触控显示装置驱动方法及触控显示装置
TWI608387B (zh) 2014-01-22 2017-12-11 友達光電股份有限公司 觸控面板
CN104091559B (zh) * 2014-06-19 2016-09-14 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN104090678A (zh) * 2014-06-27 2014-10-08 京东方科技集团股份有限公司 一种阵列基板、显示装置及其驱动方法
CN104077002B (zh) * 2014-07-04 2017-05-17 京东方科技集团股份有限公司 阵列基板及触控显示装置
KR102347852B1 (ko) * 2014-09-05 2022-01-06 삼성전자주식회사 터치 스크린 패널, 전자 노트 및 휴대용 단말기
JP6698321B2 (ja) 2014-12-02 2020-05-27 株式会社半導体エネルギー研究所 表示装置
CN104699340A (zh) 2015-03-23 2015-06-10 京东方科技集团股份有限公司 一种阵列基板、触控显示装置和触控驱动方法
CN104820514B (zh) 2015-04-01 2017-05-10 上海中航光电子有限公司 触控显示面板及其驱动方法
CN104765497B (zh) * 2015-04-09 2018-01-09 深圳市华星光电技术有限公司 一种触摸屏及移动终端
CN104820321B (zh) 2015-05-08 2020-04-24 厦门天马微电子有限公司 一种阵列基板和显示面板
CN104793829B (zh) * 2015-05-08 2018-01-26 厦门天马微电子有限公司 一种触控装置、驱动方法、阵列基板和液晶显示面板
CN104932766B (zh) * 2015-07-14 2018-05-29 武汉华星光电技术有限公司 一种自容式触摸屏分时复用的方法
CN105185331B (zh) * 2015-09-08 2018-03-30 深圳市华星光电技术有限公司 源极驱动电路、液晶显示面板及其驱动方法
CN105353903A (zh) * 2015-09-30 2016-02-24 信利光电股份有限公司 一种阵列基板、触控显示面板及触控显示装置
CN108985106B (zh) * 2015-10-30 2021-07-20 深圳国微技术有限公司 一种用于安全芯片的防篡改屏蔽层
CN107168568A (zh) * 2016-03-08 2017-09-15 辛纳普蒂克斯公司 用于边缘区域感测的单层传感器电极布局
KR102555392B1 (ko) 2016-03-18 2023-07-14 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN105788466A (zh) * 2016-05-13 2016-07-20 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN106094306B (zh) * 2016-08-08 2019-11-26 深圳市华星光电技术有限公司 一种液晶显示面板、阵列基板及其驱动方法
CN106354339A (zh) * 2016-10-31 2017-01-25 京东方科技集团股份有限公司 Oled触控显示基板、显示面板、显示装置及控制方法
CN106648241A (zh) * 2016-12-26 2017-05-10 南京中电熊猫液晶显示科技有限公司 基于igzo的触控面板及其制造方法
US10788935B2 (en) * 2017-03-13 2020-09-29 Microsoft Technology Licensing, Llc Multiplexing capacitance sensing and display functionality
CN107024794B (zh) * 2017-06-08 2020-06-09 厦门天马微电子有限公司 显示面板与显示装置
CN107219956B (zh) * 2017-06-09 2021-01-29 京东方科技集团股份有限公司 显示基板及其驱动方法和显示面板
CN107272965B (zh) * 2017-07-11 2021-09-14 京东方科技集团股份有限公司 触控显示面板的控制方法及控制装置、触控显示装置
CN107256106B (zh) * 2017-07-26 2020-10-09 武汉天马微电子有限公司 阵列基板、液晶显示面板、触控显示装置及触控驱动方法
CN107358930B (zh) * 2017-08-31 2020-07-28 京东方科技集团股份有限公司 一种内嵌式触摸屏、其驱动方法及显示装置
KR102435943B1 (ko) * 2017-11-08 2022-08-23 엘지디스플레이 주식회사 게이트 구동회로 및 이를 포함하는 표시장치
US20200042126A1 (en) * 2018-08-01 2020-02-06 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch display panel and driving method
CN110211539B (zh) * 2018-08-02 2021-04-27 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法和触控显示装置
CN111599303A (zh) * 2019-02-21 2020-08-28 厦门凌阳华芯科技有限公司 一种led显示触控模组及设备
CN111599304A (zh) * 2019-02-21 2020-08-28 厦门凌阳华芯科技有限公司 一种led显示触控模组及设备
TWI703482B (zh) * 2019-06-05 2020-09-01 友達光電股份有限公司 觸控顯示裝置
CN111158054B (zh) * 2019-12-31 2021-04-06 浙江大学 一种基于led屏的被动物体探测显示***及方法
CN111930259A (zh) * 2020-08-20 2020-11-13 上海天马微电子有限公司 一种触控显示装置、触控显示面板、阵列基板及驱动方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750062A (zh) * 2012-06-29 2012-10-24 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及显示装置
CN102841716A (zh) * 2012-08-21 2012-12-26 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639234B2 (en) * 2007-01-04 2009-12-29 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Capacitive sensing and absolute position mapping in displacement type pointing devices
KR101077031B1 (ko) * 2009-08-19 2011-10-26 주식회사 실리콘웍스 데이터 구동회로 및 이를 포함하는 터치스크린 액정표시장치
CN102053765B (zh) * 2009-10-27 2013-01-02 联咏科技股份有限公司 电容式触控感应装置及其检测方法
KR101784436B1 (ko) * 2011-04-18 2017-10-11 삼성전자주식회사 터치 패널 및 이를 위한 구동 장치
US20130050130A1 (en) * 2011-08-22 2013-02-28 Sharp Kabushiki Kaisha Touch panel and display device with differential data input
CN102768604A (zh) * 2012-06-29 2012-11-07 京东方科技集团股份有限公司 一种电容式内嵌触摸屏、其触摸定位方法及显示装置
CN102841718B (zh) * 2012-08-31 2016-04-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN203084701U (zh) * 2013-03-01 2013-07-24 合肥京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750062A (zh) * 2012-06-29 2012-10-24 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及显示装置
CN102841716A (zh) * 2012-08-21 2012-12-26 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置

Also Published As

Publication number Publication date
US20150220174A1 (en) 2015-08-06
CN103150069B (zh) 2016-08-17
CN103150069A (zh) 2013-06-12
US9465496B2 (en) 2016-10-11

Similar Documents

Publication Publication Date Title
WO2014131248A1 (zh) 电容式内嵌触摸屏及显示装置
WO2015180303A1 (zh) 内嵌式触摸屏及显示装置
WO2015180313A1 (zh) 内嵌式触摸屏及显示装置
CN103150073B (zh) 一种电容式内嵌触摸屏及显示装置
TWI609307B (zh) 觸控面板及驅動該觸控面板的裝置
CN104020904B (zh) 一种电容式内嵌触摸屏及显示装置
CN103713792B (zh) 阵列基板及其制造方法和触摸显示装置
CN103761014B (zh) 触摸屏及其驱动方法和显示装置
JP6215640B2 (ja) 静電容量式インセルタッチパネル及びディスプレイデバイス
WO2015180335A1 (zh) 内嵌式触摸屏及显示装置
WO2015180316A1 (zh) 内嵌式触摸屏及显示装置
WO2014134873A1 (zh) 电容式触控模组、电容式内嵌触摸屏及显示装置
WO2015180322A1 (zh) 内嵌式触摸屏以及显示装置
WO2016110045A1 (zh) 内嵌式触摸屏及显示装置
WO2014166260A1 (zh) 电容式内嵌触摸屏及显示装置
WO2015180321A1 (zh) 内嵌式触摸屏及显示装置
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2016041301A1 (zh) 触摸屏、其触控定位方法及显示装置
US20120169635A1 (en) Touchable sensing matrix unit, a co-constructed active array substrate having the touchable sensing matrix unit and a display having the co-constructed active array substrate
US9785276B2 (en) Capacitive in-cell touch panel and display device
WO2015180274A1 (zh) 内嵌式触摸屏及显示装置
WO2015180314A1 (zh) 内嵌式触摸屏及显示装置
WO2017041431A1 (zh) 一种内嵌式触摸屏及显示装置
WO2015180315A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
CN103529993A (zh) 阵列基板、触控显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14357905

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876394

Country of ref document: EP

Kind code of ref document: A1