WO2014121644A1 - 电气故障火花实时监测方法及装置 - Google Patents

电气故障火花实时监测方法及装置 Download PDF

Info

Publication number
WO2014121644A1
WO2014121644A1 PCT/CN2013/090633 CN2013090633W WO2014121644A1 WO 2014121644 A1 WO2014121644 A1 WO 2014121644A1 CN 2013090633 W CN2013090633 W CN 2013090633W WO 2014121644 A1 WO2014121644 A1 WO 2014121644A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
microprocessor
grid current
electromagnetic field
detection
Prior art date
Application number
PCT/CN2013/090633
Other languages
English (en)
French (fr)
Inventor
童紫原
童敏明
董海波
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2014121644A1 publication Critical patent/WO2014121644A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity

Definitions

  • the invention relates to a method and a device for real-time monitoring of sparks, in particular to a method and a device for real-time monitoring of electrical fault sparks suitable for electrical fault diagnosis in industrial and mining enterprises or environmental safety monitoring with explosion hazard.
  • an electrical fault spark real-time monitoring device of the present invention comprises a microprocessor, and an input terminal of the microprocessor is respectively connected with a grid current a detection circuit, a correlation harmonic detection circuit and an electromagnetic field detection circuit, wherein the output end of the microprocessor is respectively connected with a display, an alarm circuit and a communication circuit; the grid current detection circuit is connected by a current transformer, a preamplifier and a low
  • the electromagnetic field detecting circuit comprises a plurality of detecting units, each detecting unit comprises a positioning antenna, a receiving circuit, an amplifier and an integrating sampler which are sequentially connected; the related harmonic detecting circuit comprises related signal processing The input end of the relevant signal processing circuit is respectively connected with a signal generating circuit and
  • the plurality of detecting units in the electromagnetic field detecting circuit are three, and three of the three detecting units point in different directions; the communication circuit is a wired or wireless communication circuit that accesses the monitoring network.
  • a method for real-time monitoring of electrical fault sparks using the above device the steps of which are:
  • the electromagnetic field detecting circuit detects the surrounding electromagnetic field, and sends the detection signal to the microprocessor.
  • the detection amplitude of the electromagnetic field received by the microprocessor suddenly increases, it is initially determined that an electric spark failure occurs;
  • the grid current detecting circuit detects the magnitude of the grid current, and sends the detection information to the microprocessor, and the microprocessor compares the grid current amplitude in the detection information with the set current amplitude to obtain a multiple of the grid current increase;
  • the harmonic detection circuit detects the third harmonic amplitude of the grid current and sends the detection information to the micro processing
  • the microprocessor compares the detection parameter of the third harmonic amplitude of the grid current with the set detection parameter to obtain a multiple of the third harmonic increase of the grid current;
  • the microprocessor compares the multiple of the grid current increase with the multiple of the third harmonic of the grid current. When the multiple of the grid current increases, the difference between the multiple of the grid current and the third harmonic of the grid current exceeds 0.5. The device judges that there is an open circuit in the power grid, and is accompanied by an electric spark failure;
  • the microprocessor compares the magnitudes of the electromagnetic field amplitudes of the plurality of electromagnetic field detecting units received, and the direction of the positioning antenna corresponding to the electromagnetic field detecting unit having the largest electromagnetic field value is the direction in which the spark fault occurs.
  • the present invention can not only monitor and discover electrical spark faults in time, but also ensure electrical safety, and is also beneficial for monitoring the safe environment of dangerous places, and is particularly suitable for monitoring the safety environment of coal mines. It can reliably monitor and discover the electrical faults that cause electrical sparks under the interference of electromagnetic waves and load changes, switching power supplies, etc., and can determine the location of the fault by positioning to avoid the impact caused by the sudden increase of the surrounding electrical load. , to achieve reliable monitoring of electrical sparks, to create conditions for the timely elimination of faults. It can solve the problem of real-time monitoring and positioning of electrical faults caused by poor contact, and its method is simple in structure, reliable in operation, good in monitoring effect, and has wide practicality.
  • Figure 1 is a block diagram showing the structure of the present invention
  • FIG. 2 is a block diagram showing the structure of a grid current detecting circuit of the present invention
  • FIG. 3 is a block diagram showing the structure of a related harmonic detecting circuit of the present invention.
  • Fig. 4 is a block diagram showing the structure of an electromagnetic field detecting circuit of the present invention.
  • the electrical fault spark real-time monitoring device of the present invention mainly comprises a grid current detecting circuit 1, a related harmonic detecting circuit 2, an electromagnetic field detecting circuit 3, a microprocessor 4, a display 5, an alarm circuit 6, and a communication circuit 7.
  • the output ends of the microprocessor 4 are connected, and the output ends of the microprocessor 4 are respectively connected to the display 5, the alarm circuit 6 and the input end of the communication circuit 7;
  • the microprocessor 4 uses the single chip microcomputer ATMEGA16, and has 8 A/D conversion circuits. , can meet the needs of multi-parameter detection.
  • the grid current detecting circuit 1 is composed of a current transformer 8 connected in series, a preamplifier 9 and a low pass filter 10;
  • the related harmonic detecting circuit 2 includes a correlation signal processing circuit 19, and the input terminals of the correlation signal processing circuit 19 are respectively connected with a signal generating circuit 18 and a band pass filter 17, which is a band pass filter 17.
  • the input terminal is connected with a preamplifier 16, the output of the preamplifier 16 is connected with a Hall current sensor 15;
  • the signal generating circuit 18 is an oscillating circuit, which generates a 150 Hz sinusoidal signal, and the related signal processing circuit 19 is a correlation function calculation circuit, With RE20-P, Hall current sensor 15 uses the sensor model CT2100LT.
  • the electromagnetic field detecting circuit 3 includes a plurality of detecting units, each detecting unit includes a positioning antenna 11, a receiving circuit 12, an amplifier 13 and an integrating sampler 14 which are sequentially connected; the electromagnetic field detecting circuit Three of the plurality of detecting units in the three pointing antennas 11 point in different directions; the communication circuit 7 is a wired or wireless communication circuit that accesses the monitoring network.
  • the electromagnetic field detecting circuit 3 detects the surrounding electromagnetic field, and sends a detection signal to the microprocessor 4. When the amplitude of the detection of the electromagnetic field received by the microprocessor 4 suddenly increases, it is initially determined that an electric spark failure occurs;
  • the grid current detecting circuit 1 detects the magnitude of the grid current, and sends the detection information to the microprocessor 4.
  • the microprocessor 4 compares the grid current amplitude in the detection information with the set current amplitude to obtain a multiple of the grid current increase. ;
  • the third harmonic amplitude of the grid current is detected by the relevant harmonic detecting circuit 2, and the detection information is sent to the microprocessor 4, and the microprocessor 4 compares the detection parameters set by the detection parameters of the third harmonic amplitude of the grid current to obtain a multiple of the third harmonic increase of the grid current;
  • the microprocessor compares the multiple of the increase in the current of the four grids with the multiple of the third harmonic of the grid current. When the multiple of the grid current increases, the difference between the multiple of the third harmonic of the grid current exceeds 0.5.
  • the processor 4 determines that an open circuit is generated in the power grid, and is accompanied by an electric spark failure;
  • the microprocessor 4 compares the magnitudes of the electromagnetic field amplitudes of the received plurality of electromagnetic field detecting units, and determines that the direction of the positioning antenna 11 corresponding to the electromagnetic field detecting unit having the largest electromagnetic field value is the direction in which the spark failure occurs.
  • the processor 4 sends the determination result to the buffer 5 for display, and the microprocessor 4 will report the failure information. It is sent to the equipment room control host through the communication circuit 7, and a fault alarm sound is emitted through the alarm circuit 6.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

一种电气故障火花实时监测方法及装置,装置由电网电流检测电路(1)、相关谐波检测电路(2)、电磁场检测电路(3)、微处理器(4)、显示器(5)、报警电路(6)和通信电路(7)构成。将电网电流检测电路(1)、相关谐波检测电路(2)和电磁场检测电路(3)的输出接微处理器(4)的输入端相连,通过电网电流的变化、谐波的分析和电磁场的信号,综合判断电气故障火花的发生;通过定位确定故障发生的位置,避免由于周围电器负荷突然增大产生的影响情况下,实现电器火花的可靠监测,为及时消除故障创造条件。能解决因接触不好产生火花的电气故障的实时监测定位问题,不仅能够及时监测和发现电气火花故障,保障电气安全,也有利于保障危险场所安全环境的监测,其方法结构简单,运行可靠,监测效果好。

Description

电气故障火花实时监测方法及装置
技术领域
本发明涉及一种火花实时监测方法及装置, 特别是一种适用于工矿企业中电气故障 诊断或者具有***危险性环境安全监测中的电气故障火花实时监测方法及装置。
技术背景
电气断路故障的诊断对于保障电气设备的安全运行具有重要意义。 目前尚无较好的 故障监测手段, 尤其是一些接触不好、 时断时合的电气故障, 不仅会影响电气设备的可 靠运行, 还会产生火花, 引爆易爆物质, 特别是矿井环境, 电气断路火花是引爆瓦斯的 重要因素。 因此, 实时监测电气故障火花是迫切需要解决的问题。
发明内容
技术问题: 本发明的目的是要克服已有技术中的不足之处, 提供一种方法结构简单、 使用方便、 效果好的电气故障火花实时监测方法及装置。 技术方案: 为实现上述目的, 本发明的电气故障火花实时监测装置, 1、 一种电气故 障火花实时监测装置, 其特征是: 它包括微处理器, 微处理器的输入端分别连接有电网 电流检测电路、 相关谐波检测电路和电磁场检测电路, 微处理器的输出端分别连接有显 示器、 报警电路和通信电路; 所述的电网电流检测电路由顺序连接的电流互感器、 前置 放大器和低通滤波器构成; 所述的电磁场检测电路包括多个检测单元, 每个检测单元包 括由顺序连接的定位天线、 接收电路、 放大器和积分取样器; 所述的相关谐波检测电路 包括相关信号处理电路, 相关信号处理电路的输入端分别连接有信号发生电路和带通滤 波器, 带通滤波器的输入端连接有前置放大器, 前置放大器的输出端连接有霍尔电流传 感器。
所述的电磁场检测电路中的多个检测单元为三个, 三个检测单元中的三个定位天线 指向不同的方向; 所述的通信电路为接入监测网络的有线或无线通信电路。
一种利用上述装置的电气故障火花实时监测方法, 其步骤为:
通过电磁场检测电路检测周围的电磁场, 将检测信号发送给微处理器, 当微处理器 接收到电磁场的检测幅度突然增大时, 则初步判断有电气火花故障发生;
通过电网电流检测电路检测电网电流的幅度, 并将检测信息发送给微处理器, 微处 理器将检测信息中的电网电流幅度与设定的电流幅度比较, 得到电网电流增大的倍数; 通过相关谐波检测电路检测电网电流的三次谐波幅度, 并将检测信息发送给微处理 器, 微处理器将电网电流的三次谐波幅度的检测参数与设定的检测参数比较, 得到电网 电流三次谐波增大的倍数;
微处理器将电网电流增大的倍数与电网电流三次谐波增大的倍数进行比较, 当电网 电流增大的倍数与电网电流三次谐波增大的倍数差值超过 0. 5,则微处理器判断电网中有 断路产生, 并伴随有电火花故障发生;
微处理器将所接收到的多个电磁场检测单元的电磁场幅度数值进行大小比较, 电磁 场数值最大的电磁场检测单元所对应的定位天线指向的方向为电火花故障发生的方位。
有益效果: 本发明不仅能够及时监测和发现电气火花故障, 保障电气安全, 也有利 于保障危险场所安全环境的监测, 特别适合煤矿安全环境的监测。 可以在抑制电磁波和 负载变化、 开关电源等的干扰情况下, 可靠监测和发现产生电气火花的电气故障, 并且 可以通过定位确定故障发生的位置,避免由于周围电器负荷突然增大产生的影响情况下, 实现电器火花的可靠监测, 为及时消除故障创造条件。 能解决因接触不好产生火花的电 气故障的实时监测定位问题, 其方法结构简单, 运行可靠, 监测效果好, 具有广泛的实 用性。
附图说明
图 1是本发明的原理结构框图;
图 2是本发明的电网电流检测电路结构框图;
图 3是本发明的相关谐波检测电路结构框图;
图 4是本发明的电磁场检测电路结构框图。
图中: 1、 电网电流检测电路; 2、 相关谐波检测电路; 3、 电磁场检测电路; 4、 微 处理器; 5、 显示器; 6、 报警电路; 7、 通信电路; 8、 电流互感器; 9、 前置放大器; 10 低通滤波器; 11定位天线; 12、 接收电路; 13、 放大器; 14、 积分取样器; 15霍尔电流 传感器; 16、 前置放大器; 17、 带通滤波器; 18、 信号发生电路; 19、 相关信号处理电 路。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
如图 1所示, 本发明的电气故障火花实时监测装置主要由电网电流检测电路 1、 相关 谐波检测电路 2、 电磁场检测电路 3、 微处理器 4、 显示器 5、 报警电路 6、 通信电路 7构成; 微处理器 4的输入端分别与电网电流检测电路 1、 相关谐波检测电路 2和电磁场检测电路 3 的输出端相连接, 微处理器 4的输出端分别与显示器 5、 报警电路 6和通信电路 7的输入端 相连接; 所述的微处理器 4采用单片机 ATMEGA16, 具有 8个 A/D转换电路, 可以满足多参数 检测的需要。
如图 2所示, 所述的电网电流检测电路 1由顺序连接的电流互感器 8、 前置放大器 9和 低通滤波器 10构成;
如图 3所示, 所述的相关谐波检测电路 2包括相关信号处理电路 19, 相关信号处理电 路 19的输入端分别连接有信号发生电路 18和带通滤波器 17, 带通滤波器 17的输入端连接 有前置放大器 16, 前置放大器 16的输出端连接有霍尔电流传感器 15; 信号发生电路 18是 振荡电路, 产生 150Hz的正弦信号, 相关信号处理电路 19为相关函数计算电路, 型号采用 RE20-P, 霍尔电流传感器 15选用型号为 CT2100LT的传感器。
如图 4所示, 所述的电磁场检测电路 3包括多个检测单元, 每个检测单元包括由顺序 连接的定位天线 11、 接收电路 12、 放大器 13和积分取样器 14; 所述的电磁场检测电路 3中 的多个检测单元中的三个定位天线 11指向不同的方向;所述的通信电路 7为接入监测网络 的有线或无线通信电路。
本发明的电气故障火花实时监测方法:
通过电磁场检测电路 3检测周围的电磁场, 将检测信号发送给微处理器 4, 当微处理 器 4接收到电磁场的检测幅度突然增大时, 则初步判断有电气火花故障发生;
通过电网电流检测电路 1检测电网电流的幅度, 并将检测信息发送给微处理器 4, 微 处理器 4将检测信息中的电网电流幅度与设定的电流幅度比较, 得到电网电流增大的倍 数;
通过相关谐波检测电路 2检测电网电流的三次谐波幅度,并将检测信息发送给微处理 器 4, 微处理器 4将电网电流的三次谐波幅度的检测参数设定的检测参数比较, 得到电网 电流三次谐波增大的倍数;
微处理器将 4电网电流增大的倍数与电网电流三次谐波增大的倍数进行比较, 当电网 电流增大的倍数与电网电流三次谐波增大的倍数差值超过 0. 5, 则微处理器 4判断电网中 有断路产生, 并伴随有电火花故障发生;
微处理器 4将所接收到的多个电磁场检测单元的电磁场幅度数值进行大小比较,从而 判断出电磁场数值最大的电磁场检测单元所对应的定位天线 11指向的方向为电火花故障 发生的方位, 微处理器 4将判断结果发送给 沄器 5显示出来, 并且微处理器 4将故障信息 通过通信电路 7发送给机房控制主机, 同时通过报警电路 6发出故障报警提示音。

Claims

权利要求书
1、 一种电气故障火花实时监测装置, 其特征是: 它包括微处理器, 微处理器的输入 端分别连接有电网电流检测电路、 相关谐波检测电路和电磁场检测电路, 微处理器的输 出端分别连接有显示器、 报警电路和通信电路; 所述的电网电流检测电路由顺序连接的 电流互感器、 前置放大器和低通滤波器构成; 所述的电磁场检测电路包括多个检测单 元, 每个检测单元包括由顺序连接的定位天线、 接收电路、 放大器和积分取样器; 所述 的相关谐波检测电路包括相关信号处理电路, 相关信号处理电路的输入端分别连接有信 号发生电路和带通滤波器, 带通滤波器的输入端连接有前置放大器, 前置放大器的输出 端连接有霍尔电流传感器。
2、 根据权利要求 1所述的电气故障火花实时监测装置, 其特征是: 所述的电磁场检 测电路中的多个检测单元为三个, 三个检测单元中的三个定位天线指向不同的方向。
3、 根据权利要求 1所述的电气故障火花实时监测装置, 其特征是: 所述的通信电路 为接入监测网络的有线或无线通信电路。
4、 一种利用权利要求 1、 2或 3所述装置的电气故障火花实时监测方法, 其特征是: 通过电磁场检测电路检测周围的电磁场, 将检测信号发送给微处理器, 当微处理器 接收到电磁场的检测幅度突然增大时, 则初步判断有电气火花故障发生;
通过电网电流检测电路检测电网电流的幅度, 并将检测信息发送给微处理器, 微处 理器将检测信息中的电网电流幅度与设定的电流幅度比较, 得到电网电流增大的倍数; 通过相关谐波检测电路检测电网电流的三次谐波幅度, 并将检测信息发送给微处理 器, 微处理器将电网电流的三次谐波幅度的检测参数与设定的检测参数比较, 得到电网 电流三次谐波增大的倍数;
微处理器将电网电流增大的倍数与电网电流三次谐波增大的倍数进行比较, 当电网 电流增大的倍数与电网电流三次谐波增大的倍数差值超过 0. 5, 则微处理器判断电网中有 断路产生, 并伴随有电火花故障发生;
微处理器将所接收到的多个电磁场检测单元的电磁场幅度数值进行大小比较, 电磁 场数值最大的电磁场检测单元所对应的定位天线指向的方向为电火花故障发生的方位。
PCT/CN2013/090633 2013-02-05 2013-12-27 电气故障火花实时监测方法及装置 WO2014121644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310047064.2A CN103123378B (zh) 2013-02-05 2013-02-05 电气故障火花实时监测方法及装置
CN201310047064.2 2013-02-05

Publications (1)

Publication Number Publication Date
WO2014121644A1 true WO2014121644A1 (zh) 2014-08-14

Family

ID=48454430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090633 WO2014121644A1 (zh) 2013-02-05 2013-12-27 电气故障火花实时监测方法及装置

Country Status (2)

Country Link
CN (1) CN103123378B (zh)
WO (1) WO2014121644A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123378B (zh) * 2013-02-05 2015-12-09 中国矿业大学 电气故障火花实时监测方法及装置
CN103913658A (zh) * 2014-03-28 2014-07-09 中国矿业大学 电器设备故障实时监测***
CN105242105A (zh) * 2015-10-29 2016-01-13 国网浙江省电力公司绍兴供电公司 分布式变电站电磁场强度及等电位电流监测***及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058134A (en) * 1992-02-25 2000-05-02 Toivonen; Lassi Method for measuring the electric quantities of an AC electric-arc furnace
CN101122626A (zh) * 2007-09-10 2008-02-13 西安福润德电子科技有限公司 故障电缆电流的应用方法及无噪声手持式电缆故障定点仪
CN101595767A (zh) * 2007-02-16 2009-12-02 Mks仪器有限公司 谐波导出的电弧探测器
CN101673934A (zh) * 2009-10-15 2010-03-17 王聪 串联电弧故障断路器及其串联电弧故障保护的方法
CN101706527A (zh) * 2009-10-30 2010-05-12 西安交通大学 基于电流高频分量时频特征的电弧故障检测方法
CN102066956A (zh) * 2008-04-14 2011-05-18 努沃尔特股份有限公司 电异常检测方法和***
CN102621377A (zh) * 2012-04-18 2012-08-01 天津市鸿远电气设备有限公司 故障电弧检测方法
CN103123378A (zh) * 2013-02-05 2013-05-29 中国矿业大学 电气故障火花实时监测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2328019Y (zh) * 1997-10-30 1999-07-07 宝山钢铁(集团)公司 一种整流子火花监测装置
JP3792888B2 (ja) * 1998-04-20 2006-07-05 株式会社東芝 電力系統の監視制御装置
CN101702507B (zh) * 2009-11-04 2012-05-30 清华大学 基于电火花动态监测与关断的本质安全防爆方法与装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058134A (en) * 1992-02-25 2000-05-02 Toivonen; Lassi Method for measuring the electric quantities of an AC electric-arc furnace
CN101595767A (zh) * 2007-02-16 2009-12-02 Mks仪器有限公司 谐波导出的电弧探测器
CN101122626A (zh) * 2007-09-10 2008-02-13 西安福润德电子科技有限公司 故障电缆电流的应用方法及无噪声手持式电缆故障定点仪
CN102066956A (zh) * 2008-04-14 2011-05-18 努沃尔特股份有限公司 电异常检测方法和***
CN101673934A (zh) * 2009-10-15 2010-03-17 王聪 串联电弧故障断路器及其串联电弧故障保护的方法
CN101706527A (zh) * 2009-10-30 2010-05-12 西安交通大学 基于电流高频分量时频特征的电弧故障检测方法
CN102621377A (zh) * 2012-04-18 2012-08-01 天津市鸿远电气设备有限公司 故障电弧检测方法
CN103123378A (zh) * 2013-02-05 2013-05-29 中国矿业大学 电气故障火花实时监测方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XU, JIE ET AL.: "Monitoring of electric sparks based on wavelet analysis", MINING & PROCESSING EQUIPMENT, vol. 40, no. 8, August 2012 (2012-08-01) *
XU, JIE ET AL.: "Monitoring of electric sparks based on wavelet analysis", MINING & PROCESSING EQUIPMENT, vol. 40, no. 8, August 2012 (2012-08-01), pages 108 - 112 *

Also Published As

Publication number Publication date
CN103123378A (zh) 2013-05-29
CN103123378B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN103149484B (zh) 一种换流器触发控制装置功能的检测方法
CN206301449U (zh) 智能用电安全预警监控器
CN103440727B (zh) 一种电气火灾预警方法和***
CN203241076U (zh) 一种分布式环网柜在线监测装置
CN207074246U (zh) 一种gis局部放电在线监测***
CN205539234U (zh) 避雷器性能监测***
CN201629021U (zh) 防火漏电监控装置
CN101233548A (zh) 用于电网和电气装置故障检测的方法和火灾报警设备
CN106249076A (zh) 受谐波负载影响下的配电变压器状态检测方法及***
US8488284B2 (en) Transformer failure analysis system
WO2014121644A1 (zh) 电气故障火花实时监测方法及装置
CN105675966A (zh) 一种基于差值计算方式的故障电弧检测方法及其保护装置
CN104345719A (zh) 一种基于物联网的危险源监控方法及***
CN109596956A (zh) 直流串联电弧检测方法及装置
CN106932022A (zh) 一种用于电厂的自动化控制***
CN204572525U (zh) 一种台式风扇保护装置
RU2254615C2 (ru) Способ предупреждения пожара от искрения в электрической сети или электроустановке и устройство для его осуществления
CN104188196A (zh) 一种高压预警绝缘手套
RU2571513C2 (ru) Способ предупреждения пожара от искрения в электрической сети или электроустановке и устройство для его осуществления
CN104241008A (zh) 一种真空断路器触头分合闸位置检测的方法与装置
CN204091072U (zh) 高压预警绝缘手套
CN209311585U (zh) 一种防雷在线监测装置
CN209514358U (zh) 一种带有水浸警报的用电安全动态监控***
CN204989378U (zh) 二次接线发热监测装置
CN206930732U (zh) 一种防漏电自动报警功能的电力电气配电安全检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WA Withdrawal of international application
122 Ep: pct application non-entry in european phase

Ref document number: 13874384

Country of ref document: EP

Kind code of ref document: A1