WO2014126112A1 - 産業用ロボットおよび産業用ロボットの制御方法 - Google Patents

産業用ロボットおよび産業用ロボットの制御方法 Download PDF

Info

Publication number
WO2014126112A1
WO2014126112A1 PCT/JP2014/053214 JP2014053214W WO2014126112A1 WO 2014126112 A1 WO2014126112 A1 WO 2014126112A1 JP 2014053214 W JP2014053214 W JP 2014053214W WO 2014126112 A1 WO2014126112 A1 WO 2014126112A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
limit value
torque limit
end effector
torque
Prior art date
Application number
PCT/JP2014/053214
Other languages
English (en)
French (fr)
Inventor
矢澤 隆之
慎浩 田中
淳 尾辻
洋和 渡邊
淳之介 小山
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to JP2015500266A priority Critical patent/JP6295243B2/ja
Priority to CN201480008498.4A priority patent/CN104995001B/zh
Priority to TW103104786A priority patent/TWI647078B/zh
Publication of WO2014126112A1 publication Critical patent/WO2014126112A1/ja
Priority to PH12015501728A priority patent/PH12015501728A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39093On collision, ann, bam, learns path on line, used next time for same command
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41245Discrimination of direction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42289Avoid overload servo motor, actuator limit servo torque
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43203Limitation of speed, permissible, allowable, maximum speed

Definitions

  • the present invention relates to an industrial robot and an industrial robot control method.
  • a horizontal articulated robot used in a part assembly line or the like is known (for example, see Patent Document 1).
  • the robot described in Patent Document 1 is capable of rotating to a support arm, a first arm rotatably connected to the support arm, a second arm rotatably connected to the first arm, and a second arm. And a third arm that can be moved up and down with respect to the second arm.
  • the robot also includes a motor for rotating the first arm relative to the support arm, a motor for rotating the second arm relative to the first arm, and a third arm relative to the second arm. And a motor for raising and lowering the third arm relative to the second arm.
  • teaching (teaching) the robot the four motors are rotated at a low speed and the current limit value of the motor is reduced to prevent the robot from colliding with peripheral devices during teaching. .
  • an end effector is attached to the third arm. Further, the end effector may hold a predetermined workpiece. Therefore, the absolute value of the torque required for the motor (lifting motor) that raises and lowers the third arm when raising the third arm is increased due to the weight of the third arm, end effector, work, etc. When the third arm is lowered, the absolute value of the torque required for the lifting motor is reduced.
  • a torque limit value is set for the lift motor, and when the torque of the lift motor reaches the torque limit value, The lifting motor is stopped. Also, the absolute value of the torque limit value of the lifting motor when raising the third arm and the absolute value of the torque limit value of the lifting motor when lowering the third arm are generally set to the same value. Yes.
  • the third arm is The absolute value of the torque required for the lifting motor that rotates in one direction when raising is increased, and the absolute value of the torque required for the lifting motor that rotates in the other direction when lowering the third arm is small. Therefore, if the absolute value of the torque limit value is set according to the torque of the lifting motor when raising the third arm, the end effector etc. will contact the peripheral device etc. when the third arm is lowered. Nevertheless, the lifting motor continues to rotate without the torque of the lifting motor falling below the torque limit value, and the end effector and the like may be damaged.
  • the third arm is normally raised when the third arm is raised. Regardless, the elevator motor torque may exceed the torque limit value and the elevator motor may stop.
  • a first problem of the present invention is to provide an industrial robot capable of preventing damage during automatic operation after completion of teaching.
  • a first object of the present invention is to provide an industrial robot control method capable of preventing damage during automatic driving after completion of teaching.
  • the second problem of the present invention is that the maximum value of the absolute value of torque required when rotating in one direction is larger than the maximum value of the absolute value of torque required when rotating in the other direction.
  • An industrial robot provided with a motor for operation is to provide an industrial robot capable of preventing damage to the industrial robot and peripheral devices and capable of appropriate operation.
  • the second problem of the present invention is that the maximum value of the absolute value of torque required when rotating in one direction is larger than the maximum value of the absolute value of torque required when rotating in the other direction.
  • the industrial robot control method capable of preventing damage to the industrial robot and peripheral devices and capable of appropriately operating the industrial robot. Is to provide.
  • an industrial robot of the present invention is an industrial robot including an operation motor and a control unit that controls the motor.
  • the torque of the motor for rotating is set to a positive torque
  • the torque of the motor for rotating the motor in the other direction is set to a negative torque
  • the teaching point and / or the industrial robot is controlled after the teaching of the industrial robot is finished
  • the control unit performs the normal operation during the test operation.
  • the motor rotates at a lower rotational speed than the normal rotational speed, and if the motor rotates in one direction during the test operation, If the motor is controlled with a torque limit value that is lower than the torque limit value when the motor rotates in one direction, and the motor rotates in the other direction during test operation, the motor rotates in the other direction during normal operation. In this case, the motor is controlled with a torque limit value higher than the torque limit value.
  • an industrial robot control method is an industrial robot control method including a motor for operation, and the motor is unidirectional.
  • the torque of the motor for rotating the motor to the positive direction is set to a positive torque
  • the torque of the motor for rotating the motor to the other direction is set to a negative torque
  • the teaching point and / or the industrial robot If the automatic operation of the industrial robot that is performed to check whether the control program is correct is the test operation, and the automatic operation of the industrial robot that is performed after the test operation is the normal operation, the rotation during the test operation is the normal operation.
  • the motor If the motor rotates at a lower rotational speed than the speed and the motor rotates in one direction during test operation, the motor If the motor is controlled with a torque limit value lower than the torque limit value when rotating in the direction and the motor rotates in the other direction during test operation, the torque when the motor rotates in the other direction during normal operation The motor is controlled with a torque limit value higher than the limit value.
  • the rotation speed is lower than the rotation speed at the time of normal operation performed after the completion of the test operation.
  • the motor is rotating at speed. That is, in the present invention, the operation speed of the industrial robot during the test operation is slow. Therefore, according to the present invention, it is possible to reduce the free running distance of the industrial robot when the operator senses the danger during the test operation and makes the industrial robot emergency stop.
  • the motor when the motor rotates in one direction during the test operation, the motor is controlled with a torque limit value lower than the torque limit value when the motor rotates in one direction during the normal operation, and the test operation is performed.
  • the motor when the motor rotates in the other direction, the motor is controlled with a torque limit value higher than the torque limit value when the motor rotates in the other direction during normal operation. Therefore, in the present invention, when the industrial robot comes into contact with the peripheral device or the like during the test operation, the motor torque exceeds the torque limit value or falls below the torque limit value in a short time. Therefore, according to the present invention, when the motor torque exceeds the torque limit value or falls below the torque limit value, the motor is immediately stopped so that the industrial robot comes into contact with the peripheral device or the like during the test operation. The motor can be stopped in a short time.
  • the present invention it is possible to reduce the free running distance of the industrial robot when the operator detects a danger during the test operation and makes an emergency stop of the industrial robot.
  • the motor can be stopped in a short time. Therefore, according to the present invention, it is possible to prevent the industrial robot from being damaged during the test operation. Also, if a problem occurs during a test operation, the industrial robot can be prevented from coming into contact with peripheral devices during normal operation after completion of the test operation by taking predetermined measures such as teaching again. It becomes possible to prevent the industrial robot from being damaged during normal operation. As a result, according to the present invention, it is possible to prevent the industrial robot from being damaged during the automatic operation after completion of teaching.
  • the industrial robot includes a motor for raising and lowering the end effector as a motor, and the torque limit value of the elevator motor when the end effector is raised during the test operation is the first torque limit value.
  • the control unit makes the absolute value of the second torque limit value smaller than the absolute value of the first torque limit value.
  • the first torque limit value and the second torque limit value are set, and when the end effector is raised during the test operation, the control unit controls the lifting motor based on the first torque limit value to perform the test.
  • the absolute value of the torque required for the lifting motor when raising the end effector increases due to the effects of the end effector and the weight of the work held by the end effector.
  • the first torque limit value and the second torque limit value are set so that the absolute value of the second torque limit value is smaller than the absolute value of the first torque limit value. Since the second torque limit value is set, when the end effector is rising normally, the torque of the lifting motor exceeds, for example, the first torque limit value, and the lifting motor does not stop, and When the end effector or the like comes into contact with the peripheral device or the like, the end effector is set so that the torque of the elevating motor exceeds, for example, the first torque limit value.
  • a first torque limit value is possible in accordance with the torque required of the elevating motor when increasing the connector.
  • the lifting motor torque is, for example, lower than the second torque limit value so that the lifting motor does not stop, and the end effector contacts the peripheral device, etc.
  • the second torque limit value can be set according to the torque required for the lift motor when the end effector is lowered so that the torque of the lift motor is lower than the second torque limit value, for example.
  • the lifting motor is controlled based on the first torque limit value when the end effector is raised, and the lifting motor is controlled based on the second torque limit value when the end effector is lowered.
  • the end effector moves up and down, the end effector, etc. comes into contact with peripheral devices, etc., and if the torque of the lifting motor exceeds or falls below the torque limit value, the lifting motor is stopped to prevent damage to the end effector, etc. It becomes possible to do. Further, when the end effector is normally raised and lowered, the end effector can be appropriately raised and lowered by continuing to rotate the raising and lowering motor.
  • the industrial robot includes a pendant switch electrically connected to the control unit, and the motor load including at least one of the weight of the end effector and the weight of the work held by the end effector is pendant. It is possible to input from the switch, and the control unit preferably sets the first torque limit value and the second torque limit value based on the motor load input from the pendant switch. With this configuration, the end effector can be lifted and lowered more appropriately, and when the end effector or the like comes into contact with a peripheral device or the like, the torque of the lift motor can surely exceed or fall below the torque limit value. As described above, the first torque limit value and the second torque limit value can be set according to the motor load. Therefore, the end effector can be raised and lowered more appropriately, and damage to the end effector and the like can be reliably prevented.
  • the industrial robot includes, for example, a main body portion, a first arm portion whose base end side is rotatably connected to the main body portion, and a base end side rotatable to the distal end side of the first arm portion.
  • a second arm portion coupled to the first arm portion and an end effector disposed on the distal end side of the second arm portion, and as a motor for operation, a second arm portion for rotating the first arm portion with respect to the main body portion.
  • a lifting motor for lifting and lowering the end effector with respect to the two arm portions is provided.
  • the industrial robot includes a main body portion, a first arm portion whose base end side is rotatably connected to the main body portion, and a base end side rotatably connected to the distal end side of the first arm portion.
  • the second arm is provided with a second rotation motor for rotating the second arm portion and a rotation motor for rotating the end effector with respect to the second arm portion.
  • the controller includes a lifting motor for moving the end effector up and down with respect to the unit, and the control unit sets the first rotation motor, the second rotation motor, and the rotation motor to the same rotational speed as in the normal operation during the test operation.
  • Rotate at speed or
  • the elevating motor is rotated in one direction during the test operation by rotating the elevating motor at a lower rotational speed than during normal operation.
  • the elevator motor is controlled with a torque limit value lower than the torque limit value when the elevator motor rotates in one direction during normal operation, and the elevator motor moves in the other direction during test operation.
  • the end effector Due to the weight of the end effector and the work held by the end effector, if the end effector when lowered comes into contact with the peripheral device, etc., the end effector etc. is likely to be damaged. It is possible to stop the elevating motor for elevating in a short time when the end effector etc. comes into contact with the peripheral device etc. during the test operation, and the operation of the end effector after the elevating motor is stopped The amount can be reduced. Accordingly, it is possible to prevent damage to the end effector and the like during the test operation. Also, with this configuration, the first rotation motor, the second rotation motor, and the rotation motor rotate at the same speed as the rotation speed during the normal operation during the test operation. The operating speed can be increased.
  • the controller can select the motor rotation speed and the torque limit value during the test operation. If comprised in this way, it will become possible to perform the test driving
  • the industrial robot of the present invention includes an operation motor and a control unit that controls the motor, and the motor rotates in one direction.
  • the maximum absolute value of the torque required for the motor is larger than the maximum absolute value of the torque required for the motor when the motor rotates in the other direction.
  • the control unit sets the absolute value of the second torque limit value to the first torque limit value.
  • the first torque limit value and the second torque limit value are set so as to be smaller than the absolute value of the torque limit value, and the control unit is based on the first torque limit value when the motor rotates in one direction. Control the motor, the motor is the other When rotating in, and controlling the motor based on the second torque limit value.
  • an industrial robot control method is an industrial robot control method including an operation motor, and the motor is unidirectional.
  • the maximum absolute value of the torque required for the motor when rotating in the direction is larger than the maximum absolute value of the torque required for the motor when rotating in the other direction.
  • the torque limit value of the motor when rotating is the first torque limit value and the torque limit value of the motor when rotating in the other direction is the second torque limit value
  • the absolute value of the second torque limit value is the first torque.
  • the first torque limit value and the second torque limit value are set so as to be smaller than the absolute value of the limit value.
  • the maximum absolute value of torque required for the motor when the motor rotates in one direction is greater than the maximum absolute value of torque required for the motor when the motor rotates in the other direction. It is getting bigger.
  • the absolute value of the second torque limit value that is the torque limit value of the motor when rotating in the other direction is equal to the first torque limit value that is the torque limit value of the motor when rotating in one direction. The first torque limit value and the second torque limit value are set so as to be smaller than the absolute value.
  • the torque of the motor when the motor rotates in one direction and the industrial robot is operating normally for example, exceeds the first torque limit value, and the motor does not stop, and
  • the motor torque when a part of the industrial robot comes into contact with the peripheral device etc. for example, exceeds the first torque limit value.
  • the motor torque when the motor rotates in the other direction and the industrial robot is operating normally is, for example, less than the second torque limit value, and the motor does not stop.
  • the second torque limit value can be set according to the torque.
  • the motor when the motor rotates in one direction, the motor is controlled based on the first torque limit value, and when the motor rotates in the other direction, the motor is controlled based on the second torque limit value. is doing. Therefore, in the present invention, when the motor rotates and the industrial robot operates, a part of the industrial robot comes into contact with the peripheral device and the motor torque exceeds or falls below the torque limit value. In addition, the motor can be stopped to prevent damage to industrial robots and peripheral devices. In the present invention, when the motor rotates and the industrial robot is operating normally, the industrial robot can be operated appropriately by continuing to rotate the motor.
  • the industrial robot is disposed in the atmosphere
  • the motor is a lifting motor for lifting the end effector
  • the end effector is raised when the motor rotates in one direction.
  • the first torque limit value is the motor torque limit value when raising the end effector
  • the second torque limit value descends the end effector.
  • the control unit controls the motor based on the first torque limit value when the end effector is raised, and moves up and down based on the second torque limit value when the end effector is lowered.
  • the motor is controlled.
  • the industrial robot is disposed in the atmosphere
  • the motor is a lifting motor for lifting the end effector
  • the motor rotates in one direction.
  • the first torque limit value is the torque limit value of the motor when the end effector is raised
  • the second torque limit value is The torque limit value of the motor when the end effector is lowered, the motor is controlled based on the first torque limit value when the end effector is raised, and is raised or lowered based on the second torque limit value when the end effector is lowered.
  • the motor is controlled.
  • the first torque limit value can be set according to the torque required for the motor when the end effector is raised so that the torque of the motor exceeds the first torque limit value.
  • the motor torque is, for example, below the second torque limit value so that the motor does not stop, and the end effector etc. comes into contact with the peripheral device etc.
  • the second torque limit value can be set in accordance with the torque required of the motor when the end effector is lowered, so that the torque is lower than the second torque limit value.
  • the lifting motor when the end effector is raised, the lifting motor is controlled based on the first torque limit value, and when the end effector is lowered, the lifting motor is controlled based on the second torque limit value. Therefore, if the end effector etc. comes into contact with peripheral devices etc. when the end effector moves up and down and the motor torque exceeds or falls below the torque limit value, the motor can be stopped to prevent damage to the end effector etc. It becomes possible. Further, when the end effector is normally raised and lowered, the end effector can be appropriately raised and lowered by continuing to rotate the motor.
  • the industrial robot includes a pendant switch electrically connected to the control unit, and the motor load including at least one of the weight of the end effector and the weight of the work held by the end effector is pendant. It is possible to input from the switch, and the control unit preferably sets the first torque limit value and the second torque limit value based on the motor load input from the pendant switch.
  • the end effector can be raised and lowered more appropriately, and when the end effector or the like comes into contact with a peripheral device or the like, the torque of the motor surely exceeds or falls below the torque limit value.
  • the first torque limit value and the second torque limit value can be set according to the motor load. Therefore, the end effector can be raised and lowered more appropriately, and damage to the end effector and the like can be reliably prevented.
  • the controller preferably drives the motor to acquire the motor load of the motor, and sets the first torque limit value and the second torque limit value based on the acquired motor load.
  • the torque of the motor can surely exceed the torque limit value when the industrial robot can be operated more appropriately and when a part of the industrial robot comes into contact with a peripheral device or the like.
  • the first torque limit value and the second torque limit value can be set in accordance with the motor load so as to be lower. Therefore, the industrial robot can be operated more appropriately, and damage to the industrial robot and peripheral devices can be surely prevented.
  • control unit stores the first torque limit value and the second torque limit value according to the motor load as a table, and the control unit corresponds to the first torque corresponding to the motor load.
  • the limit value and the second torque limit value are read and set.
  • the control unit controls the motor based on the first torque limit value at least when the end effector is raised when teaching the industrial robot, and is controlled when the end effector is lowered when teaching the industrial robot. It is preferable to control the motor based on the two torque limit value.
  • the end effector may come into contact with peripheral devices, etc., and damage the end effector compared to when the industrial robot is automatically operated after the teaching is completed. Is expensive. Therefore, if comprised in this way, even if it is at the time of teaching, it will become possible to prevent damage to an end effector etc.
  • the control unit controls the motor based on the first torque limit value when the end effector is raised during the automatic operation of the industrial robot after the teaching is finished, and the first control unit controls the motor when the end effector is lowered during the automatic operation.
  • the motor is controlled based on the two torque limit values, and the first torque limit value during teaching is different from the first torque limit value during automatic operation.
  • the second torque limit value during teaching and the automatic operation are different. It is preferable that the second torque limit value at the time is different.
  • an industrial robot includes an end effector mounting member to which an end effector is mounted, and a motor moves the end effector and the end effector mounting member up and down.
  • an industrial robot includes an end effector, an end effector mounting member to which the end effector is mounted, a shaft member that is arranged with the vertical direction as an axial direction, and the end effector mounting member is fixed to the upper end, and a shaft member A case body in which at least a lower end side is accommodated, and a bellows arranged at one end to be fixed to the case body and the other end to the shaft member so as to cover the outer peripheral side of the shaft member.
  • the end effector, the end effector mounting member, and the lifting / lowering motor for moving the shaft member up and down.
  • the end effector and the end effector mounting member are arranged in a vacuum and are either on the inner peripheral side or the outer peripheral side of the bellows.
  • One is in a vacuum and the other of the inner and outer peripheral sides of the bellows is the atmosphere
  • the end effector is lowered when the motor rotates in one direction
  • the end effector is raised when the motor rotates in the other direction
  • the first torque limit value is the motor when the end effector is lowered.
  • the second torque limit value is a torque limit value of the motor when raising the end effector
  • the control unit controls the motor based on the first torque limit value when the end effector is lowered. Then, when the end effector is lifted, the lifting motor is controlled based on the second torque limit value.
  • the end effector and the end effector mounting member are disposed in a vacuum, and when the shaft member is lowered together with the end effector and the end effector mounting member and the bellows is extended, negative pressure is generated and the end effector is generated. Therefore, the absolute value of the torque required for the motor when lowering the end effector is large, and the absolute value of the torque required for the motor when raising the end effector is small. May be. However, even in this case, when the end effector is descending normally, the torque of the motor is, for example, below the first torque limit value so that the motor does not stop, and the end effector or the like is connected to the peripheral device.
  • the first torque limit value can be set according to the torque required for the motor when the end effector is lowered so that the torque of the motor is lower than the first torque limit value, for example. .
  • the motor torque exceeds, for example, the second torque limit value, and the motor does not stop and the end effector etc. comes into contact with the peripheral device etc.
  • the second torque limit value can be set in accordance with the torque required of the motor when the end effector is raised so that the torque exceeds the second torque limit value. In this case, when the end effector is lowered, the lifting motor is controlled based on the first torque limit value, and when the end effector is lifted, the lifting motor is controlled based on the second torque limit value.
  • the motor can be stopped to prevent damage to the end effector or the like. It becomes possible. Further, when the end effector is normally raised and lowered, the end effector can be appropriately raised and lowered by continuing to rotate the motor.
  • the industrial robot is a battery exchange robot provided with a battery insertion / removal mechanism that is attached to a vehicle and that pulls out the battery from the battery housing portion in which the battery is housed and inserts the battery into the battery housing portion.
  • the battery insertion / removal mechanism includes a battery engaging portion that engages with the battery, and the motor is a pull-in / out motor for moving the battery engaging portion, and the battery is rotated when the motor rotates in one direction.
  • the engaging part inserts the battery into the battery accommodating part, and when the motor rotates in the other direction, the battery engaging part pulls out the battery from the battery accommodating part, and the battery engaging part accommodates the battery in the first torque limit value.
  • the torque limit value is a torque limit value of the motor when the battery engaging portion pulls out the battery from the battery housing portion, and the control unit controls the motor based on the first torque limit value when the battery is inserted, and the battery At the time of drawing, the lifting motor is controlled based on the second torque limit value.
  • the motor engaging torque when the battery engaging portion normally performs the battery insertion operation exceeds the first torque limit value, for example, and the battery engaging portion does not stop.
  • the first torque limit value may be set according to the torque required for the motor when the battery is inserted so that the torque of the motor exceeds, for example, the first torque limit value when the motor contacts the peripheral device. It becomes possible.
  • the motor torque when the battery engaging portion is normally performing the battery pulling operation is, for example, less than the second torque limit value, and the motor does not stop.
  • the second torque limit value can be set according to the torque required for the motor when the battery is pulled out so that the torque of the motor falls below, for example, the second torque limit value when contacting the device. .
  • the motor is controlled based on the first torque limit value when the battery is inserted, and the lifting motor is controlled based on the second torque limit value when the battery is pulled out.
  • the battery engaging portion or the like comes into contact with a peripheral device or the like at the time of replacement and the motor torque exceeds or falls below the torque limit value, damage to the battery engaging portion or the like can be prevented.
  • the battery engaging portion is operating normally at the time of battery replacement, it is possible to keep the motor rotating and operate the battery engaging portion appropriately.
  • first invention it is possible to prevent the industrial robot from being damaged during automatic operation after the completion of teaching. Further, according to the present invention (second invention), it is possible to prevent the industrial robot and peripheral devices from being damaged, and it is possible to appropriately operate the industrial robot.
  • FIG. 11 It is a side view which shows an industrial robot from the EE direction of FIG. It is a side view of the industrial robot concerning other embodiment of this invention. It is a top view for demonstrating the raising / lowering mechanism of the industrial robot shown in FIG. It is a figure of the industrial robot concerning other embodiment of this invention, (A) is a top view, (B) is a side view. It is sectional drawing for demonstrating the internal structure of the F section of FIG. 11 (B). It is a perspective view of the battery exchange system in which the industrial robot concerning other embodiment of this invention is installed. It is a perspective view which shows the G section of FIG. 13 from another angle. It is the schematic for demonstrating the structure of the battery shown in FIG. 13, and a battery accommodating part.
  • FIG. 14 It is a figure which shows the battery insertion / extraction mechanism and lifting mechanism shown in FIG. 14 from the front. It is a figure which shows a battery insertion / extraction mechanism and a raising / lowering mechanism from the HH direction of FIG. It is a figure for demonstrating the battery moving mechanism shown in FIG. 16 from a side surface. It is a perspective view of the industrial robot concerning other embodiment of this invention. It is a perspective view of the industrial robot concerning other embodiment of this invention.
  • FIG. 1 is a side view for explaining the configuration of an industrial robot 1 according to an embodiment of the present invention.
  • the Z direction in FIG. The Z1 direction side is the “upper” side
  • the Z2 direction side is the “lower” side.
  • the industrial robot 1 (hereinafter referred to as “robot 1”) of this embodiment is a horizontal articulated robot (SCARA robot) that is installed and used in a part production line, an assembly line, or the like, and is disposed in the atmosphere.
  • the robot 1 includes a main body 2, an arm 3 whose base end side is rotatably connected to the main body 2, and a ball screw spline 4 attached to the distal end side of the arm 3.
  • An end effector (not shown) is attached to the ball screw spline 4.
  • the robot 1 includes a control unit 5 that controls the robot 1 and a pendant switch 6 that is electrically connected to the control unit 5.
  • the main body 2 is formed in a substantially cylindrical shape.
  • the lower end of the main body 2 is fixed to a frame 7 that forms a part of a production line or an assembly line, for example.
  • the arm 3 is composed of two arm parts, a first arm part 11 and a second arm part 12 disposed on the upper side of the first arm part 11.
  • the proximal end side of the first arm portion 11 is rotatably connected to the main body portion 2, and the proximal end side of the second arm portion 12 is rotatably connected to the distal end side of the first arm portion 11. .
  • the joint that connects the main body 2 and the first arm 11 receives the motor 15 as a first rotation motor for rotating the first arm 11 with respect to the main body 2 and the power of the motor 15.
  • a decelerator 16 that decelerates and transmits is disposed.
  • the motor 15 is a servo motor.
  • the motor 15 is an AC servo motor.
  • the output shaft of the motor 15 is fixed to the input portion of the speed reducer 16, and the proximal end side of the first arm portion 11 is fixed to the output portion of the speed reducer 16.
  • the body of the motor 15 is fixed to the case body of the speed reducer 16.
  • the case body of the speed reducer 16 is fixed to the main body 2.
  • the joint portion connecting the first arm portion 11 and the second arm portion 12 includes a motor 17 as a second rotation motor for rotating the second arm portion 12 with respect to the first arm portion 11, and a motor.
  • a speed reducer 18 that decelerates and transmits the power of 17 is disposed.
  • the motor 17 is a servo motor.
  • the motor 17 is an AC servo motor.
  • the output shaft of the motor 17 is fixed to the input portion of the speed reducer 18, and the distal end side of the first arm portion 11 is fixed to the output portion of the speed reducer 18.
  • the body of the motor 17 is fixed to the case body of the speed reducer 18.
  • the case body of the speed reducer 18 is fixed to the base end side of the second arm portion 12.
  • a motor 19 as a rotation motor for rotating the end effector with respect to the second arm portion 12 and a speed reducer 20 that reduces and transmits the power of the motor 19 are attached to the second arm portion 12. Yes.
  • the motor 19 is a servo motor. Specifically, the motor 19 is an AC servo motor.
  • the output shaft of the motor 19 is fixed to the input portion of the speed reducer 20, and the pulley 21 is fixed to the output portion of the speed reducer 20.
  • the body of the motor 19 is fixed to the case body of the speed reducer 20.
  • the case body of the speed reducer 20 is fixed to the upper surface of the second arm portion 12.
  • the ball screw spline 4 includes a ball screw spline shaft 23 arranged with the vertical direction as an axial direction, a ball screw nut 24 for moving the ball screw spline shaft 23 in the vertical direction, and a ball screw spline shaft 23 centering on the axis of the ball screw spline shaft 23. And a spline nut 25 to be rotated.
  • the motor 22 is a servo motor. Specifically, the motor 22 is an AC servo motor. A pulley 28 is fixed to the output shaft of the motor 22.
  • a pulley 29 is attached to the ball screw nut 24.
  • a belt 30 is stretched between the pulley 28 and the pulley 29.
  • a pulley 31 is attached to the spline nut 25.
  • a belt 32 is stretched between the pulley 21 and the pulley 31.
  • the ball screw nut 24 and the spline nut 25 are rotatably held by a holding member 33 formed in a substantially cylindrical shape.
  • a plate is fixed to the upper end of the holding member 33, and the main body of the motor 22 is fixed to the plate.
  • the lower end of the holding member 33 is fixed to the upper surface of the second arm portion 12.
  • An end effector is attached to the lower end of the ball screw spline shaft 23. That is, an end effector is attached to the distal end side of the second arm portion 12.
  • the ball screw spline shaft 23 of the present embodiment is an end effector attachment member to which an end effector is attached.
  • a bellows fixing member 35 to which the lower end of the bellows 34 is fixed is attached to the lower end side of the ball screw spline shaft 23 via a bearing.
  • the upper end of the bellows 34 is attached to a cover member that is fixed to the bottom surface of the second arm portion 12.
  • a bellows fixing member 37 to which the upper end of the bellows 36 is fixed is attached to the upper end side of the ball screw spline shaft 23 via a bearing.
  • the lower end of the bellows 36 is attached to a cover member 38 that covers the motors 17, 19, 22 and the like.
  • the cover member 38 is attached to the upper surface side of the second arm portion 12.
  • the motor 22 when the motor 22 rotates, the power of the motor 22 is transmitted to the ball screw nut 24 via the pulleys 28 and 29 and the belt 30, the ball screw nut 24 rotates, and the ball screw spline shaft 23 moves up and down. That is, when the motor 22 rotates in one direction, the end effector attached to the lower end of the ball screw spline shaft 23 rises together with the ball screw spline shaft 23, and when the motor 22 rotates in the other direction, The attached end effector descends together with the ball screw spline shaft 23.
  • Motor 15, 17, 19, 22 is electrically connected to controller 5, and controller 5 controls motor 15, 17, 19, 22.
  • the pendant switch 6 is connected to the control unit 5 via a predetermined cable.
  • the motors 15, 17, 19, and 22 are motors for operating the robot 1, and in the second embodiment, the motor 22 is for operating the robot 1. It is a motor for operation.
  • FIG. 2 is a graph for explaining the torque limit value of the motor 15 shown in FIG.
  • FIG. 3 is a graph for explaining the torque limit value of the motor 22 shown in FIG.
  • FIG. 4 is a table for explaining an example of a torque limit value table stored in the control unit 5 shown in FIG.
  • the robot 1 When the robot 1 is installed on an assembly line or the like, the robot 1 is taught. Moreover, the robot 1 after teaching is automatically operated based on the teaching result. In this embodiment, when the teaching is completed, a test operation for confirming whether the teaching point and the control program of the robot 1 are correct is performed as the automatic operation of the robot 1. When the test operation is completed, a normal operation for assembling parts or the like is performed as an automatic operation of the robot 1. Note that switching between the test operation and the normal operation is performed by an operator's operation using the pendant switch 6.
  • control unit 5 rotates the motors 15, 17, 19, and 22 at a rotational speed lower than the rotational speed during the normal operation during the test operation.
  • control unit 5 rotates the motors 15, 17, 19, and 22 at a rotation speed of about 10% of the rotation speed during the normal operation during the test operation.
  • the torque of the motors 15, 17, 19, and 22 for rotating the motors 15, 17, 19, and 22 in the one direction is set as a positive torque, and the motors 15, 17, 19, and 22 are rotated in the other direction. If the torque of the motors 15, 17, 19, and 22 is a negative torque, in this embodiment, the controller 5 determines whether the motors 15, 17, 19, and 22 are rotating in one direction during the test operation, When it is determined whether the motor 15, 17, 19, 22 rotates in one direction while determining whether it is rotating in the other direction, the motor 15, 17, 19, 22 rotates in one direction during normal operation. When the motors 15, 17, 19, and 22 are controlled with a torque limit value lower than the torque limit value and the motors 15, 17, 19, and 22 rotate in the other direction, the motor 15 is operated during normal operation.
  • 17,19,22 is controlling motor 15,17,19,22 at a high torque limit value than the torque limit value when rotating in the other direction.
  • the torque limit values of the motors 15, 17, 19, and 22 during the test operation are the same as the torque limit values of the motors 15, 17, 19, and 22 when the robot 1 is taught.
  • the absolute value of the torque required for the motor 15 does not fluctuate greatly due to the influence of gravity such as the arm 3 and the ball screw spline 4.
  • the first arm portion 11 stopped at a predetermined position is rotated in one direction with respect to the main body portion 2 and stopped for a predetermined time, and then the first arm portion 11 is moved with respect to the main body portion 2.
  • the torque of the motor 15 when rotated in the direction fluctuates as shown in FIG. 2, for example.
  • the torque of the motor 15 during the test operation varies, for example, as the curve S1 in FIG. 2
  • the torque of the motor 15 during the normal operation varies, for example, as the curve S2 in FIG. .
  • the absolute value of the torque limit value T1 of the motor 15 when the motor 15 rotates in one direction during the test operation and the absolute value of the torque limit value T2 of the motor 15 when the motor 15 rotates in the other direction during the test operation are substantially equal, and the absolute value of the torque limit value T3 of the motor 15 when the motor 15 rotates in one direction during normal operation and the torque of the motor 15 when the motor 15 rotates in the other direction during normal operation
  • the absolute value of the limit value T4 is substantially equal.
  • the motor 15 when the motor 15 rotates in one direction during the test operation, the motor 15 has a torque limit value T1 that is lower than the torque limit value T3 when the motor 15 rotates in one direction during the normal operation.
  • the motor 15 is controlled with a torque limit value T2 higher than the torque limit value T4 when the motor 15 rotates in the other direction during normal operation. .
  • the absolute value of the torque required for the motors 17 and 19 does not fluctuate greatly due to the influence of gravity such as the arm 3 and the ball screw spline 4. Therefore, the absolute value of the torque limit value of the motor 17 when the motor 17 rotates in one direction during the test operation and the absolute value of the torque limit value of the motor 17 when the motor 17 rotates in the other direction during the test operation.
  • the absolute value of the torque limit value of the motor 17 when the motor 17 rotates in one direction during normal operation and the torque limit value of the motor 17 when the motor 17 rotates in the other direction during normal operation are substantially equal. The absolute value is almost equal.
  • the absolute value of the torque limit value of the motor 19 when the motor 19 rotates in one direction during the test operation and the absolute value of the torque limit value of the motor 19 when the motor 19 rotates in the other direction during the test operation are obtained.
  • the absolute value of the torque limit value of the motor 19 when the motor 19 rotates in one direction during normal operation and the torque limit value of the motor 19 when the motor 19 rotates in the other direction during normal operation are substantially equal.
  • the absolute value is almost equal.
  • the motor 22 raises and lowers the end effector together with the ball screw spline shaft 23, the motor 22 raises the end effector due to the weight of the ball screw spline shaft 23, the end effector and the work held by the end effector.
  • the absolute value of torque required for the motor 22 increases, and the absolute value of torque required for the motor 22 decreases when the end effector is lowered.
  • the motor 22 rotates in one direction, the end effector rises, and when the motor 22 rotates in the other direction, the end effector descends.
  • the end effector stopped at a predetermined position is raised.
  • the torque of the motor 22 when the end effector is lowered after being stopped for a predetermined time fluctuates as shown in FIG. 3, for example. Specifically, the torque of the motor 22 during the test operation varies, for example, as the curve S11 in FIG. 3, and the torque of the motor 22 during the normal operation varies, for example, as the curve S12 in FIG. .
  • the torque limit value of the motor 22 when the end effector is raised is the first torque limit value T11
  • the torque limit value of the motor 22 when the end effector is lowered is the second torque limit value T12.
  • the controller 5 sets the first torque limit value T11 and the second torque limit value T12 so that the absolute value of the second torque limit value T12 is smaller than the absolute value of the first torque limit value T11. Yes.
  • control unit 5 determines whether the motor 22 is rotating in the direction in which the end effector is raised or whether the motor 22 is rotating in the direction in which the end effector is lowered during the test operation.
  • the motor 22 is controlled based on the first torque limit value T11.
  • the motor 22 is controlled based on the second torque limit value T12. .
  • the control unit 5 determines whether the motor 22 is rotating in the direction in which the end effector is raised or whether the motor 22 is rotating in the direction in which the end effector is lowered.
  • the motor 22 is controlled based on the torque limit value T13, and when the end effector is lowered during normal operation, the motor 22 is controlled based on the torque limit value T14.
  • the control unit 5 sets the torque limit values T11 and T13 as the torque limit value of the motor 22, and the end effector When it is determined that the motor 22 is rotating in the downward direction, the torque limit values T12 and T14 are set as the torque limit values of the motor 22. That is, the control unit 5 switches the torque limit value of the motor 22 to the torque limit values T11 and T13 or the torque limit values T12 and T14 according to the rotation direction of the motor 22.
  • the motor 22 when the motor 22 rotates in one direction during the test operation, the motor has the first torque limit value T11 that is lower than the torque limit value T13 when the motor 22 rotates in one direction during the normal operation.
  • the motor 22 When the motor 22 rotates in the other direction during the test operation, the motor 22 is controlled with a torque limit value T12 higher than the torque limit value T14 when the motor 22 rotates in the other direction during the normal operation. ing. Even when the stopped end effector is held at a predetermined position, the motor 22 is required to have a predetermined holding torque T15 as shown in FIG.
  • the difference between the first torque limit value T11 and the holding torque T15 and the difference between the second torque limit value T12 and the holding torque T15 are substantially equal, and the torque limit value T13 and the holding torque T15 are different from each other.
  • the difference and the difference between the torque limit value T14 and the holding torque T15 are substantially equal.
  • the torque of the motor 22 immediately after the start of servo control may be lower than the torque limit values T12 and T14. Therefore, the control unit 5 controls the motor 22 with a torque limit value lower than the torque limit values T12 and T14 within a predetermined time immediately after the start of servo control of the motor 22.
  • the operator can input the load weight such as the weight of the end effector and the weight of the work held by the end effector from the pendant switch 6 as the motor load applied to the motor 22.
  • the control unit 5 sets torque limit values T11 to T14 based on the input load weight.
  • torque limit values T11 to T14 corresponding to the load weight are tabulated and stored in the control unit 5, and the control unit 5 selects the corresponding torque limit value T11 based on the input load weight.
  • Read and set T14 For example, a table as shown in FIG. 4 is stored in the control unit 5, and the control unit 5 reads and sets the corresponding torque limit values T11 to T14 based on the input load weight.
  • the difference between the first torque limit value T11 and the second torque limit value T12 and the difference between the torque limit value T13 and the torque limit value T14 are constant regardless of the load weight. However, as the load weight increases, the difference between the first torque limit value T11 and the second torque limit value T12 and the difference between the torque limit value T13 and the torque limit value T14 may increase.
  • the torque limit values of the motors 15, 17, 19 are stored in the control unit 5 as, for example, predetermined fixed values.
  • the torque limit values of the motors 15, 17, and 19 according to the load weight are tabulated and stored in the control unit 5, and the torque limit corresponding to the control unit 5 is based on the load weight input from the pendant switch 6. The value may be read and set.
  • the torque limit value when the motors 15, 17, 19, and 22 rotate in one direction during the normal operation when the motors 15, 17, 19, and 22 are controlled with a low torque limit value and the motors 15, 17, 19, and 22 rotate in the other direction during the test operation, the motors 15, 17, 19, and 22 during the normal operation.
  • the motors 15, 17, 19, and 22 are controlled with a torque limit value that is higher than the torque limit value when the motor rotates in the other direction. Therefore, in this embodiment, when the robot 1 comes into contact with a peripheral device or the like during a test operation, the torque of the motors 15, 17, 19, and 22 exceeds the torque limit value or falls below the torque limit value in a short time. . Therefore, in this embodiment, when the robot 1 comes into contact with a peripheral device or the like during a test operation, the motors 15, 17, 19, and 22 can be stopped in a short time.
  • the first torque limit value T11 and the second torque limit value T12 are set so that the absolute value of the second torque limit value T12 is smaller than the absolute value of the first torque limit value T11.
  • torque limit values T13 and T14 are set so that the absolute value of torque limit value T14 is smaller than the absolute value of torque limit value T13. For this reason, in this embodiment, when the end effector is normally raised and lowered, the torque of the motor 22 does not exceed the torque limit values T11 and T13 or fall below the torque limit values T12 and T14.
  • the torque limit values T11 to T14 can be set so that the torque is less than the torque limit values T12 and T14.
  • the motor 22 is controlled based on the torque limit values T11 and T13 when the end effector is raised, and the motor 22 is controlled based on the second torque limit values T12 and T14 when the end effector is lowered. If the torque of the motor 22 exceeds the torque limit values T11 and T13 when the end effector is raised, or if the torque of the motor 22 falls below the second torque limit values T12 and T14 when the end effector is lowered, the motor 22 Stops. Therefore, in this embodiment, the absolute value of the torque required for the motor 22 when raising the end effector and the motor 22 when lowering the end effector due to the influence of the end effector and the weight of the work held by the end effector.
  • the absolute value of the torque required for the end effector is significantly different, when the end effector or the like comes into contact with a peripheral device or the like when raising or lowering the end effector, the motor 22 is stopped to damage the end effector or the like. It becomes possible to prevent.
  • the absolute value of the torque required for the motor 22 when the end effector is raised is greatly different from the absolute value of the torque required for the motor 22 when the end effector is lowered.
  • the end effector can be raised and lowered appropriately by continuing to rotate the motor 22.
  • torque limit values T11 to T14 are set based on the input load weight. Therefore, in the present embodiment, the torque of the motor 22 exceeds the torque limit values T11 and T13 when the end effector or the like comes into contact with the peripheral device or the like so that the end effector can be raised or lowered more appropriately.
  • the torque limit values T11 to T14 can be set according to the load weight so as to be less than the limit values T12 and T14. Therefore, in this embodiment, the end effector can be raised and lowered more appropriately, and damage to the end effector and the like can be reliably prevented.
  • the control unit 5 rotates the motors 15, 17, 19, and 22 at a rotation speed lower than the rotation speed during the normal operation during the test operation, and the motors 15, 17, 19, and 22 during the test operation.
  • the motors 15, 17, 19, and 22 are controlled with a torque limit value lower than the torque limit value when the motors 15, 17, 19, and 22 rotate in one direction during normal operation.
  • a torque limit value that is higher than the torque limit value when the motors 15, 17, 19, and 22 rotate in the other direction during the normal operation.
  • the motors 15, 17, 19, and 22 are controlled.
  • control unit 5 rotates the motors 15, 17, and 19 at the same speed as the rotation speed during the normal operation and the same torque limit value as that during the normal operation during the test operation.
  • the motor 22 is rotated at a rotational speed lower than the rotational speed during the normal operation, and the motor 22 rotates in one direction during the test operation.
  • the motor 22 may be controlled with the second torque limit value T12.
  • the end effector etc. Due to the weight of the end effector and the work held by the end effector, the end effector etc. is likely to be damaged if it comes into contact with the peripheral device etc. when it is lowered. It is possible to stop the motor 22 for causing the motor 22 to stop in a short time when the end effector or the like during the test operation contacts the peripheral device or the like, and the operation amount of the end effector after the motor 22 is stopped Can be reduced. Accordingly, it is possible to prevent damage to the end effector and the like during the test operation. In this case, since the motors 15, 17, and 19 rotate at the same speed as the rotation speed during the normal operation during the test operation, the operation speed of the robot 1 during the test operation can be increased.
  • the rotation speed and the torque limit value of the motors 15, 17, 19, and 22 during the test operation may be selectable. That is, the rotation speed and torque limit value of the motors 15, 17, 19, and 22 during the test operation may be arbitrarily set by the operator. In this case, the rotation speed and the torque limit value may be selectable for each of the motor 15, the motor 17, the motor 19, and the motor 22.
  • the test operation of the robot 1 can be performed with various combinations of the rotational speeds of the motors 15, 17, 19, and 22 and the torque limit values.
  • the motors 15, 17, 19, and 22 are rotated at a rotation speed slower than the rotation speed during the normal operation, and the torque limit value is the same as the torque limit value during the normal operation. It is also possible to control at least one of the motors 15, 17, 19, and 22.
  • a load weight such as the weight of the end effector or the weight of the work held by the end effector from the pendant switch 6, and the control unit 5 receives the load weight from the pendant switch 6.
  • torque limit values T11 to T14 are set based on the input load weight.
  • a motor load acquisition mode for automatically acquiring the motor load of the motor 22 is provided to acquire the motor load, and the control unit 5 determines the torque limit values T11 to T11 based on the acquired motor load.
  • T14 may be set. That is, the control unit 5 may drive the motor 22 to acquire the motor load of the motor 22, and may set the torque limit values T11 to T14 based on the acquired motor load.
  • the operation is switched to the motor load acquisition mode by an operation with the pendant switch 6.
  • the torque limit values T11 to T14 may be stored in the control unit 5 as fixed values.
  • the control unit 5 controls the motor 22 based on the first torque limit value T11 when the end effector is raised during the test operation, and the first torque when the end effector is lowered during the test operation.
  • the motor 22 is controlled based on the second torque limit value T12 having an absolute value smaller than the absolute value of the limit value T11.
  • the control unit 5 controls the motor 22 based on the first torque limit value T11 when the end effector is raised during the test operation, and also when the end effector is lowered during the test operation.
  • the motor 22 may be controlled based on a second torque limit value that is equal to the absolute value of the first torque limit value T11.
  • the control unit 5 controls the motor 22 based on the torque limit value T13 when the end effector is raised during normal operation, and the torque limit when the end effector is lowered during normal operation.
  • the motor 22 is controlled based on the torque limit value T14 having an absolute value smaller than the absolute value of the value T13, but the control unit 5 is based on the torque limit value T13 when the end effector is raised during normal operation. While controlling the motor 22, the motor 22 may be controlled based on a torque limit value equal to the absolute value of the torque limit value T13 when the end effector descends during normal operation.
  • the control unit 5 when it is determined that the motor 22 is rotating in the direction in which the end effector is raised, the control unit 5 sets the torque limit values T11 and T13 as the torque limit value of the motor 22, and the end effector When it is determined that the motor 22 is rotating in the descending direction, the torque limit values T12 and T14 are set as the torque limit values of the motor 22. In addition to this, for example, the control unit 5 does not determine whether the motor 22 is rotating in the direction in which the end effector is rising or whether the motor 22 is rotating in the direction in which the end effector is descending. When the torque of the motor 22 exceeds the torque limit values T11 and T13, or when the torque of the motor 22 falls below the torque limit values T12 and T14, the motor 22 may be stopped.
  • control unit 5 may not switch the torque limit value of the motor 22 to the torque limit values T11 and T13 or the torque limit values T12 and T14 according to the rotation direction of the motor 22. Even in this case, the motor 22 is controlled based on the torque limit values T11 and T13 when the end effector is raised, and the motor 22 is controlled based on the torque limit values T12 and T14 when the end effector is lowered.
  • the arm 3 is constituted by two arm parts, the first arm part 11 and the second arm part 12, but the arm 3 may be constituted by three or more arm parts. .
  • FIG. 5 is a graph for explaining the torque limit value of the motor 22 shown in FIG.
  • FIG. 6 is a table for explaining an example of a torque limit value table stored in the control unit 5 shown in FIG.
  • the motors 15, 17, 19, and 22 are stopped (that is, the operation of the robot 1 is stopped) to prevent the robot 1 from being damaged. Therefore, in the control unit 5, the torque limit values of the motors 15, 17, 19, and 22 are set, and when the torque of the motors 15, 17, 19, and 22 reaches the torque limit value, the control unit 5 15, 17, 19, and 22 are stopped.
  • the absolute value of the torque required for the motors 15, 17 and 19 does not fluctuate greatly due to the influence of gravity such as the arm 3 and the ball screw spline 4.
  • the absolute value of the torque limit value of the motor 15, 17, 19 when the motor 15, 17, 19 rotates in the forward direction and the motor 15, 17 when the motor 15, 17, 19 rotates in the reverse direction. , 19 is the same as the absolute value of the torque limit value.
  • the motor 22 raises and lowers the end effector together with the ball screw spline shaft 23, the motor 22 raises the end effector due to the weight of the ball screw spline shaft 23, the end effector and the work held by the end effector.
  • the absolute value of torque required for the motor 22 is increased, and the absolute value of torque required for the motor 22 when the end effector is lowered is decreased. If the torque of the motor 22 in the direction to raise the end effector is a positive torque and the torque of the motor 22 in the direction to lower the end effector is a negative torque, the end effector stopped at a predetermined position after the servo control is started.
  • the torque of the motor 22 when the end effector is lowered after being raised and stopped for a predetermined time varies as shown in FIG. 5, for example.
  • the torque of the motor 22 when teaching the robot 1 varies, for example, as shown by a curve S21 in FIG. 5, and the torque of the motor 22 during the automatic operation of the robot 1 after completion of teaching is, for example, It fluctuates like a curve S22 in FIG. That is, the absolute value of the absolute value of the torque required for the motor 22 when the motor 22 rotates in one direction for raising the end effector is the same as that for the motor 22 when the motor 22 rotates in the other direction for lowering the end effector. It becomes larger than the maximum absolute value of the required torque.
  • the torque limit value of the motor 22 when raising the end effector (that is, the torque limit value of the motor 22 when rotating in one direction for raising the end effector) is set as the first torque limit value, and the end effector is lowered.
  • the torque limit value of the motor 22 at that time (that is, the torque limit value of the motor 22 when rotating in the other direction to lower the end effector) is the second torque limit value
  • the controller 5 The first torque limit value and the second torque limit value are set so that the absolute value of the torque limit value is smaller than the absolute value of the first torque limit value.
  • the first torque limit value T21 and the second torque limit value are set such that the absolute value of the second torque limit value T22 when teaching the robot 1 is smaller than the absolute value of the first torque limit value T21.
  • T22 is set, and the first torque limit value T23 and the absolute value of the second torque limit value T24 during the automatic operation (normal operation) of the robot 1 are smaller than the absolute value of the first torque limit value T23.
  • a second torque limit value T24 is set (see FIG. 5). More specifically, when the end effector is moving up and down normally, the torque of the motor 22 does not exceed the first torque limit values T21 and T23 or fall below the second torque limit values T22 and T24. Further, when the end effector etc. comes into contact with the peripheral device etc.
  • the first torque limit values T21 and T23 and the second torque limit values T22 and T24 are set so that the torque of the motor 22 falls below the second torque limit values T22 and T24 when contacted.
  • first torque limit value T21 at the time of teaching is different from the first torque limit value T23 at the time of automatic operation.
  • the second torque limit value T22 at the time of teaching and the second torque limit value T24 at the time of automatic operation are different. Is different. Specifically, as shown in FIG. 5, the first torque limit value T21 is smaller than the first torque limit value T23, and the second torque limit value T22 is larger than the second torque limit value T24. It has become. Even when the stopped end effector is held at a predetermined position, the motor 22 is required to have a predetermined holding torque T25 as shown in FIG.
  • the difference between the first torque limit value T21 and the holding torque T25 and the difference between the second torque limit value T22 and the holding torque T25 are substantially equal, and the first torque limit value T23 and the holding torque T25 are the same. And the difference between the second torque limit value T24 and the holding torque T25 are substantially equal.
  • the controller 5 determines whether the motor 22 is rotating in the direction in which the end effector is raised or whether the motor 22 is rotating in the direction in which the end effector is lowered. In addition, when the end effector is raised when teaching the robot 1, the motor 22 is controlled based on the first torque limit value T21. When the end effector is lowered when teaching the robot 1, the second torque limit value T22 is controlled. The motor 22 is controlled based on the above. That is, when the end effector is raised when teaching the robot 1, the torque of the motor 22 exceeds the first torque limit value T21, or when the end effector is lowered, the torque of the motor 22 becomes the second torque limit value T22. If it falls below, the control unit 5 stops the motor 22.
  • the controller 5 when the controller 5 teaches the robot 1 and determines that the motor 22 is rotating in the direction in which the end effector is raised, the controller 5 sets the first torque limit value T21 of the motor 22.
  • the second torque limit value T22 is set as the torque limit value of the motor 22. That is, the control unit 5 switches the torque limit value of the motor 22 to the first torque limit value T21 or the second torque limit value T22 according to the rotation direction of the motor 22.
  • the controller 5 determines whether the motor 22 is rotating in the direction in which the end effector is raised or the motor 22 is rotating in the direction in which the end effector is lowered during automatic operation of the robot 1.
  • the motor 22 is controlled based on the first torque limit value T23.
  • the second effector is The motor 22 is controlled based on the torque limit value T24. That is, if the torque of the motor 22 exceeds the first torque limit value T23 when the end effector is raised during the automatic operation of the robot 1, or if the end effector is lowered, the torque of the motor 22 is the second torque limit value T24. If it falls below, the control unit 5 stops the motor 22.
  • the controller 5 determines that the motor 22 is rotating in the direction in which the end effector is raised during automatic operation of the robot 1, the controller 5 sets the first torque limit value T ⁇ b> 23 to the motor 22.
  • the second torque limit value T24 is set as the torque limit value of the motor 22. That is, the control unit 5 switches the torque limit value of the motor 22 to the first torque limit value T23 or the second torque limit value T24 according to the rotation direction of the motor 22.
  • the control unit 5 controls the motor 22 with a torque limit value lower than the second torque limit values T22 and T24 within a predetermined time immediately after the start of servo control of the motor 22. Further, the rotational speeds of the motors 15, 17, 19, and 22 when teaching the robot 1 are slower than the rotational speeds of the motors 15, 17, 19, and 22 when the robot 1 is automatically operated.
  • the operator can input the load weight such as the weight of the end effector and the weight of the work held by the end effector from the pendant switch 6 as the motor load applied to the motor 22.
  • the control unit 5 sets the first torque limit values T21 and T23 and the second torque limit values T22 and T24 based on the input load weight.
  • the first torque limit values T21 and T23 and the second torque limit values T22 and T24 corresponding to the load weight are tabulated and stored in the control unit 5, and the control unit 5 receives the input load.
  • the corresponding first torque limit values T21, T23 and second torque limit values T22, T24 are read and set.
  • a table as shown in FIG. 6 is stored in the control unit 5, and the control unit 5 performs the corresponding first torque limit values T21, T23 and second torque limit value T22 based on the input load weight.
  • T24 is read and set.
  • the difference between the first torque limit value T21 and the second torque limit value T22 and the difference between the first torque limit value T23 and the second torque limit value T24 are related to the load weight. Although it is constant, the difference between the first torque limit value T21 and the second torque limit value T22 and the difference between the first torque limit value T23 and the second torque limit value T24 as the load weight increases. The difference may be large.
  • the torque of the motor 22 exceeds the first torque limit values T21 and T23 or falls below the second torque limit values T22 and T24.
  • the torque of the motor 22 exceeds the first torque limit values T21 and T23, and when the end effector is lowered,
  • the first torque limit values T21 and T23 and the second torque limit values T22 and T24 are set so that the torque of the motor 22 falls below the second torque limit values T22 and T24 when contacting with a peripheral device or the like.
  • the motor 22 when the end effector is raised (that is, when the motor 22 rotates in one direction for raising the end effector), the motor 22 is controlled based on the first torque limit values T21 and T23, and the end effector is The motor 22 is controlled based on the second torque limit values T22 and T24 when the end effector is lowered (that is, when the motor 22 rotates in the other direction for lowering the end effector).
  • the motor 22 stops.
  • the end effector or the like comes into contact with a peripheral device or the like when the end effector moves up and down, it is possible to stop the motor 22 and prevent the end effector or the like from being damaged.
  • the end effector when the end effector is normally raised and lowered, the end effector can be raised and lowered appropriately by continuing to rotate the motor 22. That is, in this embodiment, when a part of the robot 1 comes into contact with a peripheral device or the like while the motor 22 is rotating, it is possible to stop the motor 22 and prevent damage to the robot 1 and the peripheral device or the like. At the same time, when the motor 22 is rotated and the robot 1 is operating normally, it is possible to continue the rotation of the motor 22 and operate the robot 1 appropriately.
  • the control unit 5 receives the load weight from the pendant switch 6. Then, the first torque limit values T21 and T23 and the second torque limit values T22 and T24 are set based on the input load weight. Therefore, in the present embodiment, the torque of the motor 22 exceeds the first torque limit values T21 and T23 so that the end effector can be moved up and down more appropriately and when the end effector or the like comes into contact with the peripheral device or the like.
  • the first torque limit values T21 and T23 and the second torque limit values T22 and T24 can be set according to the load weight so as to be lower than the second torque limit values T22 and T24. Therefore, in this embodiment, the end effector can be raised and lowered more appropriately, and damage to the end effector and the like can be reliably prevented.
  • control unit 5 controls the motor 22 based on the first torque limit value T21 when the end effector is raised when teaching the robot 1, and when the end effector is lowered when teaching the robot 1,
  • the motor 22 is controlled based on the second torque limit value T22.
  • the first torque limit value T21 when teaching the robot 1 is smaller than the first torque limit value T23 during automatic operation of the robot 1, and the second torque limit value when teaching the robot 1
  • the value T22 is larger than the second torque limit value T24 during automatic operation of the robot 1. Therefore, in this embodiment, as described above, the rotational speed of the motor 22 when the robot 1 is automatically operated can be made faster than the rotational speed of the motor 22 when the robot 1 is taught. Therefore, in this embodiment, it is possible to increase the lifting speed of the end effector during automatic operation of the robot 1.
  • the control unit 5 receives the load weight from the pendant switch 6.
  • the first torque limit values T21 and T23 and the second torque limit values T22 and T24 are set based on the input load weight.
  • a motor load acquisition mode for automatically acquiring the motor load of the motor 22 is provided to acquire the motor load, and the control unit 5 determines the first torque limit value based on the acquired motor load.
  • T21 and T23 and second torque limit values T22 and T24 may be set.
  • the control unit 5 drives the motor 22 to acquire the motor load of the motor 22 and, based on the acquired motor load, the first torque limit values T21 and T23 and the second torque limit values T22 and T24. May be set. In this case, for example, the operation is switched to the motor load acquisition mode by an operation with the pendant switch 6. Further, when the variation of the load weight such as the weight of the end effector or the work held by the end effector is small, the first torque limit values T21 and T23 and the second torque limit values T22 and T24 are controlled as fixed values. It may be stored in the unit 5.
  • the control unit 5 controls the motor 22 based on the first torque limit value T23 when the end effector is raised during the automatic operation of the robot 1, and the end effector during the automatic operation of the robot 1 is controlled.
  • the motor 22 is controlled based on the second torque limit value T24 having an absolute value smaller than the absolute value of the first torque limit value T23.
  • the control unit 5 controls the motor 22 based on the first torque limit value T23 when the end effector is raised during the automatic operation of the robot 1, and also ends the automatic operation of the robot 1.
  • the motor 22 may be controlled based on a second torque limit value that is equal to the absolute value of the first torque limit value T23.
  • the controller 5 when the controller 5 teaches the robot 1 and determines that the motor 22 is rotating in the direction in which the end effector is raised, the controller 5 sets the first torque limit value T21 to the torque of the motor 22.
  • the second torque limit value T22 is set as the torque limit value of the motor 22.
  • the motor 22 is rotated in the direction in which the end effector is raised or the motor 22 is rotated in the direction in which the end effector is lowered.
  • the controller 5 does not have to switch the torque limit value of the motor 22 to the first torque limit value T21 or the second torque limit value T22 according to the rotation direction of the motor 22. . Even in this case, the motor 22 is controlled based on the first torque limit value T21 when the end effector is raised, and the motor 22 is controlled based on the second torque limit value T22 when the end effector is lowered.
  • the control unit 5 determines that the motor 22 is rotating in the direction in which the end effector is raised during the automatic operation of the robot 1, the control unit 5 sets the first torque limit value T23. If the motor 22 is set as the torque limit value and it is determined that the motor 22 is rotating in the direction in which the end effector descends, the second torque limit value T24 is set as the torque limit value of the motor 22. The controller 5 does not determine whether the motor 22 is rotating in the direction in which the end effector is rising or whether the motor 22 is rotating in the direction in which the end effector is descending, and the torque of the motor 22 is determined.
  • the motor 22 may be stopped when the first torque limit value T23 is exceeded or when the torque of the motor 22 falls below the second torque limit value T24. That is, the controller 5 does not have to switch the torque limit value of the motor 22 to the first torque limit value T21 or the second torque limit value T22 according to the rotation direction of the motor 22 during the automatic operation of the robot 1. good. Even in this case, when the end effector is raised, the motor 22 is controlled based on the first torque limit value T23, and when the end effector is lowered, the motor 22 is controlled based on the second torque limit value T24.
  • the arm 3 is constituted by two arm parts, the first arm part 11 and the second arm part 12, but the arm 3 may be constituted by three or more arm parts. .
  • FIG. 7 is a plan view of an industrial robot 1 according to another embodiment of the present invention.
  • FIG. 8 is a side view showing the industrial robot 1 from the EE direction of FIG.
  • FIG. 9 is a side view of an industrial robot 1 according to another embodiment of the present invention.
  • FIG. 10 is a plan view for explaining the lifting mechanism of the industrial robot 1 shown in FIG.
  • the robot 1 to which the present invention is applied may be a horizontal articulated robot for transferring an object to be transferred such as a glass substrate for a liquid crystal display or a semiconductor wafer.
  • the robot 1 may be a horizontal articulated robot for transporting a glass substrate 42 for liquid crystal display (hereinafter referred to as “substrate 42”).
  • substrate 42 for liquid crystal display
  • the robot 1 is disposed in the atmosphere.
  • the robot 1 includes two hands 43 as end effectors on which the substrate 42 is mounted, two arms 44 to which the two hands 43 are connected to the distal end side, and two arms 44.
  • a main body portion 45 to be supported and a base member 46 to support the main body portion 45 so as to be movable in the horizontal direction are provided.
  • the main body 45 has an arm support member 47 that supports the proximal end sides of the two arms 44, an elevating member 48 that can move up and down while the arm support member 47 is fixed, and the elevating member 48 can be moved in the vertical direction.
  • a columnar member 49 supported on the base member 50, a base 50 that constitutes a lower end portion of the main body 45 and is horizontally movable with respect to the base member 46, and a lower end of the columnar member 49 is fixed and pivoted with respect to the base 50
  • the possible turning member 51 is provided.
  • the elevating member 48 is movable up and down with respect to the columnar member 49, and the robot 1 includes an elevating mechanism that elevates the elevating member 48.
  • the elevating mechanism is engaged with the elevating motor for elevating the hand 43, a ball screw rotatably attached to the columnar member 49 with the vertical direction as an axial direction, and rotated by the power of the elevating motor. And a nut member attached to the elevating member 48.
  • the robot 1 shown in FIGS. 7 and 8 when the lifting motor rotates in one direction, the hand 43, the arm 44, the arm support member 47, and the lifting member 48 rise, and when the lifting motor rotates in the other direction, 43, the arm 44, the arm support member 47, and the elevating member 48 are lowered.
  • the lifting motor is an operating motor for operating the robot 1.
  • the lifting motor is connected to the control unit, and the control unit controls the lifting motor.
  • the arm 44 is an end effector attachment member to which the hand 43 as an end effector is attached.
  • the absolute values of the second torque limit values T22 and T24 that are torque limit values of the lifting motor when the hand 43 is lowered are the hand 43.
  • the first torque limit values T21, T23 and the second torque limit values T22, T24 are set so as to be smaller than the absolute values of the first torque limit values T21, T23, which are torque limit values of the lifting motor when raising Is set.
  • the lifting motor is controlled based on the first torque limit values T21 and T23, and when the hand 43 is lowered, the lifting motor is controlled based on the second torque limit values T22 and T24. Yes. Therefore, also in the robot 1 shown in FIGS. 7 and 8, the same effect as the above-described embodiment can be obtained.
  • the robot 1 may be a horizontal articulated robot for transporting a semiconductor wafer 52 (hereinafter referred to as “wafer 52”) as shown in FIGS. 9 and 10, for example.
  • the robot 1 is disposed in the atmosphere. Further, the robot 1 includes two hands 53 as end effectors on which the wafer 52 is mounted, two arms 54 to which the two hands 53 are respectively connected to the distal end side, and two arms 54. And a main body 55 to be supported.
  • the main body 55 includes a base 56 and three frames 57 to 59.
  • the frame 57 is held by the base 56 so that it can be raised and lowered
  • the frame 58 is held by the frame 57 so that it can be raised and lowered
  • the frame 59 is held by the frame 58 so that it can be raised and lowered.
  • An arm support member 60 is fixed to the upper end of the frame 59, and the base end sides of the two arms 54 are rotatably connected to the arm support member 60.
  • an elevating mechanism for elevating the hand 53 and the arm 54 is provided.
  • This elevating mechanism includes a motor (elevating motor) 61 for elevating and lowering the hand 53, a ball screw 62 that is rotatably attached to a base 56 with the vertical direction as an axial direction, and a ball screw 62 that is rotated by the power of the motor 61.
  • the movable pulley means 65 is provided. In this lifting mechanism, the cylinder rod of the balancer cylinder 66 is attached to the frame 57, and the frame 57 is always urged upward by the balancer cylinder 66.
  • the motor 61 when the motor 61 rotates in one direction, the frame 57 rises and the frames 58 and 59 rise due to the action of the movable pulley means 64 and 65.
  • the frame 57 When rotating in the direction, the frame 57 is lowered and the frames 58 and 59 are lowered by the action of the moving pulley means 64 and 65. That is, when the motor 61 rotates in one direction, the hand 53, the arm 54, the arm support member 60 and the frames 57 to 59 rise, and when the motor 61 rotates in the other direction, the hand 53, the arm 54, the arm support member 60 and The frames 57 to 59 are lowered.
  • the motor 61 is an operation motor for operating the robot 1.
  • the motor 61 is connected to the control unit, and the control unit controls the motor 61.
  • the arm 54 is an end effector attachment member to which a hand 53 as an end effector is attached.
  • the absolute values of the second torque limit values T ⁇ b> 22 and T ⁇ b> 24 that are the torque limit values of the motor 61 when the hand 53 is lowered are
  • the first torque limit values T21, T23 and the second torque limit values T22, T24 are set so as to be smaller than the absolute values of the first torque limit values T21, T23, which are the torque limit values of the motor 61 when increasing. ing.
  • the motor 61 is controlled based on the first torque limit values T21 and T23, and when the hand 53 is lowered, the motor 61 is controlled based on the second torque limit values T22 and T24. Therefore, the robot 1 shown in FIGS. 9 and 10 can obtain the same effects as those of the above-described embodiment.
  • FIG. 11 is a diagram of an industrial robot 1 according to another embodiment of the present invention, in which (A) is a plan view and (B) is a side view.
  • FIG. 12 is a cross-sectional view for explaining the internal structure of the F portion in FIG.
  • the robot 1 to which the present invention is applied may be a horizontal articulated robot for transporting a glass substrate for an organic EL (organic electroluminescence) display in a vacuum.
  • the robot 1 includes a hand 73 as an end effector on which a glass substrate is mounted, an arm 74 to which the hand 73 is connected to the distal end side, a main body 75 to which the base end side of the arm 74 is rotatably connected, An elevating mechanism 76 that elevates and lowers the main body 75 is provided.
  • the main body 75 and the elevating mechanism 76 are accommodated in a substantially bottomed cylindrical case body 77.
  • the case body 77 includes a flange portion 77a formed in a disc shape.
  • the flange portion 77 a constitutes the upper end portion of the case body 77.
  • the flange portion 77a is formed with a through hole in which the upper end portion of the main body portion 75 is disposed.
  • the hand 73 and the arm 74 are arranged on the upper side of the main body 75. Moreover, the hand 73 and the arm 74 are arrange
  • a motor 78 for rotating the arm 74 with respect to the main body 75 is attached to the main body 75.
  • the main body 75 holds a hollow rotary shaft 79 to which the base end side of the arm 74 is fixed, a speed reducer 80 that reduces the rotation of the motor 78 and transmits it to the arm 74, and a case body of the speed reducer 80.
  • a substantially cylindrical holding member 81 that rotatably holds the hollow rotary shaft 79.
  • the hollow rotary shaft 79 and the holding member 81 are arranged so that the axial direction thereof coincides with the vertical direction.
  • the base end side of the arm 74 is fixed to the upper end of the hollow rotary shaft 79.
  • a magnetic fluid seal 83 that prevents the outflow of air to the vacuum region VR is disposed at a joint portion that connects the main body portion 75 and the arm 74 (that is, a joint portion that connects the hollow rotary shaft 79 and the arm 74). .
  • the magnetic fluid seal 83 is disposed between the outer peripheral surface of the hollow rotary shaft 79 and the inner peripheral surface of the holding member 81.
  • region VR is arrange
  • the bellows 84 is disposed inside the case body 77 so as to cover a part of the outer peripheral side on the upper end side of the holding member 81.
  • the lower end of the bellows 84 is fixed to the holding member 81, and the upper end of the bellows 84 is fixed to the flange portion 77a.
  • the inner peripheral side of the bellows 84 is in a vacuum, and the outer peripheral side of the bellows 84 is at atmospheric pressure.
  • the elevating mechanism 76 includes a motor 86 for elevating and lowering the main body 75, a ball screw 87 that is rotatably attached to the case body 77 with the vertical direction as an axial direction, and a ball screw 87 that rotates by the power of the motor 86. And a nut member 88 attached to the main body 75.
  • the motor 86 rotates in one direction, the hand 73, the arm 74, and the main body 75 are lowered, and when the motor 86 rotates in the other direction, the hand 73, the arm 74, and the main body. 75 rises.
  • the motor 86 is an operation motor for operating the robot 1.
  • the motor 86 is connected to the control unit, and the control unit controls the motor 86.
  • the arm 74 is an end effector attachment member to which a hand 73 as an end effector is attached. Further, in the robot 1 shown in FIGS. 11 and 12, the hollow rotary shaft 79 and the holding member 81 constitute a shaft member on which an arm 74 as an end effector mounting member is fixed to the upper end. Even when the main body 75 is raised, the lower end side of the shaft member is accommodated in the case body 77.
  • the hand 73 and the arm 74 are arranged in a vacuum, and when the main body 75 is lowered together with the hand 73 and the arm 74 and the bellows 84 is extended, negative pressure is generated. Then, since a large force that pushes up the hand 73, the arm 74, and the main body portion 75 acts, the absolute value of the torque required for the motor 86 when the hand 73 is lowered increases and the hand 73 is raised. The absolute value of torque required for the motor 86 is reduced.
  • the maximum value of the absolute value of the torque required for the motor 86 when the motor 86 rotates in one direction for lowering the hand 73 is the same as that for the motor 86 when the motor 86 rotates in the other direction for lifting the hand 73. It becomes larger than the maximum absolute value of the required torque.
  • the absolute value of the second torque limit value which is the torque limit value of the motor 86 when the hand 73 is raised, lowers the hand 73, contrary to the above-described form.
  • the first torque limit value and the second torque limit value are set so as to be smaller than the absolute value of the first torque limit value, which is the torque limit value of the motor 86 at the time.
  • the motor 86 is controlled based on the first torque limit value
  • the motor 86 is controlled based on the second torque limit value. Therefore, also in the robot 1 shown in FIGS. 11 and 12, the same effect as the above-described embodiment can be obtained.
  • the upper end of the bellows 84 is fixed to the upper end side of the hollow rotary shaft 79 so that the inner peripheral side of the bellows 84 is atmospheric pressure and the outer peripheral side of the bellows 84 is vacuum.
  • the lower end of the bellows 84 may be fixed to the flange portion 77a.
  • the bellows 84 is disposed outside the case body 77 so as to cover a part of the outer peripheral side on the upper end side of the hollow rotary shaft 79.
  • the absolute value of the second torque limit value that is the torque limit value of the motor 86 when the hand 73 is raised is equal to the first torque limit value that is the torque limit value of the motor 86 when the hand 73 is lowered.
  • the first torque limit value and the second torque limit value are set so as to be smaller than the absolute value.
  • FIG. 13 is a perspective view of a battery exchange system in which a robot 1 according to another embodiment of the present invention is installed.
  • FIG. 14 is a perspective view showing part G of FIG. 13 from another angle.
  • FIG. 15 is a schematic diagram for explaining the configuration of the battery 103 and the battery housing portion 104 shown in FIG.
  • FIG. 16 is a diagram showing the battery insertion / removal mechanism 117 and the lifting / lowering mechanism 118 shown in FIG. 14 from the front.
  • FIG. 17 is a diagram showing the battery insertion / removal mechanism 117 and the lifting / lowering mechanism 118 from the HH direction of FIG.
  • FIG. 18 is a view for explaining the battery moving mechanism 125 shown in FIG. 16 from the side.
  • the two directions orthogonal to each other in the horizontal direction are defined as the X direction and the Y direction
  • the X direction is defined as the front-rear direction
  • the Y direction is defined as the left-right direction.
  • the robot 1 to which the present invention is applied may be a battery replacement robot for replacing the battery 103 mounted on the vehicle 102.
  • the vehicle 102 is, for example, an electric bus.
  • a battery housing portion 104 that houses a plurality of batteries 103 is attached to the vehicle 102.
  • the vehicle 102 is stopped so that the traveling direction thereof substantially coincides with the left-right direction.
  • the robot 1 faces the side surface 102a of the vehicle 102 in the front-rear direction so that the battery 103 housed in the battery housing portion 104 can be replaced.
  • the robot 1 pulls out the battery 103 accommodated in the battery accommodating portion 104 and carries it into a buffer station (not shown), and carries out the charged battery 103 accommodated in the buffer station from the buffer station. Insert into the storage section 104.
  • the battery housing portion 104 includes a battery mount 106 on which the battery 103 is mounted, and left and right side walls 107, and a housing space for the battery 103 is formed by the battery mount 106 and the side wall 107. In the battery housing portion 104, housing spaces for a plurality of batteries 103 are formed, and a plurality of batteries 103 can be housed. Further, as shown in FIG. 15, the battery housing portion 104 includes a lock mechanism 109 that locks the battery 103 that is housed, and a connector 110 that electrically connects the vehicle 102 and the battery 103.
  • the lock mechanism 109 includes a lock member 111 and an urging member 112.
  • the connector 110 is disposed on the back side of the battery housing portion 104.
  • the lock member 111 is held on the side wall 107 so as to be movable in the left-right direction, for example.
  • the lock member 111 is biased inward in the left-right direction by a biasing member (not shown) and protrudes from the side wall 107 to the inside of the battery housing portion 104.
  • the lock member 111 is formed in, for example, a substantially triangular prism shape, and an inclined surface 111a that is inclined with respect to a plane constituted by the front-rear direction and the vertical direction, and a plane constituted by the horizontal direction and the vertical direction. And an end face 111b parallel to each other.
  • the end surface 111 b constitutes an end surface on the back side of the lock member 111.
  • the inclined surface 111a is inclined so as to spread outward in the left-right direction toward the front side of the battery housing portion 104.
  • the urging member 112 is, for example, a compression coil spring.
  • the biasing member 112 faces the front side of the battery housing portion 104 so that an end surface 115b of an engagement protrusion 115 described later formed on the battery 103 and an end surface 111b of the lock member 111 are in contact with each other with a predetermined contact pressure.
  • the battery 103 is energized. In the vehicle 102, the battery 103 is urged by the urging member 112, so that the vibration of the battery 103 accommodated in the battery accommodating portion 104 during traveling of the vehicle 102 is suppressed.
  • a handle portion 114 for pulling out the battery 103 from the battery housing portion 104 is formed on the front surface of the battery 103. Further, as shown in FIG. 15, the battery 103 includes an engagement protrusion 115 that engages with the lock member 111 and a connector 116 that is connected to the connector 110. The connector 116 is attached to the back end surface (back surface) of the battery 103 housed in the battery housing portion 104.
  • the engaging protrusions 115 are fixed to the left and right side surfaces of the battery 103, for example, and protrude outward from the left and right side surfaces of the battery 103 in the left and right direction.
  • the engaging protrusion 115 is formed in, for example, a substantially triangular prism shape, and is an inclined surface 115a that is inclined with respect to a plane constituted by the front-rear direction and the vertical direction, and a plane constituted by the left-right direction and the vertical direction. And an end face 115b parallel to each other.
  • the end surface 115b constitutes an end surface on the near side of the engagement protrusion 115.
  • the inclined surface 115a is inclined so as to spread outward in the left-right direction as it goes toward the front side of the battery housing portion 104.
  • the urging member 112 contacts the back end surface of the battery 103, and the battery 103 is moved toward the front side of the battery housing portion 104. Energize.
  • the lock mechanism 109 is a mechanical lock mechanism that is operated by the insertion force of the battery 103 into the battery housing portion 104 and locks the battery 103.
  • the lock mechanism 109 is a mechanical lock mechanism that operates by the insertion force of the battery 103 into the battery housing portion 104 by a battery engagement portion 124 (to be described later) constituting the robot 1 to lock the battery 103. .
  • the connector 110 and the connector 116 are connected by the insertion force of the battery 103 into the battery housing portion 104. Specifically, the connector 110 and the connector 116 are connected by the insertion force of the battery 103 into the battery housing part 104 by the battery engaging part 124 described later.
  • the lock mechanism 109 is configured so that the contact state between the end surface 115b and the end surface 111b is released. Therefore, when the battery 103 is further pushed into the back side of the battery housing portion 104 from the state in which the battery 103 is locked to the lock mechanism 109, the lock state of the battery 103 by the lock mechanism 109 is released, and the battery housing portion 104 The battery 103 can be pulled out.
  • the robot 1 includes a battery insertion / removal mechanism 117 that pulls out the battery 103 from the battery housing portion 104 and inserts the battery 103 into the battery housing portion 104, a lifting mechanism 118 that lifts and lowers the battery insertion / removal mechanism 117, and a vertical direction.
  • a rotation mechanism 119 that rotates the battery insertion / removal mechanism 117 and the lifting / lowering mechanism 118 as an axial direction, and a horizontal movement mechanism 120 that moves the battery insertion / removal mechanism 117, the lifting / lowering mechanism 118, and the rotation mechanism 119 in the left-right direction are provided. Yes.
  • the battery insertion / removal mechanism 117 includes a battery mounting mechanism 123 having a battery mounting portion 122 on which the battery 103 is mounted when the battery 103 is pulled out and inserted, and is engaged with the battery 103 when the battery 103 is pulled out and inserted.
  • a battery moving mechanism 125 having a battery engaging portion 124 for moving the battery 103 on the portion 122. Further, the battery insertion / removal mechanism 117 is held by the holding member 126.
  • the battery mounting mechanism 123 includes a mounting portion moving mechanism that moves the battery mounting portion 122 in a direction approaching the vehicle 102 and a direction away from the vehicle 102.
  • the battery mounting unit 122 moves in a direction approaching the vehicle 102 when the battery 103 is replaced, and stands by at a position away from the vehicle 102 when the battery 103 is not replaced.
  • the battery moving mechanism 125 includes an engaging portion moving mechanism 139 that moves the battery engaging portion 124 in the direction approaching the vehicle 102 and the direction away from the vehicle 102, the battery engaging portion 124 movably held, and the holding member 126. And a movable holding member 140 that is held so as to be movable.
  • the battery engaging portion 124 includes an engaging claw portion 141 that engages with the handle portion 114 of the battery 103 and an air cylinder 142 that moves the engaging claw portion 141 up and down.
  • the moving holding member 140 is formed in an elongated shape in the moving direction of the battery engaging portion 124.
  • the engaging portion moving mechanism 139 includes a motor 144, a ball screw 145, a nut member 146 that is screwed into the ball screw 145, and pulleys 147 and 148 as a configuration for moving the battery engaging portion 124 and the movement holding member 140. And a belt 149 laid over pulleys 147 and 148.
  • the motor 144 is fixed to the rear end portion of the holding member 126.
  • the ball screw 145 is rotatably held on the upper surface portion of the holding member 126 and is rotated by the power of the motor 144.
  • the nut member 146 is fixed to the rear end portion of the movement holding member 140.
  • the pulley 147 is rotatably held at the rear end portion of the movement holding member 140, and the pulley 148 is rotatably held at the front end portion of the movement holding member 140.
  • the belt 149 is fixed to the battery engaging portion 124 via the belt fixing member 154 and is fixed to the upper surface portion of the holding member 126 via the belt fixing member 155.
  • the battery engaging portion 124 moves linearly. Specifically, when the motor 144 rotates in one direction, the battery engaging portion 124 moves in a direction approaching the vehicle 102, and when the motor 144 rotates in the other direction, the battery engaging portion 124 moves away from the vehicle 102. Moving. Therefore, in the robot 1 shown in FIG. 14 and the like, when the motor 144 rotates in one direction, the battery engagement portion 124 inserts the battery 103 into the battery housing portion 104, and when the motor 144 rotates in the other direction, the battery The engaging part 124 pulls out the battery 103 from the battery housing part 104.
  • the motor 144 is a pull-out insertion motor for moving the battery engaging portion 124 and an operation motor for operating the robot 1. The motor 144 is connected to the control unit, and the control unit controls the motor 144.
  • the maximum absolute value of the torque required for the motor 144 when the motor 144 rotates in one direction into which the battery 103 is inserted is required for the motor 144 when the motor 144 rotates in the other direction in which the battery 103 is pulled out. It becomes larger than the maximum absolute value of torque.
  • the absolute value of the second torque limit value which is the torque limit value of the motor 144 when the battery 103 is pulled out, is the torque limit value of the motor 144 when the battery 103 is inserted.
  • the first torque limit value and the second torque limit value are set so as to be smaller than the absolute value of the one torque limit value. Specifically, when the battery engaging portion 124 normally performs the insertion operation and the extraction operation of the battery 103, the torque of the motor 144 exceeds the first torque limit value or falls below the second torque limit value. In addition, the torque of the motor 144 exceeds the first torque limit value when the battery 103, the battery engaging portion 124, etc.
  • the first torque limit value and the second torque limit value are set so that the torque of the motor 144 is less than the second torque limit value when 103, the battery engaging portion 124, etc. come into contact with the peripheral device or the like. Further, when the battery 103 is inserted, the motor 144 is controlled based on the first torque limit value, and when the battery 103 is pulled out, the motor 144 is controlled based on the second torque limit value.
  • this robot 1 when the battery engaging part 124 or the like comes into contact with a peripheral device or the like when the battery 103 is replaced and the torque of the motor 144 exceeds or falls below the torque limit value, the robot 144 is stopped. It becomes possible to prevent damage to the battery engaging portion 124 and the like.
  • the battery engaging portion 124 when the battery engaging portion 124 is operating normally when the battery 103 is replaced, the battery engaging portion 124 can be appropriately operated by continuing to rotate the motor 144. .
  • FIG. 19 is a perspective view of an industrial robot 1 according to another embodiment of the present invention.
  • FIG. 20 is a perspective view of an industrial robot 1 according to another embodiment of the present invention.
  • the robot 1 to which the present invention is applied may be a robot other than a horizontal articulated robot or a battery exchange robot.
  • the robot 1 to which the present invention is applied may be a vertical articulated robot having a plurality of joint portions as shown in FIG.
  • the robot 1 includes a base frame 202 fixed to a predetermined installation surface, a turning frame 203 rotatably connected to the base frame 202, and a first arm 204 rotatably connected to the turning frame 203.
  • the second arm 205 is rotatably connected to the first arm 204, and the wrist 206 is rotatably connected to the second arm 205.
  • the base end side of the first arm 204 is connected to the turning frame 203 so as to be able to turn around the axis A1.
  • a motor 214 that rotates the first arm 204 with respect to the turning frame 203 is disposed at a joint portion 213 that connects the turning frame 203 and the first arm 204.
  • the proximal end side of the second arm 205 is connected to the distal end side of the first arm 204 so as to be rotatable about the axis A2.
  • a motor 216 that rotates the second arm 205 with respect to the first arm 204 is disposed at a joint portion 215 that connects the first arm 204 and the second arm 205.
  • the clockwise rotation direction in FIG. 19 is the clockwise direction
  • the counterclockwise rotation direction in FIG. 19 is the counterclockwise direction.
  • the maximum absolute value of the torque required for the motor 214 when the first arm 204 rotates clockwise with respect to the turning frame 203 due to the influence of the weight of the second arm 205 and the wrist 206 is the first value.
  • the robot 1 rotates so that the first arm 204 rotates within a range that is larger than the maximum absolute value of the torque required for the motor 214.
  • the absolute value of the second torque limit value which is the torque limit value of the motor 214 when the first arm 204 rotates counterclockwise, is the first arm 204 rotates clockwise.
  • the first torque limit value and the second torque limit value are set so as to be smaller than the absolute value of the first torque limit value that is the torque limit value of the motor 214 at the time.
  • the motor 214 is controlled based on the first torque limit value, and when the first arm 204 rotates counterclockwise, based on the second torque limit value.
  • the motor 214 is controlled.
  • the maximum value of the absolute value of the torque required for the motor 216 when the second arm 205 rotates clockwise relative to the first arm 204 due to the weight of the wrist portion 206 and the like is the second arm.
  • the robot 205 rotates counterclockwise with respect to the first arm 204 the robot 1 rotates so that the second arm 205 rotates within a range that is larger than the maximum absolute value of the torque required for the motor 216.
  • the absolute value of the second torque limit value that is the torque limit value of the motor 216 when the second arm 205 rotates counterclockwise is the second arm 205 rotates clockwise.
  • the first torque limit value and the second torque limit value are set so as to be smaller than the absolute value of the first torque limit value that is the torque limit value of the motor 216 at that time.
  • the motor 216 is controlled based on the first torque limit value, and when the second arm 205 rotates counterclockwise, based on the second torque limit value.
  • the motor 216 is controlled.
  • the motors 214 and 216 are stopped and the wrist portion 206 is stopped. It is possible to prevent the damage of the robot 1 and the like, and when the first arm 204 and the second arm 205 are operating normally, the motors 214 and 216 are continuously rotated to operate the robot 1 appropriately. Is possible. In the robot 1 shown in FIG. 19, the motors 214 and 216 are operating motors. The motors 214 and 216 are connected to the control unit, and the control unit controls the motors 214 and 216.
  • the robot 1 to which the present invention is applied may be a so-called parallel link type robot as shown in FIG.
  • the robot 1 includes a main body 252, three levers 253 connected to the main body 252, an arm 254 connected to each of the three levers 253, and a head unit 255 connected to the arm 254.
  • the three levers 253 are connected to the main body portion 252 so as to extend radially at substantially equal angular pitches toward the outer periphery of the main body portion 252.
  • the base end sides of the three levers 253 are rotatably connected to the main body 252.
  • a motor 258 that rotates the lever 253 is disposed at a joint 257 that connects the main body 252 and the lever 253.
  • the proximal end side of the arm portion 254 is rotatably connected to the distal end side of the lever 253.
  • the head unit 255 is rotatably connected to the distal end side of the arm portion 254.
  • the maximum absolute value of the torque required for the motor 258 when the lever 253 rotates in one direction due to the weight of the head unit 255 and the like is such that the lever 253 is in the other direction.
  • the absolute value of the second torque limit value which is the torque limit value of the motor 258, is greater than the absolute value of the first torque limit value, which is the torque limit value of the motor 258 when the lever 253 rotates in one direction.
  • the first torque limit value and the second torque limit value are set so as to decrease. Further, when the lever 253 rotates in one direction, the motor 258 is controlled based on the first torque limit value, and when the lever 253 rotates in the other direction, the motor 258 is controlled based on the second torque limit value. Is done.
  • the motor 258 is stopped to prevent the head unit 255 or the like from being damaged.
  • the lever 253 and the arm 254 are operating normally, it is possible to continue the rotation of the motor 258 and operate the robot 1 appropriately.
  • the motor 258 is a motor for operation. The motor 258 is connected to the control unit, and the control unit controls the motor 258.
  • the robot to which the present invention is applied may be other types of robots.
  • the robot to which the present invention is applied may be an orthogonal type robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

ロボット(1)では、モータ(15、17、19)を一方向へ回転させるためのトルクをプラスのトルクとし、他方向へ回転させるためのトルクをマイナスのトルクとすると、制御部(5)は、教示終了後に行うロボット(1)のテスト運転時に、テスト運転終了後に行うロボット(1)の通常運転の回転速度よりも低い回転速度でモータ(15、17、19)を回転させるとともに、テスト運転時にモータ(15、17、19)が一方向へ回転する場合には、通常運転時にモータ(15、17、19)が一方向へ回転する場合のトルク制限値よりも低いトルク制限値でモータ(15、17、19)を制御し、かつ、テスト運転時にモータ(15、17、19)が他方向へ回転する場合には、通常運転時にモータ(15、17、19)が他方向へ回転する場合のトルク制限値よりも高いトルク制限値でモータ(15、17、19)を制御する。

Description

産業用ロボットおよび産業用ロボットの制御方法
 本発明は、産業用ロボットおよび産業用ロボットの制御方法に関する。
 従来、部品の組立ライン等で使用される水平多関節ロボットが知られている(たとえば、特許文献1参照)。特許文献1に記載のロボットは、支持アームと、支持アームに回動可能に連結される第1アームと、第1アームに回動可能に連結される第2アームと、第2アームに回転可能に連結されるとともに第2アームに対して昇降可能な第3アームとを備えている。また、このロボットは、支持アームに対して第1アームを回動させるためのモータと、第1アームに対して第2アームを回動させるためのモータと、第2アームに対して第3アームを回転させるためのモータと、第2アームに対して第3アームを昇降させるためのモータとを備えている。このロボットでは、ロボットを教示(ティーチング)する際に、4個のモータを低速で回転させるとともにモータの電流制限値を小さくすることで、教示時にロボットが周辺装置に衝突するのを防止している。
特開昭63-68390号公報
 特許文献1に記載のロボット等では、教示が終了すると、自動運転が行われる。しかしながら、ロボットの教示が適切に行われていなかった場合に、ロボットを自動運転すると、ロボットの周辺装置等にロボットが接触して、ロボットが損傷するおそれがある。
 また、特許文献1に記載のロボットのような水平多関節ロボットでは、第3アームにエンドエフェクタが取り付けられる。また、エンドエフェクタは、所定のワークを保持することがある。そのため、第3アーム、エンドエフェクタおよびワーク等の重量の影響で、第3アームを上昇させる際に、第3アームを昇降させるモータ(昇降用モータ)に要求されるトルクの絶対値は大きくなり、第3アームを下降させる際に、昇降用モータに要求されるトルクの絶対値は小さくなる。
 一般に、エンドエフェクタ等が周辺装置等に接触した際のエンドエフェクタ等の損傷を防止するために、昇降用モータにはトルク制限値が設定され、昇降用モータのトルクがトルク制限値に達すると、昇降用モータを停止させている。また、第3アームを上昇させるときの昇降用モータのトルク制限値の絶対値と、第3アームを下降させるときの昇降用モータのトルク制限値の絶対値とは、一般に同じ値に設定されている。
 たとえば、第3アームを上昇させる方向の昇降用モータのトルクをプラスのトルクとし、第3アームを下降させる方向の昇降用モータのトルクをマイナスのトルクとすると、上述のように、第3アームを上昇させる際に一方向へ回転する昇降用モータに要求されるトルクの絶対値は大きくなり、第3アームを下降させる際に他方向へ回転する昇降用モータに要求されるトルクの絶対値は小さくなるため、第3アームを上昇させるときの昇降用モータのトルクに応じて、トルク制限値の絶対値が設定されると、第3アームの下降時に、エンドエフェクタ等が周辺装置等に接触しているにもかわらず、昇降用モータのトルクがトルク制限値を下回らずに昇降用モータが回転し続けて、エンドエフェクタ等が損傷するおそれがある。一方、第3アームを下降させるときの昇降用モータのトルクに応じて、トルク制限値の絶対値が設定されると、第3アームの上昇時に、第3アームが正常に上昇しているにもかかわらず、昇降用モータのトルクがトルク制限値を超えて昇降用モータが停止するおそれがある。
 そこで、本発明の第1の課題は、教示終了後の自動運転時の損傷を防止することが可能な産業用ロボットを提供することにある。また、本発明の第1の課題は、教示終了後の自動運転時の損傷を防止することが可能となる産業用ロボットの制御方法を提供することにある。
 また、本発明の第2の課題は、一方向に回転するときに要求されるトルクの絶対値の最大値が他方向に回転するときに要求されるトルクの絶対値の最大値よりも大きくなる動作用のモータを備える産業用ロボットにおいて、産業用ロボットおよび周辺装置等の損傷を防止することが可能で、かつ、適切な動作が可能な産業用ロボットを提供することにある。また、本発明の第2の課題は、一方向に回転するときに要求されるトルクの絶対値の最大値が他方向に回転するときに要求されるトルクの絶対値の最大値よりも大きくなる動作用のモータを備える産業用ロボットの制御方法において、産業用ロボットおよび周辺装置等の損傷を防止することが可能で、かつ、産業用ロボットの適切な動作が可能となる産業用ロボットの制御方法を提供することにある。
 上記の第1の課題を解決するため、本発明(第1の発明)の産業用ロボットは、動作用のモータと、モータを制御する制御部とを備える産業用ロボットにおいて、モータを一方向へ回転させるためのモータのトルクをプラスのトルクとし、モータを他方向へ回転させるためのモータのトルクをマイナスのトルクとするとともに、産業用ロボットの教示終了後に教示点および/または産業用ロボットの制御プログラムが正しいか否かを確認するために行う産業用ロボットの自動運転をテスト運転とし、テスト運転終了後に行う産業用ロボットの自動運転を通常運転とすると、制御部は、テスト運転時に、通常運転時の回転速度よりも低い回転速度でモータを回転させるとともに、テスト運転時にモータが一方向へ回転する場合には、通常運転時にモータが一方向へ回転する場合のトルク制限値よりも低いトルク制限値でモータを制御し、かつ、テスト運転時にモータが他方向へ回転する場合には、通常運転時にモータが他方向へ回転する場合のトルク制限値よりも高いトルク制限値でモータを制御することを特徴とする。
 また、上記の第1の課題を解決するため、本発明(第1の発明)の産業用ロボットの制御方法は、動作用のモータを備える産業用ロボットの制御方法であって、モータを一方向へ回転させるためのモータのトルクをプラスのトルクとし、モータを他方向へ回転させるためのモータのトルクをマイナスのトルクとするとともに、産業用ロボットの教示終了後に教示点および/または産業用ロボットの制御プログラムが正しいか否かを確認するために行う産業用ロボットの自動運転をテスト運転とし、テスト運転終了後に行う産業用ロボットの自動運転を通常運転とすると、テスト運転時に、通常運転時の回転速度よりも低い回転速度でモータを回転させるとともに、テスト運転時にモータが一方向へ回転する場合には、通常運転時にモータが一方向へ回転する場合のトルク制限値よりも低いトルク制限値でモータを制御し、かつ、テスト運転時にモータが他方向へ回転する場合には、通常運転時にモータが他方向へ回転する場合のトルク制限値よりも高いトルク制限値でモータを制御することを特徴とする。
 本発明では、教示終了後に教示点および/または制御プログラムが正しいか否かを確認するために行われる自動運転であるテスト運転時に、テスト運転終了後に行われる通常運転時の回転速度よりも低い回転速度でモータを回転させている。すなわち、本発明では、テスト運転時における産業用ロボットの動作速度が遅い。そのため、本発明では、テスト運転時にオペレータが危険を察知して産業用ロボットを非常停止させた場合の産業用ロボットの空走距離を小さくすることが可能になる。
 また、本発明では、テスト運転時にモータが一方向へ回転する場合に、通常運転時にモータが一方向へ回転する場合のトルク制限値よりも低いトルク制限値でモータを制御し、かつ、テスト運転時にモータが他方向へ回転する場合に、通常運転時にモータが他方向へ回転する場合のトルク制限値よりも高いトルク制限値でモータを制御している。そのため、本発明では、テスト運転時に産業用ロボットが周辺装置等に接触した場合に、短時間で、モータのトルクがトルク制限値を超えたり、トルク制限値を下回ったりする。したがって、本発明では、モータのトルクがトルク制限値を超えたり、トルク制限値を下回ったりした場合に、直ちにモータを停止させることで、テスト運転時に産業用ロボットが周辺装置等に接触した場合に、短時間でモータを停止させることが可能になる。
 このように、本発明では、テスト運転時にオペレータが危険を察知して産業用ロボットを非常停止させた場合の産業用ロボットの空走距離を小さくすることが可能になり、また、テスト運転時に産業用ロボットが周辺装置等に接触した場合に、短時間でモータを停止させることが可能になる。したがって、本発明では、テスト運転時の産業用ロボットの損傷を防止することが可能になる。また、テスト運転時に不具合が発生した場合には、再び教示を行う等の所定の処置を行うことで、テスト運転終了後の通常運転時に産業用ロボットが周辺装置等に接触するのを防止することが可能になり、通常運転時の産業用ロボットの損傷を防止することが可能になる。その結果、本発明では、教示終了後の自動運転時の産業用ロボットの損傷を防止することが可能になる。
 本発明において、産業用ロボットは、モータとして、エンドエフェクタを昇降させるための昇降用モータを備え、テスト運転時において、エンドエフェクタが上昇するときの昇降用モータのトルク制限値を第1トルク制限値とし、エンドエフェクタが下降するときの昇降用モータのトルク制限値を第2トルク制限値とすると、制御部では、第2トルク制限値の絶対値が第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されており、制御部は、テスト運転時におけるエンドエフェクタの上昇時には、第1トルク制限値に基づいて昇降用モータを制御し、テスト運転時におけるエンドエフェクタの下降時には、第2トルク制限値に基づいて昇降用モータを制御することが好ましい。
 一般に、エンドエフェクタやエンドエフェクタに保持されるワークの重量等の影響で、エンドエフェクタを上昇させる際に昇降用モータに要求されるトルクの絶対値は大きくなり、エンドエフェクタを下降させる際に昇降用モータに要求されるトルクの絶対値は小さくなるが、このように構成すると、第2トルク制限値の絶対値が第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されているため、エンドエフェクタが正常に上昇しているときに昇降用モータのトルクが、たとえば、第1トルク制限値を超えて昇降用モータが止まらないように、かつ、エンドエフェクタ等が周辺装置等に接触した場合に昇降用モータのトルクが、たとえば、第1トルク制限値を超えるように、エンドエフェクタの上昇時に昇降用モータに要求されるトルクに応じて第1トルク制限値を設定することが可能になる。また、エンドエフェクタが正常に下降しているときに昇降用モータのトルクが、たとえば、第2トルク制限値を下回って昇降用モータが止まらないように、かつ、エンドエフェクタ等が周辺装置等に接触した場合に昇降用モータのトルクが、たとえば、第2トルク制限値を下回るように、エンドエフェクタの下降時に昇降用モータに要求されるトルクに応じて第2トルク制限値を設定することが可能になる。また、このように構成すると、エンドエフェクタの上昇時に第1トルク制限値に基づいて昇降用モータを制御し、エンドエフェクタの下降時に第2トルク制限値に基づいて昇降用モータを制御しているため、エンドエフェクタの昇降時にエンドエフェクタ等が周辺装置等に接触して昇降用モータのトルクがトルク制限値を超えたり、下回ったりした場合に、昇降用モータを停止させてエンドエフェクタ等の損傷を防止することが可能になる。また、エンドエフェクタが正常に昇降している場合に、昇降用モータを回転させ続けて、エンドエフェクタを適切に昇降させることが可能になる。
 本発明において、産業用ロボットは、制御部に電気的に接続されるペンダントスイッチを備え、エンドエフェクタの重量、および、エンドエフェクタに保持されるワークの重量の少なくともいずれか一方を含むモータ負荷がペンダントスイッチから入力可能となっており、制御部は、ペンダントスイッチから入力されるモータ負荷に基づいて、第1トルク制限値および第2トルク制限値を設定することが好ましい。このように構成すると、エンドエフェクタをより適切に昇降させることができるように、かつ、エンドエフェクタ等が周辺装置等に接触した場合に昇降用モータのトルクが確実にトルク制限値を超えたり、下回ったりするように、モータ負荷に応じて第1トルク制限値および第2トルク制限値を設定することが可能になる。したがって、エンドエフェクタをより適切に昇降させることが可能になるとともに、エンドエフェクタ等の損傷を確実に防止することが可能になる。
 本発明において、産業用ロボットは、たとえば、本体部と、本体部にその基端側が回動可能に連結される第1アーム部と、第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と、第2アーム部の先端側に配置されるエンドエフェクタとを備えるとともに、動作用のモータとして、本体部に対して第1アーム部を回動させるための第1回動用モータと、第1アーム部に対して第2アーム部を回動させるための第2回動用モータと、第2アーム部に対してエンドエフェクタを回転させるための回転用モータと、第2アーム部に対してエンドエフェクタを昇降させるための昇降用モータとを備えている。
 本発明において、産業用ロボットは、本体部と、本体部にその基端側が回動可能に連結される第1アーム部と、第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と、第2アーム部の先端側に配置されるエンドエフェクタと、本体部に対して第1アーム部を回動させるための第1回動用モータと、第1アーム部に対して第2アーム部を回動させるための第2回動用モータと、第2アーム部に対してエンドエフェクタを回転させるための回転用モータとを備えるとともに、動作用のモータとして、第2アーム部に対してエンドエフェクタを昇降させるための昇降用モータを備え、制御部は、テスト運転時に、第1回動用モータ、第2回動用モータおよび回転用モータを、通常運転時の回転速度と同じ速度で回転させ、かつ、通常運転時のトルク制限値と同じトルク制限値で制御するとともに、テスト運転時に、通常運転時の回転速度よりも低い回転速度で昇降用モータを回転させ、テスト運転時に昇降用モータが一方向へ回転する場合には、通常運転時に昇降用モータが一方向へ回転する場合のトルク制限値よりも低いトルク制限値で昇降用モータを制御し、かつ、テスト運転時に昇降用モータが他方向へ回転する場合には、通常運転時に昇降用モータが他方向へ回転する場合のトルク制限値よりも高いトルク制限値で昇降用モータを制御することが好ましい。
 エンドエフェクタやエンドエフェクタに保持されるワーク等の重量の影響で、下降時のエンドエフェクタ等が周辺装置等に接触すると、エンドエフェクタ等が損傷しやすくなるが、このように構成すると、エンドエフェクタを昇降させるための昇降用モータを、テスト運転時にエンドエフェクタ等が周辺装置等に接触した場合に短時間で停止させることが可能になり、また、昇降用モータを停止させた後のエンドエフェクタの動作量を小さくすることが可能になる。したがって、テスト運転時のエンドエフェクタ等の損傷を防止することが可能になる。また、このように構成すると、第1回動用モータ、第2回動用モータおよび回転用モータは、テスト運転時に通常運転時の回転速度と同じ速度で回転するため、テスト運転時の産業用ロボットの動作速度を速めることが可能になる。
 本発明において、制御部では、テスト運転時のモータの回転速度とトルク制限値とが選択可能となっていることが好ましい。このように構成すると、モータの回転速度とトルク制限値との様々な組合せで、産業用ロボットのテスト運転を行うことが可能になる。
 また、上記の第2の課題を解決するため、本発明(第2の発明)の産業用ロボットは、動作用のモータと、モータを制御する制御部とを備え、モータが一方向に回転するときにモータに要求されるトルクの絶対値の最大値は、モータが他方向に回転するときにモータに要求されるトルクの絶対値の最大値よりも大きくなっており、一方向に回転するときのモータのトルク制限値を第1トルク制限値とし、他方向に回転するときのモータのトルク制限値を第2トルク制限値とすると、制御部では、第2トルク制限値の絶対値が第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定され、制御部は、モータが一方向に回転するときに、第1トルク制限値に基づいてモータを制御し、モータが他方向に回転するときに、第2トルク制限値に基づいてモータを制御することを特徴とする。
 また、上記の第2の課題を解決するため、本発明(第2の発明)の産業用ロボットの制御方法は、動作用のモータを備える産業用ロボットの制御方法であって、モータが一方向に回転するときにモータに要求されるトルクの絶対値の最大値は、モータが他方向に回転するときにモータに要求されるトルクの絶対値の最大値よりも大きくなっており、一方向に回転するときのモータのトルク制限値を第1トルク制限値とし、他方向に回転するときのモータのトルク制限値を第2トルク制限値とすると、第2トルク制限値の絶対値が第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されており、モータが一方向に回転するときに、第1トルク制限値に基づいてモータを制御し、モータが他方向に回転するときに、第2トルク制限値に基づいてモータを制御することを特徴とする。
 本発明では、モータが一方向に回転するときにモータに要求されるトルクの絶対値の最大値は、モータが他方向に回転するときにモータに要求されるトルクの絶対値の最大値よりも大きくなっている。また、本発明では、他方向に回転するときのモータのトルク制限値である第2トルク制限値の絶対値が、一方向に回転するときのモータのトルク制限値である第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されている。そのため、本発明では、モータが一方向へ回転して産業用ロボットが正常に動作しているときのモータのトルクが、たとえば、第1トルク制限値を超えてモータが止まらないように、かつ、モータが一方向へ回転しているときに産業用ロボットの一部が周辺装置等に接触した場合のモータのトルクが、たとえば、第1トルク制限値を超えるように、一方向への回転時にモータに要求されるトルクに応じて第1トルク制限値を設定することが可能になる。また、モータが他方向へ回転して産業用ロボットが正常に動作しているときのモータのトルクが、たとえば、第2トルク制限値を下回ってモータが止まらないように、かつ、モータが他方向へ回転しているときに産業用ロボットの一部が周辺装置等に接触した場合のモータのトルクが、たとえば、第2トルク制限値を下回るように、他方向への回転時にモータに要求されるトルクに応じて第2トルク制限値を設定することが可能になる。
 また、本発明では、モータが一方向に回転するときに、第1トルク制限値に基づいてモータを制御し、モータが他方向に回転するときに、第2トルク制限値に基づいてモータを制御している。そのため、本発明では、モータが回転して産業用ロボットが動作しているときに産業用ロボットの一部が周辺装置等に接触してモータのトルクがトルク制限値を超えたり、下回ったりした場合に、モータを停止させて産業用ロボットおよび周辺装置等の損傷を防止することが可能になる。また、本発明では、モータが回転して産業用ロボットが正常に動作している場合に、モータを回転させ続けて、産業用ロボットを適切に動作させることが可能になる。
 本発明の産業用ロボットにおいて、たとえば、産業用ロボットは、大気中に配置され、モータは、エンドエフェクタを昇降させるための昇降用モータであり、モータが一方向に回転するときにエンドエフェクタが上昇し、モータが他方向に回転するときにエンドエフェクタが下降し、第1トルク制限値は、エンドエフェクタを上昇させるときのモータのトルク制限値であり、第2トルク制限値は、エンドエフェクタを下降させるときのモータのトルク制限値であり、制御部は、エンドエフェクタの上昇時に、第1トルク制限値に基づいてモータを制御し、エンドエフェクタの下降時に、第2トルク制限値に基づいて昇降用モータを制御している。
 また、本発明の産業用ロボットの制御方法において、たとえば、産業用ロボットは、大気中に配置され、モータは、エンドエフェクタを昇降させるための昇降用モータであり、モータが一方向に回転するときにエンドエフェクタが上昇し、モータが他方向に回転するときにエンドエフェクタが下降し、第1トルク制限値は、エンドエフェクタを上昇させるときのモータのトルク制限値であり、第2トルク制限値は、エンドエフェクタを下降させるときのモータのトルク制限値であり、エンドエフェクタの上昇時に、第1トルク制限値に基づいてモータを制御し、エンドエフェクタの下降時に、第2トルク制限値に基づいて昇降用モータを制御している。
 この場合には、エンドエフェクタが正常に上昇しているときにモータのトルクが、たとえば、第1トルク制限値を超えてモータが止まらないように、かつ、エンドエフェクタ等が周辺装置等に接触した場合にモータのトルクが、たとえば、第1トルク制限値を超えるように、エンドエフェクタの上昇時にモータに要求されるトルクに応じて第1トルク制限値を設定することが可能になる。また、エンドエフェクタが正常に下降しているときにモータのトルクが、たとえば、第2トルク制限値を下回ってモータが止まらないように、かつ、エンドエフェクタ等が周辺装置等に接触した場合にモータのトルクが、たとえば、第2トルク制限値を下回るように、エンドエフェクタの下降時にモータに要求されるトルクに応じて第2トルク制限値を設定することが可能になる。また、この場合には、エンドエフェクタの上昇時に、第1トルク制限値に基づいて昇降用モータを制御し、エンドエフェクタの下降時に、第2トルク制限値に基づいて昇降用モータを制御しているため、エンドエフェクタの昇降時にエンドエフェクタ等が周辺装置等に接触してモータのトルクがトルク制限値を超えたり、下回ったりした場合に、モータを停止させてエンドエフェクタ等の損傷を防止することが可能になる。また、エンドエフェクタが正常に昇降している場合に、モータを回転させ続けて、エンドエフェクタを適切に昇降させることが可能になる。
 本発明において、産業用ロボットは、制御部に電気的に接続されるペンダントスイッチを備え、エンドエフェクタの重量、および、エンドエフェクタに保持されるワークの重量の少なくともいずれか一方を含むモータ負荷がペンダントスイッチから入力可能となっており、制御部は、ペンダントスイッチから入力されるモータ負荷に基づいて、第1トルク制限値および第2トルク制限値を設定することが好ましい。このように構成すると、エンドエフェクタをより適切に昇降させることができるように、かつ、エンドエフェクタ等が周辺装置等に接触した場合にモータのトルクが確実にトルク制限値を超えたり、下回ったりするように、モータ負荷に応じて第1トルク制限値および第2トルク制限値を設定することが可能になる。したがって、エンドエフェクタをより適切に昇降させることが可能になるとともに、エンドエフェクタ等の損傷を確実に防止することが可能になる。
 本発明において、制御部は、モータを駆動させてモータのモータ負荷を取得するとともに、取得されたモータ負荷に基づいて、第1トルク制限値および第2トルク制限値を設定することが好ましい。このように構成すると、産業用ロボットをより適切に動作させることができるように、かつ、産業用ロボットの一部が周辺装置等に接触した場合にモータのトルクが確実にトルク制限値を超えたり、下回ったりするように、モータ負荷に応じて第1トルク制限値および第2トルク制限値を設定することが可能になる。したがって、産業用ロボットをより適切に動作させることが可能になるとともに、産業用ロボットおよび周辺装置等の損傷を確実に防止することが可能になる。
 本発明において、たとえば、制御部には、モータ負荷に応じた第1トルク制限値および第2トルク制限値がテーブル化されて記憶され、制御部は、モータ負荷に基づいて、対応する第1トルク制限値および第2トルク制限値を読み出して設定する。
 本発明において、制御部は、少なくとも、産業用ロボットを教示する際のエンドエフェクタの上昇時に第1トルク制限値に基づいてモータを制御し、産業用ロボットを教示する際のエンドエフェクタの下降時に第2トルク制限値に基づいてモータを制御することが好ましい。オペレータのマニュアル操作によって産業用ロボットが操作される教示時には、教示終了後の産業用ロボットの自動運転時と比較して、エンドエフェクタ等が周辺装置等に接触してエンドエフェクタ等が損傷する可能性が高い。そのため、このように構成すると、教示時であっても、エンドエフェクタ等の損傷を防止することが可能になる。
 本発明において、制御部は、教示終了後の産業用ロボットの自動運転の際のエンドエフェクタの上昇時に第1トルク制限値に基づいてモータを制御し、自動運転の際のエンドエフェクタの下降時に第2トルク制限値に基づいてモータを制御し、教示時の第1トルク制限値と、自動運転時の前記第1トルク制限値とが異なっており、教示時の第2トルク制限値と、自動運転時の第2トルク制限値とが異なっていることが好ましい。このように構成すると、自動運転時のモータの回転速度が教示時のモータの回転速度よりも速くなるように、自動運転時の第1トルク制限値および第2トルク制限値を設定することが可能になる。したがって、自動運転時のエンドエフェクタの昇降速度を速めることが可能になる。
 本発明において、たとえば、産業用ロボットは、エンドエフェクタが取り付けられるエンドエフェクタ取付部材を備え、モータは、エンドエフェクタとエンドエフェクタ取付部材とを昇降させる。
 本発明において、たとえば、産業用ロボットは、エンドエフェクタと、エンドエフェクタが取り付けられるエンドエフェクタ取付部材と、上下方向を軸方向として配置されエンドエフェクタ取付部材が上端に固定される軸部材と、軸部材の少なくとも下端側が収容されるケース体と、ケース体に一端が固定され軸部材に他端が固定されるとともに軸部材の外周側を覆うように配置されるベローズとを備え、モータは、ケース体に対してエンドエフェクタ、エンドエフェクタ取付部材および軸部材を昇降させるための昇降用モータであり、エンドエフェクタおよびエンドエフェクタ取付部材は、真空中に配置され、ベローズの内周側および外周側のいずれか一方は、真空となっており、ベローズの内周側および外周側のいずれか他方は、大気圧となっており、モータが一方向に回転するときにエンドエフェクタが下降し、モータが他方向に回転するときにエンドエフェクタが上昇し、第1トルク制限値は、エンドエフェクタを下降させるときのモータのトルク制限値であり、第2トルク制限値は、エンドエフェクタを上昇させるときのモータのトルク制限値であり、制御部は、エンドエフェクタの下降時に、第1トルク制限値に基づいてモータを制御し、エンドエフェクタの上昇時に、第2トルク制限値に基づいて昇降用モータを制御する。
 この場合には、エンドエフェクタおよびエンドエフェクタ取付部材が真空中に配置されており、エンドエフェクタおよびエンドエフェクタ取付部材と一緒に軸部材が下降してベローズが伸びると、負圧が発生してエンドエフェクタ等を上側へ押し上げる大きな力が作用するため、エンドエフェクタを下降させる際にモータに要求されるトルクの絶対値は大きくなり、エンドエフェクタを上昇させる際にモータに要求されるトルクの絶対値は小さくなることがある。しかし、この場合であっても、エンドエフェクタが正常に下降しているときにモータのトルクが、たとえば、第1トルク制限値を下回ってモータが止まらないように、かつ、エンドエフェクタ等が周辺装置等に接触した場合にモータのトルクが、たとえば、第1トルク制限値を下回るように、エンドエフェクタの下降時にモータに要求されるトルクに応じて第1トルク制限値を設定することが可能になる。また、エンドエフェクタが正常に上昇しているときにモータのトルクが、たとえば、第2トルク制限値を超えてモータが止まらないように、かつ、エンドエフェクタ等が周辺装置等に接触した場合にモータのトルクが、たとえば、第2トルク制限値を超えるように、エンドエフェクタの上昇時にモータに要求されるトルクに応じて第2トルク制限値を設定することが可能になる。また、この場合には、エンドエフェクタの下降時に、第1トルク制限値に基づいて昇降用モータを制御し、エンドエフェクタの上昇時に、第2トルク制限値に基づいて昇降用モータを制御しているため、エンドエフェクタの昇降時にエンドエフェクタ等が周辺装置等に接触してモータのトルクがトルク制限値を超えたり、下回ったりした場合に、モータを停止させてエンドエフェクタ等の損傷を防止することが可能になる。また、エンドエフェクタが正常に昇降している場合に、モータを回転させ続けて、エンドエフェクタを適切に昇降させることが可能になる。
 本発明において、たとえば、産業用ロボットは、車両に取り付けられるとともにバッテリーが収容されるバッテリー収容部からのバッテリーの引抜きおよびバッテリー収容部へのバッテリーの差込みを行うバッテリー抜差機構を備えるバッテリー交換ロボットであり、バッテリー抜差機構は、バッテリーに係合するバッテリー係合部を備え、モータは、バッテリー係合部を移動させるための引抜差込用モータであり、モータが一方向に回転するときにバッテリー係合部がバッテリーをバッテリー収容部へ差し込み、モータが他方向に回転するときにバッテリー係合部がバッテリー収容部からバッテリーを引き抜き、第1トルク制限値は、バッテリー係合部がバッテリーをバッテリー収容部へ差し込むときのモータのトルク制限値であり、第2トルク制限値は、バッテリー係合部がバッテリー収容部からバッテリーを引き抜くときのモータのトルク制限値であり、制御部は、バッテリーの差込み時に、第1トルク制限値に基づいてモータを制御し、バッテリー引抜き時に、第2トルク制限値に基づいて昇降用モータを制御する。
 この場合には、バッテリー係合部がバッテリーの差込み動作を正常に行っているときのモータのトルクが、たとえば、第1トルク制限値を超えてモータが止まらないように、かつ、バッテリー係合部等が周辺装置等に接触した場合にモータのトルクが、たとえば、第1トルク制限値を超えるように、バッテリーの差込み時にモータに要求されるトルクに応じて第1トルク制限値を設定することが可能になる。また、バッテリー係合部がバッテリーの引抜き動作を正常に行っているときのモータのトルクが、たとえば、第2トルク制限値を下回ってモータが止まらないように、かつ、バッテリー係合部等が周辺装置等に接触した場合にモータのトルクが、たとえば、第2トルク制限値を下回るように、バッテリーの引抜き時にモータに要求されるトルクに応じて第2トルク制限値を設定することが可能になる。また、この場合には、バッテリーの差込み時に、第1トルク制限値に基づいてモータを制御し、バッテリーの引抜き時に、第2トルク制限値に基づいて昇降用モータを制御しているため、バッテリーの交換時にバッテリー係合部等が周辺装置等に接触してモータのトルクがトルク制限値を超えたり、下回ったりした場合に、バッテリー係合部等の損傷を防止することが可能になる。また、バッテリーの交換時にバッテリー係合部が正常に動作している場合に、モータを回転させ続けて、バッテリー係合部を適切に動作させることが可能になる。
 以上のように、本発明(第1の発明)では、教示終了後の自動運転時の産業用ロボットの損傷を防止することが可能になる。また、本発明(第2の発明)では、産業用ロボットおよび周辺装置等の損傷を防止することが可能になるとともに、産業用ロボットの適切な動作が可能になる。
本発明の実施の形態にかかる産業用ロボットの構成を説明するための側面図である。 図1に示す第1回動用モータのトルク制限値を説明するためのグラフである。 図1に示す昇降用モータのトルク制限値を説明するためのグラフである。 図1に示す制御部に記憶されるトルク制限値のテーブルの一例を説明するための表である。 図1に示す昇降用モータのトルク制限値を説明するためのグラフである。 図1に示す制御部に記憶されるトルク制限値のテーブルの一例を説明するための表である。 本発明の他の実施の形態にかかる産業用ロボットの平面図である。 図7のE-E方向から産業用ロボットを示す側面図である。 本発明の他の実施の形態にかかる産業用ロボットの側面図である。 図9に示す産業用ロボットの昇降機構を説明するための平面図である。 本発明の他の実施の形態にかかる産業用ロボットの図であり、(A)は平面図、(B)は側面図である。 図11(B)のF部の内部構造を説明するための断面図である。 本発明の他の実施の形態にかかる産業用ロボットが設置されるバッテリー交換システムの斜視図である。 図13のG部を別の角度から示す斜視図である。 図13に示すバッテリーおよびバッテリー収容部の構成を説明するための概略図である。 図14に示すバッテリー抜差機構および昇降機構を正面から示す図である。 図16のH-H方向からバッテリー抜差機構および昇降機構を示す図である。 図16に示すバッテリー移動機構を側面から説明するための図である。 本発明の他の実施の形態にかかる産業用ロボットの斜視図である。 本発明の他の実施の形態にかかる産業用ロボットの斜視図である。
 以下、図面を参照しながら、本発明の実施の形態を説明する。
 [実施の形態1と実施の形態2に共通の構成]
 (産業用ロボットの構成)
 図1は、本発明の実施の形態にかかる産業用ロボット1の構成を説明するための側面図である。以下の説明では、図1のZ方向を上下方向とする。また、Z1方向側を「上」側とし、Z2方向側を「下」側とする。
 本形態の産業用ロボット1(以下、「ロボット1」とする。)は、部品の製造ラインや組立ライン等に設置されて使用される水平多関節ロボット(SCARAロボット)であり、大気中に配置されている。このロボット1は、本体部2と、本体部2にその基端側が回動可能に連結されるアーム3と、アーム3の先端側に取り付けられるボールネジスプライン4とを備えている。ボールネジスプライン4には、図示を省略するエンドエフェクタが取り付けられている。また、ロボット1は、ロボット1を制御する制御部5と、制御部5に電気的に接続されるペンダントスイッチ6とを備えている。
 本体部2は、略円筒状に形成されている。この本体部2の下端は、たとえば、製造ラインや組立ラインの一部をなすフレーム7に固定されている。アーム3は、第1アーム部11と、第1アーム部11の上側に配置される第2アーム部12との2個のアーム部によって構成されている。第1アーム部11の基端側は、本体部2に回動可能に連結され、第2アーム部12の基端側は、第1アーム部11の先端側に回動可能に連結されている。
 本体部2と第1アーム部11とを繋ぐ関節部には、本体部2に対して第1アーム部11を回動させるための第1回動用モータとしてのモータ15と、モータ15の動力を減速して伝達する減速機16とが配置されている。モータ15は、サーボモータである。具体的には、モータ15は、ACサーボモータである。減速機16の入力部には、モータ15の出力軸が固定され、減速機16の出力部には、第1アーム部11の基端側が固定されている。減速機16のケース体には、モータ15の本体が固定されている。また、減速機16のケース体は、本体部2に固定されている。
 第1アーム部11と第2アーム部12とを繋ぐ関節部には、第1アーム部11に対して第2アーム部12を回動させるための第2回動用モータとしてのモータ17と、モータ17の動力を減速して伝達する減速機18とが配置されている。モータ17は、サーボモータである。具体的には、モータ17は、ACサーボモータである。減速機18の入力部には、モータ17の出力軸が固定され、減速機18の出力部には、第1アーム部11の先端側が固定されている。減速機18のケース体には、モータ17の本体が固定されている。また、減速機18のケース体は、第2アーム部12の基端側に固定されている。
 第2アーム部12には、第2アーム部12に対してエンドエフェクタを回転させるための回転用モータとしてのモータ19と、モータ19の動力を減速して伝達する減速機20とが取り付けられている。モータ19は、サーボモータである。具体的には、モータ19は、ACサーボモータである。減速機20の入力部には、モータ19の出力軸が固定され、減速機20の出力部には、プーリ21が固定されている。減速機20のケース体には、モータ19の本体が固定されている。また、減速機20のケース体は、第2アーム部12の上面に固定されている。
 また、第2アーム部12には、上述のボールネジスプライン4と、第2アーム部12に対してエンドエフェクタを昇降させるための昇降用モータとしてのモータ22とが取り付けられている。ボールネジスプライン4は、上下方向を軸方向として配置されるボールネジスプライン軸23と、ボールネジスプライン軸23を上下方向へ移動させるボールネジナット24と、ボールネジスプライン軸23の軸心を中心にボールネジスプライン軸23を回転させるスプラインナット25とを備えている。モータ22は、サーボモータである。具体的には、モータ22は、ACサーボモータである。モータ22の出力軸には、プーリ28が固定されている。ボールネジナット24には、プーリ29が取り付けられている。プーリ28とプーリ29とには、ベルト30が架け渡されている。スプラインナット25には、プーリ31が取り付けられている。プーリ21とプーリ31との間には、ベルト32が架け渡されている。
 ボールネジナット24およびスプラインナット25は、略円筒状に形成される保持部材33に回転可能に保持されている。保持部材33の上端には、プレートが固定されており、このプレートには、モータ22の本体が固定されている。保持部材33の下端は、第2アーム部12の上面に固定されている。ボールネジスプライン軸23の下端には、エンドエフェクタが取り付けられている。すなわち、第2アーム部12の先端側には、エンドエフェクタが取り付けられている。本形態のボールネジスプライン軸23は、エンドエフェクタが取り付けられるエンドエフェクタ取付部材である。
 また、ボールネジスプライン軸23の下端側には、ベローズ34の下端が固定されるベローズ固定部材35が軸受を介して取り付けられている。ベローズ34の上端は、第2アーム部12の底面に固定されるカバー部材に取り付けられている。ボールネジスプライン軸23の上端側には、ベローズ36の上端が固定されるベローズ固定部材37が軸受を介して取り付けられている。ベローズ36の下端は、モータ17、19、22等を覆うカバー部材38に取り付けられている。カバー部材38は、第2アーム部12の上面側に取り付けられている。
 本形態では、モータ22が回転すると、プーリ28、29およびベルト30を介してモータ22の動力がボールネジナット24に伝達されてボールネジナット24が回転し、ボールネジスプライン軸23が昇降する。すなわち、モータ22が一方向に回転すると、ボールネジスプライン軸23の下端に取り付けられたエンドエフェクタがボールネジスプライン軸23と一緒に上昇し、モータ22が他方向に回転すると、ボールネジスプライン軸23の下端に取り付けられたエンドエフェクタがボールネジスプライン軸23と一緒に下降する。また、モータ19が回転すると、プーリ21、31およびベルト32を介してモータ19の動力がスプラインナット25に伝達されてスプラインナット25が回転し、ボールネジスプライン軸23がその軸中心を中心にして回転する。すなわち、ボールネジスプライン軸23の下端に取り付けられたエンドエフェクタが、ボールネジスプライン軸23の軸中心を中心にして回転する。
 制御部5には、モータ15、17、19、22が電気的に接続されており、制御部5は、モータ15、17、19、22を制御する。ペンダントスイッチ6は、所定のケーブルを介して制御部5に接続されている。なお、実施の形態1においては、モータ15、17、19、22は、ロボット1を動作させるための動作用のモータであり、実施の形態2においては、モータ22は、ロボット1を動作させるための動作用モータである。
 [実施の形態1]
 (モータの回転速度とトルク制限値)
 図2は、図1に示すモータ15のトルク制限値を説明するためのグラフである。図3は、図1に示すモータ22のトルク制限値を説明するためのグラフである。図4は、図1に示す制御部5に記憶されるトルク制限値のテーブルの一例を説明するための表である。
 ロボット1が組立ライン等に設置されると、ロボット1の教示が行われる。また、教示終了後のロボット1は、教示結果に基づいて自動運転される。本形態では、教示が終了すると、ロボット1の自動運転として、教示点やロボット1の制御プログラムが正しいか否かを確認するためのテスト運転が行われる。また、テスト運転が終了すると、ロボット1の自動運転として、部品の組立等を行うための通常運転が行われる。なお、テスト運転と通常運転との切替は、ペンダントスイッチ6を用いたオペレータの操作によって行われる。
 また、ロボット1の周辺装置等に動作中のロボット1が接触した場合に、モータ15、17、19、22を停止させて(すなわち、ロボット1の動作を停止させて)、ロボット1等の損傷を防止するため、制御部5では、モータ15、17、19、22のトルク制限値が設定されており、モータ15、17、19、22のトルクがトルク制限値に達すると、制御部5は、モータ15、17、19、22を停止させる。
 本形態では、制御部5は、テスト運転時に、通常運転時の回転速度よりも低い回転速度でモータ15、17、19、22を回転させている。たとえば、制御部5は、テスト運転時に、通常運転時の回転速度の10%程度の回転速度でモータ15、17、19、22を回転させている。
 また、モータ15、17、19、22を一方向へ回転させるためのモータ15、17、19、22のトルクをプラスのトルクとし、モータ15、17、19、22を他方向へ回転させるためのモータ15、17、19、22のトルクをマイナスのトルクとすると、本形態では、制御部5は、テスト運転時に、モータ15、17、19、22が一方向へ回転しているのか、それとも、他方向へ回転しているのかを判別するとともに、モータ15、17、19、22が一方向へ回転する場合には、通常運転時にモータ15、17、19、22が一方向へ回転する場合のトルク制限値よりも低いトルク制限値でモータ15、17、19、22を制御し、かつ、モータ15、17、19、22が他方向へ回転する場合には、通常運転時にモータ15、17、19、22が他方向へ回転する場合のトルク制限値よりも高いトルク制限値でモータ15、17、19、22を制御している。なお、本形態では、テスト運転時のモータ15、17、19、22のトルク制限値は、ロボット1を教示する際のモータ15、17、19、22のトルク制限値と同じである。
 ここで、モータ15の回転方向が変わっても、アーム3やボールネジスプライン4等の重力の影響でモータ15に要求されるトルクの絶対値が大きく変動することはない。サーボ制御開始後、所定位置に停止している第1アーム部11を本体部2に対して一方向へ回転させ、所定時間停止させた後、第1アーム部11を本体部2に対して他方向へ回転させた場合のモータ15のトルクは、たとえば、図2のように、変動する。具体的には、テスト運転時のモータ15のトルクは、たとえば、図2の曲線S1のように変動し、通常運転時のモータ15のトルクは、たとえば、図2の曲線S2のように変動する。
 そのため、テスト運転時にモータ15が一方向へ回転するときのモータ15のトルク制限値T1の絶対値と、テスト運転時にモータ15が他方向へ回転するときのモータ15のトルク制限値T2の絶対値とが略等しくなっており、通常運転時にモータ15が一方向へ回転するときのモータ15のトルク制限値T3の絶対値と、通常運転時にモータ15が他方向へ回転するときのモータ15のトルク制限値T4の絶対値とが略等しくなっている。なお、上述のように、テスト運転時にモータ15が一方向へ回転する場合には、通常運転時にモータ15が一方向へ回転する場合のトルク制限値T3よりも低いトルク制限値T1でモータ15が制御され、テスト運転時にモータ15が他方向へ回転する場合には、通常運転時にモータ15が他方向へ回転する場合のトルク制限値T4よりも高いトルク制限値T2でモータ15が制御されている。
 同様に、モータ17、19の回転方向が変わっても、アーム3やボールネジスプライン4等の重力の影響でモータ17、19に要求されるトルクの絶対値が大きく変動することはない。そのため、テスト運転時にモータ17が一方向へ回転するときのモータ17のトルク制限値の絶対値と、テスト運転時にモータ17が他方向へ回転するときのモータ17のトルク制限値の絶対値とが略等しくなっており、通常運転時にモータ17が一方向へ回転するときのモータ17のトルク制限値の絶対値と、通常運転時にモータ17が他方向へ回転するときのモータ17のトルク制限値の絶対値とが略等しくなっている。また、テスト運転時にモータ19が一方向へ回転するときのモータ19のトルク制限値の絶対値と、テスト運転時にモータ19が他方向へ回転するときのモータ19のトルク制限値の絶対値とが略等しくなっており、通常運転時にモータ19が一方向へ回転するときのモータ19のトルク制限値の絶対値と、通常運転時にモータ19が他方向へ回転するときのモータ19のトルク制限値の絶対値とが略等しくなっている。
 一方、モータ22は、ボールネジスプライン軸23と一緒にエンドエフェクタを昇降させているため、ボールネジスプライン軸23、エンドエフェクタおよびエンドエフェクタが保持するワーク等の重量の影響で、エンドエフェクタを上昇させる際に、モータ22に要求されるトルクの絶対値は大きくなり、エンドエフェクタを下降させる際に、モータ22に要求されるトルクの絶対値は小さくなる。モータ22が一方向へ回転した場合にエンドエフェクタが上昇し、モータ22が他方向へ回転した場合にエンドエフェクタが下降する場合、サーボ制御開始後、所定位置に停止しているエンドエフェクタを上昇させ、所定時間停止させた後、エンドエフェクタを下降させた場合のモータ22のトルクは、たとえば、図3のように変動する。具体的には、テスト運転時のモータ22のトルクは、たとえば、図3の曲線S11のように変動し、通常運転時のモータ22のトルクは、たとえば、図3の曲線S12のように変動する。
 したがって、テスト運転時において、エンドエフェクタが上昇するときのモータ22のトルク制限値を第1トルク制限値T11とし、エンドエフェクタが下降するときのモータ22のトルク制限値を第2トルク制限値T12とすると、制御部5では、第2トルク制限値T12の絶対値が第1トルク制限値T11の絶対値よりも小さくなるように、第1トルク制限値T11および第2トルク制限値T12が設定されている。同様に、制御部5では、通常運転時にエンドエフェクタが下降するときのモータ22のトルク制限値T14の絶対値が、通常運転時にエンドエフェクタが上昇するときのモータ22のトルク制限値T13の絶対値よりも小さくなるように、トルク制限値T13、T14が設定されている。
 また、制御部5は、テスト運転時に、エンドエフェクタが上昇する方向へモータ22が回転しているのか、それとも、エンドエフェクタが下降する方向へモータ22が回転しているのかを判別するとともに、テスト運転の際のエンドエフェクタの上昇時には、第1トルク制限値T11に基づいてモータ22を制御し、テスト運転の際のエンドエフェクタの下降時には、第2トルク制限値T12に基づいてモータ22を制御する。同様に、制御部5は、通常運転の際に、エンドエフェクタが上昇する方向へモータ22が回転しているのか、それとも、エンドエフェクタが下降する方向へモータ22が回転しているのかを判別するとともに、通常運転の際のエンドエフェクタの上昇時には、トルク制限値T13に基づいてモータ22を制御し、通常運転の際のエンドエフェクタの下降時には、トルク制限値T14に基づいてモータ22を制御する。本形態では、制御部5は、エンドエフェクタが上昇する方向へモータ22が回転していると判別した場合には、トルク制限値T11、T13をモータ22のトルク制限値として設定し、エンドエフェクタが下降する方向へモータ22が回転していると判別した場合には、トルク制限値T12、T14をモータ22のトルク制限値として設定している。すなわち、制御部5は、モータ22の回転方向に応じて、モータ22のトルク制限値をトルク制限値T11、T13またはトルク制限値T12、T14へ切り替えている。
 なお、上述のように、テスト運転時にモータ22が一方向へ回転する場合には、通常運転時にモータ22が一方向へ回転する場合のトルク制限値T13よりも低い第1トルク制限値T11でモータ22が制御され、テスト運転時にモータ22が他方向へ回転する場合には、通常運転時にモータ22が他方向へ回転する場合のトルク制限値T14よりも高いトルク制限値T12でモータ22が制御されている。また、停止しているエンドエフェクタを所定の位置で保持する場合でも、図3に示すように、モータ22には、所定の保持トルクT15が要求される。本形態では、第1トルク制限値T11と保持トルクT15との差と、第2トルク制限値T12と保持トルクT15との差とが略等しくなっており、トルク制限値T13と保持トルクT15との差と、トルク制限値T14と保持トルクT15との差とが略等しくなっている。さらに、トルク制限値T12、T14の値によっては、サーボ制御開始直後のモータ22のトルクがトルク制限値T12、T14を下回ることがある。そのため、制御部5は、モータ22のサーボ制御開始直後の所定時間内においては、トルク制限値T12、T14よりも低いトルク制限値でモータ22を制御する。
 本形態では、エンドエフェクタの重量やエンドエフェクタに保持されるワークの重量等の負荷重量を、モータ22にかかるモータ負荷として、オペレータがペンダントスイッチ6から入力することが可能となっている。制御部5は、ペンダントスイッチ6から負荷重量が入力されると、入力された負荷重量に基づいて、トルク制限値T11~T14を設定する。具体的には、負荷重量に応じたトルク制限値T11~T14がテーブル化されて制御部5に記憶されており、制御部5は、入力された負荷重量に基づいて、対応するトルク制限値T11~T14を読み出して設定する。たとえば、図4に示すようなテーブルが制御部5に記憶されており、制御部5は、入力された負荷重量に基づいて、対応するトルク制限値T11~T14を読み出して設定する。
 なお、図4に示す例では、第1トルク制限値T11と第2トルク制限値T12との差、および、トルク制限値T13とトルク制限値T14との差は、負荷重量に関係なく一定となっているが、負荷重量が大きくなるにしたがって、第1トルク制限値T11と第2トルク制限値T12との差、および、トルク制限値T13とトルク制限値T14との差が大きくなっても良い。
 また、本形態では、制御部5に、モータ15、17、19のトルク制限値が、たとえば、所定の固定値として記憶されている。ただし、負荷重量に応じたモータ15、17、19のトルク制限値がテーブル化されて制御部5に記憶され、ペンダントスイッチ6から入力された負荷重量に基づいて、制御部5が対応するトルク制限値を読み出して設定しても良い。
 (本形態の主な効果)
 以上説明したように、本形態では、テスト運転時に、通常運転時の回転速度よりも低い回転速度でモータ15、17、19、22を回転させている。すなわち、本形態では、テスト運転時におけるロボット1の動作速度が遅い。そのため、本形態では、テスト運転時にオペレータが危険を察知してロボット1を非常停止させた場合のロボット1の空走距離を小さくすることが可能になる。
 また、本形態では、テスト運転時にモータ15、17、19、22が一方向へ回転する場合に、通常運転時にモータ15、17、19、22が一方向へ回転する場合のトルク制限値よりも低いトルク制限値でモータ15、17、19、22を制御し、かつ、テスト運転時にモータ15、17、19、22が他方向へ回転する場合に、通常運転時にモータ15、17、19、22が他方向へ回転する場合のトルク制限値よりも高いトルク制限値でモータ15、17、19、22を制御している。そのため、本形態では、テスト運転時にロボット1が周辺装置等に接触した場合に、短時間で、モータ15、17、19、22のトルクがトルク制限値を超えたり、トルク制限値を下回ったりする。したがって、本形態では、テスト運転時にロボット1が周辺装置等に接触した場合に、モータ15、17、19、22を短時間で停止させることが可能になる。
 このように、本形態では、テスト運転時にオペレータが危険を察知してロボット1を非常停止させた場合のロボット1の空走距離を小さくすることが可能になり、また、テスト運転時にロボット1が周辺装置等に接触した場合に、モータ15、17、19、22を短時間で停止させることが可能になる。したがって、本形態では、テスト運転時のロボット1の損傷を防止することが可能になる。また、テスト運転時に不具合が発生した場合には、再び教示を行う等の所定の処置を行うことで、テスト運転終了後の通常運転時にロボット1が周辺装置等に接触するのを防止することが可能になり、通常運転時のロボット1の損傷を防止することが可能になる。その結果、本形態では、教示終了後の自動運転時のロボット1の損傷を防止することが可能になる。
 本形態では、第2トルク制限値T12の絶対値が第1トルク制限値T11の絶対値よりも小さくなるように、第1トルク制限値T11および第2トルク制限値T12が設定されている。また、本形態では、トルク制限値T14の絶対値がトルク制限値T13の絶対値よりも小さくなるように、トルク制限値T13、T14が設定されている。そのため、本形態では、エンドエフェクタが正常に昇降しているときに、モータ22のトルクがトルク制限値T11、T13を超えたり、トルク制限値T12、T14を下回ったりしないように、また、エンドエフェクタの上昇時にエンドエフェクタ等が周辺装置等に接触した場合にモータ22のトルクがトルク制限値T11、T13を超え、かつ、エンドエフェクタの下降時にエンドエフェクタ等が周辺装置等に接触した場合にモータ22のトルクがトルク制限値T12、T14を下回るように、トルク制限値T11~T14を設定することが可能になる。
 また、本形態では、エンドエフェクタの上昇時に、トルク制限値T11、T13に基づいてモータ22を制御し、エンドエフェクタの下降時に、第2トルク制限値T12、T14に基づいてモータ22を制御しており、エンドエフェクタの上昇時に、モータ22のトルクがトルク制限値T11、T13を超えると、あるいは、エンドエフェクタの下降時に、モータ22のトルクが第2トルク制限値T12、T14を下回ると、モータ22が停止する。そのため、本形態では、エンドエフェクタやエンドエフェクタに保持されるワークの重量等の影響で、エンドエフェクタを上昇させる際にモータ22に要求されるトルクの絶対値とエンドエフェクタを下降させる際にモータ22に要求されるトルクの絶対値とが大きく違っている場合であっても、エンドエフェクタの昇降時にエンドエフェクタ等が周辺装置等に接触したときに、モータ22を停止させてエンドエフェクタ等の損傷を防止することが可能になる。また、本形態では、エンドエフェクタを上昇させる際にモータ22に要求されるトルクの絶対値とエンドエフェクタを下降させる際にモータ22に要求されるトルクの絶対値とが大きく違っている場合であっても、エンドエフェクタが正常に昇降している場合に、モータ22を回転させ続けて、エンドエフェクタを適切に昇降させることが可能になる。
 本形態では、エンドエフェクタの重量やエンドエフェクタに保持されるワークの重量等の負荷重量をペンダントスイッチ6から入力することが可能となっており、制御部5は、ペンダントスイッチ6から負荷重量が入力されると、入力された負荷重量に基づいて、トルク制限値T11~T14を設定している。そのため、本形態では、エンドエフェクタをより適切に昇降させることができるように、かつ、エンドエフェクタ等が周辺装置等に接触した場合にモータ22のトルクがトルク制限値T11、T13を超えたり、トルク制限値T12、T14を下回ったりするように、負荷重量に応じてトルク制限値T11~T14を設定することが可能になる。したがって、本形態では、エンドエフェクタをより適切に昇降させることが可能になるとともに、エンドエフェクタ等の損傷を確実に防止することが可能になる。
 (他の実施の形態)
 上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
 上述した形態では、制御部5は、テスト運転時に、通常運転時の回転速度よりも低い回転速度でモータ15、17、19、22を回転させるとともに、テスト運転時にモータ15、17、19、22が一方向へ回転する場合に、通常運転時にモータ15、17、19、22が一方向へ回転する場合のトルク制限値よりも低いトルク制限値でモータ15、17、19、22を制御し、かつ、テスト運転時にモータ15、17、19、22が他方向へ回転する場合に、通常運転時にモータ15、17、19、22が他方向へ回転する場合のトルク制限値よりも高いトルク制限値でモータ15、17、19、22を制御している。この他にもたとえば、制御部5は、テスト運転時に、モータ15、17、19を通常運転時の回転速度と同じ速度で回転させ、かつ、通常運転時のトルク制限値と同じトルク制限値で制御するとともに、上述した形態と同様に、テスト運転時に、通常運転時の回転速度よりも低い回転速度でモータ22を回転させ、テスト運転時にモータ22が一方向へ回転する場合には、第1トルク制限値T11でモータ22を制御し、かつ、テスト運転時にモータ22が他方向へ回転する場合には、第2トルク制限値T12でモータ22を制御しても良い。
 エンドエフェクタやエンドエフェクタに保持されるワーク等の重量の影響で、下降時のエンドエフェクタ等が周辺装置等に接触すると、エンドエフェクタ等が損傷しやすくなるが、この場合には、エンドエフェクタを昇降させるためのモータ22を、テスト運転の際のエンドエフェクタ等が周辺装置等に接触したときに短時間で停止させることが可能になり、また、モータ22を停止させた後のエンドエフェクタの動作量を小さくすることが可能になる。したがって、テスト運転時のエンドエフェクタ等の損傷を防止することが可能になる。また、この場合には、モータ15、17、19は、テスト運転時に通常運転時の回転速度と同じ速度で回転するため、テスト運転時のロボット1の動作速度を速めることが可能になる。
 上述した形態において、テスト運転時のモータ15、17、19、22の回転速度とトルク制限値とが選択可能となっていても良い。すなわち、テスト運転時のモータ15、17、19、22の回転速度とトルク制限値とが、オペレータによって任意に設定されても良い。この場合には、モータ15、モータ17、モータ19およびモータ22ごとの個別に、回転速度とトルク制限値とが選択可能となっていても良い。この場合には、モータ15、17、19、22の回転速度とトルク制限値との様々な組合せで、ロボット1のテスト運転を行うことが可能になる。なお、この場合には、テスト運転時に、通常運転時の回転速度よりも遅い回転速度で、モータ15、17、19、22を回転させるとともに、通常運転時のトルク制限値と同じトルク制限値で、モータ15、17、19、22の少なくともいずれか1つを制御することも可能である。
 上述した形態では、エンドエフェクタの重量やエンドエフェクタに保持されるワークの重量等の負荷重量をペンダントスイッチ6から入力することが可能となっており、制御部5は、ペンダントスイッチ6から負荷重量が入力されると、入力された負荷重量に基づいて、トルク制限値T11~T14を設定している。この他にもたとえば、モータ22のモータ負荷を自動で取得するモータ負荷取得モードを設けて、モータ負荷を取得するとともに、制御部5は、取得されたモータ負荷に基づいて、トルク制限値T11~T14を設定しても良い。すなわち、制御部5は、モータ22を駆動させてモータ22のモータ負荷を取得するとともに、取得されたモータ負荷に基づいて、トルク制限値T11~T14を設定しても良い。この場合には、たとえば、ペンダントスイッチ6での操作によって、モータ負荷取得モードに切り替わる。また、エンドエフェクタの重量やエンドエフェクタに保持されるワークの重量等の負荷重量の変動が小さい場合には、トルク制限値T11~T14が固定値として制御部5に記憶されていても良い。
 上述した形態では、制御部5は、テスト運転の際のエンドエフェクタの上昇時に、第1トルク制限値T11に基づいてモータ22を制御し、テスト運転の際のエンドエフェクタの下降時に、第1トルク制限値T11の絶対値よりも絶対値の小さな第2トルク制限値T12に基づいてモータ22を制御している。この他にもたとえば、制御部5は、テスト運転の際のエンドエフェクタの上昇時に、第1トルク制限値T11に基づいてモータ22を制御するとともに、テスト運転の際のエンドエフェクタの下降時には、第1トルク制限値T11の絶対値と絶対値の等しい第2トルク制限値に基づいてモータ22を制御しても良い。
 同様に、上述した形態では、制御部5は、通常運転の際のエンドエフェクタの上昇時に、トルク制限値T13に基づいてモータ22を制御し、通常運転の際のエンドエフェクタの下降時に、トルク制限値T13の絶対値よりも絶対値の小さなトルク制限値T14に基づいてモータ22を制御しているが、制御部5は、通常運転の際のエンドエフェクタの上昇時に、トルク制限値T13に基づいてモータ22を制御するとともに、通常運転の際のエンドエフェクタの下降時には、トルク制限値T13の絶対値と絶対値の等しいトルク制限値に基づいてモータ22を制御しても良い。
 上述した形態では、制御部5は、エンドエフェクタが上昇する方向へモータ22が回転していると判別した場合に、トルク制限値T11、T13をモータ22のトルク制限値として設定し、エンドエフェクタが下降する方向へモータ22が回転していると判別した場合に、トルク制限値T12、T14をモータ22のトルク制限値として設定している。この他にもたとえば、制御部5は、エンドエフェクタが上昇する方向へモータ22が回転しているのか、それとも、エンドエフェクタが下降する方向へモータ22が回転しているのかを判別せずに、モータ22のトルクがトルク制限値T11、T13を超えた場合、あるいは、モータ22のトルクがトルク制限値T12、T14を下回った場合に、モータ22を停止させても良い。すなわち、制御部5は、モータ22の回転方向に応じて、モータ22のトルク制限値をトルク制限値T11、T13またはトルク制限値T12、T14へ切り替えなくても良い。この場合であっても、エンドエフェクタの上昇時には、トルク制限値T11、T13に基づいてモータ22が制御され、エンドエフェクタの下降時には、トルク制限値T12、T14に基づいてモータ22が制御される。
 上述した形態では、アーム3は、第1アーム部11と第2アーム部12との2個のアーム部によって構成されているが、アーム3は、3個以上のアーム部によって構成されても良い。
 [実施の形態2]
 (昇降用モータのトルク制御)
 図5は、図1に示すモータ22のトルク制限値を説明するためのグラフである。図6は、図1に示す制御部5に記憶されるトルク制限値のテーブルの一例を説明するための表である。
 ロボット1の周辺装置等に動作中のロボット1が接触した場合に、モータ15、17、19、22を停止させて(すなわち、ロボット1の動作を停止させて)、ロボット1等の損傷を防止するため、制御部5では、モータ15、17、19、22のトルク制限値が設定されており、モータ15、17、19、22のトルクがトルク制限値に達すると、制御部5は、モータ15、17、19、22を停止させる。
 モータ15、17、19の回転方向が変わっても、アーム3やボールネジスプライン4等の重力の影響でモータ15、17、19に要求されるトルクの絶対値が大きく変動することはないため、本形態では、モータ15、17、19が正方向へ回転するときのモータ15、17、19のトルク制限値の絶対値と、モータ15、17、19が逆方向へ回転するときのモータ15、17、19のトルク制限値の絶対値とが等しくなっている。
 一方、モータ22は、ボールネジスプライン軸23と一緒にエンドエフェクタを昇降させているため、ボールネジスプライン軸23、エンドエフェクタおよびエンドエフェクタが保持するワーク等の重量の影響で、エンドエフェクタを上昇させる際にモータ22に要求されるトルクの絶対値は大きくなり、エンドエフェクタを下降させる際にモータ22に要求されるトルクの絶対値は小さくなる。エンドエフェクタを上昇させる方向のモータ22のトルクをプラスのトルクとし、エンドエフェクタを下降させる方向のモータ22のトルクをマイナスのトルクとすると、サーボ制御開始後、所定位置に停止しているエンドエフェクタを上昇させ、所定時間停止させた後、エンドエフェクタを下降させた場合のモータ22のトルクは、たとえば、図5のように変動する。具体的には、ロボット1を教示する際のモータ22のトルクは、たとえば、図5の曲線S21のように変動し、教示終了後のロボット1の自動運転時のモータ22のトルクは、たとえば、図5の曲線S22のように変動する。すなわち、エンドエフェクタを上昇させる一方向にモータ22が回転するときにモータ22に要求されるトルクの絶対値の最大値は、エンドエフェクタを下降させる他方向にモータ22が回転するときにモータ22に要求されるトルクの絶対値の最大値よりも大きくなる。
 したがって、エンドエフェクタを上昇させるときのモータ22のトルク制限値(すなわち、エンドエフェクタを上昇させる一方向に回転するときのモータ22のトルク制限値)を第1トルク制限値とし、エンドエフェクタを下降させるときのモータ22のトルク制限値(すなわち、エンドエフェクタを下降させる他方向に回転するときのモータ22のトルク制限値)を第2トルク制限値とすると、本形態では、制御部5において、第2トルク制限値の絶対値が第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されている。具体的には、ロボット1を教示する際の第2トルク制限値T22の絶対値が第1トルク制限値T21の絶対値よりも小さくなるように、第1トルク制限値T21および第2トルク制限値T22が設定され、ロボット1の自動運転時(通常運転時)の第2トルク制限値T24の絶対値が第1トルク制限値T23の絶対値よりも小さくなるように、第1トルク制限値T23および第2トルク制限値T24が設定されている(図5参照)。より具体的には、エンドエフェクタが正常に昇降しているときに、モータ22のトルクが第1トルク制限値T21、T23を超えたり、第2トルク制限値T22、T24を下回ったりしないように、また、エンドエフェクタの上昇時にエンドエフェクタ等が周辺装置等に接触した場合にモータ22のトルクが第1トルク制限値T21、T23を超え、かつ、エンドエフェクタの下降時にエンドエフェクタ等が周辺装置等に接触した場合にモータ22のトルクが第2トルク制限値T22、T24を下回るように、第1トルク制限値T21、T23および第2トルク制限値T22、T24が設定されている。
 また、教示時の第1トルク制限値T21と、自動運転時の第1トルク制限値T23とは異なっており、教示時の第2トルク制限値T22と、自動運転時の第2トルク制限値T24とは異なっている。具体的には、図5に示すように、第1トルク制限値T21は、第1トルク制限値T23よりも小さくなっており、第2トルク制限値T22は、第2トルク制限値T24よりも大きくなっている。なお、停止しているエンドエフェクタを所定の位置で保持する場合でも、図5に示すように、モータ22には、所定の保持トルクT25が要求される。本形態では、第1トルク制限値T21と保持トルクT25との差と、第2トルク制限値T22と保持トルクT25との差とが略等しくなっており、第1トルク制限値T23と保持トルクT25との差と、第2トルク制限値T24と保持トルクT25との差とが略等しくなっている。
 また、制御部5は、ロボット1を教示する際に、エンドエフェクタが上昇する方向へモータ22が回転しているのか、それとも、エンドエフェクタが下降する方向へモータ22が回転しているのかを判別するとともに、ロボット1を教示する際のエンドエフェクタの上昇時には、第1トルク制限値T21に基づいてモータ22を制御し、ロボット1を教示する際のエンドエフェクタの下降時には、第2トルク制限値T22に基づいてモータ22を制御する。すなわち、ロボット1を教示する際のエンドエフェクタの上昇時に、モータ22のトルクが第1トルク制限値T21を超えると、あるいは、エンドエフェクタの下降時に、モータ22のトルクが第2トルク制限値T22を下回ると、制御部5は、モータ22を停止させている。また、本形態では、制御部5は、ロボット1を教示する際に、エンドエフェクタが上昇する方向へモータ22が回転していると判別した場合には、第1トルク制限値T21をモータ22のトルク制限値として設定し、エンドエフェクタが下降する方向へモータ22が回転していると判別した場合には、第2トルク制限値T22をモータ22のトルク制限値として設定している。すなわち、制御部5は、モータ22の回転方向に応じて、モータ22のトルク制限値を第1トルク制限値T21または第2トルク制限値T22へ切り替えている。
 同様に、制御部5は、ロボット1の自動運転の際に、エンドエフェクタが上昇する方向へモータ22が回転しているのか、それとも、エンドエフェクタが下降する方向へモータ22が回転しているのかを判別するとともに、ロボット1の自動運転の際のエンドエフェクタの上昇時には、第1トルク制限値T23に基づいてモータ22を制御し、ロボット1の自動運転の際のエンドエフェクタの下降時には、第2トルク制限値T24に基づいてモータ22を制御する。すなわち、ロボット1の自動運転の際のエンドエフェクタの上昇時に、モータ22のトルクが第1トルク制限値T23を超えると、あるいは、エンドエフェクタの下降時に、モータ22のトルクが第2トルク制限値T24を下回ると、制御部5は、モータ22を停止させている。また、本形態では、制御部5は、ロボット1の自動運転の際に、エンドエフェクタが上昇する方向へモータ22が回転していると判別した場合には、第1トルク制限値T23をモータ22のトルク制限値として設定し、エンドエフェクタが下降する方向へモータ22が回転していると判別した場合には、第2トルク制限値T24をモータ22のトルク制限値として設定している。すなわち、制御部5は、モータ22の回転方向に応じて、モータ22のトルク制限値を第1トルク制限値T23または第2トルク制限値T24へ切り替えている。
 なお、第2トルク制限値T22、T24の値によっては、サーボ制御開始直後のモータ22のトルクが第2トルク制限値T22、T24を下回ることがある。そのため、制御部5は、モータ22のサーボ制御開始直後の所定時間内においては、第2トルク制限値T22、T24よりも低いトルク制限値でモータ22を制御する。また、ロボット1を教示する際のモータ15、17、19、22の回転速度は、ロボット1の自動運転の際のモータ15、17、19、22の回転速度よりも遅くなっている。
 本形態では、エンドエフェクタの重量やエンドエフェクタに保持されるワークの重量等の負荷重量を、モータ22にかかるモータ負荷として、オペレータがペンダントスイッチ6から入力することが可能となっている。制御部5は、ペンダントスイッチ6から負荷重量が入力されると、入力された負荷重量に基づいて、第1トルク制限値T21、T23および第2トルク制限値T22、T24を設定する。具体的には、負荷重量に応じた第1トルク制限値T21、T23および第2トルク制限値T22、T24がテーブル化されて制御部5に記憶されており、制御部5は、入力された負荷重量に基づいて、対応する第1トルク制限値T21、T23および第2トルク制限値T22、T24を読み出して設定する。たとえば、図6に示すようなテーブルが制御部5に記憶されており、制御部5は、入力された負荷重量に基づいて、対応する第1トルク制限値T21、T23および第2トルク制限値T22、T24を読み出して設定する。
 なお、図6に示す例では、第1トルク制限値T21と第2トルク制限値T22との差、および、第1トルク制限値T23と第2トルク制限値T24との差は、負荷重量に関係なく一定となっているが、負荷重量が大きくなるにしたがって、第1トルク制限値T21と第2トルク制限値T22との差、および、第1トルク制限値T23と第2トルク制限値T24との差が大きくなっても良い。
 (本形態の主な効果)
 以上説明したように、本形態では、エンドエフェクタが正常に昇降しているときに、モータ22のトルクが第1トルク制限値T21、T23を超えたり、第2トルク制限値T22、T24を下回ったりしないように、また、エンドエフェクタの上昇時にエンドエフェクタ等が周辺装置等に接触した場合にモータ22のトルクが第1トルク制限値T21、T23を超え、かつ、エンドエフェクタの下降時にエンドエフェクタ等が周辺装置等に接触した場合にモータ22のトルクが第2トルク制限値T22、T24を下回るように、第1トルク制限値T21、T23および第2トルク制限値T22、T24が設定されている。また、本形態では、エンドエフェクタの上昇時(すなわち、エンドエフェクタを上昇させる一方向にモータ22が回転するとき)に、第1トルク制限値T21、T23に基づいてモータ22を制御し、エンドエフェクタの下降時(すなわち、エンドエフェクタを下降させる他方向にモータ22が回転するとき)に、第2トルク制限値T22、T24に基づいてモータ22を制御しており、エンドエフェクタの上昇時に、モータ22のトルクが第1トルク制限値T21、T23を超えると、あるいは、エンドエフェクタの下降時に、モータ22のトルクが第2トルク制限値T22、T24を下回ると、モータ22が停止する。
 そのため、本形態では、エンドエフェクタの昇降時にエンドエフェクタ等が周辺装置等に接触した場合に、モータ22を停止させてエンドエフェクタ等の損傷を防止することが可能になる。また、本形態では、エンドエフェクタが正常に昇降している場合に、モータ22を回転させ続けて、エンドエフェクタを適切に昇降させることが可能になる。すなわち、本形態では、モータ22が回転しているときにロボット1の一部が周辺装置等に接触した場合に、モータ22を停止させてロボット1および周辺装置等の損傷を防止することが可能になるとともに、モータ22が回転してロボット1が正常に動作している場合に、モータ22を回転させ続けて、ロボット1を適切に動作させることが可能になる。
 本形態では、エンドエフェクタの重量やエンドエフェクタに保持されるワークの重量等の負荷重量をペンダントスイッチ6から入力することが可能となっており、制御部5は、ペンダントスイッチ6から負荷重量が入力されると、入力された負荷重量に基づいて、第1トルク制限値T21、T23および第2トルク制限値T22、T24を設定している。そのため、本形態では、エンドエフェクタをより適切に昇降させることができるように、かつ、エンドエフェクタ等が周辺装置等に接触した場合にモータ22のトルクが第1トルク制限値T21、T23を超えたり、第2トルク制限値T22、T24を下回ったりするように、負荷重量に応じて第1トルク制限値T21、T23および第2トルク制限値T22、T24を設定することが可能になる。したがって、本形態では、エンドエフェクタをより適切に昇降させることが可能になるとともに、エンドエフェクタ等の損傷を確実に防止することが可能になる。
 本形態では、制御部5は、ロボット1を教示する際のエンドエフェクタの上昇時に、第1トルク制限値T21に基づいてモータ22を制御し、ロボット1を教示する際のエンドエフェクタの下降時に、第2トルク制限値T22に基づいてモータ22を制御している。オペレータのマニュアル操作によってロボット1が操作される教示時には、ロボット1の自動運転時と比較して、エンドエフェクタ等が周辺装置等に接触してエンドエフェクタ等が損傷する可能性が高いが、本形態では、ロボット1を教示する際であっても、エンドエフェクタ等の損傷を防止することが可能になる。
 本形態では、ロボット1を教示する際の第1トルク制限値T21は、ロボット1の自動運転時の第1トルク制限値T23よりも小さくなっており、ロボット1を教示する際の第2トルク制限値T22は、ロボット1の自動運転時の第2トルク制限値T24よりも大きくなっている。そのため、本形態では、上述のように、ロボット1の自動運転の際のモータ22の回転速度を、ロボット1を教示する際のモータ22の回転速度よりも速くすることができる。したがって、本形態では、ロボット1の自動運転時のエンドエフェクタの昇降速度を速めることが可能になる。
 (他の実施の形態)
 上述した形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。
 上述した形態では、エンドエフェクタの重量やエンドエフェクタに保持されるワークの重量等の負荷重量をペンダントスイッチ6から入力することが可能となっており、制御部5は、ペンダントスイッチ6から負荷重量が入力されると、入力された負荷重量に基づいて、第1トルク制限値T21、T23および第2トルク制限値T22、T24を設定している。この他にもたとえば、モータ22のモータ負荷を自動で取得するモータ負荷取得モードを設けて、モータ負荷を取得するとともに、制御部5は、取得されたモータ負荷に基づいて、第1トルク制限値T21、T23および第2トルク制限値T22、T24を設定しても良い。すなわち、制御部5は、モータ22を駆動させてモータ22のモータ負荷を取得するとともに、取得されたモータ負荷に基づいて、第1トルク制限値T21、T23および第2トルク制限値T22、T24を設定しても良い。この場合には、たとえば、ペンダントスイッチ6での操作によって、モータ負荷取得モードに切り替わる。また、エンドエフェクタの重量やエンドエフェクタに保持されるワークの重量等の負荷重量の変動が小さい場合には、第1トルク制限値T21、T23および第2トルク制限値T22、T24が固定値として制御部5に記憶されていても良い。
 上述した形態では、制御部5は、ロボット1の自動運転の際のエンドエフェクタの上昇時に、第1トルク制限値T23に基づいてモータ22を制御し、ロボット1の自動運転の際のエンドエフェクタの下降時に、第1トルク制限値T23の絶対値よりも絶対値の小さな第2トルク制限値T24に基づいてモータ22を制御している。この他にもたとえば、制御部5は、ロボット1の自動運転の際のエンドエフェクタの上昇時に、第1トルク制限値T23に基づいてモータ22を制御するとともに、ロボット1の自動運転の際のエンドエフェクタの下降時には、第1トルク制限値T23の絶対値と絶対値の等しい第2トルク制限値に基づいてモータ22を制御しても良い。
 上述した形態では、制御部5は、ロボット1を教示する際に、エンドエフェクタが上昇する方向へモータ22が回転していると判別した場合には、第1トルク制限値T21をモータ22のトルク制限値として設定し、エンドエフェクタが下降する方向へモータ22が回転していると判別した場合には、第2トルク制限値T22をモータ22のトルク制限値として設定している。この他にもたとえば、制御部5は、ロボット1を教示する際に、エンドエフェクタが上昇する方向へモータ22が回転しているのか、それとも、エンドエフェクタが下降する方向へモータ22が回転しているのかを判別せずに、モータ22のトルクが第1トルク制限値T21を超えた場合、あるいは、モータ22のトルクが第2トルク制限値T22を下回った場合に、モータ22を停止させても良い。すなわち、制御部5は、ロボット1を教示する際に、モータ22の回転方向に応じて、モータ22のトルク制限値を第1トルク制限値T21または第2トルク制限値T22へ切り替えなくても良い。この場合であっても、エンドエフェクタの上昇時には、第1トルク制限値T21に基づいてモータ22が制御され、エンドエフェクタの下降時には、第2トルク制限値T22に基づいてモータ22が制御される。
 同様に、上述した形態では、制御部5は、ロボット1の自動運転の際に、エンドエフェクタが上昇する方向へモータ22が回転していると判別した場合には、第1トルク制限値T23をモータ22のトルク制限値として設定し、エンドエフェクタが下降する方向へモータ22が回転していると判別した場合には、第2トルク制限値T24をモータ22のトルク制限値として設定しているが、制御部5は、エンドエフェクタが上昇する方向へモータ22が回転しているのか、それとも、エンドエフェクタが下降する方向へモータ22が回転しているのかを判別せずに、モータ22のトルクが第1トルク制限値T23を超えた場合、あるいは、モータ22のトルクが第2トルク制限値T24を下回った場合に、モータ22を停止させても良い。すなわち、制御部5は、ロボット1の自動運転の際に、モータ22の回転方向に応じて、モータ22のトルク制限値を第1トルク制限値T21または第2トルク制限値T22へ切り替えなくても良い。この場合であっても、エンドエフェクタの上昇時には、第1トルク制限値T23に基づいてモータ22が制御され、エンドエフェクタの下降時には、第2トルク制限値T24に基づいてモータ22が制御される。
 上述した形態では、アーム3は、第1アーム部11と第2アーム部12との2個のアーム部によって構成されているが、アーム3は、3個以上のアーム部によって構成されても良い。
 [産業用ロボットの変形例1]
 図7は、本発明の他の実施の形態にかかる産業用ロボット1の平面図である。図8は、図7のE-E方向から産業用ロボット1を示す側面図である。図9は、本発明の他の実施の形態にかかる産業用ロボット1の側面図である。図10は、図9に示す産業用ロボット1の昇降機構を説明するための平面図である。
 本発明が適用されるロボット1は、液晶ディスプレイ用のガラス基板や半導体ウエハ等の搬送対象物を搬送するための水平多関節型ロボットであっても良い。たとえば、ロボット1は、図7、図8に示すように、液晶ディスプレイ用のガラス基板42(以下、「基板42」とする。)を搬送するための水平多関節型ロボットであっても良い。このロボット1は、大気中に配置されている。また、ロボット1は、基板42が搭載されるエンドエフェクタとしての2個のハンド43と、2個のハンド43のそれぞれが先端側に連結される2本のアーム44と、2本のアーム44を支持する本体部45と、本体部45を水平方向に移動可能に支持するベース部材46とを備えている。本体部45は、2本のアーム44の基端側を支持するアーム支持部材47と、アーム支持部材47が固定されるとともに上下動可能な昇降部材48と、昇降部材48を上下方向に移動可能に支持する柱状部材49と、本体部45の下端部分を構成するとともにベース部材46に対して水平移動可能な基台50と、柱状部材49の下端が固定されるとともに基台50に対して旋回可能な旋回部材51とを備えている。
 昇降部材48は、柱状部材49に対して上下方向に移動可能となっており、ロボット1は、昇降部材48を昇降させる昇降機構を備えている。この昇降機構は、ハンド43を昇降させるための昇降用モータと、上下方向を軸方向として柱状部材49に回転可能に取り付けられ昇降用モータの動力で回転するボールネジと、このボールネジに係合するとともに昇降部材48に取り付けられるナット部材とを備えている。図7、図8に示すロボット1では、昇降用モータが一方向へ回転すると、ハンド43、アーム44、アーム支持部材47および昇降部材48が上昇し、昇降用モータが他方向へ回転すると、ハンド43、アーム44、アーム支持部材47および昇降部材48が下降する。図7、図8に示すロボット1において、昇降用モータは、ロボット1を動作させるための動作用モータである。昇降用モータは、制御部に接続されており、制御部は、昇降用モータを制御する。また、アーム44は、エンドエフェクタであるハンド43が取り付けられるエンドエフェクタ取付部材である。
 図7、図8に示すロボット1においても、上述した形態と同様に、ハンド43を下降させるときの昇降用モータのトルク制限値である第2トルク制限値T22、T24の絶対値が、ハンド43を上昇させるときの昇降用モータのトルク制限値である第1トルク制限値T21、T23の絶対値よりも小さくなるように、第1トルク制限値T21、T23および第2トルク制限値T22、T24が設定されている。また、ハンド43の上昇時には、第1トルク制限値T21、T23に基づいて昇降用モータが制御され、ハンド43の下降時には、第2トルク制限値T22、T24に基づいて昇降用モータが制御されている。そのため、図7、図8に示すロボット1においても、上述した形態と同様の効果を得ることができる。
 また、ロボット1は、たとえば、図9、図10に示すように、半導体ウエハ52(以下、「ウエハ52」とする。)を搬送するための水平多関節型ロボットであっても良い。このロボット1は、大気中に配置されている。また、ロボット1は、ウエハ52が搭載されるエンドエフェクタとしての2個のハンド53と、2個のハンド53のそれぞれが先端側に連結される2本のアーム54と、2本のアーム54を支持する本体部55とを備えている。本体部55は、基台56と3個のフレーム57~59とから構成されている。フレーム57は、基台56に昇降可能に保持され、フレーム58は、フレーム57に昇降可能に保持され、フレーム59は、フレーム58に昇降可能に保持されている。フレーム59の上端には、アーム支持部材60が固定されており、2本のアーム54の基端側は、アーム支持部材60に回動可能に連結されている。
 また、ロボット1は、基台56に対してフレーム57を昇降させ、フレーム57に対してフレーム58を昇降させるとともに、フレーム58に対してフレーム59を昇降させて、フレーム57~59を伸縮させることで、ハンド53およびアーム54を昇降させる昇降機構を備えている。この昇降機構は、ハンド53を昇降させるためのモータ(昇降用モータ)61と、上下方向を軸方向として基台56に回転可能に取り付けられモータ61の動力で回転するボールネジ62と、ボールネジ62に係合するとともにフレーム57に取り付けられるナット部材63と、プーリとベルトとを有しフレーム57とフレーム58とを繋ぐ動滑車手段64と、プーリとベルトとを有しフレーム58とフレーム59とを繋ぐ動滑車手段65とを備えている。また、この昇降機構では、フレーム57にバランサシリンダ66のシリンダロッドが取り付けられており、フレーム57はバランサシリンダ66によって常時、上方向に付勢されている。
 図9、図10に示すロボット1では、モータ61が一方向へ回転すると、フレーム57が上昇するとともに、動滑車手段64、65の作用でフレーム58、59が上昇し、また、モータ61が他方向へ回転すると、フレーム57が下降するとともに、動滑車手段64、65の作用でフレーム58、59が下降する。すなわち、モータ61が一方向へ回転すると、ハンド53、アーム54、アーム支持部材60およびフレーム57~59が上昇し、モータ61が他方向へ回転すると、ハンド53、アーム54、アーム支持部材60およびフレーム57~59が下降する。図9、図10に示すロボット1において、モータ61は、ロボット1を動作させるための動作用モータである。モータ61は、制御部に接続されており、制御部は、モータ61を制御する。また、アーム54は、エンドエフェクタであるハンド53が取り付けられるエンドエフェクタ取付部材である。
 図9、図10に示すロボット1においても、上述した形態と同様に、ハンド53を下降させるときのモータ61のトルク制限値である第2トルク制限値T22、T24の絶対値が、ハンド53を上昇させるときのモータ61のトルク制限値である第1トルク制限値T21、T23の絶対値よりも小さくなるように、第1トルク制限値T21、T23および第2トルク制限値T22、T24が設定されている。また、ハンド53の上昇時には、第1トルク制限値T21、T23に基づいてモータ61が制御され、ハンド53の下降時には、第2トルク制限値T22、T24に基づいてモータ61が制御されている。そのため、図9、図10に示すロボット1においても、上述した形態と同様の効果を得ることができる。
 [産業用ロボットの変形例2]
 図11は、本発明の他の実施の形態にかかる産業用ロボット1の図であり、(A)は平面図、(B)は側面図である。図12は、図11(B)のF部の内部構造を説明するための断面図である。
 本発明が適用されるロボット1は、真空中で有機EL(有機エレクトロルミネッセンス)ディスプレイ用のガラス基板を搬送するための水平多関節型ロボットであっても良い。このロボット1は、ガラス基板が搭載されるエンドエフェクタとしてのハンド73と、ハンド73が先端側に連結されるアーム74と、アーム74の基端側が回動可能に連結される本体部75と、本体部75を昇降させる昇降機構76とを備えている。本体部75および昇降機構76は、略有底円筒状のケース体77の中に収容されている。ケース体77は、円板状に形成されたフランジ部77aを備えている。フランジ部77aは、ケース体77の上端部分を構成している。フランジ部77aには、本体部75の上端側部分が配置される貫通孔が形成されている。
 ハンド73およびアーム74は、本体部75の上側に配置されている。また、ハンド73およびアーム74は、フランジ部77aの上側に配置されている。ロボット1の、フランジ部77aの下端面よりも上側の部分は、真空チャンバー内に配置されている。すなわち、ロボット1の、フランジ部77aの下端面よりも上側の部分は、真空領域VRの中に配置されており、ハンド73およびアーム74は、真空中に配置されている。一方、ロボット1の、フランジ部77aの下端面よりも下側の部分は、大気領域ARの中(大気中)に配置されている。
 本体部75には、本体部75に対してアーム74を回動させるためのモータ78が取り付けられている。また、本体部75は、アーム74の基端側が固定される中空回転軸79と、モータ78の回転を減速してアーム74に伝達する減速機80と、減速機80のケース体を保持するとともに中空回転軸79を回動可能に保持する略円筒状の保持部材81とを備えている。中空回転軸79および保持部材81は、その軸方向と上下方向とが一致するように配置されている。アーム74の基端側は、中空回転軸79の上端に固定されている。
 本体部75とアーム74とを繋ぐ関節部(すなわち、中空回転軸79とアーム74とを繋ぐ関節部)82には、真空領域VRへの空気の流出を防ぐ磁性流体シール83が配置されている。磁性流体シール83は、中空回転軸79の外周面と保持部材81の内周面との間に配置されている。また、関節部82は、真空領域VRへの空気の流出を防ぐためのベローズ84が配置されている。ベローズ84は、保持部材81の上端側の一部の外周側を覆うようにケース体77の内部に配置されている。ベローズ84の下端は、保持部材81に固定され、ベローズ84の上端は、フランジ部77aに固定されている。ベローズ84の内周側は、真空となっており、ベローズ84の外周側は、大気圧となっている。昇降機構76を構成する後述のモータ86が回転して本体部75が昇降すると、ベローズ84が伸縮する。
 昇降機構76は、本体部75を昇降させるためのモータ(昇降用モータ)86と、上下方向を軸方向としてケース体77に回転可能に取り付けられモータ86の動力で回転するボールネジ87と、ボールネジ87に係合するとともに本体部75に取り付けられるナット部材88とを備えている。図11、図12に示すロボット1では、モータ86が一方向へ回転すると、ハンド73、アーム74および本体部75が下降し、モータ86が他方向へ回転すると、ハンド73、アーム74および本体部75が上昇する。図11、図12に示すロボット1において、モータ86は、ロボット1を動作させるための動作用モータである。モータ86は、制御部に接続されており、制御部は、モータ86を制御する。また、アーム74は、エンドエフェクタであるハンド73が取り付けられるエンドエフェクタ取付部材である。また、図11、図12に示すロボット1では、中空回転軸79と保持部材81とによって、エンドエフェクタ取付部材であるアーム74が上端に固定される軸部材が構成されている。本体部75が上昇した場合であっても、この軸部材の下端側は、ケース体77の中に収容されている。
 図11、図12に示すロボット1では、ハンド73およびアーム74が真空中に配置されており、ハンド73およびアーム74と一緒に本体部75が下降してベローズ84が伸びると、負圧が発生してハンド73、アーム74および本体部75を上側へ押し上げる大きな力が作用するため、ハンド73を下降させる際にモータ86に要求されるトルクの絶対値は大きくなり、ハンド73を上昇させる際にモータ86に要求されるトルクの絶対値は小さくなる。すなわち、ハンド73を下降させる一方向にモータ86が回転するときにモータ86に要求されるトルクの絶対値の最大値は、ハンド73を上昇させる他方向にモータ86が回転するときにモータ86に要求されるトルクの絶対値の最大値よりも大きくなる。
 したがって、図11、図12に示すロボット1では、上述した形態とは反対に、ハンド73を上昇させるときのモータ86のトルク制限値である第2トルク制限値の絶対値が、ハンド73を下降させるときのモータ86のトルク制限値である第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されている。また、ハンド73の下降時には、第1トルク制限値に基づいてモータ86が制御され、ハンド73の下降時には、第2トルク制限値に基づいてモータ86が制御されている。そのため、図11、図12に示すロボット1においても、上述した形態と同様の効果を得ることができる。
 なお、図11、図12に示すロボット1において、ベローズ84の内周側が大気圧となり、ベローズ84の外周側が真空となるように、ベローズ84の上端が中空回転軸79の上端側に固定され、ベローズ84の下端がフランジ部77aに固定されても良い。この場合には、ベローズ84は、中空回転軸79の上端側の一部の外周側を覆うようにケース体77の外部に配置される。この場合であっても、ハンド73およびアーム74と一緒に本体部75が下降してベローズ84が伸びると、負圧が発生してハンド73、アーム74および本体部75を上側へ押し上げる大きな力が作用するため、ハンド73を上昇させるときのモータ86のトルク制限値である第2トルク制限値の絶対値が、ハンド73を下降させるときのモータ86のトルク制限値である第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定される。また、ハンド73の下降時には、第1トルク制限値に基づいてモータ86が制御され、ハンド73の下降時には、第2トルク制限値に基づいてモータ86が制御される。
 [産業用ロボットの変形例3]
 図13は、本発明の他の実施の形態にかかるロボット1が設置されるバッテリー交換システムの斜視図である。図14は、図13のG部を別の角度から示す斜視図である。図15は、図13に示すバッテリー103およびバッテリー収容部104の構成を説明するための概略図である。図16は、図14に示すバッテリー抜差機構117および昇降機構118を正面から示す図である。図17は、図16のH-H方向からバッテリー抜差機構117および昇降機構118を示す図である。図18は、図16に示すバッテリー移動機構125を側面から説明するための図である。以下の説明では、水平方向において互いに直交する2方向のそれぞれをX方向およびY方向とし、X方向を前後方向、Y方向を左右方向とする。
 本発明が適用されるロボット1は、車両102に搭載されているバッテリー103を交換するためのバッテリー交換ロボットであっても良い。車両102は、たとえば、電気バスである。車両102には、複数のバッテリー103が収容されるバッテリー収容部104が取り付けられている。バッテリー103の交換時には、車両102は、その進行方向と左右方向とが略一致するように停止している。ロボット1は、バッテリー収容部104に収容されているバッテリー103の交換が可能となるように、前後方向で車両102の側面102aと向き合っている。このロボット1は、バッテリー収容部104に収容されているバッテリー103を引き抜いて、図示を省略するバッファステーションへ搬入するとともに、バッファステーションに収容された充電済みのバッテリー103をバッファステーションから搬出してバッテリー収容部104に差し込む。
 バッテリー収容部104は、バッテリー103が搭載されるバッテリー置き台106と、左右の側壁107とを備えており、バッテリー置き台106と側壁107とによって、バッテリー103の収容空間が形成されている。バッテリー収容部104には、複数のバッテリー103の収容空間が形成されており、複数のバッテリー103が収容可能となっている。また、バッテリー収容部104は、図15に示すように、収容されたバッテリー103をロックするロック機構109と、車両102とバッテリー103とを電気的に接続するためのコネクタ110とを備えている。ロック機構109は、ロック部材111と、付勢部材112とを備えている。コネクタ110は、バッテリー収容部104の奥側に配置されている。
 ロック部材111は、たとえば、左右方向へ移動可能となるように側壁107に保持されている。このロック部材111は、図示を省略する付勢部材によって左右方向の内側へ付勢されており、側壁107からバッテリー収容部104の内側へ突出している。また、ロック部材111は、たとえば、略三角柱状に形成されており、前後方向と上下方向とから構成される平面に対して傾斜する傾斜面111aと、左右方向と上下方向とから構成される平面と平行な端面111bとを備えている。端面111bは、ロック部材111の奥側の端面を構成している。傾斜面111aは、バッテリー収容部104の手前側に向かうにしたがって、左右方向の外側へ広がるように傾斜している。
 付勢部材112は、たとえば、圧縮コイルバネである。この付勢部材112は、バッテリー103に形成される後述の係合突起115の端面115bとロック部材111の端面111bとが所定の接触圧で接触するように、バッテリー収容部104の手前側に向かってバッテリー103を付勢する機能を果たしている。車両102では、付勢部材112によってバッテリー103を付勢することで、バッテリー収容部104に収容されたバッテリー103の、車両102の走行時における振動を抑制している。
 バッテリー103の前面には、バッテリー収容部104からバッテリー103を引き抜くための取手部114が形成されている。また、バッテリー103は、図15に示すように、ロック部材111に係合する係合突起115と、コネクタ110に接続されるコネクタ116とを備えている。コネクタ116は、バッテリー収容部104に収容されたバッテリー103の奥端面(背面)に取り付けられている。
 係合突起115は、たとえば、バッテリー103の左右の側面に固定されており、バッテリー103の左右の側面から左右方向の外側へ突出している。この係合突起115は、たとえば、略三角柱状に形成されており、前後方向と上下方向とから構成される平面に対して傾斜する傾斜面115aと、左右方向と上下方向とから構成される平面と平行な端面115bとを備えている。端面115bは、係合突起115の手前側の端面を構成している。傾斜面115aは、バッテリー収容部104の手前側に向かうにしたがって、左右方向の外側へ広がるように傾斜している。
 バッテリー収容部104にバッテリー103を収容する際に、バッテリー103がバッテリー収容部104に差し込まれていくと、やがて、係合突起115の傾斜面115aとロック部材111の傾斜面111aとが接触する。この状態でさらに、バッテリー103がバッテリー収容部104に差し込まれると、図15(B)に示すように、ロック部材111を付勢する付勢部材の付勢力に抗して、ロック部材111が左右方向の外側へ移動する。係合突起115がロック部材111を通過するまでバッテリー103がさらに差し込まれると、ロック部材111は、この付勢部材の付勢力によって左右方向の内側へ移動する。また、係合突起115がロック部材111を通過するまでバッテリー103がさらに差し込まれると、付勢部材112がバッテリー103の奥端面に接触して、バッテリー収容部104の手前側に向かってバッテリー103を付勢する。
 すると、図15(C)に示すように、バッテリー103に形成される係合突起115の端面115bとロック部材111の端面111bとが所定の接触圧で接触して、バッテリー収容部104に収容されたバッテリー103がロックされる。このように、ロック機構109は、バッテリー収容部104へのバッテリー103の差込み力で作動してバッテリー103をロックする機械式のロック機構である。具体的には、ロック機構109は、ロボット1を構成する後述のバッテリー係合部124によるバッテリー収容部104へのバッテリー103の差込み力で作動してバッテリー103をロックする機械式のロック機構である。また、バッテリー収容部104へのバッテリー103の差込み力によって、コネクタ110とコネクタ116とが接続される。具体的には、後述のバッテリー係合部124によるバッテリー収容部104へのバッテリー103の差込み力によって、コネクタ110とコネクタ116とが接続される。
 なお、図15(C)に示す状態から(すなわち、ロック機構109にバッテリー103がロックされた状態から)さらにバッテリー103をバッテリー収容部104の奥側へわずかに押し込むと、ロック部材111が退避して、端面115bと端面111bとの接触状態が解除されるように、ロック機構109が構成されている。そのため、ロック機構109にバッテリー103がロックされた状態からさらにバッテリー103をバッテリー収容部104の奥側へわずかに押し込むと、ロック機構109によるバッテリー103のロック状態が解除されて、バッテリー収容部104からのバッテリー103の引抜きが可能になる。
 ロボット1は、バッテリー収容部104からのバッテリー103の引抜きおよびバッテリー収容部104へのバッテリー103の差込みを行うバッテリー抜差機構117と、バッテリー抜差機構117を昇降させる昇降機構118と、上下方向を軸方向としてバッテリー抜差機構117および昇降機構118を回動させる回動機構119と、バッテリー抜差機構117、昇降機構118および回動機構119を左右方向へ移動させる水平移動機構120とを備えている。
 バッテリー抜差機構117は、バッテリー103の引抜き時および差込み時にバッテリー103が搭載されるバッテリー搭載部122を有するバッテリー搭載機構123と、バッテリー103の引抜き時および差込み時にバッテリー103に係合してバッテリー搭載部122上でバッテリー103を移動させるバッテリー係合部124を有するバッテリー移動機構125とを備えている。また、バッテリー抜差機構117は、保持部材126に保持されている。バッテリー搭載機構123は、車両102に近づく方向および車両102から離れる方向へバッテリー搭載部122を移動させる搭載部移動機構を備えている。バッテリー搭載部122は、バッテリー103の交換時に車両102に近づく方向へ移動し、バッテリー103の交換が行われないときには、車両102から離れた位置で待機している。
 バッテリー移動機構125は、車両102に近づく方向および車両102から離れる方向へバッテリー係合部124を移動させる係合部移動機構139と、バッテリー係合部124を移動可能に保持するとともに保持部材126に移動可能に保持される移動保持部材140とを備えている。バッテリー係合部124は、バッテリー103の取手部114に係合する係合爪部141と、係合爪部141を上下動させるエアシリンダ142とを備えている。
 移動保持部材140は、バッテリー係合部124の移動方向に細長い長尺状に形成されている。係合部移動機構139は、バッテリー係合部124および移動保持部材140を移動させるための構成として、モータ144と、ボールネジ145と、ボールネジ145に螺合するナット部材146と、プーリ147、148と、プーリ147、148に架け渡されるベルト149とを備えている。モータ144は、保持部材126の後端部に固定されている。ボールネジ145は、保持部材126の上面部に回転可能に保持されており、モータ144の動力で回転する。ナット部材146は、移動保持部材140の後端部に固定されている。プーリ147は、移動保持部材140の後端部に回転可能に保持され、プーリ148は、移動保持部材140の前端部に回転可能に保持されている。ベルト149は、ベルト固定部材154を介してバッテリー係合部124に固定されるとともに、ベルト固定部材155を介して保持部材126の上面部に固定されている。
 図14等に示すロボット1では、モータ144が回転すると、バッテリー係合部124が直線的に移動する。具体的には、モータ144が一方向へ回転すると、バッテリー係合部124が車両102に近づく方向へ移動し、モータ144が他方向へ回転すると、バッテリー係合部124が車両102から離れる方向へ移動する。そのため、図14等に示すロボット1では、モータ144が一方向に回転するときに、バッテリー係合部124がバッテリー103をバッテリー収容部104へ差し込み、モータ144が他方向に回転するときに、バッテリー係合部124がバッテリー収容部104からバッテリー103を引き抜く。図14等に示すロボット1において、モータ144は、バッテリー係合部124を移動させるための引抜差込用モータであるとともに、ロボット1を動作させるための動作用モータである。モータ144は、制御部に接続されており、制御部は、モータ144を制御する。
 図14等に示すロボット1では、バッテリー収容部104にバッテリー103を差し込む際に、付勢部材によって左右方向の内側へ付勢されたロック部材111を左右方向の外側へ移動させなければならず、また、付勢部材112がバッテリー103の奥端面に接触して、バッテリー収容部104の手前側に向かってバッテリー103を付勢する。そのため、このロボット1では、バッテリー係合部124がバッテリー103をバッテリー収容部104へ差し込む際にモータ144に要求されるトルクの絶対値は大きくなり、バッテリー係合部124がバッテリー収容部104からバッテリー103を引き抜く際にモータ144に要求されるトルクの絶対値は小さくなる。すなわち、バッテリー103を差し込む一方向にモータ144が回転するときにモータ144に要求されるトルクの絶対値の最大値は、バッテリー103を引き抜く他方向にモータ144が回転するときにモータ144に要求されるトルクの絶対値の最大値よりも大きくなる。
 したがって、図14等に示すロボット1では、バッテリー103を引き抜くときのモータ144のトルク制限値である第2トルク制限値の絶対値が、バッテリー103を差し込むときのモータ144のトルク制限値である第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されている。具体的には、バッテリー係合部124がバッテリー103の差込み動作や引抜き動作を正常に行っているときに、モータ144のトルクが第1トルク制限値を超えたり、第2トルク制限値を下回ったりしないように、また、バッテリー103の差込み時にバッテリー103やバッテリー係合部124等が周辺装置等に接触した場合にモータ144のトルクが第1トルク制限値を超え、かつ、バッテリー103の引抜き時にバッテリー103やバッテリー係合部124等が周辺装置等に接触した場合にモータ144のトルクが第2トルク制限値を下回るように、第1トルク制限値および第2トルク制限値が設定されている。また、バッテリー103の差込み時には、第1トルク制限値に基づいてモータ144が制御され、バッテリー103の引抜き時には、第2トルク制限値に基づいてモータ144が制御されている。
 そのため、このロボット1では、バッテリー103の交換時にバッテリー係合部124等が周辺装置等に接触してモータ144のトルクがトルク制限値を超えたり、下回ったりした場合に、モータ144を停止させてバッテリー係合部124等の損傷を防止することが可能になる。また、このロボット1では、バッテリー103の交換時にバッテリー係合部124が正常に動作している場合に、モータ144を回転させ続けて、バッテリー係合部124を適切に動作させることが可能になる。
 [産業用ロボットの変形例4]
 図19は、本発明の他の実施の形態にかかる産業用ロボット1の斜視図である。図20は、本発明の他の実施の形態にかかる産業用ロボット1の斜視図である。
 本発明が適用されるロボット1は、水平多関節型ロボットやバッテリー交換ロボット以外のロボットであっても良い。たとえば、本発明が適用されるロボット1は、図19に示すように、複数の関節部を有する垂直多関節ロボットであっても良い。このロボット1は、所定の設置面に固定されるベースフレーム202と、ベースフレーム202に回動可能に連結される旋回フレーム203と、旋回フレーム203に回動可能に連結される第1アーム204と、第1アーム204に回動可能に連結される第2アーム205と、第2アーム205に回動可能に連結される手首部206とを備えている。
 第1アーム204の基端側は、軸A1を中心とする回動が可能となるように旋回フレーム203に連結されている。旋回フレーム203と第1アーム204とを連結する関節部213には、旋回フレーム203に対して第1アーム204を回動させるモータ214が配置されている。第2アーム205の基端側は、軸A2を中心とする回動が可能となるように第1アーム204の先端側に連結されている。第1アーム204と第2アーム205とを連結する関節部215には、第1アーム204に対して第2アーム205を回動させるモータ216が配置されている。以下の説明では、図19の時計回りの回転方向を時計方向とし、図19の反時計回りの回転方向を反時計方向とする。
 第2アーム205および手首部206等の重量の影響によって、第1アーム204が旋回フレーム203に対して時計方向に回動する際にモータ214に要求されるトルクの絶対値の最大値が、第1アーム204が旋回フレーム203に対して反時計方向に回動する際にモータ214に要求されるトルクの絶対値の最大値よりも大きくなる範囲で第1アーム204が回動するようにロボット1が使用される場合には、第1アーム204が反時計方向に回動するときのモータ214のトルク制限値である第2トルク制限値の絶対値が、第1アーム204が時計方向に回動するときのモータ214のトルク制限値である第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されている。また、第1アーム204が時計方向に回動するときには、第1トルク制限値に基づいてモータ214が制御され、第1アーム204が反時計方向に回動するときには、第2トルク制限値に基づいてモータ214が制御される。
 また、手首部206等の重量の影響によって、第2アーム205が第1アーム204に対して時計方向に回動する際にモータ216に要求されるトルクの絶対値の最大値が、第2アーム205が第1アーム204に対して反時計方向に回動する際にモータ216に要求されるトルクの絶対値の最大値よりも大きくなる範囲で第2アーム205が回動するようにロボット1が使用される場合には、第2アーム205が反時計方向に回動するときのモータ216のトルク制限値である第2トルク制限値の絶対値が、第2アーム205が時計方向に回動するときのモータ216のトルク制限値である第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されている。また、第2アーム205が時計方向に回動するときには、第1トルク制限値に基づいてモータ216が制御され、第2アーム205が反時計方向に回動するときには、第2トルク制限値に基づいてモータ216が制御される。
 この場合にも、上述した形態と同様に、第1アーム204や第2アーム205の動作中に手首部206等が周辺装置等に接触した場合に、モータ214、216を停止させて手首部206等の損傷を防止することが可能になるとともに、第1アーム204や第2アーム205が正常に動作している場合に、モータ214、216を回転させ続けて、ロボット1を適切に動作させることが可能になる。なお、図19に示すロボット1では、モータ214、216は、動作用のモータである。モータ214、216は、制御部に接続されており、制御部は、モータ214、216を制御する。
 また、本発明が適用されるロボット1は、図20に示すように、いわゆるパラレルリンク型のロボットであっても良い。このロボット1は、本体部252と、本体部252に連結される3本のレバー253と、3本のレバー253のそれぞれに連結されるアーム部254と、アーム部254に連結されるヘッドユニット255とを備えている。3本のレバー253は、本体部252の外周側へ略等角度ピッチで略放射状に伸びるように本体部252に連結されている。3本のレバー253の基端側は、本体部252に回動可能に連結されている。本体部252とレバー253とを繋ぐ関節部257には、レバー253を回動させるモータ258が配置されている。アーム部254の基端側は、レバー253の先端側に回動可能に連結されている。ヘッドユニット255は、アーム部254の先端側に回動可能に連結されている。
 図20に示すロボット1では、ヘッドユニット255等の重量の影響によって、レバー253が一方向へ回動する際にモータ258に要求されるトルクの絶対値の最大値が、レバー253が他方向に回動する際にモータ258に要求されるトルクの絶対値の最大値よりも大きくなる範囲でレバー253が回動するようにロボット1が使用される場合には、レバー253が他方向に回動するときのモータ258のトルク制限値である第2トルク制限値の絶対値が、レバー253が一方向に回動するときのモータ258のトルク制限値である第1トルク制限値の絶対値よりも小さくなるように、第1トルク制限値および第2トルク制限値が設定されている。また、レバー253が一方向に回動するときには、第1トルク制限値に基づいてモータ258が制御され、レバー253が他方向に回動するときには、第2トルク制限値に基づいてモータ258が制御される。
 この場合にも、上述した形態と同様に、レバー253およびアーム254の動作中にヘッドユニット255等が周辺装置等に接触した場合に、モータ258を停止させてヘッドユニット255等の損傷を防止することが可能になるとともに、レバー253およびアーム254が正常に動作している場合に、モータ258を回転させ続けて、ロボット1を適切に動作させることが可能になる。なお、図20に示すロボット1では、モータ258は、動作用のモータである。モータ258は、制御部に接続されており、制御部は、モータ258を制御する。
 また、本発明が適用されるロボットは、その他の形式のロボットであっても良い。たとえば、本発明が適用されるロボットは、直交型のロボットであっても良い。
 1 ロボット(産業用ロボット)
 2 本体部
 5 制御部
 6 ペンダントスイッチ
 11 第1アーム部
 12 第2アーム部
 15 モータ(第1回動用モータ)
 17 モータ(第2回動用モータ)
 19 モータ(回転用モータ)
 22、61、86 モータ(昇降用モータ)
 23 ボールネジスプライン軸(エンドエフェクタ取付部材)
 43、53、73 ハンド(エンドエフェクタ)
 44、54、74 アーム(エンドエフェクタ取付部材)
 77 ケース体
 79 中空回転軸(軸部材の一部)
 81 保持部材(軸部材の一部)
 84 ベローズ
 102 車両
 103 バッテリー
 104 バッテリー収容部
 117 バッテリー抜差機構
 124 バッテリー係合部
 144 モータ(引抜差込用モータ)
 214、216、258 モータ
 T1~T4、T13、T14 トルク制限値
 T11 第1トルク制限値(トルク制限値)
 T12 第2トルク制限値(トルク制限値)
 T21 第1トルク制限値、教示時の第1トルク制限値
 T22 第2トルク制限値、教示時の第2トルク制限値
 T23 第1トルク制限値、自動運転時の第1トルク制限値
 T24 第2トルク制限値、自動運転時の第2トルク制限値

Claims (19)

  1.  動作用のモータと、前記モータを制御する制御部とを備える産業用ロボットにおいて、
     前記モータを一方向へ回転させるための前記モータのトルクをプラスのトルクとし、前記モータを他方向へ回転させるための前記モータのトルクをマイナスのトルクとするとともに、前記産業用ロボットの教示終了後に教示点および/または前記産業用ロボットの制御プログラムが正しいか否かを確認するために行う前記産業用ロボットの自動運転をテスト運転とし、前記テスト運転終了後に行う前記産業用ロボットの自動運転を通常運転とすると、
     前記制御部は、前記テスト運転時に、前記通常運転時の回転速度よりも低い回転速度で前記モータを回転させるとともに、前記テスト運転時に前記モータが一方向へ回転する場合には、前記通常運転時に前記モータが一方向へ回転する場合のトルク制限値よりも低いトルク制限値で前記モータを制御し、かつ、前記テスト運転時に前記モータが他方向へ回転する場合には、前記通常運転時に前記モータが他方向へ回転する場合のトルク制限値よりも高いトルク制限値で前記モータを制御することを特徴とする産業用ロボット。
  2.  前記モータとして、エンドエフェクタを昇降させるための昇降用モータを備え、
     前記テスト運転時において、前記エンドエフェクタが上昇するときの前記昇降用モータのトルク制限値を第1トルク制限値とし、前記エンドエフェクタが下降するときの前記昇降用モータのトルク制限値を第2トルク制限値とすると、
     前記制御部では、前記第2トルク制限値の絶対値が前記第1トルク制限値の絶対値よりも小さくなるように、前記第1トルク制限値および前記第2トルク制限値が設定されており、
     前記制御部は、前記テスト運転時における前記エンドエフェクタの上昇時には、前記第1トルク制限値に基づいて前記昇降用モータを制御し、前記テスト運転時における前記エンドエフェクタの下降時には、前記第2トルク制限値に基づいて前記昇降用モータを制御することを特徴とする請求項1記載の産業用ロボット。
  3.  前記制御部に電気的に接続されるペンダントスイッチを備え、
     前記エンドエフェクタの重量、および、前記エンドエフェクタに保持されるワークの重量の少なくともいずれか一方を含むモータ負荷が前記ペンダントスイッチから入力可能となっており、
     前記制御部は、前記ペンダントスイッチから入力される前記モータ負荷に基づいて、前記第1トルク制限値および前記第2トルク制限値を設定することを特徴とする請求項2記載の産業用ロボット。
  4.  本体部と、前記本体部にその基端側が回動可能に連結される第1アーム部と、前記第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と、前記第2アーム部の先端側に配置されるエンドエフェクタとを備えるとともに、
     前記モータとして、前記本体部に対して前記第1アーム部を回動させるための第1回動用モータと、前記第1アーム部に対して前記第2アーム部を回動させるための第2回動用モータと、前記第2アーム部に対して前記エンドエフェクタを回転させるための回転用モータと、前記第2アーム部に対して前記エンドエフェクタを昇降させるための昇降用モータとを備えることを特徴とする請求項1から3のいずれかに記載の産業用ロボット。
  5.  本体部と、前記本体部にその基端側が回動可能に連結される第1アーム部と、前記第1アーム部の先端側にその基端側が回動可能に連結される第2アーム部と、前記第2アーム部の先端側に配置されるエンドエフェクタと、前記本体部に対して前記第1アーム部を回動させるための第1回動用モータと、前記第1アーム部に対して前記第2アーム部を回動させるための第2回動用モータと、前記第2アーム部に対して前記エンドエフェクタを回転させるための回転用モータとを備えるとともに、
     前記モータとして、前記第2アーム部に対して前記エンドエフェクタを昇降させるための昇降用モータを備え、
     前記制御部は、前記テスト運転時に、前記第1回動用モータ、前記第2回動用モータおよび前記回転用モータを、前記通常運転時の回転速度と同じ速度で回転させ、かつ、前記通常運転時のトルク制限値と同じトルク制限値で制御するとともに、前記テスト運転時に、前記通常運転時の回転速度よりも低い回転速度で前記昇降用モータを回転させ、前記テスト運転時に前記昇降用モータが一方向へ回転する場合には、前記通常運転時に前記昇降用モータが一方向へ回転する場合のトルク制限値よりも低いトルク制限値で前記昇降用モータを制御し、かつ、前記テスト運転時に前記昇降用モータが他方向へ回転する場合には、前記通常運転時に前記昇降用モータが他方向へ回転する場合のトルク制限値よりも高いトルク制限値で前記昇降用モータを制御することを特徴とする請求項1から3のいずれかに記載の産業用ロボット。
  6.  前記制御部では、前記テスト運転時の前記モータの回転速度とトルク制限値とが選択可能となっていることを特徴とする請求項1から5のいずれかに記載の産業用ロボット。
  7.  動作用のモータを備える産業用ロボットの制御方法であって、
     前記モータを一方向へ回転させるための前記モータのトルクをプラスのトルクとし、前記モータを他方向へ回転させるための前記モータのトルクをマイナスのトルクとするとともに、前記産業用ロボットの教示終了後に教示点および/または前記産業用ロボットの制御プログラムが正しいか否かを確認するために行う前記産業用ロボットの自動運転をテスト運転とし、前記テスト運転終了後に行う前記産業用ロボットの自動運転を通常運転とすると、
     前記テスト運転時に、前記通常運転時の回転速度よりも低い回転速度で前記モータを回転させるとともに、前記テスト運転時に前記モータが一方向へ回転する場合には、前記通常運転時に前記モータが一方向へ回転する場合のトルク制限値よりも低いトルク制限値で前記モータを制御し、かつ、前記テスト運転時に前記モータが他方向へ回転する場合には、前記通常運転時に前記モータが他方向へ回転する場合のトルク制限値よりも高いトルク制限値で前記モータを制御することを特徴とする産業用ロボットの制御方法。
  8.  動作用のモータと、前記モータを制御する制御部とを備え、
     前記モータが一方向に回転するときに前記モータに要求されるトルクの絶対値の最大値は、前記モータが他方向に回転するときに前記モータに要求されるトルクの絶対値の最大値よりも大きくなっており、
     一方向に回転するときの前記モータのトルク制限値を第1トルク制限値とし、他方向に回転するときの前記モータのトルク制限値を第2トルク制限値とすると、
     前記制御部では、前記第2トルク制限値の絶対値が前記第1トルク制限値の絶対値よりも小さくなるように、前記第1トルク制限値および前記第2トルク制限値が設定され、
     前記制御部は、前記モータが一方向に回転するときに、前記第1トルク制限値に基づいて前記モータを制御し、前記モータが他方向に回転するときに、前記第2トルク制限値に基づいて前記モータを制御することを特徴とする産業用ロボット。
  9.  前記産業用ロボットは、大気中に配置され、
     前記モータは、エンドエフェクタを昇降させるための昇降用モータであり、
     前記モータが一方向に回転するときに前記エンドエフェクタが上昇し、前記モータが他方向に回転するときに前記エンドエフェクタが下降し、
     前記第1トルク制限値は、前記エンドエフェクタを上昇させるときの前記モータのトルク制限値であり、前記第2トルク制限値は、前記エンドエフェクタを下降させるときの前記モータのトルク制限値であり、
     前記制御部は、前記エンドエフェクタの上昇時に、前記第1トルク制限値に基づいて前記モータを制御し、前記エンドエフェクタの下降時に、前記第2トルク制限値に基づいて前記昇降用モータを制御することを特徴とする請求項8記載の産業用ロボット。
  10.  前記制御部に電気的に接続されるペンダントスイッチを備え、
     前記エンドエフェクタの重量、および、前記エンドエフェクタに保持されるワークの重量の少なくともいずれか一方を含むモータ負荷が前記ペンダントスイッチから入力可能となっており、
     前記制御部は、前記ペンダントスイッチから入力される前記モータ負荷に基づいて、前記第1トルク制限値および前記第2トルク制限値を設定することを特徴とする請求項9記載の産業用ロボット。
  11.  前記制御部は、前記モータを駆動させて前記モータのモータ負荷を取得するとともに、取得された前記モータ負荷に基づいて、前記第1トルク制限値および前記第2トルク制限値を設定することを特徴とする請求項8または9記載の産業用ロボット。
  12.  前記制御部には、前記モータ負荷に応じた前記第1トルク制限値および前記第2トルク制限値がテーブル化されて記憶され、
     前記制御部は、前記モータ負荷に基づいて、対応する前記第1トルク制限値および前記第2トルク制限値を読み出して設定することを特徴とする請求項10または11記載の産業用ロボット。
  13.  前記制御部は、少なくとも、前記産業用ロボットを教示する際の前記エンドエフェクタの上昇時に前記第1トルク制限値に基づいて前記モータを制御し、前記産業用ロボットを教示する際の前記エンドエフェクタの下降時に前記第2トルク制限値に基づいて前記モータを制御することを特徴とする請求項9から12のいずれかに記載の産業用ロボット。
  14.  前記制御部は、教示終了後の前記産業用ロボットの自動運転の際の前記エンドエフェクタの上昇時に前記第1トルク制限値に基づいて前記モータを制御し、前記自動運転の際の前記エンドエフェクタの下降時に前記第2トルク制限値に基づいて前記モータを制御し、
     前記教示時の前記第1トルク制限値と、前記自動運転時の前記第1トルク制限値とが異なっており、
     前記教示時の前記第2トルク制限値と、前記自動運転時の前記第2トルク制限値とが異なっていることを特徴とする請求項13記載の産業用ロボット。
  15.  前記エンドエフェクタが取り付けられるエンドエフェクタ取付部材を備え、
     前記モータは、前記エンドエフェクタと前記エンドエフェクタ取付部材とを昇降させることを特徴とする請求項9から14のいずれかに記載の産業用ロボット。
  16.  エンドエフェクタと、前記エンドエフェクタが取り付けられるエンドエフェクタ取付部材と、上下方向を軸方向として配置され前記エンドエフェクタ取付部材が上端に固定される軸部材と、前記軸部材の少なくとも下端側が収容されるケース体と、前記ケース体に一端が固定され前記軸部材に他端が固定されるとともに前記軸部材の外周側を覆うように配置されるベローズとを備え、
     前記モータは、前記ケース体に対して前記エンドエフェクタ、前記エンドエフェクタ取付部材および前記軸部材を昇降させるための昇降用モータであり、
     前記エンドエフェクタおよび前記エンドエフェクタ取付部材は、真空中に配置され、
     前記ベローズの内周側および外周側のいずれか一方は、真空となっており、前記ベローズの内周側および外周側のいずれか他方は、大気圧となっており、
     前記モータが一方向に回転するときに前記エンドエフェクタが下降し、前記モータが他方向に回転するときに前記エンドエフェクタが上昇し、
     前記第1トルク制限値は、前記エンドエフェクタを下降させるときの前記モータのトルク制限値であり、前記第2トルク制限値は、前記エンドエフェクタを上昇させるときの前記モータのトルク制限値であり、
     前記制御部は、前記エンドエフェクタの下降時に、前記第1トルク制限値に基づいて前記モータを制御し、前記エンドエフェクタの上昇時に、前記第2トルク制限値に基づいて前記昇降用モータを制御することを特徴とする請求項8記載の産業用ロボット。
  17.  前記産業用ロボットは、車両に取り付けられるとともにバッテリーが収容されるバッテリー収容部からの前記バッテリーの引抜きおよび前記バッテリー収容部への前記バッテリーの差込みを行うバッテリー抜差機構を備えるバッテリー交換ロボットであり、
     前記バッテリー抜差機構は、前記バッテリーに係合するバッテリー係合部を備え、
     前記モータは、前記バッテリー係合部を移動させるための引抜差込用モータであり、
     前記モータが一方向に回転するときに前記バッテリー係合部が前記バッテリーを前記バッテリー収容部へ差し込み、前記モータが他方向に回転するときに前記バッテリー係合部が前記バッテリー収容部から前記バッテリーを引き抜き、
     前記第1トルク制限値は、前記バッテリー係合部が前記バッテリーを前記バッテリー収容部へ差し込むときの前記モータのトルク制限値であり、前記第2トルク制限値は、前記バッテリー係合部が前記バッテリー収容部から前記バッテリーを引き抜くときの前記モータのトルク制限値であり、
     前記制御部は、前記バッテリーの差込み時に、前記第1トルク制限値に基づいて前記モータを制御し、前記バッテリー引抜き時に、前記第2トルク制限値に基づいて前記昇降用モータを制御することを特徴とする請求項8記載の産業用ロボット。
  18.  動作用のモータを備える産業用ロボットの制御方法であって、
     前記モータが一方向に回転するときに前記モータに要求されるトルクの絶対値の最大値は、前記モータが他方向に回転するときに前記モータに要求されるトルクの絶対値の最大値よりも大きくなっており、
     一方向に回転するときの前記モータのトルク制限値を第1トルク制限値とし、他方向に回転するときの前記モータのトルク制限値を第2トルク制限値とすると、前記第2トルク制限値の絶対値が前記第1トルク制限値の絶対値よりも小さくなるように、前記第1トルク制限値および前記第2トルク制限値が設定されており、
     前記モータが一方向に回転するときに、前記第1トルク制限値に基づいて前記モータを制御し、前記モータが他方向に回転するときに、前記第2トルク制限値に基づいて前記モータを制御することを特徴とする産業用ロボットの制御方法。
  19.  前記産業用ロボットは、大気中に配置され、
     前記モータは、エンドエフェクタを昇降させるための昇降用モータであり、
     前記モータが一方向に回転するときに前記エンドエフェクタが上昇し、前記モータが他方向に回転するときに前記エンドエフェクタが下降し、
     前記第1トルク制限値は、前記エンドエフェクタを上昇させるときの前記モータのトルク制限値であり、前記第2トルク制限値は、前記エンドエフェクタを下降させるときの前記モータのトルク制限値であり、
     前記エンドエフェクタの上昇時に、前記第1トルク制限値に基づいて前記モータを制御し、前記エンドエフェクタの下降時に、前記第2トルク制限値に基づいて前記昇降用モータを制御することを特徴とする請求項18記載の産業用ロボットの制御方法。
PCT/JP2014/053214 2013-02-13 2014-02-12 産業用ロボットおよび産業用ロボットの制御方法 WO2014126112A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015500266A JP6295243B2 (ja) 2013-02-13 2014-02-12 産業用ロボットおよび産業用ロボットの制御方法
CN201480008498.4A CN104995001B (zh) 2013-02-13 2014-02-12 工业用机器人以及工业用机器人的控制方法
TW103104786A TWI647078B (zh) 2013-02-13 2014-02-13 Industrial robot and industrial robot control method
PH12015501728A PH12015501728A1 (en) 2013-02-13 2015-08-06 Industrial robot and industrial robot control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-025426 2013-02-13
JP2013-025427 2013-02-13
JP2013025427 2013-02-13
JP2013025426 2013-02-13

Publications (1)

Publication Number Publication Date
WO2014126112A1 true WO2014126112A1 (ja) 2014-08-21

Family

ID=51354111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053214 WO2014126112A1 (ja) 2013-02-13 2014-02-12 産業用ロボットおよび産業用ロボットの制御方法

Country Status (5)

Country Link
JP (1) JP6295243B2 (ja)
CN (1) CN104995001B (ja)
PH (1) PH12015501728A1 (ja)
TW (1) TWI647078B (ja)
WO (1) WO2014126112A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159367A (ja) * 2015-02-26 2016-09-05 ファナック株式会社 ロボットの動作モードを自動的に切替えるロボット制御装置
CN106531678A (zh) * 2017-01-05 2017-03-22 江西比太科技有限公司 硅片抓取装置及使用该装置的太阳能电池生产设备
JP2017074660A (ja) * 2015-10-16 2017-04-20 ファナック株式会社 人と協働して物体を運搬するロボットを制御するロボット制御装置、ロボットシステム、およびその方法
JP2018001320A (ja) * 2016-06-30 2018-01-11 日本電産サンキョー株式会社 ロボット、ロボットの制御方法、教示用治具およびロボットの教示方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017128283A1 (en) * 2016-01-29 2017-08-03 Abb Schweiz Ag Flexible tooling device and flexible tooling system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260062A (ja) * 2000-03-17 2001-09-25 Yaskawa Electric Corp 産業用ロボットの教示装置
JP2001353687A (ja) * 2001-04-20 2001-12-25 Matsushita Electric Ind Co Ltd ロボットの制御装置とその制御方法
JP2003025272A (ja) * 2001-05-08 2003-01-29 Mitsubishi Electric Corp ロボット制御装置
JP2003135439A (ja) * 2001-10-30 2003-05-13 Shimadzu Corp アーム搭載型x線撮影装置
JP2011201009A (ja) * 2010-03-04 2011-10-13 Denso Wave Inc ロボットシステム
JP2012051042A (ja) * 2010-08-31 2012-03-15 Yaskawa Electric Corp ロボットシステム及びロボット制御装置
JP2012161887A (ja) * 2011-02-08 2012-08-30 Yamaha Motor Co Ltd ロボット
JP2013006241A (ja) * 2011-06-24 2013-01-10 Seiko Epson Corp 水平多関節ロボット

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206007A (ja) * 1985-03-09 1986-09-12 Fanuc Ltd サ−ボモ−タ制御方式
JPS6368390A (ja) * 1986-09-08 1988-03-28 株式会社東芝 産業用ロボツト制御装置
JPH02160489A (ja) * 1988-12-15 1990-06-20 Toshiba Corp プレイバック形産業用ロボット
US5433541A (en) * 1992-12-15 1995-07-18 Nec Corporation Control device for controlling movement of a printing head carriage and control method for controlling the same
JP2004268216A (ja) * 2003-03-11 2004-09-30 Rorze Corp 安全保護手段を有する自動機械装置
JP4325407B2 (ja) * 2004-01-08 2009-09-02 パナソニック株式会社 産業用ロボット
DE112006000262B4 (de) * 2005-01-26 2014-07-17 Kabushiki Kaisha Yaskawa Denki Robotersystem
JP4281696B2 (ja) * 2005-03-14 2009-06-17 セイコーエプソン株式会社 加減速制御方法及び装置並びに加減速制御方法のプログラム
CN101132162A (zh) * 2006-08-23 2008-02-27 麦尔马克汽车电子(深圳)有限公司 马达控制装置及其控制方法
JP2008073790A (ja) * 2006-09-20 2008-04-03 Toyota Motor Corp ロボットとロボットの制御装置および制御方法
EP1927440A1 (en) * 2006-11-30 2008-06-04 Abb Research Ltd. Method and device for monitoring the condition of an industrial robot
JP5443782B2 (ja) * 2009-02-24 2014-03-19 川崎重工業株式会社 ロボット、電流制限装置及び電流制限方法
DE112011101711B4 (de) * 2010-05-20 2022-02-10 Mitsubishi Electric Corporation Motorsteuerungsvorrichtung
CN102412771B (zh) * 2010-09-21 2014-12-24 台达电子工业股份有限公司 单相直流无刷马达控制器及控制其马达转速及转向的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260062A (ja) * 2000-03-17 2001-09-25 Yaskawa Electric Corp 産業用ロボットの教示装置
JP2001353687A (ja) * 2001-04-20 2001-12-25 Matsushita Electric Ind Co Ltd ロボットの制御装置とその制御方法
JP2003025272A (ja) * 2001-05-08 2003-01-29 Mitsubishi Electric Corp ロボット制御装置
JP2003135439A (ja) * 2001-10-30 2003-05-13 Shimadzu Corp アーム搭載型x線撮影装置
JP2011201009A (ja) * 2010-03-04 2011-10-13 Denso Wave Inc ロボットシステム
JP2012051042A (ja) * 2010-08-31 2012-03-15 Yaskawa Electric Corp ロボットシステム及びロボット制御装置
JP2012161887A (ja) * 2011-02-08 2012-08-30 Yamaha Motor Co Ltd ロボット
JP2013006241A (ja) * 2011-06-24 2013-01-10 Seiko Epson Corp 水平多関節ロボット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159367A (ja) * 2015-02-26 2016-09-05 ファナック株式会社 ロボットの動作モードを自動的に切替えるロボット制御装置
JP2017074660A (ja) * 2015-10-16 2017-04-20 ファナック株式会社 人と協働して物体を運搬するロボットを制御するロボット制御装置、ロボットシステム、およびその方法
US10232513B2 (en) 2015-10-16 2019-03-19 Fanuc Corporation Robot control device, robot system and method of controlling robot which carries object in cooperation with person
JP2018001320A (ja) * 2016-06-30 2018-01-11 日本電産サンキョー株式会社 ロボット、ロボットの制御方法、教示用治具およびロボットの教示方法
CN106531678A (zh) * 2017-01-05 2017-03-22 江西比太科技有限公司 硅片抓取装置及使用该装置的太阳能电池生产设备

Also Published As

Publication number Publication date
JP6295243B2 (ja) 2018-03-14
TW201440974A (zh) 2014-11-01
PH12015501728B1 (en) 2015-11-09
CN104995001B (zh) 2017-07-14
JPWO2014126112A1 (ja) 2017-02-02
CN104995001A (zh) 2015-10-21
PH12015501728A1 (en) 2015-11-09
TWI647078B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
JP6295243B2 (ja) 産業用ロボットおよび産業用ロボットの制御方法
US10350750B2 (en) Industrial robot
WO2010004636A1 (ja) ロボット及びその教示方法
CN110733049A (zh) 一种可实现机械臂中末端执行器自动更换的加工***
US11648677B2 (en) Automatic wheel changer robot
KR101583110B1 (ko) 로봇 및 로봇 시스템
CN103663262B (zh) 升降机构和具有其的基片装载设备
WO2014024690A1 (ja) 産業用ロボット
US11207775B2 (en) Method of teaching robot
JP6623871B2 (ja) ロボット
JP2017120818A (ja) 製造システム
CN113305803A (zh) 一种能自动更换夹持机构的机械臂
USRE33466E (en) Industrial robot with automatic centering
JP2009255196A (ja) パラレルメカニズム
CN221314753U (zh) 一种玻璃生产用夹持机构
JP2936332B2 (ja) 大型ナット着脱装置
CN220840266U (zh) 一种机器人定位托盘
CN216464733U (zh) 机器人焊接升降机扶墙变位工装
CN110406505B (zh) 一种汽车用蓄电池夹取装置及***
CN217195464U (zh) 一种机器人高精度升降杆防碰撞急停装置
CN218082297U (zh) 一种用于半导体静电吸盘的修复用的夹具
US20230067098A1 (en) Controller and program
CN109962029A (zh) 片盒旋转机构和装载腔室
KR102370911B1 (ko) 로봇의 충격 완화 장치
JP2024502971A (ja) ウエハ検出のための方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14752229

Country of ref document: EP

Kind code of ref document: A1