WO2014126393A1 - Ceramic device manufacturing method and ceramic device - Google Patents

Ceramic device manufacturing method and ceramic device Download PDF

Info

Publication number
WO2014126393A1
WO2014126393A1 PCT/KR2014/001176 KR2014001176W WO2014126393A1 WO 2014126393 A1 WO2014126393 A1 WO 2014126393A1 KR 2014001176 W KR2014001176 W KR 2014001176W WO 2014126393 A1 WO2014126393 A1 WO 2014126393A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode pattern
green ceramic
ceramic sheet
pattern
forming
Prior art date
Application number
PCT/KR2014/001176
Other languages
French (fr)
Korean (ko)
Inventor
박규환
김동기
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140014765A external-priority patent/KR101538046B1/en
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2014126393A1 publication Critical patent/WO2014126393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/207Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a prefabricated paste pattern, ink pattern or powder pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a ceramic device manufacturing method and a ceramic device, and more particularly, to a ceramic device manufacturing method and a ceramic device for forming a pattern with a fine line width.
  • the miniaturization and high capacity of the circuit elements constituting the component are rapidly progressing, and in order to realize miniaturization and high capacity of the circuit elements, miniaturization and densification of electrode patterns constituting the circuit elements are required.
  • Common mode filters are components in smartphones, tablet PCs, etc. that block noise and provide strong signal integrity.
  • an electrode pattern having a shape of returning from the inside to the outside several times is formed on the plane of the substrate for high density and integration of the circuit pattern within a predetermined area. Therefore, in the common mode filter, it is very important to refine the line width of the electrode pattern in order to increase the accuracy while rotating the electrode pattern more on the substrate having the same area.
  • an electrode pattern having a line width of 25 ⁇ m or less may be implemented using a thin film process.
  • the thin film process requires a high cost to build a thin film processing line, the initial investment cost is large, and the time required for stabilizing the thin film process line is delayed, and thus the timing of customer response is delayed.
  • the thin film processing line there is a method of forming an electrode pattern having a line width of 25 ⁇ m or less by a thick film process that can reduce the initial investment cost.
  • the thick film process has a limitation in miniaturizing the line width of the electrode pattern.
  • the thick film process forms a circuit, in particular, by mesh screen printing, defects such as open and short circuits are continuously generated, and thus fine electrode patterns having a line width of 25 ⁇ m or less There was a problem that the defect rate is high in forming a.
  • the open of the circuit is when two parts to be electrically connected are disconnected or the electrically connected part is disconnected, and the short is a state in which electricity is dropped and the part to be insulated is in contact with each other. .
  • the present invention has been made in view of the above-mentioned, by using a photosensitive layer on the transfer substrate to easily implement an electrode pattern having a line width of 25 ⁇ m or less, by adopting a method of transferring and firing it on a ceramic sheet It is an object of the present invention to provide a ceramic device manufacturing method and a ceramic device that are simple, low in manufacturing cost, and minimize initial equipment investment cost.
  • Another object of the present invention is to provide a ceramic device manufacturing method and a ceramic device for improving the reliability of the product by preventing the open and short failure of the circuit formed of the electrode pattern having a line width of 25 ⁇ m or less.
  • the step of forming a photosensitive layer on the transfer substrate, the step of forming a negative resist pattern corresponding to the electrode pattern designed on the photosensitive layer Forming an electrode pattern by applying a conductive paste to the inside of the resist pattern; Transferring the electrode pattern formed on the transfer substrate to the green ceramic sheet before firing; Stacking the green ceramic sheets on which electrode patterns are formed; Firing the green ceramic sheet laminated in a plurality of layers.
  • the transfer substrate may be one of a PI film, a PEN film, a PET film, a PC film, a PSS film to which the adhesive is applied.
  • the conductive paste may be Ag paste.
  • the forming of the photosensitive layer may form a photosensitive layer by adhering a dry film to the transfer substrate.
  • the forming of the resist pattern may include: exposing a mask on a surface of the photosensitive layer;
  • the method may include forming a resist pattern by removing a portion corresponding to a shape of a predesigned electrode pattern from the photosensitive layer.
  • the process of forming the resist pattern removes a portion corresponding to the shape of the electrode pattern by using a developer, and the forming of the resist pattern further includes a washing process for removing the developer.
  • the conductive paste may be filled in the resist pattern, and the conductive paste protruding to the upper portion of the resist pattern may be removed using a scraper.
  • forming the photosensitive layer, forming the negative resist pattern, and forming the electrode pattern may be continuously performed in a roll-to-roll manner.
  • the green ceramic sheet may be a low temperature co-fired ceramic (LTCC) sheet.
  • LTCC low temperature co-fired ceramic
  • the transferring step the process of removing the photosensitive layer from the transfer substrate; And transferring the electrode pattern protruding from one surface of the transfer substrate to the green ceramic sheet before firing.
  • the transferring step, the vacuum suction pattern corresponding to the shape of the electrode pattern in a mold provided by vacuum adsorption and separating the electrode pattern from the adhesive film, the separated electrode pattern to the green ceramic sheet Can be directly transferred to one side of.
  • the transferring step may be arranged to overlap the adhesive film and the green ceramic sheet, and to apply pressure only to a portion where the electrode pattern is formed, and then to compress the separated adhesive film and the dry film from the green ceramic sheet. Thus, only the electrode pattern may be transferred to the transfer surface of the green ceramic sheet.
  • the stacking of the green ceramic sheet may include covering an electrode pattern exposed from the uppermost green ceramic sheet or the lowermost green ceramic sheet laminated with the supporting green ceramic sheet.
  • the stacking of the green ceramic sheet may further include pressing the plurality of stacked green ceramic sheets to embed an electrode pattern into the green ceramic sheet.
  • the step of firing may be baked at 800 ⁇ 900 °C.
  • the ceramic element body portion is a plurality of ceramic sheet layer is fired into one body
  • It is characterized in that it comprises a plurality of electrode patterns provided in the ceramic element body portion spaced apart in a plurality of layers and electrically connected to each other to form a circuit.
  • the ceramic element body portion may be low temperature co-fired ceramics (LTCC).
  • LTCC low temperature co-fired ceramics
  • the electrode pattern may be a sintered body sintered Ag paste.
  • the electrode pattern may include a side terminal portion at which an end portion is exposed at a side surface of the ceramic element body portion.
  • the present invention facilitates formation of an electrode pattern having a line width of 25 ⁇ m or less, and prevents open and short defects in a circuit having a fine electrode pattern having a line width of 25 ⁇ m or less, thereby improving operational reliability of a product. There is.
  • the present invention can use the terminal forming process as it is in the existing ceramic device manufacturing line as it minimizes the initial investment cost, it does not take much time to stabilize the process has the effect that can quickly respond to customer requirements.
  • the present invention has the effect of reducing the manufacturing cost and productivity, since the manufacturing process is simple.
  • FIG. 1 is a process chart showing a method of manufacturing a ceramic device according to the present invention
  • FIGS. 2A to 2G are diagrams illustrating each step of the method of manufacturing a ceramic device according to the present invention.
  • 3A to 3C are SEM photographs of a resist pattern formed on a dry film in the method of manufacturing a ceramic device according to the present invention.
  • FIG. 4 is a view showing an example in which a conductive pattern is applied to a negative resist pattern in the method of manufacturing a ceramic device according to the present invention.
  • FIG. 5 is a cross-sectional view showing a ceramic element according to the present invention.
  • transfer base material 1a adhesive film
  • photosensitive layer 2a dry film
  • pattern cover portion 4 conductive paste
  • a photosensitive layer on a substrate for transferring (S100) and forming a negative resist pattern corresponding to an electrode pattern predesigned on the photosensitive layer ( S200), forming an electrode pattern by applying a conductive paste inside the resist pattern (S300); Transferring the electrode pattern formed on the transfer substrate to the green ceramic sheet before firing; Stacking the green ceramic sheets on which electrode patterns have been transferred; Firing the green ceramic sheet laminated in a multi-layer (S600).
  • FIG. 2A illustrates the step S100 of forming the photosensitive layer 2
  • FIGS. 2B and 2C illustrate the step S200 of forming the resist pattern 2b
  • FIG. 2D illustrates the electrode pattern 12.
  • FIG. 2E and FIG. 2F illustrate the step of transferring
  • FIG. 2G illustrates the step of stacking the green ceramic sheet 5.
  • the transfer substrate 1 is an adhesive film provided with an adhesive on one surface
  • the photosensitive layer 2 is preferably a dry film (2a).
  • the dry film (Dry Film Photoresist) (2a) is integrally bonded to the adhesive film.
  • the photosensitive layer 2 may be formed by applying a photoresist liquid to one surface of the transfer substrate 1.
  • the dry film 2a has a uniform thickness and does not require a separate drying process, thereby simplifying a manufacturing process and making the electrode pattern 12 have a uniform thickness. It can be formed evenly and is advantageous in miniaturizing the line width of the electrode pattern 12 to facilitate the formation of the intaglio resist pattern 2b having a line width of 25 ⁇ m or less.
  • the dry film 2a is laminated on the adhesive film through a lamination process using a roll to roll.
  • the adhesive film uses a flexible adhesive film (5).
  • the adhesive film is one selected from a PI (Polyimide) film, a PEN (Polyethylene Naphthalate) film, a PET (Polyethylene Terephthalate) film, a PC (Polycarbonate) film, and a PSS (Poly styrene sulfonate) film having an adhesive applied to one surface thereof. Can be used.
  • PI Polyimide
  • PEN Polyethylene Naphthalate
  • PET Polyethylene Terephthalate
  • PC Polycarbonate
  • PSS Poly styrene sulfonate
  • the dry film 2a is a film in which the property of the UV-receiving portion is changed to negative or positive upon irradiation with ultraviolet (UV) light.
  • the forming of the resist pattern 2b may include: exposing the mask 3 on the surface of the photosensitive layer 2 and exposing the mask 3 on the surface of the photosensitive layer 2;
  • the mask 3 is formed to cover a predesigned electrode pattern on the surface of the photosensitive layer 2 and to open a portion except the predesigned electrode pattern, and has a pattern cover part that matches the predesigned electrode pattern.
  • the part except the cover part has an open shape.
  • the exposure process may be performed by irradiating light to a portion of the photosensitive layer 2 exposed by the mask 3, that is, to a portion except for the pattern cover portion 3a, and thus the pattern cover portion (2) of the photosensitive layer 2.
  • the parts except 3a) are changed so as not to be dissolved by the developer.
  • a portion which is not insoluble and available, that is, a portion corresponding to the shape of the predesigned electrode pattern is removed using a developer.
  • the resist pattern 2b is formed by removing a portion of the dry film 2a using a developer, and is formed as a hole exposing one surface of the transfer substrate 1 in the shape of a predesigned electrode pattern.
  • the developer may be copper chloride (CuCl 2 ).
  • the developer may be used an aqueous solution of copper chloride 2%. After development, a washing process for removing the developer is performed.
  • Water washing uses water of 30 degrees C or less. When the temperature of water exceeds 30 degreeC, it will become a cause of peeling of the resist pattern 2b. After the washing process, a drying process may be performed.
  • the negative resist pattern 2b is formed using a negative resist method in which a portion irradiated with light is left and the portion covered by the light is removed. do.
  • the predesigned electrode pattern 12 is an example of a shape that returns several times from the inside to the outside on the plane of the substrate or the shape that enters the inside several times from the outside, and is a fine line pattern having a line width of 25 ⁇ m or less.
  • FIGS. 3A to 3C are SEM photographs in which the resist pattern 2b is formed on the dry film 2a in the method of manufacturing a ceramic device according to the present invention.
  • a dry film using a negative resist method is illustrated. It can be seen that a resist pattern 2b having a line width of 15.28 ⁇ m and a line interval of 14.14 ⁇ m was formed uniformly on (2a).
  • the conductive pattern 4 is applied to the inside of the resist pattern 2b to form the electrode pattern 12.
  • the conductive paste 4 is filled into the resist pattern 2b, and a conductive paste protruding to the upper portion of the resist pattern 2b using a scraper ( 4) the electrode pattern 12 is formed in the resist pattern 2b to have the same thickness as that of the dry film 2a.
  • the conductive paste 4 is partially filled in the resist pattern 2b so as to protrude upward of the dry film 2a, and the dry using a scraper. It is preferable to form the surface of the electrode pattern 12 in a plane by removing the conductive paste 4 protruding to the upper surface of the film 2a.
  • the dry film 2a serves as a screen for forming the electrode pattern 12 by printing the conductive paste 4 on one surface of the transfer substrate 1 and forming the electrode pattern 12.
  • the conductive paste 4 may be filled into the resist pattern 2b by a screen printing method.
  • Forming the electrode pattern 12 (S300) includes drying the applied conductive paste 4.
  • the conductive pattern 4 is filled in the resist pattern 2b formed in the shape of the predesigned electrode pattern 12 by a screen printing method to accurately design the electrode pattern. (12) is formed.
  • the electrode pattern 12 may have a flat surface, and may have a uniform thickness to be in close contact with one surface of the green ceramic sheet 5 in the step of transferring.
  • Ag paste As the conductive paste 4, and Ag paste does not have a problem in dimensional stability during high temperature firing and is fired together with the green ceramic sheet 5 to have an electrode pattern having a low specific resistance. (12) to be formed.
  • the present invention is a sprin printing method for forming the electrode pattern 12 by filling the conductive face in the intaglio resist pattern 2b as described above, the manufacturing process is simpler than the sputter deposition method, the electrode pattern ( It is advantageous to refine the line width of 12).
  • a large area ceramic element can be formed, and the process is simple.
  • Forming the electrode pattern 12 (S300) includes drying the conductive paste 4 filled in the resist pattern 2b.
  • the step of forming the intaglio resist pattern 2b (S200) and the step of forming the electrode pattern (S300) include a roll-to-roll and a transfer substrate 1. It is preferable to simplify the manufacturing process and improve the productivity by continuously making the laminated dry film 2a transported together.
  • the dry film 2a is laminated on the adhesive film 1a, a negative resist pattern 2b is formed on the stacked dry film 2a, and the resist pattern 2b is formed.
  • the process of forming the electrode pattern 12 by filling the conductive paste 4 in the C) is continuously made by roll-to-roll, thereby simplifying the manufacturing process and further improving productivity.
  • the transferring step (S400) is to transfer the electrode pattern 12 formed on the adhesive film 1a to the green ceramic sheet 5 before firing.
  • the green ceramic sheet 5 uses a Low Temperature Co-fire Ceramics (LTCC) sheet.
  • the LTCC sheet can be fired simultaneously with a metal such as silver having a melting point of about 960 ° C due to a low firing temperature of 900 ° C.
  • a circuit For high integration and high capacity of components, a circuit must be designed inside a laminated ceramic sheet. In this case, a metal such as copper or silver should be fired simultaneously with the green ceramic sheet 5.
  • LTCC sheets may use SiO 2 or Al 2 O 3 series.
  • the transferring step (S400) may include removing the photosensitive layer 2 from the transfer substrate 1 (S410), and the electrode pattern 12 protruding from one surface of the transfer substrate 1. Transferring to the green ceramic sheet 5 before firing (S420).
  • the dry film 2a is removed from the adhesive film 1a, and the peeling process of removing the insolubilized portion of the dry film 2a with the peeling solution is performed. It is a process. 1 to 5% of sodium hydroxide (NaOH) or potassium hydroxide (KOH) may be used as the stripping solution. After the resist patterns 2b and 13 are peeled off, washing and drying processes for removing the peeling solution are performed.
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • the electrode pattern 12 is the same as the predesigned electrode pattern, and the predesigned electrode pattern is an example of a shape that returns several times from the inside to the outside on the plane of the substrate or the shape that enters the inside several times from the outside, and the line width is 25. It is a fine line pattern below micrometer.
  • An adhesive layer is provided on the transfer surface of the green ceramic sheet 5, and after bonding the electrode pattern 12 on the adhesive film 1a to the adhesive layer provided on the transfer surface of the green ceramic sheet 5, When the adhesive film 1a is removed, the electrode pattern 12 is attached to the transfer surface of the green ceramic sheet 5.
  • the adhesive film 5 is separated from the green ceramic sheet 5.
  • a transfer failure in which the electrode pattern 12 and the adhesive film 5 are not separated due to the strong adhesion between the green ceramic sheet 5 and the electrode pattern 12 does not occur. Do not.
  • the adhesive layer may be a thermosetting adhesive, and the electrode pattern 12 attached to the adhesive film 1a may be attached to the green ceramic sheet 5, and then thermally compressed and transferred to the green ceramic sheet 5. do.
  • the adhesive film 5 and the electrode pattern 12 are attached by an adhesive layer, and the green ceramic sheet 5 and the electrode pattern 12 are attached by an adhesive layer. Therefore, the adhesive force of the green ceramic sheet 5 and the electrode pattern 12 is higher than that of the electrode pattern 12 and the adhesive film 5, and after the transfer, the adhesive film 5 and the electrode pattern are transferred. Separation of (12) is easy.
  • the electrode pattern 12 may be separated from the adhesive film 1a and transferred to the green ceramic sheet 5.
  • the transferring step (S400) is a mold having a vacuum adsorption pattern corresponding to the shape of the electrode pattern 12 is separated by vacuum adsorption of the electrode pattern 12 from the adhesive film (1a), the separated Direct transfer of the electrode pattern 12 to one surface of the green ceramic sheet 5 is an example.
  • the vacuum suction pattern is positioned in the mold to correspond to the electrode pattern 12, and then the electrode pattern 12 is absorbed by the vacuum suction pattern to exclude the electrode pattern 12. ) And the dry film 2a are separated and removed at once, and then the electrode pattern 12 is directly transferred to one surface of the green ceramic sheet 5.
  • the transfer process (S420) can be automated to shorten the working time.
  • the adhesive film 1a and the green ceramic sheet 5 are disposed to overlap each other, and the heat is applied only to a portion where the electrode pattern 12 is formed, and then the pressure-sensitive adhesive film ( The transfer is completed by separating 1a) and the dry film 2a from the green ceramic sheet 5 and attaching only the electrode pattern 12 to the transfer surface of the green ceramic sheet 5.
  • the transferring step S400 is performed without removing the dry film 2a from the adhesive film 1a.
  • the dry film 2a and the electrode pattern 12 are bonded to the green ceramic sheet 5 at the same time, and only the portion where the electrode pattern 12 is formed is pressed to apply heat to the electrode pattern 12. Only to be transferred to the green ceramic sheet (5).
  • the dry film 2a together with the adhesive film 1a is also separated and removed.
  • the green ceramic sheet 5 is formed with a via hole (not shown) for electrically connecting each electrode pattern 12 formed on the laminated ceramic sheet.
  • the via hole is formed at a predesigned position to electrically connect the electrode patterns of the ceramic sheets stacked in the predesigned ceramic element, and has a conductive part electrically connecting the electrode pattern 12 to the hole. It is preferred that it is filled and formed.
  • the electrode pattern 12 is transferred to match the position of the via hole formed in the green ceramic sheet 5.
  • the green ceramic sheet 5 has a protective film 6 attached to the opposite side of the transfer surface before firing.
  • the protective film 6 is attached to the opposite surface of the transfer surface to which the electrode pattern 12 is transferred from the green ceramic sheet 5 via a bonding sheet, and is removed when the green ceramic sheet 5 is laminated and fired.
  • the protective film 6 may be a PET film.
  • the bonding sheet is a thermosetting adhesive, and compared with the double-sided tape, it is easy to accurately position the green ceramic sheet 5 to which the electrode pattern 12 is transferred.
  • each electrode pattern 12 formed in each of the stacked green ceramic sheets 5 is electrically connected through a via hole to form a circuit of a ceramic device.
  • the method may include firing a ceramic sheet stacked in multiple layers on the green ceramic sheet 5 (S600).
  • the stacking of the green ceramic sheet 5 includes a process of covering the electrode pattern 12 exposed when the green ceramic sheet 7 is laminated with the supporting green ceramic sheet 7.
  • the supporting green ceramic sheet 7 has a protective film 6 attached to a surface opposite to a surface of the green ceramic sheet 5 to be laminated, and the protective film 6 is removed during firing.
  • the green ceramic sheet 5 is laminated so that the surface on which the electrode pattern 12 is formed is facing on the supporting green ceramic sheet 7.
  • the supporting green ceramic sheet 7 is disposed at the lowermost end, and the green ceramic sheet 5 is laminated thereon in order so that the electrode pattern 12 faces downward.
  • the protective film 6 is attached to the lower portion of the lowermost base green ceramic sheet 7, and the protective film 6 is attached to the upper portion of the uppermost green ceramic sheet 5.
  • the green ceramic sheet 5 may be sequentially stacked so that the surface on which the electrode pattern 12 is formed faces upward, and then the support green ceramic sheet 7 may be stacked on the uppermost green ceramic sheet 5. have.
  • the protective film 6 is attached to the upper portion of the support green ceramic sheet 7, and the protective film 6 is attached to the lower portion of the lowermost green ceramic sheet 5.
  • the stacking of the green ceramic sheet 5 may further include pressing the stacked plurality of green ceramic sheets 5 to embed the electrode patterns 12 into the green ceramic sheet 5. .
  • the process of embedding the electrode pattern 12 may be performed by stacking the green ceramic sheet 5 in a state in which the protective film 6 is attached to the top and bottom surfaces of the green ceramic sheet 5 stacked above and below. ) Is pressed up and down to embed the electrode pattern 12 into the green ceramic sheet 5.
  • the electrode pattern 12 of each of the stacked green ceramic sheets 5 is disposed directly above or embedded in another green ceramic sheet 5 disposed directly below.
  • the electrode pattern 12 is inserted into the green ceramic sheet 5 of each layer by pressing in a state where a plurality of green ceramic sheets 5 are stacked.
  • the step of firing (S600) is to fire the laminated green ceramic sheet (5) laminated body in the step (S500) of laminating the green ceramic sheet (5), it is to be fired into a single ceramic element .
  • Firing is carried out at 800 to 900 ° C. Low firing temperatures prevent shrinkage of the ceramic sheet and do not cause dimensional stability problems.
  • a ceramic device having a fine line pattern is manufactured.
  • the fine line pattern becomes an internal electrode of the ceramic device.
  • the manufactured ceramic device may be applied to a common mode filter in which the implementation of the fine line pattern is important.
  • the above-described ceramic device manufacturing method uses a flexible adhesive film 1a as a substrate instead of a hard substrate such as Si-Wafer, Al 2 O 3 -Sub, Ferrite-wafer, and the like, which are generally used in a thin film process, and thus, fine lines. It is advantageous in that the initial facility investment cost for pattern formation is small.
  • the ceramic device 10 may include a ceramic device body part 11 in which a plurality of ceramic sheet layers are fired into one body; And
  • the ceramic element body 11 includes a plurality of electrode patterns 12 provided in a plurality of layers spaced apart from each other and electrically connected to each other to form a circuit.
  • the ceramic element body 11 is preferably low temperature co-fired ceramics (LTCC), and an embodiment thereof is omitted as a redundant description as described above.
  • LTCC low temperature co-fired ceramics
  • the electrode pattern 12 is an example of a sintered body sintered Ag paste, an embodiment thereof is omitted as a duplicate description as described above.
  • At least one of the electrode patterns 12 of the plurality of electrode patterns 12 includes a side terminal portion 12a having an end portion exposed to the side surface of the ceramic element body 11.
  • the side terminal portion 12a is exposed to the side surface of the ceramic element body 11 to connect a circuit formed of the plurality of electrode patterns 12 with an external circuit.
  • the side terminal portion 12a is a terminal for electrically connecting to an external terminal (not shown), and the external terminal is connected to another printed circuit board or a battery electrically connected to the ceramic device according to the present invention. Terminal for electrical connection with
  • the side terminal portion 12a is formed together with the electrode pattern 12 on at least one of the green ceramic sheets 5 of the green ceramic sheets 5 to be stacked.
  • the side terminal portion 12a is composed of two terminals for electrically connecting the circuit with an external circuit.
  • a ceramic device By exposing the side terminal portion 12a, a ceramic device may be manufactured using a conventional thick film process for connection with an external terminal.
  • Example (Invention) Base substrate Use of hard boards such as Si-Wafer, Al 2 O 3 -Sub, Ferrite-wafer Flexible adhesive film Photosensitive material Spin coating (photosensitive material applied) Lamination process (dry film lamination) Pattern formation Etching & Sputtering Deposition & Plating Formed by printing a conductive paste on an intaglio resist pattern Pattern warrior none Warrior Pattern layer formation Repeat process cycle Laminated ceramic sheet with pattern transferred Electrode pattern width 20 ⁇ m or less 15.28 ⁇ m Remarks High initial investment cost due to open / short defects No open / short defects. Existing thick film processing line can be applied.
  • Table 1 compares a comparative example of forming a ceramic electrode by forming a fine electrode pattern using a conventional thin film process, and an embodiment of manufacturing a ceramic device using the ceramic device manufacturing method according to the present invention.
  • the electrode pattern width can be accurately implemented to 15.8 ⁇ m, it can be seen that it is possible to easily implement a fine line pattern having a line width of 25 ⁇ m or less.
  • the method of the present invention is an effective method that can be applied to fabricate high performance ceramic devices by the current thick film processing companies without the initial investment cost.
  • the present invention it is easy to form an electrode pattern having a line width of 25 ⁇ m or less, and the open and short defects of a circuit having a fine electrode pattern having a line width of 25 ⁇ m or less are prevented, thereby improving operational reliability of a product.
  • the present invention can use the terminal forming process as it is in the existing ceramic device manufacturing line as it minimizes the initial capital investment cost, it does not take much time to stabilize the process can quickly respond to customer requirements.
  • the present invention is a simple manufacturing process to reduce the manufacturing cost, improve the productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The present invention relates to a ceramic device manufacturing method and a ceramic device, in which an intaglio resist pattern is formed on a photosensitive layer formed on a substrate for transfer, an electrode pattern is formed by applying a conductive paste in the resist pattern, the electrode pattern is transferred to a green ceramic sheet, and green ceramic sheets to which the electrode pattern has been transferred are then laminated and baked to produce a ceramic device. By the present invention, it is possible to easily form an electrode pattern having a line width of 25 ㎛ or less and to prevent the opening and short-circuiting of a circuit having a fine electrode pattern which has a line width of 25 ㎛ or less, thereby improving the operation reliability of a product.

Description

세라믹 소자 제조방법 및 세라믹 소자Ceramic device manufacturing method and ceramic device
본 발명은 세라믹 소자 제조방법 및 세라믹 소자에 관한 것으로, 보다 구체적으로는, 미세한 선폭으로 패턴을 형성하는 세라믹 소자 제조방법 및 세라믹 소자에 관한 것이다. The present invention relates to a ceramic device manufacturing method and a ceramic device, and more particularly, to a ceramic device manufacturing method and a ceramic device for forming a pattern with a fine line width.
본 발명은 2013년 2월 15일 출원된 한국특허출원 제10-2013-0016262호 및 2014년 2월 10일 출원된 한국특허 제10-2014-0014765호의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.The present invention claims the benefits of Korean Patent Application No. 10-2013-0016262, filed February 15, 2013 and Korean Patent No. 10-2014-0014765, filed February 10, 2014, the entire contents of which are set forth herein. Included in
전자기기에 사용되는 반도체 칩 부품의 경박단소화 현상이 가속화됨에 따라 고성능 초소형 칩 부품의 요구가 확대되고 있다. As the light weight and shortening of semiconductor chip components used in electronic devices is accelerated, the demand for high performance microchip components is expanding.
따라서, 부품을 구성하는 회로 소자의 소형화 및 고용량화가 급속히 진행되고 있고, 회로 소자의 소형화 및 고용량화를 실현하기 위하여 회로 소자를 구성하는 전극 패턴의 미세화 및 밀집화가 요구되고 있다.Therefore, the miniaturization and high capacity of the circuit elements constituting the component are rapidly progressing, and in order to realize miniaturization and high capacity of the circuit elements, miniaturization and densification of electrode patterns constituting the circuit elements are required.
전극 패턴의 미세화 및 밀집화가 요구되는 회로 소자로는 커먼 모드 필터(Common mode filter)가 있다. 커먼 모드 필터는 스마트폰, 태블릿 PC 등의 전자기기에 구비되어 노이즈를 차단하고 강력한 신호 무결성을 제공하는 부품이다.As a circuit element requiring miniaturization and compaction of electrode patterns, there is a common mode filter. Common mode filters are components in smartphones, tablet PCs, etc. that block noise and provide strong signal integrity.
커먼 모드 필터의 경우, 일정 면적 내에서 회로 패턴의 고밀도 및 집적화를 위해 기재의 평면 상에 안쪽에서 바깥쪽으로 수회 돌아나가는 형상을 가지는 전극 패턴을 형성한다. 따라서, 커먼 모드 필터는 동일한 면적의 기재 상에서 상기 전극 패턴이 더 많이 회전하면서 정밀도가 높아지기 위해서는 전극패턴의 선폭을 미세화하는 것이 매우 중요하다.In the case of the common mode filter, an electrode pattern having a shape of returning from the inside to the outside several times is formed on the plane of the substrate for high density and integration of the circuit pattern within a predetermined area. Therefore, in the common mode filter, it is very important to refine the line width of the electrode pattern in order to increase the accuracy while rotating the electrode pattern more on the substrate having the same area.
현재, 선폭이 25㎛ 이하인 전극 패턴은 박막 공정(Thin Film Process)을 사용하여 구현 가능하다. 그러나, 박막 공정은 박막 공정 라인을 구축하는데 고가의 비용이 소요되므로 초기 투자비용 부담이 크고, 구축된 박막 공정 라인을 안정화하는데 많은 시간이 소요되므로 고객 대응의 타이밍이 지연되는 단점이 있다. Currently, an electrode pattern having a line width of 25 μm or less may be implemented using a thin film process. However, since the thin film process requires a high cost to build a thin film processing line, the initial investment cost is large, and the time required for stabilizing the thin film process line is delayed, and thus the timing of customer response is delayed.
상기 박막 공정 라인의 대안으로, 초기 설비 투자 비용 부담을 줄일 수 있는 후막 공정(Thick Film Process)으로 선폭이 25㎛ 이하인 전극 패턴을 형성하는 방법이 있다. 그러나 상기 후막 공정은 전극패턴의 선폭을 미세화하는 데 한계가 있다. 또한, 상기 후막 공정은 특히, 메쉬 스크린 프린팅(Mesh Screen Printing) 방법으로 회로를 형성하므로 회로의 오픈(open) 및 쇼트(short)와 같은 불량이 지속적으로 발생하여 선폭이 25㎛ 이하의 미세한 전극 패턴을 형성하는 데 있어 불량률이 높은 문제점이 있었다. As an alternative to the thin film processing line, there is a method of forming an electrode pattern having a line width of 25 μm or less by a thick film process that can reduce the initial investment cost. However, the thick film process has a limitation in miniaturizing the line width of the electrode pattern. In addition, since the thick film process forms a circuit, in particular, by mesh screen printing, defects such as open and short circuits are continuously generated, and thus fine electrode patterns having a line width of 25 μm or less There was a problem that the defect rate is high in forming a.
참고로, 회로의 오픈(open)은 전기적으로 접속되어야 할 두 개의 부분이 떨어지거나 전기적으로 연결된 부분이 끊어진 것이고, 쇼트(short)는 전기적으로 떨어지거나 절연되어야 하는 부분이 접촉되어 통전 중인 상태인 것이다. For reference, the open of the circuit is when two parts to be electrically connected are disconnected or the electrically connected part is disconnected, and the short is a state in which electricity is dropped and the part to be insulated is in contact with each other. .
본 발명과 관련된 선행기술로는 국내등록특허 제10-0745540호 "이종소재를 이용한 적층형 칩 커먼 모드 필터 및 그 제조방법"이 있다.Prior art related to the present invention is Korean Patent No. 10-0745540 "Laminated chip common mode filter using a heterogeneous material and its manufacturing method".
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 전사용 기재에 감광층을 이용하여 선폭이 25㎛ 이하인 전극 패턴을 용이하게 구현하고, 이를 세라믹 시트에 전사하고 소성하는 방식을 채용함으로써 제조 공정이 단순하고, 제조 비용이 저렴하며, 초기 설비 투자 비용을 최소화하는 세라믹 소자 제조방법 및 세라믹 소자를 제공하는 데 목적이 있다.The present invention has been made in view of the above-mentioned, by using a photosensitive layer on the transfer substrate to easily implement an electrode pattern having a line width of 25㎛ or less, by adopting a method of transferring and firing it on a ceramic sheet It is an object of the present invention to provide a ceramic device manufacturing method and a ceramic device that are simple, low in manufacturing cost, and minimize initial equipment investment cost.
본 발명의 다른 목적은, 선폭이 25㎛ 이하인 전극 패턴으로 형성된 회로의 오픈 및 쇼트 불량이 방지되어 제품의 신뢰성을 향상시키는 세라믹 소자 제조방법 및 세라믹 소자를 제공하는 데 목적이 있다.Another object of the present invention is to provide a ceramic device manufacturing method and a ceramic device for improving the reliability of the product by preventing the open and short failure of the circuit formed of the electrode pattern having a line width of 25㎛ or less.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 의한 세라믹 소자 제조 방법은, 전사용 기재에 감광층을 형성하는 단계, 상기 감광층에 기설계된 전극패턴에 대응되는 음각의 레지스트 패턴을 형성하는 단계, 상기 레지스트 패턴의 내부에 도전성 페이스트를 도포하여 전극 패턴을 형성하는 단계; 상기 전사용 기재에 형성된 전극 패턴을 소성 전 그린 세라믹 시트에 전사하는 단계; 전극패턴이 형성된 상기 그린 세라믹 시트를 적층하는 단계; 복수의 층으로 적층된 그린 세라믹 시트를 소성하는 단계를 포함한 것을 특징으로 한다. In the method of manufacturing a ceramic device according to an embodiment of the present invention for achieving the above object, the step of forming a photosensitive layer on the transfer substrate, the step of forming a negative resist pattern corresponding to the electrode pattern designed on the photosensitive layer Forming an electrode pattern by applying a conductive paste to the inside of the resist pattern; Transferring the electrode pattern formed on the transfer substrate to the green ceramic sheet before firing; Stacking the green ceramic sheets on which electrode patterns are formed; Firing the green ceramic sheet laminated in a plurality of layers.
본 발명에서, 상기 전사용 기재는, 점착제가 도포되어 있는 PI 필름, PEN 필름, PET 필름, PC 필름, PSS 필름 중 하나일 수 있다. In the present invention, the transfer substrate may be one of a PI film, a PEN film, a PET film, a PC film, a PSS film to which the adhesive is applied.
본 발명에서, 상기 도전성 페이스트는 Ag 페이스트일 수 있다. In the present invention, the conductive paste may be Ag paste.
본 발명에서, 상기 감광층을 형성하는 단계는, 상기 전사용 기재에 드라이 필름을 점착시켜 감광층을 형성할 수 있다. In the present invention, the forming of the photosensitive layer may form a photosensitive layer by adhering a dry film to the transfer substrate.
본 발명에서, 상기 레지스트 패턴을 형성하는 단계는, 상기 감광층의 표면에 마스크를 올려 놓고 노광하는 과정; 상기 감광층에서 기설계된 전극패턴의 형상에 대응되는 부분을 제거하여 레지스트 패턴을 형성하는 과정을 포함할 수 있다. In the present invention, the forming of the resist pattern may include: exposing a mask on a surface of the photosensitive layer; The method may include forming a resist pattern by removing a portion corresponding to a shape of a predesigned electrode pattern from the photosensitive layer.
본 발명에서, 상기 레지스트 패턴을 형성하는 과정은 현상액을 이용하여 상기 전극패턴의 형상에 대응되는 부분을 제거하며, 상기 레지스트 패턴을 형성하는 단계는, 현상액 제거를 위한 수세 과정을 더 포함한다. In the present invention, the process of forming the resist pattern removes a portion corresponding to the shape of the electrode pattern by using a developer, and the forming of the resist pattern further includes a washing process for removing the developer.
본 발명에서, 상기 전극 패턴을 형성하는 단계는, 상기 도전성 페이스트를 상기 레지스트 패턴 내부에 채우고, 스크래퍼를 이용하여 상기 레지스트 패턴의 상부로 돌출된 도전성 페이스트를 제거할 수 있다. In the forming of the electrode pattern, the conductive paste may be filled in the resist pattern, and the conductive paste protruding to the upper portion of the resist pattern may be removed using a scraper.
본 발명에서, 상기 감광층을 형성하는 단계, 상기 음각의 레지스트 패턴을 형성하는 단계, 상기 전극 패턴을 형성하는 단계는 롤 투 롤 방식으로 연속적으로 이루어지도록 할 수 있다. In the present invention, forming the photosensitive layer, forming the negative resist pattern, and forming the electrode pattern may be continuously performed in a roll-to-roll manner.
본 발명에서, 상기 그린 세라믹 시트는 저온 동시 소성 세라믹(LTCC ; Low Temperature Co-fire Ceramics) 시트일 수 있다. In the present invention, the green ceramic sheet may be a low temperature co-fired ceramic (LTCC) sheet.
본 발명에서, 상기 전사하는 단계는, 상기 전사용 기재에서 상기 감광층을 제거하는 과정; 및 상기 전사용 기재의 일면에 돌출된 상기 전극 패턴을 소성 전 그린 세라믹 시트로 전사하는 과정을 포함할 수 있다.In the present invention, the transferring step, the process of removing the photosensitive layer from the transfer substrate; And transferring the electrode pattern protruding from one surface of the transfer substrate to the green ceramic sheet before firing.
본 발명에서, 상기 전사하는 단계는, 상기 전극 패턴 의 형상과 대응되는 진공흡착패턴이 구비된 금형으로 상기 점착 필름에서 상기 전극 패턴을 진공 흡착하여 분리하고, 분리된 상기 전극 패턴을 상기 그린 세라믹 시트의 일면에 직접 전사할 수 있다.In the present invention, the transferring step, the vacuum suction pattern corresponding to the shape of the electrode pattern in a mold provided by vacuum adsorption and separating the electrode pattern from the adhesive film, the separated electrode pattern to the green ceramic sheet Can be directly transferred to one side of.
본 발명에서, 상기 전사하는 단계는, 상기 점착 필름과 상기 그린 세라믹 시트에 겹쳐지게 배치하고 상기 전극 패턴이 형성된 부분에만 열을 가해 압착한 후 상기 점착 필름과 상기 드라이 필름을 상기 그린 세라믹 시트에서 분리하여 상기 전극 패턴만 상기 그린 세라믹 시트의 전사면에 전사할 수 있다. In the present invention, the transferring step may be arranged to overlap the adhesive film and the green ceramic sheet, and to apply pressure only to a portion where the electrode pattern is formed, and then to compress the separated adhesive film and the dry film from the green ceramic sheet. Thus, only the electrode pattern may be transferred to the transfer surface of the green ceramic sheet.
본 발명에서, 상기 그린 세라믹 시트를 적층하는 단계는, 받침 그린 세라믹 시트로 적층된 최상단 그린 세라믹 시트 또는 최하단 그린 세라믹 시트에서 노출되는 전극 패턴을 덮는 과정을 포함할 수 있다. In the present invention, the stacking of the green ceramic sheet may include covering an electrode pattern exposed from the uppermost green ceramic sheet or the lowermost green ceramic sheet laminated with the supporting green ceramic sheet.
본 발명에서, 상기 그린 세라믹 시트를 적층하는 단계는, 적층된 복수의 그린 세라믹 시트를 가압하여 그린 세라믹 시트 내부로 전극 패턴을 매입하는 과정을 더 포함할 수 있다. In the present invention, the stacking of the green ceramic sheet may further include pressing the plurality of stacked green ceramic sheets to embed an electrode pattern into the green ceramic sheet.
본 발명에서, 상기 소성하는 단계는, 800~900℃에서 소성할 수 있다. In the present invention, the step of firing may be baked at 800 ~ 900 ℃.
또한, 상기 목적을 달성하기 위한 본 발명의 일 실시예에 의한 세라믹 소자는, 복수의 세라믹 시트층이 하나의 몸체로 소성된 세라믹 소자 몸체부; 및 In addition, the ceramic element according to an embodiment of the present invention for achieving the above object, the ceramic element body portion is a plurality of ceramic sheet layer is fired into one body; And
상기 세라믹 소자 몸체부 내부에 복수의 층으로 이격되게 구비되고 서로 전기적으로 연결되어 회로를 형성하는 복수의 전극 패턴을 포함한 것을 특징으로 한다. It is characterized in that it comprises a plurality of electrode patterns provided in the ceramic element body portion spaced apart in a plurality of layers and electrically connected to each other to form a circuit.
본 발명에서, 상기 세라믹 소자 몸체부는 저온 동시 소성 세라믹(LTCC ; Low Temperature Co-fire Ceramics)일 수 있다. In the present invention, the ceramic element body portion may be low temperature co-fired ceramics (LTCC).
본 발명에서, 상기 전극 패턴은 Ag 페이스트를 소성한 소결체일 수 있다. In the present invention, the electrode pattern may be a sintered body sintered Ag paste.
본 발명에서, 복수의 상기 전극 패턴 중 적어도 어느 한 전극 패턴은, 상기 세라믹 소자 몸체부의 측면에 단부가 노출되는 측면 단자부를 구비할 수 있다. In at least one of the plurality of electrode patterns, the electrode pattern may include a side terminal portion at which an end portion is exposed at a side surface of the ceramic element body portion.
본 발명은, 선폭이 25㎛ 이하인 전극 패턴의 형성이 용이하며, 선폭이 25㎛ 이하인 미세 전극패턴을 가지는 회로의 오픈(open) 및 쇼트(short) 불량이 방지되어 제품의 동작 신뢰성을 향상시키는 효과가 있다. Advantageous Effects of the Invention The present invention facilitates formation of an electrode pattern having a line width of 25 μm or less, and prevents open and short defects in a circuit having a fine electrode pattern having a line width of 25 μm or less, thereby improving operational reliability of a product. There is.
또한, 본 발명은 기존의 세라믹 소자 제조 라인에서 터미널 형성 과정을 그대로 이용할 수 있어 초기 설비 투자 비용이 최소화되고, 공정 안정화에 많은 시간이 소요되지 않으므로 고객 요구에 신속하게 대응할 수 있는 효과가 있다.In addition, the present invention can use the terminal forming process as it is in the existing ceramic device manufacturing line as it minimizes the initial investment cost, it does not take much time to stabilize the process has the effect that can quickly respond to customer requirements.
또한, 본 발명은 제조공정이 단순하여 제조 원가를 절감하고, 생산성을 향상시키는 효과가 있다. In addition, the present invention has the effect of reducing the manufacturing cost and productivity, since the manufacturing process is simple.
도 1은 본 발명에 따른 세라믹 소자 제조방법을 도시한 공정도1 is a process chart showing a method of manufacturing a ceramic device according to the present invention
도 2A 내지 도 2G는 본 발명에 따른 세라믹 소자 제조방법을 각 단계별로 도시한 도시한 도면.2A to 2G are diagrams illustrating each step of the method of manufacturing a ceramic device according to the present invention.
도 3A 내지 도 3C는 본 발명에 따른 세라믹 소자 제조방법에서 드라이 필름에 레지스트 패턴이 형성된 것을 찍은 SEM 사진.3A to 3C are SEM photographs of a resist pattern formed on a dry film in the method of manufacturing a ceramic device according to the present invention.
도 4는 본 발명에 따른 세라믹 소자 제조 방법에서 음각의 레지스트 패턴에 도전성 패턴이 도포된 예를 도시한 도면.4 is a view showing an example in which a conductive pattern is applied to a negative resist pattern in the method of manufacturing a ceramic device according to the present invention.
도 5는 본 발명에 따른 세라믹 소자를 도시한 단면도.5 is a cross-sectional view showing a ceramic element according to the present invention.
*도면 중 주요 부호에 대한 설명** Description of the major symbols in the drawings *
1 : 전사용 기재 1a : 점착 필름1: transfer base material 1a: adhesive film
2 : 감광층 2a : 드라이 필름2: photosensitive layer 2a: dry film
2b : 레지스트 패턴 3 : 마스크2b: resist pattern 3: mask
3a : 패턴 커버부 4 : 도전성 페이스트3a: pattern cover portion 4: conductive paste
5 : 그린 세라믹 시트 6 : 보호 필름 5: green ceramic sheet 6: protective film
7 : 받침 그린 세라믹 시트 10 : 세라믹 소자 7: support green ceramic sheet 10: ceramic element
11 : 세라믹 소자 몸체부 12 : 전극 패턴11 ceramic element body 12 electrode pattern
12a : 측면 단자부12a: side terminal
S100 : 감광층을 형성하는 단계S100: forming a photosensitive layer
S200 : 레지스트 패턴을 형성하는 단계S200: forming a resist pattern
S210 : 노광하는 과정S210: Exposure Process
S220 : 레지스트 패턴을 형성하는 과정S220: process of forming a resist pattern
S300 : 전극 패턴을 형성하는 단계S300: forming an electrode pattern
S400 : 전사하는 단계S400: Steps to Transfer
S410 :감광층을 제거하는 과정S410: Process of removing the photosensitive layer
S420 : 전사하는 과정S420: the process of transferring
S500 : 적층하는 단계S500: lamination step
S600 : 소성하는 단계S600: firing step
본 발명에 따른 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.Preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
도 1을 참고하면, 본 발명에 따른 세라믹 소자 제조 방법은, 전사용 기재에 감광층을 형성하는 단계(S100), 상기 감광층에 기설계된 전극 패턴에 대응되는 음각의 레지스트 패턴을 형성하는 단계(S200), 상기 레지스트 패턴의 내부에 도전성 페이스트를 도포하여 전극 패턴을 형성하는 단계(S300); 상기 전사용 기재에 형성된 전극 패턴을 소성 전 그린 세라믹 시트에 전사하는 단계; 전극 패턴이 전사된 상기 그린 세라믹 시트를 적층하는 단계; 다층으로 적층된 그린 세라믹 시트를 소성하는 단계(S600)를 포함한다.Referring to FIG. 1, in the method of manufacturing a ceramic device according to the present invention, forming a photosensitive layer on a substrate for transferring (S100) and forming a negative resist pattern corresponding to an electrode pattern predesigned on the photosensitive layer ( S200), forming an electrode pattern by applying a conductive paste inside the resist pattern (S300); Transferring the electrode pattern formed on the transfer substrate to the green ceramic sheet before firing; Stacking the green ceramic sheets on which electrode patterns have been transferred; Firing the green ceramic sheet laminated in a multi-layer (S600).
도 2A는 감광층(2)을 형성하는 단계(S100)를 도시한 것이고, 도 2B 및 도 2C는 레지스트 패턴(2b)을 형성하는 단계(S200)를 도시한 것이고, 도 2D는 전극 패턴(12)을 형성하는 단계(S300)를 도시한 것이고, 도 2E 및 도 2F는 전사하는 단계를 도시한 것이고, 도 2G는 그린 세라믹 시트(5)를 적층하는 단계를 도시한 것이다.FIG. 2A illustrates the step S100 of forming the photosensitive layer 2, FIGS. 2B and 2C illustrate the step S200 of forming the resist pattern 2b, and FIG. 2D illustrates the electrode pattern 12. FIG. 2E and FIG. 2F illustrate the step of transferring, and FIG. 2G illustrates the step of stacking the green ceramic sheet 5.
도 2A를 참고하면, 상기 전사용 기재(1)는 일면에 점착제가 구비된 점착필름이고, 상기 감광층(2)은 드라이 필름(2a)인 것이 바람직하다. Referring to Figure 2A, the transfer substrate 1 is an adhesive film provided with an adhesive on one surface, the photosensitive layer 2 is preferably a dry film (2a).
상기 감광층(2)을 형성하는 단계(S100)는, 전사용 기재(1)로 점착필름을 사용하고, 상기 점착필름에 드라이 필름(2a)을 적층하여 감광층(2)을 형성하는 것으로, 점착필름에 드라이 필름(Dry Film Photoresist)(2a)을 일체화 점착하는 것이다.Forming the photosensitive layer 2 (S100), using a pressure-sensitive adhesive film as the transfer substrate (1), to form a photosensitive layer 2 by laminating a dry film (2a) on the pressure-sensitive adhesive film, The dry film (Dry Film Photoresist) (2a) is integrally bonded to the adhesive film.
상기 감광층(2)은 포토레지스트액을 상기 전사용 기재(1)의 일면에 도포하여 형성할 수도 있다. 포토레지스트액을 도포하여 형성된 감광층(2)에 비하여 상기 드라이 필름(2a)은 두께가 균일하고, 별도의 건조 공정이 필요하지 않으므로 제조공정을 단순화하고, 상기 전극 패턴(12)을 균일한 두께로 고르게 형성할 수 있으며 상기 전극 패턴(12)의 선폭을 미세화하는데 유리하여 선폭을 25㎛ 이하인 음각의 레지스트 패턴(2b)을 더 용이하게 형성할 수 있도록 한다. The photosensitive layer 2 may be formed by applying a photoresist liquid to one surface of the transfer substrate 1. Compared to the photosensitive layer 2 formed by applying the photoresist liquid, the dry film 2a has a uniform thickness and does not require a separate drying process, thereby simplifying a manufacturing process and making the electrode pattern 12 have a uniform thickness. It can be formed evenly and is advantageous in miniaturizing the line width of the electrode pattern 12 to facilitate the formation of the intaglio resist pattern 2b having a line width of 25 μm or less.
상기 드라이 필름(2a)은 롤(Roll) 투 롤(Roll)을 이용한 라미네이션(Lamination) 공정을 통해 상기 점착필름에 적층된다.The dry film 2a is laminated on the adhesive film through a lamination process using a roll to roll.
상기 점착필름은 플랙시블(flexible)한 점착필름(5)을 사용한다. 예를 들어, 점착필름은 일면에 점착제가 도포되어 있는 PI(Polyimide) 필름, PEN(Polyethylene Naphthalate) 필름, PET(Polyethylene Terephthalate) 필름, PC(Polycarbonate)필름, PSS(Poly styrene sulfonate) 필름 중 선택된 하나를 사용할 수 있다.The adhesive film uses a flexible adhesive film (5). For example, the adhesive film is one selected from a PI (Polyimide) film, a PEN (Polyethylene Naphthalate) film, a PET (Polyethylene Terephthalate) film, a PC (Polycarbonate) film, and a PSS (Poly styrene sulfonate) film having an adhesive applied to one surface thereof. Can be used.
상기 드라이 필름(2a)은 자외선(UV)을 조사하면 자외선을 받은 부분의 성질이 불용(negative) 또는 가용(positive)으로 변화하는 필름이다. The dry film 2a is a film in which the property of the UV-receiving portion is changed to negative or positive upon irradiation with ultraviolet (UV) light.
도 2B 및 도 2C를 참고하면, 상기 레지스트 패턴(2b)을 형성하는 단계(S200)는, 상기 감광층(2)의 표면에 마스크(3)를 올려 놓고 노광하는 과정(S210);2B and 2C, the forming of the resist pattern 2b may include: exposing the mask 3 on the surface of the photosensitive layer 2 and exposing the mask 3 on the surface of the photosensitive layer 2;
상기 감광층(2)에서 기설계된 전극 패턴의 형상에 대응되는 부분을 제거하여 레지스트 패턴(2b)을 형성하는 과정(S220)을 포함한다.And removing the portion corresponding to the shape of the predesigned electrode pattern from the photosensitive layer 2 to form a resist pattern 2b (S220).
상기 마스크(3)는 상기 감광층(2)의 표면에서 기설계된 전극 패턴을 가리고, 기설계된 전극 패턴을 제외한 부분을 개방시키도록 형성된 것으로, 기설계된 전극 패턴과 일치되는 패턴 커버부를 가지고, 상기 패턴 커버부를 제외한 부분이 개방된 형상을 가진다.The mask 3 is formed to cover a predesigned electrode pattern on the surface of the photosensitive layer 2 and to open a portion except the predesigned electrode pattern, and has a pattern cover part that matches the predesigned electrode pattern. The part except the cover part has an open shape.
상기 노광 과정은 상기 감광층(2)에서 상기 마스크(3)에 의해 노출된 부분 즉, 상기 패턴 커버부(3a)를 제외한 부분으로 빛을 조사하여 상기 감광층(2)에서 상기 패턴 커버부(3a)를 제외한 부분을 현상액에 의해 용해되지 않도록 변화시킨다.The exposure process may be performed by irradiating light to a portion of the photosensitive layer 2 exposed by the mask 3, that is, to a portion except for the pattern cover portion 3a, and thus the pattern cover portion (2) of the photosensitive layer 2. The parts except 3a) are changed so as not to be dissolved by the developer.
상기 감광층(2)에서 기설계된 전극 패턴의 형상에 대응되는 부분을 제거하는 과정은 불용되지 않고 가용상태인 부분 즉, 기설계된 전극 패턴의 형상에 대응되는 부분을 현상액을 이용하여 제거한다.In the process of removing a portion corresponding to the shape of the predesigned electrode pattern from the photosensitive layer 2, a portion which is not insoluble and available, that is, a portion corresponding to the shape of the predesigned electrode pattern is removed using a developer.
상기 레지스트 패턴(2b)은 현상액을 이용하여 상기 드라이 필름(2a) 중 일부분이 제거된 것으로, 기설계된 전극 패턴의 형상으로 상기 전사용 기재(1)의 일면을 노출시키는 홀로 형성된다. The resist pattern 2b is formed by removing a portion of the dry film 2a using a developer, and is formed as a hole exposing one surface of the transfer substrate 1 in the shape of a predesigned electrode pattern.
상기 현상액은 염화구리(CuCl2)가 사용될 수 있다. 바람직하게는, 현상액은 염화구리 2% 수용액이 사용될 수 있다. 현상 후에는 현상액 제거를 위한 수세 과정이 수행된다. The developer may be copper chloride (CuCl 2 ). Preferably, the developer may be used an aqueous solution of copper chloride 2%. After development, a washing process for removing the developer is performed.
수세는 30℃ 이하의 물을 사용한다. 물의 온도가 30℃를 초과하면 레지스트 패턴(2b)의 박리 원인이 된다. 수세 과정 후에는 건조 과정이 수행될 수 있다.Water washing uses water of 30 degrees C or less. When the temperature of water exceeds 30 degreeC, it will become a cause of peeling of the resist pattern 2b. After the washing process, a drying process may be performed.
상기 레지스트 패턴(2b)을 형성하는 단계(S200)는, 빛으로 조사된 부분이 남겨지고, 빛에 가려진 부분을 제거하는 네거티브 레지스트 방식을 이용하여 음각의 레지스트 패턴(2b)을 형성하는 것을 일 예로 한다. In the forming of the resist pattern 2b (S200), the negative resist pattern 2b is formed using a negative resist method in which a portion irradiated with light is left and the portion covered by the light is removed. do.
기설계된 전극 패턴(12)은 기재의 평면 상에 안쪽에서 바깥쪽으로 수회 돌아나가는 형상 또는 바깥쪽에서 안쪽으로 수회 돌아 들어가는 형상인 것을 일 예로하고, 선폭이 25㎛ 이하인 미세 라인 패턴이다. The predesigned electrode pattern 12 is an example of a shape that returns several times from the inside to the outside on the plane of the substrate or the shape that enters the inside several times from the outside, and is a fine line pattern having a line width of 25 μm or less.
도 3A 내지 도 3C는 본 발명에 따른 세라믹 소자 제조방법에서 드라이 필름(2a)에 레지스트 패턴(2b)이 형성된 것을 찍은 SEM 사진이며, 도 3A 내지 도 3C를 참고하면 네거티브 레지스트 방식을 이용하여 드라이 필름(2a) 상에 선폭 15.28㎛, 선 사이의 간격이 14.14㎛인 레지스트 패턴(2b)이 균일하게 형성된 것을 확인할 수 있다. 3A to 3C are SEM photographs in which the resist pattern 2b is formed on the dry film 2a in the method of manufacturing a ceramic device according to the present invention. Referring to FIGS. 3A to 3C, a dry film using a negative resist method is illustrated. It can be seen that a resist pattern 2b having a line width of 15.28 µm and a line interval of 14.14 µm was formed uniformly on (2a).
도 2D를 참고하며, 전극 패턴(12)을 형성하는 단계(S300)는, 상기 레지스트 패턴(2b) 내부에 도전성 페이스트(4)를 도포하여 전극 패턴(12)을 형성한다.Referring to FIG. 2D, in the forming of the electrode pattern 12 (S300), the conductive pattern 4 is applied to the inside of the resist pattern 2b to form the electrode pattern 12.
상기 전극 패턴(12)을 형성하는 단계(S300)는, 상기 도전성 페이스트(4)를 상기 레지스트 패턴(2b) 내부에 채우고, 스크래퍼를 이용하여 상기 레지스트 패턴(2b)의 상부로 돌출된 도전성 페이스트(4)를 제거하여 상기 레지스트 패턴(2b) 내에 전극 패턴(12)을 상기 드라이 필름(2a)의 두께와 동일하게 형성한다. In the forming of the electrode pattern 12 (S300), the conductive paste 4 is filled into the resist pattern 2b, and a conductive paste protruding to the upper portion of the resist pattern 2b using a scraper ( 4) the electrode pattern 12 is formed in the resist pattern 2b to have the same thickness as that of the dry film 2a.
상기 전극 패턴(12)을 형성하는 단계(S300)는, 상기 도전성 페이스트(4)를 상기 레지스트 패턴(2b) 내부에 상기 드라이 필름(2a)의 상부로 일부 돌출되도록 채우고, 스크래퍼를 이용하여 상기 드라이 필름(2a)의 상면으로 돌출된 도전성 페이스트(4)를 제거하여 전극 패턴(12)의 표면을 평면으로 형성하는 것이 바람직하다. In the forming of the electrode pattern 12 (S300), the conductive paste 4 is partially filled in the resist pattern 2b so as to protrude upward of the dry film 2a, and the dry using a scraper. It is preferable to form the surface of the electrode pattern 12 in a plane by removing the conductive paste 4 protruding to the upper surface of the film 2a.
상기 드라이 필름(2a)은 상기 전사용 기재(1)의 일면에 상기 전극 패턴(12)을 도전성 페이스트(4)로 인쇄하여 형성할 수 있도록 하는 스크린 역할을 하며, 상기 전극 패턴(12)을 형성하는 단계(S300)는 스크린 프린팅 방식으로 상기 도전성 페이스트(4)를 상기 레지스트 패턴(2b) 내부에 채울 수 있음을 밝혀둔다. 상기 전극 패턴(12)을 형성하는 단계(S300)는, 도포된 상기 도전성 페이스트(4)를 건조하는 과정을 포함한다. The dry film 2a serves as a screen for forming the electrode pattern 12 by printing the conductive paste 4 on one surface of the transfer substrate 1 and forming the electrode pattern 12. In step S300, the conductive paste 4 may be filled into the resist pattern 2b by a screen printing method. Forming the electrode pattern 12 (S300) includes drying the applied conductive paste 4.
상기 전극 패턴(12)을 형성하는 단계(S300)는 기설계된 전극 패턴(12)의 형상으로 형성된 상기 레지스트 패턴(2b)의 내부에 도전성 페이스트(4)를 스크린 프린팅 방식으로 채워 정확하게 기설계된 전극 패턴(12)을 형성한다. In the forming of the electrode pattern 12 (S300), the conductive pattern 4 is filled in the resist pattern 2b formed in the shape of the predesigned electrode pattern 12 by a screen printing method to accurately design the electrode pattern. (12) is formed.
상기 전극 패턴(12)은 표면이 평면으로 형성되고, 균일한 두께를 가져 상기 전사하는 단계에서 상기 그린 세라믹 시트(5)의 일면에 밀착되어 전사될 수 있다. The electrode pattern 12 may have a flat surface, and may have a uniform thickness to be in close contact with one surface of the green ceramic sheet 5 in the step of transferring.
상기 도전성 페이스트(4)는 Ag 페이스트를 사용하는 것이 바람직하며, Ag 페이스트는 고온의 소성 시 치수 안정성에서 문제가 발생되지 않으며, 상기 그린 세라믹 시트(5)와 함께 소성되어 낮은 비저항값을 가지는 전극 패턴(12)을 형성할 수 있도록 한다.It is preferable to use Ag paste as the conductive paste 4, and Ag paste does not have a problem in dimensional stability during high temperature firing and is fired together with the green ceramic sheet 5 to have an electrode pattern having a low specific resistance. (12) to be formed.
본 발명은 상기한 바와 같이 음각의 레지스트 패턴(2b)에 도전성 페이스를 채워 전극 패턴(12)을 형성하는 스프린 프린팅 방식으로, 스퍼터링 증착(deposition) 방식에 비해 제조 공정이 단순하며, 전극 패턴(12)의 선폭을 미세화하는데 유리하다.The present invention is a sprin printing method for forming the electrode pattern 12 by filling the conductive face in the intaglio resist pattern 2b as described above, the manufacturing process is simpler than the sputter deposition method, the electrode pattern ( It is advantageous to refine the line width of 12).
또한, 대면적의 세라믹 소자 형성이 가능하며, 그 공정이 단순하다.In addition, a large area ceramic element can be formed, and the process is simple.
상기 전극 패턴(12)을 형성하는 단계(S300)는, 상기 레지스트 패턴(2b) 내부에 채워진 도전성 페이스트(4)를 건조하는 과정을 포함한다. Forming the electrode pattern 12 (S300) includes drying the conductive paste 4 filled in the resist pattern 2b.
도 4를 참고하면, 상기 음각의 레지스트 패턴(2b)을 형성하는 단계(S200), 상기 전극 패턴을 형성하는 단계(S300)는 롤(Roll) 투 롤(Roll)로 전사용 기재(1)와 이에 적층된 드라이 필름(2a)을 함께 이송하면서 연속적으로 이루어지도록 하여 제조 공정을 단순화하고, 생산성을 향상시키는 것이 바람직하다. 본 발명에 따른 세라믹 소자 제조 방법은 상기 드라이 필름(2a)을 상기 점착 필름(1a)에 적층하고, 적층된 드라이 필름(2a)에 음각의 레지스트 패턴(2b)을 형성하고, 상기 레지스트 패턴(2b) 내에 도전성 페이스트(4)를 채워 전극 패턴(12)을 형성하는 공정이 롤 투롤 로 연속적으로 이루어지게 하여 제조 공정을 더 단순화하고, 생산성을 더 향상시키는 것이 바람직하다.Referring to FIG. 4, the step of forming the intaglio resist pattern 2b (S200) and the step of forming the electrode pattern (S300) include a roll-to-roll and a transfer substrate 1. It is preferable to simplify the manufacturing process and improve the productivity by continuously making the laminated dry film 2a transported together. In the method of manufacturing a ceramic device according to the present invention, the dry film 2a is laminated on the adhesive film 1a, a negative resist pattern 2b is formed on the stacked dry film 2a, and the resist pattern 2b is formed. It is preferable that the process of forming the electrode pattern 12 by filling the conductive paste 4 in the C) is continuously made by roll-to-roll, thereby simplifying the manufacturing process and further improving productivity.
또한, 상기 전극 패턴(12)을 소성 전 그린 세라믹 시트(5)에 전사하는 것을 상기 롤(Roll) 투 롤(Roll) 공정에 포함시키는 것이 더 바람직하다. In addition, it is more preferable to include transferring the electrode pattern 12 to the green ceramic sheet 5 before firing in the roll-to-roll process.
도 2E 및 도 2F를 참고하면, 상기 전사하는 단계(S400)는, 상기 점착 필름(1a)에 형성된 상기 전극 패턴(12)을 소성 전 그린 세라믹 시트(5)에 전사하는 것이다.2E and 2F, the transferring step (S400) is to transfer the electrode pattern 12 formed on the adhesive film 1a to the green ceramic sheet 5 before firing.
상기 그린 세라믹 시트(5)는 저온 동시 소성 세라믹(LTCC ; Low Temperature Co-fire Ceramics) 시트를 사용한다. 상기 LTCC 시트는 소성온도가 900℃로 낮아 녹는점이 약 960℃인 은 등의 금속과 동시에 소성하는 것이 가능하다. The green ceramic sheet 5 uses a Low Temperature Co-fire Ceramics (LTCC) sheet. The LTCC sheet can be fired simultaneously with a metal such as silver having a melting point of about 960 ° C due to a low firing temperature of 900 ° C.
부품의 고집적화와 고용량화를 위해서는 적층되는 세라믹 시트 내부에 회로를 설계해야 하며, 이 경우 구리나 은 등의 금속을 상기 그린 세라믹 시트(5)와 동시에 소성해야 한다. LTCC 시트는 SiO2 또는 Al2O3 계열을 사용할 수 있다.For high integration and high capacity of components, a circuit must be designed inside a laminated ceramic sheet. In this case, a metal such as copper or silver should be fired simultaneously with the green ceramic sheet 5. LTCC sheets may use SiO 2 or Al 2 O 3 series.
상기 전사하는 단계(S400)는, 상기 전사용 기재(1)에서 상기 감광층(2)을 제거하는 과정(S410), 및 상기 전사용 기재(1)의 일면에 돌출된 상기 전극 패턴(12)을 소성 전 그린 세라믹 시트(5)로 전사하는 과정(S420)을 포함한다.The transferring step (S400) may include removing the photosensitive layer 2 from the transfer substrate 1 (S410), and the electrode pattern 12 protruding from one surface of the transfer substrate 1. Transferring to the green ceramic sheet 5 before firing (S420).
상기 감광층(2)을 제거하는 과정(S410)은, 상기 드라이 필름(2a)을 상기 점착 필름(1a)에서 제거하는 것으로, 드라이 필름(2a)에서 불용화된 부분을 박리액으로 제거하는 박리과정이다. 박리액은 1~5%의 수산화나트륨(NaOH)나 수산화칼륨(KOH)이 사용될 수 있다. 레지스트 패턴(2b)(13)의 박리 후에는 박리액 제거를 위한 세정, 건조 과정이 수행된다.In the process of removing the photosensitive layer 2 (S410), the dry film 2a is removed from the adhesive film 1a, and the peeling process of removing the insolubilized portion of the dry film 2a with the peeling solution is performed. It is a process. 1 to 5% of sodium hydroxide (NaOH) or potassium hydroxide (KOH) may be used as the stripping solution. After the resist patterns 2b and 13 are peeled off, washing and drying processes for removing the peeling solution are performed.
박리액에 의해 드라이 필름(2a)이 제거되면 점착 필름(1a)에 도전성 페이스트(4)로 형성된 전극 패턴(12)만 남게 된다. 상기 전극 패턴(12)은 기설계된 전극 패턴과 동일한 것으로 기설계된 전극 패턴은 기재의 평면 상에 안쪽에서 바깥쪽으로 수회 돌아나가는 형상 또는 바깥쪽에서 안쪽으로 수회 돌아 들어가는 형상인 것을 일 예로하고, 선폭이 25㎛ 이하인 미세 라인 패턴이다. When the dry film 2a is removed by the stripping solution, only the electrode pattern 12 formed of the conductive paste 4 remains on the adhesive film 1a. The electrode pattern 12 is the same as the predesigned electrode pattern, and the predesigned electrode pattern is an example of a shape that returns several times from the inside to the outside on the plane of the substrate or the shape that enters the inside several times from the outside, and the line width is 25. It is a fine line pattern below micrometer.
상기 그린 세라믹 시트(5)의 전사면에는 접착제층이 구비되며, 상기 그린 세라믹 시트(5)의 전사면에 구비된 접착제층에 상기 점착 필름(1a) 상의 전극 패턴(12)을 맞붙인 후 상기 점착 필름(1a)을 제거하면 상기 전극 패턴(12)은 상기 그린 세라믹 시트(5)의 전사면에 부착된다. An adhesive layer is provided on the transfer surface of the green ceramic sheet 5, and after bonding the electrode pattern 12 on the adhesive film 1a to the adhesive layer provided on the transfer surface of the green ceramic sheet 5, When the adhesive film 1a is removed, the electrode pattern 12 is attached to the transfer surface of the green ceramic sheet 5.
상기 전극 패턴(12)이 그린 세라믹 시트(5)에 전사된 후, 상기 그린 세라믹 시트(5)에서 점착필름(5)을 분리한다. 상기 점착필름(5)의 분리시 상기 그린 세라믹 시트(5)와 상기 전극 패턴(12)의 강한 부착력으로 인해 상기 전극 패턴(12)과 상기 점착필름(5)이 분리되지 않는 전사 불량이 발생하지는 않는다.After the electrode pattern 12 is transferred to the green ceramic sheet 5, the adhesive film 5 is separated from the green ceramic sheet 5. When the adhesive film 5 is separated, a transfer failure in which the electrode pattern 12 and the adhesive film 5 are not separated due to the strong adhesion between the green ceramic sheet 5 and the electrode pattern 12 does not occur. Do not.
상기 접착제층은 열경화성 접착제로 상기 점착 필름(1a)에 부착된 상기 전극 패턴(12)을 상기 그린 세라믹 시트(5)에 부착시킨 후 열 압착하여 상기 그린 세라믹 시트(5)로 전사하는 것을 일 예로 한다. The adhesive layer may be a thermosetting adhesive, and the electrode pattern 12 attached to the adhesive film 1a may be attached to the green ceramic sheet 5, and then thermally compressed and transferred to the green ceramic sheet 5. do.
상기 점착필름(5)과 상기 전극 패턴(12)은 점착제층으로 부착되고, 상기 그린 세라믹 시트(5)와 상기 전극 패턴(12)은 접착제층으로 부착된다. 따라서 상기 그린 세라믹 시트(5)와 상기 전극 패턴(12)의 부착력이 상기 전극 패턴(12)과 상기 점착필름(5)의 부착력에 비해 높고, 전사 후, 상기 점착필름(5)과 상기 전극 패턴(12)의 분리가 용이하다.The adhesive film 5 and the electrode pattern 12 are attached by an adhesive layer, and the green ceramic sheet 5 and the electrode pattern 12 are attached by an adhesive layer. Therefore, the adhesive force of the green ceramic sheet 5 and the electrode pattern 12 is higher than that of the electrode pattern 12 and the adhesive film 5, and after the transfer, the adhesive film 5 and the electrode pattern are transferred. Separation of (12) is easy.
또한, 도시하지는 않았지만, 상기 전사하는 단계(S400)는, 상기 점착 필름(1a)에서 상기 전극 패턴(12)을 분리하여 상기 그린 세라믹 시트(5)에 전사할 수 있다. In addition, although not shown, in the transferring step (S400), the electrode pattern 12 may be separated from the adhesive film 1a and transferred to the green ceramic sheet 5.
상기 전사하는 단계(S400)는 상기 전극 패턴(12)의 형상과 대응되는 진공흡착패턴이 구비된 금형으로 상기 점착 필름(1a)에서 상기 전극 패턴(12)을 진공 흡착하여 분리하고, 분리된 상기 전극 패턴(12)을 상기 그린 세라믹 시트(5)의 일면에 직접 전사하는 것을 일 예로 한다.The transferring step (S400) is a mold having a vacuum adsorption pattern corresponding to the shape of the electrode pattern 12 is separated by vacuum adsorption of the electrode pattern 12 from the adhesive film (1a), the separated Direct transfer of the electrode pattern 12 to one surface of the green ceramic sheet 5 is an example.
더 상세하게는 상기 금형에서 진공흡착패턴을 상기 전극 패턴(12)에 대응되게 위치시킨 후 상기 진공흡착패턴으로 상기 전극 패턴(12)을 흡착하여 상기 전극 패턴(12)을 제외한 상기 점착 필름(1a)과, 상기 드라이 필름(2a)을 한꺼번에 분리하여 제거한 후 상기 전극 패턴(12)을 상기 그린 세라믹 시트(5)의 일면에 직접 전사한다. 상기 전사하는 과정(S420)은 자동화가 가능하여 작업 시간이 단축된다.More specifically, the vacuum suction pattern is positioned in the mold to correspond to the electrode pattern 12, and then the electrode pattern 12 is absorbed by the vacuum suction pattern to exclude the electrode pattern 12. ) And the dry film 2a are separated and removed at once, and then the electrode pattern 12 is directly transferred to one surface of the green ceramic sheet 5. The transfer process (S420) can be automated to shorten the working time.
또한, 상기 전사하는 단계(S400)는, 상기 점착 필름(1a)과 상기 그린 세라믹 시트(5)에 겹쳐지게 배치하고 상기 전극 패턴(12)이 형성된 부분에만 열을 가해 압착한 후 상기 점착 필름(1a)과 상기 드라이 필름(2a)을 상기 그린 세라믹 시트(5)에서 분리하여 상기 전극 패턴(12)만 상기 그린 세라믹 시트(5)의 전사면에 부착시킴으로써 전사를 완료한다. In addition, in the transferring step (S400), the adhesive film 1a and the green ceramic sheet 5 are disposed to overlap each other, and the heat is applied only to a portion where the electrode pattern 12 is formed, and then the pressure-sensitive adhesive film ( The transfer is completed by separating 1a) and the dry film 2a from the green ceramic sheet 5 and attaching only the electrode pattern 12 to the transfer surface of the green ceramic sheet 5.
상기 전사하는 단계(S400)는, 상기 점착 필름(1a)에서 상기 드라이 필름(2a)을 제거하지 않고 이루어진다. The transferring step S400 is performed without removing the dry film 2a from the adhesive film 1a.
즉, 상기 드라이 필름(2a)과, 상기 전극 패턴(12)이 동시에 상기 그린 세라믹 시트(5)와 맞붙게 되고, 상기 전극 패턴(12)이 형성된 부분만 열을 가해 압착하여 상기 전극 패턴(12)만 상기 그린 세라믹 시트(5)에 전사되도록 한다. 상기 전극 패턴(12)만 상기 그린 세라믹 시트(5)에 전사된 상태에서 상기 점착 필름(1a)을 분리하면 상기 점착 필름(1a)과 함께 상기 드라이 필름(2a)도 함께 분리되어 제거된다.That is, the dry film 2a and the electrode pattern 12 are bonded to the green ceramic sheet 5 at the same time, and only the portion where the electrode pattern 12 is formed is pressed to apply heat to the electrode pattern 12. Only to be transferred to the green ceramic sheet (5). When only the electrode pattern 12 is transferred to the green ceramic sheet 5, when the adhesive film 1a is separated, the dry film 2a together with the adhesive film 1a is also separated and removed.
따라서, 별도의 전사 과정이 필요없어 작업 시간이 크게 단축되고, 전사 작업 시 상기 전극 패턴(12)의 위치가 틀어지는 불량도 방지된다. Therefore, a separate transfer process is not required, and thus a work time is greatly shortened, and a defect in which the position of the electrode pattern 12 is shifted during the transfer operation is also prevented.
상기 그린 세라믹 시트(5)에는 적층된 세라믹 시트에 형성된 각 전극 패턴(12)을 전기적으로 연결하는 비아홀(미도시)이 형성된다. 상기 비아홀은 기설계된 세라믹 소자에서 적층된 세라믹 시트의 전극 패턴을 전기적으로 연결하기 위해 기설계된 위치에 형성되며, 구멍 내에 전극 패턴(12)을 전기적으로 연결하는 도전부가 구비된 것이며, 구멍 내에 도전부가 충진되어 형성된 것이 바람직하다. 상기 전사하는 단계(S400)는 상기 그린 세라믹 시트(5)에 형성된 비아홀의 위치에 맞게 상기 전극 패턴(12)을 전사한다. The green ceramic sheet 5 is formed with a via hole (not shown) for electrically connecting each electrode pattern 12 formed on the laminated ceramic sheet. The via hole is formed at a predesigned position to electrically connect the electrode patterns of the ceramic sheets stacked in the predesigned ceramic element, and has a conductive part electrically connecting the electrode pattern 12 to the hole. It is preferred that it is filled and formed. In the transferring step (S400), the electrode pattern 12 is transferred to match the position of the via hole formed in the green ceramic sheet 5.
상기 그린 세라믹 시트(5)는 소성 전으로 전사면의 반대측 면에 보호 필름(6)이 부착되어 있다. 상기 보호 필름(6)은 상기 그린 세라믹 시트(5)에서 전극 패턴(12)이 전사되는 전사면의 반대면에 본딩시트를 매개로 부착되고, 그린 세라믹 시트(5)의 적층 소성 시 제거된다. The green ceramic sheet 5 has a protective film 6 attached to the opposite side of the transfer surface before firing. The protective film 6 is attached to the opposite surface of the transfer surface to which the electrode pattern 12 is transferred from the green ceramic sheet 5 via a bonding sheet, and is removed when the green ceramic sheet 5 is laminated and fired.
상기 보호 필름(6)은 PET 필름이 사용될 수 있다.The protective film 6 may be a PET film.
본딩 시트는 열경화성 접착제이며 양면 테이프에 비해 전극 패턴(12)이 전사된 그린 세라믹 시트(5)의 위치 배열을 정확하게 하기 용이하다. The bonding sheet is a thermosetting adhesive, and compared with the double-sided tape, it is easy to accurately position the green ceramic sheet 5 to which the electrode pattern 12 is transferred.
도 2G를 참고하면, 상기 그린 세라믹 시트(5)를 적층하는 단계(S500)는, 전극 패턴(12)이 전사된 그린 세라믹 시트(5)를 적층시키는 것으로, 적층되어 하나의 세라믹 소자를 형성한다. 즉, 상기 적층되는 각 그린 세라믹 시트(5)에 형성된 각 전극 패턴(12)은 비아홀을 통해 전기적으로 연결되어 세라믹 소자의 회로를 형성한다. Referring to FIG. 2G, in the stacking of the green ceramic sheet 5 (S500), the green ceramic sheet 5 on which the electrode patterns 12 are transferred is stacked, thereby forming one ceramic element. . That is, each electrode pattern 12 formed in each of the stacked green ceramic sheets 5 is electrically connected through a via hole to form a circuit of a ceramic device.
상기 그린 세라믹 시트(5)를 다층으로 적층된 세라믹 시트를 소성하는 단계(S600)를 포함한다.The method may include firing a ceramic sheet stacked in multiple layers on the green ceramic sheet 5 (S600).
상기 그린 세라믹 시트(5)를 적층하는 단계(S500)는, 받침 그린 세라믹 시트(7)로 적층 시 노출되는 전극 패턴(12)을 덮는 과정을 포함한다.The stacking of the green ceramic sheet 5 (S500) includes a process of covering the electrode pattern 12 exposed when the green ceramic sheet 7 is laminated with the supporting green ceramic sheet 7.
상기 받침 그린 세라믹 시트(7)는, 적층되는 그린 세라믹 시트(5)의 일면과 맞붙는 면의 반대면에 보호 필름(6)이 부착되며, 상기 보호 필름(6)은 소성 시 제거된다.The supporting green ceramic sheet 7 has a protective film 6 attached to a surface opposite to a surface of the green ceramic sheet 5 to be laminated, and the protective film 6 is removed during firing.
상기 그린 세라믹 시트(5)를 적층하는 단계(S500)는, 받침 그린 세라믹 시트(7)의 상에 상기 전극 패턴(12)이 형성된 면이 향하도록 상기 그린 세라믹 시트(5)를 적층한다.In the stacking of the green ceramic sheet 5 (S500), the green ceramic sheet 5 is laminated so that the surface on which the electrode pattern 12 is formed is facing on the supporting green ceramic sheet 7.
즉, 상기 받침 그린 세라믹 시트(7)를 최하단에 배치하고, 그 위에 상기 그린 세라믹 시트(5)를 전극 패턴(12)이 아래로 향하도록 차례로 적층하는 것이다. 이때, 최하단의 받침 그린 세라믹 시트(7)의 하부에는 보호 필름(6)이 부착된 상태이고, 최상단의 그린 세라믹 시트(5)의 상부에는 보호 필름(6)이 부착된 상태이다. That is, the supporting green ceramic sheet 7 is disposed at the lowermost end, and the green ceramic sheet 5 is laminated thereon in order so that the electrode pattern 12 faces downward. At this time, the protective film 6 is attached to the lower portion of the lowermost base green ceramic sheet 7, and the protective film 6 is attached to the upper portion of the uppermost green ceramic sheet 5.
또 다른 예로, 상기 그린 세라믹 시트(5)를 전극 패턴(12)이 형성된 면이 상부를 향하도록 차례로 적층한 후 최상단 그린 세라믹 시트(5)의 상부에 상기 받침 그린 세라믹 시트(7) 적층할 수도 있다. 이 경우 상기 받침 그린 세라믹 시트(7)의 상부에는 보호 필름(6)이 부착된 상태이고, 최하단의 그린 세라믹 시트(5)의 하부에는 보호 필름(6)이 부착된 상태이다. As another example, the green ceramic sheet 5 may be sequentially stacked so that the surface on which the electrode pattern 12 is formed faces upward, and then the support green ceramic sheet 7 may be stacked on the uppermost green ceramic sheet 5. have. In this case, the protective film 6 is attached to the upper portion of the support green ceramic sheet 7, and the protective film 6 is attached to the lower portion of the lowermost green ceramic sheet 5.
상기 그린 세라믹 시트(5)를 적층하는 단계(S500)는, 적층된 복수의 그린 세라믹 시트(5)를 가압하여 그린 세라믹 시트(5) 내부로 전극 패턴(12)을 매입하는 과정을 더 포함한다. The stacking of the green ceramic sheet 5 (S500) may further include pressing the stacked plurality of green ceramic sheets 5 to embed the electrode patterns 12 into the green ceramic sheet 5. .
상기 전극 패턴(12)을 매입하는 과정은 상기한 바와 같이 상, 하부에 적층된 그린 세라믹 시트(5)의 최상면 및 최하면에 보호 필름(6)이 부착된 상태에서 적층된 그린 세라믹 시트(5)를 상, 하에서 가압하여 그린 세라믹 시트(5)의 내부로 전극 패턴(12)을 매입시키는 것이다. The process of embedding the electrode pattern 12 may be performed by stacking the green ceramic sheet 5 in a state in which the protective film 6 is attached to the top and bottom surfaces of the green ceramic sheet 5 stacked above and below. ) Is pressed up and down to embed the electrode pattern 12 into the green ceramic sheet 5.
적층된 각 그린 세라믹 시트(5)의 전극 패턴(12)은 바로 위에 배치거나, 바로 아래에 배치된 다른 그린 세라믹 시트(5)의 내부로 매입되는 것이다.The electrode pattern 12 of each of the stacked green ceramic sheets 5 is disposed directly above or embedded in another green ceramic sheet 5 disposed directly below.
상기 전극 패턴(12)은 상기한 바와 같이 다수의 그린 세라믹 시트(5)가 적층된 상태에서 가압되는 작용으로 각 층의 그린 세라믹 시트(5) 내부로 삽입된다.As described above, the electrode pattern 12 is inserted into the green ceramic sheet 5 of each layer by pressing in a state where a plurality of green ceramic sheets 5 are stacked.
한편, 상기 소성하는 단계(S600)는, 상기 그린 세라믹 시트(5)를 적층하는 단계(S500)로 적층된 그린 세라믹 시트(5) 적층체를 소성하는 것으로, 소성하여 하나의 세라믹 소자로 만드는 것이다. On the other hand, the step of firing (S600) is to fire the laminated green ceramic sheet (5) laminated body in the step (S500) of laminating the green ceramic sheet (5), it is to be fired into a single ceramic element .
소성은 800~900℃에서 수행한다. 낮은 소성온도는 세라믹 시트의 수축 발생을 방지하여 치수안정성 문제를 발생시키지 않는다.Firing is carried out at 800 to 900 ° C. Low firing temperatures prevent shrinkage of the ceramic sheet and do not cause dimensional stability problems.
소성 공정이 완료되면, 미세라인 패턴을 갖는 세라믹 소자가 제조된다. 미세라인 패턴은 세라믹 소자의 내부전극이 된다. 그리고, 제조된 세라믹 소자는 미세라인 패턴의 구현이 중요한 커먼 모드 필터 등에 적용이 가능하다.When the firing process is completed, a ceramic device having a fine line pattern is manufactured. The fine line pattern becomes an internal electrode of the ceramic device. In addition, the manufactured ceramic device may be applied to a common mode filter in which the implementation of the fine line pattern is important.
또한, 상술한 세라믹 소자 제조방법은 박막 공정에서 일반적으로 사용되는 Si-Wafer, Al2O3-Sub, Ferrite-wafer 등의 하드 기판 대신 플랙시블한 점착 필름(1a)을 기판으로 사용하므로 미세라인 패턴 형성을 위한 초기 설비 투자 비용 부담이 적은 장점이 있다. In addition, the above-described ceramic device manufacturing method uses a flexible adhesive film 1a as a substrate instead of a hard substrate such as Si-Wafer, Al 2 O 3 -Sub, Ferrite-wafer, and the like, which are generally used in a thin film process, and thus, fine lines. It is advantageous in that the initial facility investment cost for pattern formation is small.
도 5를 참고하면, 본 발명에 따른 세라믹 소자(10)는, 복수의 세라믹 시트층이 하나의 몸체로 소성된 세라믹 소자 몸체부(11); 및 Referring to FIG. 5, the ceramic device 10 according to the present invention may include a ceramic device body part 11 in which a plurality of ceramic sheet layers are fired into one body; And
상기 세라믹 소자 몸체부(11) 내부에 복수의 층으로 이격되게 구비되고 서로 전기적으로 연결되어 회로를 형성하는 복수의 전극 패턴(12)을 포함한다.The ceramic element body 11 includes a plurality of electrode patterns 12 provided in a plurality of layers spaced apart from each other and electrically connected to each other to form a circuit.
상기 세라믹 소자 몸체부(11)는 저온 동시 소성 세라믹(LTCC ; Low Temperature Co-fire Ceramics)인 것이 바람직하며, 이에 대한 실시 예는 상기에서 설명한 바 중복 기재로 생략한다. The ceramic element body 11 is preferably low temperature co-fired ceramics (LTCC), and an embodiment thereof is omitted as a redundant description as described above.
또한, 상기 전극 패턴(12)은 Ag 페이스트를 소성한 소결체인 것을 일 예로 하며, 이에 대한 실시 예는 상기에서 설명한 바 중복 기재로 생략한다. In addition, the electrode pattern 12 is an example of a sintered body sintered Ag paste, an embodiment thereof is omitted as a duplicate description as described above.
또한, 복수의 상기 전극 패턴(12) 중 적어도 어느 한 전극 패턴(12)은, 상기 세라믹 소자 몸체부(11)의 측면에 단부가 노출되는 측면 단자부(12a)를 구비한다. In addition, at least one of the electrode patterns 12 of the plurality of electrode patterns 12 includes a side terminal portion 12a having an end portion exposed to the side surface of the ceramic element body 11.
상기 측면 단자부(12a)는 복수의 상기 전극 패턴(12)으로 형성되는 회로를 외부 회로와 연결하기 위해 상기 세라믹 소자 몸체부(11)의 측면에 노출된다. The side terminal portion 12a is exposed to the side surface of the ceramic element body 11 to connect a circuit formed of the plurality of electrode patterns 12 with an external circuit.
상기 측면 단자부(12a)는 외부단자(미도시)와 전기적으로 연결되기 위한 단자이고, 상기 외부 단자는 본 발명에 따른 세라믹 소자와 전기적으로 연결되는 다른 인쇄회로기판 또는 배터리 등에 연결되는 것으로, 상기 회로와 전기적으로 연결하기 위한 단자이다.The side terminal portion 12a is a terminal for electrically connecting to an external terminal (not shown), and the external terminal is connected to another printed circuit board or a battery electrically connected to the ceramic device according to the present invention. Terminal for electrical connection with
상기 측면 단자부(12a)는 적층되는 상기 그린 세라믹 시트(5) 중 적어도 어느 한 그린 세라믹 시트(5)에 상기 전극 패턴(12)과 함께 형성된다.The side terminal portion 12a is formed together with the electrode pattern 12 on at least one of the green ceramic sheets 5 of the green ceramic sheets 5 to be stacked.
상기 측면 단자부(12a)는 상기 회로를 외부 회로와 전기적으로 연결하기 위해 두 개의 단자로 이루어진다.The side terminal portion 12a is composed of two terminals for electrically connecting the circuit with an external circuit.
상기 측면 단자부(12a)가 노출됨으로써, 외부 단자와의 연결을 위한 기존의 후막 공정을 그대로 사용하여 세라믹 소자를 제조할 수 있다. By exposing the side terminal portion 12a, a ceramic device may be manufactured using a conventional thick film process for connection with an external terminal.
이하, 본 발명을 실험예를 통해 보다 상세히 설명한다. 그러나, 하기의 실험예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실험예에 의해 한정되는 것은 아님을 밝혀둔다.Hereinafter, the present invention will be described in more detail through experimental examples. However, the following experimental examples are intended to explain the present invention in more detail, and the scope of the present invention is not limited by the following experimental examples.
표 1
구분 비교예(박막 공정) 실시예(본 발명)
베이스 기판 Si-Wafer, Al2O3-Sub, Ferrite-wafer 등의 하드 기판 사용 플랙시블한 점착필름 사용
감광물질 Spin 코팅(감광물질 도포) 라미네이션(Lamination) 공정(드라이 필름 적층)
패턴 형성 에칭&스퍼터링증착&도금 음각 레지스트 패턴에 도전성 페이스트를 인쇄하여 형성
패턴 전사 없음 전사
패턴층 형성 공정 사이클 반복 패턴이 전사된 세라믹 시트 적층
전극 패턴 폭 20㎛ 이하 15.28㎛
비고 .Open/Short 불량 발생초기 투자 비용 높다.공정 안정화 시간이 많이 소요 Open/Short 불량 발생 없음.기존의 후막 공정 라인 적용 가능.초기 설비 투자 비용 적다.
Table 1
division Comparative Example (Thin Film Process) Example (Invention)
Base substrate Use of hard boards such as Si-Wafer, Al 2 O 3 -Sub, Ferrite-wafer Flexible adhesive film
Photosensitive material Spin coating (photosensitive material applied) Lamination process (dry film lamination)
Pattern formation Etching & Sputtering Deposition & Plating Formed by printing a conductive paste on an intaglio resist pattern
Pattern warrior none Warrior
Pattern layer formation Repeat process cycle Laminated ceramic sheet with pattern transferred
Electrode pattern width 20㎛ or less 15.28㎛
Remarks High initial investment cost due to open / short defects No open / short defects. Existing thick film processing line can be applied.
상기 표1은 기존의 박막 공정으로 미세한 전극 패턴을 형성하여 세라믹 소자를 형성하는 비교예와, 본 발명에 따른 세라믹 소자 제조 방법으로 세라믹 소자를 제조한 실시 예를 비교하고 있다.Table 1 compares a comparative example of forming a ceramic electrode by forming a fine electrode pattern using a conventional thin film process, and an embodiment of manufacturing a ceramic device using the ceramic device manufacturing method according to the present invention.
본 발명에 따른 실시예의 경우, 도 3C에서 확인되는 바와 같이, 전극 패턴 폭도 15.8㎛로 정확하게 구현할 수 있고, 이로써 선폭이 25㎛ 이하인 미세라인 패턴을 용이하게 구현이 가능함을 알 수 있다.In the case of the embodiment according to the present invention, as can be seen in Figure 3C, the electrode pattern width can be accurately implemented to 15.8㎛, it can be seen that it is possible to easily implement a fine line pattern having a line width of 25㎛ or less.
또한, 오픈/쇼트 불량 발생도 없음을 시험을 통해 확인하였다.In addition, it was confirmed through a test that there is no occurrence of open / short failure.
반면, 비교예인 기존의 박막 공정으로 선폭이 25㎛ 이하의 전극 패턴을 형성하는 경우 선폭이 20㎛인 전극 패턴을 형성할 수 있었으나, 초기 투자 비용이 높고 공정 안정화에 많은 시간이 소요됨을 확인하였다. 또한, 오픈/쇼트 불량이 발생하였음을 시험을 통해 확인하였다.On the other hand, in the case of forming an electrode pattern having a line width of 25 μm or less by using a conventional thin film process as a comparative example, an electrode pattern having a line width of 20 μm could be formed. In addition, it was confirmed through the test that the open / short failure occurred.
따라서, 본 발명의 방법이 현재 후막 공정 업체들이 초기 투자 비용 부담 없이 고성능의 세라믹 소자를 제조하기 위해 적용할 수 있는 효과적인 방법임을 알 수 있다.Therefore, it can be seen that the method of the present invention is an effective method that can be applied to fabricate high performance ceramic devices by the current thick film processing companies without the initial investment cost.
본 발명은, 선폭이 25㎛ 이하인 전극 패턴의 형성이 용이하며, 선폭이 25㎛ 이하인 미세 전극 패턴을 가지는 회로의 오픈(open) 및 쇼트(short) 불량이 방지되어 제품의 동작 신뢰성을 향상시킨다. According to the present invention, it is easy to form an electrode pattern having a line width of 25 μm or less, and the open and short defects of a circuit having a fine electrode pattern having a line width of 25 μm or less are prevented, thereby improving operational reliability of a product.
또한, 본 발명은 기존의 세라믹 소자 제조 라인에서 터미널 형성 과정을 그대로 이용할 수 있어 초기 설비 투자 비용이 최소화되고, 공정 안정화에 많은 시간이 소요되지 않으므로 고객 요구에 신속하게 대응할 수 있다.In addition, the present invention can use the terminal forming process as it is in the existing ceramic device manufacturing line as it minimizes the initial capital investment cost, it does not take much time to stabilize the process can quickly respond to customer requirements.
또한, 본 발명은 제조공정이 단순하여 제조 원가를 절감하고, 생산성을 향상시킨다. In addition, the present invention is a simple manufacturing process to reduce the manufacturing cost, improve the productivity.
본 발명은 상기한 실시 예에 한정되는 것이 아니라, 본 발명의 요지에 벗어나지 않는 범위에서 다양하게 변경하여 실시할 수 있으며 이는 본 발명의 구성에 포함됨을 밝혀둔다.The present invention is not limited to the above-described embodiments, and various changes can be made without departing from the gist of the present invention, which is understood to be included in the configuration of the present invention.

Claims (19)

  1. 전사용 기재에 감광층을 형성하는 단계;Forming a photosensitive layer on the transfer substrate;
    상기 감광층에 기설계된 전극패턴에 대응되는 음각의 레지스트 패턴을 형성하는 단계;Forming an intaglio resist pattern corresponding to the electrode pattern predesigned on the photosensitive layer;
    상기 레지스트 패턴의 내부에 도전성 페이스트를 도포하여 전극 패턴을 형성하는 단계; Forming an electrode pattern by applying a conductive paste to the inside of the resist pattern;
    상기 전사용 기재에 형성된 전극 패턴을 소성 전 그린 세라믹 시트에 전사하는 단계; Transferring the electrode pattern formed on the transfer substrate to the green ceramic sheet before firing;
    전극패턴이 형성된 상기 그린 세라믹 시트를 적층하는 단계; Stacking the green ceramic sheets on which electrode patterns are formed;
    복수의 층으로 적층된 그린 세라믹 시트를 소성하는 단계를 포함한 것을 특징으로 하는 세라믹 소자 제조 방법.A method of manufacturing a ceramic device comprising the step of firing a green ceramic sheet laminated in a plurality of layers.
  2. 제1항에 있어서, The method of claim 1,
    상기 전사용 기재는, 점착제가 도포되어 있는 PI 필름, PEN 필름, PET 필름, PC 필름, PSS 필름 중 하나인 것을 특징으로 하는 세라믹 소자 제조 방법.The said base material for transcription | transfer is a ceramic element manufacturing method characterized by the one of PI film, PEN film, PET film, PC film, and PSS film which the adhesive is apply | coated.
  3. 제1항에 있어서, The method of claim 1,
    상기 도전성 페이스트는 Ag 페이스트인 것을 특징으로 하는 세라믹 소자 제조 방법.And the conductive paste is an Ag paste.
  4. 제1항에 있어서,The method of claim 1,
    상기 감광층을 형성하는 단계는, 상기 전사용 기재에 드라이 필름을 점착시켜 감광층을 형성하는 것을 특징으로 하는 세라믹 소자 제조 방법.The forming of the photosensitive layer may include forming a photosensitive layer by attaching a dry film to the transfer substrate.
  5. 제1항에 있어서, The method of claim 1,
    상기 레지스트 패턴을 형성하는 단계는, Forming the resist pattern,
    상기 감광층의 표면에 마스크를 올려 놓고 노광하는 과정;Exposing the mask on the surface of the photosensitive layer;
    상기 감광층에서 기설계된 전극패턴의 형상에 대응되는 부분을 제거하여 레지스트 패턴을 형성하는 과정을 포함한 것을 특징으로 하는 세라믹 소자 제조 방법.And removing a portion of the photosensitive layer corresponding to the shape of the predesigned electrode pattern to form a resist pattern.
  6. 제5항에 있어서, The method of claim 5,
    상기 레지스트 패턴을 형성하는 과정은 현상액을 이용하여 상기 전극패턴의 형상에 대응되는 부분을 제거하며,The process of forming the resist pattern is to remove the portion corresponding to the shape of the electrode pattern using a developer,
    상기 레지스트 패턴을 형성하는 단계는, 현상액 제거를 위한 수세 과정을 더 포함하는 것을 특징으로 하는 세라믹 소자 제조 방법.The forming of the resist pattern may further include washing with water to remove the developer.
  7. 제1항에 있어서, The method of claim 1,
    상기 전극 패턴을 형성하는 단계는, Forming the electrode pattern,
    상기 도전성 페이스트를 상기 레지스트 패턴 내부에 채우고, 스크래퍼를 이용하여 상기 레지스트 패턴의 상부로 돌출된 도전성 페이스트를 제거하는 것을 특징으로 하는 세라믹 소자 제조 방법.Filling the conductive paste into the resist pattern, and removing the conductive paste protruding from the upper portion of the resist pattern using a scraper.
  8. 제1항에 있어서, The method of claim 1,
    상기 감광층을 형성하는 단계, 상기 음각의 레지스트 패턴을 형성하는 단계, 상기 전극 패턴을 형성하는 단계는 롤 투 롤 방식으로 연속적으로 이루어지도록 한 것을 특징으로 하는 세라믹 소자 제조 방법.Forming the photosensitive layer, forming the negative resist pattern, and forming the electrode pattern in a roll-to-roll manner.
  9. 제1항에 있어서, The method of claim 1,
    상기 그린 세라믹 시트는 저온 동시 소성 세라믹(LTCC ; Low Temperature Co-fire Ceramics) 시트인 것을 특징으로 하는 세라믹 소자 제조 방법. The green ceramic sheet is a low temperature co-fired ceramic (LTCC) sheet, characterized in that the ceramic device manufacturing method.
  10. 제1항에 있어서, The method of claim 1,
    상기 전사하는 단계는, The transferring step,
    상기 전사용 기재에서 상기 감광층을 제거하는 과정; 및 Removing the photosensitive layer from the transfer substrate; And
    상기 전사용 기재의 일면에 돌출된 상기 전극 패턴을 소성 전 그린 세라믹 시트로 전사하는 과정을 포함한 것을 특징으로 하는 세라믹 소자 제조 방법.And transferring the electrode pattern protruding from one surface of the transfer substrate to the green ceramic sheet before firing.
  11. 제1항에 있어서, The method of claim 1,
    상기 전사하는 단계는,The transferring step,
    상기 전극 패턴 의 형상과 대응되는 진공흡착패턴이 구비된 금형으로 상기 점착 필름에서 상기 전극 패턴을 진공 흡착하여 분리하고, 분리된 상기 전극 패턴을 상기 그린 세라믹 시트의 일면에 직접 전사하는 것을 특징으로 하는 세라믹 소자 제조 방법.The vacuum suction pattern corresponding to the shape of the electrode pattern is a mold provided with a vacuum adsorption and separation of the electrode pattern in the adhesive film, characterized in that the directly transferred to the one surface of the green ceramic sheet separated electrode pattern Ceramic device manufacturing method.
  12. 제1항에 있어서, The method of claim 1,
    상기 전사하는 단계는, 상기 점착 필름과 상기 그린 세라믹 시트에 겹쳐지게 배치하고 상기 전극 패턴이 형성된 부분에만 열을 가해 압착한 후 상기 점착 필름과 상기 드라이 필름을 상기 그린 세라믹 시트에서 분리하여 상기 전극 패턴만 상기 그린 세라믹 시트의 전사면에 전사하는 것을 특징으로 하는 세라믹 소자 제조 방법.The transferring may include arranging the adhesive film and the green ceramic sheet so as to overlap each other, applying pressure only to a portion where the electrode pattern is formed, and compressing the adhesive film and the dry film from the green ceramic sheet. Only a method of manufacturing a ceramic device, characterized in that the transfer to the transfer surface of the green ceramic sheet.
  13. 제1항에 있어서, The method of claim 1,
    상기 그린 세라믹 시트를 적층하는 단계는, 받침 그린 세라믹 시트로 적층 된 최상단 그린 세라믹 시트 또는 최하단 그린 세라믹 시트에서 노출되는 전극 패턴을 덮는 과정을 포함한 것을 특징으로 하는 세라믹 소자 제조 방법.The stacking of the green ceramic sheet may include covering an electrode pattern exposed from a top green ceramic sheet or a bottom green ceramic sheet stacked with a supporting green ceramic sheet.
  14. 제13항에 있어서, The method of claim 13,
    상기 그린 세라믹 시트를 적층하는 단계는, 적층된 복수의 그린 세라믹 시트를 가압하여 그린 세라믹 시트 내부로 전극 패턴을 매입하는 과정을 더 포함한 것을 특징으로 하는 세라믹 소자 제조 방법.The stacking of the green ceramic sheets may include pressing the plurality of stacked green ceramic sheets to embed electrode patterns into the green ceramic sheets.
  15. 제1항에 있어서, The method of claim 1,
    상기 소성하는 단계는, 800~900℃에서 소성하는 것을 특징으로 하는 세라믹 소자 제조 방법.The firing step is a ceramic device manufacturing method, characterized in that firing at 800 ~ 900 ℃.
  16. 복수의 세라믹 시트층이 하나의 몸체로 소성된 세라믹 소자 몸체부; 및 A ceramic element body portion in which a plurality of ceramic sheet layers are fired into one body; And
    상기 세라믹 소자 몸체부 내부에 복수의 층으로 이격되게 구비되고 서로 전기적으로 연결되어 회로를 형성하는 복수의 전극 패턴을 포함한 것을 특징으로 하는 세라믹 소자.And a plurality of electrode patterns provided in the ceramic element body part spaced apart in a plurality of layers and electrically connected to each other to form a circuit.
  17. 제16항에 있어서, The method of claim 16,
    상기 세라믹 소자 몸체부는 저온 동시 소성 세라믹(LTCC ; Low Temperature Co-fire Ceramics)인 것을 특징으로 하는 세라믹 소자.The ceramic element body is a ceramic element, characterized in that the low temperature co-fired ceramics (LTCC).
  18. 제16항에 있어서, The method of claim 16,
    상기 전극 패턴은 Ag 페이스트를 소성한 소결체인 것을 특징으로 하는 세라믹 소자.The electrode pattern is a ceramic element, characterized in that the sintered body sintered Ag paste.
  19. 제16항에 있어서, The method of claim 16,
    복수의 상기 전극 패턴 중 적어도 어느 한 전극 패턴은, At least one electrode pattern of the plurality of electrode patterns,
    상기 세라믹 소자 몸체부의 측면에 단부가 노출되는 측면 단자부를 구비한 것을 특징으로 하는 세라믹 소자.And a side terminal portion having an end portion exposed to a side surface of the ceramic element body portion.
PCT/KR2014/001176 2013-02-15 2014-02-13 Ceramic device manufacturing method and ceramic device WO2014126393A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0016262 2013-02-15
KR20130016262 2013-02-15
KR10-2014-0014765 2014-02-10
KR1020140014765A KR101538046B1 (en) 2013-02-15 2014-02-10 Method for manufacturing ceramic device having fine line pattern, and ceramic device having fine line pattern

Publications (1)

Publication Number Publication Date
WO2014126393A1 true WO2014126393A1 (en) 2014-08-21

Family

ID=51354342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001176 WO2014126393A1 (en) 2013-02-15 2014-02-13 Ceramic device manufacturing method and ceramic device

Country Status (1)

Country Link
WO (1) WO2014126393A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027725A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Manufacturing method and device of multilayer ceramic electronic part
JP2000106316A (en) * 1998-09-29 2000-04-11 Matsushita Electric Ind Co Ltd Manufacture of laminated ceramic electronic component
US20020170660A1 (en) * 2000-06-07 2002-11-21 Akira Hashimoto Method for producing ceramic substrate
WO2005052962A1 (en) * 2003-11-28 2005-06-09 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and its manufacturing method
JP2007123678A (en) * 2005-10-31 2007-05-17 Matsushita Electric Ind Co Ltd Ceramic laminate electronic component and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027725A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Manufacturing method and device of multilayer ceramic electronic part
JP2000106316A (en) * 1998-09-29 2000-04-11 Matsushita Electric Ind Co Ltd Manufacture of laminated ceramic electronic component
US20020170660A1 (en) * 2000-06-07 2002-11-21 Akira Hashimoto Method for producing ceramic substrate
WO2005052962A1 (en) * 2003-11-28 2005-06-09 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and its manufacturing method
JP2007123678A (en) * 2005-10-31 2007-05-17 Matsushita Electric Ind Co Ltd Ceramic laminate electronic component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100619347B1 (en) Method for manufacturing Rigid-flexible Printed Circuit Board
WO2012150817A2 (en) Method for manufacturing printed circuit board
WO2015072775A1 (en) Flexible printed circuit board and method for manufacturing same
WO2012053728A1 (en) Printed circuit board and method for manufacturing the same
WO2012005524A9 (en) The printed circuit board and the method for manufacturing the same
WO2012091373A2 (en) Method for manufacturing printed circuit board
WO2012169866A2 (en) Printed circuit board and method for manufacturing the same
WO2018101503A1 (en) Method for manufacturing printed circuit board and printed circuit board manufactured thereby
WO2013137668A1 (en) The printed circuit board and the method for manufacturing the same
WO2012087072A2 (en) Printed circuit board and method for manufacturing same
WO2014069734A1 (en) Printed circuit board
WO2016013904A1 (en) Printed circuit board
WO2013133560A1 (en) Printed circuit board and method of manufacturing the same
WO2013085229A1 (en) Printed circuit board and method of manufacturing the same
WO2024085554A1 (en) Plating apparatus for manufacturing integrated circuit chip, plating method for manufacturing integrated circuit chip, and integrated circuit chip manufacturing method using same
CN111712057B (en) PCB inner layer processing method
WO2014126393A1 (en) Ceramic device manufacturing method and ceramic device
KR100896601B1 (en) Method for manufacturing non-shrinkage ceramic substrate and non-shrinkage ceramic substrate using the same
WO2013089416A1 (en) Printed circuit board and method of manufacturing the same
WO2015147438A1 (en) Semiconductor test pad having metal thin plates laminated using adhesive and manufacturing method thereof
WO2022045467A1 (en) Hybrid film-type heater manufacturing method and hybrid film-type heater
KR101538046B1 (en) Method for manufacturing ceramic device having fine line pattern, and ceramic device having fine line pattern
WO2021256790A1 (en) Method for manufacturing flexible printed circuit board
EP2820596A1 (en) Semiconductor memory card, printed circuit board for memory card and method of fabricating the same
WO2012074345A2 (en) Flexible printed circuit board and a production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751816

Country of ref document: EP

Kind code of ref document: A1