WO2014122709A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2014122709A1
WO2014122709A1 PCT/JP2013/007193 JP2013007193W WO2014122709A1 WO 2014122709 A1 WO2014122709 A1 WO 2014122709A1 JP 2013007193 W JP2013007193 W JP 2013007193W WO 2014122709 A1 WO2014122709 A1 WO 2014122709A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
dbr
layer
tio
refractive index
Prior art date
Application number
PCT/JP2013/007193
Other languages
English (en)
French (fr)
Inventor
佐々木 博司
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2014560540A priority Critical patent/JP5989810B2/ja
Priority to US14/761,713 priority patent/US9705044B2/en
Priority to CN201380072345.1A priority patent/CN104969365B/zh
Publication of WO2014122709A1 publication Critical patent/WO2014122709A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18377Structure of the reflectors, e.g. hybrid mirrors comprising layers of different kind of materials, e.g. combinations of semiconducting with dielectric or metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission

Definitions

  • the present invention relates to a semiconductor device such as a light emitting diode element or a semiconductor laser element having a distributed Bragg reflection film, and a manufacturing method thereof.
  • a metal reflective film or a distributed Bragg reflective film is formed on a lower surface of a transparent substrate such as sapphire.
  • FIG. 12 is a cross-sectional view for explaining a conventional light emitting diode chip having a distributed Bragg reflection film disclosed in Patent Document 1.
  • FIG. 13 is an enlarged cross-sectional view of the distributed Bragg reflection film of FIG.
  • a conventional light emitting diode chip 100 includes a substrate 101, a buffer layer 102 on the surface side of the substrate 101, a light emitting structure 103 on the buffer layer 102, and a transparent electrode 104 on the optical structure 103.
  • a distributed Bragg reflection film 107, a reflective metal layer 108 on the distributed Bragg reflection film 107, and a protective layer 109 on the reflective metal layer 108 are provided on the back side of the substrate 101.
  • the substrate 101 is not particularly limited as long as it is a transparent substrate, and may be, for example, a sapphire or SiC substrate.
  • the substrate 101 may also have a predetermined uneven pattern such as a sapphire substrate (PSS) patterned on the upper surface, that is, the entire surface.
  • PSS sapphire substrate
  • the area of the substrate 101 determines the entire area of the chip. As the area of the light emitting diode chip 100 is relatively large, the reflection effect increases.
  • the light emitting structure 103 includes a first conductive semiconductor layer 103a, a second conductive semiconductor layer 103b, and an active layer 103c disposed between the first conductive semiconductor layer 103a and the second conductive semiconductor layer 103b. And have.
  • the first conductivity type semiconductor layer 103a and the second conductivity type semiconductor layer 103b may have opposite conductivity types, the first conductivity type may be n type, and the second conductivity type may be p type, Or they may be the opposite.
  • the first conductive semiconductor layer 103a, the active layer 103c, and the second conductive semiconductor layer 103b may be formed of a gallium nitride-based compound semiconductor material, that is, (Al, In, Ga) N.
  • the active layer 103c has a composition element and a composition ratio so as to emit light having a required wavelength, for example, ultraviolet light or blue light.
  • the first conductive type semiconductor layer 103a and / or the second conductive type semiconductor layer 103b may be formed as a single layer as shown in the figure, but may be formed in a multilayer structure.
  • the active layer 103c may be formed in a single quantum well structure or a multiple quantum well structure.
  • the buffer layer 102 is disposed between the substrate 101 and the first conductive semiconductor layer 103a, this may not be necessary.
  • the semiconductor layers 103a to 103c are each formed by MOCVD (metal-organic vapor deposition) or MBE (molecular). It may be formed using a beam epitaxy technique, or may be patterned using a photolithography and etching process so that a partial region of the first conductivity type semiconductor layer 103a is exposed.
  • MOCVD metal-organic vapor deposition
  • MBE molecular
  • the transparent electrode layer 104 may be formed of, for example, ITO or Ni / Au on the second conductive semiconductor layer 103b. Since the transparent electrode layer 104 has a lower specific resistance than the second conductivity type semiconductor layer 103b, the transparent electrode layer 104 has a role of dispersing current throughout the chip.
  • a p-electrode pad 105 is formed on a part of the transparent electrode layer 104, and an n-electrode pad 106 is formed on a part of the exposed surface exposed in the middle of the first conductivity type semiconductor layer 103a. The p-electrode pad 105 is electrically connected to the second conductivity type semiconductor layer 103b through the transparent electrode layer 104 as shown in the figure.
  • a distributed Bragg reflection film 107 is disposed below the substrate 101, that is, on the back side of the substrate 101.
  • the distributed Bragg reflective film 107 includes a first distributed Bragg reflective film 111 and a second distributed Bragg reflective film 112.
  • the first distributed Bragg reflective film 111 is formed by repeatedly forming a plurality of pairs of the first material layer 111a and the second material layer 111b. A plurality of pairs of the material layer 112a and the fourth material layer 112b are repeatedly formed.
  • the plurality of pairs of the first material layer 111a and the second material layer 111b have a relatively high reflectance with respect to light in the red wavelength region, for example, 550 nm or 630 nm, compared to light in the blue wavelength region.
  • the distributed Bragg reflection film 112 may have a relatively high reflectance with respect to light in the blue wavelength region, for example, light at 460 nm, compared to light in the red or green wavelength region.
  • the optical film thickness of the material layers 111a and 111b in the first distributed Bragg reflection film 111 is thicker than the optical film thickness of the material layers 112a and 112b in the second distribution Bragg reflection film 112, but this is not limitative. The opposite is also possible.
  • the first material layer 111a may have the same material as the third material layer 112a, that is, the same refractive index
  • the second material layer 111b may be the same material as the fourth material layer 112b, that is, the same refraction. May have a rate.
  • the first material layer 111a and the third material layer 112a may be formed of a TiO 2 film (refractive index n: about 2.5), and the second material layer 111b and the fourth material layer 112b are SiO 2 films. (Refractive index n: about 1.5) may be formed.
  • the high refractive index film and the low refractive index film are repeated here for 48 layers, thereby providing high reflectance performance in a wide wavelength band.
  • the optical film thickness (refractive index ⁇ thickness) of the first material layer 111a has a substantially integral multiple relationship with the optical film thickness of the second material layer 111b.
  • the film thickness may be substantially the same.
  • the optical film thickness of the third material layer 112a has a substantially integral multiple relationship with the optical film thickness of the fourth material layer 112b, and preferably these optical film thicknesses are substantially the same. It is good.
  • the optical film thickness of the first material layer 111a is made thicker than the optical film thickness of the third material layer 112a
  • the optical film thickness of the second material layer 111b is made thicker than the optical film thickness of the fourth material layer 112b. May be.
  • the optical film thickness of the first to fourth material layers 111a, 111b, 112a, 112b can be controlled by adjusting the refractive index and / or the actual thickness of each material layer.
  • a reflective metal layer 108 such as Al, Ag, or Rh and a protective layer 109 for protecting the distributed Bragg reflective film 107 may be formed below the distributed Bragg reflective film 107.
  • the protective layer 109 may be formed of, for example, any one metal layer selected from Ti, Cr, Ni, Pt, Ta, and Au, or an alloy thereof.
  • the reflective metal layer 108 or the protective layer 109 can protect the distributed Bragg reflective film 107 from external impact and contamination.
  • the reflective metal layer 108 or the protective layer 109 can prevent the distributed Bragg reflective film 107 from being deformed by a material such as an adhesive when the light emitting diode chip 100 is mounted on the light emitting diode package.
  • the reflective metal layer 108 can reflect the light transmitted through the distributed Bragg reflective film 107, the thickness of the distributed Bragg reflective film 107 can be relatively reduced.
  • the distributed Bragg reflection film 107 exhibits a relatively high reflectance, but may transmit visible light in a long wavelength region to light having a large incident angle. Therefore, by disposing the reflective metal layer 108 below the distributed Bragg reflective film 107, the light transmitted through the distributed Bragg reflective film 107 can be reflected by the reflective metal layer 108, thereby further improving the light emission utilization efficiency. Can do.
  • the optical loss in the distributed Bragg reflective film 107 is reduced as compared to the case of conversely. Can be reduced.
  • a light-emitting diode chip 100 as a conventional semiconductor light-emitting element of the face-up light emission system that emits all the light emitted from the active layer 103c upward on the p-electrode pad 105 and n-electrode pad 106 side is obtained. Can do.
  • the light emitting diode chip 100 having the conventional distributed Bragg reflection film 107 disclosed in Patent Document 1 the light emitted from the light emitting structure including the internal active layer 103 c is reflected upward on the back side of the substrate 101.
  • a distributed Bragg reflective film 107 (DBR film) is formed, and a reflective metal layer 108 is further formed on the distributed Bragg reflective film 107.
  • the distributed Bragg reflection film 107 and the reflective metal layer 108 thereon have a reflectivity of 90% or more for blue wavelength light, green wavelength light, and red wavelength light.
  • a DBR film (reflective film) on the substrate 101
  • SiO 2 and TiO 2 are alternately laminated to form a total of about 40 layers (the final layer is SiO 2 from the viewpoint of reflectivity), and has a high wavelength broadband.
  • hydrofluoric acid during the cleaning process in the subsequent process erodes the DBR film surface (decreases film thickness), absorbs moisture from the DBR film surface, and cracks are generated on the DBR film surface. In such a case, there is a problem that the optical characteristics of the DBR film change.
  • the present invention solves the above-mentioned conventional problems, and the DBR film surface is eroded (thickness reduction) by the subsequent cleaning process or etching process, moisture is absorbed from the DBR film surface, or the DBR film surface.
  • An object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can suppress or prevent the occurrence of cracks.
  • the low refractive index film in which a pair of the high refractive index film and the low refractive index film is repeatedly formed on the low refractive index film in a DBR film configuration serving as a reflective film.
  • the high refractive index film is continuously formed as a final film for preventing erosion, thereby achieving the above object.
  • the low refractive index film is an SiO 2 film
  • the high refractive index film is a TiO 2 film
  • the final TiO 2 film has a thickness of 1 to 13 nm. Yes.
  • the film thickness of the final TiO 2 film in the semiconductor device of the present invention is 1 to 10 or 1 to 5 nm.
  • the shape of the pattern edge portion of the DBR film configuration in the semiconductor device of the present invention has a slope shape in which the film thickness is thinner toward the tip side having a cross-sectional taper angle of 15 to 45 degrees.
  • the multilayer reflective film having a DBR film structure has a number of layers in the range of 4 to 50 layers.
  • a metal film (metal reflective film) is provided on the DBR film configuration (DBR film) and the underlying layer in the semiconductor device of the present invention.
  • an Al film is used as the metal film in the semiconductor device of the present invention.
  • a Ni film is used as an adhesion layer between the high refractive index film of the final film and the metal film, or the metal is directly on the high refractive index film of the final film.
  • a membrane is used.
  • the light reflectance in the vertical direction with respect to the DBR film configuration is 80% or more in the band range of the light wavelength from 400 to 600 nm.
  • a method for manufacturing a semiconductor device according to the present invention is a method for manufacturing the above-described semiconductor device according to the present invention, wherein after the resist pattern is formed in a cross-sectional shape, the slope shape of the DBR film structure is formed by DBR vapor deposition. And a lift-off process for removing the resist pattern, which achieves the above object.
  • the plasma cleaning and the DBR vapor deposition process are performed using an ion gun before and during the formation of the DBR film structure in the semiconductor device manufacturing method of the present invention.
  • the DBR film structure and its underlying layer are further formed by metal film deposition using the lift-off process.
  • a metal film is formed on the substrate.
  • the pair of the high refractive index film and the low refractive index film is repeatedly formed on the low refractive index film on the low refractive index film.
  • the high refractive index film is continuously formed as a final film to prevent erosion.
  • the final film is a high refractive index film for preventing erosion
  • the high refractive index film for preventing erosion covers the DBR film structure itself and protects the inside thereof.
  • the vapor deposition formation at the pattern edge portion of the DBR film has a poor coverage and causes breakage. End up.
  • the shape of the pattern edge portion (end portion) of the DBR film configuration has a slope shape with a thinner film thickness on the tip side having a cross-sectional taper angle of 15 to 45 degrees, the pattern of the DBR film The coverage of the vapor deposition film (metal reflection film) at the edge portion (end portion) becomes good and the occurrence of step breakage is prevented.
  • the light-emitting diode chip 100 as the conventional semiconductor light-emitting element disclosed in Patent Document 1 is a face-up light emission method, and the light emitted from the active layer 103 c is emitted from the p-electrode pad 105 and the n-electrode pad 106. As a result, the light emission efficiency decreases.
  • a face-down next-generation semiconductor light emitting device flip chip
  • the p-electrode pad and Since light is not blocked by the n-electrode pad, it is possible to prevent a decrease in light emission efficiency.
  • the DBR film surface is eroded (thickness reduction) in the subsequent cleaning process or etching process, moisture is absorbed from the DBR film surface, or cracks are generated on the DBR film surface. This can be suppressed or prevented.
  • the shape of the pattern edge portion of the DBR film configuration has a slope shape with a thinner film thickness toward the tip side having a cross-sectional taper angle of 15 to 45 degrees, the vapor deposition film at the pattern edge portion of the DBR film is formed. The coverage is good and the occurrence of disconnection can be prevented.
  • FIG. 5C is a cross-sectional view of a main part for explaining a photo-registry shift-off process in the semiconductor light-emitting element
  • FIG. 5D is a metal reflective film photoresist in the semiconductor light-emitting element
  • FIG. 5E is a fragmentary cross-sectional view for explaining a metal reflective film deposition step in the semiconductor light emitting device.
  • (A) is principal part sectional drawing for demonstrating the photoresist pattern formation process for DBR film
  • (b) is for demonstrating the DBR film
  • (C) is principal part sectional drawing for demonstrating the photo resist ftoff process in the semiconductor light-emitting device. It is an expanded sectional view of the slope shape part of the edge part of the DBR film in the semiconductor light emitting element of this Embodiment 5.
  • FIG. 1 is a longitudinal sectional view showing an example of the configuration of the main part of a face-down light emission type semiconductor light emitting device according to Embodiment 1 of the present invention.
  • a semiconductor light emitting device 1 constituting a light emitting diode device as a semiconductor device according to the first embodiment has a high refractive index as a distributed Bragg reflection film on a next generation flip chip of a face-down light emission method.
  • a DBR film 7 reflection film configuration
  • TiO 2 film a film
  • a light emitting structure 3 is provided on a transparent insulator substrate 2 such as sapphire.
  • the light emitting structure 3 includes an active layer 33 that emits light between the first conductive semiconductor layer 31 (N-type cladding layer) and the second conductive semiconductor layer 32 (P-type cladding layer).
  • the surface part of the light emitting structure 3 is configured to be uneven, and the transparent electrode film 4 made of an ITO film is provided on the surface of the flat part on the convex side.
  • a p-electrode pad 5 is provided on a part of the surface of the transparent electrode film 4, and an n-electrode is formed on a part of a partly exposed surface (concave part) of the first conductive type semiconductor layer 31 in the light emitting structure 3.
  • a pad 6 is provided.
  • a DBR film 7 having a reflective film structure that forms a distributed Bragg reflective film is formed.
  • a predetermined voltage is applied between the p-electrode pad 5 and the n-electrode pad 6 with the p-electrode pad 5 as a positive electrode and the n-electrode pad 6 as a negative electrode, and a predetermined voltage is applied to the light emitting structure 3.
  • the light emitted from the active layer 33 of the light emitting structure 3 is transmitted from the active layer 33 through the transparent insulator substrate 2 and emitted as light emission A from the back side of the substrate, and reflected from the active layer 33 by the DBR film 7. Then, the light passes through the transparent insulator substrate 2 and is emitted as reflected light B from the back surface side of the substrate, and almost all light emission is emitted downward from the back surface of the transparent insulator substrate 2.
  • the high refractive index film (TiO 2 film) is hardly etched with respect to BHF and does not decrease in film thickness, and has acid resistance and water resistance (moisture does not pass inside).
  • the TiO 2 film is used as the final film of the DBR film 7, the internal SiO 2 film is protected from acid, moisture, etc. by the TiO 2 film.
  • the DBR film 7 is formed by repeatedly forming a plurality of pairs of a low refractive index film of the first material layer and a high refractive index film of the second material layer.
  • a high refractive index film (deposited TiO 2 film) is continuously formed to prevent erosion. This has a number of layers in the range of 4 to 50 layers.
  • the high refractive index film (on the low refractive index film (deposited SiO 2 film))
  • a high refractive index film (deposited as a final film) is formed on a low refractive index film (deposited SiO 2 film) in which one or more pairs of a deposited TiO 2 film and a low refractive index film (deposited SiO 2 film) are repeatedly formed.
  • a TiO 2 film is continuously formed to prevent erosion (for internal protection).
  • the vapor deposition TiO 2 film which is a high refractive index film, is additionally continuously formed as the uppermost layer, which ends with the vapor deposition SiO 2 film of the low refractive index film which is reduced by acid. Since the upper surface of the deposited SiO 2 film of the DBR film 7 is covered with the deposited TiO 2 film of the final film, erosion (thickness reduction), moisture absorption and cracking of the DBR uppermost layer film in the etching process and cleaning process in the subsequent process Can be prevented.
  • the DBR film 7 is employed in a next-generation flip chip as the face-down light emission type semiconductor light emitting device 1, and a high refractive index film (TiO 2 film) is formed on the uppermost layer of the DBR film 7.
  • a high refractive index film TiO 2 film
  • the DBR film configuration in which the high refractive index film (TiO 2 film) is formed on the uppermost layer of the DBR film 7 is not limited to this, and is also applied to a semiconductor light emitting device of a face-up light emission system. be able to. This will be described in detail in the second embodiment.
  • FIG. 2 is a longitudinal sectional view showing a configuration example of a main part of a face-up light emitting type semiconductor light emitting device according to Embodiment 2 of the present invention.
  • a semiconductor light emitting element 1A that constitutes a light emitting diode element as a semiconductor device according to the second embodiment is a DBR in which the uppermost layer is a high refractive index film (TiO 2 film) as a face-up light emitting semiconductor chip.
  • the film 7A is employed on the back side of the substrate.
  • a light emitting structure 3 is provided on a transparent insulator substrate 2 such as sapphire.
  • the light emitting structure 3 includes an active layer 33 that emits light between the first conductive semiconductor layer 31 (N-type cladding layer) and the second conductive semiconductor layer 32 (P-type cladding layer).
  • the surface part of the light emitting structure 3 is configured to be uneven, and the transparent electrode film 4 made of an ITO film is provided on the surface of the flat part on the convex side.
  • a p-electrode pad 5 A including a reflective layer on the bottom surface is provided on a part of the surface of the transparent electrode film 4, and a part of the partly exposed surface of the first conductive type semiconductor layer 31 in the light emitting structure 3 is provided.
  • n-electrode pad 6A including a reflective layer on the bottom surface are provided with an n-electrode pad 6A including a reflective layer on the bottom surface.
  • a DBR film 7 ⁇ / b> A is formed on the back side of the transparent insulator substrate 2.
  • a predetermined voltage is applied to the light emitting structure 3 between the p-electrode pad 5A and the n-electrode pad 6A, with the p-electrode pad 5A serving as a positive electrode and the n-electrode pad 6A serving as a negative electrode.
  • the light emitted from the active layer 33 of the light emitting structure 3 passes through the transparent electrode film 4 from the active layer 33 and is emitted as light emission A from the surface side, and the light from the active layer 33 is a transparent insulator substrate. 2 is reflected by the DBR film 7A on the back surface of the substrate 2 and is emitted as reflected light B from the substrate surface side.
  • the other light is reflected to the DBR film 7A side by the reflection layers on the bottom surfaces of the p-electrode pad 5A and the n-electrode pad 6A, and the light emitted from almost all the active layer 33 is emitted upward from the substrate surface side.
  • the TiO 2 film of the high refractive index film is hardly etched with respect to BHF and does not reduce the film, and has acid resistance and water resistance (moisture does not pass inside).
  • the TiO 2 film is used as the final film of the DBR film 7A, the internal SiO 2 film is protected from acid, moisture, and the like by the TiO 2 film.
  • the DBR film 7A is configured such that a plurality of pairs of a low refractive index film of the first material layer and a high refractive index film of the second material layer are repeatedly formed.
  • the multilayer reflective film of the DBR film 7A has a number of layers in the range of 4 to 50 layers.
  • the high refractive index film (deposited TiO 2 film) is formed on the low refractive index film (deposited SiO 2 film).
  • the low refractive index film (deposited SiO 2 film) pairs one or more pairs repeating the formed low refractive index film (deposited SiO 2 film) high refractive index film as the final film (deposited TiO 2 film) Is continuously formed to prevent erosion.
  • a vapor deposition TiO 2 film which is a high refractive index film, is additionally continuously formed at the end of the vapor deposition SiO 2 film, which is originally a low refractive index film that is reduced by acid as the uppermost layer. Since the upper surface of the deposited SiO 2 film in the DBR film 7A is covered with the final deposited TiO 2 film, erosion (thickness reduction), moisture absorption and cracking of the DBR top layer film in the etching process and cleaning process in the subsequent process Can be prevented.
  • the light emitted from the active layer 103c is blocked by the p-electrode pad 105 and the n-electrode pad 106 and the light extraction efficiency is increased. Decreases.
  • the light emitted from the active layer 33 is blocked by the p-electrode pad 5A and the n-electrode pad 6A.
  • the electrode pad 5A and the n-electrode pad 6A include a reflection layer on the bottom surface thereof, the light emitted from the active layer 33 is reflected on the bottom surface by the reflection layer on the DBR film 7A side, and further on the device upper side by the DBR film 7A. Therefore, the light extraction efficiency is better than the conventional one.
  • the semiconductor light emitting device 1 of the face-down light emission method of the first embodiment the light emitted from the active layer 33 is reflected by the DBR film 7 on the p-electrode pad 5 and n-electrode pad 6 side, and the device Since the light is emitted from the back surface, the p-electrode pad 5 and the n-electrode pad 6 do not block light.
  • the face-down next-generation semiconductor light emitting device 1 flip chip that emits light downward in the device, the conventional light-emitting diode chip 100 of the face-up light emission method and the face-up light emission of the second embodiment are used.
  • the semiconductor light emitting device 1A of the type Compared with the semiconductor light emitting device 1A of the type, light is not blocked by the p-electrode pads 5 and 5A and the n-electrode pads 6 and 6A, so that the light extraction efficiency can be improved. Further, the p-electrode pad 5A and the n-electrode pad 6A each having a reflective film on the bottom side of the p-electrode pad 5 and the n-electrode pad 6 are used as the face-down type next-generation semiconductor light emitting device of the first embodiment. 1, the light extraction efficiency can be improved only by the amount reflected from the bottom surface of the p-electrode pad 5A and the n-electrode pad 6A toward the back side of the device.
  • the DBR film 7 is adopted for the semiconductor light emitting device 1 of the face-down light emission method
  • the DBR film 7A is adopted for the semiconductor light-emitting device 1A of the face-up light emission method in the second embodiment.
  • the high refractive index film TiO 2 film
  • the present invention is not limited to this, and the high refractive index is applied to the uppermost layer of the DBR films 7 and 7A (reflection film).
  • FIG. 3 is a longitudinal sectional view showing an example of the configuration of the main part of a semiconductor light emitting device constituting a semiconductor laser device according to Embodiment 3 of the present invention.
  • the semiconductor light emitting device 1 ⁇ / b > B constituting the semiconductor laser device as the semiconductor device of Embodiment 3 employs a DBR film 7 ⁇ / b > B whose uppermost layer is a high refractive index film (TiO 2 film) on the side surface of the active layer 133. ing.
  • a light emitting structure 13 is provided on an N-type semiconductor substrate 12.
  • the light emitting structure 13 includes an active layer 133 that emits light between the first conductive semiconductor layer 131 (N-type cladding layer) and the second conductive semiconductor layer 132 (P-type cladding layer).
  • An upper P electrode film 15 is provided on the second conductivity type semiconductor layer 132 (P type clad layer), and a lower N electrode film 16 is provided on the back side of the N type semiconductor substrate 12.
  • DBR films 7B are formed on the four side surfaces of the active layer 133. Of the four side surfaces of the active layer 133, only the laser light emission surface is different in the reflection film configuration of the DBR film 7B and the thickness of the configuration so that the laser light can be easily emitted.
  • a predetermined voltage is applied between the upper P electrode film 15 and the lower N electrode film 16 with the upper P electrode film 15 as a positive electrode and the lower N electrode film 16 as a negative electrode, and a predetermined voltage is applied to the light emitting structure 13.
  • the light emitted from the active layer 133 of the light emitting structure 13 is emitted as laser light from the DBR film 7B on the laser light emitting surface side after resonating between the opposing DBR films 7B in the active layer 133.
  • the TiO 2 film of the high refractive index film is hardly etched with respect to BHF and does not reduce the film, and has acid resistance and water resistance (moisture does not pass inside).
  • the TiO 2 film is used as the final film of the DBR film 7B, the internal SiO 2 film is protected from acid, moisture, and the like by the TiO 2 film.
  • the DBR film 7B is configured such that a plurality of pairs of a low refractive index film of the first material layer and a high refractive index film of the second material layer are repeatedly formed.
  • the multilayer reflective film of the DBR film 7B has a number of layers in the range of 4 to 50 layers.
  • a high refractive index is formed on the low refractive index film (deposited SiO 2 film).
  • a (deposited TiO 2 film) is continuously formed to prevent erosion.
  • a vapor deposition TiO 2 film which is a high refractive index film, is additionally continuously formed at the end of the vapor deposition SiO 2 film, which is originally a low refractive index film that is reduced by acid as the uppermost layer. Since the upper surface of the deposited SiO 2 film in the DBR film 7B is covered with the final deposited TiO 2 film, erosion (thickness reduction), moisture absorption, and cracking of the DBR uppermost layer film in the etching process and cleaning process in the subsequent process Can be prevented.
  • a DBR film 7, 7A or 7B having a high refractive index film (TiO 2 film) formed on the uppermost layer is applied to a light-emitting diode element or a semiconductor laser element as a semiconductor light-emitting element.
  • a metal reflection film 8 such as an Al film is further provided on the DBR film 7, 7A or 7B to further improve the reflection efficiency. May be. This will be described in detail in the following fourth and subsequent embodiments.
  • a high refractive index film (TiO 2 film) is formed on the uppermost layer like the DBR film 7 (reflective film) of the first embodiment, and a metal reflective film is formed on the DBR film 7.
  • a high refractive index film TiO 2 film
  • a metal reflective film is formed on the DBR film 7.
  • the two-layer reflection film structure of the DBR film having a high reflection characteristic and the metal reflection film can be applied to the first to third embodiments to obtain a high reflection characteristic. That is, it is possible to further improve the reflection efficiency by providing a metal reflection film such as an Al film on the DBR film 7, 7A or 7B of the first to third embodiments to form a two-layer reflection film structure.
  • the two-layer reflective film structure of the DBR film 7 and the metal reflective film is applied to the face-down light emission type semiconductor light emitting device 1 of the first embodiment, it is formed on the end of the DBR film 7.
  • the metal reflection which will be described later on the DBR film 7C which will be described later with reference to FIG. 4 in which the end of the DBR film 7 is tapered (slope shape) by vapor deposition by a lift-off process method.
  • the film 8 is formed will be described in detail below.
  • FIG. 4 is a longitudinal sectional view showing a configuration example of a main part of a semiconductor light emitting element of face-down light emission type in Embodiment 4 of the present invention.
  • a semiconductor light emitting element 1C constituting a light emitting diode element as a semiconductor device according to the fourth embodiment is a face-down light emission type next-generation flip chip, and a high refractive index film (TiO 2 film) as the uppermost layer.
  • a metal reflective film 8 such as an Al film on the DBR film 7C.
  • the pattern end of the DBR film 7C is formed in a tapered shape on the light emitting structure 3C and the transparent electrode film 4 of the semiconductor light emitting element 1C of the fourth embodiment by a lift-off process method.
  • the shape of the pattern edge portion (end portion) of the DBR film configuration has a slope shape in which the film thickness is thinner toward the tip side having a cross-sectional taper angle of 15 to 45 degrees.
  • the DBR pattern edge portion formed by the lift-off process is formed into a gentle slope shape having a predetermined taper angle, so that the light emitting structure 3C and the DBR film 7C formed on the transparent electrode film 4 and the light emitting structure thereof are formed. It is possible to prevent the metal reflective film 8 on the body 3 ⁇ / b> C and the transparent electrode film 4 from undergoing a sudden change due to the film thickness and causing a break at the change position of the metal reflective film 8.
  • the two-layer reflection film structure of the DBR film 7C and the metal reflection film 8 of the fourth embodiment can obtain higher reflection characteristics than the conventional single-layer reflection film structure of the DBR film or the metal reflection film. Can do.
  • Plasma cleaning of the underlying film is performed using an ion gun before and during the formation of the DBR film structure of the DBR film 7C.
  • the metal reflective film 8 is formed on the DBR film 7C by metal vapor deposition, pre-deposition surface treatment is performed. This time, the uppermost film of the DBR film 7C is a TiO 2 film, so that plasma or wet etching is used. Resistant to conventional deposition surface treatment.
  • the metal reflection film 8 made of Al material or the like is electrically connected to the light emitting structure 3C and the transparent electrode film 4 through the opening 9 of the DBR film 7C. Further, on the metal reflective film 8 on the opening 9 of the DBR film 7C, electrode portions such as a p-electrode pad 5 and an n-electrode pad 6A (not shown) are formed in a predetermined shape, and this is a metal reflective film.
  • the light emitting structure 3 ⁇ / b> C or the transparent electrode film 4 is electrically connected via 8.
  • the semiconductor light emitting device 1C of the face-down light emission type according to the fourth embodiment which is a method for manufacturing a two-layer reflection film structure of the DBR film 7C and the metal reflection film 8 thereon, will be described in detail.
  • FIG. 5A is a cross-sectional view of a main part for explaining a DBR film photoresist pattern forming step in the semiconductor light emitting device 1C of Embodiment 4, and FIG. 5B is a DBR film deposition in the semiconductor light emitting device 1C.
  • FIG. 5C is a cross-sectional view of a main part for explaining the steps
  • FIG. 5C is a cross-sectional view of a main part for explaining a photo-registry shift-off process in the semiconductor light emitting device 1C
  • FIG. FIG. 5E is a fragmentary cross-sectional view for explaining the metal reflective film deposition step in the semiconductor light emitting device 1C.
  • FIG. 5A is a cross-sectional view of a main part for explaining a DBR film photoresist pattern forming step in the semiconductor light emitting device 1C of Embodiment 4
  • FIG. 5B is a DBR film deposition in the semiconductor light emitting device 1C.
  • FIG. 5C is a cross-
  • a multilayer DBR film 7C having a reflective function is formed using the patterned photoresist 10 as a mask.
  • a multi-layer DBR film is also formed on the photoresist 10.
  • the DBR film 7C is formed by repeatedly forming a plurality of pairs of a deposited SiO 2 film of the first material layer and a deposited TiO 2 film of the second material layer.
  • a vapor deposition TiO 2 film is continuously vapor deposited to prevent erosion as the uppermost layer (CAP layer) of the DBR film 7C.
  • the end portion of the DBR film 7C is formed in a slope shape having a gentle taper angle in which the film thickness becomes thinner toward the end portion. This cross-sectional taper angle is about 15 to 45 degrees.
  • plasma cleaning of the base film is performed using an ion gun before and during the formation of the DBR film 7C.
  • the end portion of the DBR film 7C is formed in a slope shape around the periphery of the photoresist 10 by DBR vapor deposition, and thereafter, FIG.
  • the photoresist 10 is removed as shown in the photo-registry lift-off process of c), a part of the light emitting structure 3C and the transparent electrode film 4 under the photoresist 10 can be exposed.
  • the transparent electrode film 4 and the DBR film 7C are patterned to form a bowl-like cross-sectional shape with a taper on the lower inner side for metal reflective film deposition, thereby forming a photoresist 10A.
  • a surface treatment using a wet process or a plasma irradiation process is performed as a pre-deposition process of the metal reflective film 8.
  • the light emitting structure is formed using the photoresist 10A patterned in a bowl-like cross-sectional shape having a taper inside the lower part for the metal reflective film as a mask.
  • a metal reflective film 8 is deposited on 3C and the transparent electrode film 4 by vapor deposition.
  • the metal reflection film 8 is also formed on the photoresist 10A.
  • the end portion of the DBR film 7C has a slope shape in which the film thickness is thinned, step breakage that occurs in the metal reflective film 8 from the light emitting structure 3C or the transparent electrode film 4 to the DBR film 7C is prevented. be able to.
  • the taper angle 15 to 45 degrees of the DBR film 7C is smaller than the taper angle 60 degrees at which the step breakage may occur, even if the metal reflective film 8 is formed on the slope shape of the DBR film 7C, the step breakage is not caused. Occurrence does not occur.
  • the resist pattern on the entire surface is formed in a cross-sectional shape by a lift-off process, and a slope shape is formed at the tip of the DBR film 7C. Then, the DBR film 7C and its A metal reflective film 8 is formed on the light emitting structure 3C and the transparent electrode film 4 of the underlayer. Thereafter, the photoresist 10A is removed as shown in the photo-registry shift-off process of FIG. In the lift-off process, the photoresist 10, 10A is present when the photoresist 10, 10A is removed after the deposited film is deposited on the underlying layer using the photoresist 10, 10A with a ridge as a mask. The underlying film is exposed.
  • the DBR film forming method uses a plasma cleaning process in which the surfaces of the light emitting structure 3C and the transparent electrode film 4 are plasma-cleaned by using an ion gun, and an ion gun, when ion plasma is used before the DBR film 7C is deposited. And a DBR vapor deposition film forming step of forming a DBR film 7C on the surface of the light emitting structure 3C and the transparent electrode film 4 that have been plasma cleaned. In this way, after removing organic substances, moisture, and other contaminants on the surfaces of the light emitting structure 3C and the transparent electrode film 4 from the surfaces by plasma cleaning, the DBR film 7C is formed on the light emitting structure 3C and the transparent electrode film 4 with each other. Formed on the surface.
  • the manufacturing method of the semiconductor light emitting element 1C constituting the face down light emitting type light emitting diode element as the semiconductor device of the fourth embodiment is such that the resist pattern 10 is formed in a cross-sectional shape and then the DBR film 7C is formed.
  • a slope shape having a cross-section taper angle of 15 to 45 degrees is formed around the edge of the resist pattern 10 by DBR vapor deposition at the end, and a lift-off process is performed to remove the resist pattern 10.
  • an Al film or the like is formed on the DBR film structure and its underlying layer (the light emitting structure 3C and the transparent electrode film 4) by metal film deposition using the lift-off process.
  • the two-layer reflective film structure of the DBR film 7C and the metal reflective film 8 is formed.
  • the light emitted from the active layer of the light emitting structure 3C is all reflected downward by the DBR film 7C and the metal reflective film 8 on the DBR film 7C. Chip) can be manufactured.
  • the high refractive index film (TiO 2 film) is formed as the uppermost layer of the DBR film 7C, and the DBR film 7C itself is acid-resistant and formed by the high refractive index film (TiO 2 film). Has moisture resistance.
  • the uppermost layer originally ends with the SiO 2 film because of the reflection characteristics.
  • the TiO 2 film is continuously added as the high refractive index film.
  • the DBR end portion of the DBR film 7C is formed in a low taper slope shape by vapor deposition using a lift-off process technique.
  • the taper angle of the cross section has a slope shape with a thinner film thickness at the tip side of an angle of 15 to 45 degrees.
  • the upper metal reflective film 8 is formed. No breaks occur in Thereby, a multilayer structure of the DBR pattern and the metal reflective film 8 thereon can be easily formed. As a result, it is possible to obtain a higher reflection characteristic by using the DBR film 7C of the fourth embodiment and the metal reflection film 8 of the double-layer reflection film structure than the conventional DBR film or the single-layer reflection film structure of the metal reflection film. .
  • FIG. 6A is a cross-sectional view of a main part for explaining a DBR film or metal reflective film photoresist pattern forming step in a conventional semiconductor light emitting device
  • FIG. 6B is a DBR film or metal reflective film deposition step
  • FIG. 6C is a fragmentary cross-sectional view for explaining a photo-resistive shift-off process in the semiconductor light emitting device.
  • a resist pattern formed on the entire surface of the light emitting structure 3C and the transparent electrode film 4 is formed in a cross-sectional shape by a lift-off process to form a DBR film.
  • the end of the DBR film or the metal reflective film 14 is formed in a slope shape around the periphery of the photoresist 11 by vapor deposition, and then the photoresist is turned off.
  • the photoresist 11 is removed in the process, the surface of the base film such as the light emitting structure 3C and the transparent electrode film 4 under the photoresist 11 can be exposed.
  • the single-layer reflective film structure of the DBR film or the metal reflective film 14 has been conventionally used. Compared to this, the two-layer reflection film structure of the DBR film 7C and the metal reflection film 8 as in the fourth embodiment can obtain higher reflection characteristics.
  • the end of the DBR film or the metal reflective film 14 is deposited in a slope shape by a lift-off process, but the cross-sectional taper angle is 60 degrees or more, and this is the upper layer.
  • the metal reflective film 8 is formed, the metal reflective film 8 is disconnected.
  • a taper that may cause a step break is generated by setting the slope-shaped cross-section taper angle at the end of the DBR film 7C to an angle of 15 to 45 degrees using a lift-off process. It is shaped more gently than the angle of 60 degrees. As a result, disconnection of the metal reflective film 8 on the upper end of the DBR film 7C can be reliably prevented.
  • the two-layer reflection film structure of the DBR film 7C and the metal reflection film 8 can be easily formed with high quality as in the fourth embodiment, and higher reflection characteristics can be obtained by this two-layer reflection film structure.
  • Can do. (Embodiment 5)
  • a high refractive index film (TiO 2 film) is formed on the uppermost layer of the DBR film 7C (reflective film), and a metal reflective film 8 is formed on the DBR film 7 and the metal reflective film.
  • the DBR film structure of the DBR film is formed by repeatedly forming one or more pairs of vapor-deposited SiO 2 film and vapor-deposited TiO 2 film.
  • the uppermost layer is a deposited SiO 2 film, while the uppermost layer is a high refractive index film (deposited TiO 2 film) to prevent erosion while maintaining high reflectivity.
  • deposited TiO 2 film deposited TiO 2 film
  • FIG. 7 is an enlarged cross-sectional view of the slope-shaped portion at the end of the DBR film 7D in the semiconductor light emitting device 1D according to the fifth embodiment.
  • the deposited SiO 2 film has a thickness of 100 to 600 nm and reaches the tip.
  • the deposited TiO 2 film is formed on the deposited SiO 2 film so as to be thin, and the deposited TiO 2 film is formed in a tapered shape having a film thickness of 30 to 90 nm and becomes thinner at the tip, and the deposited SiO 2 film is formed on the deposited TiO 2 film.
  • the tip is formed in a tapered shape with a thickness of 30 to 90 nm, and the deposited TiO 2 film is formed on the deposited SiO 2 film in a tapered shape with a thickness of 30 to 90 nm and becomes thinner at the tip.
  • depositing SiO 2 film on the TiO 2 film is formed on the thinning tapered as the tip portion at a film thickness of 30 ⁇ 90 nm, as a final layer, it is deposited TiO 2 film on the deposition SiO 2 film 1nm
  • the taper angle of the total is in the 15 to 45 degrees.
  • the DBR film 7D having the reflective film structure is composed of a low refractive index film (deposited SiO 2 film) / high refractive index film (deposited TiO 2 film) / low refractive index film (deposited SiO 2 film).
  • a low refractive index film deposited SiO 2 film
  • high refractive index film deposited TiO 2 film
  • low refractive index film deposited SiO 2 film
  • a low refractive index film pairs one or more repeated high refractive index film as the final layer on the uppermost low refractive index film formed (deposited SiO 2 film) (deposited TiO 2 film ) Is continuously deposited to prevent erosion.
  • a TiO 2 film having a high refractive index film which is superior in moisture resistance and acid resistance than the SiO 2 film and hardly eroded by an etching solution such as HF or BHF is formed on the uppermost layer of the DBR film 7D. is doing. At this time, the TiO 2 film is formed into a thin film (film thickness: 1 to 13 nm) so that the reflectance characteristics are not deteriorated as compared with the conventional film structure.
  • the final film of the DBR film 7D uses a SiO 2 film in order to improve the reflectivity.
  • the fifth embodiment while maintaining the reflectivity, there is acid resistance and water resistance. It is verified whether a TiO 2 film having a high refractive index film can be provided.
  • the film thickness of the additional TiO 2 film of the uppermost layer is 1 to 5 nm (the film thickness of 0 corresponds to the case where there is no additional TiO 2 film), the vertical direction and the tilt direction (angle 15 degrees) ) Both had the best reflectivity of 95% or more. Further, when the thickness of the additional TiO 2 film of the uppermost layer is 5 to 10 nm, the reflectance is good at 92% or more in both the vertical direction and the tilt direction, but the thickness of the TiO 2 film is 1 to 5 nm. The reflectivity was somewhat lower than in the case.
  • the reflectance is good at 90% or more in both the vertical direction and the tilt direction, but when the film thickness of the TiO 2 film is 5 to 10 nm.
  • the reflectivity was slightly lower than that of.
  • the film thickness of the uppermost additional TiO 2 film exceeds 14 nm, the reflectance decreases in both the vertical direction and the tilt direction from 90%, and the film thickness of the uppermost additional TiO 2 film starts from 15 nm. Went down sharply.
  • the reflectance becomes 90% or more.
  • the thickness of the additional TiO 2 film of the uppermost layer is 5 nm, the reflectivity is about 95%, and even when the thickness of the additional TiO 2 film of the uppermost layer is 1 nm, the reflectivity is 95% and there is not much change.
  • the thickness of the additional TiO 2 film is set to about 5 nm ( ⁇ 1 nm) here.
  • the reflectivity can be set to about 95 percent.
  • the film thickness of the uppermost TiO 2 film having the number of DBR6 layers or more is set to about 5 nm ( ⁇ 1 nm), about 88 nm of the next period, and further about 188 nm of the next period, it is highly reflective. Erosion prevention (acid resistance) can be best achieved with the rate maintained.
  • the DBR film structure of the DBR film 7D is formed by repeatedly forming one or more pairs of vapor-deposited SiO 2 film and vapor-deposited TiO 2 film.
  • the upper layer is a vapor-deposited SiO 2 film, and the uppermost layer is a thin film of a high refractive index film (for example, vapor-deposited TiO 2 film) having a film thickness of 1 to 13 nm to prevent erosion while maintaining high reflectivity.
  • the DBR end portion is tapered (slope shape, where the cross-sectional taper angle is 15 to 45 degrees) by vapor deposition film formation by a lift-off process method.
  • a first-layer metal reflection film 8 serving as a metal reflection film and electrode wiring film is provided thereon.
  • a thin film (thickness 1 to 13 nm) of a vapor deposition TiO 2 film having a high refractive index is formed on the uppermost layer of the DBR film 7D, and the DBR film 7D is maintained at a high level while maintaining the required reflectance characteristics. 7D itself has acid resistance and moisture resistance. Further, when the pattern of the DBR film 7D is formed on the device, the DBR end is formed into a low taper slope shape (cross section taper angle of 15 to 45 degrees) by vapor deposition film formation by a lift-off process method. Further, a high reflective property is obtained by forming a metal reflective film 8D on the film without any step.
  • the TiO 2 film is formed as a high refractive index thin film (film thickness: 1 to 13 nm) where the uppermost layer originally ends with the SiO 2 film because of the reflection characteristics.
  • the upper metal reflection film 8D is not stepped. As a result, a multilayer structure of the DBR film 7D and the metal reflective film 8D thereon can be easily formed.
  • the uppermost layer of the DBR film 7D is a thin film of a high refractive index film (deposited TiO 2 film) having a film thickness of 1 to 13 nm, and a metal reflection is formed thereon.
  • a slope shape cross-section taper angle of 15 to 45 degrees
  • the present invention is not limited to this.
  • the metal reflection film 8D is provided on the DBR film 7D or the metal reflection on the DBR film 7D.
  • the uppermost layer of the DBR film of the fifth embodiment is limited to a thin film of a high refractive index film (deposited TiO 2 film) having a film thickness of 1 to 13 nm to maintain high reflectivity. Can do. (Embodiment 6)
  • the case where the uppermost layer of the DBR film 7D is a thin film of a high refractive index film (evaporated TiO 2 film) having a film thickness of 1 to 13 nm will be described.
  • the evaporated TiO 2 film has the smallest film thickness of 5 nm.
  • a two-layer reflection film structure including a DBR film 7E and a metal reflection film 8E having a lower Ni film, and a DBR film are described.
  • a two-layer reflection film structure of 7E and a metal reflection film 8E ′ having no lower Ni film will be described.
  • FIG. 8 shows the reflectance measurement in the case where the reflectance measurement test is performed on each of the two-layer reflective film structures of the DBR film 7E and the metal reflective films 8E and 8E ′ in the semiconductor light emitting devices 1E and 1E ′ of the sixth embodiment. It is a schematic diagram which shows the lamination
  • the sample for the reflectance measurement test of the two-layer reflective film structure in the semiconductor light emitting device 1E of the sixth embodiment is SiO 2 film / TiO 2 film / SiO 2 film / TiO 2 film / on a transparent sapphire substrate.
  • a sample for the reflectance measurement test of the two-layer reflective film structure in the semiconductor light emitting device 1E ′ of the sixth embodiment has a SiO 2 film / TiO 2 film / SiO 2 film / TiO 2 film / SiO 2 on a transparent sapphire substrate. and 2 film / ⁇ ⁇ ⁇ TiO 2 film DBR6 or more layers number of DBR layer 7E, 1st metal reflective layer 8E 'on DBR film 7E and (Ni; stack of 30 ⁇ 100nm; 0nm / Al) Have.
  • the semiconductor light emitting device 1E includes a DBR film 7E and a metal reflective film 8E ′ provided with only a second Al layer without providing a thin Ni film.
  • the film thickness of the uppermost TiO 2 film of the DBR6 layer is 1 to 13 nm, in this case, 5 nm.
  • the reflectance for the measurement wavelength when the film thickness is 88 nm thick curve B
  • the film thickness of the uppermost TiO 2 film is 5 nm of 1 to 13 nm.
  • the reflectance is lowered to 40% or less at a measurement wavelength of 450 nm, but the reflectance is about 40 to 50 percent in a wide range of other measurement wavelengths of 400 to 700 nm.
  • FIG. 9 shows a case where the lower layer Ni film thickness of the first metal reflective film 8E ′ is 0 nm and the uppermost TiO 2 film of the DBR6 layer is 5 nm in the reflectance measurement test of FIG. 8 (curve C). It is a figure which shows the reflectance with respect to the measurement wavelength when it carries out by the film thickness of 88 nm thick one period (curve E).
  • a curve C in the case where the lower layer Ni film thickness of the first metal reflective film 8E ′ is 0 nm and the uppermost TiO 2 film of the DBR6 layer is 5 nm is shown in FIG.
  • the reflectivity of curve E drops to 40%. The percentage has been improved. Therefore, when the thickness of the lower Ni layer of the first metal reflective film is 0 nm and the thickness of the uppermost TiO 2 film of the DBR6 layer is 5 nm, the thickness of the TiO 2 film is one cycle thicker than 88 nm.
  • the reflectance at the measurement wavelength of 600 nm is greatly improved by 52% as compared with the case where the measurement is performed, and the wavelength bandwidth of the reflectance of 90% or more is greatly expanded to 243 nm.
  • FIG. 10 shows the case where the lower layer Ni film thickness of the first metal reflective film 8E is 3 nm and the uppermost TiO 2 film of the DBR6 layer is 5 nm in the reflectance measurement test of FIG. It is a figure which shows the reflectance with respect to the measurement wavelength in the case of carrying out by the thick film thickness of 88 nm (curve F).
  • a curve D in the case where the lower layer Ni film thickness of the first metal reflective film 8E is 3 nm and the uppermost TiO 2 film of the DBR6 layer is 5 nm is shown in FIG.
  • the Ni film thickness of the lower layer of the reflective film is 3 nm and the thickness of the TiO 2 film as the uppermost layer of the DBR6 layer is 1 cycle thick
  • the reflectance of the curve F drops to 27%. The percentage has been improved. Accordingly, when the thickness of the lower Ni layer of the first metal reflective film 8E is 3 nm and the thickness of the uppermost TiO 2 film of the DBR6 layer is 5 nm, the thickness of the TiO 2 film is increased to 88 nm, which is one cycle thicker.
  • the reflectance at the measurement wavelength of 600 nm is greatly improved by 62%, and the wavelength bandwidth of the reflectance of 90% or more is greatly expanded to 177 nm.
  • the thickness of the TiO 2 film as the uppermost layer of the DBR6 layer is approximately equal to 90% or more when the film thickness is 5 nm and the film thickness is 88 nm thick.
  • the DBR film having the uppermost TiO 2 film having a thickness of 5 nm is thicker by one period than the uppermost TiO 2 film.
  • the wavelength bandwidth having a reflectance of 90% or more is wider than that of the 88 nm DBR film, and the wavelength bandwidth having a reflectance of 90% or more of 400 to 600 nm can be secured, and the wavelength bandwidth is excellent.
  • the reflectivity without the metal reflective films 8E and 8E ′ itself is about 50% when the thickness of the uppermost TiO 2 film is 5 nm. If the metal reflection films 8E and 8E ′ are not arranged on the top, high reflectance cannot be secured.
  • Curve C in the case where the thickness of the uppermost TiO 2 film of the DBR6 layer is 5 nm and the lower Ni thickness of the first metal reflective film 8E ′ is 0 nm is, for example, when the measurement wavelength is 450 nm, the uppermost TiO2 layer of the DBR6 layer
  • the reflectance is improved by 3.6% compared to the curve D when the thickness of the two films is 5 nm and the thickness of the lower Ni layer of the first metal reflective film 8E is 3 nm. In short, the reflectance is better when there is no lower Ni film thickness.
  • the curve E shows the TiO2 of the uppermost layer of the DBR6 layer at a measurement wavelength of 450 nm, for example.
  • the reflectance is improved by 3.2% compared to the curve F when the thickness of the two films is 88 nm and the thickness of the lower Ni layer of the first metal reflective film is 3 nm. Also in this case, the reflectance is better when there is no lower Ni film thickness.
  • these curves E and F have a measurement wavelength of 600 nm and reflectivity drops to 27% and 41%.
  • the case where the lower Ni film thickness of the first metal reflective film is 0 nm is the case where the lower Ni film thickness is 3 nm (curves D and F).
  • the reflectance is higher (the measurement wavelength is about 3 to 4 percent at 450 nm), and the wavelength bandwidth with a reflectance of 90 percent or more is also greatly expanded.
  • the reflection characteristic is better when the lower Ni film thickness of the first metal reflective film is not present, but the adhesion between the electrodes of the DBR film 7E and the first metal reflective film 8E is better when the lower Ni film thickness is present.
  • electrode peeling does not occur when there is no lower Ni film thickness, it is more reliable that there is a lower Ni film thickness for electrode adhesion.
  • the following effects can be obtained by reducing the thickness of the TiO 2 film of the sixth DBR layer (uppermost layer) from 88 nm to 5 nm.
  • a drop in reflectance waveform at a wavelength of 600 nm is eliminated. This improved the reflectivity from 27% to 89% when the lower Ni film thickness was 3 nm.
  • the bandwidth of the reflectivity of the TiO 2 film is wider than 88 nm, and the reflectivity of 90% or more is secured in the wavelength band of 415 to 592 nm (when the lower layer Ni film thickness is 3 nm). did it.
  • the thickness value of the lowermost Ni film of the 1st metal reflection film 8E is 3 nm to 0 nm (1st metal reflection film 8E ′).
  • the reflectivity is improved substantially over the entire measurement wavelength region, the reflectivity at a wavelength of 450 nm is improved from 91.9% to 95.5%, and the reflectivity is improved by 3.6% (TiO2 in the DBR layer 6) When the thickness of the two films is 5 nm).
  • the wavelength bandwidth with a reflectance of 90% or more is expanded when the film thickness value of the lowermost layer Ni film is 0 nm than when the film thickness value of the lowermost layer Ni film is 3 nm. For example, when the thickness of the TiO 2 film of the sixth DBR layer is 5 nm, the wavelength band 415 to 592 nm is expanded to the wavelength band 394 to 637 nm.
  • the semiconductor light emitting elements 1, 1A to 1E, 1E ′ and the manufacturing method thereof have been described.
  • the present invention is not limited thereto, and any semiconductor device and manufacturing method thereof may be used.
  • a semiconductor in which any of the DBR films 7, 7A to 7E is formed, and at least one of the first-layer metal reflective films 8, 8D, 8E, 8E ′ is formed thereon is just an apparatus and its manufacturing method.
  • any of the DBR layer 7, 7A ⁇ 7E in the same manner as mentioned above, pairs pair of SiO 2 film of TiO 2 film and a low refractive index film of the high refractive index film on the SiO 2 film of the low refractive index film Alternatively, a TiO 2 film of a high refractive index film is continuously formed as a final film on the SiO 2 film of a low refractive index film formed repeatedly in pairs to prevent erosion.
  • a first-layer metal reflective film corresponding to any one of the metal reflective films 8, 8D, 8E, and 8E ′ is formed thereon.
  • the single-layer reflective film structure of the metal (Al) reflective film is compared with the double-layer reflective film structure of the DBR film 7E and the metal (Al) reflective film.
  • the reflectance with respect to the measurement wavelength can be further improved.
  • FIG. 11 shows a measurement wavelength in a single-layer reflection film structure of a metal reflection film and a two-layer reflection film structure of a DBR film 7E and metal (Al) reflection films 8E and 8E ′ in each semiconductor light emitting device of the sixth embodiment. It is a figure which shows the reflectance profile with respect to.
  • the DBR film 7E and the two-layer reflecting film structures of the metal (Al) reflecting films 8E and 8E ′ are compared with the reflectance of the single-layer reflecting film structure of the metal (Al) reflecting films 8E and 8E ′.
  • the reflectance is higher at a measurement wavelength of about 380 nm to 660 nm, and the bandwidth with a reflectance of 90% or more is wide as 243 nm (394 nm to 637 nm).
  • the DBR film 7E is provided in the base layer of the single-layer reflective film structure of the metal (Al) reflective films 8E and 8E ′, the bandwidth having a reflectivity of 90% or more and a wide reflection of 243 nm (394 nm to 637 nm) is wide.
  • the rate (percent) can be obtained.
  • the photoresist in the lift-off process may be a photoresist film, or the size of the photoresist in plan view may be smaller than its thickness. Includes no shape.
  • the material for the low refractive index film is SiO 2 and the material for the high refractive index film is TiO 2 has been described.
  • the present invention is not limited to this, and the material for the low refractive index film is used.
  • SiO 2 or SiO is used as the material, and any of TiO 2 , Ti 3 O 5 , Ti 2 O 3 , TiO, ZrO 2 , TiO 2 ZrO 2 Nb 2 O 5 , and Al 2 O 3 is used as the material for the high refractive index film. Can be used.
  • the final film is a high refractive index film for preventing erosion in the field of semiconductor devices such as light emitting diode elements having a distributed Bragg reflection film and semiconductor light emitting elements such as semiconductor laser elements, and the manufacturing method thereof. Since the high-refractive index film for protection covers and protects the DBR film structure itself, the DBR film surface is eroded (thickness reduction) by the cleaning process or etching process in the subsequent process, or moisture is absorbed from the DBR film surface. Or the occurrence of cracks on the DBR film surface can be suppressed or prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)

Abstract

後工程の洗浄処理やエッチング処理などでDBR膜表面が浸食(膜厚減少)されたり、DBR膜表面から水分が吸収されたり、DBR膜表面にクラックが発生することを抑制または防止する。 DBR膜7DのDBR膜構造は蒸着SiO膜と蒸着TiO膜が1対または複数対繰り返し形成されるが、本来は高反射率を得るために最上層を蒸着SiO膜としていたものを、高反射率を維持しつつ浸食防止のために最上層を膜厚が1~13nmの高屈折率膜(例えば蒸着TiO膜)の薄膜とすると共に、リフトオフプロセス手法にて蒸着成膜でDBR端部をテーパ形状(スロープ形状でここではテーパ角度が15度~45度)とする。その上に第1層目の金属反射膜8Dが設けられる。

Description

半導体装置およびその製造方法
 本発明は、分布ブラッグ反射膜を持つ発光ダイオード素子や半導体レーザ素子などの半導体発光素子などの半導体装置およびその製造方法に関する。
 この種の従来の半導体発光素子としての発光ダイオードチップの光取出し 効率を改善する研究の一つとして、サファイアのような透明基板の下部面に金属反射膜または分布ブラッグ反射膜(DBR膜;DistributedBragg Reflector)を形成する技術が広く研究されている。
  図12は、特許文献1に開示されている従来の分布ブラッグ反射膜を有する発光ダイオードチップを説明するための断面図である。図13は、図12の分布ブラッグ反射膜を拡大して示した断面図である。
 図12に示すように、従来の発光ダイオードチップ100は、基板101と、基板101の表面側にバッファ層102と、バッファ層102上の発光構造体103と、光構造体103上の透明電極104と、透明電極104の一部上のp-電極パッド105と、光構造体103における第1導電型半導体層103aの一部露出面の一部上に設けられたn-電極パッド106とを有すると共に、基板101の裏面側に分布ブラッグ反射膜107と、分布ブラッグ反射膜107上の反射金属層108と、反射金属層108上の保護層109とを有している。
 基板101は透明基板であれば特に限定されず、例えばサファイアまたはSiC基板であってもよい。基板101はまた、上部面、即ち全面にパターニングされたサファイア基板(PSS)のように、所定の凹凸パターンを有していてもよい。一方、基板101の面積はチップの全体面積を決める。発光ダイオードチップ100の面積が相対的に大きいほど、反射効果が増加する。
 発光構造体103は、第1導電型半導体層103aと、第2導電型半導体層103bと、これらの第1導電型半導体層103aおよび第2導電型半導体層103bの間に配置された活性層103cとを有している。ここで、第1導電型半導体層103aと第2導電型半導体層103bとは互いに反対の導電型を有し、第1導電型がn型で第2導電型がp型であってもよく、またはそれらがその反対であってもよい。
 これらの第1導電型半導体層103a、活性層103cおよび第2導電型半導体層103bは、窒化ガリウム系列の化合物半導体物質、即ち、(Al、In、Ga)Nで形成されていてもよい。活性層103cは、求められる波長の光、例えば、紫外線または青色光を出射するように組成元素および組成比が決められる。第1導電型半導体層103aおよび/または第2導電型半導体層103bは、図示したように、単一層に形成されていてもよいが、多層構造で形成することもできる。また、活性層103cは、単一量子井戸構造または多重量子井戸構造に形成してもよい。また、基板101と第1導電型半導体層103aとの間にバッファ層102を配置しているがこれはなくてもよい。
 半導体層103a~103cはそれぞれ、MOCVD(metal-organicchemical vapor deposition)またはMBE(molecular
beam epitaxy)技術を用いて形成してもよく、フォトリソグラフィおよびエッチング工程を用いて第1導電型半導体層103aの一部領域が露出するようにパターニングしてもよい。
 一方、透明電極層104は、第2導電型半導体層103b上に、例えば、ITOまたはNi/Auで形成されていてもよい。透明電極層104は、第2導電型半導体層103bに比べて比抵抗が低いため、電流をチップ全体に分散させる役割を有している。透明電極層104の一部上にp-電極パッド105が形成され、第1導電型半導体層103aの途中で露出した露出面の一部上にn-電極パッド106が形成されている。p-電極パッド105は、図示するように、透明電極層104を介して第2導電型半導体層103bに電気的に接続されている。
 また、基板101の下部、即ち、基板101の裏面側には分布ブラッグ反射膜107が配設されている。分布ブラッグ反射膜107は、第1分布ブラッグ反射膜111と第2分布ブラッグ反射膜112とを有している。
 図13に示すように、第1分布ブラッグ反射膜111は、第1材料層111aと第2材料層111bとの対が複数対、繰り返して形成され、第2分布ブラッグ反射膜112は、第3材料層112aと第4材料層112bとの対が複数対、繰り返して形成されている。第1材料層111aと第2材料層111bとの複数個の対は、青色波長領域の光に比べて赤色波長領域の光、例えば550nmまたは630nmの光に対する反射率が相対的に高く、第2分布ブラッグ反射膜112は赤色または緑色波長領域の光に比べて青色波長領域の光、例えば460nmの光に対する反射率を相対的に高くしていてもよい。この際、第1分布ブラッグ反射膜111内の材料層111a、111bの光学的膜厚は、第2分布ブラッグ反射膜112内の材料層112a、112bの光学的膜厚より厚いが、これに限定されず、その反対としてもよい。
 第1材料層111aは、第3材料層112aと同一の材料、即ち同一の屈折率を有してもよく、第2材料層111bは、第4材料層112bと同一の材料、即ち同一の屈折率を有していてもよい。例えば、第1材料層111aおよび第3材料層112aはTiO膜(屈折率n:約2.5)で形成されていてもよく、第2材料層111bおよび第4材料層112bはSiO膜(屈折率n:約1.5)で形成されていてもよい。要するに高屈折率の膜と低屈折率の膜とを、ここでは48層だけ繰り返すことにより波長広帯域で高反射率性能を有している。
 一方、第1材料層111aの光学的膜厚(屈折率×厚さ)は、第2材料層111bの光学的膜厚と実質的に整数倍の関係を有し、好ましくは、これらの光学的膜厚は実質的に同一としてもよい。また、第3材料層112aの光学的膜厚は、第4材料層112bの光学的膜厚と実質的に整数倍の関係を有し、好ましくは、これらの光学的膜厚は実質的に同一としてもよい。
 また、第1材料層111aの光学的膜厚を第3材料層112aの光学的膜厚より厚くし、第2材料層111bの光学的膜厚を第4材料層112bの光学的膜厚より厚くしてもよい。第1~第4材料層111a、111b、112a、112bの光学的膜厚は、各材料層の屈折率および/または実際の厚さを調節して制御することができる。
 分布ブラッグ反射膜107の下部には、Al、AgまたはRhなどの反射金属層108と、分布ブラッグ反射膜107を保護するための保護層109とが形成されていてもよい。保護層109は、例えば、Ti、Cr、Ni、Pt、TaおよびAuから選択された何れか一つの金属層またはこれらの合金で形成してもよい。反射金属層108または保護層109は、分布ブラッグ反射膜107を外部の衝撃や汚染から保護することができる。例えば、反射金属層108または保護層109は、発光ダイオードチップ100を発光ダイオードパッケージに実装する際に、接着剤のような物質によって分布ブラッグ反射膜107が変形することを防止することができる。
 また、反射金属層108は、分布ブラッグ反射膜107を透過する光を反射することができるため、分布ブラッグ反射膜107の厚さを相対的に減少させることができる。分布ブラッグ反射膜107は、相対的に高い反射率を示すが、入射角が大きい光に対しては長波長領域の可視光を透過させることがある。したがって、反射金属層108を分布ブラッグ反射膜107の下部に配置することにより、分布ブラッグ反射膜107を透過した光を反射金属層108により反射することができるため、発光利用効率をさらに向上させることができる。
 さらに、第1分布ブラッグ反射膜111を第2分布ブラッグ反射膜112よりも基板101の近くに配置することにより、その逆に配置する場合に比べて、分布ブラッグ反射膜107内での光損失を減少させることができる。
 以上により、活性層103cで発光した光をp-電極パッド105およびn-電極パッド106側の上方向に全て出射させるフェイスアップ光出射方式の従来の半導体発光素子としての発光ダイオードチップ100を得ることができる。
特開2011-166146号公報
 特許文献1に開示されている上記従来の分布ブラッグ反射膜107を持つ発光ダイオードチップ100では、基板101の裏面側に、内部活性層103cを含む発光構造体から出射された光を上側に反射する分布ブラッグ反射膜107(DBR膜)が形成されており、この分布ブラッグ反射膜107上にさらに反射金属層108が形成されている。この分布ブラッグ反射膜107およびその上の反射金属層108により、青色波長、緑色波長および赤色波長光に対して90パーセント以上の反射率を有している。
 ところが、基板101にDBR膜(反射膜)として、SiOとTiOとで交互に積層し、トータル約40層レベル形成(反射率の観点から最終層はSiO)して、波長広帯域で高反射率性能を示すものの、後工程での洗浄処理時の沸酸などがDBR膜表面を浸食(膜厚減少)したり、DBR膜表面から水分を吸収したり、さらにDBR膜表面にクラックが生じたりすると、DBR膜の光学特性が変化してしまうという問題があった。
 本発明は、上記従来の問題を解決するもので、後工程の洗浄処理やエッチング処理などでDBR膜表面が浸食(膜厚減少)されたり、DBR膜表面から水分が吸収されたり、DBR膜表面にクラックが発生することを抑制または防止することができる半導体装置およびその製造方法を提供することを目的とする。
 本発明の半導体装置は、反射膜となるDBR膜構成において、低屈折率膜上に高屈折率膜と該低屈折率膜の対が1対または複数対繰り返し成膜された該低屈折率膜上に最終膜として該高屈折率膜が浸食防止用に連続成膜されているものであり、そのことにより上記目的が達成される。
 また、好ましくは、本発明の半導体装置における低屈折率膜はSiO膜であり、前記高屈折率膜はTiO膜であって、前記最終膜のTiO膜の膜厚を1~13nmとしている。
 さらに、好ましくは、本発明の半導体装置における最終膜のTiO膜の膜厚は1~10または1~5nmである。
 さらに、好ましくは、本発明の半導体装置におけるDBR膜構成のパターンエッジ部の形状が、角度15~45度の断面テーパ角度を有する先端側ほど膜厚が薄いスロープ形状になっている。
 さらに、好ましくは、本発明の半導体装置におけるDBR膜構成の多層の反射膜は4層~50層の範囲内の層数を有する。
 さらに、好ましくは、本発明の半導体装置におけるDBR膜構成(DBR膜)上およびその下地層上に金属膜(金属反射膜)を備える。
 さらに、好ましくは、本発明の半導体装置における金属膜としてAl膜が用いられている。
 さらに、好ましくは、本発明の半導体装置における最終膜の高屈折率膜と前記金属膜との密着層としてNi膜が用いられているかまたは、該最終膜の高屈折率膜上に直に該金属膜が用いられている。
 さらに、好ましくは、本発明の半導体装置において、光波長が400~600nmまでの帯域範囲で、前記DBR膜構成に対して光の垂直方向の反射率が80パーセント以上である。
 本発明の半導体装置の製造方法は、本発明の上記半導体装置を製造する方法であって、レジストパターンを断面庇状に形成した後に、前記DBR膜構成のスロープ形状をDBR蒸着処理により該レジストパターンの庇周囲に形成し、該レジストパターンを除去するリフトオフプロセスを有するものであり、そのことにより上記目的が達成される。
 また、好ましくは、本発明の半導体装置の製造方法におけるDBR膜構成を蒸着形成する前および形成中にイオンガンを用いてプラズマクリーニングおよび前記DBR蒸着処理を行う。
 さらに、好ましくは、本発明の半導体装置の製造方法におけるリフトオフプロセスにて前記DBR膜構成のスロープ形状を形成した後に、更に該リフトオフプロセスを用いて金属膜蒸着で該DBR膜構成およびその下地層上に金属膜を形成する。
 上記構成により、以下、本発明の作用を説明する。
 本発明においては、反射膜となるDBR膜構成において、低屈折率膜上に高屈折率膜と該低屈折率膜の対が1対または複数対繰り返し成膜された該低屈折率膜上に最終膜として該高屈折率膜が浸食防止用に連続成膜されている。
 これによって、最終膜が浸食防止用の高屈折率膜であるので、浸食防止用の高屈折率膜がDBR膜構成自体を覆って内部を保護することから、後工程の洗浄処理やエッチング処理などでDBR膜表面が浸食(膜厚減少)されたり、DBR膜表面から水分が吸収されたり、DBR膜表面にクラックが発生することを抑制または防止することが可能となる。
 また、DBR膜上に金属反射膜を形成する際に、DBR膜平面上でないと蒸着形成し難く、DBR膜のパターンエッジ部での蒸着形成では蒸着膜のカバレッジが悪く、段切れなどを発生させてしまう。これに対して、DBR膜構成のパターンエッジ部(端部)の形状が、角度15~45度の断面テーパ角度を有する先端側ほど膜厚が薄いスロープ形状になっているので、DBR膜のパターンエッジ部(端部)での蒸着膜(金属反射膜)のカバレッジが良好なものとなって段切れの発生が防止される。
 さらに、特許文献1に開示されている従来の半導体発光素子としての発光ダイオードチップ100では、フェイスアップ光出射方式であり、活性層103cで発光した光はp-電極パッド105およびn-電極パッド106で遮られて光出射効率が低下する。これに対して、p-電極パッドおよびn-電極パッド側とは反対側の下方向に全て光を出射させるフェイスダウン方式の次世代型の半導体発光素子(フリップチップ)では、p-電極パッドおよびn-電極パッドで光が遮られることがないので光出射効率の低下を防止することが可能となる。
 以上により、本発明によれば、後工程の洗浄処理やエッチング処理などでDBR膜表面が浸食(膜厚減少)されたり、DBR膜表面から水分が吸収されたり、DBR膜表面にクラックが発生することを抑制または防止することができる。
 また、DBR膜構成のパターンエッジ部の形状が、角度15~45度の断面テーパ角度を有する先端側ほど膜厚が薄いスロープ形状になっているため、DBR膜のパターンエッジ部での蒸着膜のカバレッジが良好なものとなって段切れの発生を防止することができる。
本発明の実施形態1におけるフェイスダウン光出射方式の半導体発光素子の要部構成例を示す縦断面図である。 本発明の実施形態2におけるフェイスアップ光出射方式の半導体発光素子の要部構成例を示す縦断面図である。 本発明の実施形態3における半導体レーザ素子を構成する半導体発光素子の要部構成例を示す縦断面図である。 本発明の実施形態4におけるフェイスダウン光出射方式の半導体発光素子の要部構成例を示す縦断面図である。 (a)は、本実施形態4の半導体発光素子におけるDBR膜用フォトレジストパターン形成工程を説明するための要部断面図、図5(b)はその半導体発光素子におけるDBR膜蒸着工程を説明するための要部断面図、図5(c)はその半導体発光素子におけるフォトレジストリフトオフ工程を説明するための要部断面図、図5(d)は、その半導体発光素子における金属反射膜用フォトレジストパターン形成工程を説明するための要部断面図、図5(e)は、その半導体発光素子における金属反射膜蒸着工程を説明するための要部断面図である。 (a)は、従来の半導体発光素子におけるDBR膜または金属反射膜用フォトレジストパターン形成工程を説明するための要部断面図、(b)はそのDBR膜または金属反射膜蒸着工程を説明するための要部断面図、(c)は、その半導体発光素子におけるフォトレジストリフトオフ工程を説明するための要部断面図である。 本実施形態5の半導体発光素子におけるDBR膜の端部のスロープ形状部の拡大断面図である。 本実施形態6の各半導体発光素子におけるDBR膜と各金属反射膜の各2層反射膜構造で反射率の測定試験を行う場合の反射率測定試験用サンプルの積層状態を示す模式図である。 図8の反射率測定試験において1st金属反射膜の下層Ni膜厚が0nmでDBR6層の最上層のTiO膜の膜厚を5nmで行う場合(曲線C)と、その1周期厚い膜厚88nmで行う場合(曲線E)の測定波長に対する反射率を示す図である。 図8の反射率測定試験において1st金属反射膜の下層Ni膜厚が3nmでDBR6層の最上層のTiO膜の膜厚を5nmで行う場合(曲線D)とその1周期厚い膜厚88nmで行う場合(曲線F)の測定波長に対する反射率を示す図である。 金属反射膜の単層反射膜構造と、本実施形態6の各半導体発光素子におけるDBR膜および金属反射膜の2層反射膜構造とにおいて、測定波長に対する反射率プロファイルを示す図である。 特許文献1に開示されている従来の分布ブラッグ反射膜を有する発光ダイオードチップを説明するための断面図である。 図12の分布ブラッグ反射膜を拡大して示した断面図である。
 1、1A~1E、1E’ 半導体発光素子
 2 透明な絶縁体基板
 3、3C、3D 発光構造体
 31 第1導電型半導体層31(N型クラッド層)
 32 第2導電型半導体層32(P型クラッド層)
 33 活性層
 4 透明電極膜
 5、5A p-電極パッド
 6、6A n-電極パッド
 7、7A~7E DBR膜
 8、8D、8E,8E’ 金属反射膜(例えば金属(Al)反射膜)
 9 DBR膜の開口部
 10 DBR膜用のフォトレジスト
 10A、11 金属反射膜用のフォトレジスト
 12 N型半導体基板
 13 発光構造体
 131 第1導電型半導体層131(N型クラッド層)
 132 第2導電型半導体層132(P型クラッド層)
 133 活性層
 14 DBR膜または金属反射膜
 15 上部P電極膜
 16 下部N電極膜
 以下に、本発明の半導体装置およびその製造方法を半導体発光素子およびその製造方法の実施形態1~6に適用した場合について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。
(実施形態1)
 図1は、本発明の実施形態1におけるフェイスダウン光出射方式の半導体発光素子の要部構成例を示す縦断面図である。
 図1において、本実施形態1の半導体装置としての発光ダイオード素子を構成する半導体発光素子1は、フェイスダウン光出射方式の次世代型のフリップチップに分布ブラッグ反射膜として、最上層を高屈折率膜(TiO膜)としたDBR膜7(反射膜構成)を採用している。
 本実施形態1の半導体発光素子1は、例えばサファイアなどの透明な絶縁体基板2上に発光構造体3が設けられている。発光構造体3は第1導電型半導体層31(N型クラッド層)と第2導電型半導体層32(P型クラッド層)との間に発光する活性層33が設けられている。発光構造体3の表面部は凹凸に構成されており、凸側の平坦部表面にはITO膜からなる透明電極膜4が設けられている。この透明電極膜4の一部表面上にはp-電極パッド5が設けられ、発光構造体3における第1導電型半導体層31の一部露出面(凹部)の一部上にはn-電極パッド6が設けられている。これらのp-電極パッド5を除く透明電極膜4上、透明電極膜4上から第1導電型半導体層31の一部露出面に至る側面上および、n-電極パッド6以外の第1導電型半導体層31の一部露出面上に、分布ブラッグ反射膜を構成する反射膜構成のDBR膜7が形成されている。
 これらのp-電極パッド5およびn-電極パッド6間に、p-電極パッド5を+極としn-電極パッド6を-極として、所定電圧が印加されて発光構造体3に所定電圧が印加され、発光構造体3の活性層33で発光した光は、活性層33から透明な絶縁体基板2を透過して基板裏面側から発光Aとして出射すると共に、活性層33からDBR膜7で反射して透明な絶縁体基板2を透過して基板裏面側から反射光Bとして出射して略全ての発光が透明な絶縁体基板2の裏面から下方に出射される。
 ここで、本実施形態1において、高屈折率膜(TiO膜)は、BHFに対して殆どエッチングされずに膜減りせず、耐酸性および耐水性(水分を内部に通さない)があるため、TiO膜をDBR膜7の最終膜として用いると、TiO膜により内部のSiO膜が酸や水分などから保護される。
 DBR膜7の膜構成は、第1材料層の低屈折率膜と第2材料層の高屈折率膜との対が複数対、繰り返して形成されている。低屈折率膜(蒸着SiO膜)/高屈折率膜(蒸着TiO膜)/低屈折率膜(蒸着SiO膜)のように、低屈折率膜(蒸着SiO膜)上に高屈折率膜(蒸着TiO膜)と低屈折率膜(蒸着SiO膜)の対が1対または複数対繰り返し成膜された最も上の低屈折率膜(蒸着SiO膜)上に更に最終膜として高屈折率膜(蒸着TiO膜)が浸食防止用に連続成膜されている。これは、4層~50層の範囲内の層数を有している。
 したがって、本実施形態1によれば、フェイスダウン光出射方式の半導体発光素子1の反射膜となるDBR膜7の膜構成において、低屈折率膜(蒸着SiO膜)上に高屈折率膜(蒸着TiO膜)と低屈折率膜(蒸着SiO膜)の対が1対または複数対繰り返し成膜された低屈折率膜(蒸着SiO膜)上に最終膜として高屈折率膜(蒸着TiO膜)が浸食防止用(内部保護用)に連続成膜されている。
 要するに、本来は最上層として、酸で膜減りする低屈折率膜の蒸着SiO2膜で終わりであるところを、高屈折率膜である蒸着TiO膜を追加連続成膜する。最終膜の蒸着TiO膜でDBR膜7の蒸着SiO2膜の上面を覆うので、後工程でのエッチング加工や洗浄処理などにおけるDBR最上層膜の浸食(膜厚減少)や水分吸収およびクラックを防止することができる。
 なお、本実施形態1では、フェイスダウン光出射方式の半導体発光素子1として次世代型のフリップチップにDBR膜7を採用し、DBR膜7の最上層に高屈折率膜(TiO膜)を形成した場合について説明したが、これに限らず、DBR膜7の最上層に高屈折率膜(TiO膜)を形成したDBR膜構成は、フェイスアップ光出射方式の半導体発光素子にも適用することができる。これについて次の実施形態2で詳細に説明する。
(実施形態2)
 図2は、本発明の実施形態2におけるフェイスアップ光出射方式の半導体発光素子の要部構成例を示す縦断面図である。
 図2において、本実施形態2の半導体装置としての発光ダイオード素子を構成する半導体発光素子1Aは、フェイスアップ光出射方式の半導体チップとして、最上層を高屈折率膜(TiO膜)としたDBR膜7Aを基板裏側に採用している。
 本実施形態1の半導体発光素子1Aは、例えばサファイアなどの透明な絶縁体基板2上に発光構造体3が設けられている。発光構造体3は第1導電型半導体層31(N型クラッド層)と第2導電型半導体層32(P型クラッド層)との間に発光する活性層33が設けられている。発光構造体3の表面部は凹凸に構成されており、凸側の平坦部表面にはITO膜からなる透明電極膜4が設けられている。この透明電極膜4の一部表面上には底面に反射層を含んだp-電極パッド5Aが設けられ、発光構造体3における第1導電型半導体層31の一部露出面の一部上には、底面に反射層を含んだn-電極パッド6Aが設けられている。透明な絶縁体基板2の裏面側には、DBR膜7Aが形成されている。
 これらのp-電極パッド5Aとn-電極パッド6A間に、p-電極パッド5Aを+極としn-電極パッド6Aを-極として、所定電圧が印加されて発光構造体3に所定電圧が印加され、発光構造体3の活性層33で発光した光は、活性層33から透明電極膜4を透過して表面側から発光Aとして出射すると共に、活性層33からの光は透明な絶縁体基板2の裏面のDBR膜7Aで反射して基板表面側から反射光Bとして出射する。それ以外の光はp-電極パッド5Aおよびn-電極パッド6Aの各底面の反射層によりDBR膜7A側に反射して略全ての活性層33の発光が基板表面側から上方に出射される。
 ここで、本実施形態2において、高屈折率膜のTiO膜は、BHFに対して殆どエッチングされずに膜減りせず、耐酸性および耐水性(水分を内部に通さない)があるため、TiO膜をDBR膜7Aの最終膜として用いると、TiO膜により内部のSiO膜が酸や水分などから保護される。
 DBR膜7Aの膜構成は、第1材料層の低屈折率膜と第2材料層の高屈折率膜との対が複数対、繰り返して形成されている。低屈折率膜(蒸着SiO膜)/高屈折率膜(蒸着TiO膜)/低屈折率膜(蒸着SiO膜)のように、低屈折率膜(蒸着SiO膜)上に高屈折率膜(蒸着TiO膜)と低屈折率膜(蒸着SiO膜)の対が1対または複数対繰り返し成膜された最も上の低屈折率膜(蒸着SiO膜)上に更に最終膜として高屈折率膜(蒸着TiO膜)が浸食防止用に連続成膜されている。DBR膜7Aの多層反射膜は4層~50層の範囲内の層数を有している。
 したがって、本実施形態2によれば、フェイスアップ光出射方式の半導体発光素子1AにおけるDBR膜7Aの膜構成において、低屈折率膜(蒸着SiO膜)上に高屈折率膜(蒸着TiO膜)と低屈折率膜(蒸着SiO膜)の対が1対または複数対繰り返し成膜された低屈折率膜(蒸着SiO膜)上に最終膜として高屈折率膜(蒸着TiO膜)が浸食防止用に連続成膜されている。
 要するに、本来は最上層として酸で膜減りする低屈折率膜の蒸着SiO2膜で終わりであるところを、高屈折率膜である蒸着TiO膜を追加連続成膜する。最終膜の蒸着TiO膜でDBR膜7A内の蒸着SiO2膜の上面を覆うので、後工程でのエッチング加工や洗浄処理などにおけるDBR最上層膜の浸食(膜厚減少)や水分吸収およびクラックを防止することができる。
 一方、上記従来のフェイスアップ光出射方式の半導体発光素子としての従来の発光ダイオードチップ100では、活性層103cで発光した光はp-電極パッド105およびn-電極パッド106で遮られて光取出し効率が低下する。これに対して、本実施形態2のフェイスアップ光出射方式の半導体発光素子1Aにおいても、活性層33で発光した光は、p-電極パッド5Aおよびn-電極パッド6Aで遮られるものの、p-電極パッド5Aおよびn-電極パッド6Aはその底面に反射層を含んでいるので、活性層33で発光した光はその底面に反射層でDBR膜7A側に反射し、さらにDBR膜7Aでデバイス上側に反射してデバイス表面から出射されるので、光取出し効率は上記従来のものよりもよい。
 また、上記実施形態1のフェイスダウン光出射方式の半導体発光素子1では、活性層33で発光した光は、p-電極パッド5とn-電極パッド6側にあるDBR膜7により反射してデバイス裏面から出射するので、p-電極パッド5およびn-電極パッド6で光が遮られることはない。デバイスの下方向に全て光出射させるフェイスダウン方式の次世代型の半導体発光素子1(フリップチップ)では、フェイスアップ光出射方式の上記従来の発光ダイオードチップ100や本実施形態2のフェイスアップ光出射方式の半導体発光素子1Aに比べてp-電極パッド5,5Aおよびn-電極パッド6,6Aで光が遮られることがないので光取出し効率を向上させることができる。さらに、p-電極パッド5とn-電極パッド6の底面側に反射膜を有したp-電極パッド5Aとn-電極パッド6Aを上記実施形態1のフェイスダウン方式の次世代型の半導体発光素子1に用いれば、p-電極パッド5Aとn-電極パッド6Aの底面でデバイス裏面側に反射する分だけでも光取出し効率を向上させることができる。
 なお、上記実施形態1でフェイスダウン光出射方式の半導体発光素子1にDBR膜7を採用し、本実施形態2でフェイスアップ光出射方式の半導体発光素子1AにDBR膜7Aを採用して、DBR膜7、7A(反射膜)の最上層に高屈折率膜(TiO膜)を形成した場合について説明したが、これらに限らず、DBR膜7、7A(反射膜)の最上層に高屈折率膜(TiO膜)を形成したDBR膜構成は、半導体発光素子として、上記実施形態1,2の発光ダイオード素子の他に、半導体レーザ素子に対しても適用することができる。これについて次の実施形態3で詳細に説明する。
(実施形態3)
 図3は、本発明の実施形態3における半導体レーザ素子を構成する半導体発光素子の要部構成例を示す縦断面図である。
 図3において、本実施形態3の半導体装置として半導体レーザ素子を構成する半導体発光素子1Bは、最上層を高屈折率膜(TiO膜)としたDBR膜7Bを活性層133の側面に採用している。
 本実施形態3の半導体発光素子1Bは、N型半導体基板12上に発光構造体13が設けられている。発光構造体13は第1導電型半導体層131(N型クラッド層)と第2導電型半導体層132(P型クラッド層)との間に発光する活性層133が設けられている。第2導電型半導体層132(P型クラッド層)上には上部P電極膜15が設けられ、N型半導体基板12の裏面側には下部N電極膜16が設けられている。活性層133の4側面には、DBR膜7Bが形成されている。なお、その活性層133の4側面のうち、レーザ光出射面のみDBR膜7Bの反射膜構成およびその構成膜厚がレーザ光が出射し易いように異なっている。
 これらの上部P電極膜15と下部N電極膜16間に、上部P電極膜15を+極とし下部N電極膜16を-極として、所定電圧が印加されて発光構造体13に所定電圧が印加されて、発光構造体13の活性層133で発光した光は、活性層133内の対向DBR膜7B間で共振した後にレーザ光出射面側のDBR膜7Bからレーザ光として出射される。
 ここで、本実施形態3において、高屈折率膜のTiO膜は、BHFに対して殆どエッチングされずに膜減りせず、耐酸性および耐水性(水分を内部に通さない)があるため、TiO膜をDBR膜7Bの最終膜として用いると、TiO膜により内部のSiO膜が酸や水分などから保護される。
 DBR膜7Bの膜構成は、第1材料層の低屈折率膜と第2材料層の高屈折率膜との対が複数対、繰り返して形成されている。低屈折率膜(蒸着SiO膜)/高屈折率膜(蒸着TiO膜)/低屈折率膜(蒸着SiO膜)のように、低屈折率膜(蒸着SiO膜)上に高屈折率膜(蒸着TiO膜)と低屈折率膜(蒸着SiO膜)の対が1対または複数対繰り返し成膜された最も上の低屈折率膜(蒸着SiO膜)上に更に最終膜として高屈折率膜(蒸着TiO膜)が浸食防止用に連続成膜されている。DBR膜7Bの多層反射膜は4層~50層の範囲内の層数を有している。
 したがって、本実施形態3によれば、半導体レーザ素子を構成する半導体発光素子1Bの活性層133の側面におけるDBR膜7Bの膜構成において、低屈折率膜(蒸着SiO膜)上に高屈折率膜(蒸着TiO膜)と低屈折率膜(蒸着SiO膜)の対が1対または複数対繰り返し成膜された低屈折率膜(蒸着SiO膜)上に最終膜として高屈折率膜(蒸着TiO膜)が浸食防止用に連続成膜されている。
 要するに、本来は最上層として酸で膜減りする低屈折率膜の蒸着SiO2膜で終わりであるところを、高屈折率膜である蒸着TiO膜を追加連続成膜する。最終膜の蒸着TiO膜でDBR膜7B内の蒸着SiO2膜の上面を覆うので、後工程でのエッチング加工や洗浄処理などにおけるDBR最上層膜の浸食(膜厚減少)や水分吸収およびクラックを防止することができる。
 なお、上記実施形態1~3では、半導体発光素子としての発光ダイオード素子や半導体レーザ素子に、最上層に高屈折率膜(TiO膜)を形成したDBR膜7,7Aまたは7Bを耐水および耐酸(浸食防止)用に適用した場合について説明したが、これに限らず、DBR膜7,7Aまたは7B上にさらにAl膜などの後述する金属反射膜8を設けて反射効率を更に向上させるようにしてもよい。これについて次の実施形態4以降で詳細に説明する。
(実施形態4)
 本記実施形態4では、上記実施形態1のDBR膜7(反射膜)のように最上層に高屈折率膜(TiO膜)を形成すると共に、DBR膜7上に金属反射膜を形成するDBR膜7と金属反射膜との2層反射膜構造により高反射特性を得る場合について説明する。
 この高反射特性を持つDBR膜と金属反射膜との2層反射膜構造は、前述したように、上記実施形態1~3に適用できて高反射特性を得ることができる。即ち、上記実施形態1~3のDBR膜7,7Aまたは7B上にさらにAl膜などの金属反射膜を設けて2層反射膜構造として反射効率を更に向上させることができる。
 ここでは、特に、上記実施形態1のフェイスダウン光出射方式の半導体発光素子1に、DBR膜7と金属反射膜との2層反射膜構造を適用する際に、DBR膜7の端部上の金属反射膜の段切れを防止するために、リフトオフプロセス手法にて蒸着成膜でDBR膜7の端部をテーパ形状(スロープ形状)とした図4で後述するDBR膜7C上に後述する金属反射膜8を形成する場合について以下に詳細に説明する。
 図4は、本発明の実施形態4におけるフェイスダウン光出射方式の半導体発光素子の要部構成例を示す縦断面図である。
 図4において、本実施形態4の半導体装置としての発光ダイオード素子を構成する半導体発光素子1Cは、フェイスダウン光出射方式の次世代型のフリップチップに、最上層に高屈折率膜(TiO膜)を用いたDBR膜7Cおよびその上にAl膜などの金属反射膜8を採用している。
 本実施形態4の半導体発光素子1Cの発光構造体3Cおよび透明電極膜4上に、リフトオフプロセス手法にてDBR膜7Cのパターン端部をテーパ形状に形成している。この場合、DBR膜構成のパターンエッジ部(端部)の形状が、角度15~45度の断面テーパ角度を有する先端側ほど膜厚が薄いスロープ形状になっている。
 このように、リフトオフプロセスによるDBRパターンエッジ部を所定のテーパ角度を持つ緩やかなスロープ形状にすることにより、発光構造体3Cおよび透明電極膜4上に形成されたDBR膜7C上および、その発光構造体3Cおよび透明電極膜4上の金属反射膜8に膜厚による急激な変化がなくなって金属反射膜8の変化位置で段切れを起こすことを防止することができる。
 このように、従来のDBR膜または金属反射膜の単層反射膜構造よりも本実施形態4のDBR膜7Cと金属反射膜8との2層反射膜構造にした方が高反射特性を得ることができる。
 DBR膜7CのDBR膜構成を蒸着形成する前および形成中にイオンガンを用いて下地膜(発光構造体3Cおよび透明電極膜4)のプラズマクリーニングを行う。
 DBR膜7C上にメタル蒸着により金属反射膜8を形成する際に、蒸着表面前処理を実施するが、今回、DBR膜7Cの最上膜をTiO膜にしたことにより、プラズマやウェットエッチングを用いた蒸着表面処理に対して耐性がある。
 Al材料などで構成する金属反射膜8はDBR膜7Cの開口部9を介して発光構造体3Cや透明電極膜4に電気的に接続されている。さらに、DBR膜7Cの開口部9上の金属反射膜8上には、ここでは図示しないp-電極パッド5およびn-電極パッド6Aなどの電極部が所定形状に形成されて、これが金属反射膜8を介して発光構造体3Cまたは透明電極膜4に電気的に接続されている。
 以下、本実施形態4のフェイスダウン光出射方式の半導体発光素子1Cの製造方法であって、DBR膜7Cとその上の金属反射膜8の2層反射膜構造の製造方法について詳細に説明する。
 図5(a)は、本実施形態4の半導体発光素子1CにおけるDBR膜用フォトレジストパターン形成工程を説明するための要部断面図、図5(b)はその半導体発光素子1CにおけるDBR膜蒸着工程を説明するための要部断面図、図5(c)はその半導体発光素子1Cにおけるフォトレジストリフトオフ工程を説明するための要部断面図、図5(d)は、その半導体発光素子1Cにおける金属反射膜用フォトレジストパターン形成工程を説明するための要部断面図、図5(e)は、その半導体発光素子1Cにおける金属反射膜蒸着工程を説明するための要部断面図である。
 まず、図5(a)のDBR膜用フォトレジストパターン形成工程に示すように、発光構造体3Cおよび透明電極膜4上にフォトレジストを全面に塗布した後に、これをDBR膜7Cの蒸着用に、下部内側にテーパが付いた庇状の断面形状に形成するようにパターニングする。
 次に、図5(b)のDBR膜蒸着工程に示すように、このパターニングされたフォトレジスト10をマスクとして、反射機能を持つ多層膜のDBR膜7Cを形成する。このとき、フォトレジスト10上にも多層膜のDBR膜が形成されてしまう。DBR膜7Cは、第1材料層の蒸着SiO膜と第2材料層の蒸着TiO膜との対が複数対、繰り返して形成される。この場合、DBR膜7Cの最上層(CAP層)として蒸着TiO膜を侵食防止用に連続的に蒸着成膜する。このとき、DBR膜7Cの端部分が、端部ほど膜厚が薄くなった緩やかなテーパ角度を持つスロープ形状に形成される。この断面テーパ角度は角度15~45度程度とする。
 なお、DBR膜7Cを蒸着形成する前および形成中にイオンガンを用いて下地膜(発光構造体3Cおよび透明電極膜4)のプラズマクリーニングを行う。
 このように、リフトオフプロセスにより、全面のレジストパターンを断面庇状に形成した後に、DBR膜7Cの端部をスロープ形状にDBR蒸着処理によりフォトレジスト10の庇周囲に形成し、その後、図5(c)のフォトレジストリフトオフ工程に示すように、フォトレジスト10を除去すると、そのフォトレジスト10下の発光構造体3Cや透明電極膜4の一部を露出させることができる。
 次に、発光構造体3C、透明電極膜4およびDBR膜7C上の全面にフォトレジストを塗布した後に、図5(d)の金属反射膜用のパターニング用のフォトリソグラフィー工程に示すように、この塗布したフォトレジストを金属反射膜蒸着用に下部内側にテーパが付いた庇状の断面形状に形成するようにパターニングしてフォトレジスト10Aを形成する。その後、金属反射膜8の蒸着前プロセスとしてウエットプロセスやプラズマ照射プロセスを用いた表面処理を行う。
 続いて、図5(e)の金属反射膜蒸着工程に示すように、金属反射膜用に下部内側にテーパが付いた庇状の断面形状にパターニングされたフォトレジスト10Aをマスクとして、発光構造体3Cおよび透明電極膜4上に金属反射膜8が蒸着成膜される。
 このとき、フォトレジスト10A上にも金属反射膜8が形成されてしまう。この場合、DBR膜7Cの端部ほど膜厚が薄くなったスロープ形状であるため、発光構造体3Cまたは透明電極膜4上からDBR膜7C上への金属反射膜8に生じる段切れを防止することができる。
 DBR膜7Cのテーパ角度15~45度は、段切れが発生する可能性があるテーパ角度60度よりも小さいので、DBR膜7Cのスロープ形状上に金属反射膜8を形成しても段切れの発生は起こらない。
 このように、リフトオフプロセスにより、全面のレジストパターンを断面庇状に形成して、DBR膜7Cの先端部にスロープ形状を形成した後に、更にリフトオフプロセスを用いて金属膜蒸着でDBR膜7Cおよびその下地層の発光構造体3Cおよび透明電極膜4上に金属反射膜8を形成している。その後、図4のフォトレジストリフトオフ工程に示すようにフォトレジスト10Aを除去する。なお、リフトオフプロセスとは、下地層上に、庇を付けたフォトレジスト10,10Aをマスクとして蒸着膜を蒸着した後にフォトレジスト10,10Aを取り去ると、そのフォトレジスト10,10Aが存在していた下地膜上が露出される。
 ここで、リフトオフプロセス手法を用いたDBR膜7Cを蒸着形成する前および形成中にイオンガンを用いてプラズマクリーニングおよびDBR蒸着処理を行う製造方法について更に説明する。
 DBR膜成膜方法は、DBR膜7Cを蒸着形成する前にイオンプラズマを用いる場合として、発光構造体3Cおよび透明電極膜4の表面をイオンガンを用いてプラズマクリーニングするプラズマクリーニング工程と、イオンガンを用いてプラズマクリーニングした発光構造体3Cおよび透明電極膜4の表面に対してDBR膜7Cを形成するDBR蒸着膜形成工程とを有している。このように、プラズマクリーニングにより発光構造体3Cおよび透明電極膜4の表面上の有機物、水分、その他の汚染物質をその表面から除去した後に、DBR膜7Cが発光構造体3Cおよび透明電極膜4の表面上に形成される。
 以上のように、本実施形態4の半導体装置としてフェイスダウン光出射方式の発光ダイオード素子を構成する半導体発光素子1Cの製造方法は、レジストパターン10を断面庇状に形成した後に、DBR膜7Cの端部に断面テーパ角度15~45度のスロープ形状をDBR蒸着処理によりレジストパターン10の庇周囲に形成し、レジストパターン10を除去するリフトオフプロセスを有している。さらに、リフトオフプロセスにてDBR膜7Cのスロープ形状を形成した後に、更にリフトオフプロセスを用いて金属膜蒸着でDBR膜構成およびその下地層(発光構造体3Cおよび透明電極膜4)上にAl膜などの金属反射膜8を形成してDBR膜7Cと金属反射膜8の2層反射膜構造とする。
 このようにして、発光構造体3Cの活性層で発光した光が、DBR膜7Cおよびその上の金属反射膜8により下方向に全て反射するフェイスダウン方式の次世代型の半導体発光素子1C(フリップチップ)を製造することができる。
 以上により、本実施形態4によれば、DBR膜7Cの最上層として高屈折率膜(TiO膜)を形成し、高屈折率膜(TiO膜)によりDBR膜7C自体に耐酸性おおよび耐湿性を持たしている。
 このように、DBR膜7Cの成膜構造において、反射特性の関係から本来は最上層がSiO膜で終わりであるところ、前述したように、高屈折率膜としてTiO膜の連続追加成膜(Cap_TiO成膜)とすることにより、後工程でのエッチング加工や洗浄処理などにおけるDBR最上層の浸食(膜厚減少)、水分吸収およびクラックを防止することができる。
 また、デバイス上にDBR膜7C(反射膜)のパターンを形成する際に、リフトオフプロセス手法による蒸着成膜によりDBR膜7CのDBR端部を低テーパなスロープ形状に形成している。この場合の断面テーパ角度は、角度15~45度の先端側ほど膜厚が薄いスロープ形状になっている。
 このように、リフトオフプロセスによるDBR膜7Cのパターンエッジ(端部)を、断面テーパ角度が15~45度の所定の緩やかなテーパ角を持つスロープ形状にすることにより、その上層の金属反射膜8において段切れを起こさない。これによって、DBRパターンとその上の金属反射膜8との多層構造が容易に形成可能となる。これによって、従来のDBR膜または金属反射膜の単層反射膜構造よりも本実施形態4のDBR膜7Cと金属反射膜8の2層反射膜構造にした方が高反射特性を得ることができる。
 図6(a)は、従来の半導体発光素子におけるDBR膜または金属反射膜用フォトレジストパターン形成工程を説明するための要部断面図、図6(b)はそのDBR膜または金属反射膜蒸着工程を説明するための要部断面図、図6(c)は、その半導体発光素子におけるフォトレジストリフトオフ工程を説明するための要部断面図である。
 図6(a)~図6(c)に示すように、リフトオフプロセスにより、発光構造体3Cおよび透明電極膜4の表面上の全面に成膜したレジストパターンを断面庇状に形成してDBR膜または金属反射膜用のフォトレジスト11とした後に、これをマスクとして、DBR膜または金属反射膜14の端部をスロープ形状に蒸着処理によりフォトレジスト11の庇周囲に形成し、その後、フォトレジストリフトオフ工程で、フォトレジスト11を除去すると、そのフォトレジスト11下の発光構造体3Cや透明電極膜4などの下地膜表面を露出させることができる。このように、従来は、DBR膜または金属反射膜14の単層反射膜構造であった。これに比べて、本実施形態4のようにDBR膜7Cと金属反射膜8との2層反射膜構造の方が高反射特性を得ることができる。
 また、従来は、リフトオフプロセスによりDBR膜または金属反射膜14の端部をスロープ形状に蒸着成膜していたが、その断面テーパ角度は角度が60度以上になっており、これではその上層に金属反射膜8を成膜する場合には金属反射膜8が段切れを起こしてしまう。これに対して、本実施形態4では、リフトオフプロセスを用いてDBR膜7Cの端部におけるスロープ形状の断面テーパ角度を角度15~45度にすることにより、段切れが発生する可能性があるテーパ角度60度よりも緩やかに形状している。これによって、DBR膜7Cの端部上層の金属反射膜8の段切れを確実に防止することができる。したがって、本実施形態4のようにDBR膜7Cと金属反射膜8との2層反射膜構造を品質高く容易に形成することができてこの2層反射膜構造によって、より高い反射特性を得ることができる。
(実施形態5)
 上記実施形態4では、DBR膜7C(反射膜)の最上層に高屈折率膜(TiO膜)を形成すると共に、DBR膜7上に金属反射膜8を形成するDBR膜7と金属反射膜8との2層反射膜構造により高反射特性を得る場合について説明したが、本実施形態5では、DBR膜のDBR膜構造は蒸着SiO膜と蒸着TiO膜が1対または複数対繰り返し形成されるが、本来は高反射率を得るために最上層を蒸着SiO膜としていたものを、高反射率を維持しつつ浸食防止のために最上層の高屈折率膜(蒸着TiO膜)の膜厚を1~13nmの薄膜に限定する場合について説明する。
 図7は、本実施形態5の半導体発光素子1DにおけるDBR膜7Dの端部のスロープ形状部の拡大断面図である。
 図7に示すように、本実施形態5の半導体発光素子1Dにおいて、発光構造体3Dおよび透明電極膜4上に、DBR膜7Dとして、蒸着SiO膜が100~600nmの膜厚で先端部ほど薄くなるテーパ形状に形成され、その蒸着SiO膜上に蒸着TiO膜が30~90nmの膜厚で先端部ほど薄くなるテーパ形状に形成され、その蒸着TiO膜上に蒸着SiO膜が30~90nmの膜厚で先端部ほど薄くなるテーパ形状に形成され、その蒸着SiO膜上に蒸着TiO膜が30~90nmの膜厚で先端部ほど薄くなるテーパ形状に形成され、その蒸着TiO膜上に蒸着SiO膜が30~90nmの膜厚で先端部ほど薄くなるテーパ形状に形成され、最終膜として、その蒸着SiO膜上に蒸着TiO膜が1nm~13nmの所定の薄い膜厚で先端部ほど薄くなるテーパ形状に形成されて、トータルのテーパ角度が15~45度になっている。
 このように、反射膜構成のDBR膜7Dは、低屈折率膜(蒸着SiO膜)/高屈折率膜(蒸着TiO膜)/低屈折率膜(蒸着SiO膜)の高屈折率膜(蒸着TiO膜)
と低屈折率膜(蒸着SiO膜)の対が一または複数繰り返し成膜された最も上の低屈折率膜(蒸着SiO膜)上に最終膜として更に高屈折率膜(蒸着TiO膜)が浸食防止用に連続蒸着成膜されている。
 DBR膜7Dの構成について、SiO膜よりも耐湿性および&耐酸性に優れ、HFやBHFなどのエッチング液に浸食されにくい高屈折率膜のTiO膜を DBR膜7Dの最上層に成膜している。その際に、従来の膜構成に比べて反射率特性が劣化しないようにTiO膜を薄膜(膜厚が1~13nm)に成膜にしている。
 従来は、DBR膜7Dの最終膜は反射率をよくするためにSiO膜を用いていたが、本実施形態5では、反射率を維持した状態で、その上に耐酸性や耐水性がある高屈折率膜のどの程度の膜厚のTiO膜を持ってくることができるかどうかについて検証する。
 即ち、DBR膜7DのSiO膜/TiO膜/SiO膜/TiO膜/SiO膜の5層またはこれ以上の膜厚は従来の膜厚から変化させずに、その上にTiO膜を追加して6層またはそれ以上の層数とする場合、反射率が変化しない追加のTiO膜の膜厚について検証した。
 この検証結果として、最上層の追加のTiO膜の膜厚が1~5nmの場合(膜厚0は追加のTiO膜がない場合に相当)、これは垂直方向および傾斜方向(角度15度)共に反射率が95パーセント以上で最も良好であった。また、最上層の追加のTiO膜の膜厚が5~10nmの場合には垂直方向および傾斜方向共に反射率が92パーセント以上で良好であるが、TiO膜の膜厚が1~5nmの場合に比べて反射率が多少低下していた。さらに、最上層の追加のTiO膜の膜厚が10~13nmの場合に垂直方向および傾斜方向共に反射率が90パーセント以上で良好であるが、TiO膜の膜厚が5~10nmの場合に比べて反射率が更に多少低下していた。さらに、最上層の追加のTiO膜の膜厚が14nmを超えると、垂直方向および傾斜方向共に反射率が90パーセントよりも下がり、最上層の追加のTiO膜の膜厚が15nmから反射率が急激に下がって行った。
 したがって、良好な反射率を得るために、最上層の追加のTiO膜の膜厚範囲を1~13nmとすると、反射率が90パーセント以上になる。最上層の追加のTiO膜の膜厚が5nmでは反射率が95パーセント程度で、最上層の追加のTiO膜の膜厚が1nmであっても反射率が95パーセントであまり変化がない。このことからも、ここでは、追加のTiO膜の膜厚を5nm程度(±1nm)としている。TiO膜の膜厚を5nm程度、次の周期の88nm程度、更に次の周期の188nm程度に設定すれば反射率が95パーセント程度に設定することができる。TiO膜の膜厚は厚いほど光を吸収するので最も薄い膜厚5nmが最もよく、次に薄い膜厚88nm程度がよいことになる。いずれにせよ、DBR6層またはそれ以上の層数の最上層のTiO膜の膜厚を5nm程度(±1nm)、次の周期の88nm程度、更に次の周期の188nm程度に設定すると、高反射率を維持した状態で浸食防止(耐酸性)を最も良く実現することができる。
 以上により、本実施形態5によれば、DBR膜7DのDBR膜構造は蒸着SiO膜と蒸着TiO膜が1対または複数対繰り返し形成されるが、本来は高反射率を得るために最上層を蒸着SiO膜としていたものを、高反射率を維持しつつ浸食防止のために最上層を膜厚が1~13nmの高屈折率膜(例えば蒸着TiO膜)の薄膜とするすると共に、リフトオフプロセス手法にて蒸着成膜でDBR端部をテーパ形状(スロープ形状でここでは断面テーパ角度が15~45度)とする。その上にメタル反射膜兼電極配線膜である第1層目の金属反射膜8が設けられている。
 要するに、DBR膜7Dの最上層に高屈折率な蒸着TiO膜の薄膜(膜厚1~13nm)を形成し、DBR膜7Dの必要とする反射率特性を高レベルで保持しつつ、DBR膜7D自体に耐酸性および耐湿性を持たしている。また、デバイス上にDBR膜7Dのパターンを形成する際に、リフトオフプロセス手法にて、蒸着成膜でDBR端部を低テーパなスロープ形状(断面テーパ角度15~45度)にしている。さらにこの上に金属反射膜8Dを段切れなく成膜して高反射特性を得ている。
 このように、DBR膜7Dの成膜構造において、反射特性の関係から本来は最上層がSiO膜で終わりであるところ、高屈折率な薄膜(膜厚が1~13nm)としてTiO膜を成膜することで、本来のDBR膜7Dの光学特性(反射率)を高レベルで保持しつつ、後工程でのエッチング加工や洗浄処理などにおけるDBR最上層膜の浸食(膜厚減少)や水分吸収およびクラックを防止することができる。
 また、リフトオフプロセスによるDBR膜7Dのパターンエッジ(端部)を断面角度15~45度のテーパ角を持つ緩やかなスロープ形状にすることにより、その上層の金属反射膜8Dに段切れが起こらない。これによって、DBR膜7Dとその上の金属反射膜8Dとの多層構造が容易に形成可能となる。
 なお、上記実施形態5では、高反射率とするためにDBR膜7Dの最上層を膜厚が1~13nmの高屈折率膜(蒸着TiO膜)の薄膜とすると共に、その上に金属反射膜8Dを段切れを起こすことがないように最上のTiO膜の端部にスロープ形状(断面テーパ角度15~45度)を形成する場合について説明したが、これに限らず、上記実施形態1の他の上記実施形態2,3のように最上のTiO膜の端部にスロープ形状がない場合であって、DBR膜7D上に金属反射膜8Dを設ける場合またはDBR膜7D上に金属反射膜8Dを設けない場合にも、上記実施形態5のDBR膜の最上層を膜厚が1~13nmの高屈折率膜(蒸着TiO膜)の薄膜に限定して高反射率を維持することができる。
(実施形態6)
 上記実施形態5では、DBR膜7Dの最上層を膜厚が1~13nmの高屈折率膜(蒸着TiO膜)の薄膜とする場合について説明し、蒸着TiO膜の膜厚が最も薄い5nm程度がよく、次に厚い次周期の88nm程度がよいことを説明したが、本実施形態6では、DBR膜7Eと下層Ni膜を持つ金属反射膜8Eとの2層反射膜構造および、DBR膜7Eと下層Ni膜を持たない金属反射膜8E’との2層反射膜構造について説明する。
 以下、1st金属反射膜8E、8E’の下層Ni膜の有無と、DBR膜7Eの最上層の蒸着TiO膜の膜厚1~13nmとその次の周期の厚い膜厚との4条件を組み合わせた場合の測定波長に対する反射率についてさらに詳細に比較して説明する。
 図8は、本実施形態6の各半導体発光素子1E,1E’におけるDBR膜7Eと各金属反射膜8E、8E’の各2層反射膜構造で反射率の測定試験を行う場合の反射率測定試験用サンプルの積層状態を示す模式図である。
 図8において、本実施形態6の半導体発光素子1Eにおける2層反射膜構造の反射率測定試験用のサンプルは、透明サファイヤ基板上にSiO膜/TiO膜/SiO膜/TiO膜/SiO膜/・・・TiO膜のDBR6層またはそれ以上の層数のDBR膜7Eと、DBR膜7E上に1st金属反射膜8E(Ni;1~10nm(ここでは3nm)とを有している。
 また、本実施形態6の半導体発光素子1E’における2層反射膜構造の反射率測定試験用のサンプルは、透明サファイヤ基板上にSiO膜/TiO膜/SiO膜/TiO膜/SiO膜/・・・TiO膜のDBR6層またはそれ以上の層数のDBR膜7Eと、DBR膜7E上に1st金属反射膜8E’(Ni;0nm/Al;30~100nmの積層)とを有している。
 これらの透明サファイヤ基板の裏面側から入射角度5度の光を入射させてDBR膜7Eと金属反射膜8E、DBR膜7Eと金属反射膜8E’で反射させた場合の測定波長に対する反射率を反射率測定器(分光光度計)にて測定した。
 このように、半導体発光素子1Eでは、DBR膜7Eと金属反射膜8Eとの密着性をよくするために薄いNi膜を金属反射膜8Eの第1層として設けている。また、半導体発光素子1E’では、DBR膜7Eと、薄いNi膜を設けず、第2層のAl層だけを設けた金属反射膜8E’とを有している。
 その反射率測定の前に、DBR膜7E上に金属反射膜8Eが存在しない場合(DBR処理後)の例えばDBR6層の最上層のTiO膜の膜厚を1~13nmのうち、ここでは5nmとした場合(曲線A)と、その1周期厚い膜厚88nmとした場合(曲線B)との測定波長に対する反射率において、最上層のTiO膜の膜厚を1~13nmのうちの5nmとした場合(曲線A)では、測定波長が450nmで反射率が40パーセント以下に低下しているものの、それ以外の測定波長が400~700nmの広い範囲で反射率が40~50パーセント程度であるのに対して、最上層のTiO膜の膜厚を5nmの1周期厚い膜厚88nmとした場合(曲線B)では、測定波長が450~550nmの狭い範囲で反射率が70~80パーセントであるものの、測定波長が700nm前後で反射率が10パーセント以下に大きく低下している。
 図9は、図8の反射率測定試験において1st金属反射膜8E’の下層Ni膜厚が0nmでDBR6層の最上層のTiO膜の膜厚を5nmで行う場合(曲線C)と、その1周期厚い膜厚88nmで行う場合(曲線E)の測定波長に対する反射率を示す図である。
 図9に示すように、1st金属反射膜8E’の下層Ni膜厚が0nmでDBR6層の最上層のTiO膜の膜厚を5nmで行う場合の曲線Cは、測定波長が600nmにおいて、1st金属反射膜の下層Ni膜厚が0nmでDBR6層の最上層のTiO膜の膜厚をその1周期厚い膜厚88nmで行う場合の曲線Eの反射率が40パーセントまで落ち込んでいるところ、93パーセントまで改善されている。したがって、1st金属反射膜の下層Ni膜厚が0nmでDBR6層の最上層のTiO膜の膜厚を薄い5nmで行う場合の方がそのTiO膜の膜厚を1周期厚い膜厚88nmで行う場合よりも測定波長が600nmでの反射率が52パーセントも大幅に改善されて反射率90パーセント以上の波長帯域幅も243nmと大幅に広がっている。
 図10は、図8の反射率測定試験において1st金属反射膜8Eの下層Ni膜厚が3nmでDBR6層の最上層のTiO膜の膜厚を5nmで行う場合(曲線D)とその1周期厚い膜厚88nmで行う場合(曲線F)の測定波長に対する反射率を示す図である。
 図10に示すように、1st金属反射膜8Eの下層Ni膜厚が3nmでDBR6層の最上層のTiO膜の膜厚を5nmで行う場合の曲線Dは、測定波長が600nmにおいて、1st金属反射膜の下層Ni膜厚が3nmでDBR6層の最上層のTiO膜の膜厚をその1周期厚い膜厚88nmで行う場合の曲線Fの反射率が27パーセントまでの落ち込んでいるところ、89パーセントまで改善されている。したがって、1st金属反射膜8Eの下層Ni膜厚が3nmでDBR6層の最上層のTiO膜の膜厚を薄い5nmで行う場合の方がそのTiO膜の膜厚を1周期厚い88nmで行う場合よりも測定波長が600nmでの反射率が62パーセントも大幅に改善されて反射率90パーセント以上の波長帯域幅も177nmと大幅に広がっている。また、測定波長が450nmでの反射率については、DBR6層の最上層のTiO膜の膜厚を5nmとその1周期厚い膜厚88nmとで90パーセント以上で略同等である。
 図9および図10の測定波長に対する反射率の測定結果から、最上層のTiO膜の膜厚を5nmのDBR膜の方が、最上層のTiO膜の膜厚をその1周期厚い膜厚88nmのDBR膜よりも反射率90パーセント以上の波長帯域幅が広く、400~600nmの反射率90パーセント以上の波長帯域幅を確保することができて波長帯域幅で優れている。当然、図8でも説明した通り、金属反射膜8E、8E’自体がない場合の反射率は、最上層のTiO膜の膜厚を5nmの場合に50パーセント程度であることから、DBR膜7E上に金属反射膜8E、8E’が配置されていなければ高い反射率を確保することはできない。
 DBR6層の最上層のTiO膜の膜厚を5nmで1st金属反射膜8E’の下層Ni膜厚が0nmで行う場合の曲線Cは、測定波長が例えば450nmにおいて、DBR6層の最上層のTiO膜の膜厚を5nmで1st金属反射膜8Eの下層Ni膜厚が3nmで行う場合の曲線Dに比べて反射率が3.6パーセント改善されている。要するに、下層Ni膜厚がない方が反射率がよい。
 また、DBR6層の最上層のTiO膜の膜厚を88nmで1st金属反射膜の下層Ni膜厚が0nmで行う場合の曲線Eは、測定波長が例えば450nmにおいて、DBR6層の最上層のTiO膜の膜厚を88nmで1st金属反射膜の下層Ni膜厚が3nmで行う場合の曲線Fに比べて反射率が3.2パーセントも改善されている。この場合も、下層Ni膜厚がない方が反射率がよい。また、前述したが、これらの曲線E、Fは、測定波長が600nmで反射率が27パーセント、41パーセントまで落ち込んでいる。
 この測定波長に対する反射率の測定結果から、1st金属反射膜の下層Ni膜厚が0nmで行う場合(曲線C、E)の方が、下層Ni膜厚が3nmで行う場合(曲線D、F)よりも反射率が高く(測定波長が450nmで3~4パーセント程度)、しかも、反射率90パーセント以上の波長帯域幅も大幅に広がっている。
 したがって、1st金属反射膜の下層Ni膜厚がない場合の方が反射特性はよいが、下層Ni膜厚がある方がDBR膜7Eと1st金属反射膜8Eの電極の密着性が良好である。下層Ni膜厚がない場合に電極剥がれが発生するわけではないが、電極の密着性に関しては下層Ni膜厚が有る方が信頼性が良い。
 以上により、本実施形態6によれば、DBR6層目(最上層)のTiO膜の膜厚値を88nmから5nmへ薄膜化することにより、以下の効果が得られる。
(1)波長600nmでの反射率波形の落ち込みがなくなった。これは下層Ni膜厚が3nmで反射率27パーセントから89パーセントに向上した。
(2)TiO膜の膜厚が88nmよりも高反射率の帯域幅が広がり、波長415~592nm(下層Ni膜厚が3nmの場合)の帯域で90パーセント以上の反射率を確保することができた。
 次に、1st金属反射膜8Eの最下層Ni膜の膜厚値を3nmから0nm(1st金属反射膜8E’)にすることにより、以下の効果が得られる。
(1)略測定波長領域全体で反射率が向上し、波長450nmでの反射率は91.9パーセントから95.5パーセントに向上し、反射率は3.6パーセント向上した(DBR6層目のTiO膜の膜厚が5nmの場合)。
(2)反射率が90パーセント以上の波長帯域幅は、最下層Ni膜の膜厚値が3nmの場合よりも最下層Ni膜の膜厚値が0nmの場合の方が拡張されている。例えばDBR6層目のTiO膜の膜厚が5nmの場合で、波長帯域415~592nmが波長帯域394~637nmへと拡張されている。
 なお、上記実施形態1~6では、半導体発光素子1、1A~1E、1E’およびその製造方法について説明してきたが、これに限らず、半導体装置およびその製造方法であればよい。要するに、この場合にも、上記DBR膜7、7A~7Eのいずれかが形成され、その上に少なくとも第1層目の金属反射膜8、8D、8E,8E’のいずれかが形成された半導体装置およびその製造方法であればよい。上記DBR膜7、7A~7Eのいずれかは、上記と同様に、低屈折率膜のSiO膜上に高屈折率膜のTiO膜と低屈折率膜のSiO膜の対が1対または複数対繰り返し成膜された低屈折率膜のSiO膜上に最終膜として高屈折率膜のTiO膜が浸食防止用に連続成膜されている。その上に上記金属反射膜8、8D、8E,8E’のいずれかに対応した第1層目の金属反射膜が形成されている。
 なお、上記実施形態6では、特に説明しなかったが、金属(Al)反射膜の単層反射膜構造と、上記DBR膜7Eおよび金属(Al)反射膜の2層反射膜構造とを比較して、金属(Al)反射膜の単層反射膜構造の下に上記DBR膜7Eを設けることにより、測定波長に対する反射率をより向上させることができる。
 図11は、金属反射膜の単層反射膜構造と、本実施形態6の各半導体発光素子におけるDBR膜7Eおよび金属(Al)反射膜8E,8E’の2層反射膜構造とにおいて、測定波長に対する反射率プロファイルを示す図である。
 図11に示すように、金属(Al)反射膜8E,8E’の単層反射膜構造の反射率に比べてDBR膜7Eおよび金属(Al)反射膜8E、8E’の各2層反射膜構造の反射率の方が測定波長約380nm~660nmで高くなっており、反射率90パーセント以上の帯域幅が243nm(394nm~637nm)と広くなっている。したがって、金属(Al)反射膜8E,8E’の単層反射膜構造の下地層に上記DBR膜7Eを設ければ、反射率90パーセント以上の帯域幅が243nm(394nm~637nm)と広い高反射率(パーセント)を得ることができる。
 なお、上記実施形態4では、特に説明しなかったが、リフトオフプロセスのフォトレジストは、フォトレジスト膜であってもよいし、フォトレジストの平面視形状のサイズがその厚さよりも小さく膜とは言えない形状をも含んでいる。
 なお、上記実施形態1~6では、低屈折率膜の材料がSiOであり、高屈折率膜の材料がTiOである場合について説明したが、これに限らず、低屈折率膜の材料としてSiOまたはSiOを用い、高屈折率膜の材料としてTiO,Ti,Ti,TiO,ZrO,TiOZrONb,Alのいずれかを用いることができる。
 以上のように、本発明の好ましい実施形態1~6を用いて本発明を例示してきたが、本発明は、この実施形態1~6に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1~6の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本発明は、分布ブラッグ反射膜を持つ発光ダイオード素子や半導体レーザ素子などの半導体発光素子などの半導体装置およびその製造方法の分野において、最終膜が浸食防止用の高屈折率膜であるので、浸食防止用の高屈折率膜がDBR膜構成自体を覆って保護することから、後工程の洗浄処理やエッチング処理などでDBR膜表面が浸食(膜厚減少)されたり、DBR膜表面から水分が吸収されたり、DBR膜表面にクラックが発生することを抑制または防止することができる。

Claims (5)

  1.  反射膜となるDBR膜構成において、低屈折率膜上に高屈折率膜と該低屈折率膜の対が1対または複数対繰り返し成膜された該低屈折率膜上に最終膜として該高屈折率膜が浸食防止用に連続成膜されている半導体装置。
  2.  前記低屈折率膜はSiO膜であり、前記高屈折率膜はTiO膜であって、前記最終膜のTiO膜の膜厚を1~13nmとした請求項1に記載の半導体装置。
  3.  前記DBR膜構成のパターンエッジ部の形状が、角度15~45度の断面テーパ角度を有する先端側ほど膜厚が薄いスロープ形状になっている請求項1に記載の半導体装置。
  4.  前記DBR膜構成上およびその下地層上に金属膜を備える請求項1から3のいずれかに記載の半導体装置。
  5.  請求項3に記載の半導体装置を製造する方法であって、レジストパターンを断面庇状に形成した後に、前記DBR膜構成のスロープ形状をDBR蒸着処理により該レジストパターンの庇周囲に形成し、該レジストパターンを除去するリフトオフプロセスを有する半導体装置の製造方法。
PCT/JP2013/007193 2013-02-07 2013-12-06 半導体装置およびその製造方法 WO2014122709A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014560540A JP5989810B2 (ja) 2013-02-07 2013-12-06 半導体装置およびその製造方法
US14/761,713 US9705044B2 (en) 2013-02-07 2013-12-06 Semiconductor device and method for manufacturing same
CN201380072345.1A CN104969365B (zh) 2013-02-07 2013-12-06 半导体发光元件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-022736 2013-02-07
JP2013022736 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014122709A1 true WO2014122709A1 (ja) 2014-08-14

Family

ID=51299325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007193 WO2014122709A1 (ja) 2013-02-07 2013-12-06 半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US9705044B2 (ja)
JP (1) JP5989810B2 (ja)
CN (1) CN104969365B (ja)
WO (1) WO2014122709A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047768A (zh) * 2015-06-01 2015-11-11 合肥彩虹蓝光科技有限公司 一种新型高亮pss的制备方法
JP2017135348A (ja) * 2016-01-29 2017-08-03 日亜化学工業株式会社 発光素子及びその製造方法
CN107086224A (zh) * 2016-02-12 2017-08-22 唯亚威解决方案股份有限公司 制造传感器装置
JP2018010958A (ja) * 2016-07-13 2018-01-18 日亜化学工業株式会社 発光装置およびその製造方法、ならびに表示装置
JP2021082782A (ja) * 2019-11-22 2021-05-27 株式会社リコー 面発光レーザ素子、面発光レーザ、面発光レーザ装置、光源装置及び検出装置
JP2022540011A (ja) * 2019-06-27 2022-09-14 ルミレッズ リミテッド ライアビリティ カンパニー 光分解を低減したledのdbr構造
CN115064937A (zh) * 2022-06-08 2022-09-16 北京大学 一种微曲面dbr及其制备方法和应用
JP7410261B1 (ja) 2022-12-08 2024-01-09 日機装株式会社 半導体発光素子および半導体発光素子の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102471102B1 (ko) * 2015-10-23 2022-11-25 서울바이오시스 주식회사 분포 브래그 반사기를 가지는 발광 다이오드 칩
KR102673595B1 (ko) 2017-02-14 2024-06-12 삼성전자주식회사 Led 장치 및 그 제조 방법
CN108172673B (zh) * 2018-01-31 2023-10-13 江苏新广联科技股份有限公司 用于led倒装芯片的分布式布拉格反射镜图形的制作方法和结构
KR102443027B1 (ko) 2018-03-02 2022-09-14 삼성전자주식회사 반도체 발광소자
WO2019171869A1 (ja) * 2018-03-07 2019-09-12 ソニーセミコンダクタソリューションズ株式会社 面発光レーザ
DE102018107667A1 (de) * 2018-03-15 2019-09-19 Osram Opto Semiconductors Gmbh Optoelektronischer halbleiterchip
US11799058B2 (en) 2018-03-15 2023-10-24 Osram Oled Gmbh Optoelectronic semiconductor chip
EP3920245A4 (en) * 2019-01-31 2022-11-02 Seoul Viosys Co., Ltd LED
CN111312874B (zh) * 2020-03-18 2024-06-25 佛山市国星半导体技术有限公司 一种抗水解led芯片及其制作方法、抗水解led器件
CN112787210B (zh) * 2020-12-31 2022-05-27 厦门三安光电有限公司 一种激光二极管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620165A (en) * 1979-07-25 1981-02-25 Chiyou Lsi Gijutsu Kenkyu Kumiai Formation of pattern
JPS6053028A (ja) * 1983-09-02 1985-03-26 Hitachi Ltd 微細パタ−ン形成方法
JPH09236859A (ja) * 1996-02-28 1997-09-09 Canon Inc ファインダー内表示装置
JP2009164423A (ja) * 2008-01-08 2009-07-23 Nichia Corp 発光素子
JP2012511252A (ja) * 2008-12-08 2012-05-17 クリー インコーポレイテッド 複合高反射性層

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239386A (ja) * 1990-02-16 1991-10-24 Nec Corp 面発光半導体レーザ
JP2005166881A (ja) * 2003-12-02 2005-06-23 Victor Co Of Japan Ltd 窒化物半導体レーザ素子
US8247302B2 (en) 2008-12-04 2012-08-21 Micron Technology, Inc. Methods of fabricating substrates
JP2010171182A (ja) * 2009-01-22 2010-08-05 Sanyo Electric Co Ltd 多波長半導体レーザ装置
JP5326677B2 (ja) * 2009-03-09 2013-10-30 ソニー株式会社 半導体レーザおよびその製造方法
JP5855344B2 (ja) 2010-02-12 2016-02-09 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. 分布ブラッグ反射器を有する発光ダイオードチップ及びその製造方法
CN102668135B (zh) * 2010-06-24 2016-08-17 首尔伟傲世有限公司 发光二极管
WO2013157179A1 (ja) 2012-04-19 2013-10-24 シャープ株式会社 半導体装置の製造方法、耐熱シート、基板裏面膜形成時の基板表面保護方法および半導体基板の保持方法
WO2013161146A1 (ja) 2012-04-26 2013-10-31 シャープ株式会社 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620165A (en) * 1979-07-25 1981-02-25 Chiyou Lsi Gijutsu Kenkyu Kumiai Formation of pattern
JPS6053028A (ja) * 1983-09-02 1985-03-26 Hitachi Ltd 微細パタ−ン形成方法
JPH09236859A (ja) * 1996-02-28 1997-09-09 Canon Inc ファインダー内表示装置
JP2009164423A (ja) * 2008-01-08 2009-07-23 Nichia Corp 発光素子
JP2012511252A (ja) * 2008-12-08 2012-05-17 クリー インコーポレイテッド 複合高反射性層

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047768A (zh) * 2015-06-01 2015-11-11 合肥彩虹蓝光科技有限公司 一种新型高亮pss的制备方法
JP2017135348A (ja) * 2016-01-29 2017-08-03 日亜化学工業株式会社 発光素子及びその製造方法
CN107086224A (zh) * 2016-02-12 2017-08-22 唯亚威解决方案股份有限公司 制造传感器装置
JP2017168822A (ja) * 2016-02-12 2017-09-21 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. センサデバイスの製造方法
JP2018010958A (ja) * 2016-07-13 2018-01-18 日亜化学工業株式会社 発光装置およびその製造方法、ならびに表示装置
JP2022540011A (ja) * 2019-06-27 2022-09-14 ルミレッズ リミテッド ライアビリティ カンパニー 光分解を低減したledのdbr構造
JP7164737B2 (ja) 2019-06-27 2022-11-01 ルミレッズ リミテッド ライアビリティ カンパニー 光分解を低減したledのdbr構造
US11901702B2 (en) 2019-06-27 2024-02-13 Lumileds Llc LED DBR structure with reduced photodegradation
JP7507828B2 (ja) 2019-06-27 2024-06-28 ルミレッズ リミテッド ライアビリティ カンパニー 光分解を低減したledのdbr構造
JP2021082782A (ja) * 2019-11-22 2021-05-27 株式会社リコー 面発光レーザ素子、面発光レーザ、面発光レーザ装置、光源装置及び検出装置
JP7367484B2 (ja) 2019-11-22 2023-10-24 株式会社リコー 面発光レーザ素子、面発光レーザ、面発光レーザ装置、光源装置及び検出装置
CN115064937A (zh) * 2022-06-08 2022-09-16 北京大学 一种微曲面dbr及其制备方法和应用
CN115064937B (zh) * 2022-06-08 2023-01-24 北京大学 一种微曲面dbr及其制备方法和应用
JP7410261B1 (ja) 2022-12-08 2024-01-09 日機装株式会社 半導体発光素子および半導体発光素子の製造方法

Also Published As

Publication number Publication date
JP5989810B2 (ja) 2016-09-07
US20150357525A1 (en) 2015-12-10
JPWO2014122709A1 (ja) 2017-01-26
US9705044B2 (en) 2017-07-11
CN104969365B (zh) 2017-12-26
CN104969365A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5989810B2 (ja) 半導体装置およびその製造方法
KR102641239B1 (ko) 발광 다이오드, 그것을 제조하는 방법 및 그것을 갖는 발광 소자 모듈
EP2362453B1 (en) Light emitting diode chip having distributed Bragg reflector and light emitting diode package having distributed Bragg reflector
JP5633477B2 (ja) 発光素子
JP2018113442A (ja) 電流遮断層を有する発光素子
JP5929714B2 (ja) 半導体発光素子
JP5541261B2 (ja) Iii族窒化物半導体発光素子
CN111446336A (zh) 发光二极管
JP6087096B2 (ja) 半導体発光素子及びその製造方法
US8772790B2 (en) Nitride semiconductor light-emitting element, nitride semiconductor light-emitting device, and method of manufacturing nitride semiconductor light-emitting element
US20230268466A1 (en) Light emitting diode device
JP5855344B2 (ja) 分布ブラッグ反射器を有する発光ダイオードチップ及びその製造方法
JP6176025B2 (ja) 金属膜の形成方法及び発光素子の製造方法
KR102562063B1 (ko) 발광 다이오드
KR20110117964A (ko) 반도체 발광 소자
US20220140203A1 (en) Flip-chip light-emitting diode
JP5378131B2 (ja) 窒化物半導体発光ダイオード素子
JP6252123B2 (ja) 発光素子の製造方法
KR101604092B1 (ko) 반도체 발광소자
KR101928309B1 (ko) 반도체 발광소자의 제조 방법
JP5404808B2 (ja) 発光素子
KR101205437B1 (ko) 반도체 발광 소자
JP2011071340A (ja) 発光素子
JP7453588B2 (ja) 垂直共振器面発光レーザ素子
CN113903840B (zh) 发光二极管及发光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14761713

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014560540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874446

Country of ref document: EP

Kind code of ref document: A1