WO2014125881A1 - Propeller wake flow straightener device - Google Patents

Propeller wake flow straightener device Download PDF

Info

Publication number
WO2014125881A1
WO2014125881A1 PCT/JP2014/051194 JP2014051194W WO2014125881A1 WO 2014125881 A1 WO2014125881 A1 WO 2014125881A1 JP 2014051194 W JP2014051194 W JP 2014051194W WO 2014125881 A1 WO2014125881 A1 WO 2014125881A1
Authority
WO
WIPO (PCT)
Prior art keywords
rudder
propeller
shape
bulging portion
wake
Prior art date
Application number
PCT/JP2014/051194
Other languages
French (fr)
Japanese (ja)
Inventor
信 川淵
大島 明
真一 ▲高▼野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2014125881A1 publication Critical patent/WO2014125881A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/20Hubs; Blade connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Definitions

  • the present invention relates to a ladder horn that supports a rudder of a ship so as to be swingable.
  • a Costa valve in which a streamlined bulge is formed on a control surface of a rudder on a propeller axis is known as an addition to improve the propulsion efficiency of a screw propeller that propels a ship (hereinafter simply referred to as a propeller).
  • a propeller By forming the Costa valve on the control surface behind the propeller, the propulsion efficiency of the propeller can be improved.
  • Patent Document 1 discloses a propulsion steering apparatus in which a Costa valve is formed on a rudder blade (rudder surface).
  • the propulsion steering apparatus described in Patent Document 1 includes a propeller, a fairing disposed at the rear of the propeller, a rudder disposed behind the propeller, and a valve-shaped main body formed on a rudder blade of the rudder. And have.
  • a streamlined main body is formed by the fairing and the valve-shaped main body.
  • the streamlined main body is continuously formed except for a narrow gap between the fairing and the valve-shaped main body. Furthermore, the propulsion steering apparatus described in Patent Document 1 can swing the valve-shaped body relative to the fairing when the rudder blade rotates. A flap is disposed at the rear of the rudder blade.
  • Patent Document 2 discloses a boat rudder that avoids the rudder corrosion phenomenon caused by cavitation generation and suppresses fuel consumption.
  • the marine rudder described in Patent Document 2 is a twisted ladder having two surfaces formed at different angles of attack at the top and bottom after the propeller shaft extension, and a flow body is provided at a transition portion of the two surfaces having different angles of attack. It has been.
  • An object of the present invention is to provide a ladder horn that improves the propulsion performance when a ship is steered.
  • the propeller wake rectifier according to the present invention includes a ladder horn, which is disposed behind the propeller in the hull and supports the rudder so that it can swing. Further, the ladder horn has a streamlined bulge formed on a side wall surface on an extension line of the propeller shaft (PC).
  • PC propeller shaft
  • the rudder surface can be formed with a rudder surface bulge that is connected to the streamlined bulge.
  • the rudder can be a high-lift rudder whose horizontal cross-sectional shape is a fish shape.
  • the rudder can be a semi-balanced rudder.
  • the rudder horn may include a rudder needle that supports a lower portion of the rudder on a rudder shaft.
  • the rudder can be an unbalanced rudder.
  • the propeller wake rectifier may include a boss cap attached to a rear end portion of the propeller shaft, and having a side wall surface formed in a shape connected to the streamline-shaped bulge portion. .
  • a streamlined bulging portion is formed on the side wall surface on the extension line of the propeller shaft in the ladder horn, so that it is possible to suppress a reduction in propulsion performance that occurs during ship steering.
  • FIG. 1 is a side view of a propeller wake rectifier according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the vicinity of the propeller wake rectifier shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB showing a configuration example of the bulging portion shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line BB showing a configuration example of the bulging portion shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB showing a configuration example of the bulging portion shown in FIG.
  • FIG. 6 is a side view of a propeller wake rectifier according to a second embodiment of the present invention.
  • FIG. 1 is a side view of a propeller wake rectifier according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the vicinity of the propeller wake rectifier shown in FIG.
  • FIG. 3 is a cross-sectional view taken along the
  • FIG. 7 is a side view of a propeller wake rectifier according to a third embodiment of the present invention.
  • FIG. 8 is a side view of a propeller wake rectifier according to a fourth embodiment of the present invention.
  • 9 is a cross-sectional view of the rudder shown in FIG.
  • FIG. 10 is a side view of a propeller wake rectifier according to a fifth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the vicinity of the propeller wake rectifier shown in FIG.
  • FIG. 12 is a side view of a propeller wake rectifier according to a sixth embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a propeller wake rectifier 10 according to a first embodiment of the present invention, and is a side view of the vicinity of a steering device and a steering device disposed in the water.
  • 2 is a cross-sectional view taken along the line AA of the propeller wake rectifier 10 shown in FIG. 1 taken along a horizontal plane.
  • a rudder horn 12 that supports the rudder 16 in a swingable manner in the port and starboard directions (LR direction shown in FIG. 2) around the RC is disposed.
  • a rudder material (not shown) is arranged on the rudder shaft RC of the rudder 16 as necessary, and a rudder needle (not shown) is arranged on the rudder shaft RC of the rudder horn 12 as needed.
  • the propeller hub 22 rotates around the propeller shaft PC.
  • the propeller 20 is radially attached to the side wall surface of the propeller hub 22.
  • the propeller hub 22 is attached to a propeller shaft (not shown) that protrudes rearward from the hull 30.
  • the ladder horn 12 is arranged behind the propeller 20 and suspended from the ship bottom at a position between the rudder 16 and the rudder 16.
  • a bulging portion 14 formed in a streamline shape from the side wall surface to the rear edge is disposed behind the propeller hub 22 on the extension line of the propeller shaft PC.
  • the bulging portion 14 is formed on the side wall surface of the ladder horn 12 where the positional relationship with the propeller shaft PC does not change even when the rudder 16 is steered.
  • the rear end surface of the propeller hub 22 and the front end surface of the bulging portion 14 are arranged with a slight gap (about 10 to 800 mm, the same applies hereinafter),
  • the side wall surfaces with the bulging part 14 are formed in a shape that is connected in a streamlined form. Thereby, the resistance by a water flow can be reduced.
  • the bulging portion 14 can have a hollow structure or a solid structure.
  • the maximum value of the cross-sectional area perpendicular to the propeller axis PC in the bulging portion 14 can be 80 to 150% of the cross-sectional area of the propeller hub 22.
  • the rear end surface of the propeller hub 22 and the front end surface of the bulging portion 14 can be configured as a plane, and the gap Can also be narrowed.
  • the ladder horn 12 is detachably fixed to the hull 30 with a bolt or the like at the detachable portion 13.
  • the rudder horn 12 can be removed from the hull 30 to improve workability.
  • the arrangement of the attaching / detaching portion 13 can be appropriately set according to the structure of the hull 30.
  • the bulging part 14 is an additional member that rectifies the propeller wake, reduces the contraction of the propeller wake, suppresses the formation of cone vortex (hub vortex), makes the wake uniform, and obtains the wake gain. be able to. Further, by making the bulging portion 14 and the propeller hub 22 smoothly connect while maintaining a streamlined shape, it is possible to easily obtain the diffusion effect of the hub vortex generated from the blade root portion of the propeller 20. Furthermore, since the increase in resistance at the rudder 16 can be reduced, the propulsion performance can be improved and the fuel consumption rate can be improved while using a relatively inexpensive structure.
  • a Costa valve is formed on the rudder 16.
  • the Costa valve coincides with the propeller shaft PC during straight travel, but shifts from the propeller shaft PC during steering, so that the rectifying action of the propeller wake at the time of steering is significantly reduced.
  • the propeller 20 is used both during straight travel and during steering. Can improve the propulsion performance.
  • FIGS. 3 to 5 are sectional views taken along the line BB in the vicinity of the bulging portion 14 shown in FIG.
  • the cross-sectional shape in the vertical direction of the bulging portion 14 can be a circular cross-sectional shape as shown in FIG. Further, as shown in FIG. 4, the cross-sectional shape of the bulging portion 14 may be a cross-sectional shape in which fins protrude in the horizontal direction. Further, as the cross-sectional shape of the bulging portion 14, as shown in FIG. 5, an elliptical cross-sectional shape or an elliptical cross-sectional shape may be used.
  • the rudder horn 12 behind the propeller hub 22 on the extension line of the propeller shaft PC is provided with a bulging portion 214 formed into a streamline shape from the front edge to the side wall surface and the rear edge.
  • the propulsion performance is improved by the propeller 20 both when traveling straight and during steering, by forming the bulging portion 214 at a spaced position behind the propeller hub 22. The same effect as that of the first embodiment can be obtained.
  • a boss cap 26 that rotates integrally with the propeller hub 22 is attached to the rear part of the propeller hub 22.
  • a bulging portion 314 formed in a streamline shape from the side wall surface to the rear edge is disposed on the ladder horn 12 behind the boss cap 26 on the extension line of the propeller shaft PC.
  • the rear end surface of the boss cap 26 and the front end surface of the bulging portion 314 are arranged with a slight gap, and the side wall surfaces of the boss cap 26 and the bulging portion 314 are located between each other. It is molded into a streamlined shape. Thereby, the resistance by a water flow can be reduced.
  • the boss cap 26 is attached to the rear portion of the propeller hub 22, and the bulging portion 314 is formed at a position through the gap behind the boss cap 26.
  • the external shape of the side wall surface of the boss cap 26 may be a drum shape as shown in FIG. 7, or may be a drum shape having a convex shape when viewed from the side, if necessary.
  • FIG. 9 is a cross-sectional view of the rudder shown in FIG.
  • symbol is attached
  • the ladder horn 412 behind the propeller hub 22 on the extension line of the propeller shaft PC is provided with a bulging portion 414 formed in a streamline shape from the side wall surface to the rear edge.
  • the ladder horn 412 is extended to the lower side of the unbalanced rudder rudder 416, and the rudder horn 412 supports the rudder 416 at two upper and lower positions (lower pintle type).
  • the ladder horn 412 includes a rudder needle (pintle) 17 that supports the lower portion of the rudder 416 on the rudder axis RC.
  • the rear end surface of the propeller hub 22 and the front end surface of the bulging portion 414 are arranged with a slight gap therebetween, and the side of the propeller hub 22 and the bulging portion 414 is disposed.
  • the wall surfaces are molded into a streamlined shape. Thereby, the resistance by a water flow can be reduced.
  • a high lift rudder 416 (shilling rudder) having a fish-shaped horizontal cross section as shown in FIGS. 8 and 9 can be used. Since the high rudder rudder 416 has little resistance (drag) when obtaining a predetermined turning force, the fuel consumption rate can be further improved by combining with the propeller wake rectifier according to the present invention. Further, as shown in FIGS. 8 and 9, a rectifying plate 415 having a shape extending in the left-right direction can be arranged at the upper end or the lower end of the rudder 416. By arranging the current plate 415, the lift of the rudder 416 during steering can be increased. This baffle plate 415 can be applied to the rudder of other embodiments.
  • the propulsion performance is improved by the propeller 20 both during straight traveling and during steering, and is the same as in the first embodiment.
  • the effect of can be obtained.
  • the structure connected with the ship bottom of the hull 30 via the shoe piece (not shown) which passes the lower part of the propeller 20 in the lower part of a ladder horn is also employable.
  • FIGS. 10 and 11 are cross-sectional views taken along the line DD in the vicinity of the propeller wake rectifier 510 shown in FIG.
  • description of structures such as a propeller shaft and a bearing is omitted.
  • symbol is attached
  • a boss cap 26 that rotates integrally with the propeller hub 22 is attached to the rear portion of the propeller hub 22.
  • a bulging portion 514 whose side wall surface is formed into a streamline shape is disposed.
  • a rudder surface bulging portion 515 is formed on the rudder surface of the rudder 16 further rearward of the bulging portion 514.
  • the rudder surface bulging portion 515 is formed in a streamlined shape with the side wall surface of the bulging portion 514.
  • the horizontal cross-sectional shape near the front edge of the rudder surface bulging portion 515 is It is necessary to form it in the shape of an arc centering on the axis RC.
  • the shape of the rear end of the bulging portion 514 also needs to be formed in an arc shape centered on the rudder shaft RC in accordance with the front edge shapes of the control surface bulging portion 515 and the rudder 16. And as shown in FIG. 10, it is suitable for the side shape which observed the rear-end part of the bulging part 514 from the side surface to be the rear-end convex shape 513 convex toward back.
  • a bulging portion 514 is formed behind the boss cap 26 with a slight gap, and a control surface bulging portion 515 is formed further behind with a slight gap.
  • the propulsion performance can be improved by the propeller 20 both during straight travel and during steering, and the same effect as that of the first embodiment can be obtained.
  • a boss cap 26 that rotates integrally with the propeller hub 22 is attached to the rear portion of the propeller hub 22.
  • a bulging portion 614 having a side wall surface formed into a streamline shape is disposed on the ladder horn 12 behind the boss cap 26 on the extension line of the propeller shaft PC.
  • a rudder surface bulging portion 615 is formed on the rudder surface of the rudder 16 further rearward of the bulging portion 614.
  • the rudder surface bulging portion 615 is formed in a streamlined shape with the side wall surface of the bulging portion 614.
  • the side view shape of the bulging portion 514 is a rear end convex shape 513 that is convex toward the rear.
  • the side view shape of the bulging portion 614 in the embodiment shown in FIG. 12 is a rear end concave shape 613 that is concave toward the rear.
  • a bulging portion 614 is formed behind the boss cap 26 with a slight gap, and a control surface bulging portion 615 is formed further behind with a slight gap.
  • the propulsion performance can be improved by the propeller 20 during both straight travel and steering, and the same effect as that of the first embodiment can be obtained.
  • the propeller wake rectifier according to the present invention has been described above with reference to the embodiment.
  • the propeller wake rectifier according to the present invention is not limited to the above embodiment.
  • Various modifications can be made to the above embodiment. It is possible to combine the matters described in the above embodiment with the matters described in the other embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Toys (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention is an invention of a propeller wake flow straightener device, in particular, an invention of a rudder horn that is installed posterior to a propeller of a ship and swingably supports a rudder. A streamlined bulge section (14) is formed over sidewall surfaces of the rudder horn at a position on an extended line from the propeller axis.

Description

プロペラ後流整流装置Propeller wake rectifier
 本発明は、船舶の方向舵を揺動可能に支持するラダーホーンに関する。 The present invention relates to a ladder horn that supports a rudder of a ship so as to be swingable.
 船舶を推進させるスクリュープロペラ(以下、単にプロペラと記載する。)の推進効率を高めるための付加物として、プロペラ軸線上の方向舵における舵面に流線型の膨らみを成形したコスタバルブが知られている。コスタバルブをプロペラ後方の舵面に形成することによって、プロペラの推進効率を向上させることができる。 A Costa valve in which a streamlined bulge is formed on a control surface of a rudder on a propeller axis is known as an addition to improve the propulsion efficiency of a screw propeller that propels a ship (hereinafter simply referred to as a propeller). By forming the Costa valve on the control surface behind the propeller, the propulsion efficiency of the propeller can be improved.
 特許文献1は、舵ブレード(舵面)にコスタバルブを形成した推進舵取り装置を開示している。特許文献1に記載されている推進舵取り装置は、プロペラと、当該プロペラ後部に配置したフェアリングと、該プロペラの後方に配置された方向舵と、当該方向舵の舵ブレード上に形成されたバルブ状本体とを有している。そして、前記フェアリングと前記バルブ状本体とによって、流線型本体部が形成されている。 Patent Document 1 discloses a propulsion steering apparatus in which a Costa valve is formed on a rudder blade (rudder surface). The propulsion steering apparatus described in Patent Document 1 includes a propeller, a fairing disposed at the rear of the propeller, a rudder disposed behind the propeller, and a valve-shaped main body formed on a rudder blade of the rudder. And have. A streamlined main body is formed by the fairing and the valve-shaped main body.
 当該流線型本体部は、前記フェアリングと前記バルブ状本体の間の狭小ギャップを除き、連続的に形成されている。更に特許文献1に記載されている推進舵取り装置は、前記舵ブレードが回転した際に、前記フェアリングに相対して、前記バルブ状本体のスイングの動きが可能になる。前記舵ブレードの後部には、フラップが配置される。 The streamlined main body is continuously formed except for a narrow gap between the fairing and the valve-shaped main body. Furthermore, the propulsion steering apparatus described in Patent Document 1 can swing the valve-shaped body relative to the fairing when the rudder blade rotates. A flap is disposed at the rear of the rudder blade.
 特許文献2は、キャビテーション生成による舵の腐食現象が回避され、燃料消費量を抑える船舶用舵を開示している。特許文献2に記載されている船舶用舵は、プロペラ軸延長後の上下で異なる迎え角に形成した二面を有するツイストラダーにおいて、前記迎え角が異なる二面の遷移部に、流れ体が設けられている。 Patent Document 2 discloses a boat rudder that avoids the rudder corrosion phenomenon caused by cavitation generation and suppresses fuel consumption. The marine rudder described in Patent Document 2 is a twisted ladder having two surfaces formed at different angles of attack at the top and bottom after the propeller shaft extension, and a flow body is provided at a transition portion of the two surfaces having different angles of attack. It has been.
特開2010-64739号公報JP 2010-64739 A 特開2009-120170号公報JP 2009-120170 A
 本発明の目的は、船舶の操舵時における推進性能を改善するラダーホーンを提供することである。 An object of the present invention is to provide a ladder horn that improves the propulsion performance when a ship is steered.
 本発明によるプロペラ後流整流装置は、ラダーホーンを備え、当該ラダーホーンは、船体におけるプロペラの後方に配置され、方向舵を揺動可能に支持する。また、前記ラダーホーンには、プロペラ軸(PC)の延長線上における側壁面に、流線型の膨出部が形成されている。 The propeller wake rectifier according to the present invention includes a ladder horn, which is disposed behind the propeller in the hull and supports the rudder so that it can swing. Further, the ladder horn has a streamlined bulge formed on a side wall surface on an extension line of the propeller shaft (PC).
 前記方向舵には、前記流線型の膨出部と繋がる形状の舵面膨出部を形成することが可能である。 The rudder surface can be formed with a rudder surface bulge that is connected to the streamlined bulge.
 前記方向舵は、水平断面形状が魚型に形成されている高揚力の方向舵とすることが可能である。 The rudder can be a high-lift rudder whose horizontal cross-sectional shape is a fish shape.
 前記方向舵の上端又は下端に、左右方向に延出する形状の整流板を配置することが可能である。 It is possible to arrange a rectifying plate having a shape extending in the left-right direction at the upper or lower end of the rudder.
 前記方向舵は、半釣合舵とすることが可能である。 The rudder can be a semi-balanced rudder.
 前記ラダーホーンは、舵軸において前記方向舵の下部を支持する舵針を備えることが可能である。 The rudder horn may include a rudder needle that supports a lower portion of the rudder on a rudder shaft.
 前記方向舵は、非釣合舵の方向舵とすることが可能である。 The rudder can be an unbalanced rudder.
 前記プロペラ後流整流装置は、前記プロペラ軸の後端部に取り付けられたボスキャップであって、前記流線型の膨出部と繋がる形状に成形した側壁面を有するボスキャップを備えることが可能である。 The propeller wake rectifier may include a boss cap attached to a rear end portion of the propeller shaft, and having a side wall surface formed in a shape connected to the streamline-shaped bulge portion. .
 本発明によれば、ラダーホーンにおけるプロペラ軸の延長線上の側壁面に、流線型の膨出部を形成することで、船舶の操舵時に生じる推進性能低下を抑制することができる。なお、本発明の効果は、添付される図面と連携して実施の形態から、より明らかになる。 According to the present invention, a streamlined bulging portion is formed on the side wall surface on the extension line of the propeller shaft in the ladder horn, so that it is possible to suppress a reduction in propulsion performance that occurs during ship steering. The effects of the present invention will become more apparent from the embodiments in conjunction with the accompanying drawings.
図1は、本発明の第1の実施形態に係るプロペラ後流整流装置の側面図である。FIG. 1 is a side view of a propeller wake rectifier according to a first embodiment of the present invention. 図2は、図1に示したプロペラ後流整流装置付近の、A-A矢視断面図である。FIG. 2 is a cross-sectional view of the vicinity of the propeller wake rectifier shown in FIG. 図3は、図1に示した膨出部の構成例を示すB-B矢視断面図である。FIG. 3 is a cross-sectional view taken along the line BB showing a configuration example of the bulging portion shown in FIG. 図4は、図1に示した膨出部の構成例を示すB-B矢視断面図である。FIG. 4 is a cross-sectional view taken along the line BB showing a configuration example of the bulging portion shown in FIG. 図5は、図1に示した膨出部の構成例を示すB-B矢視断面図である。FIG. 5 is a cross-sectional view taken along the line BB showing a configuration example of the bulging portion shown in FIG. 図6は、本発明の第2の実施形態に係るプロペラ後流整流装置の側面図である。FIG. 6 is a side view of a propeller wake rectifier according to a second embodiment of the present invention. 図7は、本発明の第3の実施形態に係るプロペラ後流整流装置の側面図である。FIG. 7 is a side view of a propeller wake rectifier according to a third embodiment of the present invention. 図8は、本発明の第4の実施形態に係るプロペラ後流整流装置の側面図である。FIG. 8 is a side view of a propeller wake rectifier according to a fourth embodiment of the present invention. 図9は、図8に示した方向舵の、C-C矢視断面図である。9 is a cross-sectional view of the rudder shown in FIG. 図10は、本発明の第5の実施形態に係るプロペラ後流整流装置の側面図である。FIG. 10 is a side view of a propeller wake rectifier according to a fifth embodiment of the present invention. 図11は、図10に示したプロペラ後流整流装置付近の、D-D矢視断面図である。FIG. 11 is a cross-sectional view of the vicinity of the propeller wake rectifier shown in FIG. 図12は、本発明の第6の実施形態に係るプロペラ後流整流装置の側面図である。FIG. 12 is a side view of a propeller wake rectifier according to a sixth embodiment of the present invention.
 添付図面を参照して、本発明によるプロペラ後流整流装置を実施するための形態を、以下に説明する。 Referring to the accompanying drawings, an embodiment for implementing a propeller wake rectifier according to the present invention will be described below.
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係るプロペラ後流整流装置10を説明する図であり、水中に配置される船舶後部の推進装置と、舵取り装置付近の側面図である。図2は、図1に示したプロペラ後流整流装置10を水平面で切断したA-A矢視断面図である。
(First embodiment)
FIG. 1 is a diagram for explaining a propeller wake rectifier 10 according to a first embodiment of the present invention, and is a side view of the vicinity of a steering device and a steering device disposed in the water. 2 is a cross-sectional view taken along the line AA of the propeller wake rectifier 10 shown in FIG. 1 taken along a horizontal plane.
 図1及び図2を参照して、船体30の後部における船底付近には、船体30を推進させるプロペラ20と、船体30のヨー方向の姿勢を制御する半釣合舵の方向舵16と、舵軸RCを中心に左舷及び右舷方向(図2に示すL-R方向)へ方向舵16を揺動可能に支持するラダーホーン12とが配置されている。方向舵16の舵軸RC上には舵頭材(図示せず)が必要に応じて配置され、ラダーホーン12の舵軸RC上には舵針(図示せず)が必要に応じて配置される。 Referring to FIGS. 1 and 2, in the vicinity of the bottom of the hull 30, a propeller 20 for propelling the hull 30, a rudder 16 for a semi-balanced rudder for controlling the attitude of the hull 30 in the yaw direction, and a rudder shaft A rudder horn 12 that supports the rudder 16 in a swingable manner in the port and starboard directions (LR direction shown in FIG. 2) around the RC is disposed. A rudder material (not shown) is arranged on the rudder shaft RC of the rudder 16 as necessary, and a rudder needle (not shown) is arranged on the rudder shaft RC of the rudder horn 12 as needed. .
 プロペラハブ22は、プロペラ軸PCを中心に回転する。プロペラ20は、プロペラハブ22の側壁面に放射状に取り付けられている。プロペラハブ22は、船体30から後方に向けて突出したプロペラシャフト(図示せず)に取り付けられている。ラダーホーン12は、プロペラ20の後方であって、方向舵16との間の位置に、船底から吊り下げる形で配置してある。 The propeller hub 22 rotates around the propeller shaft PC. The propeller 20 is radially attached to the side wall surface of the propeller hub 22. The propeller hub 22 is attached to a propeller shaft (not shown) that protrudes rearward from the hull 30. The ladder horn 12 is arranged behind the propeller 20 and suspended from the ship bottom at a position between the rudder 16 and the rudder 16.
 プロペラ軸PCの延長線上におけるプロペラハブ22の後方には、側壁面から後縁にかけて流線型に成形した膨出部14を配置してある。本発明では、方向舵16を操舵してもプロペラ軸PCとの位置関係が変化しないラダーホーン12の側壁面に、膨出部14を形成してある。 A bulging portion 14 formed in a streamline shape from the side wall surface to the rear edge is disposed behind the propeller hub 22 on the extension line of the propeller shaft PC. In the present invention, the bulging portion 14 is formed on the side wall surface of the ladder horn 12 where the positional relationship with the propeller shaft PC does not change even when the rudder 16 is steered.
 図1に示す実施形態では、プロペラハブ22の後端面と膨出部14の前端面とは、僅かな間隙(約10~800mm、以下同様。)を介して配置されており、プロペラハブ22と膨出部14との側壁面同士が、流線型で繋がる形状に成形してある。これにより、水流による抵抗を減ずることができる。膨出部14は、中空構造とすることもできるし、中実構造とすることもできる。膨出部14におけるプロペラ軸PCに直角な断面積の最大値は、プロペラハブ22の断面積の80~150%とすることができる。プロペラハブ22と膨出部14との位置関係は、操舵を行っても変化しないので、プロペラハブ22の後端面と膨出部14の前端面とは、平面で構成することができると共に、間隙も狭くすることができる。 In the embodiment shown in FIG. 1, the rear end surface of the propeller hub 22 and the front end surface of the bulging portion 14 are arranged with a slight gap (about 10 to 800 mm, the same applies hereinafter), The side wall surfaces with the bulging part 14 are formed in a shape that is connected in a streamlined form. Thereby, the resistance by a water flow can be reduced. The bulging portion 14 can have a hollow structure or a solid structure. The maximum value of the cross-sectional area perpendicular to the propeller axis PC in the bulging portion 14 can be 80 to 150% of the cross-sectional area of the propeller hub 22. Since the positional relationship between the propeller hub 22 and the bulging portion 14 does not change even when steering is performed, the rear end surface of the propeller hub 22 and the front end surface of the bulging portion 14 can be configured as a plane, and the gap Can also be narrowed.
 ラダーホーン12は、着脱部13において船体30に対してボルト等により着脱可能に固定されている。船舶のメンテナンス時において、プロペラ20を取り外す際や、プロペラシャフトを取り外す際には、船体30からラダーホーン12を取り外して、作業性を向上させることができる。なお、着脱部13の配置は、船体30の構造に応じて適宜設定することができる。 The ladder horn 12 is detachably fixed to the hull 30 with a bolt or the like at the detachable portion 13. When removing the propeller 20 or removing the propeller shaft during ship maintenance, the rudder horn 12 can be removed from the hull 30 to improve workability. The arrangement of the attaching / detaching portion 13 can be appropriately set according to the structure of the hull 30.
 膨出部14は、プロペラ後流を整流する付加部材であり、プロペラ後流の縮流を減じると共に、コーンボルテックス(ハブボルテックス)の成形を抑制し、伴流を均一にし、伴流利得を得ることができる。また、膨出部14とプロペラハブ22とを、流線型を維持しながら滑らかに繋げる形状にすることによって、プロペラ20の翼根部分から発生するハブボルテックスの拡散効果を得やすくすることができる。更に、方向舵16での抵抗増加も少なくすることができるため、比較的安価な構造を用いつつ、推進性能を向上させ、燃料消費率を改善することができる。 The bulging part 14 is an additional member that rectifies the propeller wake, reduces the contraction of the propeller wake, suppresses the formation of cone vortex (hub vortex), makes the wake uniform, and obtains the wake gain. be able to. Further, by making the bulging portion 14 and the propeller hub 22 smoothly connect while maintaining a streamlined shape, it is possible to easily obtain the diffusion effect of the hub vortex generated from the blade root portion of the propeller 20. Furthermore, since the increase in resistance at the rudder 16 can be reduced, the propulsion performance can be improved and the fuel consumption rate can be improved while using a relatively inexpensive structure.
 この、推進性能の向上により、数%から10%程度の所要馬力低減が可能になるため、性能向上と共に、燃料の消費量を低減することができる。従来は、コスタバルブを方向舵16に形成していた。従来は、直進時においてはコスタバルブがプロペラ軸PCと一致するものの、操舵時においてはプロペラ軸PCからずれてしまうために、操舵時におけるプロペラ後流の整流作用が著しく低下していた。 This improvement in propulsion performance makes it possible to reduce the required horsepower by several percent to about 10%, so that the fuel consumption can be reduced along with the performance improvement. Conventionally, a Costa valve is formed on the rudder 16. Conventionally, the Costa valve coincides with the propeller shaft PC during straight travel, but shifts from the propeller shaft PC during steering, so that the rectifying action of the propeller wake at the time of steering is significantly reduced.
 本発明に係るプロペラ後流整流装置10では、操舵時においてもプロペラハブ22との位置関係が変化しないラダーホーン12に膨出部14を形成したので、直進時及び操舵時の双方において、プロペラ20による推進性能向上を実現することができる。 In the propeller wake rectifier 10 according to the present invention, since the bulging portion 14 is formed in the ladder horn 12 whose positional relationship with the propeller hub 22 does not change even during steering, the propeller 20 is used both during straight travel and during steering. Can improve the propulsion performance.
 次に、本発明に係るプロペラ後流整流装置10における膨出部14の断面形状の構成例について、図3乃至図5を用いて説明する。図3乃至図5は、図1に示した膨出部14付近のB-B矢視断面図である。 Next, a configuration example of the cross-sectional shape of the bulging portion 14 in the propeller wake rectifier 10 according to the present invention will be described with reference to FIGS. 3 to 5. 3 to 5 are sectional views taken along the line BB in the vicinity of the bulging portion 14 shown in FIG.
 膨出部14の鉛直方向の断面形状は、図3に示すように、円形の断面形状とすることができる。また、膨出部14の断面形状は、図4に示すように、水平方向にフィンを突出させた断面形状を用いることもできる。また、膨出部14の断面形状として、図5に示すように、長円の断面形状、又は楕円の断面形状を用いることもできる。 The cross-sectional shape in the vertical direction of the bulging portion 14 can be a circular cross-sectional shape as shown in FIG. Further, as shown in FIG. 4, the cross-sectional shape of the bulging portion 14 may be a cross-sectional shape in which fins protrude in the horizontal direction. Further, as the cross-sectional shape of the bulging portion 14, as shown in FIG. 5, an elliptical cross-sectional shape or an elliptical cross-sectional shape may be used.
 (第2の実施形態)
 次に、本発明の第2の実施形態に係るプロペラ後流整流装置210について、図6を用いて説明する。なお、図1に示した構成と同一の機能を有する構成については、同一の符号を付して、その説明を省略する。
(Second Embodiment)
Next, a propeller wake rectifier 210 according to a second embodiment of the present invention will be described with reference to FIG. In addition, about the structure which has the same function as the structure shown in FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図6を参照して、プロペラ軸PCの延長線上におけるプロペラハブ22の後方のラダーホーン12には、前縁から側壁面、及び後縁にかけて流線型に成形した膨出部214を配置してある。図6に示すように、プロペラハブ22の後方の離間した位置に膨出部214を形成することによっても、直進時及び操舵時の双方において、プロペラ20による推進性能向上を実現して、前述の第1の実施形態と同様の効果を得ることができる。 Referring to FIG. 6, the rudder horn 12 behind the propeller hub 22 on the extension line of the propeller shaft PC is provided with a bulging portion 214 formed into a streamline shape from the front edge to the side wall surface and the rear edge. As shown in FIG. 6, the propulsion performance is improved by the propeller 20 both when traveling straight and during steering, by forming the bulging portion 214 at a spaced position behind the propeller hub 22. The same effect as that of the first embodiment can be obtained.
 (第3の実施形態)
 次に、本発明の第3の実施形態に係るプロペラ後流整流装置310について、図7を用いて説明する。なお、図1に示した構成と同一の機能を有する構成については、同一の符号を付して、その説明を省略する。
(Third embodiment)
Next, a propeller wake rectifier 310 according to a third embodiment of the present invention will be described with reference to FIG. In addition, about the structure which has the same function as the structure shown in FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図7を参照して、プロペラハブ22の後部には、当該プロペラハブ22と一体となって回転するボスキャップ26が取り付けられている。プロペラ軸PCの延長線上におけるボスキャップ26の後方のラダーホーン12には、側壁面から後縁にかけて流線型に成形した膨出部314を配置してある。 Referring to FIG. 7, a boss cap 26 that rotates integrally with the propeller hub 22 is attached to the rear part of the propeller hub 22. On the ladder horn 12 behind the boss cap 26 on the extension line of the propeller shaft PC, a bulging portion 314 formed in a streamline shape from the side wall surface to the rear edge is disposed.
 図7に示す実施形態では、ボスキャップ26の後端面と膨出部314の前端面とは、僅かな間隙を介して配置されており、ボスキャップ26と膨出部314との側壁面同士が、流線型で繋がる形状に成形してある。これにより、水流による抵抗を減ずることができる。 In the embodiment shown in FIG. 7, the rear end surface of the boss cap 26 and the front end surface of the bulging portion 314 are arranged with a slight gap, and the side wall surfaces of the boss cap 26 and the bulging portion 314 are located between each other. It is molded into a streamlined shape. Thereby, the resistance by a water flow can be reduced.
 図7に示すように、プロペラハブ22の後部にボスキャップ26を取り付け、当該ボスキャップ26の後方の間隙を介した位置に膨出部314を形成することによっても、直進時及び操舵時の双方において、プロペラ20による推進性能向上を実現して、前述の第1の実施形態と同様の効果を得ることができる。なお、ボスキャップ26側壁面の外観形状は、図7に示すような鼓形とすることもできるし、必要に応じて、側面視凸形状の太鼓形とすることもできる。 As shown in FIG. 7, the boss cap 26 is attached to the rear portion of the propeller hub 22, and the bulging portion 314 is formed at a position through the gap behind the boss cap 26. Thus, the propulsion performance can be improved by the propeller 20, and the same effect as that of the first embodiment can be obtained. The external shape of the side wall surface of the boss cap 26 may be a drum shape as shown in FIG. 7, or may be a drum shape having a convex shape when viewed from the side, if necessary.
 (第4の実施形態)
 次に、本発明の第4の実施形態に係るプロペラ後流整流装置410について、図8及び図9を用いて説明する。図9は、図8に示す方向舵のC-C矢視断面図である。なお、図1及び図2に示した構成と同一の機能を有する構成については、同一の符号を付して、その説明を省略する。
(Fourth embodiment)
Next, a propeller wake rectifier 410 according to a fourth embodiment of the present invention will be described with reference to FIGS. 8 and 9. FIG. 9 is a cross-sectional view of the rudder shown in FIG. In addition, about the structure which has the same function as the structure shown in FIG.1 and FIG.2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図8及び図9を参照して、プロペラ軸PCの延長線上におけるプロペラハブ22の後方のラダーホーン412には、側壁面から後縁にかけて流線型に成形した膨出部414を配置してある。図8に示す実施形態では、ラダーホーン412を、非釣合舵の方向舵416の下方まで延伸させてあり、ラダーホーン412が方向舵416を上下2箇所で支持(下部ピントル型)している。図8に示すように、ラダーホーン412は、舵軸RCにおいて方向舵416の下部を支持する舵針(ピントル)17を備える。 8 and 9, the ladder horn 412 behind the propeller hub 22 on the extension line of the propeller shaft PC is provided with a bulging portion 414 formed in a streamline shape from the side wall surface to the rear edge. In the embodiment shown in FIG. 8, the ladder horn 412 is extended to the lower side of the unbalanced rudder rudder 416, and the rudder horn 412 supports the rudder 416 at two upper and lower positions (lower pintle type). As shown in FIG. 8, the ladder horn 412 includes a rudder needle (pintle) 17 that supports the lower portion of the rudder 416 on the rudder axis RC.
 図8及び図9に示す実施形態では、プロペラハブ22の後端面と膨出部414の前端面とは、僅かな間隙を介して配置されており、プロペラハブ22と膨出部414との側壁面同士が、流線型で繋がる形状に成形してある。これにより、水流による抵抗を減ずることができる。 In the embodiment shown in FIGS. 8 and 9, the rear end surface of the propeller hub 22 and the front end surface of the bulging portion 414 are arranged with a slight gap therebetween, and the side of the propeller hub 22 and the bulging portion 414 is disposed. The wall surfaces are molded into a streamlined shape. Thereby, the resistance by a water flow can be reduced.
 本発明に用いる方向舵として、図8及び図9に示すような魚型水平断面形状を有する高揚力の方向舵416(シリング舵)を用いることができる。高揚力の方向舵416は、所定の旋回力を得る際における抵抗(抗力)が少ないので、本発明に係るプロペラ後流整流装置と組み合わせることによって、更なる燃料消費率の改善を行うことができる。また、図8及び図9に示すように、方向舵416の上端又は下端に、左右方向に延出する形状の整流板415を配置することもできる。この整流板415を配置することによって、操舵時における方向舵416の揚力を増すことができる。この整流板415は、他の実施形態の方向舵に適用することができる。 As a rudder used in the present invention, a high lift rudder 416 (shilling rudder) having a fish-shaped horizontal cross section as shown in FIGS. 8 and 9 can be used. Since the high rudder rudder 416 has little resistance (drag) when obtaining a predetermined turning force, the fuel consumption rate can be further improved by combining with the propeller wake rectifier according to the present invention. Further, as shown in FIGS. 8 and 9, a rectifying plate 415 having a shape extending in the left-right direction can be arranged at the upper end or the lower end of the rudder 416. By arranging the current plate 415, the lift of the rudder 416 during steering can be increased. This baffle plate 415 can be applied to the rudder of other embodiments.
 図8に示すように、ラダーホーン412に膨出部414を形成することによって、直進時及び操舵時の双方において、プロペラ20による推進性能向上を実現して、前述の第1の実施形態と同様の効果を得ることができる。なお、ラダーホーンの下部において、プロペラ20の下部を通るシューピース(図示せず)を介して船体30の船底と接続する構成を採用することもできる。 As shown in FIG. 8, by forming the bulging portion 414 in the ladder horn 412, the propulsion performance is improved by the propeller 20 both during straight traveling and during steering, and is the same as in the first embodiment. The effect of can be obtained. In addition, the structure connected with the ship bottom of the hull 30 via the shoe piece (not shown) which passes the lower part of the propeller 20 in the lower part of a ladder horn is also employable.
 (第5の実施形態)
 次に、本発明の第5の実施形態に係るプロペラ後流整流装置510について、図10及び図11を用いて説明する。図11は、図10に示したプロペラ後流整流装置510付近のD-D矢視断面図である。なお、図11では、プロペラシャフトや軸受け等の構造物の記載は省略してある。また、図1及び図2に示した構成と同一の機能を有する構成については、同一の符号を付して、その説明を省略する。
(Fifth embodiment)
Next, a propeller wake rectifier 510 according to a fifth embodiment of the present invention will be described with reference to FIGS. 10 and 11. 11 is a cross-sectional view taken along the line DD in the vicinity of the propeller wake rectifier 510 shown in FIG. In FIG. 11, description of structures such as a propeller shaft and a bearing is omitted. Moreover, about the structure which has the same function as the structure shown in FIG.1 and FIG.2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図10及び図11を参照して、プロペラハブ22の後部には、当該プロペラハブ22と一体となって回転するボスキャップ26が取り付けられている。プロペラ軸PCの延長線上におけるボスキャップ26の後方のラダーホーン12には、側壁面を流線型に成形した膨出部514を配置してある。 10 and 11, a boss cap 26 that rotates integrally with the propeller hub 22 is attached to the rear portion of the propeller hub 22. On the ladder horn 12 behind the boss cap 26 on the extension line of the propeller shaft PC, a bulging portion 514 whose side wall surface is formed into a streamline shape is disposed.
 膨出部514の更に後方の方向舵16の舵面には、膨出部514の側壁面と流線型で繋がる形状に成形した舵面膨出部515を形成してある。なお、図11に示すように、方向舵16の舵面に舵面膨出部515を形成することによって舵厚が厚くなるので、舵面膨出部515の前縁付近の水平断面形状は、舵軸RCを中心とした円弧状に形成する必要がある。 A rudder surface bulging portion 515 is formed on the rudder surface of the rudder 16 further rearward of the bulging portion 514. The rudder surface bulging portion 515 is formed in a streamlined shape with the side wall surface of the bulging portion 514. As shown in FIG. 11, since the rudder thickness is increased by forming the rudder surface bulging portion 515 on the rudder surface of the rudder 16, the horizontal cross-sectional shape near the front edge of the rudder surface bulging portion 515 is It is necessary to form it in the shape of an arc centering on the axis RC.
 そして、膨出部514の後端の形状も、舵面膨出部515及び方向舵16の前縁形状に合わせて、舵軸RCを中心とした円弧状に形成する必要がある。そして、図10に示すように、膨出部514の後端部を側面から観察した側面形状は、後方に向かって凸状の後端凸形状513とするのが好適である。 The shape of the rear end of the bulging portion 514 also needs to be formed in an arc shape centered on the rudder shaft RC in accordance with the front edge shapes of the control surface bulging portion 515 and the rudder 16. And as shown in FIG. 10, it is suitable for the side shape which observed the rear-end part of the bulging part 514 from the side surface to be the rear-end convex shape 513 convex toward back.
 図10及び図11に示すように、ボスキャップ26の後方に僅かな間隙を介して膨出部514を形成し、その更に後方に僅かな間隙を介して舵面膨出部515を形成することによっても、直進時及び操舵時の双方において、プロペラ20による推進性能向上を実現して、前述の第1の実施形態と同様の効果を得ることができる。 As shown in FIGS. 10 and 11, a bulging portion 514 is formed behind the boss cap 26 with a slight gap, and a control surface bulging portion 515 is formed further behind with a slight gap. As a result, the propulsion performance can be improved by the propeller 20 both during straight travel and during steering, and the same effect as that of the first embodiment can be obtained.
 (第6の実施形態)
 次に、本発明の第6の実施形態に係るプロペラ後流整流装置610について、図12を用いて説明する。なお、図1に示した構成と同一の機能を有する構成については、同一の符号を付して、その説明を省略する。
(Sixth embodiment)
Next, a propeller wake rectifier 610 according to a sixth embodiment of the present invention will be described with reference to FIG. In addition, about the structure which has the same function as the structure shown in FIG. 1, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 図12を参照して、プロペラハブ22の後部には、当該プロペラハブ22と一体となって回転するボスキャップ26が取り付けられている。プロペラ軸PCの延長線上におけるボスキャップ26の後方のラダーホーン12には、側壁面を流線型に成形した膨出部614を配置してある。 Referring to FIG. 12, a boss cap 26 that rotates integrally with the propeller hub 22 is attached to the rear portion of the propeller hub 22. On the ladder horn 12 behind the boss cap 26 on the extension line of the propeller shaft PC, a bulging portion 614 having a side wall surface formed into a streamline shape is disposed.
 膨出部614の更に後方の方向舵16の舵面には、膨出部614の側壁面と流線型で繋がる形状に成形した舵面膨出部615を形成してある。図10及び図11に示した実施形態では、膨出部514の側面視形状は、後方に向かって凸状の後端凸形状513であった。これに対し、図12に示す実施形態における膨出部614の側面視形状は、後方に向かって凹状の後端凹形状613である。このように、後方に向かって凹状の後端凹形状613を形成することによって、方向舵16の舵角を大きくした際における、舵面膨出部615と膨出部614との干渉を避けることができる。 A rudder surface bulging portion 615 is formed on the rudder surface of the rudder 16 further rearward of the bulging portion 614. The rudder surface bulging portion 615 is formed in a streamlined shape with the side wall surface of the bulging portion 614. In the embodiment shown in FIGS. 10 and 11, the side view shape of the bulging portion 514 is a rear end convex shape 513 that is convex toward the rear. On the other hand, the side view shape of the bulging portion 614 in the embodiment shown in FIG. 12 is a rear end concave shape 613 that is concave toward the rear. In this way, by forming the rear end concave shape 613 that is concave toward the rear, it is possible to avoid interference between the control surface bulging portion 615 and the bulging portion 614 when the rudder angle of the rudder 16 is increased. it can.
 図12に示すように、ボスキャップ26の後方に僅かな間隙を介して膨出部614を形成し、その更に後方に僅かな間隙を介して舵面膨出部615を形成することによっても、直進時及び操舵時の双方において、プロペラ20による推進性能向上を実現して、前述の第1の実施形態と同様の効果を得ることができる。 As shown in FIG. 12, a bulging portion 614 is formed behind the boss cap 26 with a slight gap, and a control surface bulging portion 615 is formed further behind with a slight gap. The propulsion performance can be improved by the propeller 20 during both straight travel and steering, and the same effect as that of the first embodiment can be obtained.
 以上、実施の形態を参照して本発明によるプロペラ後流整流装置を説明したが、本発明によるプロペラ後流整流装置は上記実施形態に限定されない。上記実施形態に様々の変更を行うことが可能である。上記実施形態に記載された事項と上記他の実施形態に記載された事項とを組み合わせることが可能である。 The propeller wake rectifier according to the present invention has been described above with reference to the embodiment. However, the propeller wake rectifier according to the present invention is not limited to the above embodiment. Various modifications can be made to the above embodiment. It is possible to combine the matters described in the above embodiment with the matters described in the other embodiments.
 なお、この出願は、2013年2月15日に出願された日本特許出願2013-027889号を基礎とする優先権を主張し、その開示の全てを引用によりここに組み込む。 This application claims priority based on Japanese Patent Application No. 2013-027889 filed on Feb. 15, 2013, the entire disclosure of which is incorporated herein by reference.

Claims (9)

  1.  船体におけるプロペラの後方に配置され、方向舵を揺動可能に支持するラダーホーンであって、プロペラ軸の延長線上における側壁面に、流線型の膨出部を形成したプロペラ後流整流装置。 A rudder horn that is arranged behind the propeller in the hull and supports the rudder so as to be swingable, and has a streamlined bulge formed on the side wall surface on the extension line of the propeller shaft.
  2.  前記流線型の膨出部と繋がる形状の舵面膨出部を形成した方向舵を備える請求項1に記載のプロペラ後流整流装置。 2. The propeller wake rectifier according to claim 1, further comprising a rudder having a rudder surface bulge portion connected to the streamline bulge portion.
  3.  前記方向舵は、水平断面形状が魚型に形成されている高揚力舵である請求項2に記載のプロペラ後流整流装置。 The propeller wake rectifier according to claim 2, wherein the rudder is a high lift rudder having a horizontal cross-sectional shape formed into a fish shape.
  4.  前記方向舵は、水平断面形状が魚型に形成されている高揚力の方向舵である請求項1に記載のプロペラ後流整流装置。 The propeller wake rectifier according to claim 1, wherein the rudder is a high-lift rudder whose horizontal cross-sectional shape is formed in a fish shape.
  5.  前記方向舵の上端又は下端に、左右方向に延出する形状の整流板を配置した請求項2乃至4のいずれかに記載のプロペラ後流整流装置。 The propeller wake rectifier according to any one of claims 2 to 4, wherein a rectifying plate having a shape extending in a left-right direction is disposed at an upper end or a lower end of the rudder.
  6.  前記方向舵は、半釣合舵である請求項1乃至5のいずれかに記載のプロペラ後流整流装置。 The propeller wake rectifier according to any one of claims 1 to 5, wherein the rudder is a semi-balanced rudder.
  7.  前記ラダーホーンは、舵軸において前記方向舵の下部を支持する舵針を備える請求項1乃至5のいずれかに記載のプロペラ後流整流装置。 The propeller wake rectifier according to any one of claims 1 to 5, wherein the ladder horn includes a rudder needle that supports a lower portion of the rudder on a rudder shaft.
  8.  前記方向舵は、非釣合舵である請求項7に記載のプロペラ後流整流装置。 The propeller wake rectifier according to claim 7, wherein the rudder is an unbalanced rudder.
  9.  前記プロペラ軸の後端部に取り付けられ、前記流線型の膨出部と繋がる形状に成形した側壁面を有するボスキャップを備える請求項1乃至8のいずれかに記載のプロペラ後流整流装置。 The propeller wake rectifier according to any one of claims 1 to 8, further comprising a boss cap having a side wall surface attached to a rear end portion of the propeller shaft and formed in a shape connected to the streamlined bulge portion.
PCT/JP2014/051194 2013-02-15 2014-01-22 Propeller wake flow straightener device WO2014125881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-027889 2013-02-15
JP2013027889A JP2014156185A (en) 2013-02-15 2013-02-15 Propeller back stream rectifier

Publications (1)

Publication Number Publication Date
WO2014125881A1 true WO2014125881A1 (en) 2014-08-21

Family

ID=51353891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051194 WO2014125881A1 (en) 2013-02-15 2014-01-22 Propeller wake flow straightener device

Country Status (2)

Country Link
JP (1) JP2014156185A (en)
WO (1) WO2014125881A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115052810A (en) * 2020-01-30 2022-09-13 现代重工业株式会社 Steering device and ship with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6203349B1 (en) * 2016-09-06 2017-09-27 ジャパンマリンユナイテッド株式会社 Ship rudder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053438Y2 (en) * 1985-12-17 1993-01-27
JPH082486A (en) * 1994-04-19 1996-01-09 Mitsui Eng & Shipbuild Co Ltd Marine vessel
WO1997011878A1 (en) * 1995-09-29 1997-04-03 Wärtsilä Nsd Norway As Propulsion and steering unit for a vessel
JP2000280984A (en) * 1999-03-30 2000-10-10 Sumitomo Heavy Ind Ltd Rudder
JP2004074886A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053438Y2 (en) * 1985-12-17 1993-01-27
JPH082486A (en) * 1994-04-19 1996-01-09 Mitsui Eng & Shipbuild Co Ltd Marine vessel
WO1997011878A1 (en) * 1995-09-29 1997-04-03 Wärtsilä Nsd Norway As Propulsion and steering unit for a vessel
JP2000280984A (en) * 1999-03-30 2000-10-10 Sumitomo Heavy Ind Ltd Rudder
JP2004074886A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Ship

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115052810A (en) * 2020-01-30 2022-09-13 现代重工业株式会社 Steering device and ship with same
CN115052810B (en) * 2020-01-30 2024-06-07 现代重工业株式会社 Steering device and ship with same

Also Published As

Publication number Publication date
JP2014156185A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP5276670B2 (en) Twin Skeg ship
KR102463848B1 (en) Vessel
JP5578931B2 (en) High lift rudder for ships
JP4936798B2 (en) Mariner type high-lift two-wheel rudder device
JP6046652B2 (en) Ship
JP2006347519A (en) Device for enhancing propulsion performance for small craft
JP6638941B2 (en) Ship rudder with stern fins
JP2009202873A (en) Vessel
WO2014125881A1 (en) Propeller wake flow straightener device
JP2014156193A (en) Propeller back stream rectifier
JP5868805B2 (en) Enlargement ship
JP6494235B2 (en) Ship rudder
JP5510798B2 (en) Ship propulsion performance improvement device
KR20160031790A (en) Propelling and steering system of vessel, and full spade rudder with twisted leading edge
JP6292551B2 (en) Ship equipped with torsion rudder and torsion rudder
JP2010095239A (en) Rudder device for marine vessel
KR101159205B1 (en) Rudder for ship and ship including the same
KR101324965B1 (en) Rudder and ship having the same
WO2021014919A1 (en) Stern fin
CN108025799B (en) Ship with a detachable cover
JP2012131475A (en) Rudder for ship
JP6493691B2 (en) Ship
JP2013132937A (en) Ship
JP6516466B2 (en) Ship steering gear
JP6793186B2 (en) Ship propulsion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14752150

Country of ref document: EP

Kind code of ref document: A1