WO2014131151A1 - 一种电容器级钽铌合金丝及其制造方法 - Google Patents

一种电容器级钽铌合金丝及其制造方法 Download PDF

Info

Publication number
WO2014131151A1
WO2014131151A1 PCT/CN2013/071876 CN2013071876W WO2014131151A1 WO 2014131151 A1 WO2014131151 A1 WO 2014131151A1 CN 2013071876 W CN2013071876 W CN 2013071876W WO 2014131151 A1 WO2014131151 A1 WO 2014131151A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy wire
minutes
tantalum
niobium alloy
wire
Prior art date
Application number
PCT/CN2013/071876
Other languages
English (en)
French (fr)
Other versions
WO2014131151A8 (zh
Inventor
万庆峰
韩鹏
解永旭
刘云峰
马跃忠
陈林
张晓�
郭林波
Original Assignee
宁夏东方钽业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁夏东方钽业股份有限公司 filed Critical 宁夏东方钽业股份有限公司
Priority to PCT/CN2013/071876 priority Critical patent/WO2014131151A1/zh
Priority to CN201380069773.9A priority patent/CN104903983A/zh
Publication of WO2014131151A1 publication Critical patent/WO2014131151A1/zh
Publication of WO2014131151A8 publication Critical patent/WO2014131151A8/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Definitions

  • This invention relates to the field of capacitors, and more particularly to tantalum alloy wires for ytterbium/bismuth capacitor anode lead wires and methods of making same. Background technique
  • Tantalum capacitors have been widely used in communications, computers, automobiles, home appliances, aerospace and other fields. Tantalum electrolytic capacitors made of tantalum powder as anode and tantalum wire as anode lead have excellent comprehensive performance, including small volume, large capacity, high degree of chip formation, good reliability, long service life, etc. Other capacitors (such as ceramics, aluminum foil films, etc.) do not work properly under harsh conditions.
  • Capacitor grade bismuth alloy wire can meet the strict requirements of ⁇ / ⁇ electrolytic capacitor application in terms of surface finish, dimensional accuracy, mechanical properties and electrical properties, and effectively reduce the raw material cost of capacitor anode lead and increase Effective length under unit weight. It can be seen that the capacitor grade niobium alloy wire is likely to replace the tantalum wire in the future and become the anode lead of the electrolytic capacitor.
  • the tantalum alloy wire is inserted into the tantalum powder for compression molding, and then placed in a vacuum furnace and sintered at a high temperature of 1500-1900 ° C.
  • This process can easily cause the bismuth alloy wire to become brittle.
  • the bismuth alloy wire tends to be brittle. The main reason is the migration of the wire grains due to the migration of atoms such as oxygen or nitrogen in the bismuth powder to the bismuth alloy wire and high temperature sintering. Big. There is therefore a need to improve the brittleness resistance of niobium alloy wires in order to make them more suitable for electrolytic capacitor applications. Summary of the invention
  • the present invention provides a niobium alloy wire which satisfies the requirements for use of a tantalum capacitor anode lead and a method of manufacturing the same.
  • the present invention provides a capacitor-grade tantalum alloy wire having the following chemical composition: 0. 1-99. 9 wt% of Nb, 0. 001-0. 2 wt% of dopant, and a quantity of Ta and an unavoidable impurity, wherein the dopant is selected from the group consisting of silicon, germanium, germanium, antimony, bismuth, antimony, drink, antimony, bismuth, sparse, selenium, tellurium, arsenic, antimony, brick and boron" and Corresponding compounds: One or more of the above dopants may be added during the doping process, and the doping may be in the form of a simple substance or a compound.
  • the capacitor-grade niobium alloy wire of the present invention has the following chemical composition: 40-60% by weight, 0. 001-0. 2% by weight of the dopant, and the balance of Ta and unavoidable impurities . 2 ⁇
  • the diameter of the bismuth alloy is preferably between 0. 1-1. 2mm.
  • the invention also provides a method of making the above-described niobium alloy wire, the method comprising the steps of:
  • the mixing treatment step in the step (1) is carried out in a mixer, and the mixing time is 30 to 240 minutes, preferably 40 to 180 minutes, more preferably 60 to 120 minutes. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 -5. 5g / cm 3, preferably 2. 5-5. 0 g / cm 3 .
  • the press molding step in the step (2) is a pressure of from 100 to 250 MPa, and the pressing time is from 5 to 60 minutes, preferably from 10 to 60 minutes.
  • the sintering treatment in the step (3) uses a temperature of 1800 to 2600 ° C, preferably 2000 to 2500 ° C, and a holding time of 120 to 300 minutes, preferably 210 to 270 minutes, in the condition
  • the degree of vacuum is preferably greater than 5.0 ⁇ 10 - 3 Pa, and the leak rate is preferably less than 0.5 Pa/min.
  • the rolling step in step (4) is multi-pass rolling, and optionally an intermediate annealing is performed between different passes to eliminate the processing stress.
  • the intermediate annealing step has a temperature of 1000 to 1600 ° C and a holding time of 30 to 150 minutes, preferably 30 to 120 minutes.
  • the tantalum wire is cleaned after the drawing step (5) and prior to the final annealing step (6).
  • the final annealing in step (6) is continuous wire annealing
  • the annealing temperature is 1000-2000 ° C, preferably 1400-2000 ° C
  • an inert gas such as argon
  • Protective gas and inert gas flow rate greater than 15 liters / min
  • the line speed is 5-50m / min
  • the bismuth alloy wire of the invention and the preparation method thereof can effectively improve the brittleness resistance of the bismuth alloy wire, improve the folding yarn performance after high temperature sintering, and also have the low cost and unit weight of the conventional bismuth alloy wire raw material. Effective use of long lengths and other advantages.
  • Appropriate doping treatment of the bismuth alloy wire can effectively solve the problem of poor brittleness of the twisted gold wire, improve the service life of the capacitor product, and generate greater economic benefits.
  • “mesh” is used to indicate the particle size of the raw material powder (according to the United States) ASTM standard).
  • the "-" sign before the mesh means “passing” the mesh of the mesh.
  • "-100 mesh” means that the particles of the powder pass through a 100 mesh screen.
  • cerium powder 40% by weight of cerium powder was added to the cerium powder while 200 ppm of silicon (Si) powder and 100 ppm of yttrium (Y) powder were added, based on the total weight of the obtained powder mixture, and the average particle diameter of each of the raw material powders used was -100. 100%. Then, the mixture was mixed for 60 minutes in a Y-type mixer to obtain a mash mixed powder. The mixed powder was then formed into a rod by cold isostatic pressing at 200 MPa, and the weight of each rod was about 6 kg. The rod is vacuum-sintered at a power of 105 KW.
  • the sintering temperature is 2500 ° C, the degree of vacuum is preferably greater than 5.0 ⁇ 10 -3 Pa, the gas leakage rate is preferably less than 0.5 Pa / min, and the temperature is maintained for 4 hours.
  • the sintered rod was repeatedly rolled to obtain a niobium alloy billet, and then the mold was drawn to obtain a niobium alloy wire having a diameter of ⁇ 0.5 ⁇ 0.005 mm. Finally, the tantalum alloy wire was subjected to final annealing at a temperature of 1900 °C.
  • a bismuth alloy wire was prepared in the same manner as in Example 1 except that 400 ppm of silicon (Si) powder and 200 ppm of yttrium (Y) powder were added, and the average particle diameter was -100 mesh 100%.
  • Si silicon
  • Y yttrium
  • a bismuth alloy wire was prepared in the same manner as described in Example 1, except that 200 ppm of cerium (Ge) powder and 100 ppm of cerium (Ce) powder were added, and the average particle diameter was -100 mesh 100%. Comparative example 1
  • the tantalum powder having a purity of 99.8% and an average particle diameter of -100 mesh and 100% was formed into a rod by cold isostatic pressing at 200 MPa, and the weight of each rod was about 6 kg.
  • the rod was vacuum-sintered at a power of 90 KW, and the sintering temperature was 2200 ° C, and the temperature was kept for 4 hours.
  • the sintered rod was repeatedly rolled to obtain a base metal strip, which was then drawn by a die to obtain a tantalum wire, and finally annealed at 1800 °C.
  • the surface condition evaluation standard is observed under a microscope magnified 80 times. If there are no continuous pits and scratches, it is evaluated as "qualified".
  • the number of bending times is that the wire or bismuth alloy wire is pressed into the anode block and after being sintered at 1800 °C / 30 min, it can successfully withstand a series of bending times.
  • the number of bends is calculated as follows: The twisted or twisted alloy wire is bent back to the left and then returned, and then bent back to the right to return, the number of bends is counted once; if the twisted wire is bent back to the left 5 ⁇ After the fracture, it is counted 0.5 times. Table 2 chemical impurity analysis
  • the detection method is as follows:
  • the bismuth alloy wire is doped with an appropriate amount of beneficial doping. After the material, the brittleness resistance of the undoped bismuth alloy wire is improved, even higher than that of the conventional capacitor ruthenium wire, under the premise of ensuring mechanical properties, electrical properties and main gas impurity content. However, if the doping amount is further increased, the improvement in the brittleness resistance of the niobium alloy wire is not remarkable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种满足电解电容器阳极引线使用要求的钽铌合金丝及其制造方法。其特征在于:该钽铌合金丝化学成分(重量)百分比为钽0.1-99.9%,有益掺杂物0.001-0.2%,余量为铌和不可避免的杂质。通过本发明的钽铌合金丝及其制备方法,有效地改善了钽铌合金丝的高温性能和抗脆性,提高了其高温烧结后的折丝性能,同时也具备常规钽铌合金丝原料成本低,单位重量有效使用长度

Description

一种电容器级钽铌合金丝及其制造方法 技术领域
本发明涉及电容器领域, 且更具体涉及钽 /铌电容器阳极引 线用钽铌合金丝及其制造方法。 背景技术
钽电容器目前已被广泛用于通讯、 计算机、 汽车、 家电、 航 空航天等领域。使用钽粉作为阳极、钽丝作为阳极引线制造的钽 电解电容器具有优异的综合性能, 包括体积小、 电容量大、 片式 化程度高、 可靠性好、使用寿命长等特点; 因此能在许多其他电 容器(如陶瓷、 铝箔膜等电容器)无法胜任的苛刻条件下正常工 作。
使用电容器级钽铌合金丝, 在表面光洁度、 尺寸精确度、机 械性能以及电学性能方面均能满足钽 /铌电解电容器应用的严格 要求, 同时有效地降低了电容器阳极引线的原料成本, 并且增加 了单位重量下的有效使用长度。 由此可见, 电容器级钽铌合金丝 在未来很有可能代替钽丝, 成为电解电容器阳极引线。
在电解电容器加工过程中,将钽铌合金丝***钽粉中压制成 型, 然后置于真空炉中经 1500-1900°C高温烧结。 这一过程很容 易造成钽铌合金丝变脆。为保证电容器后续生产的要求和最终产 品质量,对真空烧结后阳极块引线的抗脆性有一定的要求。 而钽 铌合金丝在实际使用过程中,往往会出现脆断的现象; 其主要原 因是由于钽粉中的氧或氮等原子向钽铌合金丝中迁移和高温烧 结时丝材晶粒的长大。 因此存在改善钽铌合金丝的抗脆性的需 要, 以便使其更好地适用于电解电容器应用。 发明内容
针对上述问题,本发明提供了一种满足钽电容器阳极引线使 用要求的钽铌合金丝及其制造方法。
一方面,本发明提供了一种电容器级钽铌合金丝,其具有如 下化学组成: 0. 1-99. 9重量%的 Nb, 0. 001-0. 2重量%的掺杂物, 和余量的 Ta以及不可避免的杂质,其中所述掺杂物选自硅、锗、 钇、 钍、 铈、 镧、 饮、 铪、 梧、 疏、 硒、 碲、 砷、 锑、 磚和硼" 及相应的化合物。在掺杂过程中可以添加以上掺杂物的一种或多 种, 掺杂方式可以是单质或化合物形式。
优选地, 本发明的电容器级钽铌合金丝具有如下化学组成: 40-60重量%的 , 0. 001-0. 2重量%的所述掺杂物, 和余量的 Ta 以及不可避免的杂质。 本发明的钽铌合金丝的直径优选在 0. 1-1. 2mm之间。
另一方面,本发明还提供了制造上述钽铌合金丝的方法, 所 述方法包括如下步骤:
( 1 )将钽粉、 铌粉、 和掺杂物粉末进行混料处理;
( 2 )对混料后得到的混合粉末进行压制成型;
( 3 )对成型后得到的钽铌合金棒进行烧结或熔炼处理;
( 4 )对烧结或熔炼后的钽铌合金棒进行轧制或锻造处理以 得到钽铌合金坯条;
( 5 )对钽铌合金坯条进行模具拉拔,从而得到钽铌合金丝; 和
( 6 )对钽铌合金丝进行最终退火。
在本发明的方法中, 步骤(1 ) 中的混料处理步骤是在混料 机中进行, 混料时间为 30-240分钟, 优选为 40-180分钟, 更优 选为 60-120分钟。此外,用于混料步骤(1 )的各种原料粉末(包 括钽粉、 铌粉和掺杂物粉末) 的平均粒径优选为 -100 目 100%, 混料后松装密度为 2. 5-5. 5g/cm3,优选为 2. 5-5. 0 g/cm3。 在本发明的方法中, 步骤(2 ) 中的压制成型步骤是压力为 100-250 MPa,且压制时间为 5-60分钟, 优选为 10-60分钟。
在本发明的方法中, 步骤(3) 中的烧结处理使用的温度为 1800-2600°C, 优选为 2000-2500°C, 且保温时间为 120 - 300分 钟,优选为 210 - 270分钟,条件是真空度优选大于 5.0χ 10— 3 Pa, 漏气率优选小于 0.5 Pa/min。
在本发明的方法中, 步骤(4 )中的轧制步骤为多道次轧制, 并且任选地在不同道次之间进行中间退火以消除加工应力。 此 外, 所述中间退火步骤的温度为 1000-1600°C, 且保温时间为 30-150分钟, 优选为 30-120分钟。
在本发明的优选实施方案中, 在拉拔步骤( 5 )之后且在最 终退火步骤( 6 )之前对钽铌合金丝进行清洗。
在本发明的优选实施方案中, 步骤(6 ) 中的最终退火是连 续走线式退火, 退火温度为 1000-2000°C,优选为 1400-2000°C; 使用惰性气体 (如氩气)作为保护气体并且惰性气体流量大于 15升 /分; 此外走线速度为 5-50m/min
通过本发明的钽铌合金丝及其制备方法,有效地改善了钽铌 合金丝的抗脆性,提高了其高温烧结后的折丝性能, 同时也具备 常规钽铌合金丝原料成本低、 单位重量有效使用长度长等优点。
对钽铌合金丝进行适当的掺杂处理能够有效的解决钽铌合 金丝抗脆性差的问题,提高电容器产品的使用寿命, 产生更大的 经济效益。
应当理解, 以上描述和以下实施方案只是示范性的说明,本 领域的某些技术人员可对这些技术方案做各种改进、改良或变化 而不脱离本发明的实质和范围。 具体实施方式
在本发明中, 使用 "目" 来表示原料粉末的粒径(依照美国 ASTM标准) 。 正如本申请中所使用的和本领域技术人员所公知 的, 当用目数表示粉末的粒径时,在目数之前的 "-"号表示 "通 过"所述目数的筛网。例如 " - 100目"表示粉末的颗粒通过 100 目的筛网。
下面通过具体的实施例对本发明进行举例说明。然而应当清 楚, 本发明的保护范围不限于这些实施例。 实施例 1
向钽粉中加入 40重量%的铌粉, 同时加入 200ppm硅( Si ) 粉末和 lOOppm钇(Y)粉末, 基于所得粉末混合物的总重量计, 并且所用各种原料粉末的平均粒径为 -100目 100%。 然后在 Y型 混料机进行混料 60 分钟, 得到钽铌混合粉末。 然后经 200MPa 冷等静压将所述混合粉末成型为棒, 每根棒的重量为 6kg左右。 以 105KW的功率对棒进行真空垂熔烧结, 烧结温度 2500°C, 真 空度优选大于 5.0χ 10— 3 Pa, 漏气率优选小于 0.5 Pa/min, 保温 4小时。 将烧结后的棒进行反复轧制从而得到钽铌合金坯条, 然 后进行模具拉拔从而得到直径为 φ 0.5 ± 0.005mm 的钽铌合金 丝。 最后在 1900°C温度下对所述钽铌合金丝进行最终退火。 实施例 2
按照实施例 1所述的方式制备钽铌合金丝,区别仅在于加入 400 ppm的硅( Si )粉末和 200ppm的钇( Y )粉末, 平均粒径为 -100目 100%。 实施例 3
按照实施例 1所述的方式制备钽铌合金丝,区别仅在于加入 200 ppm的锗(Ge)粉末和 lOOppm的铈( Ce )粉末, 平均粒径 为 -100目 100%。 对比例 1
钽粉中加入 40重量%的铌粉,但是不加入掺杂物, 并且将退 火温度降低至 1400 °C, 其余过程同实施例 1。 对比例 2
使用纯度为 99. 8%且平均粒径为 -100 目 100%的钽粉, 经 200MPa冷等静压将所述钽粉成型为棒, 每根棒的重量为 6kg左 右。 以 90KW功率对棒进行真空垂熔烧结, 烧结温度 2200°C, 保 温时间 4 小时。 将烧结后的棒进行反复轧制从而得到钽金属坯 条, 然后进行模具拉拔从而得到钽金属丝, 最后在 1800°C下进 行退火。
对实施例和对比例中得到的各种钽铌合金丝和钽金属丝进 行分析测试, 测试结果汇总如下。 表 1 : 表面状况以及弯折次数
Figure imgf000006_0001
1. 表面状况评判标准为在放大 80倍的显微镜下观察, 如无 连续的凹坑和划痕则评价为 "合格" 。
2. 弯折次数为钽丝或钽铌合金丝压入阳极块成型后, 经 1800°C /30min高温烧结后, 可成功经受一系列弯曲的次数。
3. 弯折次数按如下方式计算: 钽丝或钽铌合金丝向左弯折 一次后回复, 再向右弯折一次回复, 则弯折次数计做一次; 如果 钽丝在向左弯折回复后断裂, 则计做 0. 5次。 表 2化学杂质分析
Figure imgf000007_0001
检测方法如下:
H:惰气脉冲红外线法 (参 QB-QT-37-2006 )
C: 高频脉沖红-外线法(ASTME1941-2010)
0和 N: 惰气脉冲-红外线热导法(QB-QT-37-2006) 表 3: 电性能测试结果
Figure imgf000007_0002
注: 电性能的检测按 GB/T3463中附录 A及附录 B的规定进 行。 表 4 力学性能测试结果(最终退火前)
Figure imgf000007_0003
注: 以上力学性能检测按 GB/T228的规定进行。 从上述分析结果可以清楚,钽铌合金丝在掺入适量有益掺杂 物后, 能够在保证力学性能、 电学性能及主要气体杂质含量的前 提下,其抗脆性相对未掺杂的钽铌合金丝有所提高,甚至高于常 规的电容器用钽金属丝。 但是, 如果进一步提高掺杂量, 钽铌合 金丝的抗脆性提升并不明显。

Claims

权 利 要 求
1. 一种电容器级钽铌合金丝, 其特征在于, 该钽铌合金丝 的化学组成如下:
0. 1-99. 9重量%的 Nb, 0. 001-0. 2重量%的掺杂物, 和余量 的 Ta以及不可避免的杂质, 其中所述掺杂物是选自硅、锗、钇、 钍、 铈、 镧、 钛、 铪、 锆、 ¾、 硒、 碲、 砷、 锑、 磷和硼以及其 化合物中的一种或多种。
2. 根据权利要求 1 的钽铌合金丝, 其特征在于, 该钽铌合 金丝具有如下化学组成: 40-60重量%的 , 0. 001-0. 2重量% 的所述掺杂物, 和余量的 Ta以及不可避免的杂质。
3. 制造权利要求 1 中所述的钽铌合金丝的方法, 所述方法 包括如下步骤:
( 1 )将钽粉、 铌粉和掺杂物粉末进行混料处理;
( 2 )对混合后得到的混合粉末进行压制成型;
( 3 )将成型后的钽铌合金棒进行烧结或熔炼处理;
( 4 )对烧结或熔炼后的钽铌合金棒进行轧制或锻造处理以 得到钽铌合金坯条;
( 5 )对钽铌合金坯条进行模具拉拔,从而得到钽铌合金丝; 和
( 6 )对钽铌合金丝进行最终退火。
4. 根据权利要求 3的方法, 其中, 步骤(1 ) 中的混料处理 步骤是在混料机中进行,混料时间为 30-240分钟,优选为 40-180 分钟, 更优选为 60-120分钟。
5. 根据权利要求 3的方法, 其中, 步骤(2 ) 中的压制成型 步骤通压力为 100-250MPa,且压制时间为 5-60 分钟, 优选为 10-60分钟。
6. 根据权利要求 3的方法, 其中, 步骤(3 ) 中的烧结处理 使用的温度为 1800-2600°C, 优选为 2000-2500°C, 且保温时间 为 120-300分钟且优选为 210 - 270分钟,条件是真空度大于 5. 0 X 10"3 Pa , 漏气率小于 0. 5 Pa/min0
7. 根据权利要求 3 的方法, 其中, 步骤(4 ) 中的轧制步 骤为多道次轧制,并且任选地在不同道次之间进行中间退火以消 除加工应力。
8. 根据权利要求 7 的方法, 其中, 所述中间退火步骤的温 度为 1000-1600°C, 且保温时间为 30-150分钟, 优选为 30-120 分钟。
9. 根据权利要求 3的方法, 其中, 在拉拔步骤( 5 )之后且 在最终退火步骤( 6 )之前对钽铌合金丝进行清洗。
10. 根据权利要求 3 的方法, 其中, 步骤(6 ) 中的最终退 火步骤是退火温度为 1000-2000°C, 优选为 1400-2000°C且走线 速度为 5-50m/min的连续走线式退火。
PCT/CN2013/071876 2013-02-26 2013-02-26 一种电容器级钽铌合金丝及其制造方法 WO2014131151A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/071876 WO2014131151A1 (zh) 2013-02-26 2013-02-26 一种电容器级钽铌合金丝及其制造方法
CN201380069773.9A CN104903983A (zh) 2013-02-26 2013-02-26 一种电容器级钽铌合金丝及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071876 WO2014131151A1 (zh) 2013-02-26 2013-02-26 一种电容器级钽铌合金丝及其制造方法

Publications (2)

Publication Number Publication Date
WO2014131151A1 true WO2014131151A1 (zh) 2014-09-04
WO2014131151A8 WO2014131151A8 (zh) 2015-07-02

Family

ID=51427456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071876 WO2014131151A1 (zh) 2013-02-26 2013-02-26 一种电容器级钽铌合金丝及其制造方法

Country Status (2)

Country Link
CN (1) CN104903983A (zh)
WO (1) WO2014131151A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10134530B2 (en) 2016-02-17 2018-11-20 Kemet Electronics Corporation Anode lead wires for improved solid electrolytic capacitors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675956A (zh) * 2018-12-28 2019-04-26 宁夏东方钽业股份有限公司 一种小规格超导铌棒的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077400A (en) * 1964-08-31 1967-07-26 Westinghouse Electric Corp Alloys and capacitors produced therefrom
US4245275A (en) * 1978-06-23 1981-01-13 Mepco/Electra, Inc. Refractory metal alloy case capacitor
CN100431073C (zh) * 2002-01-24 2008-11-05 H.C.施塔克公司 拉伸强度和硬度改进的电容器级引线
CN101243539B (zh) * 2005-08-12 2011-09-14 W.C.贺利氏股份有限公司 特别是基于铌的、用于单侧插座灯的导线和框架及其生产方法和使用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653087A (ja) * 1992-07-27 1994-02-25 Nippon Steel Corp コンデンサ用電極材料の製造方法
DE10030387A1 (de) * 2000-06-21 2002-01-03 Starck H C Gmbh Co Kg Kondensatorpulver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077400A (en) * 1964-08-31 1967-07-26 Westinghouse Electric Corp Alloys and capacitors produced therefrom
US4245275A (en) * 1978-06-23 1981-01-13 Mepco/Electra, Inc. Refractory metal alloy case capacitor
CN100431073C (zh) * 2002-01-24 2008-11-05 H.C.施塔克公司 拉伸强度和硬度改进的电容器级引线
CN101243539B (zh) * 2005-08-12 2011-09-14 W.C.贺利氏股份有限公司 特别是基于铌的、用于单侧插座灯的导线和框架及其生产方法和使用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10134530B2 (en) 2016-02-17 2018-11-20 Kemet Electronics Corporation Anode lead wires for improved solid electrolytic capacitors

Also Published As

Publication number Publication date
CN104903983A (zh) 2015-09-09
WO2014131151A8 (zh) 2015-07-02

Similar Documents

Publication Publication Date Title
KR100236429B1 (ko) 실리콘과 도펀트화합물을 갖는정제된 탄탈륨 또는 니오븀합금
EP3045557B1 (en) Zirconium-based amorphous alloy and preparation method therefor
JP6571661B2 (ja) モリブデンストリップ又はモリブデン含有ストリップの作製方法
JP6240424B2 (ja) Al合金導電線の製造方法
RU2341577C2 (ru) Стойкая к высоким температурам ниобиевая проволока
WO2017170699A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片
CN1804073A (zh) 高强度铜合金导电丝材及生产方法
CN101818291A (zh) 一种铝铜镁银系粉末冶金耐热铝合金及其制备方法
EP3375901B1 (en) High hardness amorphous composite and preparation method and application thereof
JP2024087083A (ja) タングステンスパッタリングターゲット
JP2002371301A (ja) タングステン焼結体およびその製造方法
WO2014131151A1 (zh) 一种电容器级钽铌合金丝及其制造方法
WO2017067183A1 (zh) 一种高强度非晶合金及其制备方法和应用
WO2017080212A1 (zh) 一种高韧性的非晶复合材料及其制备方法和应用
CN101409150A (zh) 电容器级钽丝及其制备方法
CN116334463A (zh) 一种超长高强超细钨合金丝及其制备方法
KR20110135080A (ko) 이붕소마그네슘 초전도 선재의 제조방법 및 이에 의하여 제조되는 이붕소마그네슘 초전도 선재
JP6228631B1 (ja) Al合金スパッタリングターゲット
JP2002516919A (ja) タンタル−ケイ素合金およびそれを含む製品およびそれを製造する方法
WO2020241040A1 (ja) アルミニウム合金、アルミニウム合金線、及びアルミニウム合金の製造方法
US20050118052A1 (en) Stabilized grain size refractory metal powder metallurgy mill products
WO2014131149A1 (zh) 电解电容器阳极引线用钽铌合金丝及其制造方法
CN106111725A (zh) 一种弥散强化铂铑热电偶丝制作方法
CN117646142B (zh) 一种镍掺杂的钨合金丝及其制备方法和应用
JPH02502030A (ja) 焼結無反応性金属合金から成る半製品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876321

Country of ref document: EP

Kind code of ref document: A1