WO2014126388A1 - 자외선 차단 및 경도 및 내마모성이 향상된 폴리카보네이트 - Google Patents

자외선 차단 및 경도 및 내마모성이 향상된 폴리카보네이트 Download PDF

Info

Publication number
WO2014126388A1
WO2014126388A1 PCT/KR2014/001161 KR2014001161W WO2014126388A1 WO 2014126388 A1 WO2014126388 A1 WO 2014126388A1 KR 2014001161 W KR2014001161 W KR 2014001161W WO 2014126388 A1 WO2014126388 A1 WO 2014126388A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
aluminum
nitride film
polycarbonate
sputtering
Prior art date
Application number
PCT/KR2014/001161
Other languages
English (en)
French (fr)
Inventor
김영우
김대철
유석재
한승희
문선우
김성민
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130014911A external-priority patent/KR20140102345A/ko
Priority claimed from KR20130109509A external-priority patent/KR20150030366A/ko
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2014126388A1 publication Critical patent/WO2014126388A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides

Definitions

  • the present invention relates to an aluminum-silicon-nitride deposition method and apparatus for improving the surface hardness and wear resistance of polycarbonate materials, and more particularly, aluminum and silicon sputtering in a magnetron sputtering deposition source that is used as a deposition source for thin film deposition Replacing the vehicle glass by mounting a target and simultaneously injecting argon, which is an inert gas, and nitrogen gas, which is a reactive gas, into the vacuum chamber and depositing an aluminum-silicon-nitride film, which is a high hardness transparent film, on the surface of the polycarbonate by reactive sputtering
  • the present invention relates to an aluminum-silicon nitride film deposition method and apparatus for improving the surface hardness and wear resistance of a polycarbonate material.
  • Polycarbonate has a high impact resistance and light weight can be used as a replacement for automotive glass, but low hardness, low wear resistance, deterioration and discoloration due to ultraviolet rays are a problem. Therefore, in order to improve hardness and wear resistance, deterioration due to ultraviolet rays and discoloration, it is necessary to form a transparent hard coating layer on the surface thereof.
  • a technique of forming a coating layer by attaching an adhesive sheet to the surface of the polycarbonate a technique of forming a coating layer made of an organic material on the surface of the polycarbonate using a coating method such as dip coating is widely used. .
  • the coating layer manufactured by the organic coating method has a limitation in improving hardness, wear resistance, and the like, a technique of forming an inorganic coating layer by deposition methods such as PVD and PECVD has recently been studied.
  • Patent Document 1 US Patent, 2007026235, Glazing system for behicle tops and windows
  • This technology is used to form a film for UV protection after the coating of other materials through a wet process, and then to deposit a wear resistant hard coating film by forming a silicon oxide film or aluminum oxide film of ⁇ 5 ⁇ m thickness on the surface by PECVD method have.
  • Patent Document 2 US Pat. No. 2008083186, Polycarbonate glazing system and method for making the same
  • this coating method is difficult to secure economic feasibility because many processes are required for the multilayer structure.
  • Non-Patent Document 1 Thin Solid Films 502 (2006) 270-274, Hard coatings by plasma CVD on polycarbonate for automotive and optical applications).
  • Patent Document 0001 Republic of Korea Patent Publication No. 10-0337483 (2002.05.08)
  • the present invention is designed to complement the low hardness and weak wear resistance of the polycarbonate material, polycarbonate material by depositing a multi-functional, high hardness transparent three-dimensional thin film of aluminum-silicon nitride film on the surface of the polycarbonate material SUMMARY OF THE INVENTION
  • An object of the present invention is to provide an aluminum-silicon-nitride film deposition method and apparatus for improving the surface hardness and wear resistance of a polycarbonate material which can increase the surface hardness and improve the wear resistance.
  • Aluminum-silicon-nitride film deposition method for improving the surface hardness and wear resistance of the polycarbonate material according to the present invention for achieving the above object (a) a conductive sample mount located inside the vacuum chamber for thin film deposition using magnetron sputtering Mounting a silicon wafer or polycarbonate substrate as a sample on the sample; (b) evacuating the vacuum in the vacuum chamber to a high vacuum region with a high vacuum turbopump and a low vacuum pump to assist the turbopump, and (c) magnetron deposition.
  • argon (Ar) which is an inert gas
  • nitrogen (N2) which is a reactive gas
  • RF power is applied to the RF antenna inside the vacuum chamber to form a plasma of the gas introduced in step (c), and (e) after the plasma formation, to a magnetron sputtering deposition source equipped with an aluminum metal target and a silicon target.
  • a pulsed DC power by a direct current or pulsed DC power supply to generate a plasma for thin film deposition.
  • Aluminum-silicon-nitride film deposition apparatus for improving the surface hardness and wear resistance of the polycarbonate material according to the present invention for achieving the above object is a vacuum chamber for thin film deposition using magnetron sputtering, aluminum mounted on the deposition source of magnetron sputtering Pulsed DC power supply for applying DC or pulsed DC power to the target and silicon sputtering target, plasma generated by the sputtering target mounted on the deposition source, RF antenna for entering gas into the vacuum chamber, and inside the vacuum chamber Conductive sample mount for mounting the sample deposited in the, RF power supply for supplying power to the RF antenna, high-vacuum turbopump for maintaining the high vacuum inside the vacuum chamber, vacuum gauge for measuring the degree of vacuum inside the vacuum chamber, And oils of argon (Ar) and nitrogen (N 2) gases used for plasma generation It characterized in that it comprises a gas flow rate adjusting unit for adjusting the amount.
  • Pulsed DC power supply for applying DC or pulsed DC power to the target and silicon s
  • the present inventors have recognized the above problems, and through the present invention, to provide a multi-functional thin film deposition technology for implementing a high hardness, wear resistance, UV protection properties with a double thin film.
  • the present invention is to deposit a hydrogenated silicon nitride film for blocking UV rays on the surface of the polycarbonate, for the purpose of compensating the polycarbonate material is low in hardness, high wear, deterioration and discoloration by ultraviolet light,
  • the present invention relates to a thin film deposition method and apparatus for depositing a high hardness transparent aluminum-silicon-nitride film to increase hardness and reduce wear.
  • the present invention the hydrogenated silicon nitride (SiN: H) deposited on one side or both sides in order to improve the high hardness, wear resistance and UV protection characteristics; And an aluminum-silicon nitride film deposited on the hydrogenated silicon nitride film.
  • the hydrogenated silicon nitride film improves UV blocking properties, and the aluminum-silicon nitride film improves hardness and wear resistance.
  • the hydrogenated silicon nitride film is formed by a reactive sputtering method by introducing an inert gas, nitrogen, and hydrogen in a plasma reactive magnetron sputtering thin film deposition apparatus including a silicon sputtering target.
  • the aluminum silicon nitride film is formed by a reactive sputtering method by introducing an inert gas and nitrogen in a plasma reactive magnetron sputtering thin film deposition apparatus including a silicon sputtering target and an aluminum sputtering target.
  • the pressure inside the deposition apparatus is characterized in that 0.5 mTorr to 20 mTorr.
  • the inert gas is characterized in that the argon.
  • the present invention provides a method of depositing nitride on a polycarbonate surface to improve high hardness, abrasion resistance and sun protection properties.
  • the method includes the steps of: mounting a polycarbonate substrate having a polycarbonate substrate or a silicon oxide film formed on a plasma reactive magnetron sputtering thin film deposition apparatus; Depositing a silicon hydride nitride film on the polycarbonate substrate by sputtering from a silicon sputtering target; And depositing an aluminum silicon nitride film on the hydrogenated silicon nitride film from the silicon sputtering target and the aluminum sputtering target.
  • the hydrogenated silicon nitride film improves UV blocking properties, and the aluminum-silicon nitride film improves hardness and wear resistance.
  • the hydrogenated silicon nitride film deposition is characterized by a reactive sputtering method by introducing an inert gas, nitrogen and hydrogen into the deposition apparatus.
  • the aluminum silicon nitride film deposition is characterized by the reactive sputtering method by introducing an inert gas and nitrogen in the plasma reactive magnetron sputtering thin film deposition apparatus including a silicon sputtering target and an aluminum sputtering target.
  • the pressure inside the deposition apparatus is characterized in that 0.5 mTorr to 20 mTorr.
  • the inert gas is characterized in that the argon.
  • Aluminum-silicon nitride film deposition method and apparatus for improving the surface hardness and wear resistance of the polycarbonate material according to the present invention is a multi-functional high hardness transparent aluminum-silicon-nitride film deposited by a reactive magnetron sputter deposition method on the surface of the polycarbonate material Thereby, there exists an effect which improves surface hardness and abrasion resistance.
  • the aluminum-silicon-nitride film deposition method for improving the surface hardness and wear resistance of the polycarbonate material according to the present invention and the polycarbonate material by the apparatus can be used as a windshield of a vehicle, and also has a light skylight, It can be used in various fields such as skylights for buildings, living rooms, factories, safety glass, roofs and windows of public facilities, bulletproof and soundproof walls, public telephone boxes, indoor partitions, indoor and outdoor sign boards.
  • polycarbonate by depositing a hydrogenated silicon nitride film on the surface of the polycarbonate substrate can be obtained the effect of improving the UV protection properties, and by depositing a high hardness transparent aluminum-silicon-nitride film thereon to improve the hardness and wear resistance You can get the effect.
  • polycarbonate as a vehicle's windshield, and also includes light skylights, skylights for buildings and living rooms, factories, safety glass, roofs and windows of public facilities, soundproof walls, public telephone boxes, and interior partitions. It can be used in various fields such as indoor and outdoor sign boards.
  • FIG. 1 is a block diagram of an aluminum-silicon-nitride film deposition apparatus for improving the surface hardness and wear resistance of the polycarbonate material according to the present invention
  • Figure 2 is an aluminum nitride film, a seal deposited on the silicon wafer of Example 1 of the present invention
  • Figure 3 (a) is also a wear test result of the sample of the aluminum-silicon nitride film deposited on the polycarbonate substrate material of Example 2 of the present invention
  • FIG. 5 is a flowchart illustrating a method of depositing an aluminum-silicon nitride film for improving surface hardness and wear resistance of a polycarbonate material according to the present invention.
  • FIG. 6 illustrates a plasma reactive magnetron sputtering thin film deposition apparatus for the deposition of the aluminum-silicon-nitride film and the hydrogenated silicon nitride film of the present invention.
  • Example 7 is a hardness measurement result of the sample deposited with a hydrogenated silicon nitride film on the silicon wafer of Example 4 of the present invention, the hardness measurement results of the sample deposited with an aluminum-silicon nitride film on the silicon wafer of Example 5 and Example 6
  • the hydrogenated silicon nitride film is deposited on the silicon wafer of, and the hardness measurement results of the sample on which the aluminum-silicon-nitride film is deposited are shown.
  • Example 8 is a light transmittance measurement result of a sample deposited with a hydrogenated silicon nitride film on the Eagle 2000 glass substrate of Example 4 of the present invention, the light transmittance of a sample deposited aluminum-silicon-nitride film on the Eagle 2000 glass substrate of Example 5
  • the measurement results and the light transmittance measurement results of the sample deposited with the hydrogenated silicon nitride film and the aluminum-silicon nitride film deposited on the Eagle 2000 glass substrate of Example 6 are shown.
  • Figure 9a is a result of measuring the light transmittance before and after the taber abrasion test of the polycarbonate substrate
  • Figure 9b is before and after the taber wear test of the sample deposited with a hydrogenated silicon nitride film on the polycarbonate substrate and deposited on the silicon-silicon nitride film It is the result of the light transmittance measurement later.
  • Aluminum-silicon-nitride deposition apparatus for improving the surface hardness and wear resistance of the polycarbonate material according to the present invention is a vacuum chamber (1), pulsed DC power supply (2), sputtering target (3), plasma (4), RF antenna (5), sample (6), sample mounting table (7), matching box (8), RF power supply (9), gas used (10), gas flow rate control unit (11), vacuum gauge (12) Common turbo pump 13 and low vacuum pump 14 are included.
  • the vacuum chamber (1) is a vacuum chamber for thin film deposition using magnetron sputtering
  • the pulsed DC power supply (2) is a direct current or to the aluminum and silicon sputtering target (3) mounted on the magnetron sputtering deposition source It is a power supply device for applying pulsed DC power.
  • the plasma 4 represents a plasma generated by the sputtering target 3 mounted on the magnetron deposition source, and the RF antenna 5 is a radio frequency (RF) for plasmalizing the gas introduced into the vacuum chamber. ) Antenna.
  • RF radio frequency
  • the sample 6 represents a sample mounted on the conductive sample holder 7, and the matching box 8 is an RF power matching system generated by the RF power supply 9.
  • the gas flow rate adjusting unit 12 is a gas flow rate adjusting device for controlling the flow rate of the use gas 10 used for plasma generation.
  • the vacuum gauge 12 is a vacuum gauge for measuring the degree of vacuum
  • the high vacuum turbo pump 13 is a pump for maintaining a high vacuum of the vacuum chamber 1
  • the low vacuum pump 14 is a high vacuum pump It is a pump to help the operation.
  • a method of plasma magnetron aluminum-silicon-nitride film deposition by an aluminum-silicon-nitride film deposition apparatus for improving surface hardness and wear resistance of a polycarbonate material including the above-described configuration will be described with reference to FIG. 5.
  • FIG. 5 is a flowchart of a method of plasma magnetron aluminum-silicon-nitride film deposition according to the present invention.
  • argon (Ar) which is an inert gas
  • nitrogen (N2) which is a reactive gas
  • the pressure inside the vacuum chamber 1 it is preferable to adjust the pressure inside the vacuum chamber 1 to a pressure of 0.5 mTorr to 30 mTorr.
  • the flow rate ratio of the argon and nitrogen gas is preferably drawn to be about 10: 1 ⁇ 1: 1.
  • the nitride film may be deposited untransparently, and in the case of 1: 1 or more, the nitride speed may be faster than the sputtering speed of the silicon and aluminum sputtering target 3 so that the deposition rate may be lowered.
  • step S30 when the pressure inside the vacuum chamber 1 is stabilized, RF power is applied to the RF antenna 5 inside the vacuum chamber 1 to form a plasma of the introduced gas. Perform (S40).
  • the power applied in step S40 is preferably a value of 0 to 300 W, more preferably 50 W of power.
  • the nitride film may not be formed well, and the film may be opaquely raised. If the RF power is too high, the temperature of the sample may increase, causing cracks in the deposited thin film. It can be weakened to form a transparent, crack-free film.
  • generating plasma for thin film deposition by applying pulsed direct current power by a direct current or pulsed direct current power supply device 2 to a magnetron sputtering deposition source equipped with an aluminum metal target and a silicon target. Perform (S50).
  • Direct current or pulsed direct current power can be deposited with a voltage of -200 to -1000 V and a current value of 0 to 1.6 A. In this manner, the composite target or the two targets are simultaneously sputtered (co-sputtering) to deposit the ternary nitride film.
  • the average power density of the direct current or pulsed direct current used in the thin film deposition process preferably has a value of 1 W / cm 2 to 20 W / cm 2 .
  • step S10 the silicon wafer is mounted on the sample holder 7 in the vacuum chamber according to the method of the present invention, and in step S20, after evacuating the inside of the vacuum chamber to 10 -6 Torr, In step S30, 24 sccm of argon gas and 6 sccm of nitrogen gas are introduced to adjust the pressure of the vacuum chamber to 10 mTorr, and in step S40, 200 W power is supplied to the RF antenna to form a plasma inside the vacuum chamber. It was made.
  • the magnetron sputtering deposition source equipped with the silicon target in step S50 is supplied with pulsed DC power of -550 V, 0.064 A, pulse width 30 ⁇ s, and pulse frequency 600 Hz, and the magnetron sputtering deposition equipped with an aluminum metal target.
  • a circle was applied with a pulse power of ⁇ 311 V, 1.40 A, and a 40% occupancy rate and deposited for 90 minutes to form a 2800 kW aluminum-silicon-nitride film.
  • the aluminum nitride film was applied to the silicon sputtering target and the silicon nitride film was deposited on the silicon wafer with the same thickness, respectively.
  • step S10 a polycarbonate substrate material on which a SiO 2 film having a thickness of ⁇ 5 ⁇ m is deposited is mounted on a sample mounting table in the vacuum chamber, and after evacuating the inside of the vacuum chamber to 10 ⁇ 6 Torr in step S20, In step S30, 24 sccm of argon (Ar) gas and 3 sccm of nitrogen (N 2 ) gas are simultaneously introduced to adjust the process pressure to 10 mTorr, and in step S40, 50 W RF power is applied to the RF antenna. Was supplied to form a plasma inside the vacuum chamber.
  • Ar argon
  • N 2 nitrogen
  • the pulsed direct current power of -450 V, 0.26 A, and 80% occupancy of the magnetron sputtering deposition source equipped with the silicon target in the 'S50' step is -452 V, 1.50 A of the magnetron sputtering deposition source equipped with the aluminum metal target.
  • a pulsed direct current power of 20% occupancy was applied to deposit an aluminum-silicon nitride film for 45 minutes.
  • a pin-on-disk wear test was performed using a ruby ball having a diameter of 3 mm at a load of 15 gf.
  • the rotational speed of the sample was 100 rpm. After 1000 revolutions, the worn surface was observed using an alpha-step profilometer and an optical microscope.
  • step 'S10' five 0.5 mm thick glass substrates (Eagle 2000) having a transparent shape in a vacuum chamber are placed in a line between the silicon target mounted on the left side and the aluminum target mounted on the right side, respectively.
  • step S20 After evacuating the inside of the vacuum chamber to 10 -6 Torr in the step S20, 24 sccm of argon gas and 5 sccm of nitrogen (N 2 ) gas are introduced to 10 mTorr in the step S30.
  • the RF power of 200 W was supplied to the RF antenna in step S40 to form a plasma inside the vacuum chamber.
  • the magnetron sputtering deposition source equipped with the silicon target is pulsed power of -780 V, 0.315 A, pulse width 100 ⁇ s, frequency 400 Hz, and the magnetron sputtering deposition source equipped with the aluminum metal target.
  • An aluminum-silicon-nitride film was deposited for 60 minutes by applying pulsed direct current power of -410 V, 1.10 A, 40% occupancy.
  • the thickness of the fabricated aluminum-silicon-nitride film was measured as (a) 4850 ⁇ , (b) 5450 ⁇ , (c) 5650 ⁇ , (d) 6100 ⁇ and (e) 6700 ⁇ . Were measured as (a) 55:45, (b) 58:42, (c) 67:33, (d) 74:26 and (e) 83:17.
  • the deposited aluminum-silicon-nitride film samples were measured for light transmittance using a UV-VIS measuring apparatus, and as shown in FIG. 4, all samples showed excellent visible light transmittance of 88 to 90%.
  • FIGS. 6 to 9B a plasma reactive magnetron sputtering thin film deposition apparatus for depositing an aluminum-silicon-nitride film and a hydrogenated silicon nitride film of the present invention will be described with reference to FIGS. 6 to 9B.
  • the plasma reactive magnetron sputtering thin film deposition apparatus 61 has a vacuum inside and a power source for applying direct current, pulse direct current, or RF power to the silicon sputtering target 64 and the silicon sputtering target 64 mounted therein.
  • Device 62 an aluminum sputtering target 65 mounted inside the vacuum, a power supply 63 for applying direct current, RF or pulsed direct current power to the aluminum sputtering target 65, and a gas drawn into the vacuum chamber.
  • RF (Radio Frequency) antenna 67 for plasma RF power supply 611 for supplying RF power to the antenna 67, matching system for impedance matching of the RF power supply 611 ),
  • a sample mount 69 configured to mount the polycarbonate sample 68, a plasma use gas storage 612, and a gas flow rate from the plasma use gas storage 612.
  • a low flow rate pump 616 which operates a flow rate adjusting device 613, a vacuum gauge 614 for measuring an internal vacuum degree, a high vacuum pump 615 for maintaining an internal high vacuum, and a pump of the high vacuum pump 615. It includes.
  • Gas is supplied from the plasma use gas storage unit 612 into the thin film deposition apparatus 61, and the plasma use gas is converted into plasma by an electromagnetic field induced by the antenna 67.
  • the plasmalized gas is sputtered by the silicon sputtering target 64 and the aluminum sputtering target 65 and deposited on the surface of the polycarbonate sample 68.
  • reference numeral 66 denotes a plasma generated by the sputtering targets 64 and 65.
  • the vacuum degree inside the deposition apparatus 61 is exhausted to a high vacuum region using the vacuum pump 615.
  • argon gas is introduced from the plasma use gas storage unit 612 containing argon (Ar) gas, which is an inert gas, to generate a plasma, through the gas flow control device 613, so that the pressure inside the deposition apparatus 61 is reduced. Is adjusted to a pressure of 0.5 mTorr to 20 mTorr. For this reason, plasma generation is difficult at low pressures below 0.5 mTorr, while at higher pressures above 20 mTorr, the plasma density increases during deposition, increasing the sputtering rate, but also increasing the degree of sputtered atoms being scattered by high pressure. This is because the deposition rate is reduced.
  • Ar argon
  • RF power is applied to the RF antenna 67 inside the vacuum chamber to form a plasma of the introduced gas.
  • the RF power used is from 0 to 300W, which is mainly 50W. If the RF power is not applied, the nitride film may not be formed well, the film may be opaquely raised, and if the RF power is too high, the temperature of the sample may be increased to cause cracks in the deposited thin film.
  • plasma for thin film deposition is generated.
  • pulsed DC power a voltage ratio of -300 to -600 V is applied to allow the deposition to be performed at a duty ratio of 20, 40, 60, or 80%.
  • nitrogen (N 2 ) gas and hydrogen (H 2 ) gas are introduced to deposit hydrogenated silicon nitride film.
  • Hydrogen gas is suitable to draw 6 ⁇ 9 sccm. In the case of 6 sccm or less, it is difficult to obtain the UV blocking property of the deposited film, and in the case of 9 sccm or more, an arc may occur in the silicon sputtering target 64.
  • Hydrogenated silicon nitride film is deposited on the surface of the polycarbonate sample 68 located on the sample holder 69 inside the vacuum chamber by the material sputtered from the deposition source and nitrogen and hydrogen gas introduced into the vacuum chamber.
  • the vacuum degree inside the deposition apparatus 61 is measured using the vacuum pump 615. Exhaust to high vacuum area.
  • an argon (Ar) gas 612 which is an inert gas, is introduced through the gas flow controller 613 to generate a plasma to adjust the pressure inside the vacuum chamber to a pressure of 0.5 mTorr to 20 mTorr.
  • RF power is applied to the RF antenna 67 inside the deposition apparatus to form a plasma of the introduced gas.
  • the RF power used is from 0 to 300W, which is mainly 50W.
  • nitrogen (N 2 ) gas is introduced for aluminum-silicon-nitride deposition.
  • Nitrogen gas is suitable to draw 3 to 6 sccm. Because less than 3 sccm, the nitride film may be deposited untransparent, and if more than 6 sccm, the nitriding speed is faster than the sputtering speed of the silicon and aluminum sputtering targets 64 and 65, so that the deposition rate may be significantly lower. to be.
  • Nitrogen gas introduced into the deposition apparatus and the material sputtered from the deposition source causes the aluminum-silicon-nitride film to be deposited on the uppermost layer of the polycarbonate sample 68 positioned on the sample mount 69 in the deposition apparatus.
  • the nitride film is deposited according to the above method and has an excellent effect.
  • the Eagle 2000 glass substrate and the silicon wafer were placed in the deposition apparatus according to the method specified in the present invention, and after exhausting the inside of the deposition apparatus to 10 -6 Torr, 8 sccm of argon (Ar) gas was introduced, and the opening ratio of the vacuum pump was adjusted. After adjusting the process pressure to 5 mTorr, 50 W power was supplied to the RF antenna to form a plasma inside the deposition apparatus.
  • Ar argon
  • the Eagle 2000 glass substrate and silicon wafer were placed in the deposition apparatus, the inside of the deposition apparatus was evacuated to 10 -6 Torr, and 8 sccm of argon (Ar) gas was introduced, and the process pressure was adjusted to 3 mTorr by adjusting the vacuum pump opening ratio. Then, 50 W of power was supplied to the RF antenna to form a plasma inside the deposition apparatus. Subsequently, 406 V, 0.26 A, 80% pulsed DC power was applied to the magnetron sputtering device equipped with silicon deposition source, and 331 V, 1.43 A, 60% pulse rate was applied to the magnetron sputtering device equipped with aluminum metal deposition source. A DC film was applied, 5 sccm of nitrogen (N 2 ) gas was introduced to form a nitride film, and an aluminum-silicon nitride film was deposited for 60 minutes to form a film of 4000 kV.
  • N 2 nitrogen
  • 31 GPa was shown as an average value of 6 Knoop hardness tests of 10 g load, and the light transmittance of 86% was confirmed in the visible light range of 400 nm to 700 nm.
  • the Eagle 2000 glass substrate and silicon wafer were placed in the deposition apparatus, the inside of the deposition apparatus was evacuated to 10 -6 Torr, and 8 sccm of argon (Ar) gas was introduced, and the process pressure was adjusted to 5 mTorr by adjusting the vacuum pump opening ratio. Then, 50 W of power was supplied to the RF antenna to form a plasma inside the deposition apparatus.
  • Ar argon
  • the process pressure was adjusted to 3 mTorr by adjusting the vacuum pump aperture ratio, and then a magnetron sputtering device equipped with a silicon deposition source had a 406 V, 0.26 A, 80% occupancy ratio.
  • Pulsed DC power was applied, and a magnetron sputtering device equipped with an aluminum metal deposition source was applied with pulsed DC power of 331 V, 1.43 A, and 60% of the occupancy rate.
  • Nitrogen (N 2 ) gas was introduced into 5 sccm to form a nitride film.
  • An aluminum-silicon-nitride film was deposited for 60 minutes to form a film of 4000 kPa.
  • 29 GPa was shown as an average value of Knob hardness test 6 times at 10 g load, and a light transmittance of 78% was observed in the visible light range of 400 nm to 700 nm, and 300 nm. At the ultraviolet wavelength, the light transmittance was measured at 3%. In this way, it was confirmed that a high hardness two-layer thin film having high visible light transmittance and UV blocking effect could be formed.
  • the process pressure was adjusted to 3 mTorr by adjusting the vacuum pump opening ratio, and a magnetron sputtering device equipped with a silicon deposition source had a pulsed direct current power of 406 V, 0.26 A, and 80% occupancy, and a magnetron equipped with an aluminum metal deposition source.
  • a pulsed direct current power of 331 V, 1.43 A, and 60% occupancy was applied to the sputtering apparatus, and 5 sccm of nitrogen (N 2 ) gas was introduced to form a nitride film.
  • N 2 nitrogen
  • the sample was loaded with 43 g of hydrogen nitride on top of polycarbonate and a two-layer film of aluminum-silicon-nitride. was rotated at a speed of 100 RPM around the lower axis of rotation to perform a Taber wear experiment to rotate 2000 times. The light transmittance was measured after the Taber wear test.
  • the light transmittance was 87% in the wavelength range of 400 nm to 700 nm before performing the Taber wear test, but after the Taber wear test was performed Scratch generation due to low hardness reduced the light transmittance to 42%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명에 따른 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치는 마그네트론 스퍼터링을 이용한 박막 증착을 위한 진공조, 마그네트론 스퍼터링의 증착원에 장착된 알루미늄과 실리콘 스퍼터링 타켓에 직류 또는 펄스직류 전력을 인가하기 위한 펄스직류 전원장치, 증착원에 장착된 스퍼터링 타겟에 의해 발생되는 플라즈마, 진공조 내부에 인입되어 가스를 플라즈마화 하기 위한 RF 안테나, 진공조 내부에서 증착되는 시료를 장착하기 위한 전도성 시료 장착대, RF 안테나로 전원을 공급하는 RF전원장치, 진공조 내부의 고진공을 유지하기 위한 고진공용 터보 펌프, 진공조의 내부의 진공도를 계측하는 진공 게이지, 및 플라즈마 발생에 이용되는 아르곤(Ar)과 질소(N2)가스의 유량을 조절하는 가스유량 조절부를 포함하여, 표면 경도 및 내마모성을 향상시키는 효과가 있다.

Description

자외선 차단 및 경도 및 내마모성이 향상된 폴리카보네이트
본 발명은 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착방법 및 그 장치에 관한 것으로서, 더욱 상세하게 는 박막 증착을 위한 증착원으로 사용되고 있는 마그네트론 스퍼터링 증착원에 알루미늄과 실리콘 스퍼터링 타겟을 장착하고, 진공조 내에 비활성 기체인 아르곤과 반응성 기체인 질소 가스를 동시에 인입하여 반응성 스퍼터링 방식으로 고경도 투명막인 알루미늄-실리콘-질화막을 폴리카보네이트 소재의 표면에 증착함으로써, 차량용 유리를 대체할 수 있는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착방법 및 그 장치에 관한 것이다.
폴리카보네이트는 내충격도가 높고 무게가 가벼워 자동차 유리 등을 대체하여 사용할 수 있으나, 낮은 경도, 낮은 내마모성, 자외선에 의한 열화 및 변색 현상 등이 문제가 되고 있다. 따라서 경도 및 내마모성의 향상, 자외선에 의한 열화 및 변색 현상 등의 보완을 위해, 그 표면에 투명한 하드 코팅층을 형성하는 것이 필요하다.
이를 위하여, 폴리카보네이트 표면에 점착력이 있는 시트를 부착시켜 코팅층을 형성하는 기술, 딥 코팅(Dip coating) 등과 같은 도장법을 이용하여 폴리카보네이트 표면에 유기물질로 이루어진 코팅층을 형성하는 기술이 많이 활용되고 있다.
그러나 유기물 코팅법에 의해 제조된 코팅층은 경도, 내마모성 등의 개선에 한계가 있다는 점에서 최근 PVD, PECVD와 같은 증착법으로 무기물 코팅층을 형성하는 기술이 연구되고 있다.
특히 하드코팅 막과 폴리카보네이트와의 접합력이 좋지 않아 중간층을 형성하고, 여러 가지 기능을 구현하기 위해 다층막을 PECVD로 형성하는 기술이 사용되고 있다.
[특허문헌 1](미국특허, 2007026235, Glazing system for behicle tops and windows)이 종래기술로서 검색된다. 이 기술은 다른 재료를 코팅한 후 자외선 차단을 위한 막을 습식 공정을 통해 형성시킨 후, PECVD 방법으로 표면에 ~5㎛ 두께의 실리콘 산화막 또는 알루미늄 산화막을 형성하여 내마모성 하드 코팅막을 증착하는 기술이 활용되고 있다.
다른 기술로서, [특허문헌 2](미국특허, 2008083186, Polycarbonate glazing system and method for making the same)이 검색되지만, 이러한 코팅방법은 다층구조를 위해 많은 공정이 필요하여 경제성 확보에 어려움이 있다.
또한 초단파 플라즈마를 이용한 PECVD 증착에 관한 연구도 진행중에 있으나 특성이 좋지 못하다. [비특허문헌 1](Thin Solid Films 502 (2006) 270-274, Hard coatings by plasma CVD on polycarbonate for automotive and optical applications)이 참조된다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 대한민국 등록특허공보 제10-0337483호(2002.05.08)
따라서, 본 발명은 폴리카보네이트 소재의 낮은 경도와 취약한 내마모 특성을 보완하기 위해 고안된 것으로, 폴리카보네이트 소재 표면에 다기능성, 고경도의 투명한 3원계 박막인 알루미늄-실리콘-질화막을 증착하여 폴리카보네이트 소재의 표면경도를 증가시키고, 내마모 특성을 향상시킬 수 있는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착방법 및 그 장치를 제공하는 것에 목적이 있다.
상술한 목적을 달성하기 위한 본 발명에 따른 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 방법은 (a)마그네트론 스퍼터링을 이용한 박막 증착을 위한 진공조 내부에 위치한 전도성 시료 장착대에 시료로 실리콘 웨이퍼 또는 폴리카보네이트 기판을 장착하는 단계, (b) 고진공용 터보 펌프와 터보 펌프의 가동을 돕는 저진공 펌프로 진공조 내부의 진공도를 고진공 영역까지 배기하는 단계, (c) 마그네트론 증착원에 장착된 알루미늄과 실리콘 스퍼터링 타겟의 작동을 위하여 가스유량 조절장치에 의해 비활성화 가스인 아르곤(Ar)과 반응성 기체인 질소(N2)를 진공조 내부로 인입하여, 진공조 내부의 압력을 조절하는 단계; 진공조 내부의 RF안테나에 RF전력을 인가하여, (c)단계에서 인입된 가스의 플라즈마를 형성시키는 단계, 및 (e) 플라즈마 형성 후, 알루미늄 금속 타겟과 실리콘 타겟이 장착된 마그네트론 스퍼터링 증착원에 직류, 또는 펄스직류 전원장치에 의한 펄스직류 전력을 인가하여 박막 증착을 위한 플라즈마를 발생시키는 단계를 포함하는 것을 특징으로 한다.
상술한 목적을 달성하기 위한 본 발명에 따른 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치는 마그네트론 스퍼터링을 이용한 박막 증착을 위한 진공조, 마그네트론 스퍼터링의 증착원에 장착된 알루미늄과 실리콘 스퍼터링 타켓에 직류 또는 펄스직류 전력을 인가하기 위한 펄스직류 전원장치, 증착원에 장착된 스퍼터링 타겟에 의해 발생되는 플라즈마, 진공조 내부에 인입되어 가스를 플라즈마화 하기 위한 RF 안테나, 진공조 내부에서 증착되는 시료를 장착하기 위한 전도성 시료 장착대, RF 안테나로 전원을 공급하는 RF전원장치, 진공조 내부의 고전공을 유지하기 위한 고진공용 터보 펌프, 진공조의 내부의 진공도를 계측하는 진공 게이지, 및 플라즈마 발생에 이용되는 아르곤(Ar)과 질소(N2)가스의 유량을 조절하는 가스유량 조절부를 포함하는 것을 특징으로 한다.
한편, 본 발명자들은 상기한 문제점을 인식하고, 본원 발명을 통해, 이중의 얇은 막으로 높은 경도와 내마모성, 자외선 차단 특성을 구현하는 다기능성 박막 증착 기술을 제공하고자 하였다.
따라서 본 발명은 폴리카보네이트 소재가 경도가 낮고, 마모량이 높으며, 자외선에 의한 열화 및 변색 현상이 발생하는 것을 보완하기 위한 목적으로, 폴리카보네이트 표면에 자외선 차단을 위한 수소화된 실리콘 질화막을 증착하고, 그 위에 고경도 투명 알루미늄-실리콘-질화막을 증착하여 경도를 증가시키고, 마모량을 감소시키기 위한 박막 증착 방법 및 그 장치에 관한 것이다.
일 측면으로서, 본 발명은, 높은 경도, 내마모성 및 자외선 차단 특성을 향상시키기 위해, 일면 또는 양면에 증착된 수소화된 실리콘 질화막(Hydrogenated Silicon Nitride: SiN:H); 및 상기 수소화된 실리콘 질화막 상에 증착된 알루미늄-실리콘-질화막(aluminum silicon nitride)을 포함하는 폴리카보네이트를 제공한다.
상기 수소화된 실리콘 질화막은 자외선 차단 특성을 향상시키고, 상기 알루미늄-실리콘-질화막은 경도 및 내마모성을 향상시킨다.
상기 수소화된 실리콘 질화막은, 실리콘 스퍼터링 타겟을 포함하는 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내 불활성 가스, 질소 및 수소를 인입시켜 반응성 스퍼터링 방법에 의해, 형성됨을 특징으로 한다.
상기 알루미늄 실리콘 질화막은, 실리콘 스퍼터링 타겟 및 알루미늄 스퍼터링 타겟을 포함하는 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내 불활성 가스 및 질소를 인입시켜 반응성 스퍼터링 방법에 의해, 형성됨을 특징으로 한다.
상기 증착 장치 내부 압력은 0.5 mTorr 내지 20 mTorr임을 특징으로 한다.
상기 불활성 가스는, 아르곤임을 특징으로 한다.
다른 측면으로서, 본 발명은, 높은 경도, 내마모성 및 자외선 차단 특성을 향상을 위해 폴리카보네이트 표면에 질화물을 증착시키는 방법을 제공한다.
상기 방법은, 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치에 폴리카보네이트 기판 또는 실리콘 산화막이 형성되어 있는 폴리카보네이트 기판을 장착하는 단계; 상기 폴리카보네이트 기판에, 실리콘 스퍼터링 타겟으로부터 스퍼터링에 의해 수소화 실리콘 질화막을 증착하는 단계; 및 상기 수소화된 실리콘 질화막 상에, 실리콘 스퍼터링 타겟 및 알루미늄 스퍼터링 타겟으로부터 알루미늄 실리콘 질화막을 증착하는 단계를 포함한다.
상기 수소화된 실리콘 질화막은 자외선 차단 특성을 향상시키고, 상기 알루미늄-실리콘-질화막은 경도 및 내마모성을 향상시킨다.
상기 수소화된 실리콘 질화막 증착은 상기 증착 장치 내에 불활성 가스, 질소 및 수소를 인입시켜 반응성 스퍼터링 방법에 의함을 특징으로 한다.
상기 알루미늄 실리콘 질화막 증착은, 실리콘 스퍼터링 타겟 및 알루미늄 스퍼터링 타겟을 포함하는 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내 불활성 가스 및 질소를 인입시켜 반응성 스퍼터링 방법에 의함을 특징으로 한다.
상기 증착 장치 내부 압력은 0.5 mTorr 내지 20 mTorr임을 특징으로 한다.
상기 불활성 가스는, 아르곤임을 특징으로 한다.
본 발명에 따른 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착방법 및 그 장치는 폴리카보네이트 소재의 표면에 반응성 마그네트론 스퍼터링 증착 방법으로 다기능성 고경도 투명 알루미늄-실리콘-질화막을 증착함으로써 표면 경도 및 내마모성을 향상시키는 효과가 있다.
또한, 본 발명에 따른 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착방법 및 그 장치에 의한 폴리카보네이트 소재를 차량의 전면 유리 등으로 사용할 수 있고, 또한 가벼운 천창(Skylight), 건물 및 거실, 공장 등의 채광판, 안전유리, 공공시설의 지붕 및 창, 방탄 및 방음벽, 공중전화박스, 실내칸막이, 실내외 사인보드 등 다양한 분야에 이용할 수 있는 효과가 있다.
한편, 본 발명에 의하면, 폴리카보네이트 기판 표면에 수소화된 실리콘 질화막을 증착하여 자외선 차단 특성을 향상시키는 효과를 얻을 수 있고, 그 위에 다시 고경도 투명 알루미늄-실리콘-질화막을 증착함으로써 경도 및 내마모성을 향상시키는 효과를 얻을 수 있게 된다. 이을 통해 폴리카보네이트를 차량의 전면 유리 등으로 사용할 수 있고, 또한 가벼운 천창(Skylight), 건물 및 거실, 공장 등의 채광판, 안전유리, 공공시설의 지붕 및 창, 방음벽, 공중전화박스, 실내칸막이, 실내외 사인보드 등 다양한 분야에서 사용할 수 있다.
도 1은 본 발명에 따른 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치의 구성도,
도 2는 본 발명의 실시예 1의 실리콘 웨이퍼에 증착한 알루미늄-질화막, 실
리콘-질화막, 알루미늄-실리콘-질화막의 경도 측정 결과도,
도 3 (a)는 본 발명의 실시예 2의 폴리카보네이트 기판 소재에 알루미늄-실리콘-질화막을 증착한 시료의 마모 시험 결과도,
도 3 (b)는 폴리카보네이트 기판 소재의 마모 시험 결과도,
도 4의 (a) ~ (e)는 본 발명의 실시예 3의 알루미늄-실리콘-질화막을 증착한 유리 기판(Eagle 2000) 시료의 자외선-가시광선 영역 투과도 측정 결과도,
도 4의 (f)는 막을 증착하지 않은 유리 기판(Eagle 2000) 시료의 자외선-가시광선 영역 투과도 측정 결과도, 및
도 5는 본 발명에 따른 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 방법 흐름도이다.
도 6은 본 발명의 알루미늄-실리콘-질화막과 수소화된 실리콘 질화막의 증착을 위한, 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치를 예시한다.
도 7는 본 발명의 실시예4의 실리콘 웨이퍼에 수소화된 실리콘 질화막을 증착한 시료의 경도 측정 결과, 실시예5의 실리콘 웨이퍼에 알루미늄-실리콘-질화막을 증착한 시료의 경도 측정 결과 및 실시예6의 실리콘 웨이퍼에 수소화된 실리콘 질화막을 증착하고 알루미늄-실리콘-질화막을 증착한 시료의 경도 측정 결과를 보여준다.
도 8은 본 발명의 실시예4의 Eagle 2000 유리 기판에 수소화된 실리콘 질화막을 증착한 시료의 광투과율 측정 결과, 실시예5의 Eagle 2000 유리 기판에 알루미늄-실리콘-질화막을 증착한 시료의 광투과율 측정 결과 및 실시예 6의 Eagle 2000 유리 기판에 수소화된 실리콘 질화막을 증착하고 알루미늄-실리콘-질화막을 증착한 시료의 광투과율 측정 결과를 보여준다.
도9a는 폴리카보네이트 기판의 Taber 마모 실험 실시 전과 후의 광투과율 측정 결과이고, 도 9b는 폴리카보네이트 기판에 수소화된 실리콘 질화막을 증착하고 그 위에 알루미늄-실리콘-질화막을 증착한 시료의 Taber 마모 실험 실시 전과 후의 광투과율 측정 결과이다.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명에 따른 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치는 진공조(1), 펄스직류 전원장치(2), 스퍼터링 타겟(3), 플라즈마(4), RF 안테나(5), 시료(6), 시료 장착대(7), 매칭 박스(8), RF 전원장치(9), 사용가스(10), 가스유량 조절부(11), 진공 게이지(12), 고진공용 터보 펌프(13) 및 저진공 펌프(14)를 포함한다.
보다 구체적으로, 상기 진공조(1)는 마그네트론 스퍼터링을 이용한 박막 증착을 위한 진공조이고, 상기 펄스직류 전원장치(2)는 상기 마그네트론 스퍼터링 증착원에 장착된 알루미늄과 실리콘 스퍼터링 타겟(3)에 직류 또는 펄스직류전력을 인가하기 위한 전원장치이다.
상기 플라즈마(4)는 마그네트론 증착원에 장착된 상기 스퍼터링 타겟(3)에 의하여 발생된 플라즈마를 나타내고 있으며, 상기 RF 안테나(5)는 진공조 내부에 인입된 가스를 플라즈마화 하기 위한 RF(Radio Frequency) 안테나이다.
상기 시료(6)는 상기 전도성 시료 장착대(7)에 장착된 시료를 나타내고, 상기 매칭 박스(8)는 상기 RF 전원장치(9)에서 발생한 RF 전력 매칭 시스템이다.
상기 가스유량 조절부(12)는 플라즈마 발생에 이용되는 사용가스(10)의 유량을 조절하기 위한 가스유량 조절장치이다.
상기 진공 게이지(12)는 진공도를 계측하는 진공 게이지이고, 상기 고진공용 터보 펌프(13)는 상기 진공조(1)의 고진공을 유지하기 위한 펌프이며, 상기 저진공 펌프(14)는 고진공 펌프의 가동을 돕는 펌프이다.
상술한 구성을 포함하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착장치에 의한 플라즈마 마그네트론 알루미늄-실리콘-질화막 증착의 방법에 대하여 도 5를 참조하여 설명하면 다음과 같다.
참고로, 도 5는 본 발명에 따른 플라즈마 마그네트론 알루미늄-실리콘-질화막 증착의 방법의 흐름도이다.
상기 진공조(1) 내부에 위치한 상기 전도성 시료 장착대(7)에 상기 시료(6)를 장착하는 단계를 수행한다(S10).
이후, 상기 고진공용 터보 펌프(13)와 저진공 펌프(14)를 이용하여 진공조 내부의 진공도를 고진공 영역까지 배기하는 단계를 수행한다(S20).
상기 마그네트론 증착원에 장착된 알루미늄과 실리콘 스퍼터링 타겟(3)의 작동을 위하여, 상기 가스유량 조절장치(11)에 의해 비활성화 가스인 아르곤(Ar)과 반응성 가스인 질소(N2)가 상기 진공조(1) 내부로 인입되어 상기 진공조(1) 내부의 압력을 조절하는 단계를 수행한다(S30).
이때, 상기 진공조(1) 내부의 압력을 0.5 mTorr ∼ 30 mTorr의 압력으로 조절하는 것이 바람직하다.
그 이유로는, 0.5 mTorr 이하의 낮은 압력에서는 플라즈마의 발생이 어려운 반면, 30 mTorr 이상의 높은 압력에서는 증착시 플라즈마 밀도가 증가하여 스퍼터링 속도는 증가하나, 스퍼터링된 원자들이 높은 압력에 의해 산란되는 정도도 증가하여 실제 박막 증착속도가 감소하기 때문이다.
또한, 이때 상기 아르곤과 질소 가스의 유량비는 10:1 ~ 1:1 정도가 되도록 인입하는 것이 바람직하다.
왜냐하면 10:1 이하의 경우, 질화막이 투명하지 않게 증착이 될 수 있고, 1:1 이상의 경우, 실리콘 및 알루미늄 스퍼터링 타겟(3)의 스퍼터링 속도보다 질화 속도가 빨라 증착속도가 낮아질 수 있기 때문이다.
상술한 `S30`단계 이후, 상기 진공조(1) 내부의 압력이 안정화되면, 상기 진공조(1) 내부의 RF 안테나(5)에 RF 전력을 인가하여, 인입된 가스의 플라즈마를 형성하는 단계를 수행한다(S40).
상기 `S40`단계에서 인가되는 전력은 0 ~ 300 W의 값을 사용하는 것이 바람직하고, 더욱 바람직하게는 50 W의 전력을 사용한다.
RF 전력이 없는 경우 질화막이 잘 형성되지 않고, 막이 불투명하게 올라갈 수 있으며, RF 전력이 너무 높은 경우 시료의 온도가 상승하여 증착된 박막에 균열이 발생할 수 있어, 공정시간을 짧게 하고, RF 전력을 약하게 하여 투명하면서도 균열이 없는 막을 형성할 수 있다.
상기 `S40`단계에서 플라즈마 형성 후, 알루미늄 금속 타겟과 실리콘 타겟이 장착된 마그네트론 스퍼터링 증착원에 직류 또는 펄스직류 전원장치(2)에 의한 펄스직류 전력을 인가하여 박막 증착을 위한 플라즈마를 발생시키는 단계를 수행한다(S50).
직류 또는 펄스직류 전력은 -200 ~ -1000 V의 전압과, 0 ~ 1.6 A의 전류 값으로 하여 증착할 수 있다. 이와 같은 방법으로 복합물 타겟 또는 2 개의 타겟을 동시 스퍼터링(co-sputtering) 하여 3원계 질화막의 증착이 가능하게 된다.
이때, 상기의 박막 증착 공정에 사용되는 직류 또는 펄스직류의 평균 전력 밀도는 1 W/cm2 ∼ 20 W/cm2의 값을 가지는 것이 바람직하다.
그 이유로는, 1 W/cm2 이하의 직류 전력으로는 마그네트론 증착원에 장착된 스퍼터링 증착원으로부터 스퍼터링 되는 속도가 매우 느려서 공정시간이 많이 소요되므로 본 기술의 경제적인 가치가 감소하며, 20 W/cm2 이상의 값을 이용하기에는 마그네트론 증착원의 냉각에 어려움이 많기 때문이다.
[실시예 1]
상기 `S10`단계에서 본 발명의 방법에 따라 진공조 내부의 시료 장착대(7)에 실리콘 웨이퍼를 장착하고, 상기 `S20`단계에서 진공조 내부를 10-6 Torr까지 배기한 후, 상기 `S30`단계에서 24 sccm의 아르곤 가스와 6 sccm의 질소 가스를 인입하여 진공조의 압력을 10 mTorr로 맞춘 후, 상기 `S40`단계에서 RF 안테나에 200 W 전력을 공급하여 진공조 내부에 플라즈마가 형성되도록 하였다. 이후 상기 `S50`단계에서 실리콘 타겟이 장착된 마그네트론 스퍼터링 증착원에는 -550 V, 0.064 A, 펄스폭 30 μs, 펄스주파수 600 Hz의 펄스 직류 전력을 공급하고, 알루미늄 금속 타겟이 장착된 마그네트론 스퍼터링 증착원에는 -311 V, 1.40 A, 점유율 40 %의 펄스 전력을 인가하여, 90 분간 증착함으로써 2800 Å의 알루미늄-실리콘-질화막을 형성하였다.
또한, 상기의 방법으로 알루미늄 스퍼터링 타겟에만 전력을 인가하여 알루미늄 질화막을, 실리콘 스퍼터링 타겟에만 전력을 인가하여 실리콘 질화막을, 각각 실리콘 웨이퍼 상에 동일한 두께로 증착하였다.
도면 2의 10g 하중의 Knoop 미세경도 측정 결과에서 알 수 있듯이, 상기의 방법으로 증착된 알루미늄-실리콘-질화막은 알루미늄 질화막이나 실리콘 질화막에 비하여 2 배 가까운 34.75 GPa의 높은 경도값을 나타냄을 알 수 있다.
[실시예 2]
상기 `S10`단계에서 진공조 내부의 시료 장착대에 ∼5 μm의 SiO2 막이 증착된 폴리카보네이트 기판 소재를 장착하고, 상기 `S20`단계에서 진공조 내부를 10-6 Torr까지 배기한 후, 상기 `S30`단계에서 24 sccm의 아르곤(Ar) 가스와 3sccm의 질소(N2) 가스를 동시에 인입하여 10 mTorr로 공정 압력을 조정한 후, 상기 `S40`단계 에서RF 안테나에 50 W RF 전력을 공급하여 진공조 내부에 플라즈마가 형성되도록 하였다. 이후 상기 `S50`단계에서 실리콘 타겟이 장착된 마그네트론 스퍼터링 증착원에는 -450 V, 0.26 A, 점유율 80 %의 펄스 직류 전력을, 알루미늄 금속타겟이 장착된 마그네트론 스퍼터링 증착원에는 -452 V, 1.50 A, 점유율 20 %의 펄스 직류 전력을 인가하여, 45분간 알루미늄-실리콘-질화막을 증착하였다.
증착된 알루미늄-실리콘-질화막의 내마모 특성을 평가하기 위하여 직경 3 mm의 루비 구슬을 이용하여 15 gf의 하중으로 pin-on-disk 내마모 시험을 수행하였다. 시료의 회전 속도는 100 rpm으로 하였으며 1000 회 회전시킨 후 마모된 면을 alpha-step profilometer와 광학현미경을 이용하여 관찰하였다.
도면 3 (a)에서 확인할 수 있듯이 알루미늄-실리콘-질화막이 증착된 시료의 경우, 깊이 방향으로의 마모나 균열이 전혀 나타나지 않은 반면, 도면 3 (b)의 알루미늄-실리콘-질화막을 증착하지 않은 폴리카보네이트 시료의 경우, 상층의 SiO2 막이 파괴되어 파편들이 존재하고, 깊이 방향으로 ∼1450 Å, 너비 방향으로 ∼180 μm 마모된 것으로 측정되었다.
[실시예 3]
상기 `S10`단계에서 본 발명의 방법에 따라 진공조에 투명한 정사각형 형태의 두께 0.5 mm 유리기판(Eagle 2000) 5개를 각각 좌측에 장착된 실리콘 타겟과 우측에 장착된 알루미늄 타겟 중간 위치에 일렬로 넣고, 상기 `S20`단계에서 진공조 내부를 10-6 Torr까지 배기한 후, 상기 `S30`단계에서 24 sccm의 아르곤(Ar) 가스와 5 sccm의 질소(N2) 가스를 인입하여 10 mTorr로 공정 압력을 조정한 후, 상기 `S40`단계에서 RF 안테나에 200 W의 RF 전력을 공급하여 진공조 내부에 플라즈마가 형성되도록 하였다. 이후, 상기 `S50`단계에서 실리콘 타겟이 장착된 마그네트론 스퍼터링 증착원에는 -780 V, 0.315 A, 펄스폭 100 μs, 주파수 400 Hz의 펄스직류 전력을, 알루미늄 금속 타겟이 장착된 마그네트론 스퍼터링 증착원에는 -410 V, 1.10 A, 점유율 40 %의 펄스 직류 전력을 인가하여 60 분간 알루미늄-실리콘-질화막을 증착하였다.
이와 같은 방법을 이용하여 서로 두께와 조성이 다른 알루미늄-실리콘-질화막을 동시에 제작할 수 있다. 제작된 알루미늄-실리콘-질화막의 두께는 (a) 4850 Å, (b) 5450 Å, (c) 5650 Å, (d) 6100 Å, (e) 6700 Å로 측정되었으며, 각 시료의 알루미늄 대 실리콘 조성비는 (a) 55:45, (b) 58:42, (c) 67:33, (d) 74:26, (e) 83:17 로 측정되었다.
증착된 알루미늄-실리콘-질화막 시료는, UV-VIS 측정 장비를 이용하여 광투과율을 측정하였으며, 도면 4에서 알 수 있듯이 모든 시료의 경우 88 ~ 90%의 우수한 가시광 투과율을 나타내었다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 하기에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
이하에서는 도 6 내지 도 9b를 참조하여 본 발명의 알루미늄-실리콘-질화막과 수소화된 실리콘 질화막의 증착을 위한, 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치를 설명한다.
1. 증착 장치
도 6은 본 발명의 알루미늄-실리콘-질화막과 수소화된 실리콘 질화막의 증착을 위한, 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치(61)를 예시한다. 상기 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치(61)는 내부가 진공이며, 진공 내부에 장착된 실리콘 스퍼터링 타겟(64), 상기 실리콘 스퍼터링 타겟(64)에 직류, 펄스직류, 또는 RF 전력을 인가하기 위한 전원장치(62), 진공 내부에 장착된 알루미늄 스퍼터링 타겟(65), 상기 알루미늄 스퍼터링 타겟(65)에 직류, RF 또는 펄스직류 전력을 인가하기 위한 전원장치(63), 진공조 내부에 인입된 가스를 플라즈마화 하기 위한 RF(Radio Frequency) 안테나(67), 상기 안테나(67)에 RF 전력을 공급하는 RF 전력 공급장치(611), 상기 RF 전력 공급장치(611)의 임피던스 매칭을 위한 매칭 시스템(610), 폴리카보네이트 시료(68)를 장착되도록 구성되는 시료 장착대(69), 플라즈마 사용가스 저장부(612), 상기 플라즈마 사용가스 저장부(612)로부터의 가스 유량을 조절하도록 구성되는 가스유량 조절장치(613), 내부 진공도 계측을 위한 진공 게이지(614), 내부 고진공을 유지하기 위한 고진공펌프(615), 및 상기 고진공펌프(615)의 펌프의 가동을 돕는 저진공 펌프(616)를 포함한다.
플라즈마 사용가스 저장부(612)로부터 상기 박막 증착 장치(61) 내부로 가스가 공급되고 상기 안테나(67)에 의해 유도된 전자기장에 의해 상기 플라즈마 사용가스는 플라즈마화된다. 상기 플라즈마화된 가스는 상기 실리콘 스퍼터링 타겟(64) 및 상기 알루미늄 스퍼터링 타겟(65)에 의해 스퍼터링되어, 상기 폴리카보네이트 시료(68) 표면에 증착된다. 도 6에서 참조번호 66은, 스퍼터링 타겟(64, 65)에 의하여 발생된 플라즈마를 나타내고 있다.
2. 수소화된 실리콘 질화막 증착
본 발명에 의한 수소화된 실리콘 질화막 증착의 원리는 다음과 같다.
박막 증착 장치(61) 내부에 위치한 시료 장착대(69)에 시료(68)를 장착한 후, 진공펌프(615)를 이용하여 증착 장치(61) 내부의 진공도를 고진공 영역까지 배기한다.
이후, 플라즈마를 발생시키기 위해 비활성 가스인 아르곤(Ar) 가스를 포함하고 있는 플라즈마 사용가스 저장부(612)로부터 아르곤 가스를 가스유량 조절장치(613)를 통하여 인입시켜 증착 장치(61) 내부의 압력을 0.5 mTorr 내지 20 mTorr의 압력으로 조절한다. 그 이유로는, 0.5 mTorr 이하의 낮은 압력에서는 플라즈마의 발생이 어려운 반면, 20 mTorr 이상의 높은 압력에서는 증착시 플라즈마 밀도가 증가하여 스퍼터링 속도는 증가하나, 스퍼터링된 원자들이 높은 압력에 의해 산란되는 정도도 증가하여 증착속도가 감소하기 때문이다.
상기한 바와 같이 사용 가스 인입 후 증착 장치(61) 내부의 압력이 안정화 되면, 진공조 내부의 RF 안테나(67)에 RF 파워를 인가하여 인입된 가스의 플라즈마를 형성 시킨다. 사용하는 RF 파워는 0 ~ 300 W의 값을 사용하는데, 주로 50 W를 사용하게 된다. RF 파워를 인가하지 않을 경우 질화막이 잘 형성되지 않고, 막이 불투명하게 올라갈 수 있고, RF 파워가 너무 높은 경우에는 시료의 온도가 상승하여 증착된 박막에 균열이 발생할 수 있다.
플라즈마 형성 후, 증착 장치(61) 상단에 부착된 실리콘 스퍼터링 타겟(64)에 전원장치(62)로부터 직류, 펄스직류, 또는 RF 전력을 인가하면, 박막 증착을 위한 플라즈마가 발생하게 된다. 펄스직류 전력의 경우, -300 내지 -600 V의 전압을 인가하여 점유율(duty ratio)는 20, 40, 60, 80%로 하여 증착할 수 있다.
들어가는 전력이 안정화 되면, 수소화된 실리콘 질화막 증착을 위하여 질소(N2) 가스, 수소(H2) 가스를 인입 시킨다. 수소 가스는 6 ~ 9 sccm 정도 인입하는 것이 적당하다. 6 sccm 이하의 경우, 증착되는 막의 자외선 차단 특성을 얻기 어렵고, 9 sccm 이상의 경우 실리콘 스퍼터링 타겟(64)에서 아크가 발생할 수가 있다.
증착원으로부터 스퍼터링되는 물질과 진공조 내부에 인입된 질소, 수소 가스로 인해 진공조 내부의 시료 장착대(69) 위에 위치한 폴리카보네이트 시료(68) 표면에 수소화된 실리콘 질화막이 증착되게 된다.
3. 알루미늄-실리콘-질화막 증착
한편, 알루미늄-실리콘-질화막 증착의 원리는 다음과 같다.
증착 장치(61) 내부에 위치한 시료 장착대(69)에 수소화된 실리콘 질화막이 증착된 폴리카보네이트 시료(68)를 장착한 후, 진공펌프(615)을 이용하여 증착 장치(61) 내부의 진공도를 고진공 영역까지 배기한다.
이후, 플라즈마를 발생시키기 위해 비활성 가스인 아르곤(Ar) 가스(612)를 가스유량 조절장치(613)를 통하여 인입시켜 진공조 내부의 압력을 0.5 mTorr 내지 20 mTorr의 압력으로 조절한다.
사용 가스 인입 후 증착 장치 내부의 압력이 안정화 되면, 증착 장치 내부의 RF 안테나(67)에 RF 파워를 인가하여 인입된 가스의 플라즈마를 형성시킨다. 사용하는 RF 파워는 0 ~ 300 W의 값을 사용하는데, 주로 50 W를 사용하게 된다.
플라즈마 형성 후, 증착 장치 상단에 부착된 마그네트론 증착원에 장착된 실리콘 스퍼터링 타겟(64)과 마그네트론 증착원에 장착된 알루미늄 스퍼터링 타겟(65)에 직류, 펄스직류, 또는 RF 전력을 인가하면, 박막 증착을 위한 플라즈마가 발생하게 된다. 펄스직류 전력의 경우, 300 ~ -600 V의 전압을 인가하여 점유율(duty ratio)는 20, 40, 60, 80%로 하여 증착할 수 있다.
들어가는 전력이 안정화 되면, 알루미늄-실리콘-질화막 증착을 위하여 질소(N2) 가스를 인입 시킨다. 질소 가스는 3 ~ 6 sccm 정도 인입하는 것이 적당하다. 왜냐하면 3 sccm 이하의 경우, 질화막이 투명하지 않게 증착이 될 수 있고, 6 sccm 이상의 경우, 실리콘 및 알루미늄 스퍼터링 타겟(64, 65)의 스퍼터링 속도보다 질화 속도가 빨라 증착 속도가 현저하게 낮아질 수 있기 때문이다.
증착원으로부터 스퍼터링 되는 물질과 증착 장치 내부에 인입된 질소 가스로 인해 증착 장치 내부 시료 장착대(69) 위에 위치한 폴리카보네이트 시료(68) 최상층에 알루미늄-실리콘-질화막이 증착되게 된다.
아래 실시예들을 통해, 상기한 방법에 따라 질화막이 증착되고 우수한 효과가 있음을 확인하였다.
[실시예 4]
본 발명에서 명시한 방법에 따라 증착 장치에 Eagle 2000 유리 기판과 실리콘 웨이퍼를 넣고, 증착 장치 내부를 10-6 Torr까지 배기한 후, 아르곤(Ar) 가스 8 sccm을 인입하고, 진공펌프 개구율을 조절하여 5 mTorr로 공정 압력을 조정한 후, RF 안테나에 50 W 전력을 공급하여 증착 장치 내부에 플라즈마가 형성되도록 하였다. 이후 실리콘 증착원이 장착된 마그네트론 스퍼터링 장치에 펄스직류 전력을 공급하여 490 V, 0.41 A, 점유율 80%의 전력를 인가하고, 질소(N2) 가스 2 sccm, 수소(H2) 가스 8 sccm을 인입하여, 21 분간 수소화된 실리콘 질화막을 증착하여 1350Å의 막을 형성하였으며, 누프 경도 측정을 위한 시료는 58 분간 3700Å의 박막을 증착하였다.
3700Å 두께의 수소화된 실리콘 질화막에 대한 10 g 하중의 누프 경도 시험 6회 측정 결과, 도 7에서 보는 바와 같이 17 GPa을 나타내었다. 또한, 도 8에서 보는 바와 같이, 1350Å의 막을 증착한 시료의 가시광 영역인 400 nm ~ 700 nm 범위에서의 광투과율은 79%로 측정되었으며, 300 nm의 자외선 파장에서의 광투과율이 3%로, 자외선 차단 효과를 확인할 수 있었다.
[실시예 5]
증착 장치에 Eagle 2000 유리 기판과 실리콘 웨이퍼를 넣고, 증착 장치 내부를 10-6 Torr까지 배기한 후, 아르곤(Ar) 가스 8 sccm을 인입하고, 진공펌프 개구율을 조절하여 3 mTorr로 공정 압력을 조정한 후, RF 안테나에 50 W 전력을 공급하여 증착 장치 내부에 플라즈마가 형성되도록 하였다. 이후 실리콘 증착원이 장착된 마그네트론 스퍼터링 장치에 406 V, 0.26 A, 점유율 80%의 펄스직류 전력을 인가하였고, 알루미늄 금속 증착원이 장착된 마그네트론 스퍼터링 장치에는 331 V, 1.43 A, 점유율 60%의 펄스직류 전력을 인가하고, 질소(N2) 가스 5 sccm 인입하여 질화막이 형성되도록 하여, 60 분간 알루미늄-실리콘-질화막을 증착하여 4000Å의 막을 형성하였다.
도 7과 도 8에서 보는 바와 같이, 10 g 하중의 누프경도 시험 6회 측정 평균 값으로 31 GPa을 나타내었고, 가시광 영역인 400 nm ~ 700 nm 범위에서 86%의 광투과율을 확인하였다.
[실시예 6]
증착 장치에 Eagle 2000 유리 기판과 실리콘 웨이퍼를 넣고, 증착 장치 내부를 10-6 Torr까지 배기한 후, 아르곤(Ar) 가스 8 sccm을 인입하고, 진공펌프 개구율을 조절하여 5 mTorr로 공정 압력을 조정한 후, RF 안테나에 50 W 전력을 공급하여 증착 장치 내부에 플라즈마가 형성되도록 하였다. 이후 실리콘 증착원이 장착된 마그네트론 스퍼터링 장치에 펄스직류 전력을 공급하여 490 V, 0.41 A, 점유율 80%의 전력를 인가하고, 질소(N2) 가스 2 sccm, 수소(H2) 가스 8 sccm을 인입하여 질화막이 형성되도록 하여, 21분간 수소화된 실리콘 질화막을 증착하여 1350Å의 막을 형성하였다.
수소화된 실리콘 질화막 위에 알루미늄-실리콘-질화막 증착을 위하여, 진공펌프 개구율을 조절하여 3 mTorr로 공정 압력을 조정한 후, 실리콘 증착원이 장착된 마그네트론 스퍼터링 장치에 406 V, 0.26 A, 점유율 80%의 펄스직류 전력을 인가하였고, 알루미늄 금속 증착원이 장착된 마그네트론 스퍼터링 장치에는 331 V, 1.43 A, 점유율 60%의 펄스직류 전력을 인가하고, 질소(N2) 가스 5 sccm 인입하여 질화막이 형성되도록 하여, 60분간 알루미늄-실리콘-질화막을 증착하여 4000Å의 막을 형성하였다.
도 7과 도 8에서 보는 바와 같이, 10 g 하중의 누프 경도 시험 6회 측정 평균 값으로 29 GPa을 나타내었고, 가시광 영역인 400 nm ~ 700 nm 범위에서 78%의 광투과율을 확인하였으며, 300 nm 자외선 파장에서는 광투과율이 3%로 측정되었다. 이와 같은 방법으로 높은 가시광 투과율, 자외선 차단 효과를 지닌 고경도의 2층 박막을 형성할 수 있음을 확인하였다.
[실시예 7]
증착 장치에 폴리카보네이트 시료를 장착하고, 증착 장치 내부를 10-6 Torr까지 배기한 후, 아르곤(Ar) 가스 8 sccm을 인입하고, 진공펌프 개구율을 조절하여 5 mTorr로 공정 압력을 조정한 후, RF 안테나에 50 W 전력을 공급하여 증착 장치 내부에 플라즈마가 형성되도록 하였다. 이후 실리콘 증착원이 장착된 마그네트론 스퍼터링 장치에 490 V, 0.41 A, 점유율 80%의 펄스직류 전력를 인가하고, 질소(N2) 가스 2 sccm, 수소(H2) 가스 8 sccm을 인입하여 질화막이 형성되도록 하여, 21분간 수소화된 실리콘 질화막을 증착하여 1350Å의 막을 형성하였다.
뒤이어 진공펌프 개구율을 조절하여 3 mTorr로 공정 압력을 조정한 후, 실리콘 증착원이 장착된 마그네트론 스퍼터링 장치에 406 V, 0.26 A, 점유율 80%의 펄스직류 전력을, 알루미늄 금속 증착원이 장착된 마그네트론 스퍼터링 장치에는 331 V, 1.43 A, 점유율 60%의 펄스직류 전력을 인가하고, 질소(N2) 가스 5 sccm 인입하여 질화막이 형성되도록 하여, 60분간 알루미늄-실리콘-질화막을 증착하여 4000Å의 막을 형성하였다.
Taber 마모 실험을 수행할 수 있도록 개조한 Pin-on-disk 마모 실험 장치를 이용하여, 하중은 43 g으로 하여 폴리카보네이트 최상층에 수소화된 실리콘 질화막과, 알루미늄-실리콘-질화막의 2층막이 증착된 시료를 하부 회전축을 중심으로 100 RPM의 속도로 회전시켜 2000회 회전하는 Taber 마모 실험을 진행하였다. Taber 마모 실험 이후 광투과율을 측정하였다.
도 9a를 통해 확인할 수 있듯이, 증착막이 증착되지 않은 폴리카보네이트 시료의 경우, Taber 마모 실험을 수행하기 전에는 400 nm ~ 700 nm 파장 범위에서 광투과율 87%를 나타내었으나, Taber 마모 실험을 수행한 후에는 낮은 경도로 인한 스크래치 발생으로 광투과율이 42%로 감소하였다.
반면, 도면 9b에서 알 수 있듯이, 폴리카보네이트 최상층에 수소화된 실리콘 질화막과, 알루미늄-실리콘-질화막의 2층막이 증착된 시료의 경우, Taber 마모 실험을 수행하기 전 400 nm ~ 700 nm 파장 범위에서의 광투과율은 75%로 측정되었으며, Taber 마모 실험 이후에도 광투과율은 72%로 유지함을 확인할 수 있었다.

Claims (26)

  1. (a) 마그네트론 스퍼터링을 이용한 박막 증착을 위한 진공조(1) 내부에 위치
    한 전도성 시료 장착대(7)에 시료(6)로 폴리카보네이트 기판을 장착하는 단계;
    (b) 고진공용 터보 펌프(13)와 상기 터보 고진공 펌프(13)의 가동을 돕는 저진공 펌프(14)로 상기 진공조(1) 내부의 진공도를 고진공 영역까지 배기하는 단계;
    (c) 마그네트론 증착원에 장착된 알루미늄과 실리콘 스퍼터링 타겟(3)의 작동을 위하여, 가스유량 조절장치에 의해 비활성화 가스인 아르곤(Ar)과 반응성 가스인 질소(N2)를 상기 진공조(1) 내부로 인입하여, 상기 진공조(1) 내부의 압력을 조절하는 단계;
    (d) 상기 진공조(1) 내부의 RF안테나(5)에 RF전력을 인가하여, 상기 `(c)`단계에서 인입된 가스의 플라즈마를 형성시키는 단계; 및
    (e) 상기 `(d)`단계에서 플라즈마 형성 후, 상기 알루미늄 금속 타겟(3)과 실리콘 타겟(3)이 장착된 마그네트론 스퍼터링 증착원에 직류, 또는 펄스직류 전원 장치(2)에 의한 펄스직류 전력을 인가하여 박막 증착을 위한 플라즈마를 발생시키는 단계;를 포함하는 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 방법.
  2. 제 1항에 있어서,
    상기 (c)단계에서,
    상기 진공조(1) 내부의 압력은 0.5 mTorr ∼ 30 mTorr인 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 방법.
  3. 제 1항에 있어서,
    상기 (c)단계에서,
    인입되는 상기 아르곤(Ar)과 질소(N2) 가스의 유량비는 10:1 ~ 1:1인 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 방법.
  4. 제 1항에 있어서,
    상기 (d)단계에서,
    상기 RF안테나(5)에 인가되는 RF전력은 0 ~ 300 W인 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 방법.
  5. 제 1항에 있어서,
    상기 (e)단계에서,
    상기 직류 또는 펄스직류의 평균 전력 밀도는 1 W/cm2 ∼ 20 W/cm2 인 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 방법.
  6. 마그네트론 스퍼터링을 이용한 박막 증착을 위한 진공조(1);
    상기 마그네트론 스퍼터링의 증착원에 장착된 알루미늄과 실리콘 스퍼터링 타켓(3)에 직류 또는 펄스직류 전력을 인가하기 위한 펄스직류 전원장치(2);
    상기 증착원에 장착된 상기 스퍼터링 타겟(3)에 의해 발생되는 플라즈마(4);
    상기 진공조(1) 내부에 인입되어 가스를 플라즈마화 하기 위한 RF 안테나(5);
    상기 진공조(1) 내부에서 증착되는 시료를 장착하기 위한 전도성 시료 장착대(7);
    상기 RF 안테나(5)로 전원을 공급하는 RF전원장치(9);
    상기 진공조(1) 내부의 고전공을 유지하기 위한 고진공용 터보 펌프(13);
    상기 진공조(1)의 내부의 진공도를 계측하는 진공 게이지(12); 및
    상기 플라즈마 발생에 이용되는 아르곤(Ar)과 질소(N2)가스의 유량을 조절하는 가스유량 조절부(11);를 포함하는 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치.
  7. 제 6항에 있어서,
    상기 진공조(1) 내부의 압력은 0.5 mTorr ∼ 30 mTorr인 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치.
  8. 제 6항에 있어서,
    상기 가스유량 조절부(11)가 인입되는 상기 아르곤(Ar)과 질소(N2) 가스의 유량비를 10:1 ~ 1:1로 조절하는 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치.
  9. 제 6항에 있어서,
    상기 RF전원장치(9)에서 상기 RF안테나(5)로 인가되는 RF전력은 0 ~ 300 W 인 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치.
  10. 제 6항에 있어서,
    상기 펄스직류 전원장치(2)가 알루미늄과 실리콘 스퍼터링 타켓(3)에 인가하는 직류 또는 펄스직류의 평균 전력 밀도는 1 W/cm2 ∼ 20 W/cm2 인 것을 특징으로 하는 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착 장치.
  11. 일면 또는 양면에 증착된 수소화된 실리콘 질화막(Hydrogenated Silicon Nitride); 및
    상기 수소화된 실리콘 질화막 상에 증착된 알루미늄-실리콘-질화막(aluminum silicon nitride)을 포함하는 폴리카보네이트.
  12. 제 11항에 있어서,
    상기 수소화된 실리콘 질화막은 자외선 차단 특성을 향상시키고,
    상기 알루미늄-실리콘-질화막은 경도 및 내마모성을 향상시키는,
    폴리카보네이트.
  13. 제 11항에 있어서,
    상기 수소화된 실리콘 질화막은, 실리콘 스퍼터링 타겟을 포함하는 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내 불활성 가스, 질소 및 수소를 인입시켜 반응성 스퍼터링 방법에 의해, 형성됨을 특징으로 하는,
    폴리카보네이트.
  14. 제 13항에 있어서,
    상기 반응성 스퍼터링 방법은,
    플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내에서 불활성 가스, 수소 및 질소 가스의 플라즈마를 형성하는 단계;
    상기 가스의 플라즈마가 실리콘 스퍼터링 타겟과 충돌하는 스퍼터링 단계; 및;
    스포터링으로 인하여 폴리카보네이트 표면에 수소화된 실리콘 질화막이 증착되는 단계를 포함함을 특징으로 하는,
    폴리카보네이트.
  15. 제 11항에 있어서,
    상기 알루미늄 실리콘 질화막은, 실리콘 스퍼터링 타겟 및 알루미늄 스퍼터링 타겟을 포함하는 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내 불활성 가스 및 질소를 인입시켜 반응성 스퍼터링 방법에 의해, 형성됨을 특징으로 하는,
    폴리카보네이트.
  16. 제 15항에 있어서,
    상기 반응성 스퍼터링 방법은,
    플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내에서 불활성 가스와 질소 가스의 플라즈마를 형성하는 단계;
    상기 가스의 플라즈마가 실리콘 스퍼터링 타겟 및 알루미늄 스퍼터링 타겟과 충돌하는 스퍼터링 단계; 및
    스퍼터링으로 인하여 수소화된 실리콘 질화막이 증착된 폴리카보네이트 표면에 알루미늄 실리콘 질화막이 증착되는 단계를 포함함을 특징으로 하는,
    폴리카보네이트.
  17. 제 13항 또는 제 15항에 있어서,
    상기 증착 장치 내부 압력은 0.5 mTorr 내지 20 mTorr임을 특징으로 하는,
    폴리카보네이트.
  18. 제 13항 또는 제 15항에 있어서,
    상기 불활성 가스는, 아르곤임을 특징으로 하는,
    폴리카보네이트.
  19. 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치에 폴리카보네이트 기판 또는 실리콘 산화막이 형성되어 있는 폴리카보네이트 기판을 장착하는 단계;
    상기 폴리카보네이트 기판에, 실리콘 스퍼터링 타겟으로부터 스퍼터링에 의해 수소화 실리콘 질화막을 증착하는 단계; 및
    상기 수소화된 실리콘 질화막 상에, 실리콘 스퍼터링 타겟 및 알루미늄 스퍼터링 타겟으로부터 알루미늄 실리콘 질화막을 증착하는 단계를 포함하는,
    폴리카보네이트의 자외선 차단 특성 및 내마모성을 향상시키는 방법.
  20. 제 19항에 있어서,
    상기 수소화된 실리콘 질화막은 자외선 차단 특성을 향상시키고,
    상기 알루미늄-실리콘-질화막은 경도 및 내마모성을 향상시키는,
    폴리카보네이트의 자외선 차단 특성 및 내마모성을 향상시키는 방법.
  21. 제 19항에 있어서,
    상기 수소화된 실리콘 질화막 증착은 상기 증착 장치 내에 불활성 가스, 질소 및 수소를 인입시켜 반응성 스퍼터링 방법에 의함을 특징으로 하는,
    폴리카보네이트의 자외선 차단 특성 및 내마모성을 향상시키는 방법.
  22. 제 21항에 있어서,
    상기 반응성 스퍼터링 방법은,
    플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내에서 불활성 가스, 수소 및 질소의 플라즈마를 형성하는 단계;
    상기 가스의 플라즈마가 실리콘 스퍼터링 타겟과 충돌하는 스퍼터링 단계; 및
    스퍼터링으로 인하여 폴리카보네이트 표면에 수소화된 실리콘 질화막이 증착되는 단계를 포함함을 특징으로 하는,
    폴리카보네이트의 자외선 차단 특성 및 내마모성을 향상시키는 방법.
  23. 제 19항에 있어서,
    상기 알루미늄 실리콘 질화막 증착은, 실리콘 스퍼터링 타겟 및 알루미늄 스퍼터링 타겟을 포함하는 플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내 불활성 가스 및 질소를 인입시켜 반응성 스퍼터링 방법에 의함을 특징으로 하는,
    폴리카보네이트의 자외선 차단 특성 및 내마모성을 향상시키는 방법.
  24. 제 23항에 있어서,
    상기 반응성 스퍼터링 방법은,
    플라즈마 반응성 마그네트론 스퍼터링 박막 증착 장치 내에서 불활성 가스와 질소 가스의 플라즈마를 형성하는 단계;
    상기 가스의 플라즈마가 실리콘 스퍼터링 타겟 및 알루미늄 스퍼터링 타겟과 충돌하는 스퍼터링 단계; 및
    스퍼터링으로 인하여 수소화된 실리콘 질화막이 증착된 폴리카보네이트 표면에 알루미늄 실리콘 질화막이 증착되는 단계를 포함함을 특징으로 하는,
    폴리카보네이트의 자외선 차단 특성 및 내마모성을 향상시키는 방법.
  25. 제 22항 또는 제 24항에 있어서,
    상기 증착 장치 내부 압력은 0.5 mTorr 내지 20 mTorr임을 특징으로 하는,
    폴리카보네이트의 자외선 차단 특성 및 내마모성을 향상시키는 방법.
  26. 제 22항 또는 제 24항에 있어서,
    상기 불활성 가스는, 아르곤임을 특징으로 하는,
    폴리카보네이트의 자외선 차단 특성 및 내마모성을 향상시키는 방법.
PCT/KR2014/001161 2013-02-12 2014-02-12 자외선 차단 및 경도 및 내마모성이 향상된 폴리카보네이트 WO2014126388A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130014911A KR20140102345A (ko) 2013-02-12 2013-02-12 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착방법 및 그 장치
KR10-2013-0014911 2013-02-12
KR20130109509A KR20150030366A (ko) 2013-09-12 2013-09-12 폴리카보네이트의 내마모성 및 자외선에 대한 내후성 향상을 위한 코팅막 증착 방법 및 이 방법에 의한 코팅막이 증착된 폴리카보네이트
KR10-2013-0109509 2013-09-12

Publications (1)

Publication Number Publication Date
WO2014126388A1 true WO2014126388A1 (ko) 2014-08-21

Family

ID=51354340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001161 WO2014126388A1 (ko) 2013-02-12 2014-02-12 자외선 차단 및 경도 및 내마모성이 향상된 폴리카보네이트

Country Status (1)

Country Link
WO (1) WO2014126388A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016283A1 (en) * 2020-07-22 2022-01-27 National Research Council Of Canada Coated substrates and methods for the preparation thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078618A (ko) * 2001-04-06 2002-10-19 이정중 다중 코일 방식의 유도 결합 플라즈마 마그네트론스퍼터링 시스템 및 그 방법
KR100977330B1 (ko) * 2007-03-29 2010-08-20 어플라이드 머티어리얼스, 인코포레이티드 태양 전지를 위한 반사방지층 또는 패시베이션층을 제조하기 위한 방법
WO2011007543A1 (ja) * 2009-07-17 2011-01-20 三井化学株式会社 積層体およびその製造方法
KR101117261B1 (ko) * 2010-09-03 2012-02-24 한국과학기술연구원 절연체 박막 내에 반도체 물질 양자점들을 형성하는 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078618A (ko) * 2001-04-06 2002-10-19 이정중 다중 코일 방식의 유도 결합 플라즈마 마그네트론스퍼터링 시스템 및 그 방법
KR100977330B1 (ko) * 2007-03-29 2010-08-20 어플라이드 머티어리얼스, 인코포레이티드 태양 전지를 위한 반사방지층 또는 패시베이션층을 제조하기 위한 방법
WO2011007543A1 (ja) * 2009-07-17 2011-01-20 三井化学株式会社 積層体およびその製造方法
KR101117261B1 (ko) * 2010-09-03 2012-02-24 한국과학기술연구원 절연체 박막 내에 반도체 물질 양자점들을 형성하는 장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022016283A1 (en) * 2020-07-22 2022-01-27 National Research Council Of Canada Coated substrates and methods for the preparation thereof

Similar Documents

Publication Publication Date Title
US7205662B2 (en) Dielectric barrier layer films
WO2012093807A2 (ko) 내지문 코팅 방법 및 장치
TW201812055A (zh) 離子輔助沉積的稀土氧化物之頂部塗層
WO2012176990A1 (ko) 내지문과 반사방지를 위한 코팅방법 및 코팅장치
WO2014193100A1 (en) Method of manufacturing multi-layer thin film, member including the same and electronic product including the same
WO2011037365A2 (en) Low emissivity glass comprising dielectric layer and method for producing the same
US20080014466A1 (en) Glass with scratch-resistant coating
WO2015152481A1 (ko) 고경도 박막형 투명 박판 글라스, 이의 제조 방법, 고경도 박막형 투명 박판 도전성 글라스 및 이를 포함하는 터치 패널
WO2019054617A1 (ko) 내플라즈마 특성이 향상된 플라즈마 에칭 장치용 부재 및 그 제조 방법
WO2014126388A1 (ko) 자외선 차단 및 경도 및 내마모성이 향상된 폴리카보네이트
WO2023182747A1 (ko) 내플라즈마 2층 코팅막 구조물 및 이의 제조 방법
KR20140102345A (ko) 폴리카보네이트 소재의 표면 경도 및 내마모성 향상을 위한 알루미늄-실리콘-질화막 증착방법 및 그 장치
KR20150030366A (ko) 폴리카보네이트의 내마모성 및 자외선에 대한 내후성 향상을 위한 코팅막 증착 방법 및 이 방법에 의한 코팅막이 증착된 폴리카보네이트
WO2012093808A2 (ko) 내지문 코팅 방법 및 장치
AU782066B2 (en) Diamond-like carbon coating on a non metal article for added hardness and abrasion resistance
KR20080014527A (ko) 전처리 단계를 포함하는 화학 기상 증착 방법
CN109468604B (zh) 高透射率igzo薄膜的制备方法
JP2011058085A (ja) セラミック積層膜及び該セラミック積層膜の形成方法
JPH0544017A (ja) 窒化ケイ素膜の形成方法
WO2019125000A1 (ko) 내마모성 및 발색력이 우수한 스테인레스 발색 기판 및 이를 위한 스테인레스 기판의 발색방법
WO2015158011A1 (zh) Oled 器件及其制备方法
Hashimoto et al. Surface modification of stainless steel in plasma environments
WO2016076673A1 (ko) 알루미늄 금속층위에 에이치엠디에스오층 및 에이에프층이 함께 형성되며, 또한 이온소스를 활용한 알루미늄 금속층위에 에이치엠디에스오층 및 에이에프층이 함께 형성되는 코팅방법
KR100739484B1 (ko) 징크옥사이드 투명전도막의 제조방법
Lin et al. Preparation, Characterization, Insulation Study of Al 2 O 3 Thin Film Deposited by Dual Ion Beam Sputtering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14752007

Country of ref document: EP

Kind code of ref document: A1