WO2014128969A1 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
WO2014128969A1
WO2014128969A1 PCT/JP2013/054781 JP2013054781W WO2014128969A1 WO 2014128969 A1 WO2014128969 A1 WO 2014128969A1 JP 2013054781 W JP2013054781 W JP 2013054781W WO 2014128969 A1 WO2014128969 A1 WO 2014128969A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
purification catalyst
exhaust purification
exhaust gas
catalyst
Prior art date
Application number
PCT/JP2013/054781
Other languages
French (fr)
Japanese (ja)
Inventor
三宅 照彦
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/054781 priority Critical patent/WO2014128969A1/en
Priority to US14/764,110 priority patent/US9453445B2/en
Priority to JP2015501231A priority patent/JP5880776B2/en
Priority to EP13876028.5A priority patent/EP2960455B1/en
Priority to CN201380073518.1A priority patent/CN105026715B/en
Publication of WO2014128969A1 publication Critical patent/WO2014128969A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/085Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1612SOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • An exhaust purification catalyst is disposed in the engine exhaust passage and a hydrocarbon supply valve is disposed in the engine exhaust passage upstream of the exhaust purification catalyst.
  • the exhaust purification catalyst has a predetermined concentration of hydrocarbons flowing into the exhaust purification catalyst. When it is vibrated with an amplitude within a range and a period within a predetermined range, it has the property of reducing NO x contained in the exhaust gas, and when the vibration period of the hydrocarbon concentration is made longer than a predetermined range It has the property that the amount of occluded NO x contained in the exhaust gas increases, and NO x contained in the exhaust gas is reduced by injecting hydrocarbons with a predetermined injection cycle from the hydrocarbon supply valve.
  • the first NO x purification method When releasing SO x from the exhaust purification catalyst, it is necessary to raise the temperature of the exhaust purification catalyst to the SO x release temperature by intermittently enriching the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • the first NO x purification method can obtain a high NO x purification rate even during engine high load operation where the temperature of the exhaust purification catalyst becomes high, the first NO x purification method during engine high load operation. the NO x purification action by is performed. However, smoke is likely to occur during high engine load operation. Therefore, if the NO x purification action by the first NO x purification method is continuously performed, the deposit made of carbonized fine particles or the like is formed on the upstream end face of the exhaust purification catalyst. It will gradually accumulate.
  • the exhaust purification catalyst is disposed in the engine exhaust passage
  • the hydrocarbon supply valve is disposed in the engine exhaust passage upstream of the exhaust purification catalyst
  • the noble metal catalyst is disposed on the exhaust gas flow surface of the exhaust purification catalyst.
  • a basic exhaust gas flow surface portion is formed around the noble metal catalyst that is supported, and the exhaust purification catalyst has an amplitude within a predetermined range and a predetermined concentration of hydrocarbons flowing into the exhaust purification catalyst. When it is vibrated with a period within a predetermined range, it has the property of reducing NO x contained in the exhaust gas, and when the vibration period of the hydrocarbon concentration is longer than a predetermined range, it is contained in the exhaust gas.
  • in-cylinder rich control for generating a rich air-fuel ratio combustion gas in the cylinder, as rich control for enriching the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst
  • in-cylinder rich control When exhaust rich control that makes the exhaust gas air-fuel ratio rich by supplying hydrocarbons from a hydrocarbon feed valve is selectively used and SO x is to be released from the exhaust purification catalyst, first, in-cylinder rich control is performed.
  • An exhaust purification device for an internal combustion engine is provided in which the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst is made rich, and then the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst is made rich by exhaust rich control.
  • FIG. 1 is an overall view of a compression ignition type internal combustion engine.
  • FIG. 2 is a view schematically showing the surface portion of the catalyst carrier.
  • FIG. 3 is a view for explaining an oxidation reaction in the exhaust purification catalyst.
  • FIG. 4 is a diagram showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 5 is a diagram showing the NO x purification rate R1.
  • 6A and 6B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
  • 7A and 7B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
  • FIG. 8 is a diagram showing a change in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 9 is a diagram showing the NO x purification rate R2.
  • FIG. 10 is a graph showing the relationship between the hydrocarbon injection cycle ⁇ T and the NO x purification rate R1.
  • 11A and 11B are maps showing the injection amount of hydrocarbons and the like.
  • FIG. 12 is a diagram showing NO x release control.
  • FIG. 13 is a diagram showing a map of the exhausted NO x amount NOXA.
  • FIG. 14 shows the fuel injection timing.
  • FIG. 15 is a diagram showing a map of the additional fuel amount WR.
  • FIG. 16 is a diagram showing the NO x purification rates R1 and R2.
  • 17A and 17B are views for explaining the temperature of the exhaust purification catalyst bed.
  • FIG. 18 is a diagram showing a time chart of the NO x purification control.
  • FIG. 10 is a graph showing the relationship between the hydrocarbon injection cycle ⁇ T and the NO x purification rate R1.
  • 11A and 11B are maps showing the injection amount of hydrocarbon
  • FIG. 19 is a time chart of the SO x purification control.
  • FIG. 20 is a flowchart for performing NO x purification.
  • FIG. 21 is a flowchart for performing SO x release control.
  • 22A and 22B are diagrams showing engine operation regions in which in-cylinder rich control and exhaust rich control can be performed, respectively.
  • FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
  • 1 is an engine body
  • 2 is a combustion chamber of each cylinder
  • 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber
  • 4 is an intake manifold
  • 5 is an exhaust manifold.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8.
  • a throttle valve 10 driven by an actuator is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6.
  • the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the inlet of the exhaust purification catalyst 13 via the exhaust pipe 12.
  • the exhaust purification catalyst 13 is composed of a NOx storage catalyst.
  • the outlet of the exhaust purification catalyst 13 is connected to a particulate filter 14, and the exhaust pipe 12 upstream of the exhaust purification catalyst 13 is used to supply hydrocarbons consisting of light oil and other fuels used as fuel for a compression ignition internal combustion engine.
  • a hydrocarbon feed valve 15 is arranged. In the embodiment shown in FIG. 1, light oil is used as the hydrocarbon supplied from the hydrocarbon supply valve 15.
  • the present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a lean air-fuel ratio.
  • hydrocarbons made of gasoline or other fuel used as fuel for the spark ignition type internal combustion engine are supplied from the hydrocarbon supply valve 15.
  • the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 16, and an electronically controlled EGR control valve 17 is disposed in the EGR passage 16.
  • EGR exhaust gas recirculation
  • a cooling device 18 for cooling the EGR gas flowing in the EGR passage 16 is disposed.
  • the engine cooling water is guided into the cooling device 18, and the EGR gas is cooled by the engine cooling water.
  • Each fuel injection valve 3 is connected to a common rail 20 through a fuel supply pipe 19, and this common rail 20 is connected to a fuel tank 22 through an electronically controlled fuel pump 21 having a variable discharge amount.
  • the fuel stored in the fuel tank 22 is supplied into the common rail 20 by the fuel pump 21, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 through each fuel supply pipe 19.
  • the electronic control unit 30 comprises a digital computer and is connected to each other by a bidirectional bus 31.
  • ROM read only memory
  • RAM random access memory
  • CPU microprocessor
  • input port 35 and output port 36 It comprises.
  • a temperature sensor 23 for detecting the temperature of the exhaust gas flowing into the exhaust purification catalyst 13 is disposed upstream of the exhaust purification catalyst 13, and the exhaust gas flowing out from the exhaust purification catalyst 13 is disposed downstream of the exhaust purification catalyst 13.
  • a temperature sensor 24 for detecting the temperature of is disposed.
  • the output signals of the temperature sensors 23 and 24 and the intake air amount detector 8 are input to the input port 35 via the corresponding AD converters 37, respectively.
  • a load sensor 41 that generates an output voltage proportional to the amount of depression of the accelerator pedal 40 is connected to the accelerator pedal 40.
  • the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37.
  • a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 ° is connected to the input port 35.
  • the output port 36 is connected to the fuel injection valve 3, the actuator for driving the throttle valve 10, the hydrocarbon supply valve 15, the EGR control valve 17, and the fuel pump 21 through corresponding drive circuits 38.
  • FIG. 2 schematically shows a surface portion of the catalyst carrier carried on the substrate of the exhaust purification catalyst 13 shown in FIG.
  • a noble metal catalyst 51 made of platinum Pt is supported on a catalyst support 50 made of alumina, and further, potassium K, sodium Na, Alkali metals such as cesium Cs, alkaline earth metals such as barium Ba and calcium Ca, rare earths such as lanthanides and metals that can donate electrons to NO x such as silver Ag, copper Cu, iron Fe, iridium Ir
  • a basic layer 53 containing at least one selected from the above is formed.
  • rhodium Rh or palladium Pd can be supported on the catalyst carrier 50 of the exhaust purification catalyst 13. Since the exhaust gas flows along the catalyst carrier 50, it can be said that the noble metal catalyst 51 is supported on the exhaust gas flow surface of the exhaust purification catalyst 13. Further, since the surface of the basic layer 53 is basic, the surface of the basic layer 53 is referred to as a basic exhaust gas flow surface portion 54.
  • FIG. 3 schematically shows the reforming action performed in the exhaust purification catalyst 13 at this time.
  • the hydrocarbon HC injected from the hydrocarbon feed valve 15 is converted into a radical hydrocarbon HC having a small number of carbons by the noble metal catalyst 51.
  • FIG. 4 shows the supply timing of hydrocarbons from the hydrocarbon supply valve 15 and changes in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13. Since the change in the air-fuel ratio (A / F) in depends on the change in the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, the air-fuel ratio (A / F) in shown in FIG. It can be said that the change represents a change in hydrocarbon concentration. However, since the air-fuel ratio (A / F) in decreases as the hydrocarbon concentration increases, the hydrocarbon concentration increases as the air-fuel ratio (A / F) in becomes richer in FIG.
  • FIG. 5 shows the cycle of the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 as shown in FIG. 4 by periodically changing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
  • the NO x purification rate R1 by the exhaust purification catalyst 13 when the exhaust purification catalyst 13 is made rich is shown for each catalyst temperature TC of the exhaust purification catalyst 13.
  • FIGS. 6A and 6B schematically show the surface portion of the catalyst carrier 50 of the exhaust purification catalyst 13, and in these FIGS. 6A and 6B, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is predetermined. The reaction is shown to be presumed to occur when oscillated with an amplitude within a range and a period within a predetermined range.
  • FIG. 6A shows a case where the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is low
  • FIG. 6B shows the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 when hydrocarbons are supplied from the hydrocarbon supply valve 15.
  • a / F When the in is made rich, that is, when the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is high.
  • the oxygen concentration is high in the active NO x * around continues a predetermined time or more active NO x * is oxidized, nitrate ions NO 3 - in the basic layer 53 in the form of Absorbed.
  • radical hydrocarbons HC activity NO x * is as hydrocarbon concentration is shown to be high in FIG. 6B on the platinum 51 around before the lapse of this period of time, whereby A reducing intermediate is produced. This reducing intermediate is attached or adsorbed on the surface of the basic layer 53.
  • the first produced reducing intermediate this time is considered to be a nitro compound R-NO 2.
  • this nitro compound R-NO 2 becomes a nitrile compound R-CN, but since this nitrile compound R-CN can only survive for a moment in that state, it immediately becomes an isocyanate compound R-NCO.
  • This isocyanate compound R-NCO becomes an amine compound R-NH 2 when hydrolyzed.
  • a reducing intermediate is generated by increasing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13, and after reducing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13,
  • the reducing intermediate reacts with NO x , active NO x * and oxygen in the exhaust gas, or self-decomposes, thereby purifying NO x . That is, in order to purify NO x by the exhaust purification catalyst 13, it is necessary to periodically change the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
  • the reducing intermediates R-NCO and R-NH 2 are used until they react with NO x , active NO x * and oxygen in the exhaust gas, or until they self-decompose. It must be retained on the basic layer 53, i.e. on the basic exhaust gas flow surface portion 54, for which a basic exhaust gas flow surface portion 54 is provided.
  • the hydrocarbon supply cycle is lengthened, the period during which the oxygen concentration becomes high after the hydrocarbon is supplied and until the next hydrocarbon is supplied becomes longer, so that the active NO x * is reduced to the reducing intermediate. Without being generated in the basic layer 53 in the form of nitrate. In order to avoid this, it is necessary to vibrate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with a period within a predetermined range.
  • NO x contained in the exhaust gas is reacted with the reformed hydrocarbon to generate reducing intermediates R-NCO and R-NH 2 containing nitrogen and hydrocarbons.
  • a noble metal catalyst 51 is supported on the exhaust gas flow surface of the exhaust purification catalyst 13, and the generated reducing intermediates R-NCO and R-NH 2 are held in the exhaust purification catalyst 13.
  • a basic exhaust gas flow surface portion 54 is formed around the noble metal catalyst 51, and the reducing intermediates R-NCO and R-NH 2 held on the basic exhaust gas flow surface portion 54 are N 2.
  • CO 2 , and H 2 O, and the vibration period of the hydrocarbon concentration is the vibration period necessary to continue to produce the reducing intermediates R-NCO and R-NH 2 .
  • the injection interval is 3 seconds.
  • FIG. 7B shows a case where the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made the stoichiometric air-fuel ratio or rich when NO x is absorbed in the basic layer 53 in the form of nitrate. Is shown.
  • the reaction proceeds in the reverse direction (NO 3 ⁇ ⁇ NO 2 ), and thus the nitrates absorbed in the basic layer 53 are successively converted into nitrate ions NO 3.
  • And released from the basic layer 53 in the form of NO 2 as shown in FIG. 7B. The released NO 2 is then reduced by the hydrocarbons HC and CO contained in the exhaust gas.
  • FIG. 8 shows a case where the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is temporarily made rich slightly before the NO x absorption capacity of the basic layer 53 is saturated. Yes.
  • the time interval of this rich control is 1 minute or more.
  • the air-fuel ratio (A / F) in of the exhaust gas is lean
  • the NO x absorbed in the basic layer 53 temporarily makes the air-fuel ratio (A / F) in of the exhaust gas rich.
  • the basic layer 53 serves as an absorbent for temporarily absorbing NO x .
  • the basic layer 53 temporarily adsorbs NO x, thus using term of storage as a term including both absorption and adsorption
  • the basic layer 53 temporarily the NO x It plays the role of NO x storage agent for storage. That is, in this case, the ratio of air and fuel (hydrocarbon) supplied into the exhaust passage upstream of the engine intake passage, the combustion chamber 2 and the exhaust purification catalyst 13 is referred to as the exhaust gas air-fuel ratio. 13, the air-fuel ratio of the exhaust gas is acting as the NO x storage catalyst during the lean occludes NO x, the oxygen concentration in the exhaust gas to release NO x occluding the drops.
  • FIG. 9 shows the NO x purification rate R2 when the exhaust purification catalyst 13 is made to function as a NO x storage catalyst in this way.
  • the horizontal axis in FIG. 9 indicates the catalyst temperature TC of the exhaust purification catalyst 13.
  • the exhaust purification catalyst 13 is made to function as a NO x storage catalyst in this way, an extremely high NO x purification rate can be obtained when the catalyst temperature TC is 250 ° C. to 300 ° C. as shown by the solid line in FIG.
  • the temperature TC reaches a high temperature of 350 ° C. or higher, the NO x purification rate R2 decreases.
  • the NO x purification rate R2 decreases because when the catalyst temperature TC exceeds 350 ° C., NO x is difficult to be occluded and the nitrate is thermally decomposed and NO 2 This is because it is discharged from the exhaust purification catalyst 13 in the form of. That is, as long as NO x is occluded in the form of nitrate, it is difficult to obtain a high NO x purification rate R2 when the catalyst temperature TC is high.
  • the new NO x purification method shown in FIGS. 4 to 6B as can be seen from FIGS. 6A and 6B, nitrate is not generated or is very small even if it is generated, and as shown in FIG. Even when the catalyst temperature TC is high, a high NO x purification rate R1 can be obtained.
  • a hydrocarbon supply valve 15 for supplying hydrocarbons is arranged in the engine exhaust passage so that NO x can be purified using this new NO x purification method, and hydrocarbon supply
  • An exhaust purification catalyst 13 is arranged in the engine exhaust passage downstream of the valve 15, and a noble metal catalyst 51 is supported on the exhaust gas circulation surface of the exhaust purification catalyst 13 and a basic exhaust gas circulation around the noble metal catalyst 51 A surface portion 54 is formed, and the exhaust purification catalyst 13 causes the exhaust gas when the hydrocarbon concentration flowing into the exhaust purification catalyst 13 is vibrated with an amplitude within a predetermined range and a period within the predetermined range.
  • NO x purification method when an exhaust purification catalyst that supports a noble metal catalyst and forms a basic layer capable of absorbing NO x is used, almost no nitrate is formed. NO x can be said to the a new the NO x purification method to be purified. In fact, when this new NO x purification method is used, the amount of nitrate detected from the basic layer 53 is very small compared to when the exhaust purification catalyst 13 functions as a NO x storage catalyst.
  • This new NO x purification method is hereinafter referred to as a first NO x purification method.
  • the hydrocarbon injection period ⁇ T from the hydrocarbon supply valve 15 becomes longer, after the hydrocarbon is injected, the oxygen concentration around the active NO x * is between the next injection of the hydrocarbon. The period during which becomes higher.
  • the hydrocarbon injection period ⁇ T is longer than about 5 seconds, the active NO x * begins to be absorbed in the basic layer 53 in the form of nitrate, and therefore shown in FIG.
  • the vibration period ⁇ T of the hydrocarbon concentration is longer than about 5 seconds, the NO x purification rate R1 decreases. Therefore, in the embodiment shown in FIG. 1, the hydrocarbon injection period ⁇ T needs to be 5 seconds or less.
  • the injected hydrocarbon starts to accumulate on the exhaust gas flow surface of the exhaust purification catalyst 13 when the hydrocarbon injection period ⁇ T becomes approximately 0.3 seconds or less, and as shown in FIG.
  • the hydrocarbon injection period ⁇ T becomes approximately 0.3 seconds or less, the NO x purification rate R1 decreases. Therefore, in the embodiment according to the present invention, the hydrocarbon injection period is set between 0.3 seconds and 5 seconds.
  • the hydrocarbon injection amount and the injection timing from the hydrocarbon supply valve 15 are changed to the exhaust purification catalyst 13. Is controlled so that the air-fuel ratio (A / F) in and the injection cycle ⁇ T of the inflowing exhaust gas become optimum values according to the engine operating state.
  • the optimum hydrocarbon injection amount WT when the NOx purification action by the first NOx purification method is performed is the injection amount Q from the fuel injection valve 3 and the engine speed N.
  • 11A is stored in advance in the ROM 32 in the form of a map as shown in FIG. 11A, and the optimum hydrocarbon injection period ⁇ T at this time is also the injection amount Q from the fuel injection valve 3 and the engine speed N. Is previously stored in the ROM 32 in the form of a map as shown in FIG. 11B.
  • the NO x purification method when the exhaust purification catalyst 13 is made to function as a NO x storage catalyst will be specifically described with reference to FIGS.
  • the NO x purification method when the exhaust purification catalyst 13 functions as the NO x storage catalyst will be referred to as a second NO x purification method.
  • the second NO x purification method as shown in FIG. 12, when the stored NO x amount ⁇ NOX stored in the basic layer 53 exceeds a predetermined first allowable amount MAX, The air-fuel ratio (A / F) in of the inflowing exhaust gas is temporarily made rich.
  • Occluded amount of NO x ⁇ NOX is calculated from the amount of NO x exhausted from the engine, for example. Advance in the ROM32 in the form of a map as shown in FIG. 13 as a function of the injection quantity Q and engine speed N from the discharge amount of NO x NOXA the fuel injection valve 3 in the embodiment according to the present invention, which is discharged from the engine per unit time The stored NO x amount ⁇ NOX is calculated from this exhausted NO x amount NOXA. In this case, as described above, the period during which the air-fuel ratio (A / F) in of the exhaust gas is made rich is usually 1 minute or more.
  • the air / fuel ratio (A / F) in of the gas is made rich.
  • the horizontal axis in FIG. 14 indicates the crank angle.
  • This additional fuel WR is injected when it burns but does not appear as engine output, that is, slightly before ATDC 90 ° after compression top dead center.
  • This fuel amount WR is stored in advance in the ROM 32 in the form of a map as shown in FIG. 15 as a function of the injection amount Q from the fuel injection valve 3 and the engine speed N.
  • the additional fuel WR supplied into the combustion chamber 2 is burned in the combustion chamber 2, and therefore, a rich air-fuel ratio combustion gas is generated in the combustion chamber 2 at this time. become.
  • the rich control in which the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich by generating the rich air-fuel ratio combustion gas in the cylinder is referred to as in-cylinder rich control.
  • the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 can also be made rich by supplying hydrocarbons into the exhaust gas from the hydrocarbon supply valve 15.
  • the rich control in which the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich by supplying hydrocarbons from the hydrocarbon supply valve 15 in this way is called exhaust rich control.
  • the in-cylinder rich control and the hydrocarbon feed valve for generating the combustion gas of rich air-fuel ratio in the cylinder Exhaust rich control that makes the air-fuel ratio of the exhaust gas rich by supplying hydrocarbons from 15 is selectively used.
  • FIG. 16 is, the NO x purification rate when the NOx purification action is performed with the NO x purification rate R1 by the second NOx purification method when NOx purification action by the first NOx purification method has been done R2 And are shown together.
  • Tm represents the temperature TC1 of the exhaust purification catalyst 13 when the NO x purification rate R1 and the NO x purification rate R2 are equal.
  • NOx purification action by the second NOx purification method is higher of the NO x purification rate R2 obtained when less than the catalyst temperature TC is Tm is performed, when the catalyst temperature TC is higher than the Tm NOx purification action by the first NOx purification method the NO x purification rate R1 of the higher is obtained is carried out.
  • the exhaust purification catalyst 13 occludes SO x contained in the exhaust gas in addition to NO x .
  • the NO x purification rate R1 and the NO x purification rate R2 both decrease. That is, in the case where the NO x purification action by the first NO x purification method is performed, the basicity of the exhaust gas flow surface portion 54 of the exhaust purification catalyst 13 is weakened as the storage amount of SO x increases, and the reducing property is reduced. The intermediate cannot be generated and retained well. As a result, the NO x purification rate R1 decreases.
  • the NO x purification action is performed by the second NO x purification method
  • the amount of NO x that can be stored by the exhaust purification catalyst 13 decreases as the storage amount of SO x increases.
  • the NO x purification rate R2 decreases. Therefore, when the storage amount of SO x increases, it is necessary to release SO x from the exhaust purification catalyst 13.
  • the temperature TC of the exhaust purification catalyst 13 is increased to the SO x release temperature of 600 ° C. or higher, and the temperature TC of the exhaust purification catalyst 13 is maintained at the SO x release temperature of 600 ° C. or higher.
  • SO x can be released from the exhaust purification catalyst 13. Therefore, in the embodiment according to the present invention, when the SO x storage amount stored in the exhaust purification catalyst 13 exceeds the predetermined allowable value SMAX, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is intermittently set. It is made rich so that the temperature TC of the exhaust purification catalyst 13 is raised to the SO x release temperature. Since sulfur is contained in the fuel at a constant rate, the SO x amount stored in the exhaust purification catalyst 13 can be calculated from the integrated value of the supplied fuel amount.
  • the first NO x purification method can obtain a high NO x purification rate even during engine high load operation when the temperature of the exhaust purification catalyst 13 becomes high. Therefore, in the embodiment according to the present invention, the NO x purification action by the first NO x purification method is performed at the time of engine high load operation. However, smoke tends to occur during high engine load operation. Therefore, if the NO x purification action by the first NO x purification method is continuously performed, deposits made of carbonized fine particles and the like are formed on the upstream end face of the exhaust purification catalyst 13. It will gradually accumulate.
  • the SO x storage amount in the exhaust purification catalyst 13 calculated from the integrated value of the supplied fuel exceeds a predetermined value (allowable value SMAX)
  • the SO x should be released from the exhaust purification catalyst 13
  • the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich in order to raise the temperature of the exhaust purification catalyst 13 to the SO x release temperature.
  • the carried-cylinder rich control the temperature TC of the exhaust purification catalyst 13 to be able to raise the temperature up to release of SO x temperature. That is, when in-cylinder rich control is performed, light hydrocarbons are discharged from the engine, and the light hydrocarbons are sent to the exhaust purification catalyst 13. When light hydrocarbons are sent to the exhaust purification catalyst 13 in this way, the deposit deposited on the upstream end face of the exhaust purification catalyst 13 is burned well by the light hydrocarbons, and therefore the temperature of the exhaust purification catalyst 13 is increased. To rise.
  • FIG. 17A shows the catalyst bed temperature in the exhaust purification catalyst 13 at this time. As shown in FIG.
  • FIG. 17B shows the catalyst bed temperature of the exhaust purification catalyst 13 at this time. If the exhaust rich control is performed after the in-cylinder rich control is performed, the stored SO x can be released from the entire exhaust purification catalyst 13.
  • the exhaust purification catalyst 13 is disposed in the engine exhaust passage and the hydrocarbon supply valve 15 is disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13, and the exhaust purification catalyst 13 has an exhaust gas flow surface on the surface thereof.
  • a noble metal catalyst 51 is supported and a basic exhaust gas flow surface portion 54 is formed around the noble metal catalyst 51.
  • the exhaust purification catalyst 13 predetermines the concentration of hydrocarbons flowing into the exhaust purification catalyst 13. When it is vibrated with an amplitude within a predetermined range and a period within a predetermined range, it has the property of reducing NO x contained in the exhaust gas, and the vibration period of the hydrocarbon concentration is reduced from this predetermined range.
  • the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 by the in-cylinder rich control is rich until the release operation of SO x stored upstream of the exhaust purification catalyst 13 is completed.
  • the exhaust purification catalyst 13 by the exhaust rich control for releasing action of the SO x which is stored in the upstream side is released upon completion of the SO x occluded in the downstream side of the exhaust purification catalyst 13 of the exhaust purification catalyst 13
  • the air-fuel ratio of the exhaust gas flowing into the engine is made rich.
  • FIG. 18 shows a time chart of the NO x purification control.
  • 18 shows the additional fuel amount WR from the fuel injection valve 3, the hydrocarbon amount WT from the hydrocarbon feed valve 15, and the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13.
  • the change in the stored NO x amount ⁇ NOX in the exhaust purification catalyst 13 and the change in the stored SO x amount ⁇ SOX in the exhaust purification catalyst 13 are shown.
  • FIG. 18 also shows an allowable value MAX for the stored NO x amount and an allowable value SMAX for the stored SO x amount.
  • the NO x purification action by the second NO x purification method is switched to the NO x purification action by the first NO x purification method. It is done.
  • the stored NO x amount ⁇ NOX exceeds the allowable value MAX when the NO x purification action by the second NO x purification method is being performed, it flows into the exhaust purification catalyst 13 by the in-cylinder rich control.
  • FIG. 18 shows a case where the stored SO x amount ⁇ SOX exceeds the allowable value SMAX when the NO x purification action by the first NO x purification method is being performed, thereby starting the SO x release control. It is shown.
  • a time chart when the SO x release control is performed is shown in FIG.
  • FIG. 19 shows the additional fuel amount WR from the fuel injection valve 3, the hydrocarbon amount WT from the hydrocarbon supply valve 15, and the air-fuel ratio (A of the exhaust gas flowing into the exhaust purification catalyst 13. / F) Changes in, the upstream temperature TU of the exhaust purification catalyst 13, and the downstream temperature TD of the exhaust purification catalyst 13 are shown.
  • in-cylinder rich control is intermittently performed, whereby the upstream temperature TU of the exhaust purification catalyst 13 is raised to the SO x release temperature.
  • the exhaust rich control is intermittently performed, thereby the downstream temperature TD of the exhaust purification catalyst 13 is raised until the release of SO x temperature.
  • FIG. 20 shows an exhaust purification control routine executed by the electronic control unit 30, and this routine is executed by interruption every predetermined time.
  • step 60 and reference to FIG. 20 whether or not release SO x flag indicating that it should release the SO x has been set or not. If the SO x release flag indicating that SO x should be released is not set, the routine proceeds to step 61, where the exhaust purification catalyst is added by adding to ⁇ SOX a value obtained by multiplying the fuel injection amount Q by a constant value C. The stored NO x amount ⁇ NOX stored in 13 is calculated.
  • step 62 it is judged if the temperature TC of the exhaust purification catalyst 13 calculated based on the detection values of the temperature sensors 23, 24 is higher than the catalyst temperature Tm shown in FIG.
  • the discharge amount of NO x NOXA per unit time is calculated from the map shown in FIG. 13, step 63.
  • occluded amount of NO x ⁇ NOX is calculated by adding the discharge amount of NO x NOXA to ⁇ NOX step 64.
  • the routine proceeds to step 66, where an additional fuel amount WR is calculated from the map shown in FIG. 15, and then at step 66, an additional fuel injection action is performed. That is, in-cylinder rich control is performed. At this time, NO x stored in the exhaust purification catalyst 13 is released.
  • step 67 ⁇ NOX is cleared.
  • step 68 the NOx purification action by the first NOx purification method is performed. That is, the hydrocarbon injection amount WT is calculated from FIG. 11A, the hydrocarbon injection period ⁇ T is calculated from FIG. 11B, and the hydrocarbon feed valve 15 generates hydrocarbons based on the calculated injection period ⁇ T and injection amount WT. Is injected.
  • step 69 it is judged if the occluded SO x amount ⁇ SOX exceeds the allowable value SMAX. When the occluded SO x amount ⁇ SOX does not exceed the allowable value SMAX, the processing cycle is completed.
  • the routine proceeds to step 70 where the NO x purification action by the first NO x purification method is determined in advance for a predetermined time or more. It is determined whether or not it has been performed continuously.
  • the routine proceeds to step 71 where the conventional SO x release process is performed. For example, at this time, the SO x release process is performed by intermittently injecting hydrocarbons from the hydrocarbon supply valve 15, that is, by performing exhaust rich control intermittently.
  • step 70 when it is determined in step 70 that the NO x purification action by the first NO x purification method has been performed for a predetermined time or longer, a deposit is formed on the upstream end face of the exhaust purification catalyst 13. It is judged that it has accumulated. At this time, the routine proceeds to step 72 where the SO x release flag is set, then the routine proceeds to step 73 where the SO x release control according to the present invention is performed. When release of SO x flag is once set, at the next processing cycle, the routine jumps from step 60 to step 73.
  • the SO x release control performed in step 73 is shown in FIG.
  • step 80 it is judged if the upstream completion flag indicating that the SO x releasing action from the upstream side of the exhaust purification catalyst 13 is completed is set.
  • the upstream completion flag is not set, so the routine proceeds to step 81, where the catalyst temperature TC is higher than the activation temperature T1 at which the in-cylinder rich control can react, for example, 150 ° C. or higher. It is determined whether or not.
  • the routine proceeds to step 82, where it is determined whether or not the operating state of the engine is an operating region in which in-cylinder rich control is possible. An operation region in which in-cylinder rich control is possible at this time is indicated by hatching in FIG. 22A. As shown in FIG. 22A, the operating range in which this in-cylinder rich control is possible is determined by the fuel injection amount Q and the engine speed N.
  • step 82 When it is determined in step 82 that the engine operating state is in an operation region where in-cylinder rich control is possible, the routine proceeds to step 83 where in-cylinder rich control shown in FIG. 19 is performed.
  • step 84 it is determined whether or not the SO x releasing action from the upstream side of the exhaust purification catalyst 13 is completed, for example, whether or not the in-cylinder rich control is continuously performed for a predetermined time.
  • the upstream completion flag is set the routine proceeds to step 85 in that is, when the upstream side of the regeneration of the exhaust purification catalyst 13 has been completed. Once the upstream completion flag is set, the process proceeds from step 80 to step 82 in the next processing cycle.
  • step 86 it is determined whether or not the catalyst temperature TC is equal to or higher than an activation temperature T2 that can react to the exhaust rich control, for example, 200 ° C. or higher.
  • an activation temperature T2 that can react to the exhaust rich control
  • the routine proceeds to step 87, where it is judged if the engine operating state is an operating region where exhaust rich control is possible.
  • the operation region in which exhaust rich control is possible at this time is indicated by hatching in FIG. 22B.
  • the operating range in which this exhaust rich control is possible is determined by the fuel injection amount Q and the engine speed N.
  • step 87 If it is determined in step 87 that the engine operating state is within an operation region where exhaust rich control is possible, the routine proceeds to step 88 where exhaust rich control shown in FIG. 19 is performed.
  • step 89 it is determined whether or not the SO x releasing action from the downstream side of the exhaust purification catalyst 13 has been completed, for example, whether or not exhaust rich control has been performed for a predetermined time. when release of SO x action from the upstream side is determined to be completed, i.e. upstream completion flag proceeds to step 90 when the downstream side of the regeneration of the exhaust purification catalyst 13 has been completed is reset.
  • step 91 SO x releasing flag is reset, then in step 92 ShigumaSOX is cleared.
  • the upstream storage SO x amount on the upstream side of the exhaust purification catalyst 13 and the downstream storage SO x amount on the downstream side of the exhaust purification catalyst 13 are calculated separately, and the upstream storage SO x is calculated.
  • the SO x releasing action from the upstream side of the exhaust purification catalyst 13 is terminated, and when the downstream storage SO x amount falls below the predetermined value, the SO from the downstream side of the exhaust purification catalyst 13 The x release action can also be terminated.
  • the temperature range of the exhaust purification catalyst 13 and the engine operating range in which in-cylinder rich control can be performed are determined in advance.
  • the temperature range of the exhaust purification catalyst 13 capable of performing exhaust rich control and the engine operating range are determined in advance, and when the exhaust rich control should be performed, the temperature TC of the exhaust purification catalyst 13 and Exhaust rich control is performed when the engine operating state is within a predetermined temperature range (TC> T1) of the exhaust purification catalyst 13 and engine operating region (FIG. 22B) that can perform exhaust rich control.
  • the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich to reduce the stored NO x from the exhaust purification catalyst 13.
  • the second NO x purification method to be released is used, and when the temperature TC of the exhaust purification catalyst is higher than the predetermined temperature Tm, the NO x purification action by the first NO x purification method is performed, and the exhaust purification is performed.
  • the NO x purification action by the second NO x purification method is performed. Furthermore, as can be seen from the SO x release control routine shown in FIG. 21, when the SO x is to be released from the exhaust purification catalyst 13, the NO x purification action by the first NO x purification method is continuously determined in advance. If it has been performed for a period of time or longer, the in-cylinder rich control is performed first, and then the exhaust rich control is performed, whereby the SO x releasing action from the exhaust purification catalyst 13 is performed.
  • an oxidation catalyst for reforming hydrocarbons can be disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

An internal combustion is configured such that a hydrocarbon supply valve (15) and an exhaust gas purification catalyst (13) are arranged in an engine exhaust gas passage and such that NOx contained within exhaust gas is purified by spraying hydrocarbon from the hydrocarbon supply valve (15) at predetermined intervals. When SOx is to be released from the exhaust gas purification catalyst (13), the air-fuel ratio of exhaust gas which flows into the exhaust gas purification catalyst (13) is enriched by generating, within a cylinder, combustion gas having a rich air-fuel ratio, and after that the air-fuel ratio of exhaust gas which flows into the exhaust gas purification catalyst (13) is enriched by supplying hydrocarbon from the hydrocarbon supply valve (15).

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 本発明は内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust purification device for an internal combustion engine.
 機関排気通路内に排気浄化触媒を配置すると共に排気浄化触媒上流の機関排気通路内に炭化水素供給弁を配置し、排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素濃度の振動周期を予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、炭化水素供給弁から予め定められた噴射周期でもって炭化水素を噴射することにより排気ガス中に含まれるNOxを浄化する第1のNOx浄化方法と、排気浄化触媒に吸蔵されたNOxが許容値を超えたときに排気浄化触媒に流入する排気ガスの空燃比をリッチにして排気浄化触媒から吸蔵NOxを放出させる第2のNOx浄化方法とが選択的に用いられている内燃機関が公知である(例えば特許文献1を参照)。 An exhaust purification catalyst is disposed in the engine exhaust passage and a hydrocarbon supply valve is disposed in the engine exhaust passage upstream of the exhaust purification catalyst. The exhaust purification catalyst has a predetermined concentration of hydrocarbons flowing into the exhaust purification catalyst. When it is vibrated with an amplitude within a range and a period within a predetermined range, it has the property of reducing NO x contained in the exhaust gas, and when the vibration period of the hydrocarbon concentration is made longer than a predetermined range It has the property that the amount of occluded NO x contained in the exhaust gas increases, and NO x contained in the exhaust gas is reduced by injecting hydrocarbons with a predetermined injection cycle from the hydrocarbon supply valve. first NO x purification method and, occluded in the exhaust purifying catalyst was NO x is occluded NO x from the exhaust purification catalyst air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst in the rich when exceeding the allowable value to purify Released An internal combustion engine in which the second NO x purification method is selectively used is known (see, for example, Patent Document 1).
 この内燃機関では、第2のNOx浄化方法によるNOx浄化作用が行われているときに、排気浄化触媒からNOxを放出すべきときには排気浄化触媒に流入する排気ガスの空燃比がリッチにされる。このとき排気浄化触媒に流入する排気ガスの空燃比をリッチにするためのリッチ制御として、気筒内においてリッチ空燃比の燃焼ガスを生成させる筒内リッチ制御が用いられている。更に、この内燃機関では、排気浄化触媒からSOxを放出すべきときにも排気浄化触媒に流入する排気ガスの空燃比がリッチにされる。しかしながら、この内燃機関では、このとき炭化水素供給弁から炭化水素を供給することによって排気ガスの空燃比をリッチにする排気リッチ制御を用いているのか、或いは上述の筒内リッチ制御を用いているのかが不明である。 In this internal combustion engine, when the NO x purification action by the second NO x purification method is being performed, when NO x should be released from the exhaust purification catalyst, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes rich. Is done. At this time, in-cylinder rich control for generating a rich air-fuel ratio combustion gas in the cylinder is used as rich control for making the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst rich. Further, in this internal combustion engine, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is made rich even when SO x should be released from the exhaust purification catalyst. However, in this internal combustion engine, at this time, exhaust rich control that makes the air-fuel ratio of the exhaust gas rich by supplying hydrocarbons from the hydrocarbon supply valve is used, or the above-described in-cylinder rich control is used. Is unknown.
WO2011/118044A1WO2011 / 118044A1
 さて、排気浄化触媒からSOxを放出させるときには、排気浄化触媒に流入する排気ガスの空燃比を間欠的にリッチにして排気浄化触媒の温度をSOx放出温度まで上昇させることが必要となる。一方、第1のNOx浄化方法は、排気浄化触媒の温度が高くなる機関高負荷運転時においても高いNOx浄化率を得ることができるので、機関高負荷運転時には第1のNOx浄化方法によるNOx浄化作用が行われる。ところが機関高負荷運転時にはスモークが発生しやすく、従って、第1のNOx浄化方法によるNOx浄化作用が継続的に行われていると、炭化微粒子等からなるデポジットが排気浄化触媒の上流側端面に次第に堆積することになる。ところが、このように、デポジットが排気浄化触媒の上流側端面に堆積している場合に、排気浄化触媒の温度をSOx放出温度まで上昇させるべく炭化水素供給弁から炭化水素を噴射して排気浄化触媒に流入する排気ガスの空燃比をリッチにさせると、噴射された炭化水素はデポジット上に付着し、良好に燃焼しなくなる。その結果、排気浄化触媒の温度がSOx放出温度まで上昇させることができず、従って排気浄化触媒からSOxを良好に放出させることができないという問題を生ずる。
 本発明の目的は、第1のNOx浄化方法によるNOx浄化作用が継続的に行われていた場合であっても、排気浄化触媒の温度を良好に上昇させ得るようにした内燃機関の排気浄化装置を提供することにある。
When releasing SO x from the exhaust purification catalyst, it is necessary to raise the temperature of the exhaust purification catalyst to the SO x release temperature by intermittently enriching the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst. On the other hand, since the first NO x purification method can obtain a high NO x purification rate even during engine high load operation where the temperature of the exhaust purification catalyst becomes high, the first NO x purification method during engine high load operation. the NO x purification action by is performed. However, smoke is likely to occur during high engine load operation. Therefore, if the NO x purification action by the first NO x purification method is continuously performed, the deposit made of carbonized fine particles or the like is formed on the upstream end face of the exhaust purification catalyst. It will gradually accumulate. However, when deposits are deposited on the upstream end face of the exhaust purification catalyst in this way, hydrocarbons are injected from the hydrocarbon supply valve in order to raise the temperature of the exhaust purification catalyst to the SO x release temperature. When the air-fuel ratio of the exhaust gas flowing into the catalyst is made rich, the injected hydrocarbon adheres to the deposit and does not burn well. As a result, there is a problem that the temperature of the exhaust purification catalyst cannot be raised to the SO x release temperature, and therefore SO x cannot be released well from the exhaust purification catalyst.
It is an object of the present invention to provide an exhaust gas from an internal combustion engine that can raise the temperature of an exhaust purification catalyst satisfactorily even when the NO x purification action by the first NO x purification method is continuously performed. It is to provide a purification device.
 本発明によれば、機関排気通路内に排気浄化触媒を配置すると共に排気浄化触媒上流の機関排気通路内に炭化水素供給弁を配置し、排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素濃度の振動周期を予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、炭化水素供給弁からこの予め定められた範囲内の周期でもって炭化水素を噴射することにより排気ガス中に含まれるNOxを浄化するようにした内燃機関の排気浄化装置において、排気浄化触媒に流入する排気ガスの空燃比をリッチにするためのリッチ制御として、気筒内においてリッチ空燃比の燃焼ガスを生成させる筒内リッチ制御と炭化水素供給弁から炭化水素を供給することによって排気ガスの空燃比をリッチにする排気リッチ制御とを選択的に用い、排気浄化触媒からSOxを放出すべきときには、初めに筒内リッチ制御により排気浄化触媒に流入する排気ガスの空燃比をリッチにし、次いで排気リッチ制御により排気浄化触媒に流入する排気ガスの空燃比をリッチにするようにした内燃機関の排気浄化装置が提供される。 According to the present invention, the exhaust purification catalyst is disposed in the engine exhaust passage, the hydrocarbon supply valve is disposed in the engine exhaust passage upstream of the exhaust purification catalyst, and the noble metal catalyst is disposed on the exhaust gas flow surface of the exhaust purification catalyst. A basic exhaust gas flow surface portion is formed around the noble metal catalyst that is supported, and the exhaust purification catalyst has an amplitude within a predetermined range and a predetermined concentration of hydrocarbons flowing into the exhaust purification catalyst. When it is vibrated with a period within a predetermined range, it has the property of reducing NO x contained in the exhaust gas, and when the vibration period of the hydrocarbon concentration is longer than a predetermined range, it is contained in the exhaust gas. It has a property that storage amount of the NO x increases, purifying NO x contained in the exhaust gas by having the hydrocarbon feed valve at a period within the predetermined range to inject hydrocarbon In the exhaust gas purification apparatus for an internal combustion engine configured as described above, in-cylinder rich control for generating a rich air-fuel ratio combustion gas in the cylinder, as rich control for enriching the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst, When exhaust rich control that makes the exhaust gas air-fuel ratio rich by supplying hydrocarbons from a hydrocarbon feed valve is selectively used and SO x is to be released from the exhaust purification catalyst, first, in-cylinder rich control is performed. An exhaust purification device for an internal combustion engine is provided in which the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst is made rich, and then the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst is made rich by exhaust rich control.
 筒内リッチ制御が行われると機関からは軽質の炭化水素が排出され、この軽質の炭化水素が排気浄化触媒に送り込まれると、排気浄化触媒の上流側端面に堆積したデポジットはこの軽質の炭化水素によって良好に燃焼せしめられる。本発明では、上述のように、排気浄化触媒からSOxを放出すべきときには、初めに筒内リッチ制御により排気浄化触媒に流入する排気ガスの空燃比がリッチにされる。従って、このときデポジットは良好に燃焼せしめられ、それにより排気浄化触媒の温度が良好に上昇せしめられる。 When in-cylinder rich control is performed, light hydrocarbons are discharged from the engine, and when this light hydrocarbons are sent to the exhaust purification catalyst, the deposit deposited on the upstream end face of the exhaust purification catalyst is the light hydrocarbons. Can be burned well. In the present invention, as described above, when SO x is to be released from the exhaust purification catalyst, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is first made rich by in-cylinder rich control. Therefore, at this time, the deposit is burned well, whereby the temperature of the exhaust purification catalyst is raised well.
図1は圧縮着火式内燃機関の全体図である。FIG. 1 is an overall view of a compression ignition type internal combustion engine. 図2は触媒担体の表面部分を図解的に示す図である。FIG. 2 is a view schematically showing the surface portion of the catalyst carrier. 図3は排気浄化触媒における酸化反応を説明するための図である。FIG. 3 is a view for explaining an oxidation reaction in the exhaust purification catalyst. 図4は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。FIG. 4 is a diagram showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst. 図5はNOx浄化率R1を示す図である。FIG. 5 is a diagram showing the NO x purification rate R1. 図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。6A and 6B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst. 図7Aおよび7Bは排気浄化触媒における酸化還元反応を説明するための図である。7A and 7B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst. 図8は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。FIG. 8 is a diagram showing a change in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst. 図9はNOx浄化率R2を示す図である。FIG. 9 is a diagram showing the NO x purification rate R2. 図10は炭化水素の噴射周期ΔTとNOx浄化率R1との関係を示す図である。FIG. 10 is a graph showing the relationship between the hydrocarbon injection cycle ΔT and the NO x purification rate R1. 図11Aおよび11Bは炭化水素の噴射量等を示すマップである。11A and 11B are maps showing the injection amount of hydrocarbons and the like. 図12はNOx放出制御を示す図である。FIG. 12 is a diagram showing NO x release control. 図13は排出NOx量NOXAのマップを示す図である。FIG. 13 is a diagram showing a map of the exhausted NO x amount NOXA. 図14は燃料噴射時期を示す図である。FIG. 14 shows the fuel injection timing. 図15は追加の燃料量WRのマップを示す図である。FIG. 15 is a diagram showing a map of the additional fuel amount WR. 図16はNOx浄化率R1およびR2を示す図である。FIG. 16 is a diagram showing the NO x purification rates R1 and R2. 図17Aおよび17Bは排気浄化触媒床の温度を説明するための図である。17A and 17B are views for explaining the temperature of the exhaust purification catalyst bed. 図18はNOx浄化制御のタイムチャートを示す図である。FIG. 18 is a diagram showing a time chart of the NO x purification control. 図19はSOx浄化制御のタイムチャートを示す図である。FIG. 19 is a time chart of the SO x purification control. 図20はNOx浄化を行うためのフローチャートである。FIG. 20 is a flowchart for performing NO x purification. 図21はSOx放出制御を行うためのフローチャートである。FIG. 21 is a flowchart for performing SO x release control. 図22Aおよび22Bは夫々筒内リッチ制御および排気リッチ制御が可能な機関運転領域を示す図である。22A and 22B are diagrams showing engine operation regions in which in-cylinder rich control and exhaust rich control can be performed, respectively.
 図1に圧縮着火式内燃機関の全体図を示す。
 図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはアクチュエータにより駆動されるスロットル弁10が配置され、吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8. A throttle valve 10 driven by an actuator is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.
 一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気管12を介して排気浄化触媒13の入口に連結される。本発明による実施例では、この排気浄化触媒13はNOx吸蔵触媒からなる。排気浄化触媒13の出口はパティキュレートフィルタ14に連結され、排気浄化触媒13上流の排気管12内には圧縮着火式内燃機関の燃料として用いられる軽油その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置される。図1に示される実施例では炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明はリーン空燃比のもとで燃焼の行われる火花点火式内燃機関にも適用することができる。この場合、炭化水素供給弁15からは火花点火式内燃機関の燃料として用いられるガソリンその他の燃料からなる炭化水素が供給される。 On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the inlet of the exhaust purification catalyst 13 via the exhaust pipe 12. In the embodiment according to the present invention, the exhaust purification catalyst 13 is composed of a NOx storage catalyst. The outlet of the exhaust purification catalyst 13 is connected to a particulate filter 14, and the exhaust pipe 12 upstream of the exhaust purification catalyst 13 is used to supply hydrocarbons consisting of light oil and other fuels used as fuel for a compression ignition internal combustion engine. A hydrocarbon feed valve 15 is arranged. In the embodiment shown in FIG. 1, light oil is used as the hydrocarbon supplied from the hydrocarbon supply valve 15. The present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a lean air-fuel ratio. In this case, hydrocarbons made of gasoline or other fuel used as fuel for the spark ignition type internal combustion engine are supplied from the hydrocarbon supply valve 15.
 一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16の周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によってEGRガスが冷却される。各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結され、このコモンレール20は電子制御式の吐出量可変な燃料ポンプ21を介して燃料タンク22に連結される。燃料タンク22内に貯蔵されている燃料は燃料ポンプ21によってコモンレール20内に供給され、コモンレール20内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。 On the other hand, the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 16, and an electronically controlled EGR control valve 17 is disposed in the EGR passage 16. Around the EGR passage 16, a cooling device 18 for cooling the EGR gas flowing in the EGR passage 16 is disposed. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 18, and the EGR gas is cooled by the engine cooling water. Each fuel injection valve 3 is connected to a common rail 20 through a fuel supply pipe 19, and this common rail 20 is connected to a fuel tank 22 through an electronically controlled fuel pump 21 having a variable discharge amount. The fuel stored in the fuel tank 22 is supplied into the common rail 20 by the fuel pump 21, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 through each fuel supply pipe 19.
 電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒13の上流には排気浄化触媒13に流入する排気ガスの温度を検出するための温度センサ23が配置されており、排気浄化触媒13の下流には排気浄化触媒13から流出した排気ガスの温度を検出するための温度センサ24が配置されている。これら温度センサ23、24および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用アクチュエータ、炭化水素供給弁15、EGR制御弁17および燃料ポンプ21に接続される。 The electronic control unit 30 comprises a digital computer and is connected to each other by a bidirectional bus 31. ROM (read only memory) 32, RAM (random access memory) 33, CPU (microprocessor) 34, input port 35 and output port 36 It comprises. A temperature sensor 23 for detecting the temperature of the exhaust gas flowing into the exhaust purification catalyst 13 is disposed upstream of the exhaust purification catalyst 13, and the exhaust gas flowing out from the exhaust purification catalyst 13 is disposed downstream of the exhaust purification catalyst 13. A temperature sensor 24 for detecting the temperature of is disposed. The output signals of the temperature sensors 23 and 24 and the intake air amount detector 8 are input to the input port 35 via the corresponding AD converters 37, respectively. A load sensor 41 that generates an output voltage proportional to the amount of depression of the accelerator pedal 40 is connected to the accelerator pedal 40. The output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. The Further, a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 ° is connected to the input port 35. On the other hand, the output port 36 is connected to the fuel injection valve 3, the actuator for driving the throttle valve 10, the hydrocarbon supply valve 15, the EGR control valve 17, and the fuel pump 21 through corresponding drive circuits 38.
 図2は、図1に示される排気浄化触媒13の基体上に担持された触媒担体の表面部分を図解的に示している。この排気浄化触媒13では図2に示されるように例えばアルミナからなる触媒担体50上には白金Ptからなる貴金属触媒51が担持されており、更にこの触媒担体50上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層53が形成されている。また、排気浄化触媒13の触媒担体50上には白金Ptに加えてロジウムRh或いはパラジウムPdを担持させることができる。なお、排気ガスは触媒担体50上に沿って流れるので貴金属触媒51は排気浄化触媒13の排気ガス流通表面上に担持されていると言える。また、塩基性層53の表面は塩基性を呈するので塩基性層53の表面は塩基性の排気ガス流通表面部分54と称される。 FIG. 2 schematically shows a surface portion of the catalyst carrier carried on the substrate of the exhaust purification catalyst 13 shown in FIG. In this exhaust purification catalyst 13, as shown in FIG. 2, for example, a noble metal catalyst 51 made of platinum Pt is supported on a catalyst support 50 made of alumina, and further, potassium K, sodium Na, Alkali metals such as cesium Cs, alkaline earth metals such as barium Ba and calcium Ca, rare earths such as lanthanides and metals that can donate electrons to NO x such as silver Ag, copper Cu, iron Fe, iridium Ir A basic layer 53 containing at least one selected from the above is formed. In addition to platinum Pt, rhodium Rh or palladium Pd can be supported on the catalyst carrier 50 of the exhaust purification catalyst 13. Since the exhaust gas flows along the catalyst carrier 50, it can be said that the noble metal catalyst 51 is supported on the exhaust gas flow surface of the exhaust purification catalyst 13. Further, since the surface of the basic layer 53 is basic, the surface of the basic layer 53 is referred to as a basic exhaust gas flow surface portion 54.
 炭化水素供給弁15から排気ガス中に炭化水素が噴射されるとこの炭化水素は排気浄化触媒13において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒13においてNOxを浄化するようにしている。図3はこのとき排気浄化触媒13において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは貴金属触媒51によって炭素数の少ないラジカル状の炭化水素HCとなる。 When hydrocarbons are injected into the exhaust gas from the hydrocarbon supply valve 15, the hydrocarbons are reformed in the exhaust purification catalyst 13. In the present invention, NO x is purified in the exhaust purification catalyst 13 by using the reformed hydrocarbon at this time. FIG. 3 schematically shows the reforming action performed in the exhaust purification catalyst 13 at this time. As shown in FIG. 3, the hydrocarbon HC injected from the hydrocarbon feed valve 15 is converted into a radical hydrocarbon HC having a small number of carbons by the noble metal catalyst 51.
 図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気浄化触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。 FIG. 4 shows the supply timing of hydrocarbons from the hydrocarbon supply valve 15 and changes in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13. Since the change in the air-fuel ratio (A / F) in depends on the change in the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, the air-fuel ratio (A / F) in shown in FIG. It can be said that the change represents a change in hydrocarbon concentration. However, since the air-fuel ratio (A / F) in decreases as the hydrocarbon concentration increases, the hydrocarbon concentration increases as the air-fuel ratio (A / F) in becomes richer in FIG.
 図5は、排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気浄化触媒13への流入排気ガスの空燃比(A/F)inを周期的にリッチにしたときの排気浄化触媒13によるNOx浄化率R1を排気浄化触媒13の各触媒温度TCに対して示している。さて、長期間に亘るNOx浄化に関する研究の結果、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、図5に示されるように350℃以上の高温領域においても極めて高いNOx浄化率R1が得られることが判明している。 FIG. 5 shows the cycle of the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 as shown in FIG. 4 by periodically changing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13. The NO x purification rate R1 by the exhaust purification catalyst 13 when the exhaust purification catalyst 13 is made rich is shown for each catalyst temperature TC of the exhaust purification catalyst 13. As a result of research on NO x purification over a long period of time, when the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is vibrated with an amplitude within a predetermined range and a period within a predetermined range, FIG. As shown in FIG. 5, it has been found that an extremely high NO x purification rate R1 can be obtained even in a high temperature region of 350 ° C. or higher.
 更にこのときには窒素および炭化水素を含む多量の還元性中間体が塩基性層53の表面上に、即ち排気浄化触媒13の塩基性排気ガス流通表面部分54上に保持又は吸着され続けており、この還元性中間体が高NOx浄化率R1を得る上で中心的役割を果していることが判明している。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび6Bは排気浄化触媒13の触媒担体50の表面部分を図解的に示しており、これら図6Aおよび6Bには排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動せしめたときに生ずると推測される反応が示されている。 Further, at this time, a large amount of reducing intermediates containing nitrogen and hydrocarbons are kept or adsorbed on the surface of the basic layer 53, that is, on the basic exhaust gas flow surface portion 54 of the exhaust purification catalyst 13. It has been found that reducing intermediates play a central role in obtaining a high NO x purification rate R1. Next, this will be described with reference to FIGS. 6A and 6B. 6A and 6B schematically show the surface portion of the catalyst carrier 50 of the exhaust purification catalyst 13, and in these FIGS. 6A and 6B, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is predetermined. The reaction is shown to be presumed to occur when oscillated with an amplitude within a range and a period within a predetermined range.
 図6Aは排気浄化触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13への流入排気ガスの空燃比(A/F)inがリッチにされたとき、即ち排気浄化触媒13に流入する炭化水素の濃度が高くなっているときを示している。 FIG. 6A shows a case where the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is low, and FIG. 6B shows the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 when hydrocarbons are supplied from the hydrocarbon supply valve 15. A / F) When the in is made rich, that is, when the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is high.
 さて、図4からわかるように排気浄化触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気浄化触媒13に流入する排気ガスは通常酸素過剰の状態にある。このとき排気ガス中に含まれるNOの一部は排気浄化触媒13上に付着し、排気ガス中に含まれるNOの一部は図6Aに示されるように白金51上において酸化されてNO2となり、次いでこのNO2は更に酸化されてNO3となる。また、NO2の一部はNO2 -となる。従って白金Pt51上にはNO2 - とNO3とが生成されることになる。排気浄化触媒13上に付着しているNOおよび白金Pt51上において生成されたNO2 -とNO3は活性が強く、従って以下これらNO、NO2 -およびNO3を活性NOx *と称する。 As can be seen from FIG. 4, since the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is maintained lean except for a moment, the exhaust gas flowing into the exhaust purification catalyst 13 is normally in an oxygen-excess state. At this time, a part of the NO contained in the exhaust gas adheres to the exhaust purification catalyst 13, and a part of the NO contained in the exhaust gas is oxidized on the platinum 51 to become NO 2 as shown in FIG. 6A. The NO 2 is then further oxidized to NO 3 . A part of the NO 2 is NO 2 - and becomes. Therefore, NO 2 - and NO 3 are produced on platinum Pt51. NO 2 - and NO 3 produced on NO and platinum Pt 51 adhering to the exhaust purification catalyst 13 are highly active, and hence these NO, NO 2 - and NO 3 are hereinafter referred to as active NO x * .
 一方、炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13への流入排気ガスの空燃比(A/F)inがリッチにされるとこの炭化水素は排気浄化触媒13の全体に亘って順次付着する。これら付着した炭化水素の大部分は順次酸素と反応して燃焼せしめられ、付着した炭化水素の一部は順次、図3に示されるように排気浄化触媒13内において改質され、ラジカルとなる。従って、図6Bに示されるように活性NOx *周りの炭化水素濃度が高くなる。ところで活性NOx *が生成された後、活性NOx *周りの酸素濃度が高い状態が一定時間以上継続すると活性NOx *は酸化され、硝酸イオンNO3 -の形で塩基性層53内に吸収される。しかしながらこの一定時間が経過する前に活性NOx *周りの炭化水素濃度が高くされると図6Bに示されるように活性NOx *は白金51上においてラジカル状の炭化水素HCと反応し、それにより還元性中間体が生成される。この還元性中間体は塩基性層53の表面上に付着又は吸着される。 On the other hand, when hydrocarbons are supplied from the hydrocarbon supply valve 15 and the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich, the hydrocarbons cover the entire exhaust purification catalyst 13. Adheres sequentially. Most of these adhering hydrocarbons are sequentially reacted with oxygen and burned, and some of the adhering hydrocarbons are sequentially reformed in the exhaust purification catalyst 13 as shown in FIG. 3 to become radicals. Therefore, as shown in FIG. 6B, the hydrocarbon concentration around the active NO x * is increased. Meanwhile after * the active NO x is generated, the oxygen concentration is high in the active NO x * around continues a predetermined time or more active NO x * is oxidized, nitrate ions NO 3 - in the basic layer 53 in the form of Absorbed. However react with the active NO x * radical hydrocarbons HC activity NO x * is as hydrocarbon concentration is shown to be high in FIG. 6B on the platinum 51 around before the lapse of this period of time, whereby A reducing intermediate is produced. This reducing intermediate is attached or adsorbed on the surface of the basic layer 53.
 なお、このとき最初に生成される還元性中間体はニトロ化合物R-NO2であると考えられる。このニトロ化合物R-NO2は生成されるとニトリル化合物R-CNとなるがこのニトリル化合物R-CNはその状態では瞬時しか存続し得ないのでただちにイソシアネート化合物R-NCOとなる。このイソシアネート化合物R-NCOは加水分解するとアミン化合物R-NH2となる。ただしこの場合、加水分解されるのはイソシアネート化合物R-NCOの一部であると考えられる。従って図6Bに示されるように塩基性層53の表面上に保持又は吸着されている還元性中間体の大部分はイソシアネート化合物R-NCOおよびアミン化合物R-NH2であると考えられる。 Incidentally, the first produced reducing intermediate this time is considered to be a nitro compound R-NO 2. When this nitro compound R-NO 2 is produced, it becomes a nitrile compound R-CN, but since this nitrile compound R-CN can only survive for a moment in that state, it immediately becomes an isocyanate compound R-NCO. This isocyanate compound R-NCO becomes an amine compound R-NH 2 when hydrolyzed. However, in this case, it is considered that a part of the isocyanate compound R-NCO is hydrolyzed. Therefore, as shown in FIG. 6B, most of the reducing intermediates retained or adsorbed on the surface of the basic layer 53 are considered to be an isocyanate compound R—NCO and an amine compound R—NH 2 .
 一方、図6Bに示されるように生成された還元性中間体の周りに炭化水素HCが付着しているときには還元性中間体は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気浄化触媒13に流入する炭化水素の濃度が低下し、次いで還元性中間体の周りに付着している炭化水素が酸化せしめられて消滅し、それにより還元性中間体周りの酸素濃度が高くなると、還元性中間体は排気ガス中のNOxや活性NOx *と反応するか、周囲の酸素と反応するか、或いは自己分解する。それによって還元性中間体R-NCOやR-NH2は図6Aに示されるようにN2,CO2,H2Oに変換せしめられ、斯くしてNOxが浄化されることになる。 On the other hand, as shown in FIG. 6B, when hydrocarbon HC is attached around the generated reducing intermediate, the reducing intermediate is blocked by hydrocarbon HC and the reaction does not proceed further. In this case, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 decreases, and then the hydrocarbons adhering around the reducing intermediate are oxidized and disappeared, whereby the oxygen concentration around the reducing intermediate is reduced. As the value increases, the reducing intermediate reacts with NO x and active NO x * in the exhaust gas, reacts with surrounding oxygen, or self-decomposes. As a result, the reducing intermediates R—NCO and R—NH 2 are converted into N 2 , CO 2 , and H 2 O as shown in FIG. 6A, and thus NO x is purified.
 このように排気浄化触媒13では、排気浄化触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気浄化触媒13に流入する炭化水素の濃度を低下させた後、酸素濃度が高くなったときに還元性中間体が排気ガス中のNOxや活性NOx *や酸素と反応し、或いは自己分解し、それによりNOxが浄化される。即ち、排気浄化触媒13によりNOxを浄化するには排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。 In this way, in the exhaust purification catalyst 13, a reducing intermediate is generated by increasing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13, and after reducing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13, When the oxygen concentration increases, the reducing intermediate reacts with NO x , active NO x * and oxygen in the exhaust gas, or self-decomposes, thereby purifying NO x . That is, in order to purify NO x by the exhaust purification catalyst 13, it is necessary to periodically change the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
 無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を排気ガス中のNOxや活性NOx *や酸素と反応させ、或いは自己分解させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体R-NCOやR-NH2が排気ガス中のNOxや活性NOx *や酸素と反応するまで、或いは自己分解するまでこれら還元性中間体を塩基性層53上に、即ち塩基性排気ガス流通表面部分54上に保持しておかなければならず、そのために塩基性の排気ガス流通表面部分54が設けられている。 Of course, in this case, it is necessary to increase the concentration of the hydrocarbon to a concentration high enough to produce a reducing intermediate, and the produced reducing intermediate is combined with NO x , active NO x * and oxygen in the exhaust gas. It is necessary to reduce the hydrocarbon concentration to a concentration low enough to react or autodecompose. That is, it is necessary to vibrate the hydrocarbon concentration flowing into the exhaust purification catalyst 13 with an amplitude within a predetermined range. In this case, the reducing intermediates R-NCO and R-NH 2 are used until they react with NO x , active NO x * and oxygen in the exhaust gas, or until they self-decompose. It must be retained on the basic layer 53, i.e. on the basic exhaust gas flow surface portion 54, for which a basic exhaust gas flow surface portion 54 is provided.
 一方、炭化水素の供給周期を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NOx *は還元性中間体を生成することなく硝酸塩の形で塩基性層53内に吸収されることになる。これを回避するためには排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となる。 On the other hand, if the hydrocarbon supply cycle is lengthened, the period during which the oxygen concentration becomes high after the hydrocarbon is supplied and until the next hydrocarbon is supplied becomes longer, so that the active NO x * is reduced to the reducing intermediate. Without being generated in the basic layer 53 in the form of nitrate. In order to avoid this, it is necessary to vibrate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with a period within a predetermined range.
 そこで本発明による実施例では、排気ガス中に含まれるNOxと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体R-NCOやR-NH2を生成するために排気浄化触媒13の排気ガス流通表面上には貴金属触媒51が担持されており、生成された還元性中間体R-NCOやR-NH2を排気浄化触媒13内に保持しておくために貴金属触媒51周りには塩基性の排気ガス流通表面部分54が形成されており、塩基性の排気ガス流通表面部分54上に保持された還元性中間体R-NCOやR-NH2はN2,CO2,H2Oに変換せしめられ、炭化水素濃度の振動周期は還元性中間体R-NCOやR-NH2を生成し続けるのに必要な振動周期とされる。因みに図4に示される例では噴射間隔が3秒とされている。 Therefore, in the embodiment according to the present invention, NO x contained in the exhaust gas is reacted with the reformed hydrocarbon to generate reducing intermediates R-NCO and R-NH 2 containing nitrogen and hydrocarbons. In addition, a noble metal catalyst 51 is supported on the exhaust gas flow surface of the exhaust purification catalyst 13, and the generated reducing intermediates R-NCO and R-NH 2 are held in the exhaust purification catalyst 13. A basic exhaust gas flow surface portion 54 is formed around the noble metal catalyst 51, and the reducing intermediates R-NCO and R-NH 2 held on the basic exhaust gas flow surface portion 54 are N 2. , CO 2 , and H 2 O, and the vibration period of the hydrocarbon concentration is the vibration period necessary to continue to produce the reducing intermediates R-NCO and R-NH 2 . Incidentally, in the example shown in FIG. 4, the injection interval is 3 seconds.
 炭化水素濃度の振動周期、即ち炭化水素供給弁15からの炭化水素HCの噴射周期を上述の予め定められた範囲内の周期よりも長くすると塩基性層53の表面上から還元性中間体R-NCOやR-NH2が消滅し、このとき白金Pt53上において生成された活性NOx *は図7Aに示されるように硝酸イオンNO3 -の形で塩基性層53内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOxは硝酸塩の形で塩基性層53内に吸収されることになる。 When the oscillation period of the hydrocarbon concentration, that is, the injection period of hydrocarbon HC from the hydrocarbon supply valve 15 is longer than the period within the above-mentioned predetermined range, the reducing intermediate R- from the surface of the basic layer 53 NCO and R—NH 2 disappear, and active NO x * produced on platinum Pt 53 at this time diffuses into the basic layer 53 in the form of nitrate ions NO 3 as shown in FIG. Become. That is, at this time, NO x in the exhaust gas is absorbed in the basic layer 53 in the form of nitrate.
 一方、図7BはこのようにNOxが硝酸塩の形で塩基性層53内に吸収されているときに排気浄化触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO3 -→NO2)に進み、斯くして塩基性層53内に吸収されている硝酸塩は順次硝酸イオンNO3 -となって図7Bに示されるようにNO2の形で塩基性層53から放出される。次いで放出されたNO2は排気ガス中に含まれる炭化水素HCおよびCOによって還元される。 On the other hand, FIG. 7B shows a case where the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made the stoichiometric air-fuel ratio or rich when NO x is absorbed in the basic layer 53 in the form of nitrate. Is shown. In this case, since the oxygen concentration in the exhaust gas decreases, the reaction proceeds in the reverse direction (NO 3 → NO 2 ), and thus the nitrates absorbed in the basic layer 53 are successively converted into nitrate ions NO 3. And released from the basic layer 53 in the form of NO 2 as shown in FIG. 7B. The released NO 2 is then reduced by the hydrocarbons HC and CO contained in the exhaust gas.
 図8は塩基性層53のNOx吸収能力が飽和する少し前に排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸収されたNOxは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性層53から一気に放出されて還元される。従ってこの場合には塩基性層53はNOxを一時的に吸収するための吸収剤の役目を果している。 FIG. 8 shows a case where the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is temporarily made rich slightly before the NO x absorption capacity of the basic layer 53 is saturated. Yes. In the example shown in FIG. 8, the time interval of this rich control is 1 minute or more. In this case, when the air-fuel ratio (A / F) in of the exhaust gas is lean, the NO x absorbed in the basic layer 53 temporarily makes the air-fuel ratio (A / F) in of the exhaust gas rich. When released, it is released from the basic layer 53 at once and reduced. Therefore, in this case, the basic layer 53 serves as an absorbent for temporarily absorbing NO x .
 なお、このとき塩基性層53がNOxを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性層53はNOxを一時的に吸蔵するためのNOx吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気浄化触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒13は、排気ガスの空燃比がリーンのときにはNOxを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOxを放出するNOx吸蔵触媒として機能している。 Incidentally, at this time, sometimes the basic layer 53 temporarily adsorbs NO x, thus using term of storage as a term including both absorption and adsorption In this case the basic layer 53 temporarily the NO x It plays the role of NO x storage agent for storage. That is, in this case, the ratio of air and fuel (hydrocarbon) supplied into the exhaust passage upstream of the engine intake passage, the combustion chamber 2 and the exhaust purification catalyst 13 is referred to as the exhaust gas air-fuel ratio. 13, the air-fuel ratio of the exhaust gas is acting as the NO x storage catalyst during the lean occludes NO x, the oxygen concentration in the exhaust gas to release NO x occluding the drops.
 図9は、排気浄化触媒13をこのようにNOx吸蔵触媒として機能させたときのNOx浄化率R2を示している。なお、図9の横軸は排気浄化触媒13の触媒温度TCを示している。排気浄化触媒13をこのようにNOx吸蔵触媒として機能させた場合には図9において実線で示されるように触媒温度TCが250℃から300℃のときには極めて高いNOx浄化率が得られるが触媒温度TCが350℃以上の高温になるとNOx浄化率R2が低下する。 FIG. 9 shows the NO x purification rate R2 when the exhaust purification catalyst 13 is made to function as a NO x storage catalyst in this way. The horizontal axis in FIG. 9 indicates the catalyst temperature TC of the exhaust purification catalyst 13. When the exhaust purification catalyst 13 is made to function as a NO x storage catalyst in this way, an extremely high NO x purification rate can be obtained when the catalyst temperature TC is 250 ° C. to 300 ° C. as shown by the solid line in FIG. When the temperature TC reaches a high temperature of 350 ° C. or higher, the NO x purification rate R2 decreases.
 このように触媒温度TCが350℃以上になるとNOx浄化率R2が低下するのは、触媒温度TCが350℃以上になるとNOxが吸蔵されずらくなり、かつ硝酸塩が熱分解してNO2の形で排気浄化触媒13から放出されるからである。即ち、NOxを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNOx浄化率R2を得るのは困難である。しかしながら図4から図6Bに示される新たなNOx浄化方法では図6A,6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNOx浄化率R1が得られることになる。 Thus, when the catalyst temperature TC exceeds 350 ° C., the NO x purification rate R2 decreases because when the catalyst temperature TC exceeds 350 ° C., NO x is difficult to be occluded and the nitrate is thermally decomposed and NO 2 This is because it is discharged from the exhaust purification catalyst 13 in the form of. That is, as long as NO x is occluded in the form of nitrate, it is difficult to obtain a high NO x purification rate R2 when the catalyst temperature TC is high. However, in the new NO x purification method shown in FIGS. 4 to 6B, as can be seen from FIGS. 6A and 6B, nitrate is not generated or is very small even if it is generated, and as shown in FIG. Even when the catalyst temperature TC is high, a high NO x purification rate R1 can be obtained.
 本発明による実施例では、この新たなNOx浄化方法を用いてNOを浄化しうるように、炭化水素を供給するための炭化水素供給弁15を機関排気通路内に配置し、炭化水素供給弁15下流の機関排気通路内に排気浄化触媒13を配置し、排気浄化触媒13の排気ガス流通表面上には貴金属触媒51が担持されていると共に貴金属触媒51周りには塩基性の排気ガス流通表面部分54が形成されており、排気浄化触媒13は、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOxを還元する性質を有すると共に、炭化水素濃度の振動周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOxの吸蔵量が増大する性質を有しており、機関運転時に炭化水素供給弁15から予め定められた噴射周期でもって炭化水素を噴射し、それにより排気ガス中に含まれるNOxを排気浄化触媒13において還元するようにしている。 In an embodiment according to the present invention, a hydrocarbon supply valve 15 for supplying hydrocarbons is arranged in the engine exhaust passage so that NO x can be purified using this new NO x purification method, and hydrocarbon supply An exhaust purification catalyst 13 is arranged in the engine exhaust passage downstream of the valve 15, and a noble metal catalyst 51 is supported on the exhaust gas circulation surface of the exhaust purification catalyst 13 and a basic exhaust gas circulation around the noble metal catalyst 51 A surface portion 54 is formed, and the exhaust purification catalyst 13 causes the exhaust gas when the hydrocarbon concentration flowing into the exhaust purification catalyst 13 is vibrated with an amplitude within a predetermined range and a period within the predetermined range. which has a property for reducing the NO x contained in the gas, has the property of absorbing the amount of the NO x contained the vibration period in the exhaust gas to be longer than the predetermined range of the hydrocarbon concentration is increased And carbonized during engine operation With in a predetermined injection period from the supply valve 15 injects hydrocarbon, so that reducing the NO x contained in the exhaust gas in the exhaust purification catalyst 13 thereby.
 即ち、図4から図6Bに示されるNOx浄化方法は、貴金属触媒を担持しかつNOxを吸収しうる塩基性層を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOxを浄化するようにした新たなNOx浄化方法であると言うことができる。実際、この新たなNOx浄化方法を用いた場合には排気浄化触媒13をNOx吸蔵触媒として機能させた場合に比べて、塩基性層53から検出される硝酸塩は極く微量である。なお、この新たなNOx浄化方法を以下、第1のNOx浄化方法と称する。 That is, in the NO x purification method shown in FIGS. 4 to 6B, when an exhaust purification catalyst that supports a noble metal catalyst and forms a basic layer capable of absorbing NO x is used, almost no nitrate is formed. NO x can be said to the a new the NO x purification method to be purified. In fact, when this new NO x purification method is used, the amount of nitrate detected from the basic layer 53 is very small compared to when the exhaust purification catalyst 13 functions as a NO x storage catalyst. This new NO x purification method is hereinafter referred to as a first NO x purification method.
 さて、前述したように、炭化水素供給弁15からの炭化水素の噴射周期ΔTが長くなると炭化水素が噴射された後、次に炭化水素が噴射される間において、活性NOx *周りの酸素濃度が高くなる期間が長くなる。この場合、図1に示される実施例では、炭化水素の噴射周期ΔTが5秒程度よりも長くなると活性NOx *が硝酸塩の形で塩基性層53内に吸収され始め、従って図10に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNOx浄化率R1が低下することになる。従って図1に示される実施例では、炭化水素の噴射周期ΔTは5秒以下とする必要がある。 As described above, when the hydrocarbon injection period ΔT from the hydrocarbon supply valve 15 becomes longer, after the hydrocarbon is injected, the oxygen concentration around the active NO x * is between the next injection of the hydrocarbon. The period during which becomes higher. In this case, in the embodiment shown in FIG. 1, when the hydrocarbon injection period ΔT is longer than about 5 seconds, the active NO x * begins to be absorbed in the basic layer 53 in the form of nitrate, and therefore shown in FIG. As described above, when the vibration period ΔT of the hydrocarbon concentration is longer than about 5 seconds, the NO x purification rate R1 decreases. Therefore, in the embodiment shown in FIG. 1, the hydrocarbon injection period ΔT needs to be 5 seconds or less.
 一方、本発明による実施例では、炭化水素の噴射周期ΔTがほぼ0.3秒以下になると噴射された炭化水素が排気浄化触媒13の排気ガス流通表面上に堆積し始め、従って図10に示されるように炭化水素の噴射周期ΔTがほぼ0.3秒以下になるとNOx浄化率R1が低下する。そこで本発明による実施例では、炭化水素の噴射周期が0.3秒から5秒の間とされている。 On the other hand, in the embodiment according to the present invention, the injected hydrocarbon starts to accumulate on the exhaust gas flow surface of the exhaust purification catalyst 13 when the hydrocarbon injection period ΔT becomes approximately 0.3 seconds or less, and as shown in FIG. In addition, when the hydrocarbon injection period ΔT becomes approximately 0.3 seconds or less, the NO x purification rate R1 decreases. Therefore, in the embodiment according to the present invention, the hydrocarbon injection period is set between 0.3 seconds and 5 seconds.
さて、本発明による実施例では、第1のNOx浄化方法によるNOx浄化作用が行われているときには、炭化水素供給弁15からの炭化水素噴射量および噴射時期を変化させることによって排気浄化触媒13への流入排気ガスの空燃比(A/F)inおよび噴射周期ΔTが機関の運転状態に応じた最適値となるように制御される。この場合、本発明による実施例では、第1のNOx浄化方法によるNOx浄化作用が行われているときの最適な炭化水素噴射量WTが、燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図11Aに示すようなマップの形で予めROM32内に記憶されており、また、このときの最適な炭化水素の噴射周期ΔTも燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図11Bに示すようなマップの形で予めROM32内に記憶されている。 In the embodiment according to the present invention, when the NOx purification action by the first NOx purification method is being performed, the hydrocarbon injection amount and the injection timing from the hydrocarbon supply valve 15 are changed to the exhaust purification catalyst 13. Is controlled so that the air-fuel ratio (A / F) in and the injection cycle ΔT of the inflowing exhaust gas become optimum values according to the engine operating state. In this case, in the embodiment according to the present invention, the optimum hydrocarbon injection amount WT when the NOx purification action by the first NOx purification method is performed is the injection amount Q from the fuel injection valve 3 and the engine speed N. 11A is stored in advance in the ROM 32 in the form of a map as shown in FIG. 11A, and the optimum hydrocarbon injection period ΔT at this time is also the injection amount Q from the fuel injection valve 3 and the engine speed N. Is previously stored in the ROM 32 in the form of a map as shown in FIG. 11B.
 次に図12から図15を参照しつつ排気浄化触媒13をNOx吸蔵触媒として機能させた場合のNOx浄化方法について具体的に説明する。このように排気浄化触媒13をNOx吸蔵触媒として機能させた場合のNOx浄化方法を以下、第2のNOx浄化方法と称する。
 この第2のNOx浄化方法では図12に示されるように塩基性層53に吸蔵された吸蔵NOx量ΣNOXが予め定められた第1の許容量MAXを越えたときに排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが一時的にリッチにされる。排気ガスの空燃比(A/F)inがリッチにされると、排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸蔵されたNOxが塩基性層53から一気に放出されて還元される。それによってNOxが浄化される。
Next, the NO x purification method when the exhaust purification catalyst 13 is made to function as a NO x storage catalyst will be specifically described with reference to FIGS. Hereinafter, the NO x purification method when the exhaust purification catalyst 13 functions as the NO x storage catalyst will be referred to as a second NO x purification method.
In the second NO x purification method, as shown in FIG. 12, when the stored NO x amount ΣNOX stored in the basic layer 53 exceeds a predetermined first allowable amount MAX, The air-fuel ratio (A / F) in of the inflowing exhaust gas is temporarily made rich. When the air-fuel ratio (A / F) in of the exhaust gas is made rich, the NO x occluded in the basic layer 53 when the air-fuel ratio (A / F) in of the exhaust gas is lean becomes the basic layer 53. It is released at a stroke and reduced. As a result, NO x is purified.
 吸蔵NOx量ΣNOXは例えば機関から排出されるNOx量から算出される。本発明による実施例では機関から単位時間当り排出される排出NOx量NOXAが燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図13に示すようなマップの形で予めROM32内に記憶されており、この排出NOx量NOXAから吸蔵NOx量ΣNOXが算出される。この場合、前述したように排気ガスの空燃比(A/F)inがリッチにされる周期は通常1分以上である。 Occluded amount of NO x ΣNOX is calculated from the amount of NO x exhausted from the engine, for example. Advance in the ROM32 in the form of a map as shown in FIG. 13 as a function of the injection quantity Q and engine speed N from the discharge amount of NO x NOXA the fuel injection valve 3 in the embodiment according to the present invention, which is discharged from the engine per unit time The stored NO x amount ΣNOX is calculated from this exhausted NO x amount NOXA. In this case, as described above, the period during which the air-fuel ratio (A / F) in of the exhaust gas is made rich is usually 1 minute or more.
 この第2のNOx浄化方法では図14に示されるように燃焼室2内に燃料噴射弁3から燃焼用燃料Qに加え、追加の燃料WRを噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされる。なお、図14の横軸はクランク角を示している。この追加の燃料WRは燃焼はするが機関出力となって現われない時期に、即ち圧縮上死点後ATDC90°の少し手前で噴射される。この燃料量WRは燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図15に示すようなマップの形で予めROM32内に記憶されている。このように、第2のNOx浄化方法が行われている場合において、排気浄化触媒13に流入する排気ガスの空燃比をリッチにすべきときには、燃焼室2内に追加の燃料WRを供給することによって燃焼室2から排出される排気ガスの空燃比がリッチにされる。 In this second NO x purification method, as shown in FIG. 14, the exhaust gas flowing into the exhaust purification catalyst 13 by injecting additional fuel WR from the fuel injection valve 3 into the combustion chamber 2 in addition to the combustion fuel Q. The air / fuel ratio (A / F) in of the gas is made rich. The horizontal axis in FIG. 14 indicates the crank angle. This additional fuel WR is injected when it burns but does not appear as engine output, that is, slightly before ATDC 90 ° after compression top dead center. This fuel amount WR is stored in advance in the ROM 32 in the form of a map as shown in FIG. 15 as a function of the injection amount Q from the fuel injection valve 3 and the engine speed N. In this way, when the second NO x purification method is being performed, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 should be made rich, additional fuel WR is supplied into the combustion chamber 2. As a result, the air-fuel ratio of the exhaust gas discharged from the combustion chamber 2 is made rich.
 この場合、上述したように、燃焼室2内に供給された追加の燃料WRは燃焼室2内において燃焼せしめられ、従って燃焼室2内にはこのときリッチ空燃比の燃焼ガスが生成されることになる。本発明では、このように気筒内においてリッチ空燃比の燃焼ガスを生成させることによって排気浄化触媒13に流入する排気ガスの空燃比をリッチにするようにしたリッチ制御を筒内リッチ制御と称する。一方、炭化水素供給弁15から排気ガス中に炭化水素を供給することによっても排気浄化触媒13に流入する排気ガスの空燃比をリッチにすることもできる。本発明では、このように炭化水素供給弁15から炭化水素を供給することによって排気浄化触媒13に流入する排気ガスの空燃比をリッチにするようにしたリッチ制御を排気リッチ制御と称する。本発明による実施例では、排気浄化触媒13に流入する排気ガスの空燃比をリッチにするためのリッチ制御として、気筒内においてリッチ空燃比の燃焼ガスを生成させる筒内リッチ制御と炭化水素供給弁15から炭化水素を供給することによって排気ガスの空燃比をリッチにする排気リッチ制御とが選択的に用いられている。 In this case, as described above, the additional fuel WR supplied into the combustion chamber 2 is burned in the combustion chamber 2, and therefore, a rich air-fuel ratio combustion gas is generated in the combustion chamber 2 at this time. become. In the present invention, the rich control in which the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich by generating the rich air-fuel ratio combustion gas in the cylinder is referred to as in-cylinder rich control. On the other hand, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 can also be made rich by supplying hydrocarbons into the exhaust gas from the hydrocarbon supply valve 15. In the present invention, the rich control in which the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich by supplying hydrocarbons from the hydrocarbon supply valve 15 in this way is called exhaust rich control. In the embodiment according to the present invention, as rich control for making the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 rich, the in-cylinder rich control and the hydrocarbon feed valve for generating the combustion gas of rich air-fuel ratio in the cylinder Exhaust rich control that makes the air-fuel ratio of the exhaust gas rich by supplying hydrocarbons from 15 is selectively used.
 図16には、第1のNOx浄化方法によるNOx浄化作用が行われているときのNOx浄化率R1と第2のNOx浄化方法によるNOx浄化作用が行われているときのNOx浄化率R2とが一緒に示されている。なお、図16において、Tmは、NOx浄化率R1とNOx浄化率R2とが等しくなるときの排気浄化触媒13の温度TC1を示している。本発明による実施例では、触媒温度TCがTmよりも低いときには高い方のNOx浄化率R2が得られる第2のNOx浄化方法によるNOx浄化作用が行われ、触媒温度TCがTmよりも高いときには高い方のNOx浄化率R1が得られる第1のNOx浄化方法によるNOx浄化作用が行われる。 Figure 16 is, the NO x purification rate when the NOx purification action is performed with the NO x purification rate R1 by the second NOx purification method when NOx purification action by the first NOx purification method has been done R2 And are shown together. In FIG. 16, Tm represents the temperature TC1 of the exhaust purification catalyst 13 when the NO x purification rate R1 and the NO x purification rate R2 are equal. In the embodiment according to the present invention, NOx purification action by the second NOx purification method is higher of the NO x purification rate R2 obtained when less than the catalyst temperature TC is Tm is performed, when the catalyst temperature TC is higher than the Tm NOx purification action by the first NOx purification method the NO x purification rate R1 of the higher is obtained is carried out.
 ところで、排気浄化触媒13には、NOxに加えて、排気ガス中に含まれているSOxが吸蔵される。この場合、排気浄化触媒13へのSOxの吸蔵量が増大するとNOx浄化率R1およびNOx浄化率R2が共に低下する。即ち、第1のNOx浄化方法によるNOx浄化作用が行われている場合には、SOxの吸蔵量が増大すると排気浄化触媒13の排気ガス流通表面部分54の塩基性が弱まり、還元性中間体を良好に生成し保持することができなくなる。その結果、NOx浄化率R1が低下することになる。一方、第2のNOx浄化方法によるNOx浄化作用が行われている場合には、SOxの吸蔵量が増大すると排気浄化触媒13が吸蔵し得るNOx量が減少する。その結果、NOx浄化率R2が低下することになる。従って、SOxの吸蔵量が増大したときには排気浄化触媒13からSOxを放出させる必要がある。 Incidentally, the exhaust purification catalyst 13 occludes SO x contained in the exhaust gas in addition to NO x . In this case, as the amount of SO x stored in the exhaust purification catalyst 13 increases, the NO x purification rate R1 and the NO x purification rate R2 both decrease. That is, in the case where the NO x purification action by the first NO x purification method is performed, the basicity of the exhaust gas flow surface portion 54 of the exhaust purification catalyst 13 is weakened as the storage amount of SO x increases, and the reducing property is reduced. The intermediate cannot be generated and retained well. As a result, the NO x purification rate R1 decreases. On the other hand, when the NO x purification action is performed by the second NO x purification method, the amount of NO x that can be stored by the exhaust purification catalyst 13 decreases as the storage amount of SO x increases. As a result, the NO x purification rate R2 decreases. Therefore, when the storage amount of SO x increases, it is necessary to release SO x from the exhaust purification catalyst 13.
 この場合、排気浄化触媒13の温度TCを600℃以上のSOx放出温度まで上昇させ、排気浄化触媒13の温度TCを600℃以上のSOx放出温度に維持した状態でもって排気浄化触媒13に流入する排気ガスの空燃比をリッチにすると、排気浄化触媒13からSOxを放出させることができる。そこで本発明による実施例では、排気浄化触媒13に吸蔵されているSOx吸蔵量が予め定められた許容値SMAXを超えたときには、排気浄化触媒13に流入する排気ガスの空燃比を間欠的にリッチにして排気浄化触媒13の温度TCをSOx放出温度まで上昇させるようにしている。なお、燃料内には一定の割合でもって硫黄が含まれているので、供給される燃料量の積算値から排気浄化触媒13に吸蔵されるSOx量を算出することができる。 In this case, the temperature TC of the exhaust purification catalyst 13 is increased to the SO x release temperature of 600 ° C. or higher, and the temperature TC of the exhaust purification catalyst 13 is maintained at the SO x release temperature of 600 ° C. or higher. When the air-fuel ratio of the inflowing exhaust gas is made rich, SO x can be released from the exhaust purification catalyst 13. Therefore, in the embodiment according to the present invention, when the SO x storage amount stored in the exhaust purification catalyst 13 exceeds the predetermined allowable value SMAX, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is intermittently set. It is made rich so that the temperature TC of the exhaust purification catalyst 13 is raised to the SO x release temperature. Since sulfur is contained in the fuel at a constant rate, the SO x amount stored in the exhaust purification catalyst 13 can be calculated from the integrated value of the supplied fuel amount.
 さて、図16に示されるように、第1のNOx浄化方法は、排気浄化触媒13の温度が高くなる機関高負荷運転時においても高いNOx浄化率を得ることができる。従って、本発明による実施例では、機関高負荷運転時には第1のNOx浄化方法によるNOx浄化作用が行われる。ところが機関高負荷運転時にはスモークが発生しやすく、従って、第1のNOx浄化方法によるNOx浄化作用が継続的に行われると、炭化微粒子等からなるデポジットが排気浄化触媒13の上流側端面に次第に堆積することになる。一方、このとき、供給される燃料の積算値から算出される排気浄化触媒13へのSOx吸蔵量が所定値(許容値SMAX)を超えると、排気浄化触媒13からSOxを放出すべきときであるとして、排気浄化触媒13をSOx放出温度まで昇温するために排気浄化触媒13に流入する排気ガスの空燃比がリッチにされる。 Now, as shown in FIG. 16, the first NO x purification method can obtain a high NO x purification rate even during engine high load operation when the temperature of the exhaust purification catalyst 13 becomes high. Therefore, in the embodiment according to the present invention, the NO x purification action by the first NO x purification method is performed at the time of engine high load operation. However, smoke tends to occur during high engine load operation. Therefore, if the NO x purification action by the first NO x purification method is continuously performed, deposits made of carbonized fine particles and the like are formed on the upstream end face of the exhaust purification catalyst 13. It will gradually accumulate. On the other hand, when the SO x storage amount in the exhaust purification catalyst 13 calculated from the integrated value of the supplied fuel exceeds a predetermined value (allowable value SMAX), the SO x should be released from the exhaust purification catalyst 13 As a result, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich in order to raise the temperature of the exhaust purification catalyst 13 to the SO x release temperature.
 この場合、炭化水素供給弁15から炭化水素を供給することによって排気浄化触媒13に流入する排気ガスの空燃比をリッチにすると問題を生ずる。即ち、デポジットが排気浄化触媒13の上流側端面に堆積しているときに、炭化水素供給弁15から炭化水素を噴射して排気浄化触媒13に流入する排気ガスの空燃比をリッチにさせると、噴射された炭化水素はデポジット上に付着し、良好に燃焼しなくなる。その結果、排気浄化触媒13の温度がSOx放出温度まで上昇させることができず、従って排気浄化触媒13からSOxを良好に放出させることができないという問題を生ずる。 In this case, there is a problem if the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich by supplying hydrocarbons from the hydrocarbon supply valve 15. That is, when deposit is deposited on the upstream end face of the exhaust purification catalyst 13, when the hydrocarbon is injected from the hydrocarbon supply valve 15 and the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich, The injected hydrocarbon adheres to the deposit and does not burn well. As a result, there is a problem that the temperature of the exhaust purification catalyst 13 cannot be raised to the SO x release temperature, and therefore SO x cannot be released well from the exhaust purification catalyst 13.
 これに対してこのとき、筒内リッチ制御を行うと排気浄化触媒13の温度TCをSOx放出温度まで昇温することができるようになる。即ち、筒内リッチ制御が行われると機関からは軽質の炭化水素が排出され、この軽質の炭化水素が排気浄化触媒13に送り込まれる。このように軽質の炭化水素が排気浄化触媒13に送り込まれると、排気浄化触媒13の上流側端面に堆積したデポジットはこの軽質の炭化水素によって良好に燃焼せしめられ、従って排気浄化触媒13の温度が上昇する。図17Aは、このときの排気浄化触媒13内の触媒床温度を示している。図17Aに示されるように、筒内リッチ制御が行われると、排気浄化触媒13の上流側の触媒床温度が上昇し、排気浄化触媒13の上流側の触媒床温度がSOx放出温度になる。その結果、排気浄化触媒13の上流側からはSOxが良好に放出されることになる。 In this case contrast, the carried-cylinder rich control the temperature TC of the exhaust purification catalyst 13 to be able to raise the temperature up to release of SO x temperature. That is, when in-cylinder rich control is performed, light hydrocarbons are discharged from the engine, and the light hydrocarbons are sent to the exhaust purification catalyst 13. When light hydrocarbons are sent to the exhaust purification catalyst 13 in this way, the deposit deposited on the upstream end face of the exhaust purification catalyst 13 is burned well by the light hydrocarbons, and therefore the temperature of the exhaust purification catalyst 13 is increased. To rise. FIG. 17A shows the catalyst bed temperature in the exhaust purification catalyst 13 at this time. As shown in FIG. 17A, when the in-cylinder rich control is performed, the catalyst bed temperature on the upstream side of the exhaust purification catalyst 13 rises, and the catalyst bed temperature on the upstream side of the exhaust purification catalyst 13 becomes the SO x release temperature. . As a result, SO x is favorably released from the upstream side of the exhaust purification catalyst 13.
 一方、図17Aに示されるように、筒内リッチ制御が行われても排気浄化触媒13の下流側の触媒床温度はSOx放出温度までは上昇しない。これに対して、排気浄化触媒13の上流側端面に堆積したデポジットが燃焼して消滅した後に炭化水素供給弁15から炭化水素を噴射することによって排気浄化触媒13に流入する排気ガスの空燃比がリッチにされると、噴射された炭化水素のうちのかなりの部分の炭化水素が排気浄化触媒13の上流側端面に付着することなく排気浄化触媒13内の下流側に達し、排気浄化触媒13の下流側において燃焼せしめられる。その結果、排気浄化触媒13の下流側の触媒床温度がSOx放出温度まで上昇せしめられ、その結果、排気浄化触媒13の下流側からSOxが放出されることになる。図17Bはこのときの排気浄化触媒13の触媒床温度を示している。筒内リッチ制御が行われた後に排気リッチ制御が行われると、排気浄化触媒13の全体から吸蔵されているSOxを放出させることができることになる。 On the other hand, as shown in FIG. 17A, even if in-cylinder rich control is performed, the catalyst bed temperature on the downstream side of the exhaust purification catalyst 13 does not rise to the SO x release temperature. In contrast, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is reduced by injecting hydrocarbons from the hydrocarbon supply valve 15 after the deposit accumulated on the upstream end face of the exhaust purification catalyst 13 burns and disappears. When rich, a significant portion of the injected hydrocarbons reach the downstream side in the exhaust purification catalyst 13 without adhering to the upstream end face of the exhaust purification catalyst 13, and the exhaust purification catalyst 13 It is burned downstream. As a result, the catalyst bed temperature on the downstream side of the exhaust purification catalyst 13 is raised to the SO x release temperature, and as a result, SO x is released from the downstream side of the exhaust purification catalyst 13. FIG. 17B shows the catalyst bed temperature of the exhaust purification catalyst 13 at this time. If the exhaust rich control is performed after the in-cylinder rich control is performed, the stored SO x can be released from the entire exhaust purification catalyst 13.
 そこで本発明では、機関排気通路内に排気浄化触媒13を配置すると共に排気浄化触媒13上流の機関排気通路内に炭化水素供給弁15を配置し、排気浄化触媒13の排気ガス流通表面上には貴金属触媒51が担持されていると共に貴金属触媒51周りには塩基性の排気ガス流通表面部分54が形成されており、排気浄化触媒13は、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素濃度の振動周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、炭化水素供給弁15からこの予め定められた範囲内の周期でもって炭化水素を噴射することにより排気ガス中に含まれるNOxを浄化するようにした内燃機関の排気浄化装置において、排気浄化触媒13に流入する排気ガスの空燃比をリッチにするためのリッチ制御として、気筒内においてリッチ空燃比の燃焼ガスを生成させる筒内リッチ制御と炭化水素供給弁15から炭化水素を供給することによって排気ガスの空燃比をリッチにする排気リッチ制御とを選択的に用い、排気浄化触媒13からSOxを放出すべきときには、初めに筒内リッチ制御により排気浄化触媒13に流入する排気ガスの空燃比をリッチにし、次いで排気リッチ制御により排気浄化触媒13に流入する排気ガスの空燃比をリッチにするようにしている。 Therefore, in the present invention, the exhaust purification catalyst 13 is disposed in the engine exhaust passage and the hydrocarbon supply valve 15 is disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13, and the exhaust purification catalyst 13 has an exhaust gas flow surface on the surface thereof. A noble metal catalyst 51 is supported and a basic exhaust gas flow surface portion 54 is formed around the noble metal catalyst 51. The exhaust purification catalyst 13 predetermines the concentration of hydrocarbons flowing into the exhaust purification catalyst 13. When it is vibrated with an amplitude within a predetermined range and a period within a predetermined range, it has the property of reducing NO x contained in the exhaust gas, and the vibration period of the hydrocarbon concentration is reduced from this predetermined range. also has the property of absorbing the amount of NO x contained in the exhaust gas is increased and longer, the exhaust gas by injecting the hydrocarbons have from the hydrocarbon feed valve 15 in the cycle in the predetermined range NO in the exhaust purification system of an internal combustion engine so as to purify the x, as the rich control for the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 rich, the combustion gas of a rich air-fuel ratio in the cylinder contained in In-cylinder rich control for generating exhaust gas and exhaust rich control for enriching the air-fuel ratio of exhaust gas by supplying hydrocarbons from the hydrocarbon supply valve 15 to release SO x from the exhaust purification catalyst 13 When it should be, first make the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 rich by the in-cylinder rich control, and then make the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 rich by the exhaust rich control Yes.
 この場合、本発明による実施例では、排気浄化触媒13の上流側に吸蔵されているSOxの放出作用が完了するまで筒内リッチ制御により排気浄化触媒13に流入する排気ガスの空燃比がリッチにされ、排気浄化触媒13の上流側に吸蔵されているSOxの放出作用が完了すると排気浄化触媒13の下流側に吸蔵されているSOxを放出させるために排気リッチ制御により排気浄化触媒13に流入する排気ガスの空燃比がリッチにされる。 In this case, in the embodiment according to the present invention, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 by the in-cylinder rich control is rich until the release operation of SO x stored upstream of the exhaust purification catalyst 13 is completed. is the exhaust purification catalyst 13 by the exhaust rich control for releasing action of the SO x which is stored in the upstream side is released upon completion of the SO x occluded in the downstream side of the exhaust purification catalyst 13 of the exhaust purification catalyst 13 The air-fuel ratio of the exhaust gas flowing into the engine is made rich.
 図18は、NOx浄化制御のタイムチャートを示している。なお、図18には、燃料噴射弁3からの追加燃料量WRと、炭化水素供給弁15からの炭化水素量WTと、排気浄化触媒13に流入する排気ガスの空燃比(A/F)inの変化と、排気浄化触媒13への吸蔵NOx量ΣNOXの変化と、排気浄化触媒13への吸蔵SOx量ΣSOXの変化とが示されている。また、図18には、吸蔵NOx量に対する許容値MAXと吸蔵SOx量に対する許容値SMAXとが示されている。 FIG. 18 shows a time chart of the NO x purification control. 18 shows the additional fuel amount WR from the fuel injection valve 3, the hydrocarbon amount WT from the hydrocarbon feed valve 15, and the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13. , The change in the stored NO x amount ΣNOX in the exhaust purification catalyst 13 and the change in the stored SO x amount ΣSOX in the exhaust purification catalyst 13 are shown. FIG. 18 also shows an allowable value MAX for the stored NO x amount and an allowable value SMAX for the stored SO x amount.
 前述したように、排気浄化触媒13の温度TCが図16に示されるTmを超えると、第2のNOx浄化方法によるNOx浄化作用から第1のNOx浄化方法によるNOx浄化作用に切り替えられる。図18からわかるように、第2のNOx浄化方法によるNOx浄化作用が行われているときに吸蔵NOx量ΣNOXが許容値MAXを超えると、筒内リッチ制御により排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされ、第1のNOx浄化方法によるNOx浄化作用が行われているときには炭化水素供給弁15から炭化水素を周期的に噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが周期的にリッチにされる。また、図18には、第1のNOx浄化方法によるNOx浄化作用が行われているときに吸蔵SOx量ΣSOXが許容値SMAXを超え、それによってSOx放出制御が開始された場合が示されている。このSOx放出制御が行われているときのタイムチャートが図19に示されている。 As described above, when the temperature TC of the exhaust purification catalyst 13 exceeds Tm shown in FIG. 16, the NO x purification action by the second NO x purification method is switched to the NO x purification action by the first NO x purification method. It is done. As can be seen from FIG. 18, if the stored NO x amount ΣNOX exceeds the allowable value MAX when the NO x purification action by the second NO x purification method is being performed, it flows into the exhaust purification catalyst 13 by the in-cylinder rich control. air-fuel ratio of the exhaust gas (a / F) in is being rich, it is periodically inject hydrocarbon from the hydrocarbon feed valve 15 when the NO x purification action by the first NO x purification method is being carried out As a result, the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is periodically made rich. Further, FIG. 18 shows a case where the stored SO x amount ΣSOX exceeds the allowable value SMAX when the NO x purification action by the first NO x purification method is being performed, thereby starting the SO x release control. It is shown. A time chart when the SO x release control is performed is shown in FIG.
 図19を参照すると、図19には、燃料噴射弁3からの追加燃料量WRと、炭化水素供給弁15からの炭化水素量WTと、排気浄化触媒13に流入する排気ガスの空燃比(A/F)inの変化と、排気浄化触媒13の上流側温度TUと、排気浄化触媒13の下流側温度TDとが示されている。図19に示されるように、SOx放出制御が開始されると、間欠的に筒内リッチ制御が行われ、それによって排気浄化触媒13の上流側温度TUがSOx放出温度まで上昇せしめられる。次いで、排気リッチ制御が間欠的に行われ、それによって排気浄化触媒13の下流側温度TDがSOx放出温度まで上昇せしめられる。 Referring to FIG. 19, FIG. 19 shows the additional fuel amount WR from the fuel injection valve 3, the hydrocarbon amount WT from the hydrocarbon supply valve 15, and the air-fuel ratio (A of the exhaust gas flowing into the exhaust purification catalyst 13. / F) Changes in, the upstream temperature TU of the exhaust purification catalyst 13, and the downstream temperature TD of the exhaust purification catalyst 13 are shown. As shown in FIG. 19, when SO x release control is started, in-cylinder rich control is intermittently performed, whereby the upstream temperature TU of the exhaust purification catalyst 13 is raised to the SO x release temperature. Then, the exhaust rich control is intermittently performed, thereby the downstream temperature TD of the exhaust purification catalyst 13 is raised until the release of SO x temperature.
 図20は、電子制御ユニット30によって実行される排気浄化制御ルーチンを示しており、このルーチンは一定時間毎の割込みによって実行される。
 図20を参照するとまず初めにステップ60において、SOxを放出すべきであることを示すSOx放出フラグがセットされているか否かが判別される。SOxを放出すべきであることを示すSOx放出フラグがセットされていない場合にはステップ61に進み、燃料噴射量Qに一定値Cを乗算した値をΣSOXに加算することによって排気浄化触媒13に吸蔵されている吸蔵NOx量ΣNOXが算出される。次いで、ステップ62では、温度センサ23、24の検出値に基づいて算出された排気浄化触媒13の温度TCが図16に示される触媒温度Tmよりも高いか否かが判別される。触媒温度TCが温度Tmよりも低いときには第2のNOx浄化方法によるNO浄化作用1を行うべきであると判別され、ステップ63に進んで第2のNO浄化方法によるNO浄化作用が行われる。
FIG. 20 shows an exhaust purification control routine executed by the electronic control unit 30, and this routine is executed by interruption every predetermined time.
First, at step 60 and reference to FIG. 20, whether or not release SO x flag indicating that it should release the SO x has been set or not. If the SO x release flag indicating that SO x should be released is not set, the routine proceeds to step 61, where the exhaust purification catalyst is added by adding to ΣSOX a value obtained by multiplying the fuel injection amount Q by a constant value C. The stored NO x amount ΣNOX stored in 13 is calculated. Next, at step 62, it is judged if the temperature TC of the exhaust purification catalyst 13 calculated based on the detection values of the temperature sensors 23, 24 is higher than the catalyst temperature Tm shown in FIG. When the catalyst temperature TC is lower than the temperature Tm, it is determined that the NO x purification action 1 by the second NO x purification method should be performed, and the routine proceeds to step 63 where the NO x purification action by the second NO x purification method is performed. Done.
 即ち、ステップ63では図13に示すマップから単位時間当りの排出NO量NOXAが算出される。次いでステップ64ではΣNOXに排出NO量NOXAを加算することによって吸蔵NO量ΣNOXが算出される。次いでステップ65では吸蔵NO量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX>MAXになるとステップ66に進んで図15に示すマップから追加の燃料量WRが算出され、次いでステップ66では追加の燃料の噴射作用が行われる。即ち、筒内リッチ制御が行われる。このとき、排気浄化触媒13に吸蔵されているNOxが放出される。次いで、ステップ67ではΣNOXがクリアされる。 That is, the discharge amount of NO x NOXA per unit time is calculated from the map shown in FIG. 13, step 63. Then occluded amount of NO x ΣNOX is calculated by adding the discharge amount of NO x NOXA to ΣNOX step 64. Then whether the step 65 in the occluded amount of NO x ΣNOX has exceeded the allowable value MAX or not. When ΣNOX> MAX, the routine proceeds to step 66, where an additional fuel amount WR is calculated from the map shown in FIG. 15, and then at step 66, an additional fuel injection action is performed. That is, in-cylinder rich control is performed. At this time, NO x stored in the exhaust purification catalyst 13 is released. Next, at step 67, ΣNOX is cleared.
 一方、ステップ62において、算出された触媒温度TCが図16に示される触媒温度Tmよりも高いと判別されたときには第1のNOx浄化方法によるNOx浄化作用を行うべきであると判断され、ステップ68に進んで第1のNOx浄化方法によるNOx浄化作用が行われる。即ち、図11Aから炭化水素の噴射量WTが算出され、図11Bから炭化水素の噴射周期ΔTが算出され、これら算出された噴射周期ΔTおよび噴射量WTに基づいて炭化水素供給弁15から炭化水素が噴射される。次いで、ステップ69では、吸蔵SOx量ΣSOXが許容値SMAXを超えたか否かが判別される。吸蔵SOx量ΣSOXが許容値SMAXを超えていないときには処理サイクルを完了する。 On the other hand, when it is determined in step 62 that the calculated catalyst temperature TC is higher than the catalyst temperature Tm shown in FIG. 16, it is determined that the NOx purification action by the first NOx purification method should be performed, step 68 Then, the NOx purification action by the first NOx purification method is performed. That is, the hydrocarbon injection amount WT is calculated from FIG. 11A, the hydrocarbon injection period ΔT is calculated from FIG. 11B, and the hydrocarbon feed valve 15 generates hydrocarbons based on the calculated injection period ΔT and injection amount WT. Is injected. Next, at step 69, it is judged if the occluded SO x amount ΣSOX exceeds the allowable value SMAX. When the occluded SO x amount ΣSOX does not exceed the allowable value SMAX, the processing cycle is completed.
 これに対し、ステップ69において、吸蔵SOx量ΣSOXが許容値SMAXを超えたと判別されたときにはステップ70に進んで、第1のNOx浄化方法によるNOx浄化作用が予め定められ一定時間以上、継続して行われていたか否かが判別される。第1のNOx浄化方法によるNOx浄化作用が予め定められ一定時間以上、継続して行われていなかったときには、排気浄化触媒13の上流側端面上にデポジットが堆積していないと判断され、この場合はステップ71に進んで、従来より行われているSOx放出処理か行われる。例えば、このとき、炭化水素供給弁15から炭化水素を間欠的に噴射することによって、即ち排気リッチ制御間欠的に行うことによってSOxの放出処理が行われる。 On the other hand, when it is determined at step 69 that the stored SO x amount ΣSOX exceeds the allowable value SMAX, the routine proceeds to step 70 where the NO x purification action by the first NO x purification method is determined in advance for a predetermined time or more. It is determined whether or not it has been performed continuously. When the NO x purification action by the first NO x purification method is determined in advance and has not been continuously performed for a predetermined time or more, it is determined that no deposit has accumulated on the upstream end face of the exhaust purification catalyst 13, In this case, the routine proceeds to step 71 where the conventional SO x release process is performed. For example, at this time, the SO x release process is performed by intermittently injecting hydrocarbons from the hydrocarbon supply valve 15, that is, by performing exhaust rich control intermittently.
 一方、ステップ70において、第1のNOx浄化方法によるNOx浄化作用が予め定められ一定時間以上、継続して行われていたと判別されたときには、排気浄化触媒13の上流側端面上にデポジットが堆積していると判断される。このときにはステップ72に進んでSOx放出フラグがセットされ、次いでステップ73に進んで本発明によるSOx放出制御が行われる。SOx放出フラグが一旦セットされると、次の処理サイクルではステップ60からステップ73にジャンプする。ステップ73において行われるSOx放出制御が図21に示されている。 On the other hand, when it is determined in step 70 that the NO x purification action by the first NO x purification method has been performed for a predetermined time or longer, a deposit is formed on the upstream end face of the exhaust purification catalyst 13. It is judged that it has accumulated. At this time, the routine proceeds to step 72 where the SO x release flag is set, then the routine proceeds to step 73 where the SO x release control according to the present invention is performed. When release of SO x flag is once set, at the next processing cycle, the routine jumps from step 60 to step 73. The SO x release control performed in step 73 is shown in FIG.
 図21を参照すると、まず初めにステップ80において、排気浄化触媒13の上流側からのSOx放出作用が完了したことを示す上流側完了フラグがセットされているか否かが判別される。SOx放出制御が開始されたときには、この上流側完了フラグがセットされていないのでステップ81に進み、触媒温度TCが、筒内リッチ制御に対して反応し得る活性温度T1以上、例えば150℃以上であるか否かが判別される。触媒温度TCが活性温度T1よりも高いときにはステップ82に進んで機関の運転状態が筒内リッチ制御の可能な運転領域であるか否かが判別される。このときに筒内リッチ制御が可能な運転領域が、図22Aにおいてハッチングで示されている。図22Aに示されるように、この筒内リッチ制御が可能な運転領域は燃料噴射量Qと機関回転数Nから定まる。 Referring to FIG. 21, first, at step 80, it is judged if the upstream completion flag indicating that the SO x releasing action from the upstream side of the exhaust purification catalyst 13 is completed is set. When the SO x release control is started, the upstream completion flag is not set, so the routine proceeds to step 81, where the catalyst temperature TC is higher than the activation temperature T1 at which the in-cylinder rich control can react, for example, 150 ° C. or higher. It is determined whether or not. When the catalyst temperature TC is higher than the activation temperature T1, the routine proceeds to step 82, where it is determined whether or not the operating state of the engine is an operating region in which in-cylinder rich control is possible. An operation region in which in-cylinder rich control is possible at this time is indicated by hatching in FIG. 22A. As shown in FIG. 22A, the operating range in which this in-cylinder rich control is possible is determined by the fuel injection amount Q and the engine speed N.
 ステップ82において、機関の運転状態が、筒内リッチ制御の可能な運転領域にあると判断されたときには、ステップ83に進んで図19に示される筒内リッチ制御が行われる。次いで、ステップ84では、排気浄化触媒13の上流側からのSOx放出作用が完了したか否か、例えば筒内リッチ制御が所定時間継続して行われたか否かが判別され、排気浄化触媒13の上流側からのSOx放出作用が完了したと判断されたときには、即ち排気浄化触媒13の上流側の再生が完了したときにはステップ85に進んで上流側完了フラグがセットされる。上流側完了フラグが一旦セットされると、次の処理サイクルではステップ80からステップ82に進む。 When it is determined in step 82 that the engine operating state is in an operation region where in-cylinder rich control is possible, the routine proceeds to step 83 where in-cylinder rich control shown in FIG. 19 is performed. Next, at step 84, it is determined whether or not the SO x releasing action from the upstream side of the exhaust purification catalyst 13 is completed, for example, whether or not the in-cylinder rich control is continuously performed for a predetermined time. when release of SO x action from the upstream side of is determined to be completed, the upstream completion flag is set the routine proceeds to step 85 in that is, when the upstream side of the regeneration of the exhaust purification catalyst 13 has been completed. Once the upstream completion flag is set, the process proceeds from step 80 to step 82 in the next processing cycle.
 ステップ86では、触媒温度TCが、排気リッチ制御に対して反応し得る活性温度T2以上、例えば200℃以上であるか否かが判別される。触媒温度TCが活性温度T2よりも高いときにはステップ87に進んで機関の運転状態が排気リッチ制御の可能な運転領域であるか否かが判別される。このときに排気リッチ制御が可能な運転領域が、図22Bにおいてハッチングで示されている。図22Bに示されるように、この排気リッチ制御が可能な運転領域は燃料噴射量Qと機関回転数Nから定まる。 In step 86, it is determined whether or not the catalyst temperature TC is equal to or higher than an activation temperature T2 that can react to the exhaust rich control, for example, 200 ° C. or higher. When the catalyst temperature TC is higher than the activation temperature T2, the routine proceeds to step 87, where it is judged if the engine operating state is an operating region where exhaust rich control is possible. The operation region in which exhaust rich control is possible at this time is indicated by hatching in FIG. 22B. As shown in FIG. 22B, the operating range in which this exhaust rich control is possible is determined by the fuel injection amount Q and the engine speed N.
 ステップ87において、機関の運転状態が、排気リッチ制御の可能な運転領域にあると判断されたときには、ステップ88に進んで図19に示される排気リッチ制御が行われる。次いで、ステップ89では、排気浄化触媒13の下流側からのSOx放出作用が完了したか否か、例えば排気リッチ制御が所定時間継続して行われたか否かが判別され、排気浄化触媒13の上流側からのSOx放出作用が完了したと判断されたときには、即ち排気浄化触媒13の下流側の再生が完了したときにはステップ90に進んで上流側完了フラグがリセットされる。次いでステップ91ではSOx放出フラグがリセットされ、次いでステップ92ではΣSOXがクリアされる。 If it is determined in step 87 that the engine operating state is within an operation region where exhaust rich control is possible, the routine proceeds to step 88 where exhaust rich control shown in FIG. 19 is performed. Next, at step 89, it is determined whether or not the SO x releasing action from the downstream side of the exhaust purification catalyst 13 has been completed, for example, whether or not exhaust rich control has been performed for a predetermined time. when release of SO x action from the upstream side is determined to be completed, i.e. upstream completion flag proceeds to step 90 when the downstream side of the regeneration of the exhaust purification catalyst 13 has been completed is reset. Next, at step 91 SO x releasing flag is reset, then in step 92 ShigumaSOX is cleared.
 上述の例では、筒内リッチ制御が所定時間継続して行われたときに排気浄化触媒13の上流側からのSOx放出作用が完了したと判断され、このとき筒内リッチ制御が終了せしめられて排気浄化触媒13の上流側からのSOx放出作用が終了せしめられる。また、この例では排気リッチ制御が所定時間継続して行われたときに排気浄化触媒13の下流側からのSOx放出作用が完了したと判断され、このとき排気リッチ制御が終了せしめられて排気浄化触媒13の下流側からのSOx放出作用が終了せしめられる。この場合、別の変形例においては、吸蔵SOx量ΣSOXが第1の所定値を下回ったときに排気浄化触媒13の上流側からのSOx放出作用を終了させ、吸蔵SOx量ΣSOXが第2の所定値を下回ったときに排気浄化触媒13の下流側からのSOx放出作用を終了させることもできる。また、更に別の変形例においては、排気浄化触媒13の上流側の上流側吸蔵SOx量と排気浄化触媒13の下流側の下流側吸蔵SOx量を個別に算出し、上流側吸蔵SOx量が所定値を下回った場合に排気浄化触媒13の上流側からのSOx放出作用を終了させ、下流側吸蔵SOx量が所定値を下回った場合に排気浄化触媒13の下流側からのSOx放出作用を終了させることもできる。 In the above example, it is determined that release of SO x action from the upstream side of the exhaust purification catalyst 13 when the cylinder rich control has been performed for the predetermined period is complete, cylinder rich control at this time is made to finished Thus, the SO x releasing action from the upstream side of the exhaust purification catalyst 13 is completed. Further, in this example it is determined that release of SO x action from the downstream side of the exhaust purification catalyst 13 when the exhaust rich control is performed continuously for a predetermined time is completed, this time the exhaust rich control is made to finished exhaust The SO x releasing action from the downstream side of the purification catalyst 13 is completed. In this case, in another modification, when the stored SO x amount ΣSOX falls below the first predetermined value, the SO x releasing action from the upstream side of the exhaust purification catalyst 13 is terminated, and the stored SO x amount ΣSOX is When the value falls below a predetermined value of 2, the SO x releasing action from the downstream side of the exhaust purification catalyst 13 can be terminated. In yet another modification, the upstream storage SO x amount on the upstream side of the exhaust purification catalyst 13 and the downstream storage SO x amount on the downstream side of the exhaust purification catalyst 13 are calculated separately, and the upstream storage SO x is calculated. When the amount falls below a predetermined value, the SO x releasing action from the upstream side of the exhaust purification catalyst 13 is terminated, and when the downstream storage SO x amount falls below the predetermined value, the SO from the downstream side of the exhaust purification catalyst 13 The x release action can also be terminated.
 図21に示されるSOx放出制御ルーチンからわかるように、本発明による実施例では、筒内リッチ制御を行い得る排気浄化触媒13の温度範囲と機関の運転領域が予め定められており、筒内リッチ制御を行うべきときに排気浄化触媒13の温度TCと機関の運転状態が夫々筒内リッチ制御を行い得る予め定められた排気浄化触媒13の温度範囲(TC>T1)および機関の運転領域(図22A)にあるときに筒内リッチ制御が行われる。更に、本発明による実施例では、排気リッチ制御を行い得る排気浄化触媒13の温度範囲と機関の運転領域が予め定められており、排気リッチ制御を行うべきときに排気浄化触媒13の温度TCと機関の運転状態が夫々排気リッチ制御を行い得る予め定められた排気浄化触媒13の温度範囲(TC>T1)および機関の運転領域(図22B)にあるときに排気リッチ制御が行われる。 As can be seen from the SO x release control routine shown in FIG. 21, in the embodiment according to the present invention, the temperature range of the exhaust purification catalyst 13 and the engine operating range in which in-cylinder rich control can be performed are determined in advance. A predetermined temperature range (TC> T1) of the exhaust purification catalyst 13 in which the temperature TC of the exhaust purification catalyst 13 and the operating state of the engine can perform the in-cylinder rich control when the rich control is to be performed, and an operation range of the engine ( In-cylinder rich control is performed when in FIG. 22A). Further, in the embodiment according to the present invention, the temperature range of the exhaust purification catalyst 13 capable of performing exhaust rich control and the engine operating range are determined in advance, and when the exhaust rich control should be performed, the temperature TC of the exhaust purification catalyst 13 and Exhaust rich control is performed when the engine operating state is within a predetermined temperature range (TC> T1) of the exhaust purification catalyst 13 and engine operating region (FIG. 22B) that can perform exhaust rich control.
 また、本発明による実施例では、炭化水素供給弁15から予め定められた範囲の周期でもって炭化水素を噴射することにより排気ガス中に含まれるNOxを浄化する第1のNOx浄化方法に加えて、排気浄化触媒13に吸蔵されたNOxが予め定められた許容値を超えたときに排気浄化触媒13に流入する排気ガスの空燃比をリッチにして排気浄化触媒13から吸蔵NOxを放出させる第2のNOx浄化方法が用いられており、排気浄化触媒の温度TCが予め定められた温度Tmよりも高いときには第1のNOx浄化方法によるNOx浄化作用が行われ、排気浄化触媒の温度TCが予め定められた温度Tmよりも低いときに該第2のNOx浄化方法によるNOx浄化作用が行われる。更に、図21に示されるSOx放出制御ルーチンからわかるように、排気浄化触媒13からSOxを放出すべきときに第1のNOx浄化方法によるNOx浄化作用が継続して予め定められた時間以上行われていれば、初めに筒内リッチ制御を行い、次いで排気リッチ制御を行うことにより排気浄化触媒13からのSOxの放出作用が行われる。 In the embodiment according to the present invention, the first NO x purification method for purifying NO x contained in the exhaust gas by injecting hydrocarbons with a cycle in a predetermined range from the hydrocarbon feed valve 15. In addition, when the NO x stored in the exhaust purification catalyst 13 exceeds a predetermined allowable value, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made rich to reduce the stored NO x from the exhaust purification catalyst 13. The second NO x purification method to be released is used, and when the temperature TC of the exhaust purification catalyst is higher than the predetermined temperature Tm, the NO x purification action by the first NO x purification method is performed, and the exhaust purification is performed. When the catalyst temperature TC is lower than the predetermined temperature Tm, the NO x purification action by the second NO x purification method is performed. Furthermore, as can be seen from the SO x release control routine shown in FIG. 21, when the SO x is to be released from the exhaust purification catalyst 13, the NO x purification action by the first NO x purification method is continuously determined in advance. If it has been performed for a period of time or longer, the in-cylinder rich control is performed first, and then the exhaust rich control is performed, whereby the SO x releasing action from the exhaust purification catalyst 13 is performed.
 なお、別の実施例として排気浄化触媒13上流の機関排気通路内に炭化水素を改質させるための酸化触媒を配置することもできる。 As another embodiment, an oxidation catalyst for reforming hydrocarbons can be disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13.
 4  吸気マニホルド
 5  排気マニホルド
 7  排気ターボチャージャ
 12  排気管
 13  排気浄化触媒
 14  パティキュレートフィルタ
 15  炭化水素供給弁
4 Intake manifold 5 Exhaust manifold 7 Exhaust turbocharger 12 Exhaust pipe 13 Exhaust purification catalyst 14 Particulate filter 15 Hydrocarbon supply valve

Claims (5)

  1.  機関排気通路内に排気浄化触媒を配置すると共に排気浄化触媒上流の機関排気通路内に炭化水素供給弁を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、炭化水素供給弁から該予め定められた範囲内の周期でもって炭化水素を噴射することにより排気ガス中に含まれるNOxを浄化するようにした内燃機関の排気浄化装置において、排気浄化触媒に流入する排気ガスの空燃比をリッチにするためのリッチ制御として、気筒内においてリッチ空燃比の燃焼ガスを生成させる筒内リッチ制御と炭化水素供給弁から炭化水素を供給することによって排気ガスの空燃比をリッチにする排気リッチ制御とを選択的に用い、排気浄化触媒からSOxを放出すべきときには、初めに筒内リッチ制御により排気浄化触媒に流入する排気ガスの空燃比をリッチにし、次いで排気リッチ制御により排気浄化触媒に流入する排気ガスの空燃比をリッチにするようにした内燃機関の排気浄化装置。 An exhaust purification catalyst is disposed in the engine exhaust passage, a hydrocarbon supply valve is disposed in the engine exhaust passage upstream of the exhaust purification catalyst, and a noble metal catalyst is supported on the exhaust gas flow surface of the exhaust purification catalyst. A basic exhaust gas flow surface portion is formed around the noble metal catalyst, and the exhaust purification catalyst has an amplitude within a predetermined range and a predetermined concentration of hydrocarbons flowing into the exhaust purification catalyst. When it is vibrated with a period within the range, it has the property of reducing NO x contained in the exhaust gas, and when the oscillation period of the hydrocarbon concentration is longer than the predetermined range, NO contained in the exhaust gas x has a property of increasing the amount of occlusion, and purifies NO x contained in the exhaust gas by injecting hydrocarbons from the hydrocarbon supply valve at a cycle within the predetermined range. In the exhaust purification device for an internal combustion engine, in-cylinder rich control for generating a rich air-fuel ratio in the cylinder and hydrocarbon as rich control for making the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst rich The exhaust rich control that makes the air-fuel ratio of the exhaust gas rich by supplying hydrocarbons from the supply valve is selectively used. When SO x is to be released from the exhaust purification catalyst, the exhaust purification is first performed by the in-cylinder rich control. An exhaust purification device for an internal combustion engine, wherein an air-fuel ratio of exhaust gas flowing into a catalyst is made rich, and then an air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst is made rich by exhaust rich control.
  2.  排気浄化触媒の上流側に吸蔵されているSOxの放出作用が完了するまで該筒内リッチ制御により排気浄化触媒に流入する排気ガスの空燃比がリッチにされ、排気浄化触媒の上流側に吸蔵されているSOxの放出作用が完了すると排気浄化触媒の下流側に吸蔵されているSOxを放出させるために該排気リッチ制御により排気浄化触媒に流入する排気ガスの空燃比がリッチにされる請求項1に記載の内燃機関の排気浄化装置。 The in-cylinder rich control makes the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst rich, and the upstream side of the exhaust purification catalyst occludes until the release of the SO x stored upstream of the exhaust purification catalyst is completed. When the released SO x release action is completed, the exhaust rich control makes the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst rich in order to release the SO x stored downstream of the exhaust purification catalyst. The exhaust emission control device for an internal combustion engine according to claim 1.
  3.  該筒内リッチ制御を行い得る排気浄化触媒の温度範囲と機関の運転領域が予め定められており、筒内リッチ制御を行うべきときに排気浄化触媒の温度と機関の運転状態が夫々筒内リッチ制御を行い得る該予め定められた排気浄化触媒の温度範囲および機関の運転領域にあるときに筒内リッチ制御が行われる請求項1に記載の内燃機関の排気浄化装置。 The temperature range of the exhaust purification catalyst and the engine operating range in which the in-cylinder rich control can be performed are determined in advance, and when the in-cylinder rich control is to be performed, the temperature of the exhaust purification catalyst and the operating state of the engine are respectively rich in the cylinder. The exhaust purification device for an internal combustion engine according to claim 1, wherein in-cylinder rich control is performed when the temperature is within a predetermined temperature range of the exhaust purification catalyst that can be controlled and an operating range of the engine.
  4.  該排気リッチ制御を行い得る排気浄化触媒の温度範囲と機関の運転領域が予め定められており、排気リッチ制御を行うべきときに排気浄化触媒の温度と機関の運転状態が夫々排気リッチ制御を行い得る該予め定められた排気浄化触媒の温度範囲および機関の運転領域にあるときに排気リッチ制御が行われる請求項1に記載の内燃機関の排気浄化装置。 The temperature range of the exhaust purification catalyst and the engine operating range where the exhaust rich control can be performed are determined in advance, and when the exhaust rich control should be performed, the temperature of the exhaust purification catalyst and the operating state of the engine perform the exhaust rich control, respectively. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein exhaust rich control is performed when the temperature is within the predetermined temperature range of the obtained exhaust purification catalyst and the operating range of the engine.
  5.  該炭化水素供給弁から予め定められた範囲の周期でもって炭化水素を噴射することにより排気ガス中に含まれるNOxを浄化する第1のNOx浄化方法に加えて、排気浄化触媒に吸蔵されたNOxが予め定められた許容値を超えたときに排気浄化触媒に流入する排気ガスの空燃比をリッチにして排気浄化触媒から吸蔵NOxを放出させる第2のNOx浄化方法が用いられており、排気浄化触媒の温度が予め定められた温度よりも高いときには該第1のNOx浄化方法によるNOx浄化作用が行われ、排気浄化触媒の温度が予め定められた温度よりも低いときには該第2のNOx浄化方法によるNOx浄化作用が行われ、排気浄化触媒からSOxを放出すべきときに該第1のNOx浄化方法によるNOx浄化作用が継続して予め定められた時間以上行われていれば、初めに筒内リッチ制御を行い、次いで排気リッチ制御を行うことにより排気浄化触媒からのSOxの放出作用が行われる請求項1に記載の内燃機関の排気浄化装置。 In addition to the first NO x purification method for purifying NO x contained in the exhaust gas by injecting hydrocarbons from the hydrocarbon supply valve with a period in a predetermined range, the hydrocarbon is stored in the exhaust purification catalyst. The second NO x purification method is used in which when the NO x exceeds a predetermined allowable value, the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst is made rich to release the stored NO x from the exhaust purification catalyst. When the temperature of the exhaust purification catalyst is higher than a predetermined temperature, the NO x purification action by the first NO x purification method is performed, and when the temperature of the exhaust purification catalyst is lower than the predetermined temperature The NO x purification action by the second NO x purification method is performed, and the NO x purification action by the first NO x purification method is continuously determined when SO x should be released from the exhaust purification catalyst. In-cylinder rich system at first Was carried out, then the exhaust purification system of an internal combustion engine according to claim 1, releasing action of the SO x from the exhaust purification catalyst is performed by performing the exhaust rich control.
PCT/JP2013/054781 2013-02-25 2013-02-25 Exhaust gas purification device for internal combustion engine WO2014128969A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/054781 WO2014128969A1 (en) 2013-02-25 2013-02-25 Exhaust gas purification device for internal combustion engine
US14/764,110 US9453445B2 (en) 2013-02-25 2013-02-25 Exhaust purification system of internal combustion engine
JP2015501231A JP5880776B2 (en) 2013-02-25 2013-02-25 Exhaust gas purification device for internal combustion engine
EP13876028.5A EP2960455B1 (en) 2013-02-25 2013-02-25 Exhaust gas purification device for internal combustion engine
CN201380073518.1A CN105026715B (en) 2013-02-25 2013-02-25 The emission-control equipment of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054781 WO2014128969A1 (en) 2013-02-25 2013-02-25 Exhaust gas purification device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2014128969A1 true WO2014128969A1 (en) 2014-08-28

Family

ID=51390792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054781 WO2014128969A1 (en) 2013-02-25 2013-02-25 Exhaust gas purification device for internal combustion engine

Country Status (5)

Country Link
US (1) US9453445B2 (en)
EP (1) EP2960455B1 (en)
JP (1) JP5880776B2 (en)
CN (1) CN105026715B (en)
WO (1) WO2014128969A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040165A (en) * 2015-08-17 2017-02-23 トヨタ自動車株式会社 Control device of internal combustion engine
JP2017040247A (en) * 2015-08-21 2017-02-23 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378405B2 (en) 2016-01-20 2019-08-13 Deere & Company Method for managing temperatures in aftertreatment system
JP6806025B2 (en) * 2017-10-11 2020-12-23 トヨタ自動車株式会社 Engine control unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120392A (en) * 2001-10-19 2003-04-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007170218A (en) * 2005-12-20 2007-07-05 Denso Corp Exhaust emission control device of internal combustion engine
JP2009203866A (en) * 2008-02-27 2009-09-10 Isuzu Motors Ltd Control method for exhaust emission control system, and exhaust emission control system
JP2010163979A (en) * 2009-01-16 2010-07-29 Hino Motors Ltd Regeneration method of particulate filter
WO2011118044A1 (en) 2010-03-23 2011-09-29 トヨタ自動車株式会社 Exhaust purification device for an internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8534051B2 (en) * 2007-12-26 2013-09-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
JP2010019092A (en) 2008-07-08 2010-01-28 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US8650863B2 (en) * 2009-03-31 2014-02-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for an internal combustion engine
WO2011114499A1 (en) 2010-03-15 2011-09-22 トヨタ自動車株式会社 Device for cleaning exhaust gas from internal combustion engine
CN103180558B (en) * 2010-08-30 2017-04-05 丰田自动车株式会社 The emission-control equipment of internal combustion engine
WO2012098688A1 (en) * 2011-01-17 2012-07-26 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP5152417B2 (en) * 2011-03-17 2013-02-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120392A (en) * 2001-10-19 2003-04-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2007170218A (en) * 2005-12-20 2007-07-05 Denso Corp Exhaust emission control device of internal combustion engine
JP2009203866A (en) * 2008-02-27 2009-09-10 Isuzu Motors Ltd Control method for exhaust emission control system, and exhaust emission control system
JP2010163979A (en) * 2009-01-16 2010-07-29 Hino Motors Ltd Regeneration method of particulate filter
WO2011118044A1 (en) 2010-03-23 2011-09-29 トヨタ自動車株式会社 Exhaust purification device for an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2960455A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017040165A (en) * 2015-08-17 2017-02-23 トヨタ自動車株式会社 Control device of internal combustion engine
CN106468206A (en) * 2015-08-17 2017-03-01 丰田自动车株式会社 The control device of internal combustion engine
US10125652B2 (en) 2015-08-17 2018-11-13 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine and control method
JP2017040247A (en) * 2015-08-21 2017-02-23 トヨタ自動車株式会社 Exhaust emission control device of internal combustion engine
US10132219B2 (en) 2015-08-21 2018-11-20 Toyota Jidosha Kabushiki Kaisha Emission control system and emission control method for internal combustion engine

Also Published As

Publication number Publication date
CN105026715B (en) 2017-08-22
US9453445B2 (en) 2016-09-27
CN105026715A (en) 2015-11-04
EP2960455A1 (en) 2015-12-30
JP5880776B2 (en) 2016-03-09
EP2960455B1 (en) 2018-01-17
EP2960455A4 (en) 2016-02-24
US20160010527A1 (en) 2016-01-14
JPWO2014128969A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5131391B2 (en) Exhaust gas purification device for internal combustion engine
WO2012140784A1 (en) Exhaust cleaner for internal combustion engine
JP5152416B2 (en) Exhaust gas purification device for internal combustion engine
WO2012108059A1 (en) Exhaust-gas purifying device for internal-combustion engine
JP5152415B2 (en) Exhaust gas purification device for internal combustion engine
JP5673861B2 (en) Exhaust gas purification device for internal combustion engine
JP6003847B2 (en) Exhaust gas purification device for internal combustion engine
JP5880776B2 (en) Exhaust gas purification device for internal combustion engine
JP5991285B2 (en) Exhaust gas purification device for internal combustion engine
JP5610083B1 (en) Exhaust gas purification device for internal combustion engine
JP5994931B2 (en) Exhaust gas purification device for internal combustion engine
JP6090051B2 (en) Exhaust gas purification device for internal combustion engine
WO2012111171A1 (en) Exhaust-gas purifying device for internal-combustion engine
JP5610082B1 (en) Exhaust gas purification device for internal combustion engine
JP5561059B2 (en) Exhaust gas purification device for internal combustion engine
JP5152417B2 (en) Exhaust gas purification device for internal combustion engine
JP5880781B2 (en) Exhaust gas purification device for internal combustion engine
JP5748004B2 (en) Exhaust gas purification device for internal combustion engine
JP6183537B2 (en) Exhaust gas purification device for internal combustion engine
JP5741643B2 (en) Exhaust gas purification device for internal combustion engine
JP5354104B1 (en) Exhaust gas purification device for internal combustion engine
JP2015209803A (en) Exhaust emission control device for internal combustion engine
JP2016145543A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380073518.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501231

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013876028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14764110

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE