WO2014129788A1 - Polythiourethane-based polymerizable composition with remarkable impact resistance, and method for preparing optical resin by using same - Google Patents

Polythiourethane-based polymerizable composition with remarkable impact resistance, and method for preparing optical resin by using same Download PDF

Info

Publication number
WO2014129788A1
WO2014129788A1 PCT/KR2014/001323 KR2014001323W WO2014129788A1 WO 2014129788 A1 WO2014129788 A1 WO 2014129788A1 KR 2014001323 W KR2014001323 W KR 2014001323W WO 2014129788 A1 WO2014129788 A1 WO 2014129788A1
Authority
WO
WIPO (PCT)
Prior art keywords
hdi
composition
lens
biuret
ipdi
Prior art date
Application number
PCT/KR2014/001323
Other languages
French (fr)
Korean (ko)
Inventor
김근식
김훈
Original Assignee
케이에스랩(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이에스랩(주) filed Critical 케이에스랩(주)
Publication of WO2014129788A1 publication Critical patent/WO2014129788A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/52Polythioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/722Combination of two or more aliphatic and/or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polymerizable composition for polyurethane-based optical lenses excellent in impact resistance. Furthermore, the present invention relates to an optical article using such a composition, and a lens, spectacle lens, etc. made of such an optical component.
  • plastic optical materials are lighter, less brittle, and have considerably better dyeing properties than optical materials made of glass lenses, which are a kind of inorganic lenses, they have recently been widely used in optical materials such as spectacle lenses and camera lenses.
  • Higher performance has been demanded for resin for optical materials. Specifically, high refractive index, high Abbe number, low specific gravity, high heat resistance, and the like have been demanded. According to such a request, various optical resins have been developed and used so far.
  • polyurethane resins resins obtained by reacting a polythiol compound and a polyiso (thio) cyanate compound may be mentioned as the most typical resins.
  • This resin is colorless and transparent, and has excellent properties such as high refractive index, high Abbe's number, impact resistance, dyeability and processability. Therefore, it is one of resin which has optimal conditions as optical materials, such as a plastic lens.
  • Glass lens which has been widely used as an optical lens for a long time, has a low coefficient of thermal expansion, so that the lens is less deformed due to external temperature change, and there is less damage due to temperature change of the multi-layer treated on the surface to increase transmittance.
  • glass lenses are weak in impact and heavy in weight, and are being replaced by plastic lenses that are light in weight and have excellent impact resistance and excellent processability such as dyeing.
  • the injection molded polycarbonate optical lens has excellent impact strength after multi-coating but is severely deformed by heat during use as a thermoplastic resin, and more severely deformed at the center of thinner thickness than the edge of the thick lens.
  • eye dizziness is caused, and an important optical characteristic, Abbe's number, is lowered.
  • a resin for a heat crosslinkable plastic lens has been proposed as an alternative, and in Korean Patent Nos. 0638194 and 0688698, a modified polyol and a diisocyanate are mixed to provide an optical lens.
  • Methods of preparing are known.
  • the impact resistance and heat resistance have been improved to some extent, the injection rate into the glass mold is very slow due to the high viscosity of the monomer composition to cast the lens, and it is difficult to remove the bubbles generated during the injection. Generated, and an injection mark remains in the lens.
  • an impact resistant optical lens was manufactured by reacting diisophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI) with a tetravalent polythiol.
  • the manufactured optical lens passed the FDA impact resistance test (127 cm 16.3 g) as well as the state of the dough, even after multi-coating, but did not pass the industrial safety spectacle lens standard (ANS standard 127 cm, 67 g).
  • Korean Patent No. 10-0939451 discloses (a) trimethylolpropane tris (mercaptopropionate); Trimethylol ethane tris (mercaptopropionate); 38-68 wt% of one or more trivalent thiol ester compounds selected from glycerol tris (mercaptopropionate), and (b) hexamethylene diisocyanate (HDI); 4,4'-methylenebis (cyclohexyl isocyanate) (H12MDI); Heat resistance after multi-coating comprising 32-62% by weight of a diisocyanate compound obtained by mixing at least one compound selected from trimethyl 1,6-diisocyanatohexane in 7-30% by weight of isophorone diisocyanate (IPDI)
  • IPDI isophorone diisocyanate
  • such a composition has a disadvantage in that the refractive index is about 1.546 to 1.548 for the medium refractive index, the edge of which is thick in the case of a high number of lenses.
  • the impact resistance of 120g * 127cm, 1.5J impact energy of sports goggles eyeglasses for extreme exercise, goggles for dangerous work is not yet suitable for use.
  • the polythiolurethane-based composition is described in Korean Patent Laid-Open Publication No. 2008-0000615, and also described in Korean Patent Laid-Open Publication No. 704314, Korean Patent Publication No. 2010-0094378, 2010-0120083, and the like.
  • Poly) hydroxy (poly) mercaptos having at least one polyhydroxy compound and / or at least one hydroxyl group and having at least one thiol group It describes about the polythiourethane-type resin obtained by superposing
  • m, p, and q each represent an integer of 2 or more and 10 or less.
  • the conventional method is excellent in dyeing properties and excellent tensile strength, but since 2-mercaptoethanol is used, the odor is severe.
  • the disadvantage is that there is a problem.
  • Korean Patent No. 0743314 discloses a mixture of a compound selected from the group consisting of (A) xylene diisocyanate, isophorone diisocyanate and hexamethylene diisocyanate and the compound of formula (1), and (B) pentaeryet.
  • An optical resin composition obtained by mixing and polymerizing a component selected from lititol tetrakismercapto propionate and pentaerythritol tetrakismercapto acetate with a sulfur-containing aliphatic diisocyanate, and (C) an ultraviolet absorber, a release agent, and a polymerization initiator. Is described.
  • Such an optical resin composition also has a problem in that the impact resistance in the raw material of the plastic plastic spectacle lens is weak to be used for industrial safety or sports, and in particular, the impact resistance after the multi-coating is weak.
  • the present inventors have solved the problems of the conventional optical composition as described above, to provide a resin composition that has a superior impact resistance than any of the resin for the urethane-based spectacle lens of the mold injection method, the impact resistance is maintained even after multi-coating. There is this.
  • the present inventors earnestly examined to maintain the impact resistance even after the multi-coating, using the biuret of the formula (2) as a key raw material, the impact resistance under various conditions
  • the polythiourethane composition is excellent in impact resistance even after multi-coating in the dough, the lens and the whitening that can be adjusted from the medium refractive index (1.55) to the high refractive index (1.61) are remarkably removed, and the yellowing phenomenon does not appear.
  • the object of the present invention is to provide a convenient object of the present invention.
  • p is an integer of 2 or more and 10 or less.
  • (D) at least one of polythiol compounds composed of 2,3-bis (2-mercaptoethylthio) -propane-1-thiol (GST) and pentaerythritol tetrakis (mercaptopropionate) (PEMP) It is achieved by the optically polymerizable composition containing these.
  • GST 2,3-bis (2-mercaptoethylthio) -propane-1-thiol
  • PEMP pentaerythritol tetrakis
  • the molar ratio of the functional group of NCO / SH in the functional group of polyisocyanate (NCO) and the functional group of polythiol (SH) composed of the above components (A), (B) and (C) is 0.5 to It is preferable to contain in 1.5 range, More preferably, it is the range of 0.9-1.1. Further, in the polyisocyanate compound composed of the components (A), (B) and (C), the content ratio (Biuret: HDI: IPDI) between them is further contained in a weight ratio of 30 to 40: 20 to 30: 30 to 40 desirable.
  • another aspect of this invention relates to the method of superposing
  • Another aspect of the present invention relates to an optical resin by polymerizing the optically polymerizable composition.
  • the present invention relates to an optical product made of the above optical resin, in particular a lens.
  • this invention is a raw material of the said optical resin composition
  • p is an integer of 2 or more and 10 or less.
  • (C) It relates to the polyisocyanate composition for impact-resistant polyurethane resins containing the compound of isophorone diisocyanate (IPDI).
  • the content ratio (Biuret: HDI: IPDI) between the components (A), (B) and (C) is preferably contained in a weight ratio of 30 to 40: 20 to 30: 30 to 40.
  • the isocyanate compound of the biuret type represented by the formula (2) used as the compound of component (A) is 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4- Butylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,7-heptamethylene diisocyanate, 1,8-octamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, etc.
  • 1,6-hexamethylene diisocyanate is essentially used as the compound of component (B), and therefore excluded from the compound of component (A).
  • 1,6-hexamethylene diisocyanate used as a compound of component (B) is a kind of alkylene diisocyanate compound and isophorone as a compound of component (C).
  • Diisocyanate hereinafter abbreviated as 'IPDI'
  • 'H12MDI' dicyclohexyl methane diisocyanate
  • polythiol compound used as a compound of component (D) 2, 3-bis (2-mercaptoethylthio) propane- 1- thiol and pentaerythritol tetrakis (mercaptopro) Cionate), and the structure of these compounds is as follows:
  • the polythiol compound includes the following compounds:
  • the present inventors have found that the burette compound used as component (A) in the present invention is very excellent in impact resistance, 1,6-hexamethylene diisocyanate (HDI) in the diisocyanate mixture used as component (B) Increasing the amount of) increases the impact strength of the lens, but the heat resistance is decreased, and when the amount of isophorone diisocyanate (IPDI) used as the component (C) increases, the heat resistance is improved but the impact strength gradually decreases.
  • HDI 1,6-hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • the resin composition for an optical lens of the present invention is various in finding an optimal amount of isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) in consideration of the heat resistance and impact strength of the final lens.
  • IPDI isophorone diisocyanate
  • HDI 1,6-hexamethylene diisocyanate
  • the isocyanate compound of [Formula (2)] is used to give the strong characteristics of the lens through the biuret and to have excellent durability and weather resistance.
  • the present inventors polymerized component (A), component (B) and component (C), and component (D) in this invention and manufactured the polythiourethane composition resin excellent in impact resistance preferentially.
  • the method for producing a polythiourethane-based resin of the present invention and the polythiourethane-based resin obtained by the method have better impact resistance than conventional resins, do not have sufficient heat resistance and whitening, and have a specific gravity of 1.22 to 1.25, and have a yellowing resistance. Excellent.
  • the present inventors prepared a polythiourethane composition excellent in impact resistance as described above, and then analyzed the characteristics of the resin obtained from the composition to optimally suitable component (A), component (B), component (C) in the present invention. ) And the ratio of component (D) were found through trial and error to obtain an optically polymerizable composition of the present invention.
  • the contents of the component (A), component (B), component (C) and component (D) used in the present invention were determined.
  • the content of component (A) in the isocyanate mixture of components (A), (B) and (C) is in the range of 20-50 (wt%), preferably in the range of 30-40 (wt%), If it is out of this range, there is no problem in impact resistance, but it is difficult to inject into the mold due to the high viscosity of the mixture, the content of component (B) is in the range of 10 ⁇ 40 (wt%), preferably 20 ⁇ 30 (wt %) Range, if the content is less than this range, the impact resistance is weak, when the content is large, the impact resistance is excellent, but heat resistance and yellowing is a problem, and the content of component (C) is 20-50 (wt %) Range, preferably in the range of 30 to 40 (wt%), and outside this range, there is
  • the molar ratio of the functional group of polyisocyanate (NCO) and the functional group of NCO / SH in the functional group of polythiol (SH) is preferably used within the range of 0.5 to 1.5, preferably 0.9 to 1.1 mole ratio
  • Polyisocyanate is preferably used in a content ratio (Biuret: HDI: IPDI) of 30 to 40: 20 to 30: 30 to 40 weight ratio between them, and in the case of polythiol, a resin having a high refractive index of 1.60 (nD) or more using only GST In the case where only PEMP is used, the refractive index is 1.55 (nD) or more, so that it can be used as a medium refractive lens. However, in order to prevent heat resistance, whitening, yellowing and the like, and to manufacture a high refractive lens having a high Abbe number (39 to 45) and a refractive index of 1.59 to 1.60 (nD), it is preferable to use a mixture of GST and PEMP.
  • the use ratio is preferably in the range of 10 to 20 wt% of the content of PEMP in the polythiol, more preferably in the range of 14 to 18 wt%. If it is out of this range, the impact resistance tends to be slightly reduced, and in the case of 20 wt% or more, the refractive index is also decreased, and it is preferable to use it after adjusting appropriately.
  • composition of the present invention may be added a variety of materials such as a UV absorber, a light stabilizer, an antioxidant, a light yellowing agent (blueing agent) for the initial color correction of the light yellow.
  • a reaction catalyst can be added suitably.
  • a catalyst which is preferably used for example, as a urethanization catalyst, dibutyltin dilaurate, dibutyltin dichloride, dimethyltin dichloride, tetramethyldiacetoxydistanoxane, tetraethyldiacetoxydistanoxane And amine compounds such as tin compounds such as tetrapropyldiacetoxydistanoxane and tetrabutyldiacetoxydistanoxane, and tertiary amines. These can also be used independently and can also use two or more types together.
  • a catalyst it is preferable to use in 0.001 to 1 weight% with respect to the monomer total weight of a composition. In this range, it is preferable in view of the polymerizability, the pot life during operation, the transparency of the obtained resin, various optical properties or light resistance.
  • compositions of the present invention are cured by polymerization, there may be various molding methods depending on the application and there is no particularly limited curing method, but heat curing is mainly used. Thereby, resin of this invention is obtained. Resin of this invention is obtained by the casting polymerization which is a mold injection system which is a conventional method.
  • the resin composition for an optical lens of the present invention may further include a color corrector for correcting the initial color of the lens.
  • a color corrector organic dyes, organic pigments, inorganic pigments, and the like may be used. By adding 0.1 to 50,000 ppm, preferably 0.5 to 10,000 ppm, of such organic dyes per resin composition for optical lenses, it is possible to prevent the lens from becoming yellow by the addition of an ultraviolet absorber, an optical resin, a monomer, or the like.
  • the resin composition for an optical lens of the present invention may further include a mold release agent and a polymerization initiator that are commonly used.
  • a component selected from fluorine-based nonionic surfactants, silicone-based nonionic surfactants and alkyl quaternary ammonium salts may be used alone or in combination of two or more thereof.
  • phosphate ester is used.
  • the polymerization initiator may be used alone or in combination of two or more amine-based or tin-based compounds.
  • the optical polymerization composition of the present invention is polymerized to obtain a resin composition, which is then thermally cured to obtain an optical lens, particularly an spectacle lens.
  • the process of manufacturing the spectacle lens by thermosetting the resin composition of the present invention is as follows. First, after the polymerization initiator is finally added to the composition of the present invention, nitrogen is blown to remove air in the mixing vessel, and the mixture is stirred under reduced pressure for 2 to 5 hours, the stirring is stopped, and then degassed under reduced pressure and injected into the mold. do.
  • the mold is preferably a glass mold or a metal mold fixed with a plastic gasket or polyester or polypropylene adhesive tape.
  • the glass mold injected with the mixture was placed in a forced circulation oven, maintained at 33 to 37 ° C. for 2 hours, heated to 38 to 42 ° C. for 3 hours, heated to 80 to 90 ° C. for 10 hours, and heated to 120 to 140 ° C. for 2 to 4 hours. After cooling at 120-140 degreeC for 2 hours, and cooling it for 60 hours at 60-80 degreeC, a solid material is released from a mold and an optical lens is obtained. The optical lens thus obtained is annealed at a temperature of 120 to 140 ° C. for 1 to 4 hours to obtain a final desired plastic spectacle lens (dough).
  • the optical lens obtained by the above method can be subjected to hard coating and multi-coating treatment in order to increase the optical characteristics.
  • the hard coat layer may be formed of at least one silane compound having functional groups such as an epoxy group, an alkoxy group, a vinyl group, and at least one metal oxide colloid such as silicic acid oxide, titanium oxide, antimony oxide, tin oxide, tungsten oxide, and aluminum oxide.
  • the coating composition is coated with a thickness of 0.5 to 10 on the surface of the optical lens by impregnation or spin coating, and then heated or UV cured to complete the coating film.
  • the multi-coating layer that is, the anti-reflective coating layer may be formed by vacuum deposition or sputtering of metal oxides such as silicon oxide, magnesium fluoride, aluminum oxide, zirconium oxide, titanium oxide, tantalum oxide and yttrium oxide.
  • metal oxides such as silicon oxide, magnesium fluoride, aluminum oxide, zirconium oxide, titanium oxide, tantalum oxide and yttrium oxide.
  • the silicon oxide film and the zirconium oxide film are vacuum-deposited three or more times on both surfaces of the lens and the silicon oxide film is finally vacuum deposited.
  • a water film (fluorine resin) layer may be provided last, or an ITO layer may be provided between the silicon oxide and the zirconium oxide film.
  • the optical lens of the present invention may be used after coloring treatment with a disperse dye or a photochromic dye, as necessary.
  • the resin composition for an optical lens of the present invention is not limited to plastic spectacle lenses, and can be used for various optical products.
  • the optical lens produced by the present invention has suitable physical properties as a plastic spectacle lens, and each of the physical properties (1) refractive index (nD) and Abbe number ( ⁇ d ), (2) impact resistance, (3) Heat resistance (Tg) and (4) specific gravity were evaluated by the following test method.
  • Impact resistance is the weight which is destroyed by dropping light steel ball from heavy steel ball to heavy steel ball at 127cm height in order to test specimen made of flat plate of 80mm diameter and 1.9mm thickness at room temperature 20? Impact resistance was measured by potential energy.
  • Iron ball weight Using a ball ball of 16g, 32g, 65g, 100g, 200g, and 300g, the ball dropping test for each height is used to calculate the potential energy at the time of failure.
  • Tg glass transition temperature
  • the spectacle lens obtained from the composition for an optical lens manufactured according to the present invention is also excellent in heat resistance and FDA spectacle lens standard (ANS standard, 127 cm height 16.0 g falling ball test) and industrial safety (ANS standard, 127 cm height, 67 g falling ball test ) Has impact resistance to
  • FDA spectacle lens standard ANS standard, 127 cm height 16.0 g falling ball test
  • industrial safety ANS standard, 127 cm height, 67 g falling ball test
  • the range of application is very high as lenses for industrial safety and sports goggles that can be used in industrial sites.
  • Biuret Tolonate HDB LV from Perstep
  • polythiol PEMP and GST shown in the following table are mixed and degassed for 40 minutes, and then injected into a glass mold assembled with an adhesive tape.
  • the glass mold into which the mixture is injected is charged into a forced circulation oven. Normal temperature-35 degrees Celsius 4 hours temperature rising, 35-50 degrees Celsius 5 hours temperature raising, 50-75 degrees Celsius 4.5 hours temperature raising, 75-90 degrees Celsius 5 hours raising temperature, 90 degrees Celsius 3 hours holding, 90-130 degrees Celsius 2 hours heating, 130 degrees Celsius 1.5 hours It is polymerized by cooling the fats and oils and 130-70 degreeC for 1 hour. After completion of the polymerization, the lens is separated from the mold to obtain a urethane optical lens. The lens obtained from this is annealed at 120 degreeC for 1 hour and 40 minutes. After annealing, the lens dough cured in the glass mold is released to obtain an optical lens having a center thickness of 1.2 mm.
  • the optical lens obtained in (2) was processed to a diameter of 80 mm and then ultrasonically washed in an alkaline aqueous washing solution, followed by annealing treatment at 120 ° C. for 2 hours, and then the dough lens was coated on the silicon-based hard liquid by dipping. After the heat drying, and vacuum-deposited in the order of silicon oxide, zirconium oxide, silicon oxide, ITO, zirconium oxide, silicon oxide, zirconium oxide on both sides to obtain a hard coated and multi-coated optical lens.
  • optical lens obtained above was recorded by measuring physical properties such as refractive index, Abbe's number, Tg and impact energy.
  • the compounds of the isocyanate of the burette and HDI are mixed according to the ratio of the following Table 1), the polythiol is fixed with GST, the NCO / SH ratio is mixed in the equivalence ratio of 1.0, 1200ppm of Gelek UN (Dupont) as an internal release agent, 600 ppm of dibutyltin dichloride was added as a catalyst, sufficiently stirred, vacuum degassed, injected into a glass mold, thermally cured by a curing program, and then released in a glass mold, and then measured for various physical properties.
  • Table 1 1200ppm of Gelek UN (Dupont) as an internal release agent
  • 600 ppm of dibutyltin dichloride was added as a catalyst, sufficiently stirred, vacuum degassed, injected into a glass mold, thermally cured by a curing program, and then released in a glass mold, and then measured for various physical properties.
  • the impact resistance was excellent at any ratio of burette and HDI, but the heat resistance was weak. In particular, the higher the HDI content, the weaker the heat resistance, and also the severe whitening and yellowing.
  • the refractive index was high in the range of 1.58 ⁇ 1.61, and the Abbe number was in the range of 37 ⁇ 41.
  • the impact resistance is excellent when the content of HDI is 50% or more, but the heat resistance is weak.
  • the IPDI is 50% or more, the impact resistance is weak, but the heat resistance is excellent.
  • bleaching and yellowing occurred, resulting in a significant drop in physical properties of the lens. Therefore, in order to reinforce the heat resistance and impact resistance, and to improve the whitening and yellowing phenomenon, the following experiment was performed by adding Biuret.
  • the IPDI / Biuret / GST system has a low impact resistance, but the heat resistance is excellent due to the IPDI effect, and the whitening and yellowing are much improved.
  • the results of the experiments 1 to 4 showed that the yellowing resistance of the lens was in the order of Biuret> IPDI >> HDI, and if the HDI should be used to maintain the impact resistance, the yellowing resistance should be used around 25wt%. It was judged that it could be maintained.
  • the degree of whitening of the lens was not found in Biuret, but in HDI, bleaching was remarkable. This is presumed to correlate with the viscosity of the composition and the solubility of the composition with the pressure-sensitive adhesive of the tape.
  • the experiment was performed to find the optimal amount of Biuret and IPDI by fixing the content of HDI to any value between 25 and 32.9 wt%.
  • the present invention was specifically implemented based on the above experiments 1 to 4.
  • Examples 1 and 2 in order to check the ratio of Biuret, IPDI, and H12MDI, HDI was fixed to 25 wt% in Example 1, and GST was used as the liquid B.
  • Example 3 an implementation was performed according to the change in the mass of HDI.
  • Example 4 according to the kind of the polythiol which is liquid B was carried out.
  • the HDI was fixed at 25wt%, and the results of experiments for each ratio showed that the ratio of Example (1-4) showed the best impact resistance, and the heat resistance also showed a suitable result of 87 ° C. By slightly increasing the content of 29wt% in the case of the ratio was shown.
  • the experiment was carried out as follows while the HDI content was further reduced.
  • the experiment was carried out according to the representative experiments and examples, and the ratio of the composition was carried out according to Table 7 below.
  • the experiment was carried out as follows while the HDI content was further reduced.
  • the experiment was carried out according to the representative experiments and examples, and the ratio of the composition was carried out according to Table 7 below.
  • the HDI content of 20wt% was less than half the impact strength compared to 25wt%, unexpectedly without Tg improvement, and maintained at 87 °C as it is. Therefore, in the current Biuret / HDI / IPDI system, the optimal ratio is Biuret (37.5wt%), HDI (25wt%), IPDI (37.5wt%), and the whitening phenomenon, refractive index (1.60), yellowing phenomenon Excellent results were obtained.
  • Example 4-2 The monomers were mixed at the composition ratios in the table below, and cured to measure physical properties. Representative Example 4-2) is shown below.
  • the optical lens obtained in (2) was processed to a diameter of 80 mm and then ultrasonically washed in an alkaline aqueous washing solution, followed by annealing treatment at 120 ° C. for 2 hours, and then the dough lens was coated on the silicon-based hard liquid by dipping. After the heat drying, and vacuum-deposited in the order of silicon oxide, zirconium oxide, silicon oxide, ITO, zirconium oxide, silicon oxide, zirconium oxide on both sides to obtain a hard coated and multi-coated optical lens.
  • Example 4-3 the impact energy was slightly decreased from about 20% of the PEMP content, and about 16% showed the maximum impact resistance (6.23J), so that the PEMP content in the polythiol was 10-20. It is thought that% (weight ratio) shows a good result for impact resistance.
  • Biuret / HDI / IPDI system The optimum proportion of isocyanate in Biuret / HDI / IPDI system is Biuret (37.5 wt%), HDI (25 wt%), IPDI (37.5 wt%), GST (83.3 wt%) and PEMP (16.7 wt%).
  • nD high refractive index
  • Example 5-3 is shown below.
  • the homogeneous solution obtained from the composition prepared above was agitated under reduced pressure for about 40 minutes, and poured into a mold fixed with a glass mold and an adhesive tape.
  • the glass mold type into which the mixed solution was injected was put into a forced circulation oven, and the temperature was raised to 35 ° C. for 5 hours, the temperature increased to 50 ° C. for 7 hours, the temperature increased to 90 ° C. for 7 hours, and the temperature increased to 130 ° C. for 4 hours, 130 It was hold
  • the mold was taken out of the oven and the lens was released to obtain an optical lens having a center thickness of 1.2 mm and a diameter of 80 mm. The obtained lens was further annealed at 130 ° C. for 1 hour.
  • the obtained lens was colorless and transparent, and an excellent optical lens with refractive index (nD) 1.6004, Abbe number 41, heat resistance (Tg) 85 ° C, and impact resistance (breakdown energy) 6.7 (J) was obtained.
  • the dough thus obtained was impregnated into the hard coating solution, followed by heat curing after hard coating, followed by vacuum deposition to obtain a hard coated and multi-coated optical lens, and the impact resistance was 6.5 (J) to maintain excellent impact resistance.
  • Biuret / HDI / IPDI ratio would be useful for impact resistant lenses in an optimized isocyanate system
  • other polythiols such as PEMP, GMT and DMDDU were used. Even if it shows sufficient impact resistance, Abbe's number also shows excellent results in the range of 39 to 45, and yellowing or whitening is not observed, so it can be used as a spectacle lens.
  • the heat resistance is more than 10 degrees higher than that of other polythiols. Therefore, Biuret / HDI / IPDI, an isocyanate composition applicable to various polythiols, is considered to be a combination of compounds useful for polyurethane.
  • Comparative Example-1 refers to Comparative Example 1) of Korean Patent No. 10-0973858 of a high refractive index 1.60 lens of Mitsui Co., Ltd., which is the most representative example.
  • Comparative Example 2 a comparative example of 1.67, which is an ultra-high refractive lens, was described with reference to Korean Patent Publication No. 92-00578 of Mitsui Corporation.
  • an isocyanate composition and an optical lens composition for a urethane plastic optical lens having high refractive index and excellent impact resistance before and after hard / multi coating, excellent heat resistance and Abbe number, and low whitening and yellowing can be obtained.
  • the optical lens according to the present invention can be particularly applied to the spectacle lens, and in addition to the spectacle lens, not only recording glasses substrates, coloring filters, ultraviolet absorbing filters used in industrial safety glasses, sports goggles, prisms, optical fibers, optical disks, magnetic disks, etc. It can be used for various optical products such as fluoroscopy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

The present invention relates to a resin composition for a urethane-based optical lens, for which a problem of impact resistance, which is an advantage and a disadvantage of a conventional plastic optical lens, is remedied, and to an optical lens cured using same. The resin composition of the present invention comprises a polythiol compound and a polyisocyanate compound, and a urethane-based optical lens obtained by reacting the same is lightweight due to having a small specific gravity, has remarkable heat resistance, and has excellent workability such as formability, dyeing property and the like and various optical properties such as a UV screening property, transparency and the like. Particularly, the problem of the deterioration of impact resistance after hard multi-coating is solved.

Description

내충격성이 우수한 폴리티오우레탄계 중합성 조성물 및 이를 이용한 광학용 수지의 제조방법Polythiourethane-based polymerizable composition excellent in impact resistance and a manufacturing method of an optical resin using the same
본 발명은 내충격성이 우수한 폴리우레탄계 광학렌즈용 중합성 조성물에 관한 것이다. 더 나아가, 본 발명은 이러한 조성물을 이용한 광학제품 및 이러한 광학 부품으로 이루어진 렌즈, 안경렌즈 등에 관한 것이다. The present invention relates to a polymerizable composition for polyurethane-based optical lenses excellent in impact resistance. Furthermore, the present invention relates to an optical article using such a composition, and a lens, spectacle lens, etc. made of such an optical component.
플라스틱 광학재료는, 무기 렌즈의 일종인 유리 렌즈로 이루어지는 광학재료에 비해서 가볍고 잘 깨지지 않고 염색성이 상당히 좋기 때문에, 최근, 안경 렌즈, 카메라 렌즈 등의 광학재료에 급속히 보급되어 오고 있다. 광학재료용 수지에는, 한층 더 고성능화가 요구되어 오고 있다. 구체적으로는, 고굴절율화, 고아베수화, 저비중화, 고내열성화 등이 요구되어 왔다. 그와 같은 요구에 따라서, 지금까지 여러 가지 광학재료용 수지가 개발되어 사용되고 있다.Since plastic optical materials are lighter, less brittle, and have considerably better dyeing properties than optical materials made of glass lenses, which are a kind of inorganic lenses, they have recently been widely used in optical materials such as spectacle lenses and camera lenses. Higher performance has been demanded for resin for optical materials. Specifically, high refractive index, high Abbe number, low specific gravity, high heat resistance, and the like have been demanded. According to such a request, various optical resins have been developed and used so far.
그 중에서도, 폴리우레탄계 수지에 관한 제안이 활발히 행해져 오고 있다. 폴리우레탄계 수지 중에서도, 가장 대표적인 수지로서, 폴리티올 화합물과 폴리이소(티오) 시아네이트 화합물을 반응시켜 얻어지는 수지를 들 수 있다. 이 수지는 무색 투명으로 높은 굴절율과, 높은 아베수, 내충격성, 염색성, 가공성 등의 성질이 우수하다. 따라서, 플라스틱 렌즈 등의 광학재료로서 최적의 조건을 갖고 있는 수지 중의 하나이다.Especially, proposals regarding polyurethane resins have been actively made. Among the polyurethane resins, resins obtained by reacting a polythiol compound and a polyiso (thio) cyanate compound may be mentioned as the most typical resins. This resin is colorless and transparent, and has excellent properties such as high refractive index, high Abbe's number, impact resistance, dyeability and processability. Therefore, it is one of resin which has optimal conditions as optical materials, such as a plastic lens.
오래 전부터 광학렌즈로 널리 사용되어 왔던 유리렌즈는 열팽창 계수가 낮아서 외부 온도 변화에 따른 렌즈의 도수 변형이 적고, 투과율을 높이기 위하여 표면에 처리된 멀티막의 온도 변화에 따른 손상이 적다는 장점이 있다. 그러나 유리 렌즈는 충격에 약하고 비중이 무거워서, 오늘날 가벼우면서도 내충격성이 우수하고 염색 등의 가공성이 우수한 플라스틱 렌즈로 대체되고 있다.Glass lens, which has been widely used as an optical lens for a long time, has a low coefficient of thermal expansion, so that the lens is less deformed due to external temperature change, and there is less damage due to temperature change of the multi-layer treated on the surface to increase transmittance. However, glass lenses are weak in impact and heavy in weight, and are being replaced by plastic lenses that are light in weight and have excellent impact resistance and excellent processability such as dyeing.
최근 플라스틱 렌즈의 투과율과 안정성 수준에 대한 요구가 높아짐에 따라, 대부분의 광학렌즈, 특히, 안경렌즈에서 렌즈의 양쪽 표면에 멀티 코팅(SiO2, ZrO2)을 행하여 투과율을 높이고 있으나, 이러한 멀티 코팅층은 외부로부터 가해지는 충격을 한 곳에 집중시켜서 렌즈가 쉽게 깨지게 하는 문제점이 있다.Recently, as the demand for the transmittance and stability level of the plastic lens is increased, in most optical lenses, especially spectacle lenses, multi-coating (SiO2, ZrO2) is performed on both surfaces of the lens to increase the transmittance. There is a problem that the lens is easily broken by concentrating the impact from one place.
특히, 한국 공개특허공보 제1992-0004464호에서 공지된 디아릴이소프탈레이트, 2가 알코올이 부가된 디아릴이소프탈레이트 및 디에틸렌글리콜 비스아릴카르보네이트의 공중합체, 한국 공개특허공보 제1994-004010호에 공지된 크실렌디이소시아네이트와 1,2-비스메르캅토에틸-3-메르캅토프로판, 폴리메틸메타아크릴레이트 공중합체를 사용하여 제조된 플라스틱 안경렌즈에서도 투과율을 올리기 위하여 멀티 코팅을 하면 안경 렌즈가 쉽게 깨어지는 문제점이 발생한다.In particular, a copolymer of diaryl isophthalate, diaryl isophthalate added with dihydric alcohol, and diethylene glycol bisaryl carbonate known from Korean Unexamined Patent Publication No. 1992-0004464, Korean Unexamined Patent Publication No. 194-004010 Plastic glasses prepared using xylene diisocyanate, 1,2-bismercaptoethyl-3-mercaptopropane and polymethyl methacrylate copolymers known in the heading are also multi-coated to increase the transmittance. The problem of breaking easily occurs.
또한, 사출 성형한 폴리카르보네이트 광학렌즈는 멀티 코팅후 렌즈의 충격강도는 비교적 우수하나 열가소성 수지로서 사용 중 열에 의한 변형이 심하여, 두께가 두꺼운 렌즈의 가장자리 보다 두께가 얇은 중심부에서 더욱 심하게 변형되어 이러한 안경렌즈를 착용시 눈 어지러움증을 유발시키고, 중요한 광학 특성인 아베수가 낮아지는 문제점이 발생한다.In addition, the injection molded polycarbonate optical lens has excellent impact strength after multi-coating but is severely deformed by heat during use as a thermoplastic resin, and more severely deformed at the center of thinner thickness than the edge of the thick lens. When wearing such spectacle lenses, eye dizziness is caused, and an important optical characteristic, Abbe's number, is lowered.
상기 열가소성 수지로 제조된 렌즈의 열 안정성에 관한 문제점을 해결하기 위하여 열가교성 플라스틱 렌즈용 수지가 그 대안으로 제시되었으며, 한국 특허 제0638194호 및 제0688698호에서는 변성 폴리올과 디이소시아네이트를 혼합하여 광학렌즈를 제조하는 방법이 공지되어 있다. 그러나 내충격성 및 내열성은 어느 정도 향상되었으나, 렌즈를 캐스팅하기 위하여 모노머 조성액의 높은 점도로 인해 유리몰드로의 주입속도가 아주 느리고, 주입시 발생한 기포의 제거가 어려워 열경화 후 기포에 의한 불량이 많이 발생되고, 주입 자국이 렌즈에 남아있게 된다. 또한, 중합 불균형에 의한 불량이 많이 발생하고 굴절율이 1.523 정도로 낮아서 렌즈의 가장 자리가 두꺼워진다는 문제점이 있다.In order to solve the problem related to the thermal stability of the lens made of the thermoplastic resin, a resin for a heat crosslinkable plastic lens has been proposed as an alternative, and in Korean Patent Nos. 0638194 and 0688698, a modified polyol and a diisocyanate are mixed to provide an optical lens. Methods of preparing are known. However, although the impact resistance and heat resistance have been improved to some extent, the injection rate into the glass mold is very slow due to the high viscosity of the monomer composition to cast the lens, and it is difficult to remove the bubbles generated during the injection. Generated, and an injection mark remains in the lens. In addition, there is a problem that a lot of defects due to polymerization imbalance and the refractive index is as low as 1.523, so that the edge of the lens becomes thick.
한국 특허 제472837호에서는 디이소시아네이트에 2가 알코올을 부가한 후, 4가 폴리티올과 혼합 반응시킨후 열경화하여 광학렌즈를 제조함으로써 렌즈의 충격 강도를 높였다. 그러나, 상기 특허에 의한 광학렌즈 조성물은 생지(후 가공을 하지 않은 플라스틱 렌즈) 상태에서는 충격강도를 높일 수 있었으나, 멀티 코팅을 하고 난 후에는 내충격성이 떨어져 FDA규격(127㎝ 높이, 16.3g)을 만족시키지 못했다. 이 광학렌즈 조성물은 무테 안경렌즈를 만들기 위한 강도는 충족되나 충격에 안전한 안경렌즈로서는 부족하다. 또, 디이소시아네이트에 2가 알코올을 미리 부가하여 광학렌즈용 모노머 조성물을 제조함으로써 조성물의 높은 점도로 인해 불량이 많이 발생한다는 문제점도 있다.In Korean Patent No. 472837, dihydric alcohol was added to diisocyanate, mixed with a tetravalent polythiol, and thermally cured to prepare an optical lens, thereby increasing the impact strength of the lens. However, the optical lens composition according to the patent was able to increase the impact strength in the state of the dough (non-processed plastic lens), but after the multi-coating, the impact resistance is poor FDA standards (127cm height, 16.3g) Did not satisfy. This optical lens composition is sufficient for making a frameless spectacle lens, but is insufficient as a spectacle lens which is safe for impact. In addition, there is also a problem that a lot of defects occur due to the high viscosity of the composition by preparing a monomer composition for an optical lens by adding a dihydric alcohol to diisocyanate in advance.
한국 특허 제771176호에서는 디이소포론 디이소시아네이트(IPDI)와 헥사메틸렌디이소시아네이트(HDI)에 4가 폴리티올을 반응시켜서 내충격성 광학렌즈를 제조하였다. 제조된 광학렌즈는 생지 상태뿐만 아니라, 멀티 코팅 후에도 렌즈의 충격강도가 FDA 내충격 실험(127㎝ 16.3g)을 통과하였으나, 산업안전용 안경 렌즈규격(ANS 규격 127㎝, 67g)은 통과하지 못했다. In Korean Patent No. 771176, an impact resistant optical lens was manufactured by reacting diisophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI) with a tetravalent polythiol. The manufactured optical lens passed the FDA impact resistance test (127 cm 16.3 g) as well as the state of the dough, even after multi-coating, but did not pass the industrial safety spectacle lens standard (ANS standard 127 cm, 67 g).
한국 특허 제10-0939451호에서는 (a) 트리메틸올프로판 트리스(메르캅토프로피오네이트); 트리메틸올에탄트리스(메르캅토프로피오네이트); 글리세롤 트리스(메르캅토프로피오네이트) 중에서 선택된 1종 이상의 3가 티올 에스테르 화합물 38~68 중량%와, (b) 헥사메틸렌디이소시아네이트(HDI); 4,4'-메틸렌비스(사이클로헥실 이소시아네이트)(H12MDI); 트리메틸 1,6-디이소시아네이토헥산 중에서 선택된 1종 이상의 화합물을 이소포론디이소시아네이트(IPDI)에 7~30 중량%로 혼합한 디이소시아네이트 화합물 32~62 중량%를 포함하는, 멀티코팅 후 내열성과 내충격성이 있는 플라스틱 안경렌즈용 수지 조성물이 공개되어 있다. 그러나, 이러한 조성물은 굴절율이 1.546에서 1.548정도의 중굴절용으로서 고도수의 렌즈의 경우 가장자리가 두꺼워지는 단점을 갖고 있다. 또한 내충격성도 120g*127cm 로서 1.5J의 충격에너지로서 과격한 운동을 하는 스포츠용 고글 안경렌즈, 위험한 작업을 하는 보안경 등에 사용하기에는 아직 적합하지 않다. Korean Patent No. 10-0939451 discloses (a) trimethylolpropane tris (mercaptopropionate); Trimethylol ethane tris (mercaptopropionate); 38-68 wt% of one or more trivalent thiol ester compounds selected from glycerol tris (mercaptopropionate), and (b) hexamethylene diisocyanate (HDI); 4,4'-methylenebis (cyclohexyl isocyanate) (H12MDI); Heat resistance after multi-coating comprising 32-62% by weight of a diisocyanate compound obtained by mixing at least one compound selected from trimethyl 1,6-diisocyanatohexane in 7-30% by weight of isophorone diisocyanate (IPDI) There is disclosed a resin composition for impact resistant plastic spectacle lenses. However, such a composition has a disadvantage in that the refractive index is about 1.546 to 1.548 for the medium refractive index, the edge of which is thick in the case of a high number of lenses. In addition, the impact resistance of 120g * 127cm, 1.5J impact energy of sports goggles eyeglasses for extreme exercise, goggles for dangerous work is not yet suitable for use.
폴리티올우레탄계 조성물에 대해서는 한국 공개특허공보 제2008-0000615호에 기술되어 있으며, 또한, 한국 특허 제0704314호의 특허공보, 한국 공개특허공보 제2010-0094378호, 제2010-0120083호 등에 기술되어 있다. The polythiolurethane-based composition is described in Korean Patent Laid-Open Publication No. 2008-0000615, and also described in Korean Patent Laid-Open Publication No. 704314, Korean Patent Publication No. 2010-0094378, 2010-0120083, and the like.
특히 하기 화학식(2)의 뷰렛(Biuret)을 이용한 선행문헌이 한국 공개특허공보 제2008-0000615호 기재되어 있지만, 염색성 및 수지의 인장강도가 우수하다고 하지만, 내충격성에 대한 언급은 없었으며, 본 발명의 조성물과는 차이가 있다. 그 내용을 설명해보면, (A) 지환식 이소시아네이트 화합물인 2,5(6)-비스(이소시아네이트메틸)-비시클로[2,2,1]헵탄(NBDI) 또는 1,3-비스(이소시아네이트메틸)시클로헥산(H-MXDI)과, (B) 화학식(1)인 1,6-헥사메틸렌디이소시아네이트(HDI), 화학식(2) HDI의 뷰렛(Biuret) 또는 화학식(3)의 HDI의 삼량체(Trimer) 화합물군 중에서 선택되는 적어도 1종을 함유하는 이소시아네이트 화합물과, (C) 1분자 중에 1개 이상의 (폴리)설파이드 결합을 결합을 가질 수 있는 폴리티올인 4-메르캅토메틸-1,8-디메르캅토-3,6-디티아옥탄(GST) 또는 펜타에리스리톨 테트라키스(3-메르캅토프로피오네이트)(PEMP) 화합물의 적어도 1종과, (D) 1분자 중에 하이드록시기를 2개 이상 갖는 폴리하이드록시 화합물 및/또는 하이드록시기를 1개 이상 갖고 티올기를 1개 이상 갖는 (폴리)하이드록시 (폴리)메르캅토화합물의 적어도 1종을 함유하는, 즉 2-메르캅토에탄올을 함유하는 중합성 조성물을 중합시켜 얻어지는 폴리티오우레탄계 수지에 대하여 기재되어 있다. In particular, although the prior art using the biuret (Biuret) of the formula (2) is described in Korean Patent Laid-Open Publication No. 2008-0000615, the dyeing properties and tensile strength of the resin is excellent, but there is no mention of impact resistance, It is different from the composition of the invention. Explaining the contents, (A) 2,5 (6) -bis (isocyanatemethyl) -bicyclo [2,2,1] heptane (NBDI) or 1,3-bis (isocyanatemethyl) which is an alicyclic isocyanate compound Cyclohexane (H-MXDI), (B) 1,6-hexamethylene diisocyanate (HDI) of formula (1), biuret of formula (2) HDI or trimer of HDI of formula (3) Trimer) 4-mercaptomethyl-1,8-, which is an isocyanate compound containing at least one selected from the group of compounds, and (C) a polythiol capable of having at least one (poly) sulfide bond in one molecule. At least one dimercapto-3,6-dithiaoctane (GST) or pentaerythritol tetrakis (3-mercaptopropionate) (PEMP) compound, and (D) two or more hydroxyl groups in one molecule (Poly) hydroxy (poly) mercaptos having at least one polyhydroxy compound and / or at least one hydroxyl group and having at least one thiol group It describes about the polythiourethane-type resin obtained by superposing | polymerizing the polymerizable composition containing at least 1 sort (s) of a compound, ie, 2-mercaptoethanol.
(화학식(1) (Formula (1)
OCN-(CH2)m-NCOOCN- (CH 2 ) m-NCO
(화학식(2); Biuret 화학식)(Formula (2); Biuret Chemical Formula)
Figure PCTKR2014001323-appb-I000001
Figure PCTKR2014001323-appb-I000001
(화학식(3); Trimer 화학식)(Formula (3); Trimer Formula)
Figure PCTKR2014001323-appb-I000002
Figure PCTKR2014001323-appb-I000002
(상기 식에서, m, p및 q는 각각 2 이상 10 이하의 정수를 나타낸다.)(In the above formula, m, p, and q each represent an integer of 2 or more and 10 or less.)
하지만, 상기 종래의 방법은 염색성이 우수하고, 인장강도는 우수하지만, 2-메르캅토에탄올을 사용하므로 악취가 심하여 렌즈의 열경화시에 작업성이 상당히 열악하고 독성이 심하여 렌즈의 가공시에도 상당한 문제점이 있다는 단점이 있다.However, the conventional method is excellent in dyeing properties and excellent tensile strength, but since 2-mercaptoethanol is used, the odor is severe. The disadvantage is that there is a problem.
반면에, 한국 특허 제0704314호의 특허공보에는 (A) 크실렌디이소시아네이트, 이소포론디이소시아네이트 및 헥사메틸렌디이소시아네이트로 구성된 군에서 선택된 성분과 상기 화학식(1)의 화합물의 혼합물과, (B) 펜타에리트리톨 테트라키스메르캅토 프로피오네이트 및 펜타에리트리톨 테트라키스메르캅토 아세테이트에서 선택된 성분과 황 함유 지방족 디이소시아네이트와의 혼합물과, (C) 자외선 흡수제, 이형제, 중합개시제를 혼합하여 중합시켜 얻어지는 광학수지 조성물에 대하여 기재되어 있다.On the other hand, the patent publication of Korean Patent No. 0743314 discloses a mixture of a compound selected from the group consisting of (A) xylene diisocyanate, isophorone diisocyanate and hexamethylene diisocyanate and the compound of formula (1), and (B) pentaeryet. An optical resin composition obtained by mixing and polymerizing a component selected from lititol tetrakismercapto propionate and pentaerythritol tetrakismercapto acetate with a sulfur-containing aliphatic diisocyanate, and (C) an ultraviolet absorber, a release agent, and a polymerization initiator. Is described.
이러한 광학수지 조성물도 산업안전용이나 스포츠용으로 사용하기에는 생지플라스틱 안경렌즈의 원재료)에서의 내충격성이 약하고, 특히 멀티코팅 후에 내충격성이 약한 문제점을 가지고 있다. Such an optical resin composition also has a problem in that the impact resistance in the raw material of the plastic plastic spectacle lens is weak to be used for industrial safety or sports, and in particular, the impact resistance after the multi-coating is weak.
본 발명자들은 상기와 같은 종래의 광학조성물의 문제점을 해결하여, 몰드 주입 방식의 어떤 우레탄계 안경 렌즈용 수지보다도 월등한 내충격성을 갖고 있으면서 멀티코팅 후에도 내충격성이 그대로 유지되는 수지 조성물을 제공하는데 그 목적이 있다.The present inventors have solved the problems of the conventional optical composition as described above, to provide a resin composition that has a superior impact resistance than any of the resin for the urethane-based spectacle lens of the mold injection method, the impact resistance is maintained even after multi-coating. There is this.
상기 과제를 해결하기 위하여, 예의 검토한 결과, 본 발명자들은 멀티코팅 후에도 내충격성을 유지하기 위해서 예의 검토한 결과 화학식(2)형태의 뷰렛(Biuret)을 핵심 원료로 활용해서 여러가지 조건하에서 내충격성을 연구한 결과 생지에서도 멀티코팅 후에도 내충격성이 우수하고, 굴절율 도 중굴절(1.55)에서 고굴절(1.61)까지 조절이 가능한 렌즈 및 백화현상도 현저하게 제거되고, 황변현상도 나타나지 않는 폴리티오우레탄 조성물을 발명하게 되었다.In order to solve the above problems, as a result of earnest examination, the present inventors earnestly examined to maintain the impact resistance even after the multi-coating, using the biuret of the formula (2) as a key raw material, the impact resistance under various conditions As a result, the polythiourethane composition is excellent in impact resistance even after multi-coating in the dough, the lens and the whitening that can be adjusted from the medium refractive index (1.55) to the high refractive index (1.61) are remarkably removed, and the yellowing phenomenon does not appear. Invented.
본 발명의 목적은 The object of the present invention is
(A) 하기 화학식(2)로 표시되는 이소시아네이트 화합물(Biuret)과(A) an isocyanate compound (Biuret) represented by the following formula (2) and
[화학식(2)][Formula (2)]
Figure PCTKR2014001323-appb-I000003
(2)
Figure PCTKR2014001323-appb-I000003
(2)
(상기식에서, p는 2 이상 내지 10 이하의 정수이다.)(Wherein p is an integer of 2 or more and 10 or less).
(B) 1,6-헥사메틸렌디이소시아네이트(HDI)의 화합물과,(B) a compound of 1,6-hexamethylene diisocyanate (HDI),
(C) 이소포론디이소시아네이트(IPDI)의 화합물 또는 디시클로헥실 메탄 디이소시아네이트(H12MDI)와,(C) a compound of isophorone diisocyanate (IPDI) or dicyclohexyl methane diisocyanate (H12MDI),
(D) 2,3-비스(2-메르캅토에틸티오)-프로판-1-티올(GST) 및 펜타에리트리톨테트라키스 (메르캅토프로피오네이트)(PEMP)로 구성된 폴리티올 화합물 중 적어도 1종을 함유하는 광학용 중합성 조성물에 의하여 달성된다. (D) at least one of polythiol compounds composed of 2,3-bis (2-mercaptoethylthio) -propane-1-thiol (GST) and pentaerythritol tetrakis (mercaptopropionate) (PEMP) It is achieved by the optically polymerizable composition containing these.
본 발명의 광학용 중합성 조성물에서 상기 성분(A), (B) 및 (C)로 구성된 폴리이소시아네이트(NCO)의 작용기와 폴리티올(SH)의 작용기에서 NCO/SH의 작용기의 몰비가 0.5~1.5 범위내로 함유하는 것이 바람직하고, 더욱 바람직하게는 0.9~1.1 범위이다. 또한, 상기 성분(A), (B) 및 (C)로 구성된 폴리이소시아네이트 화합물에서, 이들 간의 함량비(Biuret: HDI: IPDI)가 30~40: 20~30: 30~40 중량비로 함유하는 더욱 바람직하다. In the optically polymerizable composition of the present invention, the molar ratio of the functional group of NCO / SH in the functional group of polyisocyanate (NCO) and the functional group of polythiol (SH) composed of the above components (A), (B) and (C) is 0.5 to It is preferable to contain in 1.5 range, More preferably, it is the range of 0.9-1.1. Further, in the polyisocyanate compound composed of the components (A), (B) and (C), the content ratio (Biuret: HDI: IPDI) between them is further contained in a weight ratio of 30 to 40: 20 to 30: 30 to 40 desirable.
한편, 본 발명의 다른 양태로는 상기의 광학용 중합성 조성물을 중합시켜 광학용 수지를 제조하는 방법에 관한 것이다. 본 발명의 또 다른 양태로는 상기의 광학용 중합성 조성물을 중합시켜 광학용 수지에 관한 것이다. 더 나아가, 본 발명은 상기의 광학용 수지로 이루어진 광학 제품, 특히 렌즈에 관한 것이다.On the other hand, another aspect of this invention relates to the method of superposing | polymerizing said optically polymerizable composition and manufacturing resin for optics. Another aspect of the present invention relates to an optical resin by polymerizing the optically polymerizable composition. Furthermore, the present invention relates to an optical product made of the above optical resin, in particular a lens.
또한, 본 발명은 상기 광학용 수지 조성물의 원료로서,Moreover, this invention is a raw material of the said optical resin composition,
(A) 하기 화학식(2)로 표시되는 이소시아네이트 화합물(Biuret)과,(A) an isocyanate compound (Biuret) represented by the following general formula (2),
[화학식(2)][Formula (2)]
Figure PCTKR2014001323-appb-I000004
(2)
Figure PCTKR2014001323-appb-I000004
(2)
(상기식에서, p는 2 이상 내지 10 이하의 정수이다.)(Wherein p is an integer of 2 or more and 10 or less).
(B) 1,6-헥사메틸렌디이소시아네이트(HDI)의 화합물 또는 디시클로헥실 메탄 디이소시아네이트(H12MDI)와(B) a compound of 1,6-hexamethylene diisocyanate (HDI) or dicyclohexyl methane diisocyanate (H12MDI)
(C) 이소포론디이소시아네이트(IPDI)의 화합물을 함유하는 내충격성 폴리우레탄 수지용 폴리이소시아네이트 조성물에 관한 것이다.(C) It relates to the polyisocyanate composition for impact-resistant polyurethane resins containing the compound of isophorone diisocyanate (IPDI).
이러한 폴리우레탄 수지용 조성물에서 상기 성분(A), (B) 및 (C) 간의 함량비(Biuret: HDI: IPDI)가 30~40: 20~30: 30~40 중량비로 함유하는 것이 바람직하다.In such a polyurethane resin composition, the content ratio (Biuret: HDI: IPDI) between the components (A), (B) and (C) is preferably contained in a weight ratio of 30 to 40: 20 to 30: 30 to 40.
본 발명에서, 성분(A)의 화합물로 사용되는 상기 화학식(2)로 표시되는 뷰렛(Biuret)형태의 이소시아네이트 화합물은 1,2-에틸렌디이소시아네이트, 1,3-프로필렌디이소시아네이트, 1,4-부틸렌디이소시아네이트, 1,6-헥사메틸렌디이소시아네이트, 1,7-헵타메틸렌디이소시아네이트, 1,8-옥타메틸렌디이소시아네이트, 1,9-노나메틸렌디이소시아네이트, 1,10-데카메틸렌디이소시아네이트 등을 포함한다. 하지만, 본 발명에서 1,6-헥사메틸렌디이소시아네이트는 성분(B)의 화합물로 필수적으로 사용하는 것이므로, 성분(A)의 화합물에서는 제외한다. 이들 성분들은 특정원료로 하여 용이하게 얻을 수 있고, 얻어진 화합물을 정제하여 사용해도 좋고, 또한 원료 모노머 자체가 혼합되어 있어도 상관없으며, 시판되는 제품인 Bayer사의 Desmodur N100이나 Perstop사의 Tolonate HDB LV를 사용할 수 있다. In the present invention, the isocyanate compound of the biuret type represented by the formula (2) used as the compound of component (A) is 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4- Butylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,7-heptamethylene diisocyanate, 1,8-octamethylene diisocyanate, 1,9-nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, etc. Include. However, in the present invention, 1,6-hexamethylene diisocyanate is essentially used as the compound of component (B), and therefore excluded from the compound of component (A). These components can be easily obtained as a specific raw material, the obtained compound may be purified and used, and raw material monomer itself may be mixed, and commercially available products such as Bayer's Desmodur N100 or Perstop's Tolonate HDB LV can be used. .
본 발명에서, 성분(B)의 화합물로 사용되는 1,6-헥사메틸렌디이소시아네이트(이후에는 'HDI'로 약칭한다)는 알킬렌 디이소시아네이트 화합물의 일종이고, 성분(C)의 화합물로 이소포론 디이소시아네이트(이후에는 'IPDI'로 약칭한다) 및 디시클로헥실 메탄 디이소시아네이트(이후에는 'H12MDI'로 약칭한다) 화합물은 지환족 디이소시아네이트 화합물의 일종에 속한다고 할 것이다. 이들 디이소시아네이트는 합성하여 사용할 수도 있고, 시판되고 있는 화합물을 구입하여 사용할 수도 있다.In the present invention, 1,6-hexamethylene diisocyanate (hereinafter abbreviated as 'HDI') used as a compound of component (B) is a kind of alkylene diisocyanate compound and isophorone as a compound of component (C). Diisocyanate (hereinafter abbreviated as 'IPDI') and dicyclohexyl methane diisocyanate (hereinafter abbreviated as 'H12MDI') compounds will be said to belong to a class of alicyclic diisocyanate compounds. These diisocyanates may be synthesized and used, and commercially available compounds may be purchased.
Figure PCTKR2014001323-appb-I000005
(IPDI)
Figure PCTKR2014001323-appb-I000005
(IPDI)
Figure PCTKR2014001323-appb-I000006
(HDI)
Figure PCTKR2014001323-appb-I000006
(HDI)
또한, 본 발명에서, 성분(D)의 화합물로 사용되는 폴리티올 화합물로는, 2,3-비스(2-메르캅토에틸티오)-프로판-1-티올 및 펜타에리트리톨테트라키스 (메르캅토프로피오네이트)가 있는데, 이들 화합물의 구조는 하기와 같다:In addition, in this invention, as a polythiol compound used as a compound of component (D), 2, 3-bis (2-mercaptoethylthio) propane- 1- thiol and pentaerythritol tetrakis (mercaptopro) Cionate), and the structure of these compounds is as follows:
Figure PCTKR2014001323-appb-I000007
(GST)
Figure PCTKR2014001323-appb-I000007
(GST)
Figure PCTKR2014001323-appb-I000008
(PEMP)
Figure PCTKR2014001323-appb-I000008
(PEMP)
상기 폴리티올 화합물로는 하기와 같은 화합물들이 있다:The polythiol compound includes the following compounds:
1,2-비스(2-메르캅토에틸티오)-3-메르캅토프로판, 트리메틸올프로판 트리스(메르캅토프로피오네이트), 펜타에리트리톨테트라키스(메르캅토프로피오네이트) 이외에, 2,3-비스(2-메르캅토에틸티오)프로판-1-티올, 2-(2-메르캅토에틸티오)-3- [2-(3-메르캅토-2- (2-메르캅토에틸티오)-프로필티오]에틸티오-프로판-1-티올, 2-(2-메르캅토에틸티오)-3-{2-메르캅토-3-[3-메르캅토-2-(2-메르캅토에틸티오)-프로필티오]프로필티오}-프로판-1-티올, 트리메틸올프로판 트리스(메르캅토프로피오네이트, 트리메틸올에탄 트리스(메르캅토프로피오네이트), 글리세롤 트리스(메르캅토프로피오네이트), 트리메틸올클로로 트리스(메르캅토프로피오네이트), 트리메틸올프로판 트리스(메르캅토아세테이트), 트리메틸올에탄 트리스(메르캅토아세테이트, 펜타에리트리톨테트라키스메르캅토프로피오네이트, 펜타에리트리톨테트라키스머캅토아세테이트, [1,4]디티안-2-일-메탄티올, 2-(2-메르캅토-에틸술파닐)-프로판-1,3-디티올, 2-([1,4]디티안-2일메틸술파닐)-에탄티올, 3-(3-메르캅토-프로피오닐술파닐)-프로피오닉애시드 2-하이드록실메틸-3-(3-메르캅토-프로피오닐옥시)-2-(3-메르캅토-프로피오닐옥시메틸)-프로필 에스터, 3-(3-메르캅토-프로피오닐술파닐)-프로피오닉애시드 3-(3-메르캅토-프로피오닐옥시)-2,2-비스-(3-메르캅토-프로피오닐옥시메틸)-프로필 에스터, (5-메르캅토메틸-[1,4]디티안-2-일)-메탄티올 등의 폴리티올 화합물로 이루어진 군으로부터 선택되는 1종 또는 2종을 이용할 수도 있다. 본 발명에서는 상기 폴리티올 화합물 중에서도 2,3-비스(2-메르캅토에틸티오)-프로판-1-티올 (GST) 및 펜타에리트리톨테트라키스(메르캅토프로피오네이트) (PEMP)가 가장 바람직하다. 2,3- other than 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, trimethylolpropane tris (mercaptopropionate), and pentaerythritol tetrakis (mercaptopropionate) Bis (2-mercaptoethylthio) propane-1-thiol, 2- (2-mercaptoethylthio) -3- [2- (3-mercapto-2- (2-mercaptoethylthio) -propylthio ] Ethylthio-propane-1-thiol, 2- (2-mercaptoethylthio) -3- {2-mercapto-3- [3-mercapto-2- (2-mercaptoethylthio) -propylthio ] Propylthio} -propane-1-thiol, trimethylolpropane tris (mercaptopropionate, trimethylolethane tris (mercaptopropionate), glycerol tris (mercaptopropionate), trimethylolchloro tris (mer Captopropionate), trimethylolpropane tris (mercaptoacetate), trimethylolethane tris (mercaptoacetate, pentaerythritol tetrakis mercap Topropionate, pentaerythritol tetrakiscapcaptoacetate, [1,4] dithia-2-yl-methanethiol, 2- (2-mercapto-ethylsulfanyl) -propane-1,3-dithiol , 2-([1,4] dithiane-2ylmethylsulfanyl) -ethanethiol, 3- (3-mercapto-propionylsulfanyl) -propionic acid 2-hydroxymethyl-3- (3- Mercapto-propionyloxy) -2- (3-mercapto-propionyloxymethyl) -propyl ester, 3- (3-mercapto-propionylsulfanyl) -propionic acid 3- (3-mercapto- Propionyloxy) -2,2-bis- (3-mercapto-propionyloxymethyl) -propyl ester, (5-mercaptomethyl- [1,4] ditian-2-yl) -methanethiol One or two selected from the group consisting of polythiol compounds may be used, and in the present invention, 2,3-bis (2-mercaptoethylthio) -propane-1-thiol (GST) and Pentaerythritol tetrakis (mercaptopropione) (PEMP) is most preferred.
한편, 본 발명자들은 본 발명에서 성분(A)로 사용되는 뷰렛화합물은 내충격성이 아주 우수함을 알 수 있었고, 성분(B)로 사용되는 상기 디이소시아네이트 혼합물 중 1,6-헥사메틸렌 디이소시아네이트(HDI)의 사용량이 증가하면 렌즈의 충격강도가 좋아지나 내열성이 떨어지고, 성분(C)로 사용되는 이소포론디이소시아네이트(IPDI)의 사용량이 증가하면 내열성은 좋아지나 충격강도가 조금씩 떨어짐을 알 수 있었다. 이를 바탕으로 본 발명의 광학렌즈용 수지 조성물에서는 최종 제조되는 렌즈의 내열성과 충격강도를 고려하여 이소포론디이소시아네이트(IPDI) 및 1,6-헥사메틸렌디이소시아네이트(HDI)의 최적량을 찾아내는데 다양한 실험을 행하였고, 이를 바탕으로 본 발명을 완성하였다. On the other hand, the present inventors have found that the burette compound used as component (A) in the present invention is very excellent in impact resistance, 1,6-hexamethylene diisocyanate (HDI) in the diisocyanate mixture used as component (B) Increasing the amount of) increases the impact strength of the lens, but the heat resistance is decreased, and when the amount of isophorone diisocyanate (IPDI) used as the component (C) increases, the heat resistance is improved but the impact strength gradually decreases. On the basis of this, the resin composition for an optical lens of the present invention is various in finding an optimal amount of isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) in consideration of the heat resistance and impact strength of the final lens. An experiment was carried out, and based on this, the present invention was completed.
특히, 충격강도와 내열성의 관계는 상충관계(trade off)에 있기 때문에 두 조건을 동시에 충족시키기가 힘들었다. 이를 보완하기 위한 방안으로 [화학식(2)]의 이소시아네이트 화합물을 이용해 뷰렛(biuret)을 통한 렌즈의 강인한 특성을 부여하고 우수한 내구성과 내후성을 갖도록 한다. 본 발명자들은 이들 성분들이 광학제품 내에서 여러 가지 균일한 가교를 일으켜 내충격성의 향상을 가져 온 것으로 짐작하고 있다.In particular, since the relationship between impact strength and heat resistance is in a trade off, it is difficult to satisfy both conditions at the same time. As a way to compensate for this, the isocyanate compound of [Formula (2)] is used to give the strong characteristics of the lens through the biuret and to have excellent durability and weather resistance. The present inventors guess that these components caused various uniform crosslinking in the optical product, resulting in an improvement in impact resistance.
본 발명자들은 본 발명에서 성분(A), 성분(B) 및 성분(C), 및 성분(D)를 중합하여 우선적으로 내충격성이 우수한 폴리티오우레탄 조성물 수지를 제조하였다. 본 발명의 폴리티오우레탄계 수지의 제조 방법 및 이 방법에 의해 얻어지는 폴리티오우레탄계 수지는 기존의 수지보다도 내충격성이 우수하고 충분한 내열성과 백화현상이 없으며, 비중이 1.22~1.25로 가벼우며, 내황변성도 우수하였다.The present inventors polymerized component (A), component (B) and component (C), and component (D) in this invention and manufactured the polythiourethane composition resin excellent in impact resistance preferentially. The method for producing a polythiourethane-based resin of the present invention and the polythiourethane-based resin obtained by the method have better impact resistance than conventional resins, do not have sufficient heat resistance and whitening, and have a specific gravity of 1.22 to 1.25, and have a yellowing resistance. Excellent.
한편, 본 발명자들은 상기와 같이 내충격성이 우수한 폴리티오우레탄 조성물을 제조한 다음, 그 조성물로부터 얻어진 수지의 특징을 분석하여 본 발명에서 최적으로 적당한 성분(A), 성분(B), 성분(C) 및 성분(D)의 비율을 시행착오를 통하여 찾아내고, 본 발명의 광학용 중합성 조성물을 얻었다.On the other hand, the present inventors prepared a polythiourethane composition excellent in impact resistance as described above, and then analyzed the characteristics of the resin obtained from the composition to optimally suitable component (A), component (B), component (C) in the present invention. ) And the ratio of component (D) were found through trial and error to obtain an optically polymerizable composition of the present invention.
본 발명에서 얻어진 광학용 조성물에 의하여 제조된 광학 렌즈의 특정을 고려하여, 본 발명에서 사용되는 성분(A), 성분(B), 성분(C), 성분(D)의 함량을 결정하였다. 본 발명에서 성분(A), 성분(B), 성분(C)의 이소시아네이트 혼합물중에 성분(A)의 함량은 20~50(wt%) 범위, 바람직하게는 30~40(wt%)범위이고, 이러한 범위를 벗어난 경우에는 내충격성에는 문제가 없으나 혼합물의 점도가 높아서 몰드에 주입이 곤란한 문제점이 있으며, 성분(B) 의 함량은 10~40(wt%) 범위, 바람직하게는 20~30(wt%) 범위이고, 이러한 범위를 벗어나서 함량이 적은 경우에는 내충격성이 약하고, 함량이 많은 경우에는 내충격성은 우수하나 내열성과 황변성이 나타나는 문제점이 있으며, 성분(C) 의 함량은 20~50(wt%) 범위, 바람직하게는 30~40(wt%) 범위이고, 이러한 범위를 벗어난 경우에는 내열성에 문제점이 있다.In consideration of the specification of the optical lens produced by the optical composition obtained in the present invention, the contents of the component (A), component (B), component (C) and component (D) used in the present invention were determined. In the present invention, the content of component (A) in the isocyanate mixture of components (A), (B) and (C) is in the range of 20-50 (wt%), preferably in the range of 30-40 (wt%), If it is out of this range, there is no problem in impact resistance, but it is difficult to inject into the mold due to the high viscosity of the mixture, the content of component (B) is in the range of 10 ~ 40 (wt%), preferably 20 ~ 30 (wt %) Range, if the content is less than this range, the impact resistance is weak, when the content is large, the impact resistance is excellent, but heat resistance and yellowing is a problem, and the content of component (C) is 20-50 (wt %) Range, preferably in the range of 30 to 40 (wt%), and outside this range, there is a problem in heat resistance.
한편, 본 발명에서 폴리이소시아네이트(NCO)의 작용기와 폴리티올(SH)의 작용기에서 NCO/SH의 작용기의 몰비가 0.5~1.5범위내로 사용하는 것이 바람직하나, 바람직하게는 0.9~1.1 몰비의 범위가 바람직하며, 더욱 바람직하게는 1.0 몰비로 사용함이 더욱 광학렌즈의 물성에 좋다. 폴리이소시아네이트는 이들 간의 함량비(Biuret: HDI: IPDI)가 30~40: 20~30: 30~40 중량비로 사용함이 바람직하고, 폴리티올인 경우 GST만 사용하면 1.60(nD)이상의 고굴절의 수지를 얻을 수 있고, PEMP만을 사용한 경우는 굴절율이 1.55(nD)이상을 얻을 수 있어서 중굴절 렌즈로 사용이 가능하여 특별히 제한할 필요는 없다. 그러나 내열성 및 백화현상, 황변현상 등을 방지하고 고아베수(39~45) 및 굴절율이 1.59~1.60(nD)인 고굴절 렌즈를 제조하기 위해서는 GST와 PEMP를 적절히 혼합하여 사용하는 것이 바람직하다. 그 사용비율은 폴리티올 중 PEMP의 함량이 10~20wt% 범위가 바람직하며 더욱 바람직하기에는 14~18wt% 범위이다. 이 범위를 벗어난 경우에는 내충격성이 조금 감소되는 경향이 있으며, 20wt%이상의 경우에는 굴절율도 감소하여 적절히 조절하여 사용하는 것이 바람직하다.In the present invention, the molar ratio of the functional group of polyisocyanate (NCO) and the functional group of NCO / SH in the functional group of polythiol (SH) is preferably used within the range of 0.5 to 1.5, preferably 0.9 to 1.1 mole ratio Preferably, more preferably, 1.0 mole ratio is more suitable for the physical properties of the optical lens. Polyisocyanate is preferably used in a content ratio (Biuret: HDI: IPDI) of 30 to 40: 20 to 30: 30 to 40 weight ratio between them, and in the case of polythiol, a resin having a high refractive index of 1.60 (nD) or more using only GST In the case where only PEMP is used, the refractive index is 1.55 (nD) or more, so that it can be used as a medium refractive lens. However, in order to prevent heat resistance, whitening, yellowing and the like, and to manufacture a high refractive lens having a high Abbe number (39 to 45) and a refractive index of 1.59 to 1.60 (nD), it is preferable to use a mixture of GST and PEMP. The use ratio is preferably in the range of 10 to 20 wt% of the content of PEMP in the polythiol, more preferably in the range of 14 to 18 wt%. If it is out of this range, the impact resistance tends to be slightly reduced, and in the case of 20 wt% or more, the refractive index is also decreased, and it is preferable to use it after adjusting appropriately.
본 발명의 중합조성물에서 얻어지는 수지의 투명도, 굴절률, 비중, 내충격성, 내열성, 중합조성물의 점도 등 렌즈로서 갖춰야 할 필수적인 광학적 물성을 얻기 위하여, 여러 가지 첨가제를 사용할 수 있다. 또한, 본 발명의 조성물들을 자외선 차단을 위한 자외선 흡수제, 광안정제, 산화 방지제, 약한 노란색을 띠는 모노머 초기색상 보정을 위한 색상보정제 (blueing agent) 등의 각종 물질을 첨가할 수 있다. Various additives may be used to obtain the necessary optical properties to be provided as a lens such as transparency, refractive index, specific gravity, impact resistance, heat resistance, viscosity of the polymerization composition, etc. of the resin obtained from the polymerization composition of the present invention. In addition, the composition of the present invention may be added a variety of materials such as a UV absorber, a light stabilizer, an antioxidant, a light yellowing agent (blueing agent) for the initial color correction of the light yellow.
또한, 원하는 반응 속도로 조정하기 위해서, 반응 촉매를 적절하게 첨가할 수 있다. 바람직하게 사용되는 촉매로는, 예를 들면, 우레탄화 촉매로서, 디부틸주석디라우레이트, 디부틸주석디클로라이드, 디메틸주석디클로라이드, 테트라메틸디아세톡시디스타녹산, 테트라에틸디아세톡시디스타녹산, 테트라프로필디아세톡시디스타녹산, 테트라부틸디아세톡시디스타녹산 등의 주석 화합물이나 3급 아민 등의 아민 화합물을 사용할 수 있다. 이들은, 단독으로 사용하는 것도, 2종류 이상을 병용하는 것도 가능하다. 촉매의 첨가량으로는, 조성물의 모노머 총중량에 대해서 0.001~1중량%의 범위에서 사용하는 것이 바람직하다. 이 범위인 경우, 중합성은 물론 작업시 가사시간(pot life)이나 얻어지는 수지의 투명성, 여러 가지 광학 물성 혹은 내광성의 점에서 바람직하다.Moreover, in order to adjust to a desired reaction rate, a reaction catalyst can be added suitably. As a catalyst which is preferably used, for example, as a urethanization catalyst, dibutyltin dilaurate, dibutyltin dichloride, dimethyltin dichloride, tetramethyldiacetoxydistanoxane, tetraethyldiacetoxydistanoxane And amine compounds such as tin compounds such as tetrapropyldiacetoxydistanoxane and tetrabutyldiacetoxydistanoxane, and tertiary amines. These can also be used independently and can also use two or more types together. As addition amount of a catalyst, it is preferable to use in 0.001 to 1 weight% with respect to the monomer total weight of a composition. In this range, it is preferable in view of the polymerizability, the pot life during operation, the transparency of the obtained resin, various optical properties or light resistance.
본 발명의 조성물들을 중합에 의해 경화시킬 때에는, 용도에 따라서 여러 가지 성형법이 있을 수 있고 특별히 제한된 경화 방법은 없지만 대체적으로 열에 의한 경화를 주로 사용한다. 이것에 의해, 본 발명의 수지가 얻어진다. 본 발명의 수지는 통상적인 방법인 몰드 주입 방식인 주형(注型)중합에 의해 얻어진다. When the compositions of the present invention are cured by polymerization, there may be various molding methods depending on the application and there is no particularly limited curing method, but heat curing is mainly used. Thereby, resin of this invention is obtained. Resin of this invention is obtained by the casting polymerization which is a mold injection system which is a conventional method.
또한, 본 발명의 광학렌즈용 수지 조성물은 렌즈의 초기색상을 보정을 위한 색상 보정제를 더 포함할 수 있다. 색상 보정제로는 유기염료, 유기안료, 무기안료 등이 사용될 수 있다. 이러한 유기염료등을 광학렌즈용 수지 조성물 1당 0.1~50,000ppm, 바람직하게는 0.5~10,000ppm 첨가함으로써 자외선 흡수제 첨가, 광학 수지 및 모노머 등에 의하여 렌즈가 노란색을 띠는 것을 방지할 수 있다.In addition, the resin composition for an optical lens of the present invention may further include a color corrector for correcting the initial color of the lens. As the color corrector, organic dyes, organic pigments, inorganic pigments, and the like may be used. By adding 0.1 to 50,000 ppm, preferably 0.5 to 10,000 ppm, of such organic dyes per resin composition for optical lenses, it is possible to prevent the lens from becoming yellow by the addition of an ultraviolet absorber, an optical resin, a monomer, or the like.
본 발명의 광학렌즈용 수지 조성물은 통상적으로 사용되는 이형제 및 중합개시제를 더 포함할 수 있다. 이형제로는, 불소계 비이온계면활성제, 실리콘계 비이온계면활성제, 알킬제 4급 암모늄염 들 중에서 선택된 성분이 단독으로 또는 2종 이상 혼합 사용될 수 있다. 바람직하게는 인산에스테르를 사용한다. 또한, 중합개시제로는 아민계 또는 주석계 화합물 등을 단독으로 또는 2종 이상 함께 사용될 수 있다.The resin composition for an optical lens of the present invention may further include a mold release agent and a polymerization initiator that are commonly used. As the release agent, a component selected from fluorine-based nonionic surfactants, silicone-based nonionic surfactants and alkyl quaternary ammonium salts may be used alone or in combination of two or more thereof. Preferably, phosphate ester is used. In addition, the polymerization initiator may be used alone or in combination of two or more amine-based or tin-based compounds.
본 발명의 광학용 중합조성물을 중합시켜 수지 조성물을 얻은 다음, 이를 열경화시켜 광학렌즈, 특히 안경렌즈를 얻게 된다. 본 발명의 수지 조성물을 열경화시켜 안경렌즈를 제조하는 과정은 다음과 같다. 우선, 본 발명의 조성물에 마지막으로 중합개시제를 첨가하고 난 후, 질소를 불어주어 배합통 내에 공기를 제거한 후, 감압교반을 2~5시간 행하고, 교반을 정지한 다음, 감압 탈포 하여 몰드에 주입한다. 이때 몰드는 바람직하게는, 플라스틱 가스켓 또는 폴리에스테르 또는 폴리프로필렌 점착테이프로 고정된 유리몰드나 금속제 몰드를 사용한다.The optical polymerization composition of the present invention is polymerized to obtain a resin composition, which is then thermally cured to obtain an optical lens, particularly an spectacle lens. The process of manufacturing the spectacle lens by thermosetting the resin composition of the present invention is as follows. First, after the polymerization initiator is finally added to the composition of the present invention, nitrogen is blown to remove air in the mixing vessel, and the mixture is stirred under reduced pressure for 2 to 5 hours, the stirring is stopped, and then degassed under reduced pressure and injected into the mold. do. The mold is preferably a glass mold or a metal mold fixed with a plastic gasket or polyester or polypropylene adhesive tape.
혼합물이 주입된 유리몰드를 강제 순환식 오븐에 넣고, 33~37℃에서 2시간 유지, 38~42℃ 3시간 승온, 80~90℃로 10시간 승온, 120~140℃로 2~4시간 승온, 120~140℃로 2시간 유지, 60~80℃로 2시간에 걸쳐서 냉각시킨 후 몰드로부터 고형물을 이형시켜 광학렌즈를 얻는다. 이렇게 얻은 광학렌즈를 120~140℃의 온도에서 1~4시간 어닐링 처리하여 최종 목적하는 플라스틱 안경렌즈(생지)를 얻는다.The glass mold injected with the mixture was placed in a forced circulation oven, maintained at 33 to 37 ° C. for 2 hours, heated to 38 to 42 ° C. for 3 hours, heated to 80 to 90 ° C. for 10 hours, and heated to 120 to 140 ° C. for 2 to 4 hours. After cooling at 120-140 degreeC for 2 hours, and cooling it for 60 hours at 60-80 degreeC, a solid material is released from a mold and an optical lens is obtained. The optical lens thus obtained is annealed at a temperature of 120 to 140 ° C. for 1 to 4 hours to obtain a final desired plastic spectacle lens (dough).
또, 상기 방법으로 얻어진 광학렌즈에, 광학특성을 높이기 위하여 하드코팅 및 멀티코팅 처리를 할 수 있다. 하드코팅층의 형성은 에폭시기, 알콕시기, 비닐기 등의 관능기를 가지는 적어도 하나의 실란화합물과 산화규산, 산화티탄, 산화안티몬, 산화주석, 산화텅스텐, 산화알루미늄 등의 적어도 하나 이상의 금속산화물 콜로이드를 주성분으로 하는 코팅조성물을 함침 또는 스핀코팅법으로 광학렌즈 표면에 두께 0.5~10 로 코팅한 후, 가열 또는 자외선 경화하여 코팅막을 완성한다.In addition, the optical lens obtained by the above method can be subjected to hard coating and multi-coating treatment in order to increase the optical characteristics. The hard coat layer may be formed of at least one silane compound having functional groups such as an epoxy group, an alkoxy group, a vinyl group, and at least one metal oxide colloid such as silicic acid oxide, titanium oxide, antimony oxide, tin oxide, tungsten oxide, and aluminum oxide. The coating composition is coated with a thickness of 0.5 to 10 on the surface of the optical lens by impregnation or spin coating, and then heated or UV cured to complete the coating film.
멀티코팅층, 즉, 반사방지코팅 층은 산화규소, 불화마그네슘, 산화알루미늄, 산화지르코늄, 산화티탄늄, 산화탄탈, 산화이트륨 등의 금속산화물을 진공증착 또는 스퍼터링하는 방법에 의하여 형성할 수 있다. 가장 바람직하게는 렌즈의 양면 하드코팅막 위에 산화규소와 산화지르코늄 막을 3회 이상 반복 진공증착한 후 산화규소막을 마지막으로 진공 증착한다. 또, 필요에 따라 마지막에 수막(불소수지)층을 두거나, 산화규소와 산화지르코늄막 사이에 ITO층을 둘 수도 있다.The multi-coating layer, that is, the anti-reflective coating layer may be formed by vacuum deposition or sputtering of metal oxides such as silicon oxide, magnesium fluoride, aluminum oxide, zirconium oxide, titanium oxide, tantalum oxide and yttrium oxide. Most preferably, the silicon oxide film and the zirconium oxide film are vacuum-deposited three or more times on both surfaces of the lens and the silicon oxide film is finally vacuum deposited. If necessary, a water film (fluorine resin) layer may be provided last, or an ITO layer may be provided between the silicon oxide and the zirconium oxide film.
본 발명의 광학렌즈는 필요에 따라서 분산염료 또는 광변색염료를 사용하여 착색 처리한 후 사용할 수도 있다. 본 발명의 광학렌즈용 수지 조성물은 플라스틱 안경렌즈에 한정되지 않고 다양한 광학제품에 이용될 수 있다.The optical lens of the present invention may be used after coloring treatment with a disperse dye or a photochromic dye, as necessary. The resin composition for an optical lens of the present invention is not limited to plastic spectacle lenses, and can be used for various optical products.
본 발명에 의해 제작된 광학렌즈가 플라스틱 안경렌즈로서의 적합한 물성을 갖는지 평가할 필요가 있으며, 각각의 물성치인 (1) 굴절율(nD) 및 아베수(υd), (2) 내충격성, (3) 내열성(Tg) 및 (4) 비중은 다음의 시험법에 의해 평가하였다.It is necessary to evaluate whether the optical lens produced by the present invention has suitable physical properties as a plastic spectacle lens, and each of the physical properties (1) refractive index (nD) and Abbe number (υ d ), (2) impact resistance, (3) Heat resistance (Tg) and (4) specific gravity were evaluated by the following test method.
(1) 굴절율(nD) 및 아베수(υ) : ATAGO사의 1T 모델인 ABBE 굴절계를 사용하여 20 ℃에서 측정했다.(1) The refractive index (nD) and Abbe number (υ d): Using the ABBE refractometer 1T model ATAGO's was measured at 20 ℃.
(2) 내충격성 : 내충격성은 미국FDA의 시험기준에 따라 상온 20?에서 지름 80mm, 두께 1.9mm의 평판으로 제조된 시험편에 127cm의 높이에서 가벼운 강구로부터 무거운 강구로까지 차례로 낙하시켜서 파괴되는 무게의 위치에너지로 내충격성을 측정했다.(2) Impact resistance: The impact resistance is the weight which is destroyed by dropping light steel ball from heavy steel ball to heavy steel ball at 127cm height in order to test specimen made of flat plate of 80mm diameter and 1.9mm thickness at room temperature 20? Impact resistance was measured by potential energy.
-. 쇠구슬 무게: 16g, 32g, 65g, 100g, 200g, 300g의 쇠구슬을 사용하여 높이별로 낙구시험(ball dropping test)를 통해 렌즈의 파손 여부를 관찰하여 파손이되었을 때의 위치에너지를 계산한다.-. Iron ball weight: Using a ball ball of 16g, 32g, 65g, 100g, 200g, and 300g, the ball dropping test for each height is used to calculate the potential energy at the time of failure.
계산예-1) FDA 기준 16g, 127cm 기준일 때 위치에너지(Ep)는 Calculation Example 1) Potential energy (Ep) is 16g and 127cm
Ep = mgh = 0.016*9.8*1.27=0.2(J)Ep = mgh = 0.016 * 9.8 * 1.27 = 0.2 (J)
계산예-2) 산업안전 기준 67g, 127cm 기준일 때Calculation example-2) When industrial safety standard 67g, 127cm standard
Ep = mgh = 0.067*9.8*1.27=0.83(J)Ep = mgh = 0.067 * 9.8 * 1.27 = 0.83 (J)
(3) 내열성 : SCINCO사의 DSC N-650 열분석기를 사용하여 시험편의 유리전이온도(Tg)를 측정하여 내열성으로 했다.(3) Heat resistance: The glass transition temperature (Tg) of the test piece was measured and made into heat resistance using the DSC N-650 thermal analyzer by SCINCO.
(4) 비중 : 아르키메데스법에 의해 측정했다.(4) Specific gravity: It measured by the Archimedes method.
본 발명에 따라 제조된 광학렌즈용 조성물로부터 얻어진 안경렌즈는 내열성 또한 우수하며 FDA 안경렌즈 규격(ANS 규격, 127 cm 높이 16.0g 낙구실험) 및 산업안전용(ANS 규격, 127츠 높이, 67g 낙구실험)에 부합되는 내충격성을 갖고 있다. 본 발명에 의해 제조된 렌즈의 경우는 이런 프라이머코팅 공정을 거치지 않고도 충분한 강도의 렌즈를 만들 수 있다. 특히 산업 현장에서 사용할 수 있는 산업 안전용 및 스포츠 고글용 렌즈로도 활용 범위가 매우 높다고 할 수 있다.The spectacle lens obtained from the composition for an optical lens manufactured according to the present invention is also excellent in heat resistance and FDA spectacle lens standard (ANS standard, 127 cm height 16.0 g falling ball test) and industrial safety (ANS standard, 127 cm height, 67 g falling ball test ) Has impact resistance to In the case of the lens manufactured by the present invention, it is possible to make a lens of sufficient strength without going through such a primer coating process. In particular, it can be said that the range of application is very high as lenses for industrial safety and sports goggles that can be used in industrial sites.
이하에, 본 발명은 본 발명이 제한되지 않는 실시예를 사용하여 더욱 상세히 설명될 것이다.In the following, the invention will be described in more detail using examples which are not limiting the invention.
우선, 본 발명자들은 본 발명에서 최종 제조되는 렌즈의 내열성과 충격강도를 고려하여 이소포론디이소시아네이트(IPDI) 및 1,6-헥사메틸렌디이소시아네이트(HDI)의 최적량을 찾기 위하여, 실험 1(Biuret과 HDI의 비율별 및 GST 실험), 실험 2(HDI와 IPDI의 비율별 및 GST 실험), 실험 3(Biuret과 HDI의 비율별 및 GST 실험)을 각각 행하였으며, 이에 대한 결과를 하기에 표로 나타낸다. 여기서 'Biuret'은 화학식 2의 이소시아네이트 화합물을 약칭하는 것으로 한다. First, the inventors of the present invention, in order to find the optimum amount of isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) in consideration of the heat resistance and impact strength of the lens produced in the present invention, Experiment 1 (Biuret) And experiments by ratio of HDI and GST), Experiment 2 (by ratio of HDI and IPDI and GST), and Experiment 3 (by ratio of Biuret and HDI and GST) respectively, and the results are shown in the table below. . Here 'Biuret' is to abbreviate the isocyanate compound of formula (2).
< 대표적인 실험 및 실시예>Representative Experiments and Examples
(1) Biuret(Perstep사의 Tolonate HDB LV), HDI와 IPDI을 아래표의 조성물 비율대로(NCO/SH =1.0몰비) 혼합 용해시키고, 경화 촉매로서 디부틸틴디클로라이드 630ppm과 자외선 흡수제인 SEESORB 709(일본 Shipro㈜)를 15,000ppm, 내부이형제로서 Zelec UN(듀폰사)을 1,200pppm을 첨가하고 상온에서 40분간 감압교반을 실시하여 완전하게 기포를 제거한다. 용해 후, 아래표의 폴리티올 PEMP 및 GST 를 혼합하여 40분간 탈포를 행한 후, 점착테이프에 의해 조립된 유리몰드에 주입한다.(1) Biuret (Tolonate HDB LV from Perstep), HDI and IPDI were mixed and dissolved according to the composition ratio (NCO / SH = 1.0 molar ratio) shown below, and 630 ppm of dibutyltin dichloride as a curing catalyst and SEESORB 709, an ultraviolet absorber (Japan Shipro Co., Ltd.) 15,000ppm, Zelec UN (Dupont) 1,200pppm is added as the internal releasing agent and the pressure is stirred for 40 minutes at room temperature to completely remove the bubble. After dissolving, polythiol PEMP and GST shown in the following table are mixed and degassed for 40 minutes, and then injected into a glass mold assembled with an adhesive tape.
(2) 혼합물이 주입된 유리몰드를 강제순환식 오븐에 장입한다. 상온~35℃ 4시간 승온, 35~50℃ 5시간 승온, 50~75℃ 4.5시간 승온, 75~90℃ 5시간 승온, 90℃ 3시간 유지, 90~130℃ 2시간 승온, 130℃ 1.5시간 유지, 130~70℃ 1시간 냉각시켜 중합한다. 중합 종료 후 몰드로부터 렌즈를 분리시켜 우레탄 광학렌즈를 얻는다. 이로부터 얻어진 렌즈를 120℃에서 1시간 40분간 어닐링 처리를 행한다. 어닐링후 유리몰드에서 경화된 렌즈 생지를 이형시켜 중심 두께 1.2㎜인 광학렌즈를 얻는다.(2) The glass mold into which the mixture is injected is charged into a forced circulation oven. Normal temperature-35 degrees Celsius 4 hours temperature rising, 35-50 degrees Celsius 5 hours temperature raising, 50-75 degrees Celsius 4.5 hours temperature raising, 75-90 degrees Celsius 5 hours raising temperature, 90 degrees Celsius 3 hours holding, 90-130 degrees Celsius 2 hours heating, 130 degrees Celsius 1.5 hours It is polymerized by cooling the fats and oils and 130-70 degreeC for 1 hour. After completion of the polymerization, the lens is separated from the mold to obtain a urethane optical lens. The lens obtained from this is annealed at 120 degreeC for 1 hour and 40 minutes. After annealing, the lens dough cured in the glass mold is released to obtain an optical lens having a center thickness of 1.2 mm.
(3) (2)에서 얻은 광학렌즈를 지름 80㎜로 가공한 후 알카리 수성 세척액에 초음파 세척한 다음, 120℃에서 2시간 어닐링 처리를 한 후, 생지 렌즈를 실리콘계 하드액에 디핑법에 의해 코팅 후에 열건조 시키고, 양면에 산화규소, 산화 지르코늄, 산화규소, ITO, 산화 지르코늄, 산화규소, 산화 지르코늄의 순서로 진공 증착하여 하드코팅 및 멀티 코팅된 광학 렌즈를 얻는다.(3) The optical lens obtained in (2) was processed to a diameter of 80 mm and then ultrasonically washed in an alkaline aqueous washing solution, followed by annealing treatment at 120 ° C. for 2 hours, and then the dough lens was coated on the silicon-based hard liquid by dipping. After the heat drying, and vacuum-deposited in the order of silicon oxide, zirconium oxide, silicon oxide, ITO, zirconium oxide, silicon oxide, zirconium oxide on both sides to obtain a hard coated and multi-coated optical lens.
(4) 위에서 얻어진 광학 렌즈는 굴절률, 아베수, Tg, 내충격에너지 등의 물성을 측정하여 기록하였다.(4) The optical lens obtained above was recorded by measuring physical properties such as refractive index, Abbe's number, Tg and impact energy.
(실험 1)(Experiment 1)
아래 사항을 제외하고는 상기 대표적인 실험 및 실시예에 따라서 실험을 수행한다. 뷰렛과 HDI의 이소시아네이트의 화합물은 다음 표1)의 비율별로 혼합을 하고, 폴리티올은 GST로 고정하여, NCO/SH 비율은 1.0의 당량비로 혼합하고, 내부이형제로 젤렉 UN(듀폰)을 1200ppm, 촉매로서 디부틸틴디클로라이드를 600ppm투입하여 충분히 교반하고, 진공탈포하고, 유리몰드에 주입하여 경화프로그램에 의하여 열경화시킨 후, 유리몰드에서 이형시킨 후, 각종 물성을 측정하였다.Except for the following matters, the experiment is performed according to the representative experiments and examples. The compounds of the isocyanate of the burette and HDI are mixed according to the ratio of the following Table 1), the polythiol is fixed with GST, the NCO / SH ratio is mixed in the equivalence ratio of 1.0, 1200ppm of Gelek UN (Dupont) as an internal release agent, 600 ppm of dibutyltin dichloride was added as a catalyst, sufficiently stirred, vacuum degassed, injected into a glass mold, thermally cured by a curing program, and then released in a glass mold, and then measured for various physical properties.
표 1 뷰렛(Biuret; 화학식(2)과 HDI의 비율별 및 GST 실험의 결과
실 험 예
(1-1) (1-2) (1-3) (1-4) (1-5)
모노머조성물 (g) Biuret 0 25 50 75 100
HDI 100 75 50 25 0
GST 103.27 89.60 75.93 62.26 48.59
렌즈물성 내충격E (J) 5.34 4.74 5.63 4.15 4.15
Tg (℃) 58 61 66 72 77
굴절율(액) 1.5338 1.5347 1.5368 1.5380 1.5405
굴절율(고) 1.6141 1.6089 1.6011 1.5939 1.5883
아베수(υ) 37.6 37.5 40.4 40.6 39.2
백화 아주 심함 심함 있음 없음 없음
황변(2차경화후) 확연히 yellowish yellowish 아주약간 없음 거의 없음
기타 황변(생지) 맥리 조금
Table 1 Biuret (Proportion of Formula (2) and HDI) and the result of GST experiment
Experimental example
(1-1) (1-2) (1-3) (1-4) (1-5)
Monomer composition (g) Biuret 0 25 50 75 100
HDI 100 75 50 25 0
GST 103.27 89.60 75.93 62.26 48.59
Lens property Shockproof E (J) 5.34 4.74 5.63 4.15 4.15
Tg (℃) 58 61 66 72 77
Refractive index (liquid) 1.5338 1.5347 1.5368 1.5380 1.5405
Refractive Index (High) 1.6141 1.6089 1.6011 1.5939 1.5883
Abbe number (υ ) 37.6 37.5 40.4 40.6 39.2
colloquial Chinese Very severe Severe has exist none none
Yellowing (after secondary curing) Obviously yellowish yellowish Very little none Almost none
Other Yellowing (dough) McLee Bit
Biuret/HDI/GST 시스템에서는 뷰렛과 HDI의 어느 비율에서나 내충격성은 우수하나, 내열성이 약하며, 특히 HDI 함량이 높을수록 내열성이 약하며, 또한 백화현상과 황변현상이 심하게 나타나는 결과를 얻었다. 그리고 굴절율은 1.58~1.61범위의 고굴절을 나타냈으며, 아베수는 37~41 사이를 나타내었다.In the Biuret / HDI / GST system, the impact resistance was excellent at any ratio of burette and HDI, but the heat resistance was weak. In particular, the higher the HDI content, the weaker the heat resistance, and also the severe whitening and yellowing. The refractive index was high in the range of 1.58 ~ 1.61, and the Abbe number was in the range of 37 ~ 41.
따라서 내열성을 향상시키고자 IPDI를 추가하여 다음 (실험 2)를 실시하였다.Therefore, in order to improve heat resistance, IPDI was added to the following (Experiment 2).
(실험 2)(Experiment 2)
아래 사항을 제외하고는 상기 대표적인 실험 및 실시예에 따라서 실험을 수행한다. HDI와 IPDI의 이소시아네이트의 화합물은 다음 표2)의 비율별로 혼합을 하여 경화시킨 후, 유리몰드에서 이형시켜 각종 물성을 측정하였다.Except for the following matters, the experiment is performed according to the representative experiments and examples. Compounds of the isocyanate of HDI and IPDI were mixed and cured according to the ratio of the following Table 2), and then released in a glass mold to measure various physical properties.
표 2 HDI와 IPDI의 비율별 및 GST 실험의 결과
실 험 예
(2-1) (2-2) (2-3) (2-4) (2-5)
모노머조성물 (g) HDI (g) 0 25 50 75 100
IPDI (g) 100 75 50 25 0
GST (g) 78.14 84.42 90.70 96.99 103.27
렌즈물성 내충격E (J) 0.2이하 0.35 5.93 5.93 5.34
Tg (℃) 104 95 76 69 58
굴절율(액) 1.5407 1.5391 1.5371 1.5369 1.5338
굴절율(고) 1.5945 1.6012 1.6063 1.6102 1.6141
아베수(υ) 39.2 38.0 40.2 38.9 39.2
백화 있음 있음 있음 있음 없음
황변(2차경화후) 있음 있음 있음 있음 거의없음
기타 맥리조금
TABLE 2 Percentage of HDI and IPDI and Results of GST Experiments
Experimental example
(2-1) (2-2) (2-3) (2-4) (2-5)
Monomer composition (g) HDI (g) 0 25 50 75 100
IPDI (g) 100 75 50 25 0
GST (g) 78.14 84.42 90.70 96.99 103.27
Lens property Shockproof E (J) 0.2 or less 0.35 5.93 5.93 5.34
Tg (℃) 104 95 76 69 58
Refractive index (liquid) 1.5407 1.5391 1.5371 1.5369 1.5338
Refractive Index (High) 1.5945 1.6012 1.6063 1.6102 1.6141
Abbe number (υ ) 39.2 38.0 40.2 38.9 39.2
colloquial Chinese has exist has exist has exist has exist none
Yellowing (after secondary curing) has exist has exist has exist has exist Almost none
Other McLean
HDI/IPDI/GST 시스템에서는 비율에 따라서 HDI의 함량이 50%이상일 경우는 내충격성이 우수하나 내열성은 약하고, IPDI가 50%이상일 경우는 내충격성은 약하나, 내열성은 우수하였다. 모든 비율에서 백화현상 및 황변현상이 있어서 렌즈로서의 물성이 현저히 떨어졌다. 따라서 내열성과 내충격성을 보강하고 백화현상 및 황변현상을 개선하기 위하여 Biuret을 추가하여 다음의 실험을 실시하였다.In the HDI / IPDI / GST system, the impact resistance is excellent when the content of HDI is 50% or more, but the heat resistance is weak. When the IPDI is 50% or more, the impact resistance is weak, but the heat resistance is excellent. At all ratios, bleaching and yellowing occurred, resulting in a significant drop in physical properties of the lens. Therefore, in order to reinforce the heat resistance and impact resistance, and to improve the whitening and yellowing phenomenon, the following experiment was performed by adding Biuret.
(실험 3)(Experiment 3)
아래 사항을 제외하고는 상기 대표적인 실험 및 실시예에 따라서 실험을 수행한다. HDI와 IPDI의 이소시아네이트의 화합물은 다음 표3)의 비율별로 혼합을 하여 경화시킨 후, 유리몰드에서 이형시켜 각종 물성을 측정하였다.Except for the following matters, the experiment is performed according to the representative experiments and examples. Compounds of the isocyanates of HDI and IPDI were mixed and cured according to the ratio of the following Table 3), and then released in a glass mold to measure various physical properties.
표 3 뷰렛(Biuret)과 IPDI의 비율별 및 GST 실험의 결과
실 험 예
(3-1) (3-2) (3-3) (3-4) (3-5)
모노머조성물 (g) Biuret (g) 0 25 50 75 100
IPDI (g) 100 75 50 25 0
GST (g) 78.14 70.75 63.36 55.98 48.59
렌즈물성 내충격E (J) 0.2이하 2.51 1.90 0.47 4.15
Tg (℃) 104 100 92 85 77
굴절율(액) 1.5407 1.5407 1.5409 1.5399 1.5405
굴절율(고) 1.5945 1.5930 1.5925 1.5863 1.5883
아베수(υ) 39.2 38.1 40.9 43.8 39.2
백화 가장자리조금 거의없음 없음 없음 없음
황변(2차경화후) 있음 거의없음 없음 없음 거의없음
기타 맥리조금
TABLE 3 Ratio of Buriret and IPDI and Results of GST Experiment
Experimental example
(3-1) (3-2) (3-3) (3-4) (3-5)
Monomer composition (g) Biuret (g) 0 25 50 75 100
IPDI (g) 100 75 50 25 0
GST (g) 78.14 70.75 63.36 55.98 48.59
Lens property Shockproof E (J) 0.2 or less 2.51 1.90 0.47 4.15
Tg (℃) 104 100 92 85 77
Refractive index (liquid) 1.5407 1.5407 1.5409 1.5399 1.5405
Refractive Index (High) 1.5945 1.5930 1.5925 1.5863 1.5883
Abbe number (υ ) 39.2 38.1 40.9 43.8 39.2
colloquial Chinese Edge Almost none none none none
Yellowing (after secondary curing) has exist Almost none none none Almost none
Other McLean
Biuret 100%인 경우를 제외하고는 IPDI/Biuret/GST 시스템에서는 내충격성이 약하나, IPDI의 영향으로 내열성은 우수하였으며, 백화현상이나 황변현상은 많이 개선되었다.Except for 100% Biuret, the IPDI / Biuret / GST system has a low impact resistance, but the heat resistance is excellent due to the IPDI effect, and the whitening and yellowing are much improved.
상기 실험 1~3)의 결과를 토대로 내충격성, 굴절율, 아베수, 백화현상, 황변현상을 개선하고자 이소시아네이트 성분을 Biuret/HDI/IPDI 시스템 및 여러가지 이소시아네이트를 비율별로 최적의 조건을 찾기 위한 실험 4)를 실시하였으며, 그 결과를 아래표에 나타냈다.Experiment 4) to find the optimum conditions for the isocyanate component with Biuret / HDI / IPDI system and various isocyanate ratios in order to improve impact resistance, refractive index, Abbe's number, whitening and yellowing based on the results of Experiments 1 ~ 3) Was carried out and the results are shown in the following table.
(실험 4)(Experiment 4)
아래 사항을 제외하고는 상기 대표적인 실험 및 실시예에 따라서 실험을 수행한다. HDI와 IPDI의 이소시아네이트의 화합물은 다음 표4)의 비율별로 혼합을 하여 경화시킨 후, 유리몰드에서 이형시켜 각종 물성을 측정하였다.Except for the following matters, the experiment is performed according to the representative experiments and examples. Compounds of the isocyanate of HDI and IPDI were mixed and cured according to the ratio of the following Table 4), and then released in a glass mold to measure various physical properties.
표 4 뷰렛(Biuret)/HDI/IPDI 및 각종 이소시아네이트 종류(A액)과 GST(B액)의 종류(변화)에 따른 물성 실험
실 험 예
(4-1) (4-2) (4-3) (4-4) (4-5) (4-6)
모노머조성물 (g) Biuret 35.8 37.5 31.12
HDI 32.9 25 28.68
IPDI 31.3 37.5
NBDI 100
TCDI 40.21
H-MXDI 100
H12MDI 100
GST 79.41 73.34 88.18 69.12 89.4 67.33
렌즈물성 내충격E (J) 6.97 5.63 0.35 4.78 1.49 0.59
Tg (℃) 75 87 107 86 99 75
굴절율(액) 1.5402 1.5383 1.5566 1.5471 1.5483 1.5429
굴절율(고) 1.6001 1.5979 1.6035 1.6028 1.6149 1.5948
아베수(υ) 41 39.6 39.2 39.3 38.8 40.1
백화 없음 없음 없음 없음 있음 있음
황변(2차경화후) 없음 없음 없음 있음 없음 없음
Table 4 Physical property test according to type (change) of biuret / HDI / IPDI and various kinds of isocyanate (A liquid) and GST (B liquid)
Experimental example
(4-1) (4-2) (4-3) (4-4) (4-5) (4-6)
Monomer composition (g) Biuret 35.8 37.5 31.12
HDI 32.9 25 28.68
IPDI 31.3 37.5
NBDI 100
TCDI 40.21
H-MXDI 100
H12MDI 100
GST 79.41 73.34 88.18 69.12 89.4 67.33
Lens property Shockproof E (J) 6.97 5.63 0.35 4.78 1.49 0.59
Tg (℃) 75 87 107 86 99 75
Refractive index (liquid) 1.5402 1.5383 1.5566 1.5471 1.5483 1.5429
Refractive Index (High) 1.6001 1.5979 1.6035 1.6028 1.6149 1.5948
Abbe number (υ ) 41 39.6 39.2 39.3 38.8 40.1
colloquial Chinese none none none none has exist has exist
Yellowing (after secondary curing) none none none has exist none none
-. NBDI: 2,5(6)-비스(이소시아네이트메틸)-비시클로[2,2,1]헵탄-. NBDI: 2,5 (6) -bis (isocyanatemethyl) -bicyclo [2,2,1] heptane
-. TCDI: 3(4),8(9)-디이소시아네이토메틸트리시클로-(5.2.1.02,6)데칸 -. TCDI: 3 (4), 8 (9) -diisocyanatomethyltricyclo- (5.2.1.0 2,6 ) decane
-. H-MXDI: 1,3-비스(이소시아네이트메틸)시클로헥산-. H-MXDI: 1,3-bis (isocyanatemethyl) cyclohexane
-. H12MDI: 4,4-메틸렌비스(사이클로헥실 이소시아네이트)-. H12MDI: 4,4-methylenebis (cyclohexyl isocyanate)
상기 실험 1~4의 결과를 종합해 보면, 렌즈의 내황변성은 Biuret〉IPDI》HDI 순으로 나타났으며, 내충격성을 유지하기 위해서 HDI를 사용해야 된다면 그 함량이 25wt% 전후를 사용해여야 내황변성을 유지할 수 있을 것으로 판단되었다.In summary, the results of the experiments 1 to 4 showed that the yellowing resistance of the lens was in the order of Biuret> IPDI >> HDI, and if the HDI should be used to maintain the impact resistance, the yellowing resistance should be used around 25wt%. It was judged that it could be maintained.
렌즈의 백화(백탁)의 정도는 Biuret의 경우에는 백화현상이 발견되지 않았지만, HDI의 경우는 백화현상이 현저히 심하였다. 이는 조성물의 점도 및 테이프의 점착제와 조성물의 용해도와 상관이 있는 것으로 추정된다.The degree of whitening of the lens was not found in Biuret, but in HDI, bleaching was remarkable. This is presumed to correlate with the viscosity of the composition and the solubility of the composition with the pressure-sensitive adhesive of the tape.
또한 이소시아네이트의 종류를 여러 가지로 변경하여 내충격성을 비교한 결과는 NBDI, TCDI, H12MDI 자체로는 내충격성이 떨어졌지만, TCDI의 경우는 Biuret과 HDI를 조합시켜 사용한 결과는 양호한 내충격성을 보여서, 내충격성을 유지하기 위해서는 Biuret과 HDI는 필수적으로 혼합되어야 할 조성물로 판단되고, IPDI나, H12MDI, TCDI를 내열성 보강하기 위해서 사용할 수 있다고 생각한다. In addition, the impact resistance of the various types of isocyanate was compared with NBDI, TCDI, and H12MDI itself, but the impact resistance was inferior, but in the case of TCDI, the combination of Biuret and HDI showed good impact resistance. In order to maintain impact resistance, Biuret and HDI are considered to be essential compositions, and I think that they can be used to reinforce heat resistance of IPDI, H12MDI and TCDI.
HDI의 함유량은 25~32.9wt% 사이의 어느 한 값으로 고정하여 Biuret과 IPDI의 최적 사용량을 찾아내기 위한 실험이 필요하여 다음과 같이 실시예를 행하였다.The experiment was performed to find the optimal amount of Biuret and IPDI by fixing the content of HDI to any value between 25 and 32.9 wt%.
상기 실험 1 내지 4에 근거하여 본 발명을 구체적으로 실시하였다. 실시예 1 및 2에서는 Biuret과 IPDI, H12MDI의 비율별로 확인하기 위하여, 실시예 1에서는 HDI를 25wt% 고정하고, B액으로서 GST를 사용하였으며, 실시예 3에서는 HDI 질량의 변화에 따른 실시를 행하였으며, 실시예 4에서는 B액인 폴리티올의 종류에 따른 실시를 행하였다.The present invention was specifically implemented based on the above experiments 1 to 4. In Examples 1 and 2, in order to check the ratio of Biuret, IPDI, and H12MDI, HDI was fixed to 25 wt% in Example 1, and GST was used as the liquid B. In Example 3, an implementation was performed according to the change in the mass of HDI. In Example 4, according to the kind of the polythiol which is liquid B was carried out.
(실시예 1)(Example 1)
상기 대표적인 실험 및 실시예에 따라서 실험을 수행하고, 조성물의 비율은 아래의 표5)에 준해서 실시하였다.The experiment was carried out according to the representative experiments and examples, and the ratio of the composition was carried out according to Table 5 below.
표 5 뷰렛(Biuret)과 IPDI 및 H12MDI의 비율별 실시예 (HDI:25wt% 고정, B액:GST )의 결과표
실 시 예
(1-1) (1-2) (1-3) (1-4) (1-5) (1-6)
모노머조성물 (g) Biuret 0 25 37.5 37.5 50 62
HDI 25 25 25 25 25 25
IPDI 75 50 37.5 25 13
H12MDI 37.5
GST 84.42 77.03 68.87 73.34 69.65 66.10
렌즈물성 내충격E(J) 0.35 2.52 3.52 5.63 5.06 4.47
Tg (℃) 95 88 78 87 80 75
굴절율(액) 1.5391 1.5384 1.5395 1.5383 1.5381 1.5381
굴절율(고) 1.6012 1.5995 1.5975 1.5979 1.5970 1.5972
아베수(υ) 38 39.4 39.6 39.6 40.1 40.2
백화 조금 심함 없음 없음 없음 없음
황변(2차경화후) 없음 없음 거의없음 없음 없음 없음
기타
Table 5 Result table of Example by ratio of biuret (Biuret) and IPDI and H12MDI (HDI: fixed at 25wt%, liquid B: GST)
Example
(1-1) (1-2) (1-3) (1-4) (1-5) (1-6)
Monomer composition (g) Biuret 0 25 37.5 37.5 50 62
HDI 25 25 25 25 25 25
IPDI 75 50 37.5 25 13
H12MDI 37.5
GST 84.42 77.03 68.87 73.34 69.65 66.10
Lens property Shock resistance E (J) 0.35 2.52 3.52 5.63 5.06 4.47
Tg (℃) 95 88 78 87 80 75
Refractive index (liquid) 1.5391 1.5384 1.5395 1.5383 1.5381 1.5381
Refractive Index (High) 1.6012 1.5995 1.5975 1.5979 1.5970 1.5972
Abbe number (υ ) 38 39.4 39.6 39.6 40.1 40.2
colloquial Chinese a little Severe none none none none
Yellowing (after secondary curing) none none Almost none none none none
Other
이소시아네이트의 조성물 중 HDI를 25wt%로 고정하고, 비율별로 실험한 결과 실시예 (1-4)의 비율이 가장 우수한 내충격성을 보였으며, 내열성도 적당한 87 ℃의 결과를 보여 주었으므로, 다음에는 HDI의 함량을 조금 늘려서 29wt%의 경우에 비율에 따른 실시예를 보였다.In the composition of the isocyanate, the HDI was fixed at 25wt%, and the results of experiments for each ratio showed that the ratio of Example (1-4) showed the best impact resistance, and the heat resistance also showed a suitable result of 87 ° C. By slightly increasing the content of 29wt% in the case of the ratio was shown.
(실시예 2)(Example 2)
상기 대표적인 실험 및 실시예에 따라서 실험을 수행하고, 조성물의 비율은 아래의 표6)에 준해서 실시하였다.The experiment was carried out according to the representative experiments and examples, and the ratio of the composition was carried out according to Table 6 below.
표 6 뷰렛(Biuret)과 IPDI의 비율별 실시예 ( HDI:29wt% 고정, B액:GST )
실 시 예
(2-1) (2-2) (2-3)
모노머조성물 (g) Biuret(g) 24 35.5 47
HDI (g) 29 29 29
IPDI (g) 47 35.5 24
GST(g) 78.34 73.34 71.54
렌즈물성 내충격E(J) 3.92 6.30 6.70
Tg (℃) 87 83 78
굴절율(액) 1.5380 1.5380 1.5377
굴절율(고) 1.5995 1.5988 1.5980
아베수(υ) 39.1 38.3 42.8
백화 없음 없음 없음
황변(2차어닐링후) 없음 없음 없음
기타
Table 6 Example according to the ratio of the biuret (Biuret) and IPDI (HDI: fixed 29wt%, liquid B: GST)
Example
(2-1) (2-2) (2-3)
Monomer composition (g) Biuret (g) 24 35.5 47
HDI (g) 29 29 29
IPDI (g) 47 35.5 24
GST (g) 78.34 73.34 71.54
Lens property Shock resistance E (J) 3.92 6.30 6.70
Tg (℃) 87 83 78
Refractive index (liquid) 1.5380 1.5380 1.5377
Refractive Index (High) 1.5995 1.5988 1.5980
Abbe number (υ ) 39.1 38.3 42.8
colloquial Chinese none none none
Yellowing (after secondary annealing) none none none
Other
상기 실시예1, 2의 결과를 종합해보면 HDI 25wt%, 29wt% 함량의 경우 모두 2차 어닐링 후 황변 거의 느낄 수 없었지만, 25wt%가 29wt%보다 미세한 차이지만 더 맑고, 투명하였다. 내충격성 면에서는 29wt%가 25wt% 보다는 더 유리하지만 내열성면에서는 25wt%가 더 유리하다. 따라서 내열성이 우수한 25wt%인 렌즈의 내열성(Tg)이 87℃로서 멀티막 갈라짐 현상이 상당히 줄어들 었다.In the results of Examples 1 and 2, both the HDI 25wt%, 29wt% of the content was almost no yellowing after the second annealing, 25wt% was a finer difference than 29wt%, but clearer, transparent. 29 wt% is more advantageous than 25 wt% in terms of impact resistance, but 25 wt% is more advantageous in terms of heat resistance. Therefore, the thermal resistance (Tg) of the lens having 25 wt%, which is excellent in heat resistance, was 87 ° C., which significantly reduced the multi-film cracking phenomenon.
실시예 3Example 3
내열성을 더 향상시키기 위해서 HDI함량을 더 줄인 상태에서 다음과 같이 실험을 실시하였다. 상기 대표적인 실험 및 실시예에 따라서 실험을 수행하고, 조성물의 비율은 아래의 표7)에 준해서 실시하였다.In order to further improve the heat resistance, the experiment was carried out as follows while the HDI content was further reduced. The experiment was carried out according to the representative experiments and examples, and the ratio of the composition was carried out according to Table 7 below.
내열성을 더 향상시키기 위해서 HDI함량을 더 줄인 상태에서 다음과 같이 실험을 실시하였다. 상기 대표적인 실험 및 실시예에 따라서 실험을 수행하고, 조성물의 비율은 아래의 표7)에 준해서 실시하였다.In order to further improve the heat resistance, the experiment was carried out as follows while the HDI content was further reduced. The experiment was carried out according to the representative experiments and examples, and the ratio of the composition was carried out according to Table 7 below.
표 7 성분(HDI) 량의 변화에 따른 물성 실시예 (Biuret:IPDI=1:1, B액:GST)의 결과표
실 시 예
(3-1) (3-2) (3-3)
모노머조성물 (g) Biuret(g) 40 37.5 35.5
HDI (g) 20 25 29
IPDI(g) 40 37.5 35.5
GST(g) 71.35 73.34 74.94
렌즈물성 내충격E(J) 2.53 5.63 6.30
Tg (℃) 87 87 83
굴절율(액) 1.5389 1.5383 1.5380
굴절율(고) 1.5972 1.5979 1.5988
아베수(υ) 40.0 39.6 39.3
백화 없음 없음 없음
황변(2차어닐링후) 변화없음 변화없음 변화없음
TABLE 7 Result Table of Example of Physical Properties (Biuret: IPDI = 1: 1, Liquid B: GST) According to Change of Component (HDI) Amount
Example
(3-1) (3-2) (3-3)
Monomer composition (g) Biuret (g) 40 37.5 35.5
HDI (g) 20 25 29
IPDI (g) 40 37.5 35.5
GST (g) 71.35 73.34 74.94
Lens property Shock resistance E (J) 2.53 5.63 6.30
Tg (℃) 87 87 83
Refractive index (liquid) 1.5389 1.5383 1.5380
Refractive Index (High) 1.5972 1.5979 1.5988
Abbe number (υ ) 40.0 39.6 39.3
colloquial Chinese none none none
Yellowing (after secondary annealing) No change No change No change
HDI 함량 20wt%는 충격강도가 25wt%에 비해 절반 이하로 떨어지고, 예상과 달리 Tg 향상은 없는 상태고, 그대로 87℃를 유지하였다. 따라서 현재의 Biuret/HDI/IPDI 시스템에서 최적의 비율은 Biuret(37.5wt%), HDI(25wt%), IPDI(37.5wt%)가 적합하다고 판단되며, 백화현상이나, 굴절율(1.60), 황변현상 등에서 우수한 결과를 얻었다.The HDI content of 20wt% was less than half the impact strength compared to 25wt%, unexpectedly without Tg improvement, and maintained at 87 ℃ as it is. Therefore, in the current Biuret / HDI / IPDI system, the optimal ratio is Biuret (37.5wt%), HDI (25wt%), IPDI (37.5wt%), and the whitening phenomenon, refractive index (1.60), yellowing phenomenon Excellent results were obtained.
이제 이소시아네이트 조성물 (A액)의 비율이 최적화된 상태에서 폴리티올의 변화 및 종류의 변화에 따른 결과를 보고자 다음의 실시예 4)를 수행하여 표8)에 나타내었다.Now, in order to see the results according to the change of the polythiol and the change of the kind in the optimized ratio of the isocyanate composition (Liquid A), it is shown in Table 8).
(실시예 4)(Example 4)
아래 표의 조성물 비율로 모노머를 혼합하고, 경화시켜서 물성을 측정하였으며, 아래에 대표적인 실시예 4-2)를 나타낸다.The monomers were mixed at the composition ratios in the table below, and cured to measure physical properties. Representative Example 4-2) is shown below.
(1) Biuret(Perstep사의 Tolonate HDB LV) 37.5g, HDI 25g과 IPDI 37.5을 혼합 용해시키고, 경화 촉매로서 디부틸틴디클로라이드 630ppm과 자외선 흡수제인 SEESORB 709(일본 Shipro㈜)를 15,000ppm, 내부이형제로서 Zelec Un(듀폰사)을 1,200pppm을 첨가하고 상온에서 40분간 감압교반을 실시하여 완전하게 기포를 제거한다. 용해 후, PEMP 12.84g, GST 64.21g을 혼합하여 40분간 탈포를 행한 후, 점착테이프에 의해 조립된 유리몰드에 주입한다.(1) 37.5 g of Biuret (Tolonate HDB LV from Perstep), 25 g of HDI, and 37.5 g of IPDI were mixed and dissolved. 1,200pppm of Zelec Un (Dupont) is added, and the mixture is subjected to reduced pressure stirring at room temperature for 40 minutes to completely remove bubbles. After dissolving, 12.84 g of PEMP and 64.21 g of GST are mixed and degassed for 40 minutes, and then injected into a glass mold assembled with an adhesive tape.
(2) 혼합물이 주입된 유리몰드를 강제순환식 오븐에 장입한다. 상온~ 35℃ 4시간 승온, 35~ 50℃ 5시간 승온, 50~ 75℃ 4.5시간 승온, 75~ 90℃ 5시간 승온, 90 ℃ 3시간 유지, 90~ 130℃ 2시간 승온, 130 ℃ 1.5시간 유지, 130~ 70 ℃ 1시간 냉각시켜 중합한다. 중합 종료 후 몰드로부터 렌즈를 분리시켜 우레탄 광학렌즈를 얻는다. 이로부터 얻어진 렌즈를 120 ℃에서 1시간 40분간 어닐링 처리를 행한다. 어닐링후 유리몰드에서 경화된 렌즈 생지를 이형시켜 중심 두께 1.2㎜인 광학렌즈를 얻는다.(2) The glass mold into which the mixture is injected is charged into a forced circulation oven. Normal temperature ~ 35 ℃ 4 hours, temperature 35 ~ 50 ℃ 5 hours, temperature 50 ~ 75 ℃ 4.5 hours temperature, 75 ~ 90 ℃ 5 hours temperature, 90 ℃ 3 hours maintenance, 90 ~ 130 ℃ 2 hours temperature, 130 ℃ 1.5 hours The oil is cooled at 130 to 70 ° C for 1 hour to polymerize. After completion of the polymerization, the lens is separated from the mold to obtain a urethane optical lens. The lens obtained from this is annealed at 120 degreeC for 1 hour and 40 minutes. After annealing, the lens dough cured in the glass mold is released to obtain an optical lens having a center thickness of 1.2 mm.
(3) (2)에서 얻은 광학렌즈를 지름 80㎜로 가공한 후 알카리 수성 세척액에 초음파 세척한 다음, 120℃에서 2시간 어닐링 처리를 한 후, 생지 렌즈를 실리콘계 하드액에 디핑법에 의해 코팅 후에 열건조 시키고, 양면에 산화규소, 산화 지르코늄, 산화규소, ITO, 산화 지르코늄, 산화규소, 산화 지르코늄의 순서로 진공 증착하여 하드코팅 및 멀티 코팅된 광학 렌즈를 얻는다.(3) The optical lens obtained in (2) was processed to a diameter of 80 mm and then ultrasonically washed in an alkaline aqueous washing solution, followed by annealing treatment at 120 ° C. for 2 hours, and then the dough lens was coated on the silicon-based hard liquid by dipping. After the heat drying, and vacuum-deposited in the order of silicon oxide, zirconium oxide, silicon oxide, ITO, zirconium oxide, silicon oxide, zirconium oxide on both sides to obtain a hard coated and multi-coated optical lens.
(4) 위에서 얻어진 광학 렌즈는 굴절률 1.5932 (nD/20 ℃), 아베수 39.7, Tg 87 ℃, 내충격에너지 6.23(J) (300g, 220cm 파괴 = 500g, 127cm 파괴)의 물성을 얻을 수 있었으며, 나머지는 표 8)에 기록하였다.(4) The optical lens obtained above had the properties of refractive index 1.5932 (nD / 20 ° C), Abbe number 39.7, Tg 87 ° C, impact resistance 6.23 (J) (300g, 220cm break = 500g, 127cm break). Are recorded in Table 8).
표 8 B액의 비율별 실시예(Biuret:37.5%, HDI:25%, IPDI:37.5% 고정)의 결과표
실 시 예
(4-1) (4-2) (4-3) (4-4) (4-5) (4-6)
A액 (g) BIURET 37.5 37.5 37.5 37.5 37.5 37.5
HDI 25 25 25 25 25 25
IPDI 37.5 37.5 37.5 37.5 37.5 37.5
B액(g) PEMP 0(0%) 12.84(16.7%) 19.76(25%) 42.86(50%) 70.23(75%) 103.16(100%)
GST 73.34(100%) 64.21(83.3%) 59.29(75%) 42.86(50%) 23.41(25%) 0(0%)
렌즈물성 내충격E(J) 5.63 6.23 3.77 3.57 3.78 5.34
Tg (℃) 87 86.6 88 86 85 83
굴절율(액) 1.5383 1.5339 1.5319 1.5246 1.5169 1.5069
굴절율(고) 1.5979 1.5932 1.5899 1.5770 1.5645 1.5529
아베수(υ) 39.6 39.7 41.2 42.4 43.8 45.2
백화 없음 없음 없음 없음 없음 없음
황변(2차경화후) 없음 없음 없음 없음 없음 없음
Table 8 Result table of Example (Biuret: 37.5%, HDI: 25%, IPDI: 37.5% fixation) according to ratio of amount of B
Example
(4-1) (4-2) (4-3) (4-4) (4-5) (4-6)
A liquid (g) BIURET 37.5 37.5 37.5 37.5 37.5 37.5
HDI 25 25 25 25 25 25
IPDI 37.5 37.5 37.5 37.5 37.5 37.5
Liquid B (g) PEMP 0 (0%) 12.84 (16.7%) 19.76 (25%) 42.86 (50%) 70.23 (75%) 103.16 (100%)
GST 73.34 (100%) 64.21 (83.3%) 59.29 (75%) 42.86 (50%) 23.41 (25%) 0 (0%)
Lens property Shock resistance E (J) 5.63 6.23 3.77 3.57 3.78 5.34
Tg (℃) 87 86.6 88 86 85 83
Refractive index (liquid) 1.5383 1.5339 1.5319 1.5246 1.5169 1.5069
Refractive Index (High) 1.5979 1.5932 1.5899 1.5770 1.5645 1.5529
Abbe number (υ ) 39.6 39.7 41.2 42.4 43.8 45.2
colloquial Chinese none none none none none none
Yellowing (after secondary curing) none none none none none none
실시예 4-3)에서 PEMP 함량 약 20% 정도부터는 내충격 에너지가 약간 떨어지는 결과를 얻었으며, 약 16% 함량이 최대의 내충격성(6.23J)을 보이고 있어서 폴리티올 중 PEMP의 함량이 10~20%(중량비)가 내충격성에는 좋은 결과를 나타낸다고 생각한다.In Example 4-3, the impact energy was slightly decreased from about 20% of the PEMP content, and about 16% showed the maximum impact resistance (6.23J), so that the PEMP content in the polythiol was 10-20. It is thought that% (weight ratio) shows a good result for impact resistance.
이소시아네이트의 조성물 비율이 Biuret/HDI/IPDI 시스템에서 최적의 비율은 Biuret(37.5wt%), HDI(25wt%), IPDI(37.5wt%)과 GST(83.3wt%), PEMP(16.7wt%)인 경우 최적의 내충격성과 고굴절(nD:1.5932) 아베수(40), 백화현상이나 황변현상이 관찰되지 않아서 안경렌즈로서 우수한 물성을 보여 주었다.The optimum proportion of isocyanate in Biuret / HDI / IPDI system is Biuret (37.5 wt%), HDI (25 wt%), IPDI (37.5 wt%), GST (83.3 wt%) and PEMP (16.7 wt%). In the case of optimum impact resistance and high refractive index (nD: 1.5932), Abbe's water (40), whitening or yellowing were not observed, which showed excellent physical properties as spectacle lenses.
(실시예 5)(Example 5)
아래 표의 조성물 비율로 모노머를 혼합하고, 경화시켜서 물성을 측정하였으며, 아래에 대표적인 실시예 5-3)를 나타낸다.The monomers were mixed at the composition ratios in the table below, and cured to measure physical properties. Representative Example 5-3) is shown below.
(1) Biuret(Perstep사의 Tolonate HDB LV) 37.5g, HDI 25g과 IPDI 37.5을 혼합 용해시키고, 경화 촉매로서 디부틸틴디클로라이드 630ppm과 자외선 흡수제인 SEESORB 709(일본 Shipro㈜)를 15,000ppm, 내부이형제로서 Zelec Un(듀폰사)을 1,200pppm을 첨가하고 상온에서 40분간 감압교반을 실시하여 완전하게 기포를 제거한다. 용해 후, PEMP 12.84g, GST 64.21g을 혼합하여 40분간 탈포를 행한 후, 점착테이프에 의해 조립된 유리몰드에 주입한다.(1) 37.5 g of Biuret (Tolonate HDB LV from Perstep), 25 g of HDI, and 37.5 g of IPDI were mixed and dissolved. 1,200pppm of Zelec Un (Dupont) is added, and the mixture is subjected to reduced pressure stirring at room temperature for 40 minutes to completely remove bubbles. After dissolving, 12.84 g of PEMP and 64.21 g of GST are mixed and degassed for 40 minutes, and then injected into a glass mold assembled with an adhesive tape.
상기에서 제조한 조성물로부터 얻은 균일 용액을 다시 40분 정도 감압 교반하여 유리몰드와 점착테이프로 고정된 몰드형에 주입했다.The homogeneous solution obtained from the composition prepared above was agitated under reduced pressure for about 40 minutes, and poured into a mold fixed with a glass mold and an adhesive tape.
혼합 용액이 주입된 유리몰드형을 강제 순환식 오븐에 투입하고 상온(20℃)에서 35 ℃로 5시간 승온, 50℃로 7시간 승온, 90℃로 7시간 승온, 130℃로 4시간 승온, 130℃에서 2시간 유지, 80℃로 1시간에 걸쳐서 냉각시켜 1차 성형을 하였다. 중합 종료후 오븐으로부터 몰드를 꺼내고 렌즈를 이형하여 중심두께 1.2mm, 직경 80mm의 광학렌즈를 얻었다. 얻어진 렌즈를 130℃에서 1시간 더 어닐링 처리를 하였다.The glass mold type into which the mixed solution was injected was put into a forced circulation oven, and the temperature was raised to 35 ° C. for 5 hours, the temperature increased to 50 ° C. for 7 hours, the temperature increased to 90 ° C. for 7 hours, and the temperature increased to 130 ° C. for 4 hours, 130 It was hold | maintained at 2 degreeC for 2 hours, and it cooled at 80 degreeC over 1 hour, and formed primary molding. After completion of the polymerization, the mold was taken out of the oven and the lens was released to obtain an optical lens having a center thickness of 1.2 mm and a diameter of 80 mm. The obtained lens was further annealed at 130 ° C. for 1 hour.
얻어진 렌즈는 무색투명하며 굴절율(nD) 1.6004, 아베수 41, 내열성(Tg) 85℃, 내충격성(파괴에너지) 6.7(J)의 우수한 광학렌즈를 얻을 수 있었다. 이렇게 얻어진 생지를 하드코팅액에 함침시켜서 하드코팅 후 열경화시키고, 진공 증착하여 하드코팅, 멀티코팅된 광학렌즈를 얻었으며, 내충격성은 6.5(J)로서 우수한 내충격성을 유지하였다.The obtained lens was colorless and transparent, and an excellent optical lens with refractive index (nD) 1.6004, Abbe number 41, heat resistance (Tg) 85 ° C, and impact resistance (breakdown energy) 6.7 (J) was obtained. The dough thus obtained was impregnated into the hard coating solution, followed by heat curing after hard coating, followed by vacuum deposition to obtain a hard coated and multi-coated optical lens, and the impact resistance was 6.5 (J) to maintain excellent impact resistance.
표 9 폴리티올의 종류별 실시예(Biuret:37.5%, HDI:25%, IPDI:37.5% 고정) 결과표
실 시 예
(5-1) (5-2) (5-3) (5-4) (5-5) (5-6)
모노머조성물(g) Biuret 37.5 37.5 37.5 37.5 37.5 37.5
HDI 25 25 25 25 25 25
IPDI 37.5 37.5 37.5 37.5 37.5 37.5
GST 73.34 64.21 31.89
PEMP 12.84 103.2
GMT 56.42 31.89
DMDDU 77.59
렌즈물성 내충격E(J) 5.63 2.52 6.23 5.34 2.94 3.78
Tg (℃) 87 99 87 83 95 94
굴절율(액) 1.5383 1.5290 1.5339 1.5069 1.5461 1.5332
굴절율(고) 1.5979 1.5909 1.6004 1.5529 1.6009 1.5948
아베수(υ) 39.6 40.6 41.0 45 40.5 42.5
백화 없음 있음 없음 없음 없음 있음
황변(2차경화후) 없음 있음 없음 없음 있음 있음
Table 9 Example of polythiol type (Biuret: 37.5%, HDI: 25%, IPDI: 37.5% fixed) Result Table
Example
(5-1) (5-2) (5-3) (5-4) (5-5) (5-6)
Monomer composition (g) Biuret 37.5 37.5 37.5 37.5 37.5 37.5
HDI 25 25 25 25 25 25
IPDI 37.5 37.5 37.5 37.5 37.5 37.5
GST 73.34 64.21 31.89
PEMP 12.84 103.2
GMT 56.42 31.89
DMDDU 77.59
Lens property Shock resistance E (J) 5.63 2.52 6.23 5.34 2.94 3.78
Tg (℃) 87 99 87 83 95 94
Refractive index (liquid) 1.5383 1.5290 1.5339 1.5069 1.5461 1.5332
Refractive Index (High) 1.5979 1.5909 1.6004 1.5529 1.6009 1.5948
Abbe number (υ ) 39.6 40.6 41.0 45 40.5 42.5
colloquial Chinese none has exist none none none has exist
Yellowing (after secondary curing) none has exist none none has exist has exist
-. GMT: 2-(2-메르캅토에틸티오)프로판-1,3-디티올-. GMT: 2- (2-mercaptoethylthio) propane-1,3-dithiol
-. DMDDU: 4,8-디메르캅토메틸-1,11-디메르캅토-3,6,9-트리티아운데칸-. DMDDU: 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaoundecan
최적화된 이소시아네이트 시스템에서 Biuret/HDI/IPDI 비율이 내충격성 렌즈 유용하게 사용될 것이라는 상각하에, 다른 폴리티올의 적용성을 실험한 결과, 상기 테이블에서 보듯이 PEMP, GMT, DMDDU 등의 다른 폴리티올을 사용하여도 충분한 내충격성을 보이고 있으며, 아베수도 39에서 45범위에서 우수한 결과를 보이고, 황변현상이나 백화현상이 관찰되지 않아서 안경렌즈로서 사용이 가능하다고 판단된다. GMT와 DMDDU의 경우는 다른 폴리티올보다 내열성이 10도 이상 높게 나타나고 있다. 따라서 여러 폴리티올에 적용이 가능한 이소시아네이트 조성물인 Biuret/HDI/IPDI는 폴리우레탄에 유용한 화합물의 조합이라고 할 수 있다고 판단된다.Under the amortization that the Biuret / HDI / IPDI ratio would be useful for impact resistant lenses in an optimized isocyanate system, the applicability of other polythiols was tested, and as shown in the table above, other polythiols such as PEMP, GMT and DMDDU were used. Even if it shows sufficient impact resistance, Abbe's number also shows excellent results in the range of 39 to 45, and yellowing or whitening is not observed, so it can be used as a spectacle lens. In the case of GMT and DMDDU, the heat resistance is more than 10 degrees higher than that of other polythiols. Therefore, Biuret / HDI / IPDI, an isocyanate composition applicable to various polythiols, is considered to be a combination of compounds useful for polyurethane.
이러한 광학렌즈를 제조한 다음, 타사의 광학렌즈와 물성을 비교하기 위한 표를 하기에 나타내었다. 비교예-1)은 가장 대표적인 미쓰이 회사의 고굴절 1.60렌즈의 한국등록특허 제10-0973858호의 비교예1)을 참조하여, 상기 대표적인 실시예와 동일하게 조성물 비율별로 혼합해서 경화시킨 후, 렌즈의 물성을 측정하였고, 비교예2)는 미쓰이 회사의 한국특허공보 제92-00578호를 참조하여 초고굴절 렌즈인 1.67의 비교실시예를 나타냈다. After preparing such an optical lens, a table for comparing the physical properties of optical lenses of other companies is shown below. Comparative Example-1) refers to Comparative Example 1) of Korean Patent No. 10-0973858 of a high refractive index 1.60 lens of Mitsui Co., Ltd., which is the most representative example. In Comparative Example 2, a comparative example of 1.67, which is an ultra-high refractive lens, was described with reference to Korean Patent Publication No. 92-00578 of Mitsui Corporation.
표 10 타사 렌즈 물성치 비교
비교예-1)(미쓰이1.60) 비교예-2)(미쓰이 1.67)
모노머조성물 (g) MXDI(g) 100
NBDI(g) 100
PEMP(g) 47.23
GST(g) 50.20 92.3
렌즈물성 내충격E (J) 0.8 0.2이하
Tg (℃) 113 84
굴절율(액) 1.5393 1.5865
굴절율(고) 1.5942 1.6572
아베수(υ) 41 32
백화 없음 없음
황변(2차어닐링) 없음 있음
Table 10 Comparison of lens properties of other companies
Comparative Example-1) (Mitsui 1.60) Comparative Example-2) (Mitsui 1.67)
Monomer composition (g) MXDI (g) 100
NBDI (g) 100
PEMP (g) 47.23
GST (g) 50.20 92.3
Lens property Shockproof E (J) 0.8 0.2 or less
Tg (℃) 113 84
Refractive index (liquid) 1.5393 1.5865
Refractive Index (High) 1.5942 1.6572
Abbe number (υ ) 41 32
colloquial Chinese none none
Yellowing (Secondary Annealing) none has exist
상기 비교예서 보듯이 비슷한 굴절율인 1.60의 경우 비교예-1의 경우 내열성이나 아베수는 적당하나 내충격성면에서 실시예 1~5까지와 비교할 경우 상당한 차이를 보이고 있어서 산업안전용이나 스포츠용 고글렌즈에는 사용이 적절하지가 않았다. 비교예-2)의 경우는 굴절율은 1.657로 높으나, 아베수가 32로 낮고, 내충격성은 0.2J이하로서 FDA의 기본적인 내충격성 기준에도 미치지 못하여 일반 렌즈의 안전성을 위해서도 별도의 프라이머 코팅 등의 처리를 행한 후, 하드/멀티 코팅해서 사용하고 있는 실정이다. 따라서 본 발명에서 개발한 이소시아네이트의 조성물 시스템은 내충격성 렌즈의 핵심 원료로서 사용하는 데 우수한 역할을 한다고 판단된다.As shown in the comparative example, in the case of 1.60, which has a similar refractive index, the heat resistance or Abbe number is appropriate in Comparative Example-1, but in terms of impact resistance, a considerable difference is shown in comparison with Examples 1 to 5 in industrial safety or sports goggle lenses. The use was not appropriate. In the case of Comparative Example-2), the refractive index was 1.657, but the Abbe number was 32, and the impact resistance was 0.2J or less, which did not meet the FDA's basic impact resistance standard. After that, hard / multi-coated is used. Therefore, it is judged that the composition system of isocyanate developed in the present invention plays an excellent role in use as a core raw material of impact resistant lenses.
본 발명에 따르면, 고굴절이면서 하드/멀티코팅 전/후의 내충격성이 아주 우수하고, 내열성 및 아베수이 우수하며, 백화현상과 황변현상이 적은 우레탄계 플라스틱 광학렌즈를 위한 이소시아네이트 조성물 및 광학렌즈 조성물을 얻을 수 있다. 본 발명에 따른 광학렌즈는 특히 안경렌즈에 적용될 수 있으며, 안경렌즈 외에도 산업용 보안경, 스포츠용 고글, 프리즘, 광섬유, 광디스크, 자기디스크 등에 사용하는 기록매체 기판, 착색 필터, 자외선 흡수 필터뿐만 아니라 핸드폰의 투시광 등의 다양한 광학제품에 이용될 수 있다.According to the present invention, an isocyanate composition and an optical lens composition for a urethane plastic optical lens having high refractive index and excellent impact resistance before and after hard / multi coating, excellent heat resistance and Abbe number, and low whitening and yellowing can be obtained. have. The optical lens according to the present invention can be particularly applied to the spectacle lens, and in addition to the spectacle lens, not only recording glasses substrates, coloring filters, ultraviolet absorbing filters used in industrial safety glasses, sports goggles, prisms, optical fibers, optical disks, magnetic disks, etc. It can be used for various optical products such as fluoroscopy.

Claims (8)

  1. (A) 하기 화학식(2)로 표시되는 이소시아네이트 화합물(Biuret)과(A) an isocyanate compound (Biuret) represented by the following formula (2) and
    [화학식(2)][Formula (2)]
    Figure PCTKR2014001323-appb-I000009
    (2)
    Figure PCTKR2014001323-appb-I000009
    (2)
    (상기식에서, p는 2 이상 내지 10 이하의 정수이다.)(Wherein p is an integer of 2 or more and 10 or less).
    (B) 1,6-헥사메틸렌디이소시아네이트(HDI)의 화합물과,(B) a compound of 1,6-hexamethylene diisocyanate (HDI),
    (C) 이소포론디이소시아네이트(IPDI)의 화합물 또는 디시클로헥실 메탄 디이소시아네이트(H12MDI)와,(C) a compound of isophorone diisocyanate (IPDI) or dicyclohexyl methane diisocyanate (H12MDI),
    (D) 2,3-비스(2-메르캅토에틸티오)-프로판-1-티올(GST) 및 펜타에리트리톨테트라키스 (메르캅토프로피오네이트)(PEMP)로 구성된 폴리티올 화합물 중 적어도 1종을 함유하는 광학용 중합성 조성물. (D) at least one of polythiol compounds composed of 2,3-bis (2-mercaptoethylthio) -propane-1-thiol (GST) and pentaerythritol tetrakis (mercaptopropionate) (PEMP) Polymeric composition for optics containing these.
  2. 청구항 1에 있어서, 상기 성분(A), (B) 및 (C)로 구성된 폴리이소시아네이트(NCO)의 작용기와 폴리티올(SH)의 작용기에서 NCO/SH의 작용기의 몰비가 0.9~1.1범위내로 함유하는 내충격성 광학용 중합성 조성물. The molar ratio of the functional group of polyisocyanate (NCO) consisting of the components (A), (B) and (C) and the functional group of NCO / SH in the functional group of polythiol (SH) is contained within the range of 0.9 to 1.1. Impact resistant optically polymerizable composition.
  3. 청구항 2에 있어서, 상기 성분(A), (B) 및 (C)로 구성된 폴리이소시아네이트 화합물에서, 이들 간의 함량비(Biuret: HDI: IPDI)가 30~40: 20~30: 30~40 중량비로 함유하는 광학용 중합성 조성물.The polyisocyanate compound of claim 2, wherein the content ratio (Biuret: HDI: IPDI) between them is 30 to 40: 20 to 30: 30 to 40 by weight Polymeric composition for optics containing.
  4. 청구항 1 내지 3 항 중 어느 한 항에 기재된 광학용 중합성 조성물을 중합시켜 광학용 수지를 제조하는 방법.A method for producing an optical resin by polymerizing the optically polymerizable composition according to any one of claims 1 to 3.
  5. 청구항 1 내지 3 항 중 어느 한 항에 기재된 광학용 중합성 조성물을 중합시켜 얻어지는 광학용 수지.Optical resin obtained by superposing | polymerizing the optically polymerizable composition of any one of Claims 1-3.
  6. 청구항 5에 기재된 광학용 수지로 이루어진 광학 렌즈.The optical lens which consists of resin for optics of Claim 5.
  7. 청구항 1의 광학용 수지 조성물의 원료로서,As a raw material of the resin composition for optics of Claim 1,
    (A) 하기 화학식(2)로 표시되는 이소시아네이트 화합물(Biuret)과,(A) an isocyanate compound (Biuret) represented by the following general formula (2),
    [화학식(2)][Formula (2)]
    Figure PCTKR2014001323-appb-I000010
    (2)
    Figure PCTKR2014001323-appb-I000010
    (2)
    (상기식에서, p는 2 이상 내지 10 이하의 정수이다.)(Wherein p is an integer of 2 or more and 10 or less).
    (B) 1,6-헥사메틸렌디이소시아네이트(HDI)의 화합물 또는 디시클로헥실 메탄 디이소시아네이트(H12MDI)와(B) a compound of 1,6-hexamethylene diisocyanate (HDI) or dicyclohexyl methane diisocyanate (H12MDI)
    (C) 이소포론디이소시아네이트(IPDI)의 화합물을 함유하는 내충격성 폴리우레탄 수지용 폴리이소시아네이트 조성물.(C) Polyisocyanate composition for impact resistant polyurethane resins containing a compound of isophorone diisocyanate (IPDI).
  8. 청구항 7에 있어서, 상기 성분(A), (B) 및 (C) 간의 함량비(Biuret: HDI: IPDI)가 30~40: 20~30: 30~40 중량비로 함유하는 폴리우레탄 수지용 폴리이소시아네이트 조성물.The polyisocyanate for polyurethane resin according to claim 7, wherein the content ratio (Biuret: HDI: IPDI) between the components (A), (B), and (C) is contained in a weight ratio of 30 to 40: 20 to 30: 30 to 40. Composition.
PCT/KR2014/001323 2013-02-21 2014-02-19 Polythiourethane-based polymerizable composition with remarkable impact resistance, and method for preparing optical resin by using same WO2014129788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0018612 2013-02-21
KR1020130018612A KR101580878B1 (en) 2013-02-21 2013-02-21 Polythiourethane polymerization compositions having high impact resistance and preparation method of optical resin using them

Publications (1)

Publication Number Publication Date
WO2014129788A1 true WO2014129788A1 (en) 2014-08-28

Family

ID=51391521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001323 WO2014129788A1 (en) 2013-02-21 2014-02-19 Polythiourethane-based polymerizable composition with remarkable impact resistance, and method for preparing optical resin by using same

Country Status (2)

Country Link
KR (1) KR101580878B1 (en)
WO (1) WO2014129788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116157721A (en) * 2020-12-25 2023-05-23 三井化学株式会社 Polythiol composition, polymerizable composition, resin, molded article, optical material, and lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101761828B1 (en) * 2014-07-14 2017-07-27 케이에스랩(주) Optical resin compositions and optical lens prepared therefrom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108219A (en) * 1998-10-02 2000-04-18 Seiko Epson Corp Manufacture of plastic lens
KR100689867B1 (en) * 2006-09-06 2007-03-09 주식회사 신대특수재료 Optical resin composition having high impact and method of preparing optical lens using it
KR100704314B1 (en) * 2006-12-11 2007-04-09 주식회사 신대특수재료 Super-high refractive index optical resin composition having high thermal resistance and method of preparing optical lens using it
KR20080000615A (en) * 2005-04-11 2008-01-02 미쓰이 가가쿠 가부시키가이샤 Polythiourethane polymerizable composition and method for producing optical resin by using same
KR20080112272A (en) * 2006-04-06 2008-12-24 존슨 컨트롤즈 인테리얼즈 게엠베하 앤 컴퍼니 케이지 Polyurethane molding, process for its production and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108219A (en) * 1998-10-02 2000-04-18 Seiko Epson Corp Manufacture of plastic lens
KR20080000615A (en) * 2005-04-11 2008-01-02 미쓰이 가가쿠 가부시키가이샤 Polythiourethane polymerizable composition and method for producing optical resin by using same
KR20080112272A (en) * 2006-04-06 2008-12-24 존슨 컨트롤즈 인테리얼즈 게엠베하 앤 컴퍼니 케이지 Polyurethane molding, process for its production and its use
KR100689867B1 (en) * 2006-09-06 2007-03-09 주식회사 신대특수재료 Optical resin composition having high impact and method of preparing optical lens using it
KR100704314B1 (en) * 2006-12-11 2007-04-09 주식회사 신대특수재료 Super-high refractive index optical resin composition having high thermal resistance and method of preparing optical lens using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116157721A (en) * 2020-12-25 2023-05-23 三井化学株式会社 Polythiol composition, polymerizable composition, resin, molded article, optical material, and lens

Also Published As

Publication number Publication date
KR20140105075A (en) 2014-09-01
KR101580878B1 (en) 2015-12-31

Similar Documents

Publication Publication Date Title
WO2016010342A1 (en) Optical resin composition and optical lens using same
WO2017010791A1 (en) Optical composition for blocking electromagnetic waves and method for manufacturing optical lens therefrom
KR900007871B1 (en) Process for the preparation of resin for high-refractive index plastic lens
WO2019132491A1 (en) Isocyanate composition with improved stability and reactivity, and optical lens using same
JP2695599B2 (en) Manufacturing method of polyurethane lens
US8097190B2 (en) Optical resin composition having excellent impact resistance and method for fabricating optical lens using the same
WO2010095837A2 (en) Resin composition for a high refractive index optical lens having superior impact resistance, high refractive index optical lens using same, and method for producing same
EP0586091B1 (en) High refractive index plastic lens and composition therefor
JPS6346213A (en) Resin for high-refractive index plastic lens
WO2010024563A2 (en) Photopolymerized resin composition and optical fiber manufactured with same
WO2010076942A1 (en) Light weight high refraction resin composition for optical lens using novel thiol compound and optical lens using the same
WO2021206269A1 (en) Method for producing polythiol compound, polymerizable composition for optical material including same, and optical lens
KR101157497B1 (en) Resin Composition Having High Heat Resistance and Good Reactivity for Urethane Optical Lens
WO2021215606A1 (en) Diisocyanate composition and optical lens produced using same
WO2013069965A1 (en) Method for manufacturing polythiol compound, and polymerization composite for optical material comprising same
WO2012112015A2 (en) Polythiol compound chain-extended through ring-opening, preparation method therefor, and resin composition for urethane optical material using same
WO2010128770A2 (en) Resin composition for urethane optical lens having excellent thermal resistance and reactivity
JP3279848B2 (en) High-speed polymerizable resin composition and lens
WO2014129788A1 (en) Polythiourethane-based polymerizable composition with remarkable impact resistance, and method for preparing optical resin by using same
KR101961941B1 (en) Polythiourethane plastic lens
WO2014077589A1 (en) Polymeric composition for highly refractive epoxy-acrylic optical material, and method for manufacturing highly refractive epoxy-acrylic optical material
WO2020218508A1 (en) Thiol-containing composition for optical material and polymerizable composition for optical material
KR101637541B1 (en) Optical Resin Composition Having Clear Brightness, High Thermal Resistance and High Impact Resistance, the Plastic Ophthalmic Lens and its Manufacturing Method
JPS63130614A (en) Resin for high-refractive index plastic lens
KR101952270B1 (en) Polythiourethane polymerization compositions having high impact resistance and preparation method of optical resin using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754384

Country of ref document: EP

Kind code of ref document: A1