WO2014121970A1 - Akkumulatorzelle und akkumulatormodul - Google Patents

Akkumulatorzelle und akkumulatormodul Download PDF

Info

Publication number
WO2014121970A1
WO2014121970A1 PCT/EP2014/050317 EP2014050317W WO2014121970A1 WO 2014121970 A1 WO2014121970 A1 WO 2014121970A1 EP 2014050317 W EP2014050317 W EP 2014050317W WO 2014121970 A1 WO2014121970 A1 WO 2014121970A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceiling
accumulator
module
electrical
electrical connection
Prior art date
Application number
PCT/EP2014/050317
Other languages
English (en)
French (fr)
Inventor
Markus Kohlberger
Johannes BIEDERT
Original Assignee
Robert Bosch Gmbh
Samsung Sdi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Samsung Sdi Co., Ltd. filed Critical Robert Bosch Gmbh
Priority to CN201480007692.0A priority Critical patent/CN104969382B/zh
Publication of WO2014121970A1 publication Critical patent/WO2014121970A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/278Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Such accumulators are usually formed by an amalgamation of a plurality of accumulator modules connected in series.
  • Accumulator module usually has several series connected
  • Each battery cell comprises a cell housing and an electrochemical cell arranged in the cell housing.
  • electrical connection poles are arranged, via the electrical energy from the
  • Accumulator cells are formed, for example, from an aluminum material or a copper material.
  • the electrical connection poles can be made of the same material or of different materials.
  • the cell housing of an accumulator cell is usually cuboid and has a rectangular and elongated ceiling in a plan view, which closes the cell housing upwards.
  • the ceiling of the cell housing two openings are formed through which project the electrical terminal poles of the battery cell.
  • the ceiling is generally formed symmetrically, which means that the distance between an opening and the short side closest to this opening is equal to the distance between the other opening and the short transverse side closest to this other opening.
  • the electrical tric terminal pole is a positive electrical connection pole or a negative electrical connection pole.
  • Such a distinction between the electrical connection poles is particularly difficult if the electrical connection poles are formed from the same material and thus have the same color. In this respect, when mounting a conventional accumulator module, inadvertent connections between electrical connection poles may occur.
  • Accumulator cells are connected in series for the production of corresponding accumulator modules via cell connectors, for example in the form of aluminum or copper sheet strips.
  • cell connectors for example in the form of aluminum or copper sheet strips.
  • the connections between such cell connectors and the electrical terminal poles of the battery cells are made by screwing or welding.
  • Critical here is the contact resistance of an electrical terminal pole to a cell connector, since such contact resistance can lead to an undesirable voltage drop and / or to a warming. With a strong increase in the contact resistance, this heating can even lead to a fire of the battery cell or the appropriately equipped
  • Lead accumulator module In order to avoid this, it is necessary to design the contact surface between the electrical connecting poles and the cell connectors as large as possible. In this respect, the electrical connection poles should have a relatively large horizontal cross-sectional area. However, this leads to relatively narrow designed accumulator cells to the cross section of the electrical connection poles approximately the width of the ceiling of the
  • Accumulator cell corresponds. If such accumulator cells are arranged as intended for the production of an accumulator module, the distances and the creepage distances between electrical connection poles of accumulator cells arranged directly adjacent to one another are very small. As a result, no reliable electrical insulation of the electrical connection poles of each other can be realized. In addition, when assembling a suitably designed accumulator module, inadvertent short circuits may occur if an electrically conductive tool used for mounting connects two electrical connection poles to one another in an electrically conductive manner. Furthermore, the accessibility to a tool used for mounting the battery cell is impaired by the small distance between the electrical connection poles. Disclosure of the invention
  • the invention relates to an accumulator cell with a bottom, a ceiling and the floor with the ceiling connecting side walls having cell housing, the ceiling is elongated and has two along its longitudinal extent arranged openings and with respect to their longitudinal extent two oppositely disposed ends, wherein an opening is a positive electrical terminal pole and through the other opening a negative electrical terminal pole of the battery cell is passed, wherein the electrical connection poles protrude by a predetermined amount of the interior of the cell housing facing away from the top of the ceiling, wherein a first electrical terminal pole of the electrical connection poles is arranged closer to a first end of the two ends of the ceiling than to a second end of the two ends of the ceiling, and wherein a second electrical terminal pole of the electrical connection poles closer to the second n the end of the ceiling is arranged as to the first end of the ceiling, characterized in that the distance between the first electrical terminal pole and the first end of the ceiling is greater than the distance between the second electrical terminal pole and the second end of the ceiling.
  • the arrangement of electrical connection poles and ceiling is not symmetrical. Knowing which type of electrical connection pole is arranged at which distance from the respective end of the ceiling of the cell housing, a distinction can be made immediately between the positive electrical connection pole and the negative electrical connection pole when the appropriately designed accumulator cell is seen. As a result, errors in the electrically conductive connecting the
  • the distance between the first electrical terminal pole and the first end of the ceiling by a correspondingly sufficient extent greater than the distance between the second electrical Terminal pole and the second end of the ceiling can be selected.
  • the air gap and the creepage distance between electrical connection poles of accumulator cells arranged directly adjacent to one another are increased.
  • the distance between electrical connection poles of accumulator cells arranged immediately adjacent to one another can be selected such that sufficient accessibility, in particular for assembly tools, is provided for the secure installation of a suitably designed accumulator module , If the distance between electrical terminal poles of accumulator cells arranged directly adjacent to one another is large enough, it can furthermore be avoided that electrical terminal poles of accumulator cells arranged directly adjacent to one another are electrically conductively connected to each other during assembly of a suitably designed accumulator module via unintentional contact with a mounting tool.
  • an accumulator module which has accumulator cells according to the invention has very good electrical insulation properties and can be mounted safely and easily.
  • the cell housing of the battery cell has a bottom, a ceiling and the floor connecting with the ceiling side walls.
  • the shaping of the side walls and the floor is immaterial to the invention within certain limits.
  • the shape of the ceiling of the cell housing may vary.
  • a cell housing of an accumulator cell is cuboidal.
  • the ceiling is rectangular and elongated.
  • the electrical connection poles are usually arranged along the longitudinal extent of such a rectangular ceiling of a cuboid cell housing.
  • the electrical connection poles can in principle also be arranged along a transverse extent of a corresponding rectangular ceiling of a cuboid cell housing.
  • a first of the electrical connection poles can be arranged more to a first longitudinal side of the ceiling than to a second longitudinal side of the ceiling and a second of the electrical connection poles closer to the second longitudinal side than to the first Be arranged along the ceiling, wherein the distance between the first electrical terminal pole and the first longitudinal side of the ceiling can be greater than the distance between the second electrical terminal pole and the second longitudinal side of the cover page.
  • the ends of the ceiling of the cell housing in a plan view in any way rounded, tapered or square are formed. It is also possible that the ceiling of the cell housing is elliptical or oval in plan view. Preferably, the bottom of the cell housing is formed according to the ceiling of the cell housing.
  • the ceiling has two mutually parallel and spaced apart longitudinal sides, wherein the distance between the first electrical terminal and the first end of the ceiling by at least the distance between the two longitudinal sides of each other greater than the distance between the second electrical terminal pole and the second end of the ceiling is.
  • This embodiment provides a sufficient distance between electrical connection poles of battery cells arranged directly adjacent to one another in order to ensure a safe and simple
  • Another object of the invention is an accumulator module with at least two series-connected accumulator cells, with respect to their electrical
  • Polarity are arranged opposite to each other.
  • the accumulator cells of the accumulator module are formed according to one of the above-mentioned embodiments or a combination thereof. This brings with it the advantages mentioned above.
  • the accumulator module on the remaining accumulator module can be arranged, template-shaped module cover made of plastic with at least two windows and at least one window separating webs, wherein the web is arranged on the module cover, that he intended at the other Accumulator module attached module cover between two gleichna- migen electrical connection poles of immediately adjacent to each other arranged accumulator cells runs. Since the web of the module cover runs between two identical electrical connection poles of battery cells arranged directly adjacent to one another, faulty interconnections, that is to say the production of electrically conductive connections between electrical connection poles of accumulator cells arranged immediately adjacent to one another, which are not intended to be interconnected, can be prevented. As a result, a secure mounting of a suitably designed accumulator module is ensured, especially since a corresponding accumulator module-mounted personnel is clear by this configuration of the module cover, which arranged unlike electrical terminal poles of immediately adjacent to each other
  • Accumulator cells are to be electrically connected to each other to obtain the desired series connection. Another advantage of the arrangement of the web between electrical terminal poles of immediately adjacent to each other arranged accumulator cells is that creepage distances between these electrical terminal poles are increased, which in turn improves the electrical insulation of the electrical connection poles from each other.
  • a further advantageous embodiment provides that the module cover has at least one further window web separating from each other, wherein the further web is arranged on the module cover, that he unintentionally connected to one another at the module module cover attached to the other accumulator module between two non-electrically conductive electrical terminal poles of immediately adjacent to each other arranged accumulator cells runs. Also by this configuration, a faulty connection of electrical terminal poles of battery cells during assembly of a suitably designed
  • FIG. 1 shows a schematic side view of a longitudinal side of a conventional accumulator cell
  • Figure 2 is a schematic side view of a longitudinal side of an embodiment of an accumulator cell according to the invention and Figure 3 is a schematic plan view of an embodiment of an inventive accumulator module.
  • FIG. 1 shows schematically a longitudinal side of a conventional one
  • the battery cell 1 comprises a cell housing 2, which has a bottom 3, a ceiling 4 and the bottom 3 with the ceiling 4 connecting side walls 5 to 8.
  • the cell housing 2 is cuboid in the accumulator cell 1.
  • the bottom 3, the ceiling 4 and the side walls 5 to 8 are rectangular.
  • the ceiling 4 is elongated and has two not shown in detail, along its arranged parallel to the plane longitudinal extension openings and with respect to their longitudinal extent two oppositely disposed ends, with a first end in Figures 1 and 2 at the left end of the ceiling 4 and a second end in Figures 1 and 2 is arranged on the right end of the ceiling 4 shown. Through each of the openings in each case an electrical connection pole 9 and 10 is passed.
  • the electrical connection poles 9 and 10 protrude by a predetermined amount of the interior of the cell case 2 facing away from the top of the ceiling 4.
  • the electrical terminal pole 9 shown on the left is arranged closer to the left end of the ceiling 4 than to the right end of the ceiling 4.
  • the electrical terminal 10 shown on the right is arranged closer to the end of the ceiling 4 shown on the right than to the end of the ceiling 4 shown on the left.
  • FIG. 2 shows a schematic side view of an exemplary embodiment of the accumulator cell 1 according to the invention.
  • This accumulator cell 1 differs from the conventional accumulator cell 1 shown in FIG. re characterized in that the distance between the electrical terminal pole 9 shown on the left and the end of the ceiling 4 shown on the left is greater than the distance between the electrical terminal 10 shown on the right and the end of the ceiling 4 shown on the right.
  • FIG. 3 shows schematically a view of an embodiment of the accumulator module according to the invention 1 1 from above.
  • the accumulator module 1 1 has four series-connected battery cells 1, which are arranged opposite to each other with respect to their electrical polarity.
  • Accumulator module 1 1 further comprises a module cover 12 made of plastic.
  • the module cover 12 is formed in a template shape and has six windows, which are separated by webs 13 to 17 from each other.
  • the webs 14 and 15 are arranged on the module cover 12 so that they arranged at the shown as intended attachment of the module cover 12 to the remaining accumulator module 1 between the same electrical terminal poles 9 of immediately adjacent to each other
  • Battery cells 1 run.
  • the webs 13, 16 and 17 are arranged on the module cover 12, that they are in the intended purpose attachment of the module cover 12 to the remaining battery module 1 1 between two non-electrically conductive to be connected to each other, unlike electrical Anschlußpolen 9 and 10 of immediately adjacent run to each other arranged accumulator cells 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Die Erfindung betriffteine Akkumulatorzelle (1) mit einem einen Boden (3), eine Decke (4) und den Boden (3) mit der Decke (4) verbindende Seitenwände (5, 6, 7, 8) aufweisenden Zellgehäuse (2), wobei die Decke (4) langgestreckt ausgebildet ist und zwei entlang ihrer Längserstreckung angeordnete Öffnungen sowie bezüglich ihrer Längserstreckung zwei einander gegenüberliegend angeordnete Endenaufweist, wobei durch eine Öffnung einpositiverelektrischer Anschlusspol (9, 10) und durch die andere Öffnung einnegativerelektrischer Anschlusspol (9, 10) der Akkumulatorzelle (1) hindurchgeführt ist, wobei die elektrischen Anschlusspole (9, 10) um ein vorgebbares Maß von der dem Inneren des Zellgehäuses (2) abgewandten Oberseite der Decke (4) hervorragen, wobei ein erster elektrischer Anschlusspol (9) der elektrischen Anschlusspole (9, 10) näher zu einem ersten Ende der beiden Endender Decke (4) als zu einem zweiten Ende der beiden Endender Decke (4) angeordnet ist, und wobei ein zweiter elektrischer Anschlusspol (10) der elektrischen Anschlusspole (9, 10) näher zu dem zweiten Ende der Decke (4) als zu dem ersten Ende der Decke (4) angeordnet ist, dadurch gekennzeichnet, dass der Abstand zwischen dem ersten elektrischen Anschlusspol (9) und dem ersten Ende der Decke (4) größer als der Abstand zwischen dem zweiten elektrischen Anschlusspol (10) und dem zweiten Ende der Decke (4) ist.2

Description

Beschreibung
Titel Akkumulatorzelle und Akkumulatormodul
Stand der Technik
In elektrisch angetriebenen Kraftfahrzeugen, insbesondere Elektrofahrzeugen und Hybridfahrzeugen, werden Akkumulatoren zur Versorgung von elektrischen
Antriebseinrichtungen des Kraftfahrzeugs mit elektrischer Energie eingesetzt. Derartige Akkumulatoren sind für gewöhnlich durch einen Zusammenschluss von mehreren in Reihe geschalteten Akkumulatormodulen gebildet. Jedes
Akkumulatormodul weist üblicherweise mehrere in Reihe geschaltete
Akkumulatorzellen auf, welche in der Regel auf Lithium-Basis hergestellt sind.
Jede Akkumulatorzelle umfasst ein Zellgehäuse und eine in dem Zellgehäuse angeordnete elektrochemische Zelle. An einer Seite des Zellgehäuses sind elektrische Anschlusspole angeordnet, über die elektrische Energie von der
Akkumulatorzelle abgeführt bzw. über die elektrische Energie der
Akkumulatorzelle zugeführt werden kann. Die elektrischen Anschlusspole der
Akkumulatorzellen sind beispielsweise aus einem Aluminiumwerkstoff oder einem Kupferwerkstoff gebildet. Die elektrischen Anschlusspole können aus demselben Werkstoff oder aus verschiedenen Werkstoffen hergestellt sein. Das Zellgehäuse einer Akkumulatorzelle ist üblicherweise quaderförmig ausgebildet und weist eine in einer Draufsicht rechteckig und langgestreckt ausgebildete Decke auf, welche das Zellgehäuse nach oben abschließt. In der Decke des Zellgehäuses sind zwei Öffnungen ausgebildet, durch die die elektrischen Anschlusspole der Akkumulatorzelle hindurchragen. Die Decke ist in der Regel symmetrisch ausgebildet, was bedeutet, dass der Abstand zwischen einer Öffnung und der zu dieser Öffnung nächstliegend angeordneten kurzen Querseite gleich dem Abstand zwischen der anderen Öffnung und der nächstliegend zu dieser anderen Öffnung angeordneten kurzen Querseite ist. Hierdurch ist auch die Anordnung aus elektrischen Anschlusspolen und Decke zumindest in einer Draufsicht symmetrisch. Daher lässt sich aus der Position eines elektrischen Anschlusspols relativ zu der Decke nicht darauf schließen, ob es sich bei dem elek- trischen Anschlusspol um einen positiven elektrischen Anschlusspol oder einen negativen elektrischen Anschlusspol handelt. Eine solche Unterscheidung zwischen den elektrischen Anschlusspolen ist insbesondere schwierig, wenn die elektrischen Anschlusspole aus demselben Werkstoff gebildet sind und somit dieselbe Farbgebung haben. Insofern kann es bei der Montage eines herkömmlichen Akkumulatormoduls versehentlich zu fehlerhaften Verbindungen zwischen elektrischen Anschlusspolen kommen.
Akkumulatorzellen werden zur Herstellung entsprechender Akkumulatormodule über Zellverbinder, beispielsweise in Form von Aluminium- oder Kupferblechstreifen, in Reihe geschaltet. Typischerweise werden die Verbindungen zwischen solchen Zellverbindern und den elektrischen Anschlusspolen der Akkumulatorzellen durch Verschraubungen oder Schweißverbindungen hergestellt. Kritisch ist hierbei der Übergangswiderstand von einem elektrischen Anschlusspol zu einem Zellverbinder, da solche Übergangswiderstände zu einem unerwünschten Spannungsabfall und/oder zu einer Erwärmung führen können. Bei einer starken Erhöhung des Übergangswiderstandes kann diese Erwärmung sogar zu einem Brand der Akkumulatorzelle bzw. des entsprechend ausgestatteten
Akkumulatormoduls führen. Um dies zu vermeiden, ist es erforderlich, die Kon- taktfläche zwischen den elektrischen Anschlusspolen und den Zellverbindern möglichst groß auszulegen. Insofern sollten die elektrischen Anschlusspole eine relativ große horizontale Querschnittsfläche aufweisen. Dies führt jedoch bei relativ schmal ausgestalteten Akkumulatorzellen dazu, dass der Querschnitt der elektrischen Anschlusspole annähernd der Breite der Decke der
Akkumulatorzelle entspricht. Werden solche Akkumulatorzellen bestimmungsgemäß zur Herstellung eines Akkumulatormoduls angeordnet, sind die Abstände und die Kriechstrecken zwischen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen sehr gering. Dadurch kann keine sichere elektrische Isolierung der elektrischen Anschlusspole vonei- nander realisiert werden. Zudem kann es bei der Montage eines entsprechend ausgebildeten Akkumulatormoduls unbeabsichtigt zu Kurzschlüssen kommen, wenn ein zur Montage verwendetes, elektrisch leitfähiges Werkzeug zwei elektrische Anschlusspole elektrisch leitend miteinander verbindet. Ferner wird durch den geringen Abstand zwischen elektrischen Anschlusspolen die Zugänglichkeit für ein zur Montage der Akkumulatorzelle verwendetes Werkzeug beeinträchtigt. Offenbarung der Erfindung
Gegenstand der Erfindung ist eine Akkumulatorzelle mit einem einen Boden, eine Decke und den Boden mit der Decke verbindende Seitenwände aufweisenden Zellgehäuse, wobei die Decke langgestreckt ausgebildet ist und zwei entlang ihrer Längserstreckung angeordnete Öffnungen sowie bezüglich ihrer Längserstreckung zwei einander gegenüberliegend angeordnete Enden aufweist, wobei durch eine Öffnung ein positiver elektrischer Anschlusspol und durch die andere Öffnung ein negativer elektrischer Anschlusspol der Akkumulatorzelle hindurch- geführt ist, wobei die elektrischen Anschlusspole um ein vorgebbares Maß von der dem Inneren des Zellgehäuses abgewandten Oberseite der Decke hervorragen, wobei ein erster elektrischer Anschlusspol der elektrischen Anschlusspole näher zu einem ersten Ende der beiden Enden der Decke als zu einem zweiten Ende der beiden Enden der Decke angeordnet ist, und wobei ein zweiter elektri- scher Anschlusspol der elektrischen Anschlusspole näher zu dem zweiten Ende der Decke als zu dem ersten Ende der Decke angeordnet ist, dadurch gekennzeichnet, dass der Abstand zwischen dem ersten elektrischen Anschlusspol und dem ersten Ende der Decke größer als der Abstand zwischen dem zweiten elektrischen Anschlusspol und dem zweiten Ende der Decke ist.
Bei der erfindungsgemäßen Akkumulatorzelle ist die Anordnung aus elektrischen Anschlusspolen und Decke nicht symmetrisch. In Kenntnis dessen, welcher Art elektrischer Anschlusspol in welchem Abstand von dem jeweiligen Ende der Decke des Zellgehäuses angeordnet ist, kann beim Anblick einer entsprechend ausgebildeten Akkumulatorzelle sofort zwischen dem positiven elektrischen Anschlusspol und dem negativen elektrischen Anschlusspol unterschieden werden. Hierdurch werden Fehler beim elektrisch leitenden Verbinden der
Akkumulatorzellen mit wenigstens einer weiteren Akkumulatorzelle bei der Montage eines Akkumulatormoduls zuverlässig vermieden.
Zur Schaffung eines für eine sichere elektrische Isolation ausreichenden Abstan- des zwischen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen kann der Abstand zwischen dem ersten elektrischen Anschlusspol und dem ersten Ende der Decke um ein entspre- chend ausreichendes Maß größer als der Abstand zwischen dem zweiten elektrischen Anschlusspol und dem zweiten Ende der Decke gewählt werden. Hier- durch werden insbesondere der Luftspalt und die Kriechstrecke zwischen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen vergrößert.
Durch die zumindest in Draufsicht unsymmetrische Ausgestaltung der Anordnung aus elektrischen Anschlusspolen und Decke kann der Abstand zwischen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen derart groß gewählt werden, dass eine für die sichere Montage eines entsprechend ausgestalteten Akkumulatormoduls ausreichenden Zugänglichkeit, insbesondere für Montagewerkzeug, geschaffen wird. Ist der Abstand zwischen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen groß genug gewählt, kann ferner vermieden werden, dass elektrische Anschlusspole von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen während der Montage eines entsprechend ausgebildeten Akkumulatormoduls über einen unbeabsichtigten Kontakt mit einem Montagewerkzeug elektrisch leitend miteinander verbunden werden.
Es zeigt sich somit, dass ein Akkumulatormodul, welches erfindungsgemäße Akkumulatorzellen aufweist, sehr gute elektrische Isolationseigenschaften aufweist und sicher und einfach montierbar ist.
Das Zellgehäuse der Akkumulatorzelle weist einen Boden, eine Decke und den Boden mit der Decke verbindende Seitenwände auf. Die Formgebung der Seitenwände und des Bodens ist für die Erfindung in gewissen Grenzen unwesentlich. Auch die Formgebung der Decke des Zellgehäuses kann variieren. Üblicherweise ist ein Zellgehäuse einer Akkumulatorzelle quaderförmig ausgebildet. Bei einem solchen Zellgehäuse ist die Decke rechteckig und langgestreckt ausgebildet. Die elektrischen Anschlusspole sind üblicherweise entlang der Längserstreckung einer solchen rechteckigen Decke eines quaderförmigen Zellgehäuses angeordnet. Es soll jedoch klar sein, dass die elektrischen Anschlusspole grundsätzlich auch entlang einer Quererstreckung einer entsprechenden rechteckigen Decke eines quaderförmigen Zellgehäuses angeordnet sein können. Auch bei einer solchen unüblichen Ausgestaltung eines Zellgehäuses kann ein erster der elektrischen Anschlusspole mehr zu einer ersten Längsseite der Decke als zu einer zweiten Längsseite der Decke angeordnet sein und kann ein zweiter der elektrischen Anschlusspole näher zu der zweiten Längsseite als zu der ersten Längsseite der Decke angeordnet sein, wobei der Abstand zwischen dem ersten elektrischen Anschlusspol und der ersten Längsseite der Decke größer als der Abstand zwischen dem zweiten elektrischen Anschlusspol und der zweiten Längsseite der Deckseite sein kann.
Im Rahmen der Erfindung ist es ebenso möglich, dass die Enden der Decke des Zellgehäuses in einer Draufsicht auf irgendeine Art und Weise abgerundet, spitz zulaufend oder eckig ausgebildet sind. Ferner ist möglich, dass die Decke des Zellgehäuses in einer Draufsicht ellipsenförmig oder oval ausgebildet ist. Vor- zugsweise ist der Boden des Zellgehäuses entsprechend der Decke des Zellgehäuses ausgebildet.
Nach einer vorteilhaften Ausgestaltung weist die Decke zwei parallel zueinander und beabstandet voneinander angeordnete Längsseiten auf, wobei der Abstand zwischen dem ersten elektrischen Anschlusspol und dem ersten Ende der Decke um wenigstens den Abstand der beiden Längsseiten voneinander größer als der Abstand zwischen dem zweiten elektrischen Anschlusspol und dem zweiten Ende der Decke ist. Durch diese Ausgestaltung wird ein ausreichender Abstand zwischen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen bereitgestellt, um eine sichere und einfache
Montage eines Akkumulatormoduls mit guter elektrischer Isolierung zu ermöglichen.
Weiterer Gegenstand der Erfindung ist ein Akkumulatormodul mit wenigstens zwei in Reihe geschalteten Akkumulatorzellen, die bezüglich ihrer elektrischen
Polung entgegengesetzt zueinander angeordnet sind. Vorzugsweise sind die Akkumulatorzellen des Akkumulatormoduls gemäß einer der oben genannten Ausgestaltungen oder einer Kombination derselben ausgebildet. Damit sind die oben genannten Vorteile verbunden.
Gemäß einer vorteilhaften Ausgestaltung weist das Akkumulatormodul eine an dem übrigen Akkumulatormodul anordbare, schablonenförmig ausgebildete Modulabdeckung aus Kunststoff mit wenigstens zwei Fenstern und wenigstens einem die Fenster voneinander trennenden Steg auf, wobei der Steg derart an der Modulabdeckung angeordnet ist, dass er bei bestimmungsgemäß an dem übrigen Akkumulatormodul angebrachter Modulabdeckung zwischen zwei gleichna- migen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen verläuft. Da der Steg der Modulabdeckung zwischen zwei gleichnamigen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen verläuft, können fehlerhafte Verschaltungen, das heißt die Herstellung von elektrisch leitenden Verbindungen zwischen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen, die nicht miteinander verbunden werden sollen, verhindert werden. Hierdurch wird eine sichere Montage eines entsprechend ausgestalteten Akkumulatormoduls gewährleistet, insbesondere da einem ein entsprechendes Akkumulatormodul montierenden Personal durch diese Ausgestaltung der Modulabdeckung klar ist, welche ungleichnamigen elektrischen Anschlusspole der unmittelbar benachbart zueinander angeordneten
Akkumulatorzellen elektrisch leitend miteinander verbunden werden sollen, um die gewünschte Reihenschaltung zu erhalten. Ein weiterer Vorteil durch die Anordnung des Stegs zwischen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen ist, dass Kriechstrecken zwischen diesen elektrischen Anschlusspolen vergrößert werden, was wiederum die elektrische Isolierung der elektrischen Anschlusspole voneinander verbessert.
Eine weitere vorteilhafte Ausgestaltung sieht vor, dass die Modulabdeckung wenigstens einen weiteren Fenster voneinander trennenden Steg aufweist, wobei der weitere Steg derart an der Modulabdeckung angeordnet ist, dass er bei bestimmungsgemäß an dem übrigen Akkumulatormodul angebrachter Modulabdeckung zwischen zwei nicht elektrisch leitend miteinander zu verbindenden, ungleichnamigen elektrischen Anschlusspolen von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen verläuft. Auch durch diese Ausgestaltung wird eine fehlerhafte Verschaltung von elektrischen Anschlusspolen von Akkumulatorzellen bei der Montage eines entsprechend ausgestalteten
Akkumulatormoduls vermieden. Über diese Ausgestaltung der Modulabdeckung wird einem ein solches Akkumulatormodul montierenden Personal klar, welche elektrischen Anschlusspole elektrisch leitend miteinander zu verbinden sind.
Im Folgenden wird die Erfindung unter Bezugnahme auf die anliegenden Figuren anhand bevorzugter Ausführungsbeispiele exemplarisch erläutert, wobei die nachfolgend genannten Merkmale sowohl für sich genommen als auch in belie- biger Kombination miteinander einen Aspekt der Erfindung darstellen können. Es zeigen
Figur 1 : eine schematische Seitenansicht einer Längsseite einer herkömmlichen Akkumulatorzelle,
Figur 2: eine schematische Seitenansicht einer Längsseite eines Ausführungsbeispiels für eine erfindungsgemäße Akkumulatorzelle und Figur 3: eine schematische Draufsicht eines Ausführungsbeispiels für ein erfindungsgemäßes Akkumulatormodul.
Figur 1 zeigt schematisch eine Längsseite einer herkömmlichen
Akkumulatorzelle 1 . Die Akkumulatorzelle 1 umfasst ein Zellgehäuse 2, welches einen Boden 3, eine Decke 4 und den Boden 3 mit der Decke 4 verbindende Seitenwände 5 bis 8 aufweist. Das Zellgehäuse 2 ist bei der Akkumulatorzelle 1 quaderförmig ausgebildet. Hierdurch sind der Boden 3, die Decke 4 und die Seitenwände 5 bis 8 rechteckig ausgebildet. Die Decke 4 ist langgestreckt ausgebildet und weist zwei nicht näher dargestellt, entlang ihrer parallel zur Blattebene angeordnete Längserstreckung angeordnete Öffnungen sowie bezüglich ihrer Längserstreckung zwei einander gegenüberliegend angeordnete Enden auf, wobei ein erstes Ende in Figuren 1 und 2 am links dargestellten Ende der Decke 4 und ein zweites Ende in Figuren 1 und 2 am rechts dargestellten Ende der Decke 4 angeordnet ist. Durch jede der Öffnungen ist jeweils ein elektrischer Anschlusspol 9 bzw. 10 hindurchgeführt. Die elektrischen Anschlusspole 9 und 10 ragen um ein vorgebbares Maß von der dem Inneren des Zellgehäuses 2 abgewandten Oberseite der Decke 4 hervor. Der links dargestellte elektrische Anschlusspol 9 ist näher zu dem linken Ende der Decke 4 als zu dem rechten Ende der Decke 4 angeordnet. Der rechts dargestellte elektrische Anschlusspol 10 ist näher zu dem rechts dargestellten Ende der Decke 4 als zu dem links dargestellten Ende der Decke 4 angeordnet.
Figur 2 zeigt eine schematische Seitenansicht eines Ausführungsbeispiels für die erfindungsgemäße Akkumulatorzelle 1. Diese Akkumulatorzelle 1 unterscheidet sich von der in Figur 1 gezeigten herkömmlichen Akkumulatorzelle 1 insbesonde- re dadurch, dass der Abstand zwischen dem links dargestellten elektrischen Anschlusspol 9 und dem links dargestellten Ende der Decke 4 größer als der Abstand zwischen dem rechts dargestellten elektrischen Anschlusspol 10 und dem rechts dargestellten Ende der Decke 4 ist.
Figur 3 zeigt schematisch eine Ansicht eines Ausführungsbeispiels für das erfindungsgemäße Akkumulatormodul 1 1 von oben. Das Akkumulatormodul 1 1 weist vier in Reihe geschaltete Akkumulatorzellen 1 auf, die bezüglich ihrer elektrischen Polung entgegengesetzt zueinander angeordnet sind. Das
Akkumulatormodul 1 1 umfasst des Weiteren eine Modulabdeckung 12 aus Kunststoff. Die Modulabdeckung 12 ist schablonenförmig ausgebildet und weist sechs Fenster auf, die durch Stege 13 bis 17 voneinander getrennt sind. Die Stege 14 und 15 sind derart an der Modulabdeckung 12 angeordnet, dass sie bei der gezeigten bestimmungsgemäßen Anbringung der Modulabdeckung 12 an dem übrigen Akkumulatormodul 1 zwischen gleichnamigen elektrischen Anschlusspolen 9 von unmittelbar benachbart zueinander angeordneten
Akkumulatorzellen 1 verlaufen. Die Stege 13, 16 und 17 sind derart an der Modulabdeckung 12 angeordnet, dass sie bei der gezeigten bestimmungsgemäßen Anbringung der Modulabdeckung 12 an dem übrigen Akkumulatormodul 1 1 jeweils zwischen zwei nicht elektrisch leitend miteinander zu verbindenden, ungleichnamigen elektrischen Anschlusspolen 9 und 10 von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen 1 verlaufen.

Claims

Ansprüche
1 . Akkumulatorzelle (1 ) mit einem einen Boden (3), eine Decke (4) und den Boden (3) mit der Decke (4) verbindende Seitenwände (5, 6, 7, 8) aufweisenden Zellgehäuse (2), wobei die Decke (4) langgestreckt ausgebildet ist und zwei entlang ihrer Längserstreckung angeordnete Öffnungen sowie bezüglich ihrer Längserstreckung zwei einander gegenüberliegend angeordnete Enden aufweist, wobei durch eine Öffnung ein positiver elektrischer Anschlusspol (9, 10) und durch die andere Öffnung ein negativer elektrischer Anschlusspol (9, 10) der Akkumulatorzelle (1 ) hindurchgeführt ist, wobei die elektrischen Anschlusspole (9, 10) um ein vorgebbares Maß von der dem Inneren des Zellgehäuses (2) abgewandten Oberseite der Decke (4) hervorragen, wobei ein erster elektrischer Anschlusspol (9) der elektrischen Anschlusspole (9, 10) näher zu einem ersten Ende der beiden Enden der Decke (4) als zu einem zweiten Ende der beiden Enden der Decke (4) angeordnet ist, und wobei ein zweiter elektrischer Anschlusspol (10) der elektrischen Anschlusspole (9, 10) näher zu dem zweiten Ende der Decke (4) als zu dem ersten Ende der Decke (4) angeordnet ist, dadurch gekennzeichnet, dass der Abstand zwischen dem ersten elektrischen Anschlusspol (9) und dem ersten Ende der Decke (4) größer als der Abstand zwischen dem zweiten elektrischen Anschlusspol (10) und dem zweiten Ende der Decke (4) ist.
2. Akkumulatorzelle (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass die Decke (4) zwei parallel zueinander und beabstandet voneinander angeordnete Längsseiten (6, 8) aufweist, wobei der Abstand zwischen dem ersten elektrischen Anschlusspol (9, 10) und dem ersten Ende der Decke (4) um wenigstens den Abstand der beiden Längsseiten (6, 8) voneinander größer als der Abstand zwischen dem zweiten elektrischen Anschlusspol (9, 10) und dem zweiten Ende der Decke (4) ist.
3. Akkumulatormodul (1 1 ) mit wenigstens zwei in Reihe geschalteten
Akkumulatorzellen (1 ), die bezüglich ihrer elektrischen Polung entgegenge- setzt zueinander angeordnet sind, dadurch gekennzeichnet, dass die Akkumulatorzellen (1 ) gemäß Anspruch 1 oder 2 ausgebildet sind.
Akkumulatormodul (1 1 ) nach Anspruch 3, gekennzeichnet durch eine an dem übrigen Akkumulatormodul (1 1 ) anordbare, schablonenförmig ausgebildete Modulabdeckung (12) aus Kunststoff mit wenigstens zwei Fenstern und wenigstens einem die Fenster voneinander trennenden Steg (14, 15), wobei der Steg (14, 15) derart an der Modulabdeckung (12) angeordnet ist, dass er bei bestimmungsgemäß an dem übrigen Akkumulatormodul (1 1 ) angebrachter Modulabdeckung (12) zwischen zwei gleichnamigen elektrischen Anschlusspolen (9, 10) von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen (1 ) verläuft.
Akkumulatormodul (1 1 ) nach Anspruch 4, dadurch gekennzeichnet, dass die Modulabdeckung (12) wenigstens einen weiteren Fenster voneinander trennenden Steg (13, 16, 17) aufweist, wobei der weitere Steg (13, 16, 17) derart an der Modulabdeckung (12) angeordnet ist, dass er bei bestimmungsgemäß an dem übrigen Akkumulatormodul (1 ) angebrachter Modulabdeckung (12) zwischen zwei nicht elektrisch leitend miteinander zu verbindenden, ungleichnamigen elektrischen Anschlusspolen (9, 10) von unmittelbar benachbart zueinander angeordneten Akkumulatorzellen (1 ) verläuft.
PCT/EP2014/050317 2013-02-08 2014-01-09 Akkumulatorzelle und akkumulatormodul WO2014121970A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480007692.0A CN104969382B (zh) 2013-02-08 2014-01-09 蓄电池电芯和蓄电池模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013202062.7A DE102013202062A1 (de) 2013-02-08 2013-02-08 Akkumulatorzelle und Akkumulatormodul
DE102013202062.7 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014121970A1 true WO2014121970A1 (de) 2014-08-14

Family

ID=49989684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/050317 WO2014121970A1 (de) 2013-02-08 2014-01-09 Akkumulatorzelle und akkumulatormodul

Country Status (3)

Country Link
CN (1) CN104969382B (de)
DE (1) DE102013202062A1 (de)
WO (1) WO2014121970A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015210631A1 (de) * 2015-06-10 2016-12-15 Robert Bosch Gmbh Batteriezelle und Verfahren zum Verbinden von Batteriezellen sowie Batteriepack, Batteriemodul, Batterie und Fahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055796A (ja) * 1996-08-09 1998-02-24 Furukawa Battery Co Ltd:The 蓄電池
JP2005317323A (ja) * 2004-04-28 2005-11-10 Toyota Motor Corp コネクタと組電池
JP2008091183A (ja) * 2006-09-30 2008-04-17 Sanyo Electric Co Ltd 角型電池と組電池
US20120114991A1 (en) * 2010-11-10 2012-05-10 Shi-Dong Park Battery module
WO2012102373A1 (ja) * 2011-01-28 2012-08-02 株式会社オートネットワーク技術研究所 電池接続アセンブリ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7244858U (de) * 1973-03-15 Bosch R Elektronik Gmbh Batteriegehäuse
DE1878059U (de) * 1962-11-21 1963-08-22 Bosch Gmbh Robert Elektrischer sammler, insbesondere fuer kraftfahrzeuge.
TW497286B (en) * 1999-09-30 2002-08-01 Canon Kk Rechargeable lithium battery and process for the production thereof
DE10151099A1 (de) * 2001-10-17 2003-04-30 Hoppecke Batterie Systeme Gmbh Akkumulator
JP3160044U (ja) * 2010-03-29 2010-06-10 ソニー株式会社 電源供給装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055796A (ja) * 1996-08-09 1998-02-24 Furukawa Battery Co Ltd:The 蓄電池
JP2005317323A (ja) * 2004-04-28 2005-11-10 Toyota Motor Corp コネクタと組電池
JP2008091183A (ja) * 2006-09-30 2008-04-17 Sanyo Electric Co Ltd 角型電池と組電池
US20120114991A1 (en) * 2010-11-10 2012-05-10 Shi-Dong Park Battery module
WO2012102373A1 (ja) * 2011-01-28 2012-08-02 株式会社オートネットワーク技術研究所 電池接続アセンブリ

Also Published As

Publication number Publication date
DE102013202062A1 (de) 2014-08-14
CN104969382A (zh) 2015-10-07
CN104969382B (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
DE102018205912A1 (de) Laminierte Sammelschiene und Batteriemodul
DE112014001246B4 (de) Stromversorgungsgerät
EP3200261B1 (de) Kontaktierungssystem für energiespeicherzellen und energiespeicher
DE102018212945A1 (de) Leitermodul
DE102013220044B4 (de) Zellkontaktierungssystem für eine elektrochemische Vorrichtung und Verfahren zum Herstellen eines Zellkontaktierungssystems
DE102014010067B4 (de) Spannungsgeschützt herstellbare Kraftfahrzeugbatterie, Steckmodul für eine Kraftfahrzeugbatterie, Kraftfahrzeug mit mindestens einer Kraftfahrzeugbatterie und Verfahren zum Herstellen einer Kraftfahrzeugbatterie
DE112013006395T5 (de) Batterieverteilereinheit
EP3433891B1 (de) Batterie und verfahren zur herstellung einer batterie
DE102015225233A1 (de) Batterieleitungsmodul und Batterieleitungsmodulherstellungsverfahren
DE102014205465A1 (de) Verbinder zur Verbindung von zellenförmigen elektrischen Elementen und Verfahren zur Installation eines solchen Verbinders auf einer Batterieeinheit
DE10258211A1 (de) Elektrisches Kraftfahrzeug
WO2012130424A1 (de) Batterie für ein kraftfahrzeug
DE102016225260A1 (de) Verfahren zur Herstellung von Stromschienenmodulen und Verfahren zur Herstellung eines Batterie-Packs
DE102012018113B4 (de) Batterie aus einer Vielzahl von Batterieeinzelzellen
DE102016206846A1 (de) Verbindungseinrichtung, Hochvoltbatterie und Kraftfahrzeug
WO2013075843A1 (de) Zellkontaktieranordnung für einen energiespeicher
WO2018220197A2 (de) Elektrochemische zellbaugruppe, energiespeichermodul und verfahren zum zusammenbau davon
EP2858850B1 (de) Akkumulatoranordnung, stromschienenelement dafür sowie verfahren zur herstellung einer akkumulatoranordnung
DE112017006651T5 (de) Energiespeichervorrichtung
WO2014072038A1 (de) Leiterplattenelement und zellenanordnung
DE102018203578B4 (de) Anordnung zur elektrischen Verbindung von Polterminals sowie Zellmodul oder Batterie mit einer derartigen Verbindungsanordnung (I)
WO2014121970A1 (de) Akkumulatorzelle und akkumulatormodul
WO2019048007A1 (de) Solarmodul und solarmodul-system
DE102012219778A1 (de) Batteriemodulanschluss bildende Stromschiene
DE102017200311A1 (de) Batterie, Trägerboard und Trägerboardelement mit Rastelementen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14700575

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14700575

Country of ref document: EP

Kind code of ref document: A1