WO2014129713A1 - 열교환 매체 감시 기능을 갖는 제습 냉방기 - Google Patents

열교환 매체 감시 기능을 갖는 제습 냉방기 Download PDF

Info

Publication number
WO2014129713A1
WO2014129713A1 PCT/KR2013/008358 KR2013008358W WO2014129713A1 WO 2014129713 A1 WO2014129713 A1 WO 2014129713A1 KR 2013008358 W KR2013008358 W KR 2013008358W WO 2014129713 A1 WO2014129713 A1 WO 2014129713A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat exchange
air
dehumidifier
temperature sensor
Prior art date
Application number
PCT/KR2013/008358
Other languages
English (en)
French (fr)
Inventor
성완용
손종근
이동진
Original Assignee
(주)귀뚜라미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)귀뚜라미 filed Critical (주)귀뚜라미
Publication of WO2014129713A1 publication Critical patent/WO2014129713A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to a dehumidifying air conditioner having a heat exchange medium monitoring function, and more particularly, to supply a heat exchange medium (eg, a constant) used for cooling indoor supply air and a heat exchange medium (eg, hot water) used for regeneration of a dehumidifier.
  • the present invention relates to a dehumidifying air conditioner having a heat exchange medium monitoring function capable of monitoring and notifying.
  • compressed refrigeration cycle systems e.g. air conditioners, heat pumps, etc.
  • refrigerants for cooling buildings, etc.
  • the evaporative cooling device includes a direct evaporation type for directly injecting water into the indoor supply air, an indirect evaporation type for directing heat exchange between the air having a low temperature by injecting water or water having a low temperature to heat the indoor supply air, and the direct evaporation type; There is a combination of indirect evaporation.
  • the evaporative cooling system should be able to determine whether the water is supplied because the cooling capacity is reduced due to the decrease of the latent heat of evaporation if the water is not supplied due to the failure of the water or the pump. It should be possible.
  • regeneration is required to send moisture adsorbed / absorbed to the dehumidifier.
  • the hot water is supplied as regeneration purposes, and when the hot water is not supplied or the temperature is low, the desired cooling effect cannot be obtained.
  • water and hot water are important heat exchange media that determine the performance of the air conditioner, and if none of them are supplied, it is difficult to achieve the target of summer power reduction expected by the reduction of the cooling capacity and the increase of power compared to the cooling effect.
  • the present invention has been proposed to solve the above-mentioned problems, and is a kind of heat exchange medium, which can be monitored by monitoring whether the constant (hours) used for cooling indoor supply air and the supply of hot water used for regeneration of a dehumidifier are notified.
  • a dehumidifying air conditioner having a heat exchange medium monitoring function.
  • the dehumidifying air conditioner having a heat exchange medium monitoring function includes a blower for supplying air to the cooling space; A dehumidifier for removing moisture contained in air supplied by the blower; A regenerator for applying heat to remove moisture absorbed by the dehumidifier; An evaporative cooler for lowering the temperature of the air passing through the dehumidifier by latent heat of evaporation of water; A water supply device for injecting the water into the evaporative cooler; A first temperature sensor installed at an output side of the dehumidifier for sensing a temperature of air passing through the dehumidifier; A second temperature sensor installed at an output side of the evaporative cooler to sense a temperature of air passing through the evaporative cooler; And a controller comparing the temperature difference detected by the first temperature sensor and the second temperature sensor to determine that the water supply device does not normally supply the water when the temperature difference is lower than a set value.
  • control unit determines that the regenerator does not operate normally when the temperature detected by the third temperature sensor is lower than the set value.
  • the regenerator is a hot water regenerator to increase the temperature of the outside air through heat exchange between the outside air and hot water, and to supply the outside air having a high temperature to the dehumidifier, wherein the third temperature sensor is a hot water supplying the hot water as a heat exchange medium
  • the control unit may determine that the hot water is not supplied or is lower than the set temperature.
  • the apparatus may further include a fourth temperature sensor installed at an input side of the dehumidifier to sense a temperature of air supplied to the dehumidifier, wherein the controller compares the temperature difference detected by the fourth temperature sensor with the first temperature sensor. If it is lower than the set value, it is preferable to determine that the heat exchange medium is not normally supplied.
  • the controller may generate an alarm signal when it is determined that the water sprayed from the water supply apparatus or the heat exchange medium supplied to the regenerator is not normally supplied.
  • the present invention as described above can be monitored by using a plurality of temperature sensors, respectively, whether the constant (time water) used for cooling the indoor supply air and the hot water used for regeneration of the dehumidifier. Therefore, it is possible to achieve the goal of reducing the summer power by preventing the deterioration of the cooling capacity of the dehumidifying air conditioner and preventing the increase of the power compared to the cooling effect.
  • FIG. 1 is a perspective view showing a cooling state of the dehumidifying air conditioner having a heat exchange medium monitoring function according to the present invention.
  • FIG. 2 is a perspective view showing a ventilation state of the dehumidifying air conditioner having a heat exchange medium monitoring function according to the present invention.
  • FIG 3 is a front view of the dehumidifying air conditioner having a heat exchange medium monitoring function according to the present invention.
  • the dehumidifying air conditioner (100) having a heat exchange medium monitoring function cools the indoor space by returning after cooling the indoor supply air by latent heat of evaporation of water.
  • Dehumidifying air conditioners to which the present invention is applicable include, as an example, a blower 110, a dehumidifier 120, a regenerator 130, a connection duct 140, an evaporative cooler 150, and a water pouring device 160.
  • the first damper (D1) to sixth damper (D6) is included so that air can flow between the above configuration.
  • the present invention provides a first temperature sensor (S1) to the fourth temperature to monitor the supply of the heat exchange medium (eg, constant) used for cooling the indoor supply air and the heat exchange medium (eg, hot water) used for regeneration of the dehumidifier.
  • Sensor S4. 1 and 2 the sensor itself is omitted and replaced with an installation position of the sensor.
  • the blower 110 forcibly blows indoor supply air into a cooling space (that is, indoor space), and is supplied to the indoor space after the indoor supply air is cooled while being forcedly blown.
  • This blower 110 is usually installed at the lower end of the dehumidifying air conditioner.
  • the dehumidifier 120 is installed on the air discharge side of the blower 110 to remove moisture contained in the indoor supply air during the blowing. Therefore, the cooling efficiency due to latent heat of evaporation of water in the air conditioner is increased.
  • Representative dehumidifier 120 is a dehumidifying rotor.
  • the moisture contained in the indoor supply air is removed at one side, and the regeneration is carried out to blow out the moisture absorbed or adsorbed to the dehumidification rotor at the other side, and the moisture as described above by the rotation of the dehumidification rotor. Removal and playback are repeated.
  • the regenerator 130 applies heat to remove the moisture absorbed or adsorbed to the dehumidifier 120 to allow regeneration.
  • the dehumidifier 120 of the regenerated portion rotates to the moisture absorption position to continuously remove moisture contained in the indoor supply air.
  • regenerator 130 various types of regenerators 130 having heaters or hot water coils therein may be used.
  • hot water is supplied to heat the air for regeneration.
  • the regeneration air is heated while the hot water passes through the hot water coil in circulation, and the heated regeneration air removes moisture from the dehumidifier 120.
  • monitoring the heat-generating state by the electric supply corresponds to the heat exchange medium supply monitoring of the present invention
  • monitoring whether or not the hot water is supplied at an appropriate temperature is in accordance with the heat exchange medium supply monitoring of the present invention.
  • connection duct 140 guides the flow of indoor supply air (for example, cooling), regeneration air (for example, regeneration), and outdoor air (for example, for ventilation). It is formed to fit.
  • indoor supply air for example, cooling
  • regeneration air for example, regeneration
  • outdoor air for example, for ventilation
  • connection duct 140 is installed between the regenerator 130 and the evaporative cooler 150 as an example, to guide each air flow as described above, and a description thereof will be given below.
  • the evaporative cooler 150 lowers the temperature of the air passing through the dehumidifier 120 by the latent heat of evaporation of water.
  • the evaporative cooler 150 receives the water from the water supply device 160 installed at the top thereof to form a wet channel, and a bottom portion of the evaporative cooler 150 is provided with a discharge port for collecting and discharging water.
  • the indoor supply air is cooled while passing through the wet channel, and the cooled air is supplied to the indoor space for cooling.
  • the water pouring device 160 injects water into the evaporative cooler 150, and the wet channel is formed in the evaporative cooler 150 by the injected water. If water is not normally supplied from such water supply device 160, cooling of the indoor supply air is not performed or is insufficient.
  • the water supply device 160 supplies water (commonly referred to as 'constant' or 'time water'), and the present invention monitors the supply of water corresponding to one of these heat exchange media.
  • the first damper D1 is installed at one side of the blower 110 as a suction port.
  • the indoor exhaust air is sucked through the first damper D1, and the sucked indoor exhaust air is blown back as indoor supply air.
  • the second damper D2 is connected to the connection duct 140 as a suction port. Outdoor air is sucked through the second damper D2, and the sucked outdoor air is used as regeneration air of the dehumidifier 120.
  • the third damper D3 is installed at one side of the blower 110 as a discharge port. The outdoor air sucked through the second damper D2 is discharged back to the outside through the third damper D3.
  • the fourth damper D4 is connected to the connection duct 140 as a suction port. When ventilating, the indoor exhaust air is sucked through the fourth damper D4, and the sucked indoor exhaust air is discharged to the outside through the third damper D3.
  • the fifth damper D5 is installed at the other side of the blower 110 as the intake port. During ventilation, fresh outdoor air sucked through the fifth damper D5 is blown through the blower 110 into the indoor space.
  • the sixth damper D6 is added as needed and is a bleeding damper.
  • Such bleed dampers perform bleeding for a variety of purposes, as is known. For example, some of the indoor air and outdoor air sucked through the first damper D1 and the fifth damper D5 are additionally discharged to the outside according to the capacity of the dehumidifier 120.
  • FIG. 1 shows an air flow state for cooling indoor supply air and regenerating in the dehumidifier 120.
  • the indoor exhaust air flows through the first damper D1 and then is supplied to the suction side of the blower 110.
  • the indoor supply air blown by the blower 110 is discharged to the upper side after passing through one side of the dehumidifier 120 (that is, the regeneration is completed), the evaporative cooler 150 and the water pump 160 in sequence.
  • the cooling operation is performed at the same time or at a predetermined time, outdoor air is introduced through the second damper D2 and then supplied to the connection duct 140.
  • the regeneration air discharged from the connection duct 140 is heated in the regenerator 130 and regenerates the other side of the dehumidifier 120 (that is, moisture is absorbed and needs regeneration).
  • the outdoor air that has been regenerated is discharged to the outside through the third damper D3.
  • the clouded indoor exhaust air is sucked through the fourth damper D4, and the sucked indoor exhaust air is discharged to the outside through the third damper D3.
  • fresh outdoor air is sucked through the fifth damper D5, and then passed through the blower 110, the dehumidifier 120, the evaporative cooler 150, and the water pouring device 160, and is supplied to the room.
  • the present invention monitors whether the water supply device 160 is normally supplying the water, which is a heat exchange medium. Furthermore, it is also monitored whether the heat exchange medium for heating the air for regeneration in the regenerator 130 is normally supplied.
  • Each monitoring result is displayed remotely on the wired / wireless control remote controller or other alarms are immediately informed to the user or administrator. That is, it generates an alarm signal (or error code). This allows the dehumidification air conditioner to be paused or for quick maintenance and repair.
  • the evaporative cooler 150 may not cool the indoor supply air, and if the regenerator 130 does not regenerate the dehumidifier 120, the cooling efficiency of the indoor supply air is greatly reduced.
  • the water in the pouring device 160 is a constant or time constant, and this water corresponds to the heat exchange medium monitored by the present invention.
  • Water such as water and time, is also a heat exchange medium because it heat exchanges in the process of cooling the air.
  • regenerator 130 may be used in various types such as a heater type regenerator 130 using a heater or a hot water type regenerator 130 using a hot water coil, each type of regenerator 130 needs to be monitored. Are different.
  • the hot water circulating the hot water coil corresponds to the heat exchange medium monitored by the present invention.
  • the regeneration air passes through the hot water coil and exchanges heat, so hot water is also a heat exchange medium.
  • the present invention is the first temperature sensor (S1), the second temperature sensor (S2) so as to monitor whether the water is normally sprayed from the water injection device 160 is formed in the evaporative cooler 150 as described above And a controller (not shown).
  • the first temperature sensor S1 is installed at the output side of the dehumidifier 120 to detect the temperature of the air passing through the dehumidifier 120
  • the second temperature sensor S2 is installed at the output side of the evaporative cooler 150 to evaporate. The temperature of the air passing through the cooler 150 is sensed.
  • the control unit compares the temperature difference sensed by the first temperature sensor S1 and the second temperature sensor S2 and does not supply water normally when the water supply unit 160 is smaller than the set value (depending on the cooling set temperature). To judge.
  • the wet channel of the evaporative cooler 150 may not be formed incompletely, or the indoor supply air passing through the evaporative cooler 150 may not be sufficiently cooled.
  • the difference becomes smaller compared to the temperature sensed by the first temperature sensor S1, so that the water supply device 160 It can be determined that water is not supplied normally.
  • the present invention can monitor and inform whether water is being supplied normally from the water supply device 160 only by adding the first temperature sensor S1 and the second temperature sensor S2 without any special design change of the pre-designed regenerative dehumidification air conditioner. do.
  • the present invention further includes a third temperature sensor (S3) for sensing the temperature of the regenerator 130, the above-described control unit is the regenerator 130 when the temperature detected by the third temperature sensor (S3) is lower than the set value ) Is not working properly.
  • S3 third temperature sensor
  • a third temperature sensor S3 may be installed near the heater to monitor whether the heat is normally generated.
  • regenerator 130 is a hot water type regenerator 130, as shown in FIG. 3, a third temperature sensor S3 is attached to a hot water pipe P connected to the hot water coil inside the regenerator 130. Monitor the hot water temperature. At this time, since the electronic open-close valve (SV) is installed in the hot water pipe (P), the result is received from the controller only when hot water is supplied.
  • SV electronic open-close valve
  • the apparatus may further include a fourth temperature sensor S4 installed at an input side of the dehumidifier 120 to sense the temperature of the indoor supply air supplied to the dehumidifier 120, and the controller may further include a fourth temperature sensor S4.
  • the controller may further include a fourth temperature sensor S4.
  • the fourth temperature sensor S4 is installed between the first damper D1 and the suction side of the blower 110 to sense the temperature of the air supplied to the dehumidifier 120, and the first temperature sensor S1 described above. ) Is installed at the output side of the dehumidifier 120 to sense the temperature of the air passing through the dehumidifier 120.
  • the regenerator 130 may be determined that the heat of the heater, which is the heat exchange medium, and the hot water of the hot water coil are not normally supplied. have.
  • the present invention enables to monitor and inform whether the regenerator 130 is in normal operation by adding the third temperature sensor S3 and the fourth temperature sensor S4 without any special design change of the existing designed regenerative dehumidifying air conditioner. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은 열교환 매체 감시 기능을 갖는 제습 냉방기에 관한 것으로, 특히 복수개의 온도센서를 이용하여 실내 공급공기의 냉각에 사용되는 열교환 매체(예: 상수)와 제습기의 재생에 사용되는 열교환 매체(예: 온수)의 공급 여부를 감시하여 알릴 수 있는 열교환 매체 감시 기능을 갖는 제습 냉방기에 관한 것이다.

Description

열교환 매체 감시 기능을 갖는 제습 냉방기
본 발명은 열교환 매체 감시 기능을 갖는 제습 냉방기에 관한 것으로, 더욱 상세하게는 실내 공급공기의 냉각에 사용되는 열교환 매체(예: 상수)와 제습기의 재생에 사용되는 열교환 매체(예: 온수)의 공급 여부를 감시하여 알릴 수 있는 열교환 매체 감시 기능을 갖는 제습 냉방기에 관한 것이다.
건물 등의 냉방시 냉매를 이용한 압축식 냉동사이클 시스템(예: 에어콘, 열 펌프 등)을 사용하면 하절기 전력 사용량 증가, 냉매에 의한 오존층 파괴 및 지구 온난화 문제의 주요 원인이 된다.
이에, 최근에는 한국등록특허 제10-0947616호 등에서 재생형 증발식 냉방장치가 제안되고 있다. 증발식 냉방장치는 물의 증발 잠열을 이용하여 공기를 냉각시키므로 위와 문제점들을 해결한다.
이러한 증발식 냉방장치에는 실내 공급공기에 직접 물을 분사하는 직접 증발식과, 물을 분사하여 온도가 낮아진 공기 또는 온도가 낮아진 물과 실내 공급공기를 열교환 시켜 저온을 얻는 간접 증발식 및 상기 직접 증발식과 간접 증발식을 조합한 방식이 있다.
그러나, 증발식 냉방장치는 단수나 펌프의 고장 등으로 물이 공급되지 않으면 증발잠열 효과의 감소로 냉방능력이 저하되므로 물의 공급 여부를 판별할 수 있어야 하고, 아울러 물이 공급되지 않으면 사용자에게 알려 줄 수 있어야 한다.
또한, 계속된 냉방을 위해서는 제습기에 흡착/흡수된 수분을 날려보내는 재생이 필요한데, 대표적으로 재생 목적으로 공급되는 것이 온수로서 이 온수가 공급되지 않거나 온도가 낮으면 역시 원하는 냉각 효과를 얻을 수 없다.
즉, 물과 온수는 냉방기의 성능을 결정짓는 중요한 열교환 매체로서 이중 어느 하나라도 공급되지 않으면 냉방능력의 감소 및 냉방효과 대비 동력의 증가로 기대했던 하절기 동력 감소의 목표를 달성하기 어렵다.
본 발명은 전술한 바와 같은 문제점을 해결하기 위해 제안된 것으로, 열교환 매체의 일종으로서 실내 공급공기의 냉각에 사용되는 상수(시수)와 제습기의 재생에 사용되는 온수의 공급 여부를 각각 감시하여 알릴 수 있는 열교환 매체 감시 기능을 갖는 제습 냉방기를 제공하고자 한다.
이를 위해, 본 발명에 따른 열교환 매체 감시 기능을 갖는 제습 냉방기는 냉방 공간으로 공기를 공급하는 송풍기와; 상기 송풍기에 의해 공급되는 공기에 포함된 습기를 제거하는 제습기와; 상기 제습기에 흡수된 습기가 제거되도록 열을 가하는 재생기와; 물의 증발 잠열에 의해 상기 제습기를 통과한 공기의 온도를 낮추는 증발 냉각기와; 상기 증발 냉각기에 상기 물을 분사하는 주수장치와; 상기 제습기의 출력측에 설치되어 상기 제습기를 통과한 공기의 온도를 감지하는 제1 온도센서와; 상기 증발 냉각기의 출력측에 설치되어 상기 증발 냉각기를 통과한 공기의 온도를 감지하는 제2 온도센서; 및 상기 제1 온도센서와 제2 온도센서에서 감지한 온도차를 비교하여 설정값보다 낮은 경우 상기 주수장치에서 상기 물을 정상적으로 공급하지 않는 것으로 판단하는 제어부;를 포함하는 것을 특징으로 한다.
이때, 상기 재생기의 열교환 매체의 온도를 감지하는 제3 온도센서를 더 포함하며, 상기 제어부는 상기 제3 온도센서에서 감지한 온도가 설정값보다 낮은 경우 상기 재생기가 정상적으로 작동하지 않는 것으로 판단하는 것이 바람직하다.
또한, 상기 재생기는 외기와 온수의 열교환을 통해 상기 외기의 온도를 높이고, 상기 온도가 높아진 외기를 상기 제습기로 공급하는 온수식 재생기이고, 상기 제3 온도센서는 열교환 매체인 상기 온수를 공급하는 온수 배관에 설치되며, 상기 제어부는 상기 제3 온도센서에서 감지한 온도가 설정값보다 낮은 경우 상기 온수가 공급되지 않거나 설정 온도보다 낮은 것으로 판단하는 것이 바람직하다.
또한, 상기 제습기의 입력측에 설치되어 상기 제습기로 공급되는 공기의 온도를 감지하는 제4 온도센서를 더 포함하되, 상기 제어부는 상기 제4 온도센서와 상기 제1 온도센서에서 감지한 온도차를 비교하여 설정값보다 낮은 경우에는 상기 열교환 매체가 정상적으로 공급되지 않는 것으로 판단하는 것이 바람직하다.
또한, 상기 제어부는 상기 주수장치에서 분사되는 물이나 상기 재생기로 공급되는 열교환 매체가 정상적으로 공급되지 않는 것으로 판단시 경보 신호를 발생시키는 것이 바람직하다.
이상과 같은 본 발명에 의하면 특히 실내 공급공기의 냉각에 사용되는 상수(시수)와 제습기의 재생에 사용되는 온수의 공급 여부를 복수개의 온도센서를 이용하여 각각 감시하여 알릴 수 있다. 따라서, 제습 냉방기의 냉방능력 저하를 방지하고, 냉방효과 대비 동력의 증가를 방지함으로써 하절기 동력 감소의 목표를 달성할 수 있게 한다.
도 1은 본 발명에 따른 열교환 매체 감시 기능을 갖는 제습 냉방기의 냉방 상태를 나타낸 사시도이다.
도 2는 본 발명에 따른 열교환 매체 감시 기능을 갖는 제습 냉방기의 환기 상태를 나타낸 사시도이다.
도 3은 본 발명에 따른 열교환 매체 감시 기능을 갖는 제습 냉방기의 정면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 열교환 매체 감시 기능을 갖는 제습 냉방기에 대해 상세히 설명한다.
도 1 및 도 2에 도시된 바와 같이, 본 발명에 따른 열교환 매체 감시 기능을 갖는 제습 냉방기(100)는 물의 증발 잠열에 의해 실내 공급공기를 냉각시킨 후 되돌려 줌으로써 해당 실내 공간을 냉방한다.
본 발명이 적용가능한 제습 냉방기로는 일 실시예로서 송풍기(110), 제습기(120), 재생기(130), 연결덕트(140), 증발 냉각기(150) 및 주수장치(160)를 포함한다. 또한, 이상과 같은 구성들 간에 공기가 유동할 수 있도록 제1 댐퍼(D1) 내지 제6 댐퍼(D6)를 포함한다.
특히 본 발명은 실내 공급공기의 냉각에 사용되는 열교환 매체(예: 상수)와 제습기의 재생에 사용되는 열교환 매체(예: 온수)의 공급여부를 감시하도록 제1 온도센서(S1) 내지 제4 온도센서(S4)를 포함한다. 다만, 도 1 및 도 2에서는 센서 자체의 도시를 생략하고 센서의 설치 위치로 대신한다.
송풍기(110)는 냉방 공간(즉, 실내 공간)으로 실내 공급공기를 강제 송풍하는 것으로, 실내 공급공기가 강제 송풍되는 과정에서 냉각된 후 실내 공간으로 공급된다. 이러한 송풍기(110)는 보통 제습 냉방기의 하단부에 설치된다.
제습기(120)는 송풍기(110)의 공기 배출측에 설치되어 송풍 중인 실내 공급공기에 포함된 습기를 제거한다. 따라서, 냉방기에서 물의 증발 잠열에 의한 냉방효율을 높인다.
대표적인 제습기(120)로는 제습 로터가 있다. 제습 로터의 경우 일측부에서는 실내 공급공기에 포함된 습기의 제거가 이루어지고, 타측부에서는 당해 제습 로터에 흡수 또는 흡착된 습기를 날려보내는 재생이 이루어지며, 제습 로터의 회전에 의해 이상과 같은 습기 제거와 재생이 반복된다.
재생기(130)는 상기 제습기(120)에 흡수 또는 흡착된 습기가 제거되도록 열을 가하여 재생이 이루어지게 한다. 재생된 부분의 제습기(120)는 흡습 위치로 회전하여 계속해서 실내 공급공기에 포함된 습기를 제거한다.
이러한 재생기(130)로는 그 내부에 히터나 온수코일 등을 구비한 다양한 타입의 재생기(130)가 사용될 수 있다.
예컨대, 히터를 사용하는 경우에는 전기를 공급받아 발열하고 이를 통해 재생용 공기를 가열한다. 히터에 의해 가열된 공기는 제습기(120)의 습기를 제거한다.
반면, 온수코일을 사용하는 경우에는 온수를 공급받아 재생용 공기를 가열한다. 재생용 공기는 온수가 순환중인 온수코일을 통과하면서 가열되고, 가열된 재생용 공기는 제습기(120)의 습기를 제거한다.
따라서, 히터의 경우에는 전기 공급에 의한 발열 상태를 감시하는 것이 본 발명의 열교환 매체 공급 감시에 해당하고, 온수코일의 경우에는 적정한 온도의 온수 공급 여부를 감시하는 것이 본 발명의 열교환 매체 공급 감시에 해당한다.
연결덕트(140)는 실내 공급공기(예: 냉방시), 재생용 공기(예: 재생시) 및 실외 공기(예: 환기시)의 유동을 각각 안내하는 것으로, 내부에는 공기 유동 통로가 각 목적에 맞게 형성되어 있다.
이러한 연결덕트(140)는 일 예로 재생기(130)와 증발 냉각기(150) 사이에 설치되어 이상과 같은 각각의 공기 유동을 안내하며, 그에 대한 설명은 이하에서 상세히 한다.
증발 냉각기(150)는 물의 증발 잠열에 의해 제습기(120)를 통과한 공기의 온도를 낮춘다.
이러한 증발 냉각기(150)는 그 상부에 설치된 주수장치(160)로부터 물을 공급받아 습채널을 형성하며, 저부 일측에는 물을 수집 및 배출하는 배출구가 설치되어 있다.
이와 같은 습채널을 통과하면서 실내 공급공기가 냉각되고, 냉각된 공기를 실내 공간으로 공급하여 냉방이 이루어진다.
주수장치(160)는 증발 냉각기(150)에 물을 분사하는 것으로, 분사된 물에 의해 증발 냉각기(150)에 습채널이 형성되게 한다. 이와 같은 주수장치(160)에서 정상적으로 물을 공급하지 않으면 실내 공급공기의 냉각이 이루어지지 않거나 미비하게 된다.
따라서, 주수장치(160)에서 물(보통, '상수'나 '시수'라 함)을 공급하는지 감시하는 것이 매우 중요하며, 본 발명은 이러한 열교환 매체의 하나에 해당하는 물의 공급을 감시한다.
제1 댐퍼(D1)는 흡입구로서 송풍기(110)의 일측에 설치된다. 제1 댐퍼(D1)를 통해 실내 배출공기가 흡입되고, 흡입된 실내 배출공기는 실내 공급공기로서 다시 송풍된다.
제2 댐퍼(D2)는 흡입구로서 연결덕트(140)에 연결된다. 제2 댐퍼(D2)를 통해 실외 공기가 흡입되고, 흡입된 실외 공기는 제습기(120)의 재생용 공기로 사용된다.
제3 댐퍼(D3)는 배출구로서 송풍기(110)의 일측에 설치된다. 상기 제2 댐퍼(D2)를 통해 흡입된 실외 공기가 당해 제3 댐퍼(D3)를 통해 다시 실외로 배출된다.
제4 댐퍼(D4)는 흡입구로서 연결덕트(140)에 연결된다. 환기시 제4 댐퍼(D4)를 통해 실내 배출공기를 흡입하고, 흡입된 실내 배출공기는 상기 제3 댐퍼(D3)를 통해 실외로 배출된다.
제5 댐퍼(D5)는 흡기구로서 송풍기(110)의 타측에 설치된다. 환기시 제5 댐퍼(D5)를 통해 흡입된 신선한 실외 공기가 송풍기(110)를 통해 실내 공간으로 송풍된다.
제6 댐퍼(D6)는 필요시 추가되는 것으로 추기 댐퍼이다. 이러한 추기 댐퍼는 공지된 바와 같이 다양한 목적의 추기를 수행한다. 예컨대, 제습기(120)의 용량에 따라 제1 댐퍼(D1)와 제5 댐퍼(D5)를 통해 흡입된 실내 공기와 실외 공기의 일부를 추기하여 외부로 배출시킨다.
도 1에는 실내 공급공기의 냉각과 제습기(120)에서의 재생을 위한 공기 유동 상태가 도시되어 있다.
도시된 바와 같이 실내 배출공기는 제1 댐퍼(D1)를 통해 유입된 후 송풍기(110)의 흡입측으로 공급된다. 다음, 송풍기(110)에 의해 송풍된 실내 공급공기는 제습기(120)의 일측(즉, 재생이 완료된 부분), 증발 냉각기(150) 및 주수장치(160)를 순차 통과한 후 상측으로 배출된다.
또한, 이상과 같이 냉방 동작이 수행됨과 동시에 혹은 설정된 일정 시간마다 제2 댐퍼(D2)를 통해 실외 공기가 유입된 후 연결덕트(140)로 공급된다. 다음, 연결덕트(140)에서 배출된 재생용 공기는 재생기(130)에서 가열되고 제습기(120)의 타측(즉, 흡습되어 재생이 필요한 부분)을 재생시킨다. 재생을 마친 실외 공기는 제3 댐퍼(D3)를 통해 실외로 배출된다.
도 2에는 실내 공기를 환기시킬 때의 공기 유동 상태가 도시되어 있다.
도시된 바와 같이, 제4 댐퍼(D4)를 통해 혼탁한 실내 배출공기가 흡입되고, 흡입된 실내 배출공기는 제3 댐퍼(D3)를 통해 실외로 배출된다. 그와 동시에 제5 댐퍼(D5)를 통해 신선한 실외 공기가 흡입된 후 송풍기(110), 제습기(120), 증발 냉각기(150) 및 주수장치(160)를 순차 통과한 후 실내로 공급된다.
한편, 본 발명은 주수장치(160)에서 열교환 매체인 물을 정상적으로 공급하고 있는지 감시한다. 나아가, 재생기(130)에서 재생용 공기를 가열하는 열교환 매체가 정상적으로 공급되는지도 감시한다.
각각의 감시 결과는 유/무선 제어용 리모콘에 원격으로 표시되거나 그외 알람 등을 이용함으로써 사용자나 관리자에게 즉각적으로 알린다. 즉, 경보 신호(혹은 에러 코드)를 발생시킨다. 이를 통해 제습 냉방기를 일시 정지시키거나 신속한 유지 및 보수를 가능하게 한다.
주수장치(160)에서 물이 공급되지 않으면 증발 냉각기(150)가 실내 공급공기를 냉각시킬 수 없고, 재생기(130)에서 제습기(120)를 재생시키지 못하면 실내 공급공기의 냉각 효율이 월등히 저하된다.
따라서, 이들 중 어느 하나라도 정상적으로 작동하지 않으면 제습 냉방기의 냉방능력이 저하되거나, 냉방효과 대비 동력이 증가되므로 하절기 동력 감소의 목표를 달성할 수 없다.
주수장치(160)의 물은 상수나 시수가 보통이고 이러한 물이 본 발명에서 감시하는 열교환 매체에 해당한다. 상수나 시수와 같은 물도 공기를 냉각시키는 과정에서 열교환을 하므로 열교환 매체에 해당함은 당연하다.
다만, 재생기(130)는 히터를 사용하는 히터식 재생기(130)나 온수코일을 사용하는 온수식 재생기(130) 등 다양한 타입의 것이 사용될 수 있으므로 각 타입의 재생기(130)마다 감시가 필요한 열교환 매체가 서로 다르다.
예컨대, 히터식 재생기(130)를 사용하는 경우라면 전기 공급 여부 혹은 히터의 발열 상태가 본 발명에서 감시하는 열교환 매체에 해당한다. 최종적으로 히터에서 발생하는 열이 재생용 공기와 열교환을 하므로 이들 역시 열교환 매체로 볼 수 있다.
반면, 온수식 재생기(130)를 사용하는 경우라면 온수코일을 순환하는 온수가 본 발명에서 감시하는 열교환 매체에 해당한다. 온수가 유동하고 있을 때 재생용 공기가 온수코일을 통과하며 열교환 하므로 온수 역시 열교환 매체에 해당함은 당연하다.
한편, 본 발명은 이상과 같이 주수장치(160)에서 물이 정상적으로 분사되어 증발 냉각기(150)에서 습채널이 형성되고 있는지 감시할 수 있도록 제1 온도센서(S1), 제2 온도센서(S2) 및 제어부(미도시)를 포함한다.
제1 온도센서(S1)는 제습기(120)의 출력측에 설치되어 제습기(120)를 통과한 공기의 온도를 감지하고, 제2 온도센서(S2)는 증발 냉각기(150)의 출력측에 설치되어 증발 냉각기(150)를 통과한 공기의 온도를 감지한다.
제어부는 제1 온도센서(S1)와 제2 온도센서(S2)에서 감지한 온도차를 비교하여 설정값(냉방 설정 온도에 따라 달라짐)보다 작은 경우 주수장치(160)에서 물을 정상적으로 공급하지 않는 것으로 판단한다.
주수장치(160)에서 정상적인 물 공급이 이루어지지 않으면 증발 냉각기(150)의 습채널이 불완전하게 형성되거나 형성되지 않아서 증발 냉각기(150)를 통과한 실내 공급공기가 충분히 냉각되지 않는다.
따라서, 제2 온도센서(S2)에서 감지한 실내 공급공기의 온도가 냉방에 적합할 정도로 충분히 낮지 않으면 제1 온도센서(S1)에서 감지한 온도와 비교하여 차이가 작게 되므로, 주수장치(160)에서 물이 정상 공급되지 않는 것으로 판단할 수 있다.
이를 통해 본 발명은 기 설계된 재생형 제습 냉방기의 특별한 설계변경 없이 제1 온도센서(S1)와 제2 온도센서(S2)의 추가만으로 주수장치(160)에서 물이 정상 공급중인지 감시하고 알릴 수 있게 한다.
또한, 본 발명은 재생기(130)의 온도를 감지하는 제3 온도센서(S3)를 더 포함하고, 상술한 제어부는 제3 온도센서(S3)에서 감지한 온도가 설정값보다 낮은 경우 재생기(130)가 정상적으로 작동하지 않는 것으로 판단한다.
이상에서 설명한 바와 같이 재생기(130)가 그 내부에 히터를 탑재한 경우에는 히터 근처에 제3 온도센서(S3)를 설치하여 정상적으로 발열중인지 감시하면 된다.
특히, 재생기(130)가 온수식 재생기(130)인 경우에는 도 3에 도시된 바와 같이 상기 재생기(130) 내부의 온수코일에 연결된 온수 배관(P)에 제3 온도센서(S3)를 부착하여 온수 온도를 감시한다. 이때, 온수 배관(P)에는 전자개폐밸브(SV)가 설치되어 있으므로 온수 공급시에만 그 결과를 제어부에서 입력받는다.
또한, 제습기(120)의 입력측에 설치되어 당해 제습기(120)로 공급되고 있는 실내 공급공기의 온도를 감지하는 제4 온도센서(S4)를 더 포함하고, 제어부는 제4 온도센서(S4)와 제1 온도센서(S1)에서 감지한 온도차를 비교하여 설정값보다 작은 경우에는 온수가 공급되지 않거나 설정 온도보다 낮은 것으로 판단한다.
제4 온도센서(S4)는 일 예로 제1 댐퍼(D1)와 송풍기(110)의 흡입측 사이에 설치되어 제습기(120)로 공급되는 공기의 온도를 감지하고, 상술한 제1 온도센서(S1)는 제습기(120)의 출력측에 설치되어 제습기(120)를 통과한 공기의 온도를 감지한다.
따라서, 재생기(130)가 정상적으로 작동하지 않아서 제습기(120)를 통과하기 전과 통과한 후의 공기의 온도차가 설정값보다 작으면 열교환 매체인 히터의 열과 온수코일의 온수가 정상적으로 공급되지 않는 것으로 판단할 수 있다.
이를 통해 이를 통해 본 발명은 기존 설계된 재생형 제습 냉방기의 특별한 설계변경 없이 제3 온도센서(S3)와 제4 온도센서(S4)의 추가만으로 재생기(130)가 정상 동작중인지 감시하고 알릴 수 있게 한다.
이상, 본 발명의 특정 실시예에 대하여 상술하였다. 그러나, 본 발명의 사상 및 범위는 이러한 특정 실시예에 한정되는 것이 아니라, 본 발명의 요지를 변경하지 않는 범위 내에서 다양하게 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이해할 것이다.
따라서, 이상에서 기술한 실시예들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이므로, 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 하며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.

Claims (5)

  1. 냉방 공간으로 공기를 공급하는 송풍기(110)와;
    상기 송풍기(110)에 의해 공급되는 공기에 포함된 습기를 제거하는 제습기(120)와;
    상기 제습기(120)에 흡수된 습기가 제거되도록 열을 가하는 재생기(130)와;
    물의 증발 잠열에 의해 상기 제습기(120)를 통과한 공기의 온도를 낮추는 증발 냉각기(150)와;
    상기 증발 냉각기(150)에 상기 물을 분사하는 주수장치(160)와;
    상기 제습기(120)의 출력측에 설치되어 상기 제습기(120)를 통과한 공기의 온도를 감지하는 제1 온도센서(S1)와;
    상기 증발 냉각기(150)의 출력측에 설치되어 상기 증발 냉각기(150)를 통과한 공기의 온도를 감지하는 제2 온도센서(S2); 및
    상기 제1 온도센서(S1)와 제2 온도센서(S2)에서 감지한 온도차를 비교하여 설정값보다 작은 경우 상기 주수장치(160)에서 상기 물을 정상적으로 공급하지 않는 것으로 판단하는 제어부;를 포함하는 것을 특징으로 하는 열교환 매체 감시 기능을 갖는 제습 냉방기.
  2. 제1항에 있어서,
    상기 재생기(130)의 열교환 매체의 온도를 감지하는 제3 온도센서(S3)를 더 포함하며,
    상기 제어부는 상기 제3 온도센서(S3)에서 감지한 온도가 설정값보다 낮은 경우 상기 재생기(130)가 정상적으로 작동하지 않는 것으로 판단하는 것을 특징으로 하는 열교환 매체 감시 기능을 갖는 제습 냉방기.
  3. 제2항에 있어서,
    상기 재생기(130)는 외기와 온수의 열교환을 통해 상기 외기의 온도를 높이고, 상기 온도가 높아진 외기를 상기 제습기(120)로 공급하는 온수식 재생기(130)이고,
    상기 제3 온도센서(S3)는 열교환 매체인 상기 온수를 공급하는 온수 배관(P)에 설치되며,
    상기 제어부는 상기 제3 온도센서(S3)에서 감지한 온도가 설정값보다 낮은 경우 상기 온수가 공급되지 않거나 설정 온도보다 낮은 것으로 판단하는 것을 특징으로 하는 열교환 매체 감시 기능을 갖는 제습 냉방기.
  4. 제2항 또는 제3항에 있어서,
    상기 제습기(120)의 입력측에 설치되어 상기 제습기(120)로 공급되는 공기의 온도를 감지하는 제4 온도센서(S4)를 더 포함하되,
    상기 제어부는 상기 제4 온도센서(S4)와 상기 제1 온도센서(S1)에서 감지한 온도차를 비교하여 설정값보다 작은 경우에는 상기 열교환 매체가 정상적으로 공급되지 않는 것으로 판단하는 것을 특징으로 하는 열교환 매체 감시 기능을 갖는 제습 냉방기.
  5. 제4항에 있어서,
    상기 제어부는 상기 주수장치(160)에서 분사되는 물이나 상기 재생기(130)로 공급되는 열교환 매체가 정상적으로 공급되지 않는 것으로 판단시 경보 신호를 발생시키는 것을 특징으로 하는 열교환 매체 감시 기능을 갖는 제습 냉방기.
PCT/KR2013/008358 2013-02-21 2013-09-16 열교환 매체 감시 기능을 갖는 제습 냉방기 WO2014129713A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0018684 2013-02-21
KR1020130018684A KR101258390B1 (ko) 2013-02-21 2013-02-21 열교환 매체 감시 기능을 갖는 제습 냉방기

Publications (1)

Publication Number Publication Date
WO2014129713A1 true WO2014129713A1 (ko) 2014-08-28

Family

ID=48443826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008358 WO2014129713A1 (ko) 2013-02-21 2013-09-16 열교환 매체 감시 기능을 갖는 제습 냉방기

Country Status (2)

Country Link
KR (1) KR101258390B1 (ko)
WO (1) WO2014129713A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6147537B2 (ja) * 2013-03-28 2017-06-14 オルガノ株式会社 空気調和装置
KR101825359B1 (ko) * 2015-12-18 2018-02-05 주식회사 경동나비엔 일체형 증발 냉각기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804306B1 (ko) * 2007-05-04 2008-02-22 웅진코웨이주식회사 가습 및 냉난방이 가능한 공기청정기
KR20100026351A (ko) * 2008-08-29 2010-03-10 엘지전자 주식회사 수냉식 공기조화기 및 그 제어방법
KR20110092773A (ko) * 2010-02-10 2011-08-18 (주)귀뚜라미 하이브리드 냉방 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236844A (ja) 2009-03-31 2010-10-21 Fuji Koki Corp 補助冷却装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804306B1 (ko) * 2007-05-04 2008-02-22 웅진코웨이주식회사 가습 및 냉난방이 가능한 공기청정기
KR20100026351A (ko) * 2008-08-29 2010-03-10 엘지전자 주식회사 수냉식 공기조화기 및 그 제어방법
KR20110092773A (ko) * 2010-02-10 2011-08-18 (주)귀뚜라미 하이브리드 냉방 시스템

Also Published As

Publication number Publication date
KR101258390B1 (ko) 2013-04-30

Similar Documents

Publication Publication Date Title
WO2011052904A2 (ko) 전열교환형 환기장치 및 그 제어방법
CN102105033B (zh) 货柜式数据中心的环境调节***及调节方法
WO2012148111A2 (ko) 냉각유체의 증발냉각 장치 및 방법
CN102388684A (zh) 电子设备机柜
CN103080658B (zh) 空气调节***
WO2015102247A1 (ko) 서버실 냉각 장치, 외기 도입용 필터 모듈 및 이를 구비하는 데이터 센터의 공조 시스템
WO2005045325A1 (en) Air conditioner having heat/humidity exchang means and control method of indoor temperature/humidity control system
WO2014129713A1 (ko) 열교환 매체 감시 기능을 갖는 제습 냉방기
WO2013168886A1 (ko) 전산실 랙용 공기조화장치
CN105509161B (zh) 一种空气源双工况分体空调器及运行方法
CN101153731B (zh) 传热交换器及其控制方法
KR101258391B1 (ko) 동파방지 기능을 갖는 제습 냉방기
CN207252132U (zh) 计算机机房分散式散热器
KR102374216B1 (ko) 열회수 기능을 구비한 제습 환기시스템
KR20210140987A (ko) 히트펌프를 활용한 2단 제습시스템
US10502437B2 (en) Dehumidifying and cooling apparatus
KR200447885Y1 (ko) 공조기 배기열 회수 장치
TW202217220A (zh) 機櫃冷卻系統
CN113966142A (zh) 一种基于热管换热器和空调的机房制冷机柜及其控制方法
JP2014047962A (ja) 空調システム
JP5705015B2 (ja) 空調システム及び建物
CN202350192U (zh) 气流空调一体化温控装置及***
CN107388476B (zh) 一种设备检测方法、装置及设备
KR20140026004A (ko) 네트워크를 이용한 제습 냉방 장치 및 이 장치의 통합 관리 시스템
JP2017172886A (ja) 空調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876007

Country of ref document: EP

Kind code of ref document: A1