WO2014125634A1 - 接続配管および蒸気タービンシステム - Google Patents

接続配管および蒸気タービンシステム Download PDF

Info

Publication number
WO2014125634A1
WO2014125634A1 PCT/JP2013/053765 JP2013053765W WO2014125634A1 WO 2014125634 A1 WO2014125634 A1 WO 2014125634A1 JP 2013053765 W JP2013053765 W JP 2013053765W WO 2014125634 A1 WO2014125634 A1 WO 2014125634A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
steam turbine
connection
connection pipe
condenser
Prior art date
Application number
PCT/JP2013/053765
Other languages
English (en)
French (fr)
Inventor
拓郎 香田
純平 西岡
健一 西山
臼井 弘明
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to PCT/JP2013/053765 priority Critical patent/WO2014125634A1/ja
Priority to EP13875244.9A priority patent/EP2942498B1/en
Priority to US14/766,378 priority patent/US10184602B2/en
Priority to CN201380071770.9A priority patent/CN104956037B/zh
Priority to JP2015500070A priority patent/JP6129292B2/ja
Publication of WO2014125634A1 publication Critical patent/WO2014125634A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/10Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations
    • F16L27/107Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations the ends of the pipe being interconnected by a flexible sleeve
    • F16L27/11Adjustable joints, Joints allowing movement comprising a flexible connection only, e.g. for damping vibrations the ends of the pipe being interconnected by a flexible sleeve the sleeve having the form of a bellows with multiple corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L51/00Expansion-compensation arrangements for pipe-lines
    • F16L51/02Expansion-compensation arrangements for pipe-lines making use of bellows or an expansible folded or corrugated tube
    • F16L51/025Expansion-compensation arrangements for pipe-lines making use of bellows or an expansible folded or corrugated tube with several corrugations

Definitions

  • the present invention relates to a connection pipe and a steam turbine system.
  • connection pipes that connect two parts require a structure that absorbs the relative displacement of the connection position to each of the two parts.
  • a connection pipe for connecting a steam turbine and a condenser in a steam turbine system In the steam turbine and the condenser, the state of thermal expansion changes, and the connection position to the connection pipe is displaced. Therefore, a connection pipe capable of absorbing such a displacement is used in the steam turbine system.
  • Patent Document 1 discloses a condenser in which a cylindrical body having a bellows is provided between a connection flange portion connected to a steam turbine and a main body.
  • This invention is made
  • a first aspect of the connection pipe according to the present invention includes a cylindrical main body portion provided with at least one annular rib on the outer peripheral surface, and a deformation portion configured by a bellows that can be deformed in the axial direction and the radial direction.
  • the deformed portion in the connection pipe of the first aspect may be configured by overlapping a plurality of the bellows in the radial direction.
  • the deformed part in the connection pipe of the first aspect or the second aspect may be provided on both sides of the main body part.
  • a cylindrical flow guide may be provided inside the deformed portion in the connecting pipe according to any one of the first to third aspects.
  • the flow guide may be fixed only to one side in the axial direction with respect to the connection pipe main body including the main body part and the deformation part in the connection pipe of the fourth aspect. .
  • a steam turbine system includes the connection pipe described in any one of the first aspect to the fifth aspect, and includes a steam turbine and condensate into which steam discharged from the steam turbine flows. And the steam turbine and the condenser are connected by the connection pipe.
  • connection piping can suppress an increase in cost. Further, the main body can be reduced in weight while ensuring rigidity by the ribs.
  • connection piping and a steam turbine system concerning one embodiment of the present invention. It is the front view which made the cross section the half from the center which shows the connection piping which concerns on the same embodiment. It is a side view which shows the connection piping which concerns on the same embodiment. It is a partial expanded sectional view which shows the connection piping which concerns on the same embodiment, Comprising: (a) is A part of FIG. 2, (b) is B part of FIG. 2, (c) is C part of FIG. It is.
  • connection pipe 10 and the steam turbine system 11 according to the embodiment of the present invention will be described.
  • the steam turbine system 11 according to the present embodiment is mounted on a ship and an offshore structure (hereinafter, both are described as offshore structures).
  • FIG. 1 shows a steam turbine system 11 according to the present embodiment.
  • the steam turbine system 11 includes a steam turbine 12, a condenser 13, and a connection pipe 10.
  • the steam turbine 12 is attached to a gantry 15 installed on the hull 14.
  • the gantry 15 is made of I-shaped steel.
  • the steam turbine 12 includes a turbine body 20 that is rotationally driven by high-temperature and high-pressure steam supplied from a boiler (not shown), and a turbine duct 21 that exhausts steam from the turbine body 20.
  • the turbine duct 21 extends downward from the turbine main body 20, and a lower end portion thereof serves as an outlet portion 22.
  • the outlet portion 22 is provided with a connecting flange portion 23.
  • the connecting flange portion 23 is disposed horizontally.
  • the condenser 13 is disposed below the steam turbine 12 and is installed, for example, on the bottom 24 of the hull 14. Steam discharged from the steam turbine 12 flows into the condenser 13.
  • the condenser 13 includes a condenser main body 25 that returns steam to low-pressure water, and a condenser duct 26 that receives the steam exhausted from the steam turbine 12.
  • the condenser duct 26 extends upward from the condenser body 25, and an upper end thereof serves as an inlet portion 27.
  • the inlet portion 27 is provided with a connection flange portion 28.
  • the connecting flange portion 28 is also arranged horizontally.
  • connection flange portion 23 of the turbine duct 21 and the connection flange portion 28 of the condenser duct 26 are arranged vertically apart from each other in the horizontal direction. Then, both end portions of the connection pipe 10 according to the present embodiment are connected to the connection flange portion 23 and the connection flange portion 28. Thereby, the connection pipe 10 connects the outlet part 22 of the turbine duct 21 and the inlet part 27 of the condenser duct 26.
  • connection pipe 10 includes a connection pipe main body 31 and a pair of flow guides 32a and 32b.
  • the connection pipe main body 31 includes a pair of connection portions 35 a and 35 b, a pair of deformation portions 36 a and 36 b, and a main body portion 37.
  • the pair of connecting portions 35a and 35b have the same shape, and each has a connecting portion main body 40 and a plurality (four in the illustrated example) of fixing plate portions 41 as shown in FIG. .
  • the connection unit body 40 has an annular shape. As shown in FIG. 2, the connecting portion main body 40 has an annular connecting seat portion 42 formed on one side in the axial direction and a cylindrical portion 43 formed on the other side in the axial direction. A plurality of mounting holes 44 penetrating in the axial direction are formed in the connecting seat portion 42 at an intermediate position in the radial direction at equal intervals in the circumferential direction as shown in FIG. 3 (52 in the illustrated example). . As shown in FIG. 2, the outer diameter of the cylindrical portion 43 is smaller than the outer diameter of the connection seat portion 42, and protrudes in the axial direction from the inner peripheral edge portion of the connection seat portion 42. The cylindrical portion 43 has a smaller diameter as the outer diameter thereof is farther from the connection seat portion 42 and has a tapered shape.
  • a plurality of fixing plate portions 41 are attached at equal intervals in the circumferential direction of the connecting portion main body 40.
  • the fixed plate portion 41 is joined to the outer peripheral surface of the connection seat portion 42 of the connection portion main body 40.
  • a fixing hole 46 penetrating along the axial direction of the connection portion main body 40 is formed in the fixing plate portion 41.
  • the bellows 50 to 52 are made of stainless steel.
  • the deformation portions 36a and 36b have a pair of joint end portions 55 and 55 and a bellows portion 56, respectively.
  • the bellows portion 56 is provided between the pair of joining end portions 55 and 55.
  • the joining end portions 55 and 55 each have a cylindrical shape, and the outer diameter is slightly smaller than the inner diameter of the connection portion main body 40.
  • the bellows part 56 has a plurality of (six in the illustrated example) deformed main body parts 57, 57,... And a plurality (five in the illustrated example) connecting parts 58, 58,.
  • the deformation main body 57 has an annular shape.
  • the deformation main body portions 57, 57,... Have a shape in which the outer peripheral surface protrudes radially outward from the outer peripheral surface of the joint end portions 55, 55. Further, the deformation main body portions 57, 57,... Have a shape in which the inner peripheral surface is recessed outward in the radial direction from the inner peripheral surface of the joining end portions 55, 55.
  • the connecting portions 58, 58,... Have a cylindrical shape with substantially the same diameter as the joining end portions 55, 55.
  • the connecting portion 58 is disposed between the adjacent deformation main body portion 57 and the deformation main body portion 57.
  • the main body portion 37 has a cylindrical shape and includes a body portion 61 and a rib 62.
  • the trunk portion 61 has a cylindrical shape, and its inner diameter is slightly larger than the outer diameter of the joining end portions 55 and 55 of the deformable portions 36a and 36b.
  • the rib 62 has an annular shape, and the inner diameter thereof is slightly larger than the outer diameter of the body portion 61.
  • the rib 62 is attached to the axial center position of the outer peripheral surface of the body 61. As a result, the rib 62 protrudes radially outward from the body portion 61.
  • the rib 62 is integrated with the body 61 by joining the inner peripheral sides of both end faces in the axial direction to the outer peripheral surface of the body 61 over the entire circumference by fillet welding. Yes.
  • the body portion 37 of the main body portion 37 is provided with an attachment portion 63 for attaching a sensor or the like.
  • the main body portion 37 is formed with ribs 62 to improve the strength (section modulus) of the body portion 61.
  • the flow guides 32a and 32b each have a cylindrical shape, and have a flow guide main body 66 and a joining member 67 as shown in FIGS. 4 (a) and 4 (c).
  • the flow guide main body 66 has a cylindrical shape, and its outer diameter is smaller than the minimum inner diameter of the deforming portions 36a and 36b.
  • the joining member 67 has an annular shape, and its outer diameter is slightly smaller than the inner diameter of the connection portion main body 40 and the inner diameter of the body portion 61 of the main body portion 37. Further, the inner diameter of the joining member 67 is slightly larger than the outer diameter of the flow guide main body 66.
  • the inner peripheral side of the joining member 67 is fixed to one end of the flow guide body 66 in the axial direction.
  • a joining end 55 of one end of the deforming portion 36a is joined to the inner peripheral surface of the cylindrical portion 43 of the connecting portion 35a by welding.
  • the joining end 55 of the other end of the deforming portion 36 a is joined to the inner peripheral surface of one end of the body 61 of the main body 37 by welding.
  • the joining end 55 of one end of the deforming portion 36b is joined to the inner peripheral surface of the other end of the body 61 by welding.
  • the joining end portion 55 at the other end of the deforming portion 36b is joined to the inner peripheral surface of the tubular portion 43 of the connecting portion 35b by welding.
  • the deformation portions 36 a and 36 b are provided on both sides of the main body portion 37 in the axial direction. In other words, the deformable portions 36a and 36b are arranged in series with the main body portion 37 interposed therebetween.
  • the flow guide 32 a is joined to the inner peripheral surface of the body portion 37 of the body portion 37 on the deformation portion 36 a side by welding in the joining member 67.
  • the flow guide main body 66 is disposed inside the deformation portion 36a.
  • the flow guide 32 a is fixed only to the main body 37, and thus is fixed only to one side in the axial direction with respect to the connection pipe main body 31.
  • the flow guide 32b is joined to the inner peripheral surface of the cylindrical portion 43 of the connecting portion 35b by welding in the joining member 67.
  • the flow guide main body 66 is disposed inside the deformation portion 36b.
  • the flow guide 32b is fixed only to the connection portion 35b, and is thus fixed only to one side in the axial direction with respect to the connection pipe main body 31.
  • connection parts 35a and 35b match the phases of the fixing holes 46 and 46 of the fixing plate parts 41 and 41 in the respective circumferential directions.
  • connection parts 35a and 35b are mutually connected by the fixing tool 70 penetrated by the fixing holes 46 and 46 with which a phase matches.
  • the connection portions 35a and 35b are restricted from relative movement in any of the axial direction, the radial direction, and the circumferential direction.
  • the connection of the connection portions 35a and 35b by the fixture 70 is for reducing the load on each portion when the connection pipe 10 is transported. Therefore, the fixture 70 is removed after the connection pipe 10 is incorporated in the steam turbine system 11 shown in FIG.
  • connection pipe 10 connects the steam turbine 12 and the condenser 13 as shown in FIG.
  • the connection seat portion 42 of the connection portion 35 b is fixed to the connection flange portion 23 of the turbine duct 21 of the steam turbine 12.
  • the connection seat portion 42 of the connection portion 35 a is fixed to the connection flange portion 28 of the condenser duct 26 of the condenser 13.
  • the connection pipe 10 is in a state in which the connection portion 35b, the deformation portion 36b, the main body portion 37, the deformation portion 36a, and the connection portion 35a are arranged in order from the top.
  • the radial direction of each of the connecting portion 35a, the deforming portion 36a, the main body portion 37, the deforming portion 36b, and the connecting portion 35b is along the horizontal direction, and the respective axial directions are along the vertical direction.
  • connection pipe 10 is an exhaust expansion joint that connects the steam turbine 12 and the condenser 13 while allowing relative displacement and introduces the exhaust of the steam turbine 12 into the condenser 13.
  • connection pipe 10 when the connection flange portion 23 of the turbine duct 21 and the connection flange portion 28 of the condenser duct 26 are relatively displaced in the vertical direction, the deformation portions 36 a and 36 b are deformed in the axial direction to absorb this relative displacement. To do.
  • the connection pipe 10 when the connection flange portion 23 of the turbine duct 21 and the connection flange portion 28 of the condenser duct 26 are relatively displaced in the lateral direction, the deformed portions 36 a and 36 b are deformed in the radial direction to absorb this relative displacement.
  • the relative displacement is proportional to the spring constant and is generated as a reaction force on the turbine or condenser side.
  • connection pipe 10 of the above-described embodiment has a cylindrical main body portion 37 provided with an annular rib 62 on the outer peripheral surface. Further, the connecting pipe 10 includes deformed portions 36a and 36b configured by bellows 50 to 52 that can be deformed in the axial direction and the radial direction. With these configurations, the connection pipe 10 can suppress an increase in cost as compared to the connection pipe 10 having a deformed portion formed of a bellows over the entire length, and the connection applied to the steam turbine 12 and the condenser 13. The reaction force due to the pipe 10 can be reduced, and the stress of the deformed portions 36a and 36b themselves can be reduced. In particular, the longer the length of the connection pipe 10, the higher the effect of suppressing the cost increase.
  • An annular rib 62 is provided on the outer peripheral surface of the main body portion 37.
  • drum 61 can be reduced in thickness (for example, 8 mm), and can be reduced in weight. That is, the main body 37 has a negative pressure on the inner side and an atmospheric pressure on the outer side, so that a load is applied radially inward.
  • the ribs 62 can ensure the rigidity of the main body portion 37 and can prevent deformation due to atmospheric pressure.
  • the connecting pipe 10 is arranged vertically as described above, the main body portion 37 applies a tensile load to the upper deformable portion 36b. Further, the main body portion 37 applies a compressive load to the lower deformation portion 36a. By reducing the weight of the main body 37, the load applied to the deforming portions 36a and 36b can be reduced.
  • the deforming portions 36a and 36b are configured by a plurality of bellows 50 to 52 being overlapped in the radial direction.
  • the connection pipe 10 can ensure the strength of the deformation portions 36a and 36b even when the deformation amount of the deformation portions 36a and 36b increases. That is, the connection pipe 10 absorbs a relatively high displacement repeatedly generated between the connection seat portions 42 and 42 at both ends as compared to the bellows in the case of a single layer, and the fatigue failure generated in the deformed portions 36a and 36b. Can be suppressed. Therefore, the steam turbine 12 and the condenser 13 in which the connection flange portion 23 and the connection flange portion 28 are displaced by changing the state of thermal expansion can be connected with high reliability by the connection pipe 10.
  • the steam turbine 12 and the condenser 13 are compared with the case of the onshore installation due to the bending of the hull 14 and the gantry 15 or the swinging of the offshore structure.
  • the connecting flange portion 23 and the connecting flange portion 28 are displaced at a higher displacement and repeatedly.
  • the reaction force increases and the repetition strength decreases, but in the present invention, the reaction force can be reduced and the repetition strength can be increased. It becomes possible to solve the above-mentioned two problems that are problematic in the installed steam turbine system at the same time.
  • connection pipe 10 when the connection pipe 10 is disposed vertically as described above, the lateral displacement of the connection flange portion 23 and the connection flange portion 28 increases due to the bending of the hull 14 and the gantry 15. Even if there is such a high lateral displacement, the steam turbine 12 and the condenser 13 can be connected with high reliability by the connection pipe 10.
  • the connecting pipe 10 is provided with deformed portions 36 a and 36 b on both sides of the main body portion 37. For this reason, the deformation amount per deformation part 36a, 36b can be halved. That is, the connection pipe 10 can further suppress the fatigue failure that occurs in the deformed portions 36a and 36b while absorbing the relative high displacement between the connection seat portions 42 and 42 at both ends. Therefore, the steam turbine 12 and the condenser 13 can be satisfactorily connected with higher reliability by the connection pipe 10. Even in the steam turbine system 11 installed in an offshore structure, the steam turbine 12 and the condenser 13 can be connected with higher reliability by the connection pipe 10.
  • connection pipe 10 even when the connecting pipe 10 is arranged vertically as described above and the displacement in the lateral direction of the connecting flange portion 23 and the connecting flange portion 28 increases, the steam turbine 12 and the condenser 13 are connected to the connecting pipe 10. Therefore, the connection can be made with high reliability.
  • the two deformation portions 36a and 36b as described above are based on the relationship between the distance between the connection seat portions 42 and 42 at both ends, the relative displacement amount, and the spring constant of the deformation portions 36a and 36b. Are arranged in series.
  • the load F and the spring constant K are small, and the allowable displacement X is large.
  • the optimum combination of the spring constants of the deforming portions 36a and 36b and the weight of the main body portion 37 is selected.
  • the connecting pipe 10 is provided with cylindrical flow guides 32a and 32b inside the deformation portions 36a and 36b. For this reason, it can suppress that the flow of a steam is disturb
  • the flow guides 32 a and 32 b are fixed only to one side in the axial direction with respect to the connection pipe main body 31 including the main body portion 37 and the deformation portions 36 a and 36 b. Thereby, even if the flow guides 32a and 32b are provided, the deforming portions 36a and 36b can be smoothly deformed.
  • the steam turbine system 11 of the embodiment described above includes a steam turbine 12 and a condenser 13 into which steam discharged from the steam turbine 12 flows. Further, the steam turbine 12 and the condenser 13 are connected by the connection pipe 10 described above. With these configurations, the steam turbine 12 and the condenser 13 can be connected with high reliability by the connection pipe 10. Even in the steam turbine system 11 installed in an offshore structure, the steam turbine 12 and the condenser 13 can be connected with high reliability by the connection pipe 10.
  • connection portion 35a, the deforming portion 36a, the main body portion 37, the deforming portion 36a, the main body portion 37, the deforming portion 36b, and the connecting portion 35b may be arranged in series in this order. That is, it is good also as connection piping which has a some main body part, the deformation
  • a plurality of ribs 62 may be provided in the main body portion 37 at intervals in the axial direction. That is, the main body portion 37 may be provided with at least one annular rib 62 on the outer peripheral surface.
  • the deforming portions 36a and 36b may have a multilayer structure other than the three-layer structure including the three bellows 50 to 52.
  • the connection pipe 10 may be other than a cylindrical shape such as a square shape.
  • the present invention is widely applicable to connection pipes in which relative displacement occurs at the connection positions at both ends and a steam turbine system using the connection pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Joints Allowing Movement (AREA)

Abstract

 外周面に少なくとも一つの環状のリブが設けられた筒状の本体部と、軸線方向および径方向に変形可能なべローズで構成された変形部とを備える。

Description

接続配管および蒸気タービンシステム
 本発明は、接続配管および蒸気タービンシステムに関する。
 2部品を接続させる接続配管には、2部品それぞれへの接続位置の相対変位を吸収する構造を必要とするものがある。例えば蒸気タービンシステムにおいて蒸気タービンと復水器とを接続させる接続配管である。蒸気タービンおよび復水器は、それぞれ、熱膨張の状態が変化し接続配管への接続位置が変位してしまうことになる。よって、このような変位を吸収可能な接続配管が蒸気タービンシステムには用いられている。例えば、特許文献1には、復水器において、蒸気タービンに接続される接続フランジ部と本体との間にベローズを有する筒状体を設けたものが開示されている。
特開平10-196313号公報
 ベローズを用いた接続配管において、ある程度の長さが必要な場合、コストが増大してしまう。
 本発明は、上記事情に鑑みてなされたものであり、コスト増を抑制することができる接続配管および蒸気タービンシステムを提供することを目的とする。
 本発明に係る接続配管の第一態様は、外周面に少なくとも一つの環状のリブが設けられた筒状の本体部と、軸線方向および径方向に変形可能なべローズで構成された変形部とを備える。
 本発明に係る接続配管の第二態様として、上記第一態様の接続配管における前記変形部は、複数の前記べローズが径方向に重ねられて構成されていても良い。
 本発明に係る接続配管の第三態様として、上記第一態様または第二態様の接続配管における前記変形部が、前記本体部の両側に設けられていても良い。
 本発明に係る接続配管の第四態様として、上記第一態様乃至第三態様のいずれか一態様の接続配管における前記変形部の内側に、筒状のフローガイドが設けられていても良い。
 本発明に係る接続配管の第五態様として、上記第四態様の接続配管における前記本体部および前記変形部を含む接続配管本体に対し、前記フローガイドが軸方向の片側のみ固定されていても良い。
 本発明に係る蒸気タービンシステムは、第一態様乃至第五態様のいずれか一態様に記載した接続配管を有するものであって、蒸気タービンと、前記蒸気タービンから排出された蒸気が流入する復水器と、を有し、前記蒸気タービンと前記復水器とを前記接続配管で接続させる。
 本発明の上記態様に係る接続配管によれば、コスト増を抑制することができる。また、本体部を、リブにより剛性を確保した上で軽量化することができる。
本発明の一実施形態に係る接続配管および蒸気タービンシステムを示す正面図である。 同実施形態に係る接続配管を示す中心から半分を断面とした正面図である。 同実施形態に係る接続配管を示す側面図である。 同実施形態に係る接続配管を示す部分拡大断面図であって、(a)は図2のA部、(b)は図2のB部、(c)は図2のC部をそれぞれ示すものである。
 以下、本発明の実施形態に係る接続配管10および蒸気タービンシステム11について説明する。本実施形態に係る蒸気タービンシステム11は、具体的には船舶および海洋構造物(以降、両者を海洋構造物と記載する)に搭載されるものである。
 図1は、本実施形態に係る蒸気タービンシステム11を示すものである。この蒸気タービンシステム11は蒸気タービン12と復水器13と接続配管10とを有している。蒸気タービン12は、船体14に設置された架台部15に取り付けられている。架台部15はI型鋼で構成されている。蒸気タービン12は、図示略のボイラから供給される高温・高圧の蒸気で回転駆動されるタービン本体20と、タービン本体20からの蒸気を排気するタービンダクト21とを有している。タービンダクト21はタービン本体20から下方に延出しており、その下端部が出口部22となっている。この出口部22には接続フランジ部23が設けられている。接続フランジ部23は水平に配置されている。
 復水器13は、蒸気タービン12の下方に配置されており、例えば船体14の船底24に設置されている。復水器13には、蒸気タービン12から排出された蒸気が流入する。復水器13は、蒸気を低圧水に戻す復水器本体25と、蒸気タービン12から排気された蒸気を受け入れる復水器ダクト26とを有している。復水器ダクト26は復水器本体25から上方に延出しており、その上端が入口部27となっている。この入口部27には接続フランジ部28が設けられている。接続フランジ部28も水平に配置されている。
 ここで、タービンダクト21の接続フランジ部23と、復水器ダクト26の接続フランジ部28とは、水平方向の位置を合わせて鉛直上下に離間して配置されている。そして、これら接続フランジ部23および接続フランジ部28に、本実施形態に係る接続配管10の両端部が接続されている。これにより、接続配管10は、タービンダクト21の出口部22と復水器ダクト26の入口部27とを繋いでいる。
 図2に示すように、接続配管10は、接続配管本体31と、一対のフローガイド32a,32bとを有している。接続配管本体31は、一対の接続部35a,35bと、一対の変形部36a,36bと、本体部37とを含んでいる。
 一対の接続部35a,35bは、同形状をなしており、それぞれ、図3に示すように、接続部本体40と、複数(図示例では4カ所)の固定板部41とを有している。
 接続部本体40は、円環状をなしている。接続部本体40は、図2に示すように、軸方向一側に円環状の接続座部42が形成され、軸方向他側に筒状部43が形成されている。接続座部42には、その径方向の中間位置に、軸方向に貫通する取付穴44が、図3に示すように円周方向に等間隔で複数(図示例では52カ所)形成されている。図2に示すように、筒状部43は、その外径が接続座部42の外径よりも小径となっており、接続座部42の内周縁部から軸方向に突出している。筒状部43は、その外径が接続座部42から離れるほど小径となっており、テーパ状をなしている。
 図3に示すように、固定板部41は、複数のものが、接続部本体40の円周方向に等間隔で取り付けられている。固定板部41は、接続部本体40の接続座部42の外周面に接合されている。固定板部41には、接続部本体40の軸方向に沿って貫通する固定穴46が形成されている。
 図2に示す変形部36a,36bは、筒状をなしている。図4(a),(c)に示すように変形部36a,36bは、それぞれ、軸線方向および径方向に変形可能な複数(図示例では3つ)のべローズ50~52が径方向に重ねられて構成されている。つまり、変形部36a,36bは、外層側のベローズ50と中間のベローズ51と内層側のベローズ52とからなる三層構造をなしている。これらベローズ50~52は、隣り合うもの同士が径方向および軸方向に隙間なく密着するようにして例えば軸方向の両端部が接合されることで一体化されている。ベローズ50~52は、ステンレス鋼材からなっている。
 変形部36a,36bは、それぞれ、一対の接合端部55,55と、蛇腹部56とを有している。蛇腹部56は、一対の接合端部55,55の間に設けられている。接合端部55,55は、それぞれ、円筒状をなしており、外径が接続部本体40の内径よりも若干小径となっている。蛇腹部56は、複数(図示例では6カ所)の変形本体部57,57,…と、複数(図示例では5カ所)の連結部58,58,…とを有している。
 変形本体部57は、円環状をなしている。変形本体部57,57,…は、外周面が接合端部55,55の外周面よりも径方向外方に突出する形状をなしている。また、変形本体部57,57,…は、内周面が接合端部55,55の内周面よりも径方向外方に凹む形状をなしている。連結部58,58,…は、接合端部55,55と略同径の筒状をなしている。連結部58は、隣り合う変形本体部57と変形本体部57との間に配置される。
 図2に示すように、本体部37は、筒状をなしており、胴部61とリブ62とを有している。胴部61は、円筒状をなしており、その内径が変形部36a,36bの接合端部55,55の外径よりも若干大径となっている。
 リブ62は、円環状をなしており、その内径が、胴部61の外径よりも若干大径となっている。リブ62は、胴部61の外周面の軸方向中央位置に取り付けられている。これにより、リブ62は、胴部61から径方向外方に突出している。リブ62は、図4(b)に示すように、軸方向両端面のそれぞれの内周側が、胴部61の外周面に隅肉溶接により全周にわたって接合されて胴部61と一体化されている。なお、図2に示すように、本体部37の胴部61には、センサ等を取り付けるための取付部63が設けられている。本体部37は、リブ62が形成されていることによって、胴部61の強度(断面係数)を向上させている。
 フローガイド32a,32bは、それぞれ筒状をなしており、図4(a),(c)に示すように、フローガイド本体66と接合部材67とを有している。フローガイド本体66は、円筒状をなしており、その外径が、変形部36a,36bの最小内径よりも小径となっている。接合部材67は、円環状をなしており、その外径が、接続部本体40の内径および本体部37の胴部61の内径よりも若干小径となっている。また、接合部材67は、その内径がフローガイド本体66の外径よりも若干大径となっている。接合部材67は、その内周側がフローガイド本体66の軸方向の一端部に固定されている。
 図4(a)に示すように、接続部35aの筒状部43の内周面に、変形部36aの一端の接合端部55が溶接により接合されている。この変形部36aの他端の接合端部55は、本体部37の胴部61の一端の内周面に溶接により接合されている。図4(c)に示すように、この胴部61の他端の内周面に変形部36bの一端の接合端部55が溶接により接合されている。この変形部36bの他端の接合端部55は、接続部35bの筒状部43の内周面に溶接により接合されている。以上により、本体部37の軸方向の両側に変形部36a,36bが設けられている。言い換えれば、変形部36a,36bが、間に本体部37を挟んで直列に配置されている。
 図4(a)に示すように、フローガイド32aは、接合部材67において本体部37の胴部61の変形部36a側の内周面に溶接により接合されている。この状態で、フローガイド32aは、フローガイド本体66が変形部36aの内側に配置される。フローガイド32aは、本体部37のみに固定されており、よって、接続配管本体31に対し、軸方向の片側のみ固定されている。
 図4(c)に示すように、フローガイド32bは、接合部材67において接続部35bの筒状部43の内周面に溶接により接合されている。この状態で、フローガイド32bは、フローガイド本体66が変形部36bの内側に配置される。フローガイド32bは、接続部35bのみに固定されており、よって、接続配管本体31に対し、軸方向の片側のみ固定されている。
 なお、図2に示すように、接続部35a,35bは、それぞれの円周方向において、固定板部41,41の固定穴46,46の位相を合わせている。そして、接続部35a,35bは、位相が合う固定穴46,46に挿通される固定具70で互いに連結される。これにより、接続部35a,35bは、軸方向、径方向および円周方向のいずれの方向の相対移動も規制される。なお、固定具70による接続部35a,35bの連結は、接続配管10を運搬する際の各部の負荷を軽減するためのものである。よって、接続配管10を図1に示す蒸気タービンシステム11に組み込み後に固定具70は取り外される。
 上記の接続配管10が、図1に示すように、蒸気タービン12と復水器13とを接続させる。このとき、接続配管10は、接続部35bの接続座部42が蒸気タービン12のタービンダクト21の接続フランジ部23に固定される。また、接続配管10は、接続部35aの接続座部42が復水器13の復水器ダクト26の接続フランジ部28に固定される。この状態で、接続配管10は、接続部35b、変形部36b、本体部37、変形部36a、接続部35aが、上から順に並べられた状態となる。また、この状態で、これら接続部35a、変形部36a、本体部37、変形部36bおよび接続部35bのそれぞれの径方向が横方向に沿い、それぞれの軸方向が縦方向に沿う。
 蒸気タービン12のタービンダクト21から排気された蒸気は、接続配管10内を通って、復水器13の復水器ダクト26に導入される。つまり、接続配管10は、蒸気タービン12と復水器13とを相対変位を許容しつつ接続させて、蒸気タービン12の排気を復水器13に導入する排気エクスパンションジョイントとなっている。
 接続配管10は、タービンダクト21の接続フランジ部23と復水器ダクト26の接続フランジ部28とが縦方向に相対変位すると、変形部36a,36bが軸方向に変形してこの相対変位を吸収する。接続配管10は、タービンダクト21の接続フランジ部23と復水器ダクト26の接続フランジ部28とが横方向に相対変位すると、変形部36a,36bが径方向に変形してこの相対変位を吸収する。なお、相対変位は、ばね定数に比例し、タービン又は復水器側に反力として発生するが、多層構造を採用していのため、ばね係数が低減されるため、タービン又は復水器側に発生する反力を大幅に低減できる効果を有する。また、海洋構造物に設置される蒸気タービンシステム11の場合、船体14や架台部15の撓みや海洋構造物の揺動等により、陸上設置の場合と比べて非常に大きな相対変位の吸収を求められるため、必然的に反力が大きくなるが、本構造はこの反力の低減に非常に有効である。
 上述した実施形態の接続配管10は、外周面に環状のリブ62が設けられた筒状の本体部37を有している。また、接続配管10は、軸線方向および径方向に変形可能なべローズ50~52で構成された変形部36a,36bを備えている。これらの構成により、接続配管10は、全長に亘ってベローズで構成された変形部を備えるものと比べて、コスト増を抑制することができ、また、蒸気タービン12と復水器13にかかる接続配管10による反力を軽減でき、変形部36a,36b自身の応力も軽減することができる。特に接続配管10の長さが長くなるほど、コスト増の抑制効果が高くなる。また、本体部37の外周面に環状のリブ62が設けられている。このため、本体部37を、その剛性を確保した上で、胴部61を薄肉化(例えば8mm)して軽量化することができる。つまり、本体部37は、内側が負圧で外側が大気圧であるため径方向内方に荷重が加わることになる。これに対し、胴部61を薄肉化して軽量化してもリブ62によって本体部37の剛性を確保でき、気圧による変形を防止できる。接続配管10を上記のように縦向きに配置した場合、本体部37が、上側の変形部36bに引っ張り荷重をかけることになる。また、本体部37が、下側の変形部36aに圧縮荷重をかけることになる。本体部37を軽量化することで、変形部36a,36bにかかる荷重を低減できる。
 また、変形部36a,36bは、複数のべローズ50~52が径方向に重ねられて構成されている。このため、接続配管10は、変形部36a,36bの変形量が大きくなっても、変形部36a,36bの強度を確保できる。つまり、接続配管10は、単層の場合のベローズに比べて、両端の接続座部42,42間に繰り返し発生する相対的な高変位を吸収しつつ、変形部36a,36bに生じる疲労破壊を抑制できる。よって、熱膨張の状態が変化することで、接続フランジ部23および接続フランジ部28が変位してしまう蒸気タービン12および復水器13を、接続配管10によって、高い信頼性で接続させることができる。また、海洋構造物に設置される蒸気タービンシステム11の場合、船体14や架台部15の撓みや海洋構造物の揺動等により、陸上設置の場合と比べて、蒸気タービン12および復水器13の接続フランジ部23および接続フランジ部28がより高変位で且つ繰り返し何度も変位してしまう。従来のような単層構造の場合、反力が大きくなり且つ繰り返しの強度が小さくなるという問題があるが、本発明では反力の低減及び繰り返し強度の高強度化が実現でき、海洋構造物に設置される蒸気タービンシステムにて問題となる上記2つの課題を同時に解決することが可能となる。したがって、このような蒸気タービンシステム11であっても、蒸気タービン12と復水器13とを、接続配管10によって、高い信頼性で接続させることができる。特に、接続配管10を上記のように縦向きに配置した場合に、船体14や架台部15の撓み等により、接続フランジ部23および接続フランジ部28の横方向の変位が大きくなる。このような横方向の高い変位があっても、蒸気タービン12と復水器13とを、接続配管10によって、高い信頼性で接続させることができる。
 また、接続配管10は、本体部37の両側に変形部36a,36bが設けられている。このため、変形部36a,36bの一つ当たりの変形量を半減できる。つまり、接続配管10は、両端の接続座部42,42間の相対的な高変位を吸収しつつ変形部36a,36bに生じる疲労破壊を一層抑制できる。よって、蒸気タービン12と復水器13とを、接続配管10によって、より高い信頼性で良好に接続させることができる。また、海洋構造物に設置される蒸気タービンシステム11であっても、蒸気タービン12と復水器13とを、接続配管10によって、より高い信頼性で接続させることができる。さらに、接続配管10を上記のように縦向きに配置し、接続フランジ部23および接続フランジ部28の横方向の変位が大きくなる場合でも、蒸気タービン12と復水器13とを、接続配管10によって、高い信頼性で接続させることができる。なお、接続配管10では、両端の接続座部42,42間の距離および相対変位量と、変形部36a,36bのばね定数との関係に基づいて、上記のように二つの変形部36a,36bを直列に配置している。接続配管10の蒸気タービン12および復水器13にかかる荷重Fと、変形部36a,36bのばね定数Kと、接続配管10の許容変位Xとの関係は、F=K*Xとなる。荷重Fおよびばね定数Kは小さく、許容変位Xは大きくする。この条件を満足させるように、変形部36a,36bのばね定数と、本体部37の重量との最適組み合わせを選定している。
 また、接続配管10は、変形部36a,36bの内側に、筒状のフローガイド32a,32bが設けられている。このため、蒸気の流れが変形部36a,36bによって乱されることを抑制できる。また、変形部36a,36bに生じるエロージョンを抑制することができる。
 また、接続配管10は、本体部37および変形部36a,36bを含む接続配管本体31に対し、フローガイド32a,32bが軸方向の片側のみ固定されている。これにより、フローガイド32a,32bを設けても変形部36a,36bを円滑に変形させることができる。
 上述した実施形態の蒸気タービンシステム11は、蒸気タービン12と、蒸気タービン12から排出された蒸気が流入する復水器13とを有している。また、蒸気タービン12と復水器13とを上記した接続配管10によって接続させている。これらの構成により、蒸気タービン12と復水器13とを、接続配管10によって、高い信頼性で接続させることができる。また、海洋構造物に設置される蒸気タービンシステム11であっても、蒸気タービン12と復水器13とを、接続配管10によって、高い信頼性で接続させることができる。
 なお、本発明は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、接続部35a、変形部36a、本体部37、変形部36a、本体部37、変形部36b、接続部35bをこの順に直列に配置しても良い。つまり、複数の本体部と、隣り合う本体部同士の間に設けられる変形部と、両端の本体部のそれぞれの外側に設けられる変形部とを有する接続配管としても良い。
 また、例えば、本体部37に、リブ62を軸方向に間隔をあけて複数設けても良い。つまり、本体部37には、外周面に環状のリブ62が少なくとも一つ設けられていれば良い。
 また、例えば、変形部36a,36bを、3つのべローズ50~52からなる三層構造以外の多層構造としても良い。
 また、例えば、接続配管10は角形など円筒形以外であっても良い。
 本発明は、両端の接続位置に相対変位が生じる接続配管およびこれを用いた蒸気タービンシステムについて広く適用可能である。
 10 接続配管
 11 蒸気タービンシステム
 12 蒸気タービン
 13 復水器
 32a,32b フローガイド
 36a,36b 変形部
 37 本体部
 40 接続部本体
 50~52 べローズ
 62 リブ

Claims (6)

  1.  外周面に少なくとも一つの環状のリブが設けられた筒状の本体部と、
     軸線方向および径方向に変形可能なべローズで構成された変形部とを備える接続配管。
  2.  請求項1に記載した接続配管であって、
     前記変形部は、複数の前記べローズが径方向に重ねられて構成されている接続配管。
  3.  請求項1または2に記載した接続配管であって、
     前記変形部が、前記本体部の両側に設けられている接続配管。
  4.  請求項1乃至3のいずれか一項に記載した接続配管であって、
     前記変形部の内側には、筒状のフローガイドが設けられている接続配管。
  5.  請求項4に記載した接続配管であって、
     前記本体部および前記変形部を含む接続配管本体に対し、前記フローガイドが軸方向の片側のみ固定されている接続配管。
  6.  請求項1乃至5のいずれか一項に記載した接続配管を有する蒸気タービンシステムであって、
     蒸気タービンと、
     前記蒸気タービンから排出された蒸気が流入する復水器と、を有し、 前記蒸気タービンと前記復水器とを前記接続配管で接続させる蒸気タービンシステム。
PCT/JP2013/053765 2013-02-15 2013-02-15 接続配管および蒸気タービンシステム WO2014125634A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/053765 WO2014125634A1 (ja) 2013-02-15 2013-02-15 接続配管および蒸気タービンシステム
EP13875244.9A EP2942498B1 (en) 2013-02-15 2013-02-15 Connecting piping and steam turbine system
US14/766,378 US10184602B2 (en) 2013-02-15 2013-02-15 Connecting piping and steam turbine system
CN201380071770.9A CN104956037B (zh) 2013-02-15 2013-02-15 连接配管及蒸汽涡轮***
JP2015500070A JP6129292B2 (ja) 2013-02-15 2013-02-15 蒸気タービンシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053765 WO2014125634A1 (ja) 2013-02-15 2013-02-15 接続配管および蒸気タービンシステム

Publications (1)

Publication Number Publication Date
WO2014125634A1 true WO2014125634A1 (ja) 2014-08-21

Family

ID=51353660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053765 WO2014125634A1 (ja) 2013-02-15 2013-02-15 接続配管および蒸気タービンシステム

Country Status (5)

Country Link
US (1) US10184602B2 (ja)
EP (1) EP2942498B1 (ja)
JP (1) JP6129292B2 (ja)
CN (1) CN104956037B (ja)
WO (1) WO2014125634A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140291980A1 (en) * 2013-03-29 2014-10-02 Ebara Corporation Vacuum pump connecting apparatus and method for installing vacuum pump connecting apparatus
CN113638837A (zh) * 2021-07-28 2021-11-12 东方电气集团东方电机有限公司 一种水轮机蜗壳水推力补偿结构

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468895B (zh) * 2018-04-12 2019-10-08 洛阳双瑞特种装备有限公司 一种具有三向补偿的直管压力平衡型膨胀节

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960354A (en) * 1957-02-18 1960-11-15 Gen Motors Corp Pressure compensated flexible pipe
JPS5610016A (en) * 1979-07-02 1981-02-02 Mitsubishi Electric Corp Gas insulated bus
JPH04211787A (ja) * 1990-02-08 1992-08-03 Flexonics Inc 可撓性のあるコネクタ
JPH10141565A (ja) * 1996-11-13 1998-05-29 Tokyo Rasenkan Seisakusho:Kk ベローズ形伸縮管継手
JPH10196313A (ja) 1997-01-13 1998-07-28 Fuji Electric Co Ltd 軸流排気式の復水器
JP2007023962A (ja) * 2005-07-20 2007-02-01 Fuji Electric Systems Co Ltd 軸流排気式蒸気タービン装置
JP2007177999A (ja) * 2005-11-30 2007-07-12 Showarasenkan Seisakusho Co Ltd 防振用ベローズ管継手
WO2012132640A1 (ja) * 2011-03-31 2012-10-04 三菱重工コンプレッサ株式会社 伸縮継手およびこれを備えた蒸気タービン設備

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976312A (en) * 1975-08-22 1976-08-24 Peabody Dore' Corporation Expansion joint
CH613749A5 (ja) * 1976-12-30 1979-10-15 Sulzer Ag
JPS5670111U (ja) * 1979-11-01 1981-06-10
JPS6043105A (ja) 1983-08-18 1985-03-07 Toshiba Corp クロスオ−バ管装置
US4635533A (en) * 1983-12-28 1987-01-13 Phillips Petroleum Company Method and apparatus for accommodating temperature and pressure variations in tubular conduits
JPH01312293A (ja) * 1988-06-10 1989-12-18 Ngk Insulators Ltd 防振継手
JPH0244193U (ja) * 1988-09-21 1990-03-27
US5043797A (en) * 1990-04-03 1991-08-27 General Electric Company Cooling header connection for a thyristor stack
US5354104A (en) * 1993-01-15 1994-10-11 Techlam Flexible coupling for pipework
US5791696A (en) * 1993-06-14 1998-08-11 Tokai Rubber Industries, Ltd. Hose with a protector
DE19523506A1 (de) * 1995-06-28 1997-01-09 Witzenmann Metallschlauchfab Leitungselement zur flexiblen Verbindung zweier Rohrleitungen
US5944363A (en) * 1997-01-06 1999-08-31 Senior Engineering Investments Ag Flexible connector systems
DE29707908U1 (de) * 1997-05-02 1998-09-03 Witzenmann GmbH Metallschlauch-Fabrik Pforzheim, 75175 Pforzheim Flexibles Leitungselement
JPH1193617A (ja) 1997-09-22 1999-04-06 Hitachi Ltd 原子炉給水ポンプ駆動用蒸気タービン排気管の据付工法
US5961244A (en) * 1997-10-10 1999-10-05 The Atlantic Group, Inc. Expansion-joint system and belt
US6032463A (en) * 1998-07-22 2000-03-07 Caterpillar Inc Exhaust connector assembly and kit for a segmented exhaust manifold
US6884398B1 (en) * 1999-01-22 2005-04-26 Benteler Automotive Corporation Vacuum-insulated exhaust treatment devices with radially-extending support structures
CN2388352Y (zh) 1999-09-07 2000-07-19 山东泰山钢铁总公司 卧式汽轮发电机组
JP2002235538A (ja) * 2001-02-09 2002-08-23 Calsonic Kansei Corp フレキシブルチューブ
US6893053B2 (en) * 2001-09-10 2005-05-17 Tru-Flex Metal Hose Corp. Exhaust bellows for dynamic torsion control in an exhaust system
US6921112B2 (en) * 2002-11-26 2005-07-26 Josif Atansoski Exhaust vibration decoupling connector
JP3992657B2 (ja) * 2003-07-07 2007-10-17 株式会社Tozen 管継手
CA2580651C (en) 2004-10-01 2011-07-05 Bell Helicopter Textron Inc. Free floating bellows
DE102005024414B3 (de) * 2005-05-27 2007-01-11 Airbus Deutschland Gmbh Verbindungsstück zur gelenkigen Verbindung einer ersten und einer zweiten Rohrleitung
US20060266049A1 (en) 2005-05-27 2006-11-30 General Electric Company Expansion joint and method of assembling same
KR100735940B1 (ko) * 2005-06-15 2007-07-06 주식회사 에스제이엠 자동차 배기관용 플렉시블 튜브
CN200967995Y (zh) 2006-11-09 2007-10-31 刘为秀 再生聚丙烯改性增强模压排水管
US7650912B2 (en) * 2007-11-06 2010-01-26 Sjm Co., Ltd. Flexible conduit element
JP2009235971A (ja) * 2008-03-26 2009-10-15 Mitsubishi Heavy Ind Ltd シール部材、蒸気タービン及び共振回避方法
US8382165B2 (en) * 2010-11-09 2013-02-26 Tru-Flex Metal Hose, Llc Exhaust connection member with preformed braided cover
IT1403761B1 (it) * 2011-01-10 2013-10-31 Umbra Meccanotecnica Connettori per impianti solari a concentrazione.
US9512772B2 (en) * 2013-09-16 2016-12-06 KATCON USA, Inc. Flexible conduit assembly
SE538422C2 (sv) * 2014-07-24 2016-06-21 Scania Cv Ab Rörenhet i en rörledning för ett gasformigt medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2960354A (en) * 1957-02-18 1960-11-15 Gen Motors Corp Pressure compensated flexible pipe
JPS5610016A (en) * 1979-07-02 1981-02-02 Mitsubishi Electric Corp Gas insulated bus
JPH04211787A (ja) * 1990-02-08 1992-08-03 Flexonics Inc 可撓性のあるコネクタ
US5340165A (en) * 1990-02-08 1994-08-23 Senior Engineering Investments, B.V. Flexible connector
JPH10141565A (ja) * 1996-11-13 1998-05-29 Tokyo Rasenkan Seisakusho:Kk ベローズ形伸縮管継手
JPH10196313A (ja) 1997-01-13 1998-07-28 Fuji Electric Co Ltd 軸流排気式の復水器
JP2007023962A (ja) * 2005-07-20 2007-02-01 Fuji Electric Systems Co Ltd 軸流排気式蒸気タービン装置
JP2007177999A (ja) * 2005-11-30 2007-07-12 Showarasenkan Seisakusho Co Ltd 防振用ベローズ管継手
WO2012132640A1 (ja) * 2011-03-31 2012-10-04 三菱重工コンプレッサ株式会社 伸縮継手およびこれを備えた蒸気タービン設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2942498A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140291980A1 (en) * 2013-03-29 2014-10-02 Ebara Corporation Vacuum pump connecting apparatus and method for installing vacuum pump connecting apparatus
US9970459B2 (en) * 2013-03-29 2018-05-15 Ebara Corporation Vacuum pump connecting apparatus and method for installing vacuum pump connecting apparatus
CN113638837A (zh) * 2021-07-28 2021-11-12 东方电气集团东方电机有限公司 一种水轮机蜗壳水推力补偿结构
CN113638837B (zh) * 2021-07-28 2023-04-25 东方电气集团东方电机有限公司 一种水轮机蜗壳水推力补偿结构

Also Published As

Publication number Publication date
EP2942498B1 (en) 2017-04-19
JPWO2014125634A1 (ja) 2017-02-02
EP2942498A1 (en) 2015-11-11
JP6129292B2 (ja) 2017-05-17
EP2942498A4 (en) 2016-02-17
US10184602B2 (en) 2019-01-22
US20150377395A1 (en) 2015-12-31
CN104956037A (zh) 2015-09-30
CN104956037B (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
WO2014125634A1 (ja) 接続配管および蒸気タービンシステム
US20180087698A1 (en) Band clamp for overlapping pipe ends
US20180030877A1 (en) Compensator
JP6137432B1 (ja) ボイラ管の補強装置、ボイラ管の補強方法
JP6032605B2 (ja) 排気系部品への遮熱カバー取り付け構造
KR20200046502A (ko) Lng선박용 배관의 신축이음관 좌굴 방지장치
US9581070B2 (en) Uncoupling element
KR101600290B1 (ko) 배관 티
JP5922620B2 (ja) 排気系部品への遮熱カバーの防振取り付け構造
KR101379273B1 (ko) 자동차 배기관용 다축 연결조인트
KR101691586B1 (ko) 비금속성 익스펜션 조인트장치
KR20120019895A (ko) 배관 부재 관통 구조
RU2647797C2 (ru) Устройство для транспортировки текучих сред между судном и турелью, установленной на этом судне
ITTO20100533A1 (it) Giunto di disaccoppiamento per tubazioni di scarico di motori endotermici
JP4343156B2 (ja) 減温管
JP2007177999A (ja) 防振用ベローズ管継手
JP2011058566A (ja) 配管支持部材
KR20160115290A (ko) 고온 파이프 지지 구조체
JP6357139B2 (ja) 排気管のカバー構造
KR200344488Y1 (ko) 벨로우즈형 신축동관 연결구조
KR102599658B1 (ko) 플렉시블 서포트
TWI485320B (zh) 高溫氣體之保溫導管
KR20230045985A (ko) 이중배관용 서포트
JP5762048B2 (ja) ロータ冷却空気供給管
JP2016180467A (ja) 二重管構造およびその継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500070

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013875244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013875244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14766378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE