WO2014119782A1 - Buffer layer for organic thin film solar cells, and organic thin film solar cell - Google Patents

Buffer layer for organic thin film solar cells, and organic thin film solar cell Download PDF

Info

Publication number
WO2014119782A1
WO2014119782A1 PCT/JP2014/052432 JP2014052432W WO2014119782A1 WO 2014119782 A1 WO2014119782 A1 WO 2014119782A1 JP 2014052432 W JP2014052432 W JP 2014052432W WO 2014119782 A1 WO2014119782 A1 WO 2014119782A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film solar
organic thin
carbon atoms
thin film
Prior art date
Application number
PCT/JP2014/052432
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 大谷
彰治 森山
卓司 吉本
寿郎 大島
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2014559800A priority Critical patent/JP6648968B2/en
Publication of WO2014119782A1 publication Critical patent/WO2014119782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/41Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton
    • C07C309/43Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton having at least one of the sulfo groups bound to a carbon atom of a six-membered aromatic ring being part of a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/20Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups being part of rings other than six-membered aromatic rings
    • C07C251/22Quinone imines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a buffer layer for an organic thin film solar cell and an organic thin film solar cell.
  • An organic solar cell is a solar cell element using an organic substance as an active layer or a charge transport material.
  • Organic thin-film solar cells developed by Tan are well known (Non-Patent Documents 1 and 2). All are lightweight, thin film, flexible, roll-to-roll, and other features that are different from the current mainstream inorganic solar cells. Formation is expected.
  • organic thin-film solar cells hereinafter abbreviated as OPV
  • OPV organic thin-film solar cells
  • PCE photoelectric conversion efficiency
  • an OPV element can improve initial characteristics and life characteristics by forming a thin film called a buffer layer on an anode or a cathode as a base layer of an active layer and forming a laminated structure together with the active layer.
  • a polythiophene-based material called PEDOT / PSS is often used as the anode buffer layer (Non-patent Documents 3 and 4).
  • PEDOT / PSS it exhibits high corrosiveness to anode materials and coating devices, is likely to cause an electrical short circuit in an OPV element, which is an extremely thin film element, due to aggregates generated during storage, and an aqueous solvent. Since it is used, it is difficult to adjust the physical properties of the solution, and it may be difficult to produce a thin film having a uniform coating surface.
  • organic electroluminescence (hereinafter abbreviated as “organic EL”) elements and OPVs weight reduction and high performance have been demanded. And since it occupies most weight of the glass substrate of a transparent electrode, a battery, etc., the trial which uses the board
  • organic compounds are generally inferior in heat resistance to glass, when a substrate made of an organic compound is used, it is necessary to produce a charge transporting thin film at a lower temperature than in the past. The development of charge transporting thin films is strongly desired.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an organic thin film battery buffer layer that provides an organic thin film solar battery with high conversion efficiency, and an organic thin film sun having the same.
  • the inventors of the present invention have developed a charge transporting varnish containing an oligoaniline compound containing a quinoid moiety, an electron-accepting dopant material, and an organic solvent into an organic thin film solar cell. It was found that a buffer layer that gives an organic thin-film solar cell with high conversion efficiency can be formed by applying it on the anode of the battery or on any layer on the anode and baking it at 135 ° C. or lower. Completed the invention.
  • Either a charge transporting varnish comprising a charge transporting material comprising an oligoaniline compound represented by the formula (1), an electron accepting dopant material, and an organic solvent is either on the anode or on the anode of an organic thin film solar cell.
  • R 1 to R 19 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, aldehyde groups may be substituted with Z 1, an alkyl group having 1 to 20 carbon atoms, an alkenyl group or an alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms may be substituted with Z 2, carbon atoms An aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, —NHY 1 , —NY 2 Y 3 , —OY 4 , —SY 5 , —SO 3 Y 6 , —C (O) OY
  • R 1 is a hydrogen atom
  • R 2 and R 3 are each independently a hydrogen atom, a halogen atom, or an aryl having 6 to 20 carbon atoms in which Y 2 and Y 3 may be substituted with Z 2.
  • R 4 to R 19 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , or Y 4 1 or 2 of an organic thin film solar cell buffer layer, wherein —OY 4 is an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 ; 4).
  • the organic thin-film solar cell buffer layer of any one of 1 to 3, wherein m is 1 or 2, and n is 1; 5.
  • the organic thin film solar cell according to 4 wherein R 1 and R 4 to R 19 are hydrogen atoms, R 2 and R 3 are simultaneously hydrogen atoms or diphenylamino groups, m is 1 and n is 1.
  • Battery buffer layer 6).
  • X represents O
  • A represents a naphthalene ring or an anthracene ring
  • B represents a divalent to tetravalent perfluorobiphenyl group
  • l represents the number of sulfonic acid groups bonded to A.
  • q represents the number of bonds between B and X, and is an integer satisfying 2 to 4.
  • the buffer layer for organic thin film solar cells according to any one of 1 to 7, which is an anode buffer layer, 9.
  • An organic thin film solar cell comprising: a buffer layer for an organic thin film solar cell of any one of 1 to 8; and an active layer provided in contact therewith, 10. 9 organic thin-film solar cells in which the active layer contains a fullerene derivative, 11. 9 organic thin-film solar cells in which the active layer contains a polythiophene derivative, 12 9 organic thin-film solar cells in which the active layer contains a fullerene derivative and a polythiophene derivative, 13.
  • a charge transporting varnish comprising a charge transporting material comprising an oligoaniline compound represented by the formula (1), an electron accepting dopant material, and an organic solvent is used on either an anode or an anode of an organic thin film solar cell.
  • the buffer layer for an organic thin film solar cell of the present invention has a high hole transport property and can promote the p / n phase separation of the active layer to form an appropriate active layer structure.
  • the buffer layer for an organic thin film solar cell of the present invention is characterized by not only high heat resistance of the material itself but also low damage to moisture due to low hygroscopicity. . Therefore, it is possible to obtain an organic thin film solar cell having both excellent conversion efficiency and high durability by using the buffer layer for an organic thin film solar cell of the present invention.
  • the buffer layer for organic thin film solar cells of this invention can be manufactured at low temperature compared with the past, the manufacturing conditions of an organic thin film solar cell element can be made mild.
  • the present invention it is possible to apply a film substrate that contributes to reducing the weight, flexibility, and cost of the device, and it is also possible to apply an inexpensive film substrate such as PET.
  • the charge transportable varnish used by this invention can be prepared using various organic solvents, it can adjust and use liquid physical properties, such as the viscosity and surface tension, to suit various process conditions. Therefore, the buffer layer for an organic thin film solar cell of the present invention can be manufactured with good reproducibility even when various wet processes capable of forming a film on a large-area substrate such as a spin coating method and a slit coating method are used.
  • the buffer layer for an organic thin-film solar cell of the present invention comprises a charge transporting varnish containing a charge transporting material composed of an oligoaniline compound represented by the formula (1), an electron accepting dopant material, and an organic solvent. It is formed by coating on either the anode of the thin film solar cell or on the thin film on the anode and baking at 135 ° C. or lower.
  • the buffer layer for organic thin-film solar cells of the present invention is usually used as an anode buffer layer, but may be used as a cathode buffer layer.
  • the anode means the electrode on the side where holes mainly flow in the charge generated from the active layer
  • the cathode means the electrode on the side where electrons mainly flow in the charge generated from the active layer. means.
  • R 1 to R 19 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, or an aldehyde.
  • an alkyl group having 1 to 20 carbon atoms may be substituted with Z 1
  • an alkyl group having 1 to 20 carbon atoms may be substituted with Z 2
  • an alkyl group having ⁇ 20 or a heteroaryl group having 2 to 20 carbon atoms —NHY 1 , —NY 2 Y 3 , —OY 4 , —SY 5 , —SO 3 Y 6 , —C (O) OY 7 , or — C (O) Y 8 is represented.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n- C1-C20 chain alkyl groups such as hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl A cyclic alkyl group having 3 to 20 carbon atoms such as a group, cyclooctyl group, cyclo
  • alkenyl group having 2 to 20 carbon atoms examples include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3 -Butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, n-1-pentenyl Group, n-1-decenyl group, n-1-eicocenyl group and the like.
  • alkynyl group having 2 to 20 carbon atoms examples include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, n-3-butynyl group, -Methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n-4-pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n -Butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl, n-1-decynyl group, n-1-pentadecynyl group, n-1-eicosinyl group Etc.
  • aryl group having 6 to 20 carbon atoms examples include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3 -Phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • heteroaryl group having 2 to 20 carbon atoms examples include 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-imidazolyl, 4-imidazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl group and the like.
  • —NHY 1 is a group in which one of the hydrogen atoms of the amino group (—NH 2 ) is substituted with Y 1
  • —NY 2 Y 3 is a group in which the hydrogen atom of the amino group (—NH 2 ) is Y 2 and Y 3 -OY 4 is a group in which a hydrogen atom of a hydroxyl group (-OH) is substituted with Y 4
  • -SY 5 is a group in which a hydrogen atom of a thiol group (-SH) is substituted with Y 5
  • SO 3 Y 6 is a group in which a hydrogen atom of a sulfonic acid group (—SO 3 H) is substituted with Y 6
  • —C (O) OY 7 is a hydrogen atom in a carboxyl group (—COOH).
  • a group in which an atom is substituted with Y 7 , and —C (O) Y 8 represents a group in which a hydrogen atom of an aldehyde group (—C (O) H) is substituted with Y 8 , respectively.
  • Y 1 to Y 8 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1
  • Z 2 represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with 2
  • an alkyl group, an alkenyl group, an alkynyl group, an aryl group and a heteroaryl group having Y 1 to Y 8 The same as those mentioned above.
  • R 1 is a hydrogen atom
  • R 2 and R 3 may each independently be a hydrogen atom, a halogen atom, or Y 2 and Y 3 may be substituted with Z 2.
  • —NY 2 Y 3 which is an aryl group having 6 to 20 carbon atoms
  • R 4 to R 19 are each independently a hydrogen atom, a halogen atom, or a carbon atom having 1 to 20 carbon atoms which may be substituted with Z 1
  • An alkyl group or —OY 4 which is an alkyl group having 1 to 20 carbon atoms which Y 4 may be substituted with Z 1 is preferable
  • R 1 is a hydrogen atom
  • R 2 and R 3 are respectively Independently a hydrogen atom, a fluorine atom, or a diphenylamino group
  • R 4 to R 19 are each independently a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 20 carbon atoms that may be substituted with fluorine.
  • the alkyl group, alkenyl group and alkynyl group of R 1 to R 19 and Y 1 to Y 8 are a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, and a phosphate group.
  • Z 1 is a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 20 carbon atoms that may be substituted with Z 3.
  • it is preferably a halogen atom or a phenyl group which may be substituted with Z 3 , and more preferably not present (that is, R 1 to R 19 and Y 1 to Y 8 are unsubstituted).
  • Z 2 is preferably a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 3 , and may be substituted with a halogen atom or Z 3. It is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably absent (that is, R 1 to R 19 and Y 1 to Y 8 are unsubstituted).
  • Z 3 is preferably a halogen atom, more preferably fluorine, and even more preferably not present (that is, Z 1 and Z 2 are unsubstituted).
  • n and n are each independently an integer of 1 or more and satisfy m + 2n ⁇ 20.
  • m is preferably 1 to 2
  • n is preferably 1 to 4
  • m is 1 or More preferably, n is 1 to 3, and m is 1, and n is even more preferable.
  • a compound containing an oxidized oligoaniline structure represented by the formula (3) is particularly suitable.
  • R 1 to R 19 have the same meaning as described above.
  • part which exists in the compound containing the oligoaniline structure of this invention exists in the arbitrary positions of structural formula by tautomerism.
  • the compound represented by the formula (1) is such that R 1 to R 19 are all hydrogen atoms, m is 2, and n is 1, the compound represented by the formula (4) And (5) are meant to be included.
  • the charge transporting varnish containing such an oligoaniline compound does not mean that only one tautomer is included, but means that one or two or more tautomers can be included. .
  • the molecular weight of the oligoaniline compound represented by the formula (1) is not particularly limited. However, in consideration of increasing the solubility of the oligoaniline compound in an organic solvent, the upper limit is usually 5000 or less, preferably 2000. It is as follows. In the present invention, an oligoaniline compound having no molecular weight distribution (dispersity of 1) is preferred. In addition, molecular weight distribution says the measured value by gel permeation chromatography (polystyrene conversion).
  • the electron-accepting dopant material which is the other component contained in the charge transporting varnish used in the present invention is not particularly limited as long as it is soluble in at least one solvent used for the charge transporting varnish.
  • the electron-accepting dopant material include inorganic strong acids such as hydrogen chloride, sulfuric acid, nitric acid and phosphoric acid; aluminum chloride (III) (AlCl 3 ), titanium tetrachloride (IV) (TiCl 4 ), boron tribromide (BBr 3 ), boron trifluoride ether complex (BF 3 ⁇ OEt 2 ), iron chloride (III) (FeCl 3 ), copper (II) chloride (CuCl 2 ), antimony pentachloride (V) (SbCl 5 ), Lewis acids such as arsenic pentafluoride (V) (AsF 5 ), phosphorus pentafluoride (PF 5 ), tris (4-bromophenyl) aluminum hexachloroantimonate (TBPAH); benzenesulfonic acid, tosylic acid, camphorsulfonic acid Hydroxybenzenesulfonic acid, 5-sulfo
  • aryl sulfonic acid compounds particularly aryl sulfonic acid compounds represented by the formula (2)
  • heteropoly acid compounds particularly phosphomolybdic acid and phosphotungstic acid are suitable.
  • X represents O
  • A represents a naphthalene ring or an anthracene ring
  • B represents a divalent to tetravalent perfluorobiphenyl group
  • l represents the number of sulfonic acid groups bonded to A.
  • arylsulfonic acid compounds examples include the following compounds (formula (6)).
  • the preferred combination of the charge transporting substance and the electron accepting dopant substance is an oligoaniline compound represented by the formula (1), preferably an oligoaniline compound represented by the formula (3), and an aryl.
  • a sulfonic acid compound preferably an aryl sulfonic acid compound represented by formula (2), more preferably an aryl sulfonic acid compound represented by formula (6).
  • organic solvent used for the preparation of the charge transporting varnish a highly soluble solvent capable of satisfactorily dissolving the oligoaniline compound and the electron-accepting dopant substance can be used.
  • Highly soluble solvents can be used singly or in combination of two or more, and the amount used can be 5-100% by mass with respect to the total solvent used in the varnish.
  • Examples of such highly soluble solvents include N-methylformamide (183 ° C.), N, N-dimethylformamide (153 ° C.), N, N-diethylformamide (178 ° C.), N-methylacetamide (206 ° C.). ), N, N-dimethylacetamide (166 ° C.), N-methylpyrrolidone (202 ° C.), 1,3-dimethyl-2-imidazolidinone (225 ° C.), and the like.
  • the value in parentheses is the boiling point of the solvent under 1.01 ⁇ 10 5 Pa (atmospheric pressure) (the same applies hereinafter).
  • N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylacetamide, and N, N-dimethylacetamide are preferred, and N, N-dimethylacetamide is more preferred. preferable.
  • both the charge transporting substance and the electron-accepting dopant substance are completely dissolved or uniformly dispersed in the organic solvent to give an organic thin film solar cell with high conversion efficiency.
  • these substances are completely dissolved in the organic solvent.
  • the charge transporting varnish used in the present invention has a viscosity of 10 to 200 mPa ⁇ s at 25 ° C., particularly 35 to 150 mPa ⁇ s, and a high viscosity organic solvent having a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure. It is preferable to contain at least one kind.
  • the high-viscosity organic solvent is not particularly limited.
  • cyclohexanol (161 ° C.), ethylene glycol (198 ° C.), 1,3-octylene glycol (245 ° C.), diethylene glycol (245 ° C.), dipropylene Glycol (138 ° C), triethylene glycol (166 ° C), tripropylene glycol (268 ° C), 1,3-butanediol (207 ° C), 2,3-butanediol (182 ° C), 1,4-butanediol (230 ° C.), propylene glycol (107 ° C.), hexylene glycol (198 ° C.), and the like.
  • the addition ratio of the high-viscosity organic solvent to the whole solvent used in the varnish is preferably within a range where no solid precipitates, and the addition ratio is preferably 5 to 80% by mass as long as no solid precipitates. .
  • adjusting the surface tension of the solvent, adjusting the polarity, adjusting the boiling point, etc. 1 to 90% by mass, preferably 1 to 50% by mass, can be mixed.
  • Examples of such a solvent include butyl cellosolve (171 ° C.), diethylene glycol diethyl ether (187 ° C.), diethylene glycol dimethyl ether (162 ° C.), diethylene glycol monoethyl ether acetate (217 ° C.), diethylene glycol monobutyl ether acetate (247 ° C.), diethylene glycol Propylene glycol monomethyl ether (189 ° C), propylene glycol monomethyl ether (120 ° C), propylene glycol monomethyl ether acetate (146 ° C), ethyl carbitol (202 ° C), diacetone alcohol (166 ° C), ⁇ -butyrolactone (204 ° C) ), Ethyl lactate (154 ° C.), n-hexyl acetate (169 ° C.) and the like, but are not limited thereto.
  • the boiling point of the organic solvent contained in the charge transporting varnish is not particularly limited, but it is included in the charge transporting varnish in consideration of obtaining a buffer layer that gives an organic thin film solar cell with high conversion efficiency with good reproducibility.
  • the boiling point of all organic solvents is preferably 200 ° C. or lower, more preferably 190 ° C. or lower.
  • the solid content concentration of the charge transporting varnish used in the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish and the thickness of the thin film to be produced. It is about 0% by mass, preferably 0.5 to 5.0% by mass, more preferably 1.0 to 3.0% by mass.
  • the substance amount (mol) ratio between the charge transporting substance and the electron-accepting dopant substance is also appropriately set in consideration of the type of charge transporting property, charge transporting substance, etc. that are expressed.
  • the electron-accepting dopant material is 0.1 to 10, preferably 0.5 to 5.0, more preferably 1.0 to 3.0.
  • the viscosity of the charge transporting varnish used in the present invention is appropriately adjusted according to the coating method in consideration of the thickness of the thin film to be produced and the solid content concentration, but is usually 0.1 mPa ⁇ s to about 50 mPa ⁇ s.
  • the charge transporting material, the electron accepting dopant material, and the organic solvent can be mixed in any order as long as the solid content is uniformly dissolved or dispersed in the solvent. That is, for example, after dissolving an oligoariin compound in an organic solvent, an electron-accepting dopant substance is dissolved in the solution. After dissolving an electron-accepting dopant substance in an organic solvent, the oligoaniline compound is dissolved in the solution. Any method that mixes an oligoaniline compound and an electron-accepting dopant substance and then dissolves the mixture in an organic solvent is used as long as the solid content is uniformly dissolved or dispersed in the organic solvent. be able to.
  • varnish preparation is usually performed in an inert gas atmosphere at normal temperature and pressure, but in an air atmosphere (in the presence of oxygen) unless the compounds in the varnish are decomposed or the composition changes significantly. It may be performed while heating.
  • the method for applying the above-described charge transporting varnish on the thin film on the anode or on the anode of the organic thin film solar cell is not particularly limited.
  • Specific examples of any thin film on the anode include an anode buffer layer, an active layer, a carrier block layer, and the like.
  • the film thickness is not particularly limited, but is preferably about 5 to 200 nm when used as an anode buffer layer of an organic thin film solar cell.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish or changing the amount of the solution at the time of application.
  • the buffer layer for an organic thin-film solar cell of the present invention is formed by baking the charge transporting varnish applied according to the above method at 135 ° C. or lower.
  • the temperature at the time of baking means the temperature at the time of applying heat to the coated varnish from the outside.
  • baking at 135 ° C. is 135 when a hot plate is used. It means that a varnish is subjected to a heat treatment at 135 ° C. by placing a substrate coated with the varnish on a plate set at ° C. for a certain period of time.
  • the upper limit of the firing temperature of the present invention is 135 ° C.
  • the upper limit of the firing temperature is preferably 130 ° C. or less, more preferably 125 ° C. or less, even more preferably 120 ° C. or less, considering that a buffer layer that gives an organic thin film solar cell with high conversion efficiency can be obtained with good reproducibility. It is.
  • the lower limit of the firing temperature is appropriately determined in consideration of the type and concentration of solids such as a charge transporting material and an electron-accepting dopant material, as well as varnish coating conditions and desired film thickness. Therefore, it cannot be generally specified, but it is usually 40 ° C. or higher, preferably 50 ° C. or higher.
  • an appropriate apparatus may be used in consideration of the size and shape of the element to be heated, and specific examples thereof include a hot plate and an oven.
  • the temperature may be changed in two or more steps for the purpose of exhibiting a higher uniform film forming property or allowing the reaction to proceed after coating within a range where the baking temperature does not exceed 135 ° C.
  • the buffer layer for organic thin film solar cells of the present invention is particularly suitable for an anode buffer layer used by being directly laminated on the anode of an organic thin film solar cell. Since the buffer layer for an organic thin film solar cell of the present invention can contribute to the improvement of charge transportability in the device, an organic thin film solar cell with high conversion efficiency can be realized by using this as an anode buffer layer of the organic thin film solar cell. .
  • an organic thin film solar cell having the buffer layer for an organic thin film solar cell of the present invention as an anode buffer layer will be described, but the present invention is not limited thereto.
  • Formation of anode layer A step of forming a layer of anode material on the surface of the transparent substrate to produce a transparent electrode.
  • the anode material metal oxide such as indium tin oxide (ITO) and indium zinc oxide (IZO) is used. And high charge transporting organic compounds such as polythiophene derivatives and polyaniline derivatives can be used.
  • the transparent substrate a substrate made of glass or transparent resin can be used.
  • the method for forming the anode material layer (anode layer) is appropriately selected according to the properties of the anode material, and is usually a dry process using a sublimation compound (evaporation method) or a wet process using a varnish containing a charge transporting compound. Either process (especially spin coating or slit coating) is employed.
  • the manufacturing method of the organic thin-film solar cell of this invention does not include the process of forming an anode layer.
  • the transparent electrode to be used is preferably used after being washed with a detergent, alcohol, pure water or the like.
  • the anode substrate is preferably subjected to a surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use (when the anode material is mainly composed of an organic substance, the surface treatment may not be performed).
  • Step of forming an anode buffer layer on the formed anode material layer Step of forming an anode buffer layer on the formed anode material layer According to the above method, the buffer layer of the present invention is formed on the anode material layer.
  • the active layer includes an n layer which is a thin film made of an n-type semiconductor material, and a p layer which is a thin film made of a p-type semiconductor material. Or a non-laminated thin film made of a mixture of these materials.
  • n-type semiconductor materials include fullerene, [6,6] -phenyl-C 61 -butyric acid methyl ester (PC 61 BM), [6,6] -phenyl-C 71 -butyric acid methyl ester (PC 71 BM), and the like. Can be mentioned.
  • the p-type semiconductor material is described in regioregular poly (3-hexylthiophene) (P3HT), PTB7 represented by the following formula, JP 2009-158921 A and International Publication No. 2010/008672.
  • Examples thereof include polymers having a thiophene skeleton in the main chain, such as thienothiophene unit-containing polymers, phthalocyanines such as CuPC and ZnPC, and porphyrins such as tetrabenzoporphyrin.
  • thiophene skeleton in the main chain refers to a divalent aromatic ring composed solely of thiophene, or thienothiophene, benzothiophene, dibenzothiophene, benzodithiophene, naphthothiophene, naphthodithiophene, anthrathiophene, anthracodi. It represents a divalent fused aromatic ring containing one or more thiophenes such as thiophene, and these may be substituted with a substituent represented by R 1 to R 8 above.
  • the formation method of the active layer is appropriately selected according to the properties of the n-type semiconductor or the p-type semiconductor material, and is usually a dry process using a sublimation compound (particularly vapor deposition method) or a wet process using a varnish containing a material ( In particular, either a spin coat method or a slit coat method is employed.
  • Step of forming a cathode buffer layer on the formed active layer A cathode buffer between the active layer and the cathode layer for the purpose of improving the efficiency of charge transfer, if necessary.
  • a layer may be formed.
  • Materials for forming the cathode buffer layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), magnesium fluoride (MgF 2 ), and strontium fluoride. (SrF 2 ) and the like.
  • the formation method of the cathode buffer layer is appropriately selected according to the properties of the material, and is usually a dry process using a sublimation compound (particularly vapor deposition method) or a wet process using a varnish containing the material (particularly spin coating method). Or slit coat method) is employed.
  • Step of forming a cathode layer on the formed cathode buffer layer As cathode materials, aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium, calcium, barium Silver, gold and the like, and a plurality of cathode materials can be laminated or mixed for use.
  • the method for forming the cathode layer is appropriately selected according to the properties of the material, but usually a dry process (especially vapor deposition) is employed.
  • a carrier block layer may be provided between arbitrary layers for the purpose of controlling photocurrent rectification.
  • the material for forming the carrier block layer include titanium oxide, zinc oxide, bathocuproine (BCP) and the like.
  • the method for forming the carrier block layer is appropriately selected according to the properties of the material. Usually, the vapor deposition method is used when a sublimation compound is used, and the spin coating method or the slit coating method is used when a varnish in which the material is dissolved is used. Either one is adopted.
  • the OPV device manufactured by the method exemplified above is again introduced into the glove box and sealed in an inert gas atmosphere such as nitrogen in order to prevent device deterioration due to the atmosphere.
  • the function as a solar cell can be exhibited, or the solar cell characteristics can be measured.
  • a sealing method a concave glass substrate with a UV curable resin attached to the end is attached to the film forming surface side of the organic thin film solar cell element in an inert gas atmosphere, and the resin is cured by UV irradiation. Examples of the method include performing a film sealing type sealing by a technique such as sputtering under vacuum.
  • Glove box Sanpachi Bussan Co., Ltd., VAC glove box system
  • Deposition equipment Aoyama Engineering Co., Ltd., vacuum deposition equipment
  • Solar simulator Spectrometer Co., Ltd., OTENTOUN-III AM1.5G filter, radiation intensity: 100 mW / cm 2
  • Source measure unit 2612A, manufactured by Keithley Instruments Co., Ltd.
  • oligoaniline compound B2 An oligoaniline compound represented by the formula (1-2) (hereinafter also referred to as oligoaniline compound B2) was synthesized according to the following reaction formula based on the description in WO2010 / 058777. The measurement results of the obtained oligoaniline compound by 1 H-NMR and mass spectrometry are shown below.
  • 1 H-NMR 300 MHz, DMSO-d6): ⁇ 5.75 (1H, s, NH), 6.8-7.4 (36H, m, Ar—H) (mixture of E and Z forms)
  • PEDOT / PSS (Clevios P VP AI4083 manufactured by Heraeus) was dispersed with ultrasonic waves and filtered through a syringe filter having a pore diameter of 0.45 ⁇ m to obtain a charge transporting varnish C4.
  • buffer layer and organic thin film solar cell [Example 1] A glass substrate of 25 mm ⁇ 25 mm obtained by patterning an ITO transparent conductive layer serving as a positive electrode into a 2 mm ⁇ 25 mm stripe pattern was subjected to UV / ozone treatment for 30 minutes, and then the charge transporting varnish C1 prepared on the substrate was applied by spin coating. The applied charge transporting varnish was heated at 50 ° C. for 15 minutes using a hot plate (manufactured by ASONE Co., Ltd., model number TH-900) to form a buffer layer having a thickness of 30 nm.
  • a hot plate manufactured by ASONE Co., Ltd., model number TH-900
  • the active layer composition D1 was dropped on the formed buffer layer, and an active layer having a thickness of 90 nm was formed by a spin coating method.
  • the substrate on which the organic semiconductor layer is formed and the mask for the cathode are placed in a vacuum deposition apparatus, and the exhaust is exhausted again until the degree of vacuum in the apparatus becomes 1 ⁇ 10 ⁇ 3 Pa or less.
  • An aluminum layer serving as a negative electrode was deposited to a thickness of 100 nm.
  • an OPV element having an area where the stripe-shaped ITO layer and the aluminum layer intersect with each other was 2 mm ⁇ 2 mm was manufactured.
  • Example 2 instead of heating at 50 ° C. for 15 minutes, an OPV device was fabricated in the same manner as in Example 1, except that heating was performed at 50 ° C. for 5 minutes and further heating was performed at 80 ° C. for 10 minutes.
  • Examples 3 and 4 instead of heating at 80 ° C. for 10 minutes, an OPV element was fabricated in the same manner as in Example 2 except that heating was performed at 120 ° C. and 130 ° C. for 10 minutes, respectively.
  • Example 5 An OPV device was produced in the same manner as in Example 3 except that instead of the charge transporting varnish C1, charge transporting varnishes C2 and C3 were used, respectively.
  • Example 7 After using the charge transporting varnish C2 instead of the charge transporting varnish C1 and the active layer composition D2 instead of the active layer composition D1, heating at 50 ° C for 5 minutes instead of heating at 50 ° C for 15 minutes An OPV element was fabricated in the same manner as in Example 1 except that the film was further heated at 120 ° C. for 10 minutes.
  • Example 8 An OPV device was produced in the same manner as in Example 7 except that the charge transporting varnish C3 was used instead of the charge transporting varnish C2.
  • the elements (Examples 1 to 6) having a firing temperature of 135 ° C. or less at the time of forming the thin film had higher conversion efficiency than the elements having a firing temperature exceeding 135 ° C. (Comparative Examples 1 to 3).
  • the characteristics of the device after being stored for a long time in a dark place, that is, the lifetime characteristics of the device were also better than those of the device using PEDOT / PSS.
  • the conversion efficiency of the element having the buffer layer baked at 125 ° C. or less was a high value of 3.3% or more (Examples 1 to 3, 5, and 6).
  • the device (Example 7) having a firing temperature of 135 ° C. or lower during the production of the thin film showed higher conversion efficiency than the device (Comparative Example 5) having a firing temperature exceeding 135 ° C.
  • the conversion efficiency of the OPV device (Example 8) produced using the charge transporting varnish C3 containing phosphotungstic acid n-hydrate showed a higher value (5.5%).

Abstract

An organic thin film solar cell having high photoelectric conversion efficiency can be obtained by using a buffer layer for organic thin film solar cells, said buffer layer being formed by applying a charge-transporting varnish, which contains a charge-transporting material that is composed of an oligoaniline compound represented, for example, by formula (3), an electron-accepting dopant material and an organic solvent, onto a positive electrode of the organic thin film solar cell or any thin film on the positive electrode and by firing the varnish at 135°C or less. (In the formula, each of R1-R19 independently represents a hydrogen atom or the like.)

Description

有機薄膜太陽電池用バッファ層及び有機薄膜太陽電池Buffer layer for organic thin film solar cell and organic thin film solar cell
 本発明は、有機薄膜太陽電池用バッファ層及び有機薄膜太陽電池に関する。 The present invention relates to a buffer layer for an organic thin film solar cell and an organic thin film solar cell.
 有機太陽電池は、活性層や電荷輸送物質に有機物を使用した太陽電池素子であり、M.グレッツェルによって開発された色素増感太陽電池と、C.W.タンによって開発された有機薄膜太陽電池とがよく知られている(非特許文献1及び2)。
 いずれも軽量・薄膜で、フレキシブル化可能である点、ロール・トゥ・ロールでの生産が可能である点など、現在主流の無機系太陽電池とは異なる特長を持っていることから、新たな市場形成が期待されている。
 なかでも、有機薄膜太陽電池(以下OPVと略す)は、電解質フリー、重金属化合物フリー等の特長を持つうえに、最近、UCLAらのグループによって光電変換効率(以下PCEと略す)10.6%の報告がなされたことなどの理由から、大きな注目を集めている(非特許文献3)。
An organic solar cell is a solar cell element using an organic substance as an active layer or a charge transport material. A dye-sensitized solar cell developed by Gretzell; W. Organic thin-film solar cells developed by Tan are well known (Non-Patent Documents 1 and 2).
All are lightweight, thin film, flexible, roll-to-roll, and other features that are different from the current mainstream inorganic solar cells. Formation is expected.
In particular, organic thin-film solar cells (hereinafter abbreviated as OPV) have features such as electrolyte-free and heavy metal compound-free, and recently, a group of UCLA et al. Has achieved a photoelectric conversion efficiency (hereinafter abbreviated as PCE) of 10.6%. It has attracted a great deal of attention because it has been reported (Non-Patent Document 3).
 OPV素子は、活性層の下地層としてバッファ層と呼ばれる薄膜を陽極あるいは陰極上に形成し、活性層とともに積層構造とすることで初期特性や寿命特性を向上できることがよく知られている。陽極バッファ層としては特にPEDOT/PSSと呼ばれるポリチオフェン系材料がよく用いられている(非特許文献3及び4)。
 しかし、PEDOT/PSSについては、陽極材料や塗布装置に対する高腐食性を示すこと、保存時に生成する凝集物に起因して極薄膜素子であるOPV素子に電気短絡を発生させやすいこと、水系溶媒を使用するため溶液物性の調整が難しく、均一な塗膜面の薄膜の製造が難しい場合があること等、実用面において多くの課題がある。
It is well known that an OPV element can improve initial characteristics and life characteristics by forming a thin film called a buffer layer on an anode or a cathode as a base layer of an active layer and forming a laminated structure together with the active layer. In particular, a polythiophene-based material called PEDOT / PSS is often used as the anode buffer layer (Non-patent Documents 3 and 4).
However, for PEDOT / PSS, it exhibits high corrosiveness to anode materials and coating devices, is likely to cause an electrical short circuit in an OPV element, which is an extremely thin film element, due to aggregates generated during storage, and an aqueous solvent. Since it is used, it is difficult to adjust the physical properties of the solution, and it may be difficult to produce a thin film having a uniform coating surface.
 他方、近年、有機エレクトロルミネッセンス(以下有機ELと略す)素子やOPV等の分野においても、軽量化や高性能化が求められている。そして、透明電極のガラス基板や電池等の重さの大半を占めていることから、従来のガラスに代わり、より軽い、有機化合物からなる基板を使用する試みがなされている。しかし、一般に有機化合物はガラスよりも耐熱性に劣るため、有機化合物からなる基板を用いる場合、従来よりも低い温度で電荷輸送性薄膜を作製する必要があることから、低温焼成条件によって作製される電荷輸送性薄膜の開発が強く望まれている。 On the other hand, in recent years, in the fields of organic electroluminescence (hereinafter abbreviated as “organic EL”) elements and OPVs, weight reduction and high performance have been demanded. And since it occupies most weight of the glass substrate of a transparent electrode, a battery, etc., the trial which uses the board | substrate which consists of a lighter organic compound instead of the conventional glass is made | formed. However, since organic compounds are generally inferior in heat resistance to glass, when a substrate made of an organic compound is used, it is necessary to produce a charge transporting thin film at a lower temperature than in the past. The development of charge transporting thin films is strongly desired.
 この点、発明者らは、欠陥、凹凸の発生が抑制された電荷輸送性薄膜を低温焼成条件下で作製可能な電荷輸送性ワニス、及びこのワニスから得られる薄膜が優れたEL特性を有することを報告しているが(特許文献1及び2)、このような電荷輸送性薄膜をOPVに用いた場合、十分な光電変換効率を得られないことがあり、その点で改善の余地があった。 In this regard, the inventors have shown that a charge-transporting varnish capable of producing a charge-transporting thin film in which generation of defects and irregularities is suppressed under low-temperature firing conditions, and a thin film obtained from this varnish has excellent EL characteristics. (Patent Documents 1 and 2), however, when such a charge transporting thin film is used for OPV, sufficient photoelectric conversion efficiency may not be obtained, and there is room for improvement in that respect. .
国際公開2004/105446号International Publication No. 2004/105446 国際公開2008/010474号International Publication No. 2008/010474
 本発明は、上記事情に鑑みてなされたものであり、高変換効率の有機薄膜太陽電池を与える有機薄膜電池用バッファ層、及びこれを有する有機薄膜太陽を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an organic thin film battery buffer layer that provides an organic thin film solar battery with high conversion efficiency, and an organic thin film sun having the same.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、キノイド部位を含むオリゴアニリン化合物と、電子受容性ドーパント物質と、有機溶媒とを含む電荷輸送性ワニスを、有機薄膜太陽電池の陽極上または陽極上のいずれかの層上に塗布し、これを135℃以下で焼成することによって、高変換効率の有機薄膜太陽電池を与えるバッファ層を形成可能であることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the inventors of the present invention have developed a charge transporting varnish containing an oligoaniline compound containing a quinoid moiety, an electron-accepting dopant material, and an organic solvent into an organic thin film solar cell. It was found that a buffer layer that gives an organic thin-film solar cell with high conversion efficiency can be formed by applying it on the anode of the battery or on any layer on the anode and baking it at 135 ° C. or lower. Completed the invention.
 すなわち、本発明は、
1. 式(1)で表されるオリゴアニリン化合物からなる電荷輸送性物質と、電子受容性ドーパント物質と、有機溶媒とを含む電荷輸送性ワニスを、有機薄膜太陽電池の陽極上又は陽極上のいずれかの薄膜上に塗布し、135℃以下で焼成して形成されることを特徴とする、有機薄膜太陽電池用バッファ層、
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R1~R19は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、水酸基、チオール基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、Z1で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY1、-NY23、-OY4、-SY5、-SO36、-C(O)OY7、又は-C(O)Y8を表し、Y1~Y8は、それぞれ独立して、Z1で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、又はZ2で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z1は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、又はZ3で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Z2は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、又はZ3で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、Z3は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基又はアルデヒド基を表し、m及びnは、それぞれ独立して、1以上の整数であり、かつ、m+2n≦20を満足し、キノイド部分は互変異性により構造式の任意の位置に存在する。)
2. 125℃以下で焼成して形成される1の有機薄膜太陽電池用バッファ層、
3. 前記R1が水素原子であり、前記R2及びR3が、それぞれ独立して、水素原子、ハロゲン原子、又はY2及びY3がZ2で置換されてもよい炭素数6~20のアリール基である-NY23であり、前記R4~R19が、それぞれ独立して、水素原子、ハロゲン原子、Z1で置換されてもよい炭素数1~20のアルキル基、又はY4がZ1で置換されてもよい炭素数1~20のアルキル基である-OY4である1又は2の有機薄膜太陽電池用バッファ層、
4. 前記mが1又は2であり、前記nが1である1~3のいずれかの有機薄膜太陽電池用バッファ層、
5. 前記R1及びR4~R19が水素原子であり、前記R2及びR3が同時に水素原子又はジフェニルアミノ基であり、前記mが1であり、前記nが1である4の有機薄膜太陽電池用バッファ層、
6. 前記電子受容性ドーパント物質が、アリールスルホン酸化合物である1~5のいずれかの有機薄膜太陽電池用バッファ層、
7. 前記アリールスルホン酸化合物が、式(2)で表されるアリールスルホン酸化合物である6の有機薄膜太陽電池用バッファ層、
Figure JPOXMLDOC01-appb-C000004
(式(2)中、Xは、Oを表し、Aは、ナフタレン環又はアントラセン環を表し、Bは、2~4価のパーフルオロビフェニル基を表し、lは、Aに結合するスルホン酸基数を表し、1≦l≦4を満たす整数であり、qは、BとXとの結合数を示し、2~4を満たす整数である。)
8. 陽極バッファ層である1~7のいずれかの有機薄膜太陽電池用バッファ層、
9. 1~8のいずれかの有機薄膜太陽電池用バッファ層と、それに接するように設けられた活性層とを有する有機薄膜太陽電池、
10.前記活性層が、フラーレン誘導体を含む9の有機薄膜太陽電池、
11.前記活性層が、ポリチオフェン誘導体を含む9の有機薄膜太陽電池、
12.前記活性層が、フラーレン誘導体及びポリチオフェン誘導体を含む9の有機薄膜太陽電池、
13. 前記活性層が、主鎖にチオフェン骨格を含むポリマーを含む9の有機薄膜太陽電池、
14. 前記活性層が、フラーレン誘導体及び主鎖にチオフェン骨格を含むポリマーを含む9の有機薄膜太陽電池、
15. 前記式(1)で表されるオリゴアニリン化合物からなる電荷輸送性物質と、電子受容性ドーパント物質と、有機溶媒とを含む電荷輸送性ワニスを、有機薄膜太陽電池の陽極上又は陽極上のいずれかの薄膜上に塗布し、135℃以下で焼成することを特徴とする、1の有機薄膜太陽電池用バッファ層の製造方法
を提供する。
That is, the present invention
1. Either a charge transporting varnish comprising a charge transporting material comprising an oligoaniline compound represented by the formula (1), an electron accepting dopant material, and an organic solvent is either on the anode or on the anode of an organic thin film solar cell. A buffer layer for an organic thin film solar cell, wherein the buffer layer is formed by coating on a thin film of
Figure JPOXMLDOC01-appb-C000003
(In the formula (1), R 1 to R 19 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, aldehyde groups may be substituted with Z 1, an alkyl group having 1 to 20 carbon atoms, an alkenyl group or an alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms may be substituted with Z 2, carbon atoms An aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, —NHY 1 , —NY 2 Y 3 , —OY 4 , —SY 5 , —SO 3 Y 6 , —C (O) OY 7 , or —C (O) Y 8 , wherein Y 1 to Y 8 are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or carbon, which may be substituted with Z 1 an alkynyl group having from 2 to 20, or may be substituted with Z 2, carbon Represents 6-20 aryl group or heteroaryl group having a carbon number of 2 ~ 20, Z 1 is a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, a phosphoric acid group, a sulfonic acid group, a carboxyl group Represents an aldehyde group, or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, which may be substituted with Z 3 , and Z 2 represents a halogen atom, a nitro group, a cyano group, a hydroxyl group, A thiol group, an amino group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, an aldehyde group, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms or a carbon number, which may be substituted with Z 3 represents a 2-20 alkynyl group, Z 3 is a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, a phosphoric acid group, a sulfonic acid group, a carboxyl group or aralkyl Represents a hydrate group, m and n are each independently an integer of 1 or more, and satisfies the m + 2n ≦ 20, quinoid moieties are present in any position of structure by tautomerism.)
2. 1 buffer layer for organic thin-film solar cells formed by baking at 125 ° C. or lower,
3. R 1 is a hydrogen atom, and R 2 and R 3 are each independently a hydrogen atom, a halogen atom, or an aryl having 6 to 20 carbon atoms in which Y 2 and Y 3 may be substituted with Z 2. A group —NY 2 Y 3 , wherein R 4 to R 19 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , or Y 4 1 or 2 of an organic thin film solar cell buffer layer, wherein —OY 4 is an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 ;
4). The organic thin-film solar cell buffer layer of any one of 1 to 3, wherein m is 1 or 2, and n is 1;
5. The organic thin film solar cell according to 4, wherein R 1 and R 4 to R 19 are hydrogen atoms, R 2 and R 3 are simultaneously hydrogen atoms or diphenylamino groups, m is 1 and n is 1. Battery buffer layer,
6). The buffer layer for organic thin film solar cells according to any one of 1 to 5, wherein the electron-accepting dopant material is an aryl sulfonic acid compound;
7). The buffer layer for organic thin-film solar cells of 6, wherein the aryl sulfonic acid compound is an aryl sulfonic acid compound represented by the formula (2):
Figure JPOXMLDOC01-appb-C000004
(In the formula (2), X represents O, A represents a naphthalene ring or an anthracene ring, B represents a divalent to tetravalent perfluorobiphenyl group, and l represents the number of sulfonic acid groups bonded to A. Represents an integer satisfying 1 ≦ l ≦ 4, and q represents the number of bonds between B and X, and is an integer satisfying 2 to 4.)
8). The buffer layer for organic thin film solar cells according to any one of 1 to 7, which is an anode buffer layer,
9. An organic thin film solar cell comprising: a buffer layer for an organic thin film solar cell of any one of 1 to 8; and an active layer provided in contact therewith,
10. 9 organic thin-film solar cells in which the active layer contains a fullerene derivative,
11. 9 organic thin-film solar cells in which the active layer contains a polythiophene derivative,
12 9 organic thin-film solar cells in which the active layer contains a fullerene derivative and a polythiophene derivative,
13. 9 organic thin-film solar cells in which the active layer contains a polymer containing a thiophene skeleton in the main chain;
14 9 organic thin-film solar cells in which the active layer contains a fullerene derivative and a polymer containing a thiophene skeleton in the main chain;
15. A charge transporting varnish comprising a charge transporting material comprising an oligoaniline compound represented by the formula (1), an electron accepting dopant material, and an organic solvent is used on either an anode or an anode of an organic thin film solar cell. A method for producing a buffer layer for an organic thin film solar cell according to claim 1, wherein the thin film is applied on the thin film and fired at 135 ° C. or lower.
 本発明の有機薄膜太陽電池用バッファ層は、高い正孔輸送性を有するとともに、活性層のp/n相分離を促進させて適切な活性層構造を形成させることができる。また、本発明の有機薄膜太陽電池用バッファ層は、材料自体の耐熱性が高いだけでなく、吸湿性が低いために活性層などの隣接する有機層に水分によるダメージを与えにくいという特徴を有する。それゆえ、本発明の有機薄膜太陽電池用バッファ層を用いることで、優れた変換効率と、高い耐久性とを併せ持つ有機薄膜太陽電池を得ることが可能となる。
 また、本発明の有機薄膜太陽電池用バッファ層は、従来と比較して低温で製造できるため、有機薄膜太陽電池素子の製造条件の温和化が可能となる。それゆえ、本発明によれば、素子の軽量化、フレキシブル化及び低コスト化に貢献するフィルム基板の適用が可能となり、さらにはPET等の安価なフィルム基板の適用も可能となる。
 そして、本発明で用いる電荷輸送性ワニスは、各種有機溶媒を用いて調製できることから、その粘度、表面張力等の液物性を各種プロセス条件に適するよう調整して用いることができる。それゆえ、本発明の有機薄膜太陽電池用バッファ層は、スピンコート法やスリットコート法など、大面積基板に成膜可能な各種ウェットプロセスを用いた場合でも再現性よく製造ができる。
The buffer layer for an organic thin film solar cell of the present invention has a high hole transport property and can promote the p / n phase separation of the active layer to form an appropriate active layer structure. In addition, the buffer layer for an organic thin film solar cell of the present invention is characterized by not only high heat resistance of the material itself but also low damage to moisture due to low hygroscopicity. . Therefore, it is possible to obtain an organic thin film solar cell having both excellent conversion efficiency and high durability by using the buffer layer for an organic thin film solar cell of the present invention.
Moreover, since the buffer layer for organic thin film solar cells of this invention can be manufactured at low temperature compared with the past, the manufacturing conditions of an organic thin film solar cell element can be made mild. Therefore, according to the present invention, it is possible to apply a film substrate that contributes to reducing the weight, flexibility, and cost of the device, and it is also possible to apply an inexpensive film substrate such as PET.
And since the charge transportable varnish used by this invention can be prepared using various organic solvents, it can adjust and use liquid physical properties, such as the viscosity and surface tension, to suit various process conditions. Therefore, the buffer layer for an organic thin film solar cell of the present invention can be manufactured with good reproducibility even when various wet processes capable of forming a film on a large-area substrate such as a spin coating method and a slit coating method are used.
 以下、本発明について詳細に説明する。
 本発明の有機薄膜太陽電池用バッファ層は、式(1)で表されるオリゴアニリン化合物からなる電荷輸送性物質と、電子受容性ドーパント物質と、有機溶媒とを含む電荷輸送性ワニスを、有機薄膜太陽電池の陽極上又は陽極上のいずれかの薄膜上に塗布し、135℃以下で焼成することで形成される。本発明の有機薄膜太陽電池用バッファ層は、通常陽極バッファ層として使用するが、陰極バッファ層として使用してもよい。ここで陽極とは、活性層から発生した電荷のうち、主として正孔が流入する側の電極を意味し、陰極とは、活性層から発生した電荷のうち、主として電子が流入する側の電極を意味する。
Hereinafter, the present invention will be described in detail.
The buffer layer for an organic thin-film solar cell of the present invention comprises a charge transporting varnish containing a charge transporting material composed of an oligoaniline compound represented by the formula (1), an electron accepting dopant material, and an organic solvent. It is formed by coating on either the anode of the thin film solar cell or on the thin film on the anode and baking at 135 ° C. or lower. The buffer layer for organic thin-film solar cells of the present invention is usually used as an anode buffer layer, but may be used as a cathode buffer layer. Here, the anode means the electrode on the side where holes mainly flow in the charge generated from the active layer, and the cathode means the electrode on the side where electrons mainly flow in the charge generated from the active layer. means.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R1~R19は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、水酸基、チオール基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、Z1で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY1、-NY23、-OY4、-SY5、-SO36、-C(O)OY7、又は-C(O)Y8を表す。 In formula (1), R 1 to R 19 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, or an aldehyde. group may be substituted with Z 1, an alkyl group having 1 to 20 carbon atoms, an alkenyl group or an alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms may be substituted with Z 2, to 6 carbon atoms An aryl group having ˜20 or a heteroaryl group having 2 to 20 carbon atoms, —NHY 1 , —NY 2 Y 3 , —OY 4 , —SY 5 , —SO 3 Y 6 , —C (O) OY 7 , or — C (O) Y 8 is represented.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の鎖状アルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基等が挙げられる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n- C1-C20 chain alkyl groups such as hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl A cyclic alkyl group having 3 to 20 carbon atoms such as a group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, bicyclooctyl group, bicyclononyl group, bicyclodecyl group Etc.
 炭素数2~20のアルケニル基としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。 Examples of the alkenyl group having 2 to 20 carbon atoms include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3 -Butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, n-1-pentenyl Group, n-1-decenyl group, n-1-eicocenyl group and the like.
 炭素数2~20のアルキニル基としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。 Examples of the alkynyl group having 2 to 20 carbon atoms include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, n-3-butynyl group, -Methyl-2-propynyl group, n-1-pentynyl group, n-2-pentynyl group, n-3-pentynyl group, n-4-pentynyl group, 1-methyl-n-butynyl group, 2-methyl-n -Butynyl group, 3-methyl-n-butynyl group, 1,1-dimethyl-n-propynyl group, n-1-hexynyl, n-1-decynyl group, n-1-pentadecynyl group, n-1-eicosinyl group Etc.
 炭素数6~20のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。 Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3 -Phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
 炭素数2~20ヘテロアリール基としては、2-チエニル、3-チエニル、2-フラニル、3-フラニル、2-オキサゾリル,4-オキサゾリル、5-オキサゾリル、3-イソオキサゾリル、4-イソオキサゾリル、5-イソオキサゾリル、2-チアゾリル,4-チアゾリル、5-チアゾリル、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリル、2-イミダゾリル、4-イミダゾリル、2-ピリジル、3-ピリジル、4-ピリジル基等が挙げられる。 Examples of the heteroaryl group having 2 to 20 carbon atoms include 2-thienyl, 3-thienyl, 2-furanyl, 3-furanyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 2-imidazolyl, 4-imidazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl group and the like.
 -NHY1は、アミノ基(-NH2)の水素原子の1つがY1に置換された基を、-NY23は、アミノ基(-NH2)の水素原子がY2及びY3に置換された基を、-OY4は、水酸基(-OH)の水素原子がY4に置換された基を、-SY5は、チオール基(-SH)の水素原子がY5に置換された基を、-SO36は、スルホン酸基(-SO3H)の水素原子がY6に置換された基を、-C(O)OY7は、カルボキシル基(-COOH)の水素原子がY7に置換された基を、-C(O)Y8は、アルデヒド基(-C(O)H)の水素原子がY8に置換された基を、それぞれ表す。 —NHY 1 is a group in which one of the hydrogen atoms of the amino group (—NH 2 ) is substituted with Y 1 , and —NY 2 Y 3 is a group in which the hydrogen atom of the amino group (—NH 2 ) is Y 2 and Y 3 -OY 4 is a group in which a hydrogen atom of a hydroxyl group (-OH) is substituted with Y 4 , -SY 5 is a group in which a hydrogen atom of a thiol group (-SH) is substituted with Y 5 —SO 3 Y 6 is a group in which a hydrogen atom of a sulfonic acid group (—SO 3 H) is substituted with Y 6 , and —C (O) OY 7 is a hydrogen atom in a carboxyl group (—COOH). A group in which an atom is substituted with Y 7 , and —C (O) Y 8 represents a group in which a hydrogen atom of an aldehyde group (—C (O) H) is substituted with Y 8 , respectively.
 Y1~Y8は、それぞれ独立して、Z1で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、又はZ2で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、Y1~Y8のアルキル基、アルケニル基、アルキニル基、アリール基及びヘテロアリール基としては、上記と同様のものが挙げられる。 Y 1 to Y 8 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1 , or Z 2 represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with 2 , an alkyl group, an alkenyl group, an alkynyl group, an aryl group and a heteroaryl group having Y 1 to Y 8 The same as those mentioned above.
 特に、式(1)においては、R1が水素原子であり、R2及びR3が、それぞれ独立して、水素原子、ハロゲン原子、又はY2及びY3がZ2で置換されてもよい炭素数6~20のアリール基である-NY23であり、R4~R19が、それぞれ独立して、水素原子、ハロゲン原子、Z1で置換されてもよい炭素数1~20のアルキル基、又はY4がZ1で置換されてもよい炭素数1~20のアルキル基である-OY4であることが好ましく、R1が水素原子であり、R2及びR3が、それぞれ独立して、水素原子、フッ素原子、又はジフェニルアミノ基であり、R4~R19が、それぞれ独立して、水素原子、フッ素原子、フッ素で置換されてもよい炭素数1~20のアルキル基であることがより好ましく、R1及びR4~R19が全て水素原子であり、R2及びR3が同時に水素原子又はジフェニルアミノ基であることがより一層好ましい。 In particular, in formula (1), R 1 is a hydrogen atom, R 2 and R 3 may each independently be a hydrogen atom, a halogen atom, or Y 2 and Y 3 may be substituted with Z 2. —NY 2 Y 3 which is an aryl group having 6 to 20 carbon atoms, and R 4 to R 19 are each independently a hydrogen atom, a halogen atom, or a carbon atom having 1 to 20 carbon atoms which may be substituted with Z 1 An alkyl group or —OY 4 which is an alkyl group having 1 to 20 carbon atoms which Y 4 may be substituted with Z 1 is preferable, R 1 is a hydrogen atom, and R 2 and R 3 are respectively Independently a hydrogen atom, a fluorine atom, or a diphenylamino group, wherein R 4 to R 19 are each independently a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 20 carbon atoms that may be substituted with fluorine. more preferably, wherein R 1 and R 4 ~ R 19 are all hydrogen atoms, And even more preferably 2 and R 3 is a hydrogen atom or a diphenylamino group simultaneously.
 なお、式(1)において、R1~R19及びY1~Y8のアルキル基、アルケニル基及びアルキニル基は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、又はZ3で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基であるZ1で置換されていてもよく、R1~R19及びY1~Y8のアリール基及びヘテロアリール基は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、又はZ3で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基であるZ2で置換されていてもよく、Z1のアリール基及びヘテロアリール基並びにZ2のアルキル基、アルケニル基及びアルキニル基は、更にハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基又はアルデヒド基であるZ3で置換されていてもよい(ハロゲン原子としては、上記と同様のものが挙げられる。)。 In the formula (1), the alkyl group, alkenyl group and alkynyl group of R 1 to R 19 and Y 1 to Y 8 are a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, and a phosphate group. , a sulfonic acid group, a carboxyl group, an aldehyde group, or may be substituted with Z 3, which may be substituted with Z 1 is a heteroaryl group aryl or C 2-20 having 6 to 20 carbon atoms , R 1 to R 19 and Y 1 to Y 8 aryl groups and heteroaryl groups are halogen atoms, nitro groups, cyano groups, hydroxyl groups, thiol groups, amino groups, phosphate groups, sulfonate groups, carboxyl groups, aldehydes group, or may be substituted with Z 3, may be substituted with Z 2 is an alkyl group, alkenyl group or alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms having 1 to 20 carbon atoms Z 1 aryl and heteroaryl groups and the alkyl group of Z 2, alkenyl and alkynyl groups, further halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, a phosphoric acid group, a sulfonic acid group, carboxyl It may be substituted with Z 3 which is a group or an aldehyde group (the halogen atom may be the same as described above).
 とりわけ、R1~R19及びY1~Y8においては、Z1は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されてもよい炭素数6~20のアリール基であることが好ましく、ハロゲン原子、又はZ3で置換されてもよいフェニル基であることが好ましく、存在しないこと(即ち、R1~R19及びY1~Y8が非置換であること)がより一層好ましい。また、Z2は、ハロゲン原子、ニトロ基、シアノ基、又はZ3で置換されてもよい炭素数1~20のアルキル基であることが好ましく、ハロゲン原子、又はZ3で置換されてもよい炭素数1~4のアルキル基であることが好ましく、存在しないこと(即ち、R1~R19及びY1~Y8が非置換であること)がより一層好ましい。そして、Z3は、ハロゲン原子であることが好ましく、フッ素であることがより好ましく、存在しないこと(即ち、Z1及びZ2が非置換であること)がより一層好ましい。 In particular, in R 1 to R 19 and Y 1 to Y 8 , Z 1 is a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 20 carbon atoms that may be substituted with Z 3. Preferably, it is preferably a halogen atom or a phenyl group which may be substituted with Z 3 , and more preferably not present (that is, R 1 to R 19 and Y 1 to Y 8 are unsubstituted). . Z 2 is preferably a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 3 , and may be substituted with a halogen atom or Z 3. It is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably absent (that is, R 1 to R 19 and Y 1 to Y 8 are unsubstituted). Z 3 is preferably a halogen atom, more preferably fluorine, and even more preferably not present (that is, Z 1 and Z 2 are unsubstituted).
 式(1)中、m及びnは、それぞれ独立して、1以上の整数であり、かつ、m+2n≦20を満足する。 In the formula (1), m and n are each independently an integer of 1 or more and satisfy m + 2n ≦ 20.
 オリゴアニリン化合物の有機溶媒への溶解性と得られる薄膜の電荷輸送性とのバランスを考慮すると、mが1~2であり、かつ、nが1~4であることが好ましく、mが1又は2であり、かつ、nが1~3であることがより好ましく、mが1であり、かつ、nが1であることがより一層好ましい。 Considering the balance between the solubility of the oligoaniline compound in an organic solvent and the charge transportability of the obtained thin film, m is preferably 1 to 2, and n is preferably 1 to 4, and m is 1 or More preferably, n is 1 to 3, and m is 1, and n is even more preferable.
 本発明においては、特に、式(3)で表される酸化型オリゴアニリン構造を含む化合物が好適である。 In the present invention, a compound containing an oxidized oligoaniline structure represented by the formula (3) is particularly suitable.
Figure JPOXMLDOC01-appb-C000006
(式中、R1~R19は、上記と同じ意味を示す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 to R 19 have the same meaning as described above.)
 なお、本発明のオリゴアニリン構造を含む化合物中に存在するキノイド部位は、互変異性により構造式の任意の位置に存在する。これは、例えば、R1~R19が全て水素原子であり、mが2であり、nが1である式(1)で表される化合物であれば、式(4)で表される化合物と(5)で表される化合物のいずれも含むことを意味する。そして、このようなオリゴアニリン化合物を含む電荷輸送性ワニスには、いずれかの互変異性体のみが含まれるという意味ではなく、1又は2以上の互変異性体が含まれ得ることを意味する。 In addition, the quinoid site | part which exists in the compound containing the oligoaniline structure of this invention exists in the arbitrary positions of structural formula by tautomerism. For example, if the compound represented by the formula (1) is such that R 1 to R 19 are all hydrogen atoms, m is 2, and n is 1, the compound represented by the formula (4) And (5) are meant to be included. And the charge transporting varnish containing such an oligoaniline compound does not mean that only one tautomer is included, but means that one or two or more tautomers can be included. .
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)で表されるオリゴアニリン化合物の分子量は、特に限定されるものではないが、オリゴアニリン化合物の有機溶媒への溶解性を高めることを考慮すると、上限として通常5000以下、好ましくは2000以下である。
 また、本発明においては、分子量分布のない(分散度が1の)オリゴアニリン化合物が好ましい。なお、分子量分布は、ゲル浸透クロマトグラフィー(ポリスチレン換算)による測定値をいう。
The molecular weight of the oligoaniline compound represented by the formula (1) is not particularly limited. However, in consideration of increasing the solubility of the oligoaniline compound in an organic solvent, the upper limit is usually 5000 or less, preferably 2000. It is as follows.
In the present invention, an oligoaniline compound having no molecular weight distribution (dispersity of 1) is preferred. In addition, molecular weight distribution says the measured value by gel permeation chromatography (polystyrene conversion).
 本発明で用いる電荷輸送性ワニスに含まれるもう一方の成分である電子受容性ドーパント物質は、電荷輸送性ワニスに使用する少なくとも一種の溶媒に溶解するものであれば、特に限定されない。 The electron-accepting dopant material which is the other component contained in the charge transporting varnish used in the present invention is not particularly limited as long as it is soluble in at least one solvent used for the charge transporting varnish.
 電子受容性ドーパント物質の具体例としては、塩化水素、硫酸、硝酸、リン酸等の無機強酸;塩化アルミニウム(III)(AlCl3)、四塩化チタン(IV)(TiCl4)、三臭化ホウ素(BBr3)、三フッ化ホウ素エーテル錯体(BF3・OEt2)、塩化鉄(III)(FeCl3)、塩化銅(II)(CuCl2)、五塩化アンチモン(V)(SbCl5)、五フッ化砒素(V)(AsF5)、五フッ化リン(PF5)、トリス(4-ブロモフェニル)アルミニウムヘキサクロロアンチモナート(TBPAH)等のルイス酸;ベンゼンスルホン酸、トシル酸、カンファスルホン酸、ヒドロキシベンゼンスルホン酸、5-スルホサリチル酸、ドデシルベンゼンスルホン酸、ポリスチレンスルホン酸、国際公開第2005/000832号に記載されている1,4-ベンゾジオキサンジスルホン酸化合物、国際公開第2006/025342号に記載されているアリールスルホン酸化合物、特開2005-108828号公報に記載されているジノニルナフタレンスルホン酸化合物等の有機強酸;7,7,8,8-テトラシアノキノジメタン(TCNQ)、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(DDQ)、ヨウ素等の有機酸化剤、国際公開第2010/058777号に記載されているリンモリブデン酸、リンタングステン酸、リンタングストモリブデン酸等のヘテロポリ酸化合物等の無機酸化剤を挙げることができ、それぞれを組み合わせて使用してもよい。 Specific examples of the electron-accepting dopant material include inorganic strong acids such as hydrogen chloride, sulfuric acid, nitric acid and phosphoric acid; aluminum chloride (III) (AlCl 3 ), titanium tetrachloride (IV) (TiCl 4 ), boron tribromide (BBr 3 ), boron trifluoride ether complex (BF 3 · OEt 2 ), iron chloride (III) (FeCl 3 ), copper (II) chloride (CuCl 2 ), antimony pentachloride (V) (SbCl 5 ), Lewis acids such as arsenic pentafluoride (V) (AsF 5 ), phosphorus pentafluoride (PF 5 ), tris (4-bromophenyl) aluminum hexachloroantimonate (TBPAH); benzenesulfonic acid, tosylic acid, camphorsulfonic acid Hydroxybenzenesulfonic acid, 5-sulfosalicylic acid, dodecylbenzenesulfonic acid, polystyrenesulfonic acid, International Publication No. 2005/000 1,4-benzodioxane disulfonic acid compound described in No. 32, aryl sulfonic acid compound described in International Publication No. 2006/025342, dinonylnaphthalene sulfone described in JP-A-2005-108828 Strong organic acids such as acid compounds; organic oxidation of 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), iodine, etc. And inorganic oxidants such as heteropoly acid compounds such as phosphomolybdic acid, phosphotungstic acid, and phosphotungstomolybdic acid described in International Publication No. 2010/058777. Good.
 なかでも、アリールスルホン酸化合物、特に式(2)で表されるアリールスルホン酸化合物や、ヘテロポリ酸化合物、特にリンモリブデン酸及びリンタングステン酸、が好適である。 Among them, aryl sulfonic acid compounds, particularly aryl sulfonic acid compounds represented by the formula (2), and heteropoly acid compounds, particularly phosphomolybdic acid and phosphotungstic acid are suitable.
Figure JPOXMLDOC01-appb-C000008
(式中、Xは、Oを表し、Aは、ナフタレン環又はアントラセン環を表し、Bは、2~4価のパーフルオロビフェニル基を表し、lは、Aに結合するスルホン酸基数を表し、1≦l≦4を満たす整数であり、qは、BとXとの結合数を示し、2~4を満たす整数である。)
Figure JPOXMLDOC01-appb-C000008
(Wherein X represents O, A represents a naphthalene ring or an anthracene ring, B represents a divalent to tetravalent perfluorobiphenyl group, and l represents the number of sulfonic acid groups bonded to A. (It is an integer satisfying 1 ≦ l ≦ 4, and q represents the number of bonds between B and X, and is an integer satisfying 2 to 4.)
 本発明において、好適に用いることができるアリールスルホン酸化合物の例としては、以下の化合物(式(6))が挙げられる。 In the present invention, examples of arylsulfonic acid compounds that can be suitably used include the following compounds (formula (6)).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本発明においては、電荷輸送性物質と電子受容性ドーパント物質との好ましい組み合わせとしては、式(1)で表されるオリゴアニリン化合物、好ましくは式(3)で表されるオリゴアニリン化合物、及びアリールスルホン酸化合物、好ましくは式(2)で表されるアリールスルホン酸化合物、より好ましくは式(6)で表されるアリールスルホン酸化合物、である。 In the present invention, the preferred combination of the charge transporting substance and the electron accepting dopant substance is an oligoaniline compound represented by the formula (1), preferably an oligoaniline compound represented by the formula (3), and an aryl. A sulfonic acid compound, preferably an aryl sulfonic acid compound represented by formula (2), more preferably an aryl sulfonic acid compound represented by formula (6).
 電荷輸送性ワニスの調製に用いる有機溶媒としては、オリゴアニリン化合物及び電子受容性ドーパント物質を良好に溶解し得る高溶解性溶媒を用いることができる。高溶解性溶媒は1種単独で、又は2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5~100質量%とすることができる。 As the organic solvent used for the preparation of the charge transporting varnish, a highly soluble solvent capable of satisfactorily dissolving the oligoaniline compound and the electron-accepting dopant substance can be used. Highly soluble solvents can be used singly or in combination of two or more, and the amount used can be 5-100% by mass with respect to the total solvent used in the varnish.
 このような高溶解性溶媒としては、例えば、N-メチルホルムアミド(183℃)、N,N-ジメチルホルムアミド(153℃)、N,N-ジエチルホルムアミド(178℃)、N-メチルアセトアミド(206℃)、N,N-ジメチルアセトアミド(166℃)、N-メチルピロリドン(202℃)、1,3-ジメチル-2-イミダゾリジノン(225℃)等が挙げられる。なお、括弧内の値は、1.01×105Pa(大気圧)下での溶媒の沸点である(以下、同様。)。 Examples of such highly soluble solvents include N-methylformamide (183 ° C.), N, N-dimethylformamide (153 ° C.), N, N-diethylformamide (178 ° C.), N-methylacetamide (206 ° C.). ), N, N-dimethylacetamide (166 ° C.), N-methylpyrrolidone (202 ° C.), 1,3-dimethyl-2-imidazolidinone (225 ° C.), and the like. The value in parentheses is the boiling point of the solvent under 1.01 × 10 5 Pa (atmospheric pressure) (the same applies hereinafter).
 これらの中でも、アミド系溶媒であるN-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミドが好ましく、N,N-ジメチルアセトアミドがより好ましい。 Of these, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylacetamide, and N, N-dimethylacetamide are preferred, and N, N-dimethylacetamide is more preferred. preferable.
 電荷輸送性物質及び電子受容性ドーパント物質は、いずれも上記有機溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましく、高変換効率の有機薄膜太陽電池を与えるバッファ層を再現性よく得ることを考慮すると、これらの物質は上記有機溶媒に完全に溶解していることがより好ましい。 It is preferable that both the charge transporting substance and the electron-accepting dopant substance are completely dissolved or uniformly dispersed in the organic solvent to give an organic thin film solar cell with high conversion efficiency. In consideration of obtaining the buffer layer with good reproducibility, it is more preferable that these substances are completely dissolved in the organic solvent.
 本発明で用いる電荷輸送性ワニスは、25℃で10~200mPa・s、特に35~150mPa・sの粘度を有し、常圧で沸点50~300℃、特に150~250℃の高粘度有機溶媒を、少なくとも一種類含有することが好ましい。 The charge transporting varnish used in the present invention has a viscosity of 10 to 200 mPa · s at 25 ° C., particularly 35 to 150 mPa · s, and a high viscosity organic solvent having a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure. It is preferable to contain at least one kind.
 高粘度有機溶媒は、特に限定されるものではなく、例えば、シクロヘキサノール(161℃)、エチレングリコール(198℃)、1,3-オクチレングリコール(245℃)、ジエチレングリコール(245℃)、ジプロピレングリコール(138℃)、トリエチレングリコール(166℃)、トリプロピレングリコール(268℃)、1,3-ブタンジオール(207℃)、2,3-ブタンジオール(182℃)、1,4-ブタンジオール(230℃)、プロピレングリコール(107℃)、へキシレングリコール(198℃)、等が挙げられる。 The high-viscosity organic solvent is not particularly limited. For example, cyclohexanol (161 ° C.), ethylene glycol (198 ° C.), 1,3-octylene glycol (245 ° C.), diethylene glycol (245 ° C.), dipropylene Glycol (138 ° C), triethylene glycol (166 ° C), tripropylene glycol (268 ° C), 1,3-butanediol (207 ° C), 2,3-butanediol (182 ° C), 1,4-butanediol (230 ° C.), propylene glycol (107 ° C.), hexylene glycol (198 ° C.), and the like.
 ワニスに使用される溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5~80質量%であることが好ましい。 The addition ratio of the high-viscosity organic solvent to the whole solvent used in the varnish is preferably within a range where no solid precipitates, and the addition ratio is preferably 5 to 80% by mass as long as no solid precipitates. .
 さらに、塗布面に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、熱処理時に膜の平坦性を付与し得るその他の溶媒を、ワニスに使用する溶媒全体に対して1~90質量%、好ましくは1~50質量%の割合で混合することもできる。 Furthermore, for the purpose of improving the wettability to the coated surface, adjusting the surface tension of the solvent, adjusting the polarity, adjusting the boiling point, etc. 1 to 90% by mass, preferably 1 to 50% by mass, can be mixed.
 このような溶媒としては、例えば、ブチルセロソルブ(171℃)、ジエチレングリコールジエチルエーテル(187℃)、ジエチレングリコールジメチルエーテル(162℃)、ジエチレングリコールモノエチルエーテルアセテート(217℃)、ジエチレングリコールモノブチルエーテルアセテート(247℃)、ジプロピレングリコールモノメチルエーテル(189℃)、プロピレングリコールモノメチルエーテル(120℃)、プロピレングリコールモノメチルエーテルアセテート(146℃)、エチルカルビトール(202℃)、ジアセトンアルコール(166℃)、γ-ブチロラクトン(204℃)、エチルラクテート(154℃)、n-ヘキシルアセテート(169℃)等が挙げられるが、これらに限定されるものではない。 Examples of such a solvent include butyl cellosolve (171 ° C.), diethylene glycol diethyl ether (187 ° C.), diethylene glycol dimethyl ether (162 ° C.), diethylene glycol monoethyl ether acetate (217 ° C.), diethylene glycol monobutyl ether acetate (247 ° C.), diethylene glycol Propylene glycol monomethyl ether (189 ° C), propylene glycol monomethyl ether (120 ° C), propylene glycol monomethyl ether acetate (146 ° C), ethyl carbitol (202 ° C), diacetone alcohol (166 ° C), γ-butyrolactone (204 ° C) ), Ethyl lactate (154 ° C.), n-hexyl acetate (169 ° C.) and the like, but are not limited thereto.
 電荷輸送性ワニスに含まれる有機溶媒の沸点は、特に限定されるものではないが、高変換効率の有機薄膜太陽電池を与えるバッファ層を再現性よく得ることを考慮すると、電荷輸送性ワニスに含まれる全ての有機溶媒の沸点が、200℃以下であることが好ましく、190℃以下であることがより好ましい。 The boiling point of the organic solvent contained in the charge transporting varnish is not particularly limited, but it is included in the charge transporting varnish in consideration of obtaining a buffer layer that gives an organic thin film solar cell with high conversion efficiency with good reproducibility. The boiling point of all organic solvents is preferably 200 ° C. or lower, more preferably 190 ° C. or lower.
 本発明で用いる電荷輸送性ワニスの固形分濃度は、ワニスの粘度及び表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~10.0質量%程度であり、好ましくは0.5~5.0質量%、より好ましくは1.0~3.0質量%である。 The solid content concentration of the charge transporting varnish used in the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish and the thickness of the thin film to be produced. It is about 0% by mass, preferably 0.5 to 5.0% by mass, more preferably 1.0 to 3.0% by mass.
 また、電荷輸送性物質と電子受容性ドーパント物質の物質量(mol)比も、発現する電荷輸送性、電荷輸送性物質等の種類を考慮して適宜設定されるものではあるが、通常、電荷輸送性物質1に対し、電子受容性ドーパント物質0.1~10、好ましくは0.5~5.0、より好ましくは1.0~3.0である。
 そして、本発明において用いる電荷輸送性ワニスの粘度は、作製する薄膜の厚み等や固形分濃度を考慮し、塗布方法に応じて適宜調節されるものではあるが、通常25℃で0.1mPa・s~50mPa・s程度である。
In addition, the substance amount (mol) ratio between the charge transporting substance and the electron-accepting dopant substance is also appropriately set in consideration of the type of charge transporting property, charge transporting substance, etc. that are expressed. With respect to the transport material 1, the electron-accepting dopant material is 0.1 to 10, preferably 0.5 to 5.0, more preferably 1.0 to 3.0.
The viscosity of the charge transporting varnish used in the present invention is appropriately adjusted according to the coating method in consideration of the thickness of the thin film to be produced and the solid content concentration, but is usually 0.1 mPa · s to about 50 mPa · s.
 本発明に用いる電荷輸送性ワニスを調製する際、固形分が溶媒に均一に溶解又は分散する限り、電荷輸送性物質、電子受容性ドーパント物質、有機溶媒を任意の順序で混合することができる。すなわち、例えば、有機溶媒にオリゴアリニン化合物を溶解させた後、その溶液に電子受容性ドーパント物質を溶解させる方法、有機溶媒に電子受容性ドーパント物質を溶解させた後、その溶液にオリゴアニリン化合物を溶解させる方法、オリゴアニリン化合物と電子受容性ドーパント物質とを混合した後、その混合物を有機溶媒に投入して溶解させる方法のいずれも、固形分が有機溶媒に均一に溶解又は分散する限り、採用することができる。 When preparing the charge transporting varnish used in the present invention, the charge transporting material, the electron accepting dopant material, and the organic solvent can be mixed in any order as long as the solid content is uniformly dissolved or dispersed in the solvent. That is, for example, after dissolving an oligoariin compound in an organic solvent, an electron-accepting dopant substance is dissolved in the solution. After dissolving an electron-accepting dopant substance in an organic solvent, the oligoaniline compound is dissolved in the solution. Any method that mixes an oligoaniline compound and an electron-accepting dopant substance and then dissolves the mixture in an organic solvent is used as long as the solid content is uniformly dissolved or dispersed in the organic solvent. be able to.
 また、通常、ワニス調製は、常温、常圧の不活性ガス雰囲気下で行われるが、ワニス中の化合物が分解したり、組成が大きく変化したりしない限り、大気雰囲気下(酸素存在下)で行ってもよく、加熱しながら行ってもよい。 In addition, varnish preparation is usually performed in an inert gas atmosphere at normal temperature and pressure, but in an air atmosphere (in the presence of oxygen) unless the compounds in the varnish are decomposed or the composition changes significantly. It may be performed while heating.
 以上説明した電荷輸送性ワニスを、有機薄膜太陽電池の陽極上又は陽極上のいずれかの薄膜上に塗布する方法は、特に限定されるものではない。
 なお、陽極上のいずれかの薄膜の具体例としては、陽極バッファ層、活性層、キャリアブロック層等が挙げられる。
 ワニスの粘度と表面張力、所望する薄膜の厚さ等を考慮し、ドロップキャスト法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等といった各種ウェットプロセス法の中から最適なものを採用すればよい。
The method for applying the above-described charge transporting varnish on the thin film on the anode or on the anode of the organic thin film solar cell is not particularly limited.
Specific examples of any thin film on the anode include an anode buffer layer, an active layer, a carrier block layer, and the like.
In consideration of varnish viscosity and surface tension, desired thin film thickness, etc., drop casting method, spin coating method, blade coating method, dip coating method, roll coating method, bar coating method, die coating method, ink jet method, printing method What is necessary is just to employ | adopt the optimal thing from various wet process methods, such as (a letterpress, an intaglio, a lithographic printing, screen printing, etc.).
 膜厚は、特に限定されないが、有機薄膜太陽電池の陽極バッファ層として用いる場合、5~200nm程度が好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の溶液量を変化させたりする等の方法がある。 The film thickness is not particularly limited, but is preferably about 5 to 200 nm when used as an anode buffer layer of an organic thin film solar cell. As a method of changing the film thickness, there are methods such as changing the solid content concentration in the varnish or changing the amount of the solution at the time of application.
 本発明の有機薄膜太陽電池用バッファ層は、上記の方法に従い塗布された電荷輸送性ワニスを135℃以下で焼成して形成させる。
 本発明において、焼成の際の温度とは、塗布したワニスに対して外部から熱を加える際の温度を意味し、例えば、135℃での焼成とは、ホットプレートを用いる場合であれば、135℃に設定されたプレート上に、ワニスが塗布された基板を一定時間置くことで、ワニスに135℃の熱処理を施すことを意味する。
The buffer layer for an organic thin-film solar cell of the present invention is formed by baking the charge transporting varnish applied according to the above method at 135 ° C. or lower.
In the present invention, the temperature at the time of baking means the temperature at the time of applying heat to the coated varnish from the outside. For example, baking at 135 ° C. is 135 when a hot plate is used. It means that a varnish is subjected to a heat treatment at 135 ° C. by placing a substrate coated with the varnish on a plate set at ° C. for a certain period of time.
 本発明の焼成温度の上限値は135℃である。焼成温度が135℃を超えると、高変換効率の有機薄膜太陽電池を与えるバッファ層を製造できない。焼成温度の上限値は、高変換効率の有機薄膜太陽電池を与えるバッファ層を再現性よく得ることを考慮すると、好ましくは130℃以下、より好ましくは125℃以下、より一層好ましくは120℃以下、である。 The upper limit of the firing temperature of the present invention is 135 ° C. When the firing temperature exceeds 135 ° C., a buffer layer that provides an organic thin film solar cell with high conversion efficiency cannot be produced. The upper limit of the firing temperature is preferably 130 ° C. or less, more preferably 125 ° C. or less, even more preferably 120 ° C. or less, considering that a buffer layer that gives an organic thin film solar cell with high conversion efficiency can be obtained with good reproducibility. It is.
 一方、本発明において、焼成温度の下限値は、電荷輸送性物質、電子受容性ドーパント物質等の固形分の種類や濃度等、並びにワニスの塗布条件及び所望の膜厚等を考慮して適宜決定するため一概に規定できないが、通常40℃以上、好ましくは50℃以上である。 On the other hand, in the present invention, the lower limit of the firing temperature is appropriately determined in consideration of the type and concentration of solids such as a charge transporting material and an electron-accepting dopant material, as well as varnish coating conditions and desired film thickness. Therefore, it cannot be generally specified, but it is usually 40 ° C. or higher, preferably 50 ° C. or higher.
 焼成には、加熱する素子の大きさや形状等を考慮して適切な装置を用いればよく、その具体例としては、ホットプレート、オーブン等が挙げられる。この際、焼成温度が135℃を超えない範囲内で、より高い均一成膜性を発現させたり、塗布後に反応を進行させたりする目的で、2段階以上の温度変化をつけてもよい。 For firing, an appropriate apparatus may be used in consideration of the size and shape of the element to be heated, and specific examples thereof include a hot plate and an oven. At this time, the temperature may be changed in two or more steps for the purpose of exhibiting a higher uniform film forming property or allowing the reaction to proceed after coating within a range where the baking temperature does not exceed 135 ° C.
 本発明の有機薄膜太陽電池用バッファ層は、有機薄膜太陽電池の陽極上に直接積層して用いられる陽極バッファ層に特に適している。本発明の有機薄膜太陽電池用バッファ層は、素子内の電荷輸送性の向上に寄与できるため、これを有機薄膜太陽電池の陽極バッファ層として用いることで高変換効率の有機薄膜太陽電池を実現できる。 The buffer layer for organic thin film solar cells of the present invention is particularly suitable for an anode buffer layer used by being directly laminated on the anode of an organic thin film solar cell. Since the buffer layer for an organic thin film solar cell of the present invention can contribute to the improvement of charge transportability in the device, an organic thin film solar cell with high conversion efficiency can be realized by using this as an anode buffer layer of the organic thin film solar cell. .
 以下、本発明の有機薄膜太陽電池用バッファ層を陽極バッファ層として有する有機薄膜太陽電池ついて説明するが、これに限定されるわけではない。 Hereinafter, an organic thin film solar cell having the buffer layer for an organic thin film solar cell of the present invention as an anode buffer layer will be described, but the present invention is not limited thereto.
[陽極層の形成]:透明基板の表面に陽極材料の層を形成し、透明電極を製造する工程
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の金属酸化物や、ポリチオフェン誘導体、ポリアニリン誘導体等の高電荷輸送性有機化合物を用いることができる。また、透明基板としては、ガラスあるいは透明樹脂からなる基板を用いることができる。
 陽極材料の層(陽極層)の形成方法は、陽極材料の性質に応じて適宜選択され、通常、昇華性化合物を用いたドライプロセス(蒸着法)か電荷輸送性化合物を含むワニスを用いたウェットプロセス(特にスピンコート法かスリットコート法)のいずれかが採用される。
[Formation of anode layer]: A step of forming a layer of anode material on the surface of the transparent substrate to produce a transparent electrode. As the anode material, metal oxide such as indium tin oxide (ITO) and indium zinc oxide (IZO) is used. And high charge transporting organic compounds such as polythiophene derivatives and polyaniline derivatives can be used. As the transparent substrate, a substrate made of glass or transparent resin can be used.
The method for forming the anode material layer (anode layer) is appropriately selected according to the properties of the anode material, and is usually a dry process using a sublimation compound (evaporation method) or a wet process using a varnish containing a charge transporting compound. Either process (especially spin coating or slit coating) is employed.
 また、透明電極として市販品も好適に用いることができ、この場合、素子の歩留を向上させる観点からは、平滑化処理がされている基盤を用いることが好ましい。市販品を用いる場合、本発明の有機薄膜太陽電池の製造方法は、陽極層を形成する工程を含まない。
 使用する透明電極は、洗剤、アルコール、純水等で洗浄してから使用することが好ましい。例えば、陽極基板では、使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を施すことが好ましい(陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい)。
Moreover, a commercial item can also be used suitably as a transparent electrode, and it is preferable to use the base | substrate by which the smoothing process is carried out from a viewpoint of improving the yield of an element in this case. When using a commercial item, the manufacturing method of the organic thin-film solar cell of this invention does not include the process of forming an anode layer.
The transparent electrode to be used is preferably used after being washed with a detergent, alcohol, pure water or the like. For example, the anode substrate is preferably subjected to a surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use (when the anode material is mainly composed of an organic substance, the surface treatment may not be performed).
[陽極バッファ層の形成]:形成された陽極材料の層上に陽極バッファ層を形成する工程
 上記方法に従い、陽極材料の層上に、本発明のバッファ層を形成する。
[Formation of anode buffer layer]: Step of forming an anode buffer layer on the formed anode material layer According to the above method, the buffer layer of the present invention is formed on the anode material layer.
[活性層の形成]:形成された陽極バッファ層上に活性層を形成する工程
 活性層は、n型半導体材料からなる薄膜であるn層と、p型半導体材料からなる薄膜であるp層とを積層したものであっても、これら材料の混合物からなる非積層薄膜であっても良い。
[Formation of active layer]: Step of forming an active layer on the formed anode buffer layer The active layer includes an n layer which is a thin film made of an n-type semiconductor material, and a p layer which is a thin film made of a p-type semiconductor material. Or a non-laminated thin film made of a mixture of these materials.
 n型半導体材料としては、フラーレン、[6,6]-フェニル-C61-酪酸メチルエステル(PC61BM)、[6,6]-フェニル-C71-酪酸メチルエステル(PC71BM)等が挙げられる。一方、p型半導体材料としては、レジオレギュラーポリ(3-ヘキシルチオフェン)(P3HT)、下記式で示されるPTB7、特開2009-158921号公報及び国際公開第2010/008672号公報に記載されているようなチエノチオフェンユニット含有ポリマー類等の、主鎖にチオフェン骨格を含むポリマー、CuPC,ZnPC等のフタロシアニン類、テトラベンゾポルフィリン等のポルフィリン類などが挙げられる。 Examples of n-type semiconductor materials include fullerene, [6,6] -phenyl-C 61 -butyric acid methyl ester (PC 61 BM), [6,6] -phenyl-C 71 -butyric acid methyl ester (PC 71 BM), and the like. Can be mentioned. On the other hand, the p-type semiconductor material is described in regioregular poly (3-hexylthiophene) (P3HT), PTB7 represented by the following formula, JP 2009-158921 A and International Publication No. 2010/008672. Examples thereof include polymers having a thiophene skeleton in the main chain, such as thienothiophene unit-containing polymers, phthalocyanines such as CuPC and ZnPC, and porphyrins such as tetrabenzoporphyrin.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 これらの中でも、n型材料としては、PC61BM、PC71BMが、p型材料としては、P3HT、PTB7等の主鎖にチオフェン骨格を含むポリマー類が好ましい。
 なお、ここでいう「主鎖にチオフェン骨格」とはチオフェンのみからなる2価の芳香環、またはチエノチオフェン、ベンゾチオフェン、ジベンゾチオフェン、ベンゾジチオフェン、ナフトチオフェン、ナフトジチオフェン、アントラチオフェン、アントラジチオフェン等のような1以上のチオフェンを含む2価の縮合芳香環を表し、これらは上記R1~R8で示される置換基で置換されていてもよい。
Among these, as the n-type material, PC 61 BM and PC 71 BM are preferable, and as the p-type material, polymers including a thiophene skeleton in the main chain such as P3HT and PTB7 are preferable.
The term “thiophene skeleton in the main chain” as used herein refers to a divalent aromatic ring composed solely of thiophene, or thienothiophene, benzothiophene, dibenzothiophene, benzodithiophene, naphthothiophene, naphthodithiophene, anthrathiophene, anthracodi. It represents a divalent fused aromatic ring containing one or more thiophenes such as thiophene, and these may be substituted with a substituent represented by R 1 to R 8 above.
 活性層の形成方法は、n型半導体あるいはp型半導体材料の性質に応じて適宜選択され、通常、昇華性化合物を用いたドライプロセス(特に蒸着法)か材料を含むワニスを用いたウェットプロセス(特にスピンコート法かスリットコート法)のいずれかが採用される。 The formation method of the active layer is appropriately selected according to the properties of the n-type semiconductor or the p-type semiconductor material, and is usually a dry process using a sublimation compound (particularly vapor deposition method) or a wet process using a varnish containing a material ( In particular, either a spin coat method or a slit coat method is employed.
[陰極バッファ層の形成]:形成された活性層上に陰極バッファ層を形成する工程
 必要に応じて、電荷の移動を効率化すること等を目的として、活性層と陰極層の間に陰極バッファ層を形成してもよい。
 陰極バッファ層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al23)、フッ化リチウム(LiF)、フッ化マグネシウム(MgF2)、フッ化ストロンチウム(SrF2)等が挙げる。
 陰極バッファ層の形成方法は、その材料の性質に応じて適宜選択され、通常、昇華性化合物を用いたドライプロセス(特に蒸着法)か、材料を含むワニスを用いたウェットプロセス(特にスピンコート法かスリットコート法)のいずれかが採用される。
[Formation of cathode buffer layer]: Step of forming a cathode buffer layer on the formed active layer A cathode buffer between the active layer and the cathode layer for the purpose of improving the efficiency of charge transfer, if necessary. A layer may be formed.
Materials for forming the cathode buffer layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), magnesium fluoride (MgF 2 ), and strontium fluoride. (SrF 2 ) and the like.
The formation method of the cathode buffer layer is appropriately selected according to the properties of the material, and is usually a dry process using a sublimation compound (particularly vapor deposition method) or a wet process using a varnish containing the material (particularly spin coating method). Or slit coat method) is employed.
[陰極層の形成]:形成された陰極バッファ層の上に陰極層を形成する工程
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム、カルシウム、バリウム、銀、金等が挙げられ、複数の陰極材料を積層したり、混合したりして使用することができる。
 陰極層の形成方法は、その材料の性質に応じて適宜選択されるが、通常、ドライプロセス(特に蒸着法)が採用される。
[Formation of cathode layer]: Step of forming a cathode layer on the formed cathode buffer layer As cathode materials, aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium, calcium, barium Silver, gold and the like, and a plurality of cathode materials can be laminated or mixed for use.
The method for forming the cathode layer is appropriately selected according to the properties of the material, but usually a dry process (especially vapor deposition) is employed.
[キャリアブロック層の形成]
 必要に応じて、光電流の整流性をコントロールすること等を目的として、任意の層間にキャリアブロック層を設けてもよい。
 キャリアブロック層を形成する材料としては、酸化チタン、酸化亜鉛、バソクプロイン(BCP)等が挙げられる。
 キャリアブロック層の形成方法は、その材料の性質に応じて適宜選択され、通常、昇華性化合物を用いる場合は蒸着法が、材料が溶解したワニスを用いる場合はスピンコート法か、スリットコート法のいずれかが採用される。
[Formation of carrier block layer]
If necessary, a carrier block layer may be provided between arbitrary layers for the purpose of controlling photocurrent rectification.
Examples of the material for forming the carrier block layer include titanium oxide, zinc oxide, bathocuproine (BCP) and the like.
The method for forming the carrier block layer is appropriately selected according to the properties of the material. Usually, the vapor deposition method is used when a sublimation compound is used, and the spin coating method or the slit coating method is used when a varnish in which the material is dissolved is used. Either one is adopted.
 上記で例示した方法によって作製されたOPV素子は、大気による素子劣化を防ぐために、再度グローブボックス内に導入して窒素等の不活性ガス雰囲気下で封止操作を行い、封止された状態で太陽電池としての機能を発揮させたり、太陽電池特性の測定を行ったりすることができる。
 封止法としては、端部にUV硬化樹脂を付着させた凹型ガラス基板を、不活性ガス雰囲気下、有機薄膜太陽電池素子の成膜面側に付着させ、UV照射によって樹脂を硬化させる方法や、真空下、スパッタリング等の手法によって膜封止タイプの封止を行う方法などが挙げられる。
The OPV device manufactured by the method exemplified above is again introduced into the glove box and sealed in an inert gas atmosphere such as nitrogen in order to prevent device deterioration due to the atmosphere. The function as a solar cell can be exhibited, or the solar cell characteristics can be measured.
As a sealing method, a concave glass substrate with a UV curable resin attached to the end is attached to the film forming surface side of the organic thin film solar cell element in an inert gas atmosphere, and the resin is cured by UV irradiation. Examples of the method include performing a film sealing type sealing by a technique such as sputtering under vacuum.
 以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[1]使用した装置
(1)NMR
 装置:日本電子(株)製 ECX-300
 測定溶媒:純正化学(株)製 ジメチルスルホキシド-d6
(2)MS
 装置(MALDI-TOF):Applied Biosystems社製 Voyager-DETM PRO
 装置(FAB):日本電子(株)製 JMS-700T
(3)グローブボックス:山八物産(株)製、VACグローブボックスシステム
(4)蒸着装置:アオヤマエンジニアリング(株)製、真空蒸着装置
(5)ソーラーシミュレータ:分光計器(株)製、OTENTOSUN-III、AM1.5Gフィルター、放射強度:100mW/cm2
(6)ソースメジャーユニット:ケースレーインスツルメンツ(株)製、2612A
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
[1] Equipment used (1) NMR
Equipment: ECX-300 manufactured by JEOL Ltd.
Measuring solvent: Pure Chemical Industries, Ltd. Dimethyl sulfoxide-d6
(2) MS
Apparatus (MALDI-TOF): Voyager-DE PRO manufactured by Applied Biosystems
Device (FAB): JMS-700T manufactured by JEOL Ltd.
(3) Glove box: Sanpachi Bussan Co., Ltd., VAC glove box system (4) Deposition equipment: Aoyama Engineering Co., Ltd., vacuum deposition equipment (5) Solar simulator: Spectrometer Co., Ltd., OTENTOUN-III AM1.5G filter, radiation intensity: 100 mW / cm 2
(6) Source measure unit: 2612A, manufactured by Keithley Instruments Co., Ltd.
[2]化合物の合成
[合成例1]
 式(6)で表されるアリールスルホン酸化合物(以下、アリールスルホン酸化合物Aともいう)を、国際公開第2006/025342号の記載に基づき、下記反応式に従い合成した。得られたアリールスルホン酸化合物の1H-NMRによる測定結果を以下に示す。
1H-NMR(300MHz,DMSO-d6):δ7.18(1H,s,Ar-H),7.89(1H,d,Ar-H),8.01(1H,s,Ar-H),8.23(1H,s,Ar-H),8.28(1H,d,Ar-H)
[2] Synthesis of Compound [Synthesis Example 1]
An aryl sulfonic acid compound represented by the formula (6) (hereinafter also referred to as aryl sulfonic acid compound A) was synthesized according to the following reaction formula based on the description of International Publication No. 2006/025342. The measurement result by 1 H-NMR of the obtained arylsulfonic acid compound is shown below.
1 H-NMR (300 MHz, DMSO-d6): δ 7.18 (1H, s, Ar—H), 7.89 (1H, d, Ar—H), 8.01 (1H, s, Ar—H) , 8.23 (1H, s, Ar-H), 8.28 (1H, d, Ar-H)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[合成例2]
 式(1-1)で表されるオリゴアニリン化合物(以下、オリゴアニリン化合物B1ともいう)を、上記特許文献2の記載に基づき、下記反応式に従い合成した。得られたオリゴアニリン化合物の1H-NMR及び質量分析による測定結果を以下に示す。
1H-NMR(300MHz,DMSO-d6):δ 6.7-7.5(18H,m,Ar-H),5.83及び5.81(1H,s,NH)(E体及びZ体の混合物)
MS(MALDI-TOF+):350[M+H]+
[Synthesis Example 2]
An oligoaniline compound represented by the formula (1-1) (hereinafter also referred to as oligoaniline compound B1) was synthesized according to the following reaction formula based on the description in Patent Document 2. The measurement results of the obtained oligoaniline compound by 1 H-NMR and mass spectrometry are shown below.
1 H-NMR (300 MHz, DMSO-d6): δ 6.7-7.5 (18H, m, Ar—H), 5.83 and 5.81 (1H, s, NH) (E and Z forms) A mixture of
MS (MALDI-TOF +): 350 [M + H] +
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[合成例3]
 式(1-2)で表されるオリゴアニリン化合物(以下、オリゴアニリン化合物B2ともいう)を、国際公開第2010/058777号の記載に基づき、下記反応式に従い合成した。得られたオリゴアニリン化合物の1H-NMR及び質量分析による測定結果を以下に示す。
1H-NMR(300MHz,DMSO-d6):δ5.75(1H,s,N-H),6.8-7.4(36H,m,Ar-H)(E体及びZ体の混合物)
MS(ESI+):684[M+H]+
[Synthesis Example 3]
An oligoaniline compound represented by the formula (1-2) (hereinafter also referred to as oligoaniline compound B2) was synthesized according to the following reaction formula based on the description in WO2010 / 058777. The measurement results of the obtained oligoaniline compound by 1 H-NMR and mass spectrometry are shown below.
1 H-NMR (300 MHz, DMSO-d6): δ 5.75 (1H, s, NH), 6.8-7.4 (36H, m, Ar—H) (mixture of E and Z forms)
MS (ESI +): 684 [M + H] +
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[3]電荷輸送性ワニス及び活性層用組成物の調製
[調製例1]
 オリゴアニリン化合物B1 340mg(0.974mmol)とアリールスルホン酸化合物A 660mg(0.731mmol)との混合物に、N,N-ジメチルアセトアミド 25.0gを加えて、室温で撹拌して溶解させ、更にそこへ、シクロヘキサノール 12.5g、プロピレングリコール 12.5gを加えて撹拌し、緑色溶液を得た。
 得られた緑色溶液を、孔径0.45μmのシリンジフィルターでろ過して、電荷輸送性ワニスC1を得た。
[3] Preparation of charge transporting varnish and active layer composition [Preparation Example 1]
To a mixture of 340 mg (0.974 mmol) of the oligoaniline compound B1 and 660 mg (0.731 mmol) of the aryl sulfonic acid compound A, 25.0 g of N, N-dimethylacetamide was added and dissolved by stirring at room temperature. To the mixture, 12.5 g of cyclohexanol and 12.5 g of propylene glycol were added and stirred to obtain a green solution.
The obtained green solution was filtered with a syringe filter having a pore diameter of 0.45 μm to obtain a charge transporting varnish C1.
[調製例2]
 オリゴアニリン化合物B2 154mg(0.226mmol)とアリールスルホン酸化合物A 458mg(0.507mmol)との混合物に、N,N-ジメチルアセトアミド15.0gを加えて、室温で撹拌して溶解させ、更にそこへ、シクロヘキサノール15.0gを加えて撹拌し、緑色溶液を得た。
 得られた緑色溶液を、孔径0.45μmのシリンジフィルターでろ過して、電荷輸送性ワニスC2を得た。
[Preparation Example 2]
To a mixture of 154 mg (0.226 mmol) of the oligoaniline compound B2 and 458 mg (0.507 mmol) of the aryl sulfonic acid compound A, 15.0 g of N, N-dimethylacetamide is added and dissolved by stirring at room temperature. The cyclohexanol 15.0g was added and stirred, and the green solution was obtained.
The obtained green solution was filtered with a syringe filter having a pore diameter of 0.45 μm to obtain a charge transporting varnish C2.
[調製例3]
 オリゴアニリン化合物B2 29mg(0.043mmol)とアリールスルホン酸化合物A 87mg(0.096mmol)とリンタングステン酸n水和物(関東化学(株)製)88mgの混合物に、N,N-ジメチルアセトアミド5.0gを加えて、室温で撹拌して溶解させた、更にそこへ、シクロヘキサノール5.0gを加えて撹拌し、緑色溶液を得た。
 得られた緑色溶液を、孔径0.45μmのシリンジフィルターでろ過して、電荷輸送性ワニスC3を得た。
[Preparation Example 3]
To a mixture of 29 mg (0.043 mmol) of oligoaniline compound B2, 87 mg (0.096 mmol) of aryl sulfonic acid compound A and 88 mg of phosphotungstic acid n-hydrate (manufactured by Kanto Chemical Co., Inc.), N, N-dimethylacetamide 5 0.0 g was added and dissolved by stirring at room temperature. Further, 5.0 g of cyclohexanol was added thereto and stirred to obtain a green solution.
The obtained green solution was filtered with a syringe filter having a pore size of 0.45 μm to obtain a charge transporting varnish C3.
[調製例4]
 レジオレギュラーポリ(3-ヘキシルチオフェン)(メルク社製、製品名:lisicon(登録商標)SP-001)30mg及びPCBM(フロンティアカーボン社製、製品名:nanom spectra E100、以下同様)24mgを、クロロベンゼン1.5mLが入ったサンプル瓶の中に加え、80℃のホットプレート上で15時間撹拌して活性層用組成物D1を得た。
[Preparation Example 4]
30 mg of regioregular poly (3-hexylthiophene) (manufactured by Merck, product name: lisicon (registered trademark) SP-001) and 24 mg of PCBM (manufactured by Frontier Carbon, product name: nanom spectra E100, the same shall apply hereinafter) Into a sample bottle containing 5 mL, the mixture was stirred on a hot plate at 80 ° C. for 15 hours to obtain an active layer composition D1.
[調製例5]
 PTB7(1-Material社製)20mg及びPCBM30mgが入ったサンプル瓶の中にクロロベンゼン2.0mLを加え、80℃のホットプレート上で15時間撹拌した。この溶液を室温まで放冷した後、1,8-ジヨードオクタン(東京化成工業(株)製)60μLを加えて撹拌して活性層用組成物D2を得た。
[Preparation Example 5]
2.0 mL of chlorobenzene was added to a sample bottle containing 20 mg of PTB7 (manufactured by 1-Material) and 30 mg of PCBM, and the mixture was stirred on a hot plate at 80 ° C. for 15 hours. After allowing this solution to cool to room temperature, 60 μL of 1,8-diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred to obtain active layer composition D2.
[比較調製例1]
 PEDOT/PSS(Heraeus製Clevios P VP AI4083)を超音波で分散し、それを孔径0.45μmのシリンジフィルターでろ過して、電荷輸送性ワニスC4を得た。
[Comparative Preparation Example 1]
PEDOT / PSS (Clevios P VP AI4083 manufactured by Heraeus) was dispersed with ultrasonic waves and filtered through a syringe filter having a pore diameter of 0.45 μm to obtain a charge transporting varnish C4.
[4]バッファ層及び有機薄膜太陽電池の作製
[実施例1]
 正極となるITO透明導電層を2mm×25mmのストライプ状にパターニングした25mm×25mmのガラス基板を30分間UV/オゾン処理した後に、基板上に調製した電荷輸送性ワニスC1をスピンコート法により塗布し、塗布した電荷輸送性ワニスを、ホットプレート(アズワン(株)製、型番TH-900)を用いて、50℃で15分間加熱して膜厚30nmのバッファ層を形成した。
 その後、不活性ガスにより置換されたグローブボックス中で、形成したバッファ層上に活性層用組成物D1を滴下し、スピンコート法により膜厚90nmの活性層を形成した。
 最後に、有機半導体層が形成された基板と陰極用マスクを真空蒸着装置内に設置して、装置内の真空度が1×10-3Pa以下になるまで再び排気し、抵抗加熱法によって、負極となるアルミニウム層を100nmの厚さに蒸着した。
 以上のようにして、ストライプ状のITO層とアルミニウム層とが交差する部分の面積が2mm×2mmであるOPV素子を作製した。
[4] Preparation of buffer layer and organic thin film solar cell [Example 1]
A glass substrate of 25 mm × 25 mm obtained by patterning an ITO transparent conductive layer serving as a positive electrode into a 2 mm × 25 mm stripe pattern was subjected to UV / ozone treatment for 30 minutes, and then the charge transporting varnish C1 prepared on the substrate was applied by spin coating. The applied charge transporting varnish was heated at 50 ° C. for 15 minutes using a hot plate (manufactured by ASONE Co., Ltd., model number TH-900) to form a buffer layer having a thickness of 30 nm.
Thereafter, in the glove box substituted with an inert gas, the active layer composition D1 was dropped on the formed buffer layer, and an active layer having a thickness of 90 nm was formed by a spin coating method.
Finally, the substrate on which the organic semiconductor layer is formed and the mask for the cathode are placed in a vacuum deposition apparatus, and the exhaust is exhausted again until the degree of vacuum in the apparatus becomes 1 × 10 −3 Pa or less. An aluminum layer serving as a negative electrode was deposited to a thickness of 100 nm.
As described above, an OPV element having an area where the stripe-shaped ITO layer and the aluminum layer intersect with each other was 2 mm × 2 mm was manufactured.
[実施例2]
 50℃で15分間加熱する代わりに、50℃で5分間加熱した後、80℃で10分間更に加熱した以外は実施例1と同様の方法で、OPV素子を作製した。
[Example 2]
Instead of heating at 50 ° C. for 15 minutes, an OPV device was fabricated in the same manner as in Example 1, except that heating was performed at 50 ° C. for 5 minutes and further heating was performed at 80 ° C. for 10 minutes.
[実施例3及び4]
 80℃で10分間加熱する代わりに、それぞれ120℃,130℃で10分間加熱した以外は実施例2と同様の方法で、OPV素子を作製した。
[Examples 3 and 4]
Instead of heating at 80 ° C. for 10 minutes, an OPV element was fabricated in the same manner as in Example 2 except that heating was performed at 120 ° C. and 130 ° C. for 10 minutes, respectively.
[実施例5及び6]
 電荷輸送性ワニスC1の代わりに、それぞれ電荷輸送性ワニスC2,C3を用いた以外は実施例3と同様の方法で、OPV素子を作製した。
[Examples 5 and 6]
An OPV device was produced in the same manner as in Example 3 except that instead of the charge transporting varnish C1, charge transporting varnishes C2 and C3 were used, respectively.
[比較例1~3]
 80℃で10分間加熱する代わりに、それぞれ140℃,150℃,160℃で10分間加熱した以外は実施例2と同様の方法で、OPV素子を作製した。
[Comparative Examples 1 to 3]
An OPV device was fabricated in the same manner as in Example 2, except that heating was performed at 140 ° C., 150 ° C., and 160 ° C. for 10 minutes, respectively, instead of heating at 80 ° C. for 10 minutes.
[比較例4]
 電荷輸送性ワニスC1の代わりに、電荷輸送性ワニスC4を用いた以外は比較例2と同様の方法で、OPV素子を作製した。
[Comparative Example 4]
An OPV element was produced in the same manner as in Comparative Example 2 except that the charge transporting varnish C4 was used instead of the charge transporting varnish C1.
[実施例7]
 電荷輸送性ワニスC1の代わりに電荷輸送性ワニスC2を、活性層用組成物D1の代わりに活性層用組成物D2を用い、50℃で15分間加熱する代わりに50℃で5分間加熱した後120℃で10分間更に加熱した以外は実施例1と同様の方法で、OPV素子を作製した。
[Example 7]
After using the charge transporting varnish C2 instead of the charge transporting varnish C1 and the active layer composition D2 instead of the active layer composition D1, heating at 50 ° C for 5 minutes instead of heating at 50 ° C for 15 minutes An OPV element was fabricated in the same manner as in Example 1 except that the film was further heated at 120 ° C. for 10 minutes.
[実施例8]
 電荷輸送性ワニスC2の代わりに、電荷輸送性ワニスC3を用いた以外は実施例7と同様の方法で、OPV素子を作製した。
[Example 8]
An OPV device was produced in the same manner as in Example 7 except that the charge transporting varnish C3 was used instead of the charge transporting varnish C2.
[比較例5]
 120℃で10分間加熱する代わりに、180℃で15分間加熱した以外は実施例7と同様の方法で、OPV素子を作製した。
[Comparative Example 5]
Instead of heating at 120 ° C. for 10 minutes, an OPV element was fabricated in the same manner as in Example 7 except that heating was performed at 180 ° C. for 15 minutes.
[5]特性評価
 作製したOPV素子の短絡電流密度(Jsc〔mA/cm2〕)、開放電圧(Voc〔V〕)、曲線因子(FF)、及び光電変換効率(PCE〔%〕)、並びに耐久性の評価を行った。評価の結果を表1,2に示す。
 なお、光電変換効率は、光電変換効率=短絡電流密度×開放電圧×曲線因子/入射光強度という式により算出した。また、耐久性は、暗所に800時間保存した後の素子特性(PCE)を測定することで評価した。
[5] Characteristic evaluation Short-circuit current density (Jsc [mA / cm 2 ]), open-circuit voltage (Voc [V]), fill factor (FF), photoelectric conversion efficiency (PCE [%]) of the produced OPV element, and Durability was evaluated. The results of evaluation are shown in Tables 1 and 2.
The photoelectric conversion efficiency was calculated by the equation: photoelectric conversion efficiency = short-circuit current density × open-circuit voltage × curve factor / incident light intensity. Durability was evaluated by measuring element characteristics (PCE) after storage for 800 hours in a dark place.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表1に示されるとおり、薄膜作製時の焼成温度が135℃以下である素子(実施例1~6)は、焼成温度が135℃を超える素子(比較例1~3)よりも高い変換効率を示し、暗所に長期間保存した後の素子の特性、すなわち素子の寿命特性も、PEDOT/PSSを用いた素子と比較して良好であった。
 特に、125℃以下で焼成されたバッファ層を有する素子の変換効率は、3.3%以上という高い値であった(実施例1~3,5,6)。
As shown in Table 1, the elements (Examples 1 to 6) having a firing temperature of 135 ° C. or less at the time of forming the thin film had higher conversion efficiency than the elements having a firing temperature exceeding 135 ° C. (Comparative Examples 1 to 3). The characteristics of the device after being stored for a long time in a dark place, that is, the lifetime characteristics of the device were also better than those of the device using PEDOT / PSS.
In particular, the conversion efficiency of the element having the buffer layer baked at 125 ° C. or less was a high value of 3.3% or more (Examples 1 to 3, 5, and 6).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表2に示されるとおり、薄膜作製時の焼成温度が135℃以下である素子(実施例7)は、焼成温度が135℃を超える素子(比較例5)よりも高い変換効率を示した。特に、リンタングステン酸n水和物を含む電荷輸送性ワニスC3を用いて作製されたOPV素子(実施例8)の変換効率は、より高い値を示した(5.5%)。
 以上のように、本発明の有機薄膜太陽電池用バッファ層を用いることで、有機薄膜太陽電池の変換効率、及び寿命特性を向上できることがわかる。
As shown in Table 2, the device (Example 7) having a firing temperature of 135 ° C. or lower during the production of the thin film showed higher conversion efficiency than the device (Comparative Example 5) having a firing temperature exceeding 135 ° C. In particular, the conversion efficiency of the OPV device (Example 8) produced using the charge transporting varnish C3 containing phosphotungstic acid n-hydrate showed a higher value (5.5%).
As mentioned above, it turns out that the conversion efficiency and lifetime characteristic of an organic thin film solar cell can be improved by using the buffer layer for organic thin film solar cells of this invention.

Claims (15)

  1.  式(1)で表されるオリゴアニリン化合物からなる電荷輸送性物質と、電子受容性ドーパント物質と、有機溶媒とを含む電荷輸送性ワニスを、有機薄膜太陽電池の陽極上又は陽極上のいずれかの薄膜上に塗布し、135℃以下で焼成して形成されることを特徴とする、有機薄膜太陽電池用バッファ層。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1~R19は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、アミノ基、水酸基、チオール基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、Z1で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、Z2で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基、-NHY1、-NY23、-OY4、-SY5、-SO36、-C(O)OY7、又は-C(O)Y8を表し、
     Y1~Y8は、それぞれ独立して、Z1で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基、又はZ2で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、
     Z1は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、又はZ3で置換されてもよい、炭素数6~20のアリール基もしくは炭素数2~20のヘテロアリール基を表し、
     Z2は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基、アルデヒド基、又はZ3で置換されてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基もしくは炭素数2~20のアルキニル基を表し、
     Z3は、ハロゲン原子、ニトロ基、シアノ基、水酸基、チオール基、アミノ基、リン酸基、スルホン酸基、カルボキシル基又はアルデヒド基を表し、
     m及びnは、それぞれ独立して、1以上の整数であり、かつ、m+2n≦20を満足し、キノイド部分は互変異性により構造式の任意の位置に存在する。)
    Either a charge transporting varnish comprising a charge transporting material comprising an oligoaniline compound represented by the formula (1), an electron accepting dopant material, and an organic solvent is either on the anode or on the anode of an organic thin film solar cell. A buffer layer for an organic thin film solar cell, which is formed by coating on a thin film and firing at 135 ° C. or lower.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 to R 19 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, an amino group, a hydroxyl group, a thiol group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, aldehyde groups may be substituted with Z 1, an alkyl group having 1 to 20 carbon atoms, an alkenyl group or an alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms may be substituted with Z 2, carbon atoms An aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, —NHY 1 , —NY 2 Y 3 , —OY 4 , —SY 5 , —SO 3 Y 6 , —C (O) OY 7 , or -C (O) Y 8
    Y 1 to Y 8 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 1 , or Z 2 represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with 2 ,
    Z 1 is a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, an aldehyde group, or a carbon number of 6 to 20 which may be substituted with Z 3 Or an aryl group having 2 to 20 carbon atoms,
    Z 2 is a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, a phosphoric acid group, a sulfonic acid group, a carboxyl group, an aldehyde group, or Z 3 may be substituted with, 1 to 20 carbon atoms An alkyl group, an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms,
    Z 3 represents a halogen atom, a nitro group, a cyano group, a hydroxyl group, a thiol group, an amino group, a phosphoric acid group, a sulfonic acid group, a carboxyl group or an aldehyde group,
    m and n are each independently an integer of 1 or more and satisfy m + 2n ≦ 20, and the quinoid moiety is present at any position of the structural formula due to tautomerism. )
  2.  125℃以下で焼成して形成される請求項1記載の有機薄膜太陽電池用バッファ層。 The buffer layer for organic thin-film solar cells according to claim 1, which is formed by firing at 125 ° C or lower.
  3.  前記R1が水素原子であり、前記R2及びR3が、それぞれ独立して、水素原子、ハロゲン原子、又はY2及びY3がZ2で置換されてもよい炭素数6~20のアリール基である-NY23であり、前記R4~R19が、それぞれ独立して、水素原子、ハロゲン原子、Z1で置換されてもよい炭素数1~20のアルキル基、又はY4がZ1で置換されてもよい炭素数1~20のアルキル基である-OY4である請求項1又は2記載の有機薄膜太陽電池用バッファ層。 R 1 is a hydrogen atom, and R 2 and R 3 are each independently a hydrogen atom, a halogen atom, or an aryl having 6 to 20 carbon atoms in which Y 2 and Y 3 may be substituted with Z 2. A group —NY 2 Y 3 , wherein R 4 to R 19 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 , or Y 4 The buffer layer for an organic thin film solar cell according to claim 1 or 2, wherein is -OY 4 which is an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 1 .
  4.  前記mが1又は2であり、前記nが1である請求項1~3のいずれか1項記載の有機薄膜太陽電池用バッファ層。 The buffer layer for an organic thin film solar cell according to any one of claims 1 to 3, wherein the m is 1 or 2, and the n is 1.
  5.  前記R1及びR4~R19が水素原子であり、前記R2及びR3が同時に水素原子又はジフェニルアミノ基であり、前記mが1であり、前記nが1である請求項4記載の有機薄膜太陽電池用バッファ層。 The R 1 and R 4 to R 19 are hydrogen atoms, the R 2 and R 3 are simultaneously hydrogen atoms or diphenylamino groups, the m is 1, and the n is 1. Buffer layer for organic thin-film solar cells.
  6.  前記電子受容性ドーパント物質が、アリールスルホン酸化合物である請求項1~5のいずれか1項記載の有機薄膜太陽電池用バッファ層。 6. The organic thin film solar cell buffer layer according to claim 1, wherein the electron-accepting dopant substance is an aryl sulfonic acid compound.
  7.  前記アリールスルホン酸化合物が、式(2)で表されるアリールスルホン酸化合物である請求項6記載の有機薄膜太陽電池用バッファ層。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Xは、Oを表し、Aは、ナフタレン環又はアントラセン環を表し、Bは、2~4価のパーフルオロビフェニル基を表し、lは、Aに結合するスルホン酸基数を表し、1≦l≦4を満たす整数であり、qは、BとXとの結合数を示し、2~4を満たす整数である。)
    The buffer layer for organic thin-film solar cells according to claim 6, wherein the aryl sulfonic acid compound is an aryl sulfonic acid compound represented by the formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), X represents O, A represents a naphthalene ring or an anthracene ring, B represents a divalent to tetravalent perfluorobiphenyl group, and l represents the number of sulfonic acid groups bonded to A. Represents an integer satisfying 1 ≦ l ≦ 4, and q represents the number of bonds between B and X, and is an integer satisfying 2 to 4.)
  8.  陽極バッファ層である請求項1~7のいずれか1項記載の有機薄膜太陽電池用バッファ層。 The buffer layer for an organic thin film solar cell according to any one of claims 1 to 7, which is an anode buffer layer.
  9.  請求項1~8のいずれか1項記載の有機薄膜太陽電池用バッファ層と、それに接するように設けられた活性層とを有する有機薄膜太陽電池。 An organic thin-film solar cell comprising the buffer layer for an organic thin-film solar cell according to any one of claims 1 to 8 and an active layer provided in contact therewith.
  10.  前記活性層が、フラーレン誘導体を含む請求項9記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 9, wherein the active layer contains a fullerene derivative.
  11.  前記活性層が、ポリチオフェン誘導体を含む請求項9記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 9, wherein the active layer contains a polythiophene derivative.
  12.  前記活性層が、フラーレン誘導体及びポリチオフェン誘導体を含む請求項9記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 9, wherein the active layer contains a fullerene derivative and a polythiophene derivative.
  13.  前記活性層が、主鎖にチオフェン骨格を含むポリマーを含む請求項9記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 9, wherein the active layer contains a polymer containing a thiophene skeleton in the main chain.
  14.  前記活性層が、フラーレン誘導体及び主鎖にチオフェン骨格を含むポリマーを含む請求項9記載の有機薄膜太陽電池。 The organic thin-film solar cell according to claim 9, wherein the active layer contains a fullerene derivative and a polymer containing a thiophene skeleton in the main chain.
  15.  前記式(1)で表されるオリゴアニリン化合物からなる電荷輸送性物質と、電子受容性ドーパント物質と、有機溶媒とを含む電荷輸送性ワニスを、有機薄膜太陽電池の陽極上又は陽極上のいずれかの薄膜上に塗布し、135℃以下で焼成することを特徴とする、請求項1記載の有機薄膜太陽電池用バッファ層の製造方法。 A charge transporting varnish comprising a charge transporting material comprising an oligoaniline compound represented by the formula (1), an electron accepting dopant material, and an organic solvent is used on either an anode or an anode of an organic thin film solar cell. The method for producing a buffer layer for an organic thin film solar cell according to claim 1, wherein the thin film is applied on the thin film and baked at 135 ° C. or lower.
PCT/JP2014/052432 2013-02-04 2014-02-03 Buffer layer for organic thin film solar cells, and organic thin film solar cell WO2014119782A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559800A JP6648968B2 (en) 2013-02-04 2014-02-03 Method for manufacturing buffer layer for organic thin-film solar cell and method for manufacturing organic thin-film solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013019665 2013-02-04
JP2013-019665 2013-02-04

Publications (1)

Publication Number Publication Date
WO2014119782A1 true WO2014119782A1 (en) 2014-08-07

Family

ID=51262480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052432 WO2014119782A1 (en) 2013-02-04 2014-02-03 Buffer layer for organic thin film solar cells, and organic thin film solar cell

Country Status (2)

Country Link
JP (1) JP6648968B2 (en)
WO (1) WO2014119782A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017077883A1 (en) * 2015-11-06 2017-05-11 日産化学工業株式会社 Composition for hole trapping layer of organic photoelectric conversion element
WO2017135117A1 (en) 2016-02-03 2017-08-10 日産化学工業株式会社 Charge transport varnish
WO2017164158A1 (en) 2016-03-24 2017-09-28 日産化学工業株式会社 Arylamine derivative and use thereof
JPWO2016208506A1 (en) * 2015-06-22 2017-12-21 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and solar cell
JPWO2016148184A1 (en) * 2015-03-17 2017-12-28 日産化学工業株式会社 Composition for forming hole collection layer of optical sensor element and optical sensor element
WO2018216507A1 (en) 2017-05-25 2018-11-29 日産化学株式会社 Method for producing charge transporting thin film
CN109390473A (en) * 2018-10-17 2019-02-26 华中科技大学 Perovskite battery and preparation method thereof based on difunctional unimolecule decorative layer
CN110073509A (en) * 2016-12-16 2019-07-30 日产化学株式会社 The hole trapping layer composition of organic photoelectric converter
WO2020066979A1 (en) 2018-09-25 2020-04-02 日産化学株式会社 Method for manufacturing substrate with attached organic functional film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010474A1 (en) * 2006-07-18 2008-01-24 Nissan Chemical Industries, Ltd. Charge-transporting varnish
WO2010058777A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish
JP2011054631A (en) * 2009-08-31 2011-03-17 Orient Chemical Industries Co Ltd Organic nano carbon compound system thin film solar cell
JP2012182370A (en) * 2011-03-02 2012-09-20 National Institute Of Advanced Industrial & Technology Organic film solar battery cell, method for manufacturing the same, and organic film solar battery
JP2012186343A (en) * 2011-03-07 2012-09-27 Kyushu Univ Organic thin-film solar cell
JP2012244014A (en) * 2011-05-20 2012-12-10 Osaka Gas Chem Kk Photoelectric conversion material and solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010474A1 (en) * 2006-07-18 2008-01-24 Nissan Chemical Industries, Ltd. Charge-transporting varnish
WO2010058777A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish
JP2011054631A (en) * 2009-08-31 2011-03-17 Orient Chemical Industries Co Ltd Organic nano carbon compound system thin film solar cell
JP2012182370A (en) * 2011-03-02 2012-09-20 National Institute Of Advanced Industrial & Technology Organic film solar battery cell, method for manufacturing the same, and organic film solar battery
JP2012186343A (en) * 2011-03-07 2012-09-27 Kyushu Univ Organic thin-film solar cell
JP2012244014A (en) * 2011-05-20 2012-12-10 Osaka Gas Chem Kk Photoelectric conversion material and solar cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3273498A4 (en) * 2015-03-17 2018-11-14 Nissan Chemical Corporation Composition for forming hole collecting layer of photosensor element, and photosensor element
EP4109573A1 (en) 2015-03-17 2022-12-28 Nissan Chemical Corporation Photosensor element
JP7141826B2 (en) 2015-03-17 2022-09-26 日産化学株式会社 COMPOSITION FOR FORMING HOLE COLLECTING LAYER OF OPTICAL SENSOR ELEMENT AND OPTICAL SENSOR ELEMENT
JPWO2016148184A1 (en) * 2015-03-17 2017-12-28 日産化学工業株式会社 Composition for forming hole collection layer of optical sensor element and optical sensor element
US10340461B2 (en) 2015-03-17 2019-07-02 Nissan Chemical Industries, Ltd. Composition for forming hole collecting layer of photosensor element, and photosensor element
JPWO2016208506A1 (en) * 2015-06-22 2017-12-21 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and solar cell
CN108352452A (en) * 2015-11-06 2018-07-31 日产化学工业株式会社 The hole trapping layer composition of organic photoelectric converter
CN108352452B (en) * 2015-11-06 2022-04-15 日产化学工业株式会社 Composition for hole trapping layer of organic photoelectric conversion element
JPWO2017077883A1 (en) * 2015-11-06 2018-08-23 日産化学株式会社 Composition for hole collection layer of organic photoelectric conversion device
TWI715657B (en) * 2015-11-06 2021-01-11 日商日產化學工業股份有限公司 Composition for hole trapping layer of organic photoelectric conversion element
WO2017077883A1 (en) * 2015-11-06 2017-05-11 日産化学工業株式会社 Composition for hole trapping layer of organic photoelectric conversion element
US10770659B2 (en) 2015-11-06 2020-09-08 Nissan Chemical Industries, Ltd. Composition for hole trapping layer of organic photoelectric conversion element
WO2017135117A1 (en) 2016-02-03 2017-08-10 日産化学工業株式会社 Charge transport varnish
WO2017164158A1 (en) 2016-03-24 2017-09-28 日産化学工業株式会社 Arylamine derivative and use thereof
EP3544072A4 (en) * 2016-12-16 2019-11-27 Nissan Chemical Corporation Composition for hole collecting layer of organic photoelectric conversion element
CN110073509A (en) * 2016-12-16 2019-07-30 日产化学株式会社 The hole trapping layer composition of organic photoelectric converter
US11563176B2 (en) 2016-12-16 2023-01-24 Nissan Chemical Corporation Composition for hole collecting layer of organic photoelectric conversion element
WO2018216507A1 (en) 2017-05-25 2018-11-29 日産化学株式会社 Method for producing charge transporting thin film
WO2020066979A1 (en) 2018-09-25 2020-04-02 日産化学株式会社 Method for manufacturing substrate with attached organic functional film
CN109390473A (en) * 2018-10-17 2019-02-26 华中科技大学 Perovskite battery and preparation method thereof based on difunctional unimolecule decorative layer

Also Published As

Publication number Publication date
JPWO2014119782A1 (en) 2017-01-26
JP6648968B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP6648968B2 (en) Method for manufacturing buffer layer for organic thin-film solar cell and method for manufacturing organic thin-film solar cell
TWI715657B (en) Composition for hole trapping layer of organic photoelectric conversion element
TWI776833B (en) Composition for hole gathering layer of organic photoelectric conversion element
JP6520718B2 (en) Composition for anode buffer layer of organic thin film solar cell and organic thin film solar cell
TWI726049B (en) Charge transport paint
US11527719B2 (en) Hole collection layer composition for organic photoelectric conversion element
JPWO2018216507A1 (en) Method for producing charge transporting thin film
JP6772623B2 (en) Charge transporting composition
TW202204468A (en) Composition for hole collecting layer of organic photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559800

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746202

Country of ref document: EP

Kind code of ref document: A1