WO2014119657A1 - セルロース系樹脂組成物、成形用材料および成形体 - Google Patents

セルロース系樹脂組成物、成形用材料および成形体 Download PDF

Info

Publication number
WO2014119657A1
WO2014119657A1 PCT/JP2014/052070 JP2014052070W WO2014119657A1 WO 2014119657 A1 WO2014119657 A1 WO 2014119657A1 JP 2014052070 W JP2014052070 W JP 2014052070W WO 2014119657 A1 WO2014119657 A1 WO 2014119657A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
group
derivative
acid
cellulose resin
Prior art date
Application number
PCT/JP2014/052070
Other languages
English (en)
French (fr)
Inventor
曽山 誠
幸浩 木内
位地 正年
修吉 田中
清彦 當山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014559736A priority Critical patent/JPWO2014119657A1/ja
Priority to US14/764,244 priority patent/US20150368442A1/en
Priority to EP14745520.8A priority patent/EP2952540A4/en
Publication of WO2014119657A1 publication Critical patent/WO2014119657A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a cellulose resin composition, a molding material, and a molded body.
  • Bioplastics made from plants can be used in various fields because they can contribute to environmental measures.
  • various bioplastics using cellulose which is a main component of wood and vegetation, have already been developed and commercialized as bioplastics made from non-edible parts.
  • cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate and the like are used in many fields as cellulose esters which are cellulose derivatives.
  • Cellulose is a polymer in which ⁇ -glucose is polymerized and has high crystallinity, so it is hard and brittle and has no thermoplasticity. Furthermore, since cellulose contains many hydroxy groups, its water absorption is high and its water resistance is low. Therefore, various studies for improving the characteristics of cellulose have been conducted.
  • Patent Document 1 discloses a biodegradable graft polymer having thermoplasticity obtained by ring-opening graft polymerization of ⁇ -caprolactone to cellulose acetate having a hydroxy group.
  • Patent Document 2 discloses a brake substrate formed by using a fiber base material made of aramid pulp and cellulose fiber, a filler made of calcium carbonate and cashew dust, and a binder made of phenol resin.
  • a friction material is disclosed.
  • Patent Document 3 discloses a friction material formed using a base substrate made of aramid fibers and cellulose fibers, a filler made of graphite and cashew dust, and an organic-inorganic composite binder. It is described that this friction material is applied to a clutch facing of a power transmission system such as an automobile.
  • Patent Document 4 for the purpose of improving the impact resistance and rigidity of a molding material using cellulose, a cellulose derivative in which both an ether structure and an ester structure are introduced into cellulose, rubber particles, A molding material containing an aliphatic polyester elastomer is disclosed.
  • Patent Document 5 discloses an aliphatic polyester resin exhibiting biodegradability, a polysaccharide exhibiting biodegradability, and a hydrolysis inhibitor for the purpose of realizing excellent mechanical strength and heat resistance.
  • a resin composition to be contained is disclosed, and in Example 1, it is described that polylactic acid having a branched structure is used as an aliphatic polyester and cellulose propionate is used as a polysaccharide.
  • Non-Patent Document 1 describes that the water resistance of paper can be improved by immersing the paper sheet in cardanol and performing a grafting reaction in which cardanol is bonded to cellulose constituting the paper sheet.
  • a grafting reaction it is described that a terminal double bond of cardanol and a hydroxy group of cellulose are bonded in the presence of boron trifluoride diethyl ether (BF 3 -OEt 2 ).
  • Japanese Patent Laid-Open No. 11-255801 Japanese Patent Laid-Open No. 10-8035 JP 2001-32869 A JP 2011-148975 A JP 2005-162870 A
  • Cellulosic bioplastics are inferior in strength, heat resistance, water resistance, thermoplasticity, and impact resistance compared to petroleum plastics. In particular, these characteristics are improved when applied to durable products such as exteriors for electronic devices. is required.
  • plasticizers obtained from petroleum raw materials are added in order to improve thermoplasticity, the cellulosic bioplastics have reduced plant utilization (plants) and heat resistance and strength (particularly rigidity).
  • plants plants
  • heat resistance and strength particularly rigidity
  • the uniformity is lowered and the plasticizer bleeds out (the plasticizer oozes out to the surface of the molded body).
  • the soft component may bleed out during molding of the cellulose-based cellulosic bioplastic, which may hinder moldability.
  • an object of the present invention is to provide a cellulosic resin composition that solves any of the above problems, particularly a cellulosic resin composition with improved impact resistance.
  • the cellulose resin composition according to the embodiment of the present invention includes a cellulose resin (X) in which an organic group is bonded to cellulose or a derivative thereof, and at least one of the following linear aliphatic polyesters (Y1) and (Y2). A chain aliphatic polyester or a crosslinked product (Y) thereof.
  • (Y1) Linear aliphatic polyester containing at least one of the repeating units represented by the following formula (I) and formula (II) — (CO—R 1 —COO—R 2 —O) — Formula (I)
  • R 1 represents a divalent aliphatic group having 1 to 12 carbon atoms
  • R 2 represents a divalent aliphatic group having 2 to 12 carbon atoms.
  • Formula (II) In the formula (II), R 3 represents a divalent aliphatic group having 2 to 10 carbon atoms.
  • (Y2) A linear aliphatic polyester comprising a ring-opening polymer of a cyclic ester.
  • a molding material according to another embodiment of the present invention includes the cellulose resin composition.
  • a molded body according to another embodiment of the present invention is obtained by molding the molding material.
  • a cellulose resin composition that solves any of the above-mentioned problems, particularly a cellulose resin composition having improved impact resistance.
  • the present inventors have made the cellulose resin composition by containing the cellulose resin (X) and the linear aliphatic polyester or a cross-linked product (Y) thereof. It has been found that the dispersibility of a linear aliphatic polyester or a crosslinked product thereof can be improved and the impact resistance can be improved.
  • the cellulose-based resin (X) has oxygen, such as an acyl group, an ether group, or an ester group, in the structure thereof, by binding of the carboxylic acid, the alcohol, or the phenol to cellulose or a derivative thereof. It has an organic group containing an atom. That is, an organic group is bonded to cellulose or a derivative thereof through a bond containing an oxygen atom such as an ester bond or an ether bond. An organic group may be bonded to cellulose or a derivative thereof via a urethane bond as a bond containing an oxygen atom. The organic group can be bonded using the hydroxyl group of the glucose ring of cellulose or a derivative thereof.
  • the organic group can be bonded to the carbon atom to which the hydroxyl group of the glucose ring has been bonded through a bond containing an oxygen atom or an organic linking group having a bond containing an oxygen atom.
  • Such an organic group bonded to an oxygen atom-containing bond or organic linking group preferably has 1 to 32 carbon atoms, and examples thereof include hydrocarbon groups having 1 to 32 carbon atoms.
  • the cellulose resin (X) having an organic group containing an oxygen atom such as an acyl group, an ether group or an ester group, and the linear aliphatic polyester having an ester group or a crosslinked product (Y) thereof By using it, the dispersibility is considered to be improved by the synergistic effect of the former ester group and the organic group containing an oxygen atom such as the former acyl group, ether group or ester group.
  • the cellulose resin composition according to the embodiment of the present invention includes the following cellulose resin (X) and at least one linear aliphatic of the following linear aliphatic polyesters (Y1) and (Y2). Polyester or a cross-linked product (Y) thereof.
  • examples of the cellulose resin (X) include a cellulose resin having at least one of an acyl group and an ether group.
  • cellulose resin (X) a resin in which at least one of the following compounds (X1), (X2) and (X3) is bonded to cellulose or a derivative thereof can be used.
  • (X1) a carboxylic acid having 1 to 32 carbon atoms or a derivative thereof
  • (X2) an alcohol having 1 to 32 carbon atoms or a derivative thereof
  • (X3) A phenol having 1 to 32 carbon atoms or a derivative thereof.
  • the compounds (X1), (X2) and (X3) may each be a single type or a mixture of two or more types.
  • the cellulose resin (X) in which the compound (X1) is bonded alone is preferable.
  • the cellulose resin (X) may be, for example, one in which at least one of the compounds (X1), (X2) and (X3) is bonded to cellulose, or the compound (X1), (X2) and A combination of at least one of (X3) may be included, or both may be included.
  • the cellulose resin (X) may be a combination of two or more of the compound (X1), two or more of the compound (X2), and two or more of the compound (X3).
  • the cellulose resin (X) in which one or more of the compounds (X1) are bonded to cellulose or a derivative thereof is particularly preferable.
  • a resin in which the compound (X1: a carboxylic acid having 1 to 32 carbon atoms (R—CO—OH) or a derivative thereof) is bonded to cellulose or a derivative thereof is, for example, cellulose or a derivative thereof. It can also be said that the hydrogen atom of the hydroxy group of the derivative is substituted with the following organic group (X1 ′).
  • X1 ′ an acyl group having 1 to 32 carbon atoms (R—CO—).
  • the resin in which the compound (X1) is bonded to cellulose or a derivative thereof includes, for example, a hydroxy group of cellulose or a substituent thereof (another group substituted with a hydroxy group) and a carboxy group of a carboxylic acid having 1 to 32 carbon atoms (
  • the acyl group (R—CO—) having 1 to 32 carbon atoms is added to the cellulose or derivative thereof by reaction with —COOH) or a substituent thereof (another group substituted with a carboxy group).
  • the hydrogen atom H of the hydroxy group (—OH) of the cellulose is substituted with the acyl group (R—CO—), and the cellulose carbon (carbon to which the hydroxy group is bonded) is substituted.
  • a group (R—CO—O—) obtained by removing a hydrogen atom from a carboxylic acid is bonded (added).
  • the reaction between the hydroxy group of cellulose or a substituent thereof and the carboxy group or the substituent thereof is, for example, a dehydration reaction and forms an ester bond.
  • OH may be substituted with a halogen atom (X) such as Cl, F, Br, or I.
  • a de-HX bond occurs between —COX and —OH or between —COOH and —X.
  • the carboxylic acid or its derivative (X1) is, for example, a cardanol (or a hydrogenated product thereof) obtained by introducing a carboxy group using its hydroxy group, or an acid halide obtained by acid-halogenating the carboxy group. included.
  • a resin in which the compound (X2: alcohol having 1 to 32 carbon atoms (ROH) or a derivative thereof) is bonded to cellulose or a derivative thereof includes, for example, the following organic group (X2 ′) It can also be said that resin is added.
  • the resin to which the compound (X2) is bonded for example, reacts with the cellulose by reacting the hydroxy group of cellulose or a substituent thereof with the hydroxy group (—OH) of an alcohol having 1 to 32 carbon atoms or the substituent thereof.
  • An ether group (RO-) having 1 to 32 carbon atoms is added.
  • the hydrogen atom H of the hydroxy group (—OH) of the cellulose is substituted with a hydrocarbon group (R—) having 1 to 32 carbon atoms, and the cellulose carbon (hydroxy group is bonded).
  • the ether group (RO-) is bonded (added) to (carbon).
  • the reaction between the hydroxy group of the cellulose or a substituent thereof and the hydroxy group of the alcohol or the substituent thereof is, for example, a dehydration reaction and forms an ether bond.
  • the hydroxy group may be substituted with a halogen atom (X) such as Cl, F, Br, or I.
  • X halogen atom
  • de-HX bond occurs between -X and -OH.
  • a resin in which the compound (X3: phenol having 1 to 32 carbon atoms (ROH) or a derivative thereof) is bonded to cellulose or a derivative thereof includes, for example, the following organic group (X3 ′) It can also be said that resin is added.
  • the resin to which the compound (X3) is bonded for example, is obtained by reacting the hydroxy group of cellulose or a substituent thereof with the hydroxy group (—OH) of phenol having 1 to 32 carbon atoms or the substituent thereof.
  • An ether group (RO-) having 1 to 32 carbon atoms is added.
  • the hydrogen atom H of the hydroxy group (—OH) of the cellulose is substituted with a hydrocarbon group (R—) having 1 to 32 carbon atoms, and the cellulose carbon (hydroxy group is bonded).
  • the ether group (RO-) is bonded (added) to (carbon).
  • the reaction between the hydroxyl group of cellulose or a substituent thereof and the hydroxyl group of phenol or the substituent thereof is, for example, a dehydration reaction and forms an ether bond.
  • a dehydration catalyst such as sulfuric acid, toluenesulfonic acid or hydrogen chloride can be added.
  • the hydroxy group may be substituted with a halogen atom (X) such as Cl, F, Br, or I. In this case, for example, de-HX bond occurs between -X and -OH.
  • the reaction between the hydroxy group of the cellulose or a substituent thereof and the hydroxy group of the phenol (or alcohol) or the substituent thereof can react with the hydroxy group of the cellulose and the hydroxy group of the phenol (or alcohol). It can be performed using a functional compound.
  • the cellulose carbon atom to which the hydroxy group in cellulose (or its derivative) is bonded and the phenol carbon atom (or the hydroxy group of alcohol) to which the hydroxy group of phenol (or its derivative) is bonded Alcohol carbon atoms) are linked via an organic linking group.
  • the organic linking group includes a divalent hydrocarbon group having, for example, 1 to 20 carbon atoms, preferably 1 to 14 carbon atoms, more preferably 1 to 8 carbon atoms, between these bonding groups. it can.
  • the cellulose resin (X) is, for example, an acylated cellulose such as cellulose acetate propionate or cellulose acetate butyrate, or a grafted cellulose in which a long-chain organic group such as cardanol or a derivative thereof is bonded to cellulose or acylated cellulose. Is mentioned.
  • the cellulose resin (X) is, for example, cardanol or a derivative thereof (for example, a hydrogenated product, a product in which a carboxy group is introduced using a hydroxy group, as the phenol, alcohol or carboxylic acid or a derivative thereof, , An acid halide obtained by acid-halogenating the carboxy group) and cellulose or a derivative thereof can be used.
  • this bonding include grafting in which cardanol or a derivative thereof is bonded to cellulose or a derivative thereof in a graft form.
  • Examples of the cellulose resin (X) include cardanol-grafted cellulose acetate, cardanol-grafted cellulose propionate, cardanol-grafted cellulose acetate propionate, and cardanol-grafted cellulose acetate butyrate.
  • the cardanol portion of such a cellulosic resin may be all or part of hydrogen bonds (double bonds of aromatic rings, double bonds of linear hydrocarbon groups) may be hydrogenated.
  • the cellulose-based resin (X) may be, for example, any one of the above-described resins, or two or more types in combination.
  • the resin component in the cellulose resin composition according to the embodiment of the present invention may be, for example, only the cellulose resin (X) or may include other resins.
  • the linear aliphatic polyester or a crosslinked product (Y) thereof may be one of the linear aliphatic polyesters (Y1) and (Y2) or a crosslinked product thereof. You may use both together.
  • the linear aliphatic polyester (Y1) may include, for example, a repeating unit represented by the formula (I) or a repeating unit represented by the formula (II). , Both of the repeating unit represented by the formula (I) and the repeating unit represented by the formula (II) may be included.
  • the linear aliphatic polyester (Y1) may be any one kind, or two or more kinds may be used in combination.
  • the linear aliphatic polyester (Y1) is, for example, a linear aliphatic in which at least one selected from the group consisting of aliphatic dicarboxylic acids, acid anhydrides and diesters thereof and an aliphatic diol are condensed. Polyester is preferred.
  • the linear aliphatic polyester (Y2) may be any one kind, or two or more kinds may be used in combination.
  • linear aliphatic polyester or a crosslinked product (Y) thereof examples include polybutylene succinate, polybutylene succinate adipate, polycaprolactone, or a crosslinked product thereof.
  • the polycaprolactone is not particularly limited, and examples thereof include a ring-opening polymer of ⁇ -caprolactone.
  • the repeating unit is represented by [— (CH 2 ) 5 CO—O—], and the structural formula is [— (CH 2 ) 5 CO-O-] n (n is a positive integer).
  • the linear aliphatic polyester (Y) can have a number average molecular weight of, for example, 10,000 to 200,000, preferably 10,000 to 100,000, more preferably 20,000 to 80,000, and still more preferably.
  • the range of the weight average molecular weight is, for example, 20,000 to 200,000, preferably 30,000 to 100,000, and more preferably 30,000 to 80,000.
  • the linear aliphatic polyester (Y) preferably satisfies, for example, either the number average molecular weight or the weight average molecular weight, and more preferably satisfies both.
  • the number average molecular weight and the weight average molecular weight can be measured using, for example, gel permeation chromatography, and specific methods can follow the description in the examples.
  • Examples of the crosslinked aliphatic polyester (Y) in the cellulose resin composition according to the embodiment of the present invention include, for example, a linear aliphatic polyester, a carbodiimide compound, an epoxy compound, an isocyanate compound, an oxazoline compound, A polymer obtained by crosslinking with a polyfunctional compound (crosslinking agent) capable of reacting with a linear aliphatic polyester, such as an oxazine compound or an aziridine compound, can be used.
  • a polyfunctional compound crosslinking agent capable of reacting with a linear aliphatic polyester, such as an oxazine compound or an aziridine compound.
  • carbodiimide compounds that are excellent in terms of stability and reactivity with the carboxy group terminal such as aliphatic polycarbodiimides and aromatic polycarbodiimides, are preferably used.
  • the amount of the crosslinking agent used (the mass ratio of the crosslinking agent to the total of the crosslinking agent and the linear aliphatic polyester) can be set in the range of 0.1 to 10% by mass, preferably 0.3 to 5% by mass. %, And more preferably in the range of 0.5 to 3% by mass.
  • the entanglement of the linear aliphatic polyester molecules is increased by crosslinking the linear aliphatic polyester with a crosslinking agent, the bending fracture strain and impact strength of the cellulose resin composition according to the present embodiment can be improved.
  • the content ratio of the cellulose resin (X) and the linear aliphatic polyester or its crosslinked body (Y) is not particularly limited.
  • (X: Y) is preferably in the range of 95: 5 to 30:70, more preferably in the range of 90:10 to 30:70, and in the range of 90:10 to 40:60. Is particularly preferred.
  • the mass ratio (X: Y) can be set in the range of 90:10 to 50:50, and can be set in the range of 90:10 to 70:30.
  • the cellulose resin composition according to an embodiment of the present invention may be composed of only the cellulose resin (X) and the linear aliphatic polyester or a cross-linked product (Y) thereof, and further includes other additives. But you can.
  • the cellulose resin composition according to the embodiment of the present invention preferably contains substantially no compatibilizer, for example.
  • “Substantially free” includes, in addition to being completely free, for example, the meaning of a ratio in which the function as the compatibilizing agent cannot be substantially exhibited in the cellulose resin composition.
  • “Substantially not contained” means, for example, that the content (% by mass) of the compatibilizing agent in the cellulose resin composition is preferably 10% or less, more preferably 5% or less, and 4% or less, 3 % Or less, 2% or less, or 1% or less is more preferable, particularly preferably the detection limit or less, and most preferably 0%.
  • Compatibilization generally means that two types of polymers are mixed with each other, that is, dissolve each other, and the compatibilizing agent generally means an agent that makes two types of polymers compatible.
  • the presence or absence of the addition of the compatibilizing agent, and when it is added, the type and amount of addition of the cellulose-based resin (X) and the linear aliphatic polyester or its crosslinked product (Y) It can be determined appropriately according to the type.
  • the compatibilizer examples include a graft copolymer obtained by graft-polymerizing an ethylene-glycidyl methacrylate copolymer with a styrene-acrylonitrile copolymer, and a graft copolymer obtained by graft-polymerizing styrene with an ethylene-glycidyl methacrylate copolymer.
  • examples thereof include a polymer, a graft copolymer obtained by graft polymerization of styrene on low density polypropylene, and a graft copolymer obtained by graft polymerization of styrene on an ethylene-ethyl acrylate copolymer.
  • Cellulose or a derivative thereof is a linear polymer of ⁇ -glucose represented by the following formula (1), and each glucose unit constituting cellulose has three hydroxy groups.
  • the cellulose resin (X) can be synthesized, for example, by bonding at least one of the compounds (X1), (X2) and (X3) to cellulose or a derivative thereof using these hydroxy groups.
  • cardanol or a derivative thereof can be bonded (grafted) to the cellulose or a derivative thereof.
  • the cellulose is a main component of vegetation, and can be obtained by, for example, separating other components such as lignin from vegetation.
  • cotton and pulp having a high cellulose content can be purified or used as they are.
  • the polymerization degree of cellulose and its derivatives is not particularly limited, and for example, the glucose polymerization degree is preferably in the range of 50 to 5000, more preferably in the range of 100 to 3000.
  • the degree of polymerization within the above range, for example, a cellulose resin, a cellulose resin composition and a molded body obtained therefrom, sufficient strength and heat resistance can be obtained, and the melt viscosity of the resin is increased. It is possible to suppress the hindrance to molding.
  • Examples of the cellulose derivative include those in which a substituent is introduced using cellulose as a raw material by a biological method or a chemical synthesis method.
  • Specific examples of the cellulose derivative include those obtained by acylating, etherifying, or grafting part or all of the hydroxy groups of cellulose.
  • Specific examples of the cellulose derivative include, for example, organic acid esters such as cellulose acetate, cellulose butyrate, and cellulose propionate; inorganic acid esters such as cellulose nitrate, cellulose sulfate, and cellulose phosphate; cellulose acetate propionate and cellulose acetate.
  • Examples thereof include hybrid esters such as butyrate, cellulose acetate phthalate, and cellulose nitrate acetate; etherified celluloses such as methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose.
  • Examples of the cellulose derivative include grafted cellulose in which a polymer such as styrene, (meth) acrylic acid, (meth) acrylic ester, ⁇ -caprolactone, lactide, glycolide is bonded to cellulose.
  • acylated cellulose in which a part of the hydroxy group of cellulose is acylated can be used.
  • the acylated cellulose is preferably at least one acylated cellulose selected from the group consisting of cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • the degree of substitution of hydroxy groups per glucose unit is not particularly limited.
  • the average number of substituents such as acyl groups introduced by reaction with hydroxy groups per glucose unit, that is, the average number of converted hydroxy groups per glucose unit (degree of hydroxyl substitution) ) (DS XX ) is, for example, preferably from 1.0 to 2.8, more preferably from 2.0 to 2.8, from the viewpoint of water resistance, mechanical properties, heat resistance, and the like.
  • an average value of the number of remaining hydroxy groups per glucose unit, that is, a hydroxyl group residual degree (DS OH ) is, for example, 0.9 or less from the viewpoint of sufficiently securing water resistance. Preferably, it is 0.7 or less.
  • any one kind of cellulose and the cellulose derivative may be used, or two or more kinds may be used in combination.
  • any one type may be used independently, and two or more types may be used together, for example.
  • cellulose and the cellulose derivative in the embodiment of the present invention for example, ordinary non-edible polysaccharides such as chitin, chitosan, hemicellulose, glucomannan, curdlan and the like are also applicable as cellulose analogs.
  • the cellulose resin (X) is a resin in which at least one of the compounds (X1), (X2) and (X3) is bonded to the cellulose or a derivative thereof as described above.
  • X1 a carboxylic acid having 1 to 32 carbon atoms or a derivative thereof
  • X2 an alcohol having 1 to 32 carbon atoms or a derivative thereof
  • X3 a phenol having 1 to 32 carbon atoms or a derivative thereof.
  • a hydroxy group of cellulose or a derivative thereof reacts with a carboxy group of the carboxylic acid, or a hydroxy group of alcohol or phenol to form an ester bond or a glycoside bond.
  • the reaction of cellulose or a derivative thereof with the carboxy group of the carboxylic acid or the hydroxy group of the alcohol or phenol to form an ester bond or a glycoside bond is also referred to as grafting of cellulose or a derivative thereof.
  • the carboxylic acid, the alcohol, or the phenol has at least one of an aromatic group and an alicyclic group, grafting of cellulose or a derivative thereof using, for example, bending of a molded article finally obtained Effective for improving rigidity and heat resistance.
  • the grafting of the cellulose or its derivative using these is effective in the improvement of the toughness of the molded object finally obtained.
  • the compounds (X1), (X2) and (X3) have 1 to 32 carbon atoms, preferably 1 to 20 carbon atoms.
  • the carbon number is within this range, for example, steric hindrance can be suppressed and the reaction rate (grafting rate) of the hydroxy group of cellulose or its derivative can be increased.
  • the carboxylic acid of the compound (X1) is not particularly limited, and examples thereof include a chain carboxylic acid and a cyclic carboxylic acid, and any one kind or two or more kinds may be used.
  • Examples of the chain carboxylic acid include linear and branched aliphatic carboxylic acids, and chain aliphatic monocarboxylic acids are particularly preferable.
  • Examples of the cyclic carboxylic acid include alicyclic carboxylic acids and aromatic carboxylic acids, and cyclic monocarboxylic acids are particularly preferable.
  • the carboxy group may be directly bonded to, for example, an alicyclic group or an aromatic ring, or may be bonded to a substituent of the alicyclic group or the aromatic ring.
  • the carboxylic acid may be, for example, a carboxylic acid anhydride.
  • carboxylic acid examples include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid, Saturated monocarboxylic acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid; butenoic acid And unsaturated monocarboxylic acids such as pentenoic acid, hexenoic acid, octenoic acid, undecylenic acid, oleic acid, sorbic acid, linoleic acid
  • Examples of the alicyclic carboxylic acid include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and cyclohexyl acetic acid.
  • Examples of the aromatic carboxylic acid include benzoic acid, toluic acid, and phenyl acetic acid. , Phenylpropionic acid, biphenylcarboxylic acid, biphenylacetic acid, naphthalenecarboxylic acid, tetralincarboxylic acid and the like.
  • carboxylic acids for example, acetic acid, propionic acid, and butyric acid (butyric acid) are preferable.
  • the carboxylic acid derivative has, for example, a substituent in which a carboxy group is converted and a substituent different from the carboxy group.
  • a functional group having reactivity with a hydroxy group of cellulose is preferable, and specific examples include, for example, a carboxylic acid halide group such as a carboxylic acid chloride group, a carboxylic acid anhydride group, and the like. Examples thereof include an epoxy group, an isocyanate group, and a halogen atom such as a chlorine atom.
  • carboxylic acid halide groups such as carboxylic acid chloride and isocyanate groups are preferable.
  • the alcohol (X2) is not particularly limited, and examples thereof include aliphatic alcohols and cyclic alcohols, and may be one kind or two or more kinds.
  • examples of the aliphatic alcohol include methanol, ethanol, propanol and the like.
  • examples of the cyclic alcohol include alicyclic alcohols and aromatic alcohols.
  • examples of the alicyclic alcohol include cyclohexyl alcohol and cycloheptalol, and examples of the aromatic alcohol include benzyl alcohol.
  • the cellulose resin (X) is, for example, a phenoxy group having 6 to 32 carbon atoms (for example, it can be referred to as a resin to which C 6 H 5 O—) or a derivative thereof is added.
  • the resin to which phenol or a derivative thereof is bonded is, for example, a cellulose having a carbon number of 6 to 6 by reacting the hydroxy group of cellulose or a substituent thereof with the phenolic hydroxy group (—OH) of the phenol or the substituent thereof. 32 phenoxy groups (eg C 6 H 5 O—) or derivatives thereof are added.
  • the hydrogen atom H of the hydroxy group (—OH) of the cellulose is substituted with the phenyl group (C 6 H 5 —) or a derivative thereof, and the phenoxy group (C 6 H 5 O—) or a derivative thereof is bound (added).
  • the reaction between the hydroxy group of the cellulose or a substituent thereof and the phenolic hydroxy group or the substituent thereof is, for example, a dehydration reaction and forms an ether bond.
  • the hydrogen atom may be substituted with a halogen atom (X) such as Cl, F, Br, or I. In this case, for example, a de-HOX bond is generated between —OX and —OH.
  • the phenol is preferably cardanol or a derivative thereof.
  • Cardanol is a component contained in the shell of cashew nut, and is an organic compound having a phenol moiety and a linear hydrocarbon moiety R as shown by the following formula (2).
  • Cardanol has four types of different unsaturated bonds in the linear hydrocarbon group R, and is usually a mixture of these four types of isomers.
  • a compound having a pentadecyl group of R 1 (3-pentadecylphenol), a compound having an 8-pentadecenyl group of R 2 (3-pentadecylphenol monoene), pentadecyl 8, R 3
  • a compound having an 11-diene group (3-pentadecylphenoldiene)
  • a compound having a pentadecyl 8,11,14-triene group of R 4 (3-pentadecylphenoltriene).
  • the cardanol for example, a cardanol component obtained by extraction and purification from cashew nut shell liquid can be used.
  • R is the following R 1 , R 2 , R 3 or R 4 , and the hydrogen atom of the hydroxy group (OH) may be substituted.
  • R 1 — (CH 2 ) 14 CH 3
  • R 2 — (CH 2 ) 7 CH ⁇ CH (CH 2 ) 5 CH 3
  • R 3 — (CH 2 ) 7 CH ⁇ CHCH 2 CH ⁇ CH (CH 2 ) 2 CH 3
  • R 4 — (CH 2 ) 7 CH ⁇ CHCH 2 CH ⁇ CHCH 2 CH ⁇ CH 2 CH ⁇ CH 2
  • the linear hydrocarbon group (R) contributes, for example, to improvement in flexibility and hydrophobicity of the resin, and the phenol moiety is, for example, a highly reactive phenolic hydroxy group used for grafting. This hydroxy group forms, for example, a glucoside bond with cellulose or a derivative thereof.
  • the cardanol or a derivative thereof is bonded to cellulose or a derivative thereof, for example, a cellulose-based resin in which the cardanol component is bonded in a brush shape is formed.
  • interaction between cardanols glycosidically bonded to cellulose or a derivative thereof is formed.
  • a dehydration catalyst such as sulfuric acid, toluenesulfonic acid, hydrogen chloride or the like may be added.
  • the unsaturated bond (double bond) in the linear hydrocarbon group (R) portion of cardanol is preferably converted to a saturated bond by hydrogenation.
  • a cardanol derivative in which the unsaturated bond of the linear hydrocarbon group is sufficiently converted to a saturated bond by hydrogenation for example, side reactions are suppressed, and the bond between cellulose and cardanol can be efficiently performed. It can be performed, and a decrease in solubility of the product in the solvent can be suppressed.
  • the unsaturated bond conversion rate (hydrogenation rate) by hydrogenation is, for example, preferably 90 mol% or more, and more preferably 95 mol% or more.
  • the residual ratio of unsaturated bonds in cardanol after hydrogenation that is, the number of unsaturated bonds per cardanol molecule is, for example, preferably 0.2 or less, more preferably 0.1 or less. It is.
  • the aromatic ring of the phenol part of cardanol may be hydrogenated and converted into a cyclohexane ring.
  • the method for hydrogenating cardanol is not particularly limited, and a normal method can be used.
  • the catalyst used in the hydrogenation reaction include noble metals such as palladium, ruthenium and rhodium, and metals such as nickel.
  • the catalyst for example, a catalyst in which the various metals are supported on a support such as activated carbon, activated alumina, or diatomaceous earth can be used.
  • the hydrogenation reaction system for example, a batch system in which a reaction is performed while suspending and stirring a powdered catalyst, a continuous system using a reaction tower filled with a molded catalyst, or the like can be adopted.
  • the solvent used for the hydrogenation is not particularly limited, and may be used or may not be used depending on the reaction method, for example.
  • reaction temperature at the time of hydrogenation is not particularly limited.
  • the reaction temperature at the time of hydrogenation is not particularly limited.
  • it can be usually set to 20 to 250 ° C., preferably 50 to 200 ° C.
  • the hydrogen pressure at the time of hydrogenation is not particularly limited, and for example, usually 10 to 80 kgf / cm 2 (9.8 ⁇ 10 5 to 78.4 ⁇ 10 5 Pa), preferably 20 to 50 kgf / cm 2 ( 19.6 ⁇ 10 5 to 49.0 ⁇ 10 5 Pa).
  • Hydrogenation to cardanol can be performed, for example, when a cardanol derivative is bound to cellulose or a derivative thereof, before the cardanol derivative is formed, after the cardanol derivative is formed and before the bond with cellulose, or after the bond between the cardanol derivative and cellulose. May be performed.
  • the bonding between the cardanol derivative and cellulose is preferable, and more preferably before the formation of the cardanol derivative.
  • Grafting of cellulose or a derivative thereof with the phenol of (X3) or a derivative thereof can be performed using, for example, a polyfunctional compound having a functional group capable of binding to both of these hydroxy groups.
  • cellulose or a derivative thereof and phenol or a derivative thereof can be combined.
  • bonded with the said cellulose is a derivative
  • guide_body of phenol and what the said multifunctional compound couple
  • one functional group of the polyfunctional compound is bonded to a hydroxy group of phenol to form a phenol derivative (for example, a cardanol derivative), and the functional group of the phenol derivative (for example, a cardanol derivative) and cellulose Can be bonded to the hydroxy group.
  • the reaction efficiency of the hydroxyl group of a cellulose can be improved and a side reaction can be suppressed, for example.
  • grafting of cellulose or a derivative thereof with the alcohol (X2) or a derivative thereof can be performed using, for example, a polyfunctional compound having a functional group capable of binding to both of these hydroxy groups.
  • Cellulose or a derivative thereof and alcohol or a derivative thereof can be bonded through a compound.
  • a compound in which the polyfunctional compound is bonded to the hydroxy group of the alcohol is an alcohol derivative.
  • the polyfunctional compound is preferably, for example, one in which a functional group capable of bonding to cellulose and the hydroxy group of phenol (or alcohol) is bonded to a hydrocarbon group.
  • the number of carbon atoms of the hydrocarbon group is not particularly limited, and is preferably, for example, 1 or more as the lower limit side, more preferably 2 or more, and preferably 20 or less, and more preferably 14 or less, as the upper limit side. Yes, more preferably 8 or less. By setting the carbon number within this range, for example, a decrease in reactivity can be suppressed and the efficiency of grafting can be improved.
  • the hydrocarbon group is preferably a divalent group, and specific examples include a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a decamethylene group, Divalent linear aliphatic hydrocarbon groups such as dodecamethylene group and hexadecamethylene group; cycloheptane ring, cyclohexane ring, cyclooctane ring, bicyclopentane ring, tricyclohexane ring, bicyclooctane ring, bicyclononane ring, tricyclo And divalent alicyclic hydrocarbon groups such as a decane ring; divalent aromatic hydrocarbon groups such as a benzene ring, a naphthalene ring and a biphenylene group; Of these, for example, a chain alky
  • the rigidity of the resin can be improved due to their rigidity.
  • the toughness of resin can be improved from the softness
  • the functional group of the polyfunctional compound is not particularly limited, and examples thereof include a carboxylic acid halide group such as a carboxy group, a carboxylic acid anhydride group, and a carboxylic acid chloride, an epoxy group, an isocyanate group, and a halogen atom.
  • a carboxylic acid halide group such as a carboxy group, a carboxylic acid anhydride group, and a carboxylic acid chloride
  • an epoxy group an isocyanate group
  • a halogen atom such as a chlorine atom
  • an isocyanate group are preferable.
  • the functional group to be reacted with the hydroxy group of the phenol or alcohol is, for example, a carboxylic acid anhydride group, a halogen atom such as a chlorine atom, or an isocyanate group, and the functional group to be reacted with the hydroxy group of cellulose or a derivative thereof is, for example, Carboxylic acid halide groups such as carboxylic acid chloride groups and isocyanate groups are preferred.
  • the carboxylic acid halide group can be formed, for example, by acid-converting a carboxy group.
  • polyfunctional compound examples include, for example, dicarboxylic acid, carboxylic acid anhydride, dicarboxylic acid halide, monochlorocarboxylic acid, diisocyanate and the like.
  • dicarboxylic acid examples include malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, pentadecanedicarboxylic acid, hexadecanedicarboxylic acid, and the like.
  • Examples of the carboxylic acid anhydride include the listed anhydrides of the dicarboxylic acid, and examples of the dicarboxylic acid halide include the listed acid halides of the dicarboxylic acid.
  • Monochlorocarboxylic acid is, for example, monochloroacetic acid, 3-chloropropionic acid, 3-fluoropropionic acid, 4-chlorobutyric acid, 4-fluorobutyric acid, 5-chlorovaleric acid, 5-fluorovaleric acid, 6-chlorohexanoic acid, Examples thereof include 6-fluorohexanoic acid, 8-chlorooctanoic acid, 8-fluorooctanoic acid, 12-chlorododecanoic acid, 12-fluorododecanoic acid, 18-chlorostearic acid and 18-fluorostearic acid.
  • diisocyanates examples include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), tolidine diisocyanate, 1,6-hexamethylene diisocyanate (HDI).
  • TDI tolylene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • NDI 1,5-naphthylene diisocyanate
  • HDI 1,6-hexamethylene diisocyanate
  • Isophorone diisocyanate IPDI
  • XDI xylylene diisocyanate
  • hydrogenated XDI triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester tri Isocyanate, 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, dicyclohexylmethane diisocyanate (HMDI: hydrogenated MDI) And the like.
  • tolylene diisocyanate TDI
  • 4,4'-diphenylmethane diisocyanate MDI
  • 1,6-hexamethylene diisocyanate HDI
  • grafting cellulose or a derivative thereof with the phenol (or alcohol) via the polyfunctional compound for example, grafting via at least one of an ester bond, an ether bond and a urethane bond is performed.
  • the carboxylic acid, the alcohol, the phenol, or a derivative thereof has, for example, a group derived from an organic silicon compound, an organic fluorine compound, or the like in their structure in order to obtain an effect of improving water resistance. Also good.
  • the grafting rate by the carboxylic acid, alcohol, phenol or derivative thereof on cellulose or its derivative is not particularly limited.
  • the grafting rate is, for example, the average value of the number of hydroxy groups contained in the glucose unit of cellulose or its derivatives reacted with the carboxylic acid, alcohol, phenol or their derivatives, that is, the degree of hydroxyl substitution (DS XX ). It is represented by
  • the hydroxyl group substitution degree is preferably 0.1 or more and 2.9 or less, more preferably 0.2 or more and 2.8 or less, for example, from the viewpoint of water resistance, mechanical properties, heat resistance, and the like. As mentioned above, 2.8 or less is still more preferable, for example, it can set to 1.0 or more and 2.8 or less.
  • the average value of the number of hydroxy groups remaining in the glucose unit of cellulose or its derivative, that is, the hydroxyl group residual degree (DS OH ) is, for example, 0 from the viewpoint of sufficiently securing water resistance, mechanical strength and plasticity. .9 or less is preferable, and 0.7 or less is more preferable.
  • the grafting rate of cellulose or its derivative by cardanol or its derivative is not particularly limited. This grafting rate is expressed, for example, by the average value of the number of hydroxy groups contained in the glucose unit of cellulose or its derivative bonded to cardanol or its derivative, that is, the degree of hydroxyl group substitution (DS CD ).
  • the hydroxyl group substitution degree (DS CD ) is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.4 from the viewpoint of, for example, improvement in water resistance, mechanical properties, and heat resistance. That's it.
  • the maximum value of the DS CD is theoretically “3”, but is preferably 2.5 or less, more preferably 2 or less, and still more preferably 1.5 or less, for example, in order to perform efficient bonding. It is. Further, the DS CD may be, for example, 1 or less, and in this case, a sufficient improvement effect can be obtained.
  • the DS CD can be appropriately set according to desired characteristics, for example. For example, by setting the DS CD to be equal to or less than the upper limit value, for example, the tensile fracture strain and the bending fracture strain (toughness) are sufficiently suppressed, and the maximum strength (tensile strength and bending strength) is also reduced. It can be suppressed sufficiently.
  • the average value of the number of hydroxyl groups remaining in the glucose unit of cellulose or its derivative to which cardanol or its derivative is bound that is, the hydroxyl group residual degree (DS OH ), for example, has sufficient water resistance, mechanical strength, and plasticity. Is preferably 0.9 or less, more preferably 0.7 or less.
  • Grafting of cellulose or its derivative with the carboxylic acid, the alcohol, the phenol, or a derivative thereof can be performed, for example, in a solvent.
  • the solvent is preferably a solvent that can dissolve, for example, cellulose or a derivative thereof, the carboxylic acid, the alcohol, the phenol, or a derivative thereof.
  • the solvent for dissolving the cellulose or its derivative for example, a dimethyl sulfoxide-amine solvent, a dimethylformamide-chloral-pyridine solvent, a dimethylacetamide-lithium chloride solvent, an imidazolium ionic liquid, or the like can be used.
  • the solubility with respect to a general solvent can be improved, when performing grafting reaction, the said carboxylic acid, the said alcohol, the said phenol, or these derivatives are previously couple
  • a cellulose derivative having improved solubility due to a decrease in intermolecular force may be used.
  • the solvent include dioxane, chloroform, methylene chloride, acetone and the like.
  • Specific examples of the cellulose derivative include acylated celluloses such as acetyl cellulose, propionyl cellulose, butyryl cellulose, cellulose acetate propionate, and cellulose acetate butyrate. Among them, acetyl cellulose is particularly preferable.
  • the acylation rate in the acylated cellulose is represented, for example, by the average value of the number of acylated hydroxy groups contained in the glucose unit of cellulose or its derivative, that is, the degree of hydroxyl group substitution (DS AC ).
  • the hydroxyl group substitution degree (DS AC ) is, for example, preferably 0.5 or more, more preferably 1.0 or more, still more preferably 1.5 or more, in order to increase the solubility of cellulose.
  • 2.9 or less is preferable, and 2.8 or less is more preferable.
  • Linear aliphatic polyester or a crosslinked product thereof (Y)
  • the linear aliphatic polyester or a crosslinked product (Y) thereof is at least one of the linear aliphatic polyesters (Y1) and (Y2) or a crosslinked product thereof.
  • the linear aliphatic polyester (Y1) is a linear aliphatic polyester containing at least one of the repeating units represented by the formula (I) and the formula (II).
  • the divalent aliphatic group R 1 has 1 to 12 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms.
  • the carbon number of the divalent aliphatic group R 2 is 2 to 12, preferably 2 to 8, and more preferably 2 to 4.
  • the divalent aliphatic group R 3 has 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 4 carbon atoms.
  • the linear aliphatic polyester (Y1) can be obtained, for example, by a condensation reaction of an aliphatic diol with at least one selected from the group consisting of aliphatic dicarboxylic acids, acid anhydrides and diesters thereof (formula Polyester comprising units of (I).
  • the linear aliphatic polyester (Y1) is obtained by a condensation reaction of a carboxylic acid having a hydroxy group (hydroxycarboxylic acid) or an ester thereof (polyester comprising units of the formula (II)).
  • the linear aliphatic polyester (Y1) is composed of at least one selected from the group consisting of aliphatic dicarboxylic acids, acid anhydrides and diesters thereof, aliphatic diols, hydroxycarboxylic acids or esters thereof, (Polyester containing units of formula (I) and units of formula (II)).
  • the hydroxycarboxylic acid include hydroxycarboxylic acids having 2 to 10 carbon atoms such as glycolic acid and 4-hydroxybutyric acid.
  • the aliphatic dicarboxylic acid has, for example, 3 to 12 carbon atoms, preferably 3 to 9 carbon atoms, and more preferably 3 to 5 carbon atoms.
  • the aliphatic carboxylic acid is, for example, an alkanedicarboxylic acid, and specific examples thereof include malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid and the like. Any one kind of the aliphatic dicarboxylic acid may be used, or two or more kinds may be used in combination.
  • the aliphatic diol has, for example, 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms, and more preferably 2 to 6 carbon atoms.
  • the aliphatic diol is, for example, alkylene glycol, and specific examples thereof include ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, Examples include 1,10-decanediol and 1,12-dodecanediol.
  • linear aliphatic diols having 2 to 6 carbon atoms are preferable, and ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, and 1,6-hexanediol are particularly preferable. Any one kind of the aliphatic diol may be used, or two or more kinds may be used in combination.
  • the linear aliphatic polyester (Y2) is a linear aliphatic polyester obtained by ring-opening polymerization of a cyclic ester.
  • the cyclic ester include lactones having 2 to 12 carbon atoms, and specific examples include ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, and the like. Any one kind of the cyclic ester may be used, or two or more kinds may be used in combination.
  • the number average molecular weight of the linear aliphatic polyester (Y) is not particularly limited, and the lower limit side is preferably, for example, 10,000 or more, more preferably 20000 or more, and the upper limit side is, for example, 200,000 or less. Is preferable, and more preferably 100,000 or less.
  • the molecular weight of the linear aliphatic polyester (Y) within the above range, for example, the dispersibility in the resin composition is more excellent, and a more uniform molded product can be obtained.
  • the number average molecular weight or the weight average molecular weight for example, a measurement value (calibrated with a polystyrene standard sample) by GPC using a 0.1% by mass chloroform solution of a sample can be adopted.
  • the content of the linear aliphatic polyester (Y) in the cellulose resin composition is not particularly limited.
  • the cellulose resin composition For example, from the viewpoint of sufficiently improving the impact resistance of the obtained molded article, the cellulose resin composition For example, 1% by mass or more is preferable and 5% by mass or more is more preferable with respect to the entire product. In addition, for example, 90% by mass or less is preferable, and 70% by mass or less is more preferable, with respect to the entire cellulose resin composition, from the viewpoint of sufficiently securing properties such as strength of the cellulose resin. A mass% or less is more preferable. Further, for example, from the viewpoint of sufficiently ensuring transparency, for example, 50% by mass or less is preferable and less than 50% by mass is more preferable with respect to the entire cellulose resin composition.
  • the content ratio (mass ratio, X: Y) of the cellulose resin (X) and the linear aliphatic polyester or the crosslinked product (Y) thereof is, for example, in the range of 95: 5 to 30:70. It is preferably in the range of 90:10 to 30:70, more preferably in the range of 90:10 to 40:60.
  • the cellulose-based resin composition according to the embodiment of the present invention can be obtained by mixing the linear aliphatic polyester (Y) as described above into the cellulose-based resin (X). it can.
  • the linear aliphatic polyester can be highly dispersed in the molecular order in the cellulose resin. Since the molded product of the cellulose resin composition obtained by mixing the linear aliphatic polyester or its crosslinked product (Y) with the cellulose resin (X) can promote shear deformation at the time of impact fracture, Can be improved.
  • the cellulose-based resin composition may contain additives such as a colorant, an antioxidant, a heat stabilizer, a plasticizer, and a flame retardant as necessary.
  • the method for producing the cellulose resin composition is not particularly limited except that the cellulose resin (X) and the linear aliphatic polyester (Y) are used, and a known method can be adopted.
  • the cellulose-based resin, the linear aliphatic polyester, and various additives as necessary are mixed and melted by hand mixing, or a mixer (for example, a tumbler mixer, a ribbon blender, a uniaxial or a multiaxial). It can be manufactured by melting and mixing using a compounding apparatus such as a mixing extruder, a kneading kneader, and a kneading roll, and granulating it into a desired shape as necessary.
  • a solvent such as an organic solvent
  • the cellulose resin, the linear aliphatic polyester, and various additives as necessary are mixed. Accordingly, there is a method in which a coagulation solvent is added to obtain these mixed compositions, and then the solvent is evaporated.
  • the form of the cellulose resin composition according to the embodiment of the present invention is not particularly limited, and may be a solution or a solid such as a pellet, powder, particle, or block.
  • the cellulose-based resin composition can be used as a molding material, for example, and is suitable for a material of a molded body such as a casing of an electronic equipment exterior.
  • the molding material according to an embodiment of the present invention is characterized by including the cellulose-based resin composition, and is useful as a raw material for various molded bodies such as a casing for an exterior for an electronic device, for example.
  • a molding material preferably contains the cellulose resin composition as a base resin.
  • the base resin means a main component in the molding material and means that it is allowed to contain other components as long as the function of the main component is not hindered.
  • the content ratio of the base resin that is the main component is not particularly limited, and is, for example, 30% by mass of the whole. The above is preferable, more preferably 50% by mass or more, further preferably 70% by mass or more, and particularly preferably 80% by mass or more.
  • the molding material according to the embodiment of the present invention may contain a binder, a solvent, and the like in addition to the cellulose resin composition.
  • the form of the molding material according to the embodiment of the present invention is not particularly limited, and may be a solution or a solid such as a pellet, powder, particle, or block.
  • the molded body according to the embodiment of the present invention is characterized by using the molding material.
  • the molded body according to the embodiment of the present invention only needs to use the molding material, and other configurations are not limited at all.
  • Examples of the molded body include housings such as exteriors for electronic devices, internal parts of electronic devices, sheets, films, packaging containers, and the like.
  • Cellulosic resins 1, 2 and 3 shown below were prepared as the cellulose resins.
  • Cellulosic resin 1 Cellulose acetate propionate (product name: CAP482-20, manufactured by Eastman Chemical Co., Ltd.) was used as the cellulose resin 1.
  • Acetylation rate of hydroxy group per glucose unit of the cellulose resin (hydroxyl substitution degree by acetylation): DS Ace 0.18
  • Propionylation rate of hydroxy group per glucose unit of the cellulose resin (hydroxyl substitution degree by propionylation): DS Pro 2.49.
  • Cellulosic resin 2 Cellulose acetate butyrate (product name: CAB381-20, manufactured by Eastman Chemical Co., Ltd.) was used as the cellulose resin 2.
  • the purity of the obtained hydrogenated cardanol was measured by a liquid chromatograph (product name: LC-10ADVP, manufactured by Shimadzu Corporation), and the purity was 99% by mass.
  • the hydrogenated cardanol obtained was measured by 1 H-NMR (product name: AV-400, 400 MHz, manufactured by Bruker).
  • the hydrogenation rate (double bond of hydrocarbon moiety and double bond of aromatic ring) Conversion rate) was 99 mol% or more.
  • Crystals were filtered from the reaction solution after standing (5A, 185 mm ⁇ ) and washed with liquid using 125 ml of ice-cooled acetonitrile. The obtained crystals were slurried in 125 ml of acetonitrile and stirred at room temperature for 1 hour. After standing at ⁇ 15 ° C. overnight, the crystals were filtered (5A, 185 mm ⁇ ) and dried under reduced pressure ( ⁇ 0.4 kPa) at 30 ° C. for 6 hours. As a result, 22.61 g of a white powder (dry crystal) of a diisocyanate-added cardanol derivative in which HDI and hydrogenated cardanol were combined at a molar ratio of 1: 1 was obtained.
  • the obtained diisocyanate-added cardanol derivative was measured with a liquid chromatograph (product name: LC-10ADVP, manufactured by Shimadzu Corporation), and the purity was 91% by mass.
  • the obtained cardanol grafted cellulose acetate propionate was measured by 1 H-NMR (product name: AV-400, 400 MHz, manufactured by Bruker).
  • DS Ace 2.1, DS Pro : 0.59, DS CD : 0.25.
  • This mixed solution was put into a separatory funnel, separated into an aqueous layer and an ether layer, the aqueous layer was discarded, and the ether layer was washed twice with 400 mL of distilled water. After anhydrous magnesium was added to the collected ether layer and dried, it was filtered off.
  • the obtained filtrate (ether layer) was concentrated under reduced pressure with an evaporator (90 ° C./3 mmHg) to obtain a yellowish brown powdery crude product as a residue.
  • the crude product was recrystallized from n-hexane and vacuum-dried to obtain 46 g (0.12 mol) of white powder of carboxylated hydrogenated cardanol.
  • the obtained cardanol grafted cellulose acetate (cellulose resin 4) was measured by 1 H-NMR (product name: AV-400, 400 MHz, manufactured by Bruker), and the DS CD was 0.47.
  • the obtained mixture 1 was analyzed by 1 H-NMR (manufactured by Bruker, product name: AV-400, 400 MHz). As a result, the molar ratio of acetic anhydride, mixed acid anhydride 1, hydrogenated cardanoxyacetic anhydride, hydrogenated cardanoxyacetic acid, and acetic acid contained in the mixture 1 was 43.0: 20.8: 2.0 in this order. : 10.0: 24.2.
  • the activation process of cellulose was performed by the following method.
  • a cellulose derivative was synthesized by the following method.
  • the above activated cellulose was dispersed in 150 mL of N-methylpyrrolidinone (NMP). To this dispersion, 3.0 g of dimethylaminopyridine (DMAP) and the mixture 1 containing the mixed acid anhydride 1 of Synthesis Example 8 were added, and the mixture was stirred at 100 ° C. for 15 hours while being heated. Thereafter, 1.5 L of methanol was added to the reaction solution for reprecipitation, and the solid was separated by filtration. The solid content separated by filtration was washed twice with 150 ml of isopropyl alcohol at 60 ° C. and then vacuum-dried at 105 ° C. for 5 hours. As a result, 17.6 g of a long chain / short chain bonded cellulose derivative was obtained.
  • NMP N-methylpyrrolidinone
  • the DS LO by the above IR measurement was calculated using the intensity of the stretching peak (1586 cm ⁇ 1 ) derived from the benzene ring skeleton.
  • DS SH by IR measurement was a value obtained by subtracting DS LO from the total acyl group substitution degree (DS SH + DS LO ) determined using the intensity of the ester bond C ⁇ O stretching peak (1750 cm ⁇ 1 ). These peak intensities were normalized by the intensity of the stretching peak (1050 cm ⁇ 1 ) of the ether bond of the glucopyranose ring.
  • the obtained long-chain and short-chain-bonded cellulose derivative is partially soluble in chloroform, and its soluble content is determined by DS using 1 H-NMR (manufactured by Bruker, product name: AV-400, 400 MHz).
  • DSSH was 2.4 and DSLO was 0.6.
  • the molecular weight of the polycaprolactone was calculated in terms of polystyrene from the results obtained by gel permeation chromatography (product name: LC-10ADvp CLASS-VP system, manufactured by Shimadzu Corporation) using a chloroform solution (1% by mass). As a result, the number average molecular weight (Mn) was 26,683, and the weight average molecular weight (Mw) was 54,980.
  • Branched aliphatic polyester As branched aliphatic polyester, polylactic acid (product of Unitika Ltd., product name: Terramac TE-4000N) and poly-3-hydroxybutyrate (product of Mitsubishi Gas Chemical Company, Inc., product) Name: Biogreen).
  • a compatibilizing agent As a compatibilizing agent, a graft copolymer obtained by graft polymerization of an ethylene-glycidyl methacrylate copolymer with a styrene-acrylonitrile copolymer (manufactured by NOF Corporation, product name: Modiper A4400) was used.
  • Crosslinking agent As a crosslinking agent for forming a crosslinked product of a linear polyester resin, aliphatic polycarbodiimide (manufactured by Nisshin Chemical Co., Ltd., product name: Carbodilite LA-1) and aromatic polycarbodiimide (manufactured by Rhein Chemie) Product name: Starvacol P) was used.
  • the polybutylene succinate adipate (manufactured by Showa Denko KK, product name: Bionore 3001MD) as a linear aliphatic polyester, and carbodilite LA-1 or stavaxol P as a cross-linking agent are blended (mass ratio) shown in the following table.
  • a twin-screw kneader product name: HAKKE-MiniLab, Micro-Extruder, Thermo Electron Corp.
  • melt-kneading for 15 minutes under the conditions of 180 ° C. and 60 rpm a crosslinked linear polyester resin PBSA-1 to 4 were obtained.
  • the strength is preferably 6.2 kJ / m 2 or more, more preferably 6.9 kJ / m 2 or more, still more preferably 8.0 kJ / m 2 or more, and particularly preferably 9.0 kJ. / M 2 or more.
  • Examples 1 to 5 and Comparative Examples 1 and 2 The cellulosic resin compositions of Examples 1 to 5 and the compositions of Comparative Examples 1 and 2 were prepared and molded as follows, and various properties of the obtained compositions or molded bodies were evaluated. Table 2 shows composition ratios and evaluation results of the respective compositions.
  • Comparative Example 1 the composition was prepared and molded in the same manner as in Example except that the linear aliphatic polyester was not added, and Comparative Example 2 was not added the cellulose resin. went.
  • the cellulosic resin compositions of Examples 1 to 5 satisfied the acceptable values for practical use for all items. Furthermore, it was found that the cellulosic resin compositions of Examples 1 to 5 were superior in impact strength and water resistance compared to the cellulosic resin alone of Comparative Example 1 (no addition of linear aliphatic polyester).
  • the cellulose-based resin alone of Comparative Example 1 (no addition of linear aliphatic polyester) has an MFR lower than 1000 g / 100 min, so that, for example, the fluidity is insufficient and thin-wall molding may not be possible. Furthermore, since the water absorption rate is larger than 3.0%, for example, the dimensional stability becomes insufficient, and the dimensions of the molded body change during use, which may cause problems such as incompatibility of members. It is considered to be inferior in practicality.
  • Example 1-5 has higher impact strength than the linear aliphatic polyester alone of Comparative Example 2 (no addition of cellulose resin 1).
  • Example 6 to 10 The cellulose acetate propionate (cellulose resin 1) was used as the cellulose resin, and the polycaprolactone (PCL) was used as the linear aliphatic polyester.
  • a composition was prepared and molded in the same manner as in the above example except that the composition ratios in Table 4 below were used. Various characteristics of the obtained composition or molded body were evaluated. These results are shown in Table 3 below.
  • the cellulosic resin compositions of Examples 6 to 10 in the examples satisfied the acceptable values for practical use in all items. Further, it was found that the cellulosic resin compositions of Examples 6 to 10 were superior in impact strength, water resistance and moldability as compared with the cellulosic resin 1 of Comparative Example 1 in Table 2 alone.
  • Example 11 satisfied the acceptable values for practical use for all items. Furthermore, it turned out that the cellulose resin composition of Example 11 is excellent in impact strength, water resistance, and moldability compared with the cellulose resin 2 of Comparative Example 3 alone.
  • the cellulosic resin compositions of Examples 12 to 17 satisfied acceptable values for practical use in all items.
  • the cellulosic resin compositions of Examples 12 to 17 were found to be superior in impact strength, water resistance, and moldability as compared with the cellulosic resin 3 of Comparative Example 4 alone (no linear aliphatic polyester added). It was.
  • the cellulosic resin compositions of Examples 12 to 17 can maintain transparency in the range where the content of the linear aliphatic polyester (polybutylene succinate) is greater than 0% and less than 50%. Recognize.
  • the cellulose resin compositions of Examples 18 to 22 satisfied the acceptable values for practical use for all items.
  • the cellulose resin composition of Examples 19 and 20 to which the reinforcing fibers are added can further improve the bending strength and the bending elastic modulus with respect to the cellulose resin composition of Example 18, Moreover, it turned out that impact strength is also favorable compared with the comparative example 6 of the said cellulose resin 3 single.
  • the cellulose resin composition of Example 22 includes the cellulose resin 3, the polybutylene succinate, and the reinforcing fiber, so that the impact strength and bending strength of the cellulose resin composition are higher than those of Comparative Example 6 of the cellulose resin 3 alone. It was found to be excellent in strength, flexural modulus, bending strain, formability, and water resistance.
  • the cellulose resin compositions of Examples 23 and 24 satisfied the acceptable values for practical use for all items. It was also found that when 50% or more of the linear aliphatic polyester is added, impact strength, moldability and water resistance can be further improved.
  • Examples 25 to 27 and Comparative Examples 7 to 8 The cellulose resin 3 is used as the cellulose resin, polybutylene succinate adipate, polybutylene succinate, polycaprolactone is used as the linear aliphatic polyester, and the branched aliphatic polyester is used as the branched aliphatic polyester.
  • Polylactic acid (PLA) and the poly-3-hydroxybutyrate (PHB) were used.
  • a composition was prepared and molded in the same manner as in Example 1 except that these were changed to the composition ratios shown in Table 9 below. Various properties of the obtained composition or molded body were evaluated. These results are shown in Table 9 below.
  • Examples 25 to 27 satisfied acceptable values for practical use for all items.
  • Examples 25 to 27 were found to be superior in impact strength, moldability, and water resistance as compared with Comparative Example 6 in which cellulose resin 3 alone shown in Table 7 was used.
  • Comparative Examples 7 and 8 containing a branched aliphatic polyester instead of a linear aliphatic polyester the impact strength was not improved as compared with Comparative Example 6 using only the cellulose resin 3 shown in Table 7.
  • Example 28 to 32 and Comparative Example 9 The cellulose acetate propionate (cellulose resin 1) was used as the cellulose resin, and the polybutylene succinate adipate was used as the linear aliphatic polyester.
  • a composition was prepared and molded in the same manner as in the above example except that the composition ratios shown in Table 10 below were used. Various characteristics of the obtained composition or molded body were evaluated. These results are shown in Table 10 below.
  • the cellulosic resin compositions of Examples 28 to 32 satisfied the acceptable values for practical use for all items. Furthermore, it was found that the cellulose resin compositions of Examples 28 to 32 were superior in impact strength and water resistance as compared with the cellulose resin alone of Comparative Example 9 (no addition of linear aliphatic polyester).
  • the cellulose resin alone of Comparative Example 9 (without addition of a linear aliphatic polyester) has an MFR lower than 1000 g / 100 min. Furthermore, since the water absorption rate is larger than 3.0%, for example, the dimensional stability becomes insufficient, and the dimensions of the molded body change during use, which may cause problems such as incompatibility of members. It is considered to be inferior in practicality.
  • Examples 33 to 39 and Comparative Example 11 The cardanol grafted cellulose acetate (cellulose resin 4) was used as the cellulose resin, and the polybutylene succinate or the polybutylene succinate adipate was used as the linear aliphatic polyester.
  • a composition was prepared and molded in the same manner as in Example 1 except that the composition ratios shown in Tables 11 and 12 were used. Various characteristics of the obtained composition or molded body were evaluated. These results are shown in Tables 11 and 12 below.
  • the cellulose-based resin compositions of Examples 33 to 47 satisfied the acceptable values for practical use for all items. Further, the cellulose resin compositions of Examples 34, 35, 37, 40, 41, and 44 to 46 have a higher impact strength and flow than the cellulose resin alone of Comparative Example 11 (no addition of linear aliphatic polyester). It was found to be excellent in performance. In addition, the cellulosic resin compositions of Examples 35, 36, 38, 39, 41 to 44, and 46 are improved in rigidity by adding glass fiber, and improved in bending strength while maintaining excellent impact strength. I understood.
  • Example 48 to 55 and Comparative Example 12 The cardanol grafted cellulose acetate (cellulose resin 4) was used as the cellulose resin, and the polybutylene succinate adipate was used as the linear aliphatic polyester.
  • a composition was prepared and molded in the same manner as in Example 1 except that the composition ratios shown in Table 13 below were used. Various characteristics of the obtained composition or molded body were evaluated. These results are shown in Table 13 below. In the table, “PTFE” indicates polytetrafluoroethylene, and “2.4 mm flammability” indicates determination by a flammability test with a thickness of 2.4 mm according to the UL94 standard.
  • the cellulosic resin compositions of Examples 48 to 55 had high flame retardancy while satisfying acceptable values for practical use for all items. Further, it was found that the cellulose resin compositions of Examples 48 to 55 were superior in impact strength as compared with the cellulose resin alone of Comparative Example 12 (no addition of linear aliphatic polyester). In addition, it was found that the cellulosic resin compositions of Examples 49, 50 and 52 to 55 were improved in rigidity by addition of glass fiber and improved in bending strength while maintaining excellent impact strength.
  • Example 56 to 59 and Comparative Example 13 The long-chain and short-chain-bonded cellulose derivative (cellulose-based resin 5) was used as the cellulose-based resin, and the polybutylene succinate adipate was used as the linear aliphatic polyester.
  • a composition was prepared and molded in the same manner as in Example 1 except that these were changed to the composition ratios shown in Table 14 below. Various characteristics of the obtained composition or molded body were evaluated. These results are shown in Table 14 below.
  • the cellulose-based resin compositions of Examples 56 to 59 satisfied the acceptable values for practical use for all items. Furthermore, it was found that the cellulose resin compositions of Examples 56 to 59 were superior in impact strength as compared with the cellulose resin alone of Comparative Example 13 (no addition of linear aliphatic polyester). In addition, it was found that the cellulosic resin compositions of Examples 57 and 59 were improved in rigidity by adding glass fibers, and improved in bending strength while maintaining excellent impact strength.
  • Example 60 to 77 The cardanol grafted cellulose acetate (cellulose resin 4) was used as the cellulose resin, and the crosslinked polybutylene succinate adipate (PBSA-1 to 4) was used as the crosslinked linear aliphatic polyester.
  • cellulose resin 4 The cardanol grafted cellulose acetate (cellulose resin 4) was used as the cellulose resin, and the crosslinked polybutylene succinate adipate (PBSA-1 to 4) was used as the crosslinked linear aliphatic polyester.
  • PBSA-1 to 4 crosslinked polybutylene succinate adipate
  • the cellulose resin compositions of Examples 60 to 77 satisfied the acceptable values for practical use in all items.
  • the cellulosic resin compositions of Examples 63, 65, and 67 were improved in rigidity by adding glass fibers and improved in bending strength while maintaining excellent impact strength.
  • the cellulosic resin composition according to the embodiment of the present invention is, for example, a bioplastic, has improved impact resistance, and can be used for an exterior body such as a casing of electrical equipment similar to petroleum plastic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 セルロース又は誘導体に有機基が結合したセルロース系樹脂(X)と、下記直鎖状脂肪族ポリエステル(Y1)及び(Y2)の少なくとも一方の直鎖状脂肪族ポリエステル又はその架橋体(Y)とを含む組成物; (Y1)下記式(I)及び式(II)で表される繰り返し単位の少なくとも一方を含む直鎖状脂肪族ポリエステル: -(CO-R1-COO-R2-O)- 式(I) (式中、R1は炭素数1~12の二価脂肪族基、R2は炭素数2~12の二価脂肪族基を表す。)、 -(CO-R3-O)- 式(II) (式中、R3は炭素数2~10の二価脂肪族基を表す。); (Y2)環状エステルの開環重合物からなる直鎖状脂肪族ポリエステル。

Description

セルロース系樹脂組成物、成形用材料および成形体
 本発明は、セルロース系樹脂組成物、成形用材料及び成形体に関する。
 植物を原料とするバイオプラスチックは、環境対策に寄与できるため、様々な分野への利用が試みられている。前記バイオプラスチックの中でも、非可食部を原料とするバイオプラスチックとして、すでに、木材及び草木の主要成分であるセルロースを利用した種々のバイオプラスチックが開発され、製品化されている。具体的には、例えば、セルロース誘導体であるセルロースエステルとして、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート等が、多くの分野で用いられている。
 セルロースは、β-グルコースが重合した高分子であり、結晶性が高いため、硬くて脆く、熱可塑性もない。さらに、セルロースは、多くのヒドロキシ基を含有するため、吸水性が高く、耐水性が低い。そこで、セルロースの特性を改善するための種々の検討が行われている。
 例えば、特許文献1には、ヒドロキシ基を有するセルロースアセテートにε-カプロラクトンを開環グラフト重合させた、熱可塑性を有する生分解性グラフト重合体が開示されている。
 一方、セルロース以外の非可食部成分を利用した材料の開発も行われている。例えば、カシューナッツの殻由来のカルダノールは、安定した生産量に加え、特徴的な分子構造から機能性にも優れているため、様々な用途に適用されている。カルダノールを利用した例として、特許文献2には、アラミドパルプとセルロース繊維からなる繊維基材、炭酸カルシウムとカシューダストとからなる充填材、及びフェノール樹脂からなる結合材を用いて形成されたブレーキ用の摩擦材が開示されている。特許文献3には、アラミド繊維とセルロース繊維とからなるベース基材、グラファイトとカシューダストとからなる充填材、及び有機無機複合バインダを用いて形成された摩擦材が開示されている。この摩擦材は、例えば、自動車等の動力伝達系のクラッチフェーシングに適用されることが記載されている。
 また、特許文献4には、セルロースを使用した成形材料の耐衝撃性及び剛性を改良することを目的として、セルロースにエーテル構造及びエステル構造の両方の構造を導入したセルロース誘導体と、ゴム粒子と、脂肪族ポリエステルエラストマーとを含有する成形材料が開示されている。
 また、特許文献5には、優れた機械的強度と耐熱性を実現することを目的として、生分解性を示す脂肪族ポリエステル樹脂と、生分解性を示す多糖類と、加水分解抑制剤とを含有する樹脂組成物が開示され、実施例1において、脂肪族ポリエステルとして分岐構造を持つポリ乳酸、多糖類としてセルロースプロピオネートを用いることが記載されている。
 非特許文献1には、紙シートをカルダノールに浸し、前記紙シートを構成するセルロースにカルダノールを結合させるグラフト化反応を行うことによって、紙の耐水性を向上できることが記載されている。前記グラフト化反応においては、ボロントリフルオリドジエチルエーテル(BF3-OEt2)の存在下、カルダノールの末端二重結合とセルロースのヒドロキシ基とが結合することが記載されている。
特開平11-255801号公報 特開平10-8035号公報 特開2001-32869号公報 特開2011-148975号公報 特開2005-162870号公報
George John et al. Polymer Bulletin,22,p.89-94(1989)
 セルロース系バイオプラスチックは、石油プラスチックと比較すると、強度、耐熱性、耐水性、熱可塑性、耐衝撃性に劣り、特に、電子機器用外装等の耐久製品に適用するには、これらの特性の改善が必要である。しかしながら、熱可塑性を改善するために、石油原料から得られる可塑剤を添加すると、前記セルロース系バイオプラスチックは、植物利用率(植物性)が低下する上、耐熱性及び強度(特に剛性)が低下し、均一性の低下ならびに可塑剤のブリードアウト(成形体の表面への可塑剤の染みだし)が生じるという問題が生じる。また、耐衝撃性を改善させるため、通常の柔軟成分を添加すると、前記セルロース系セルロース系バイオプラスチックの成形時に、前記柔軟成分がブリードアウトして、成形性に支障をきたす場合がある。
 そこで、本発明の目的は、上記の課題のいずれかを解決するセルロース系樹脂組成物、特に耐衝撃性が改善されたセルロース系樹脂組成物を提供することにある。
 本発明の実施形態によるセルロース系樹脂組成物は、セルロース又はその誘導体に有機基が結合したセルロース系樹脂(X)と、下記直鎖状脂肪族ポリエステル(Y1)及び(Y2)の少なくとも一方の直鎖状脂肪族ポリエステル又はその架橋体(Y)とを含む。
 (Y1)下記式(I)及び式(II)で表される繰り返し単位の少なくとも一方を含む直鎖状脂肪族ポリエステル
  -(CO-R1-COO-R2-O)-   式(I)
(式(I)中、R1は、炭素数1~12の二価脂肪族基、R2は、炭素数2~12の二価脂肪族基を表す。)
 -(CO-R3-O)-   式(II)
(式(II)中、R3は、炭素数2~10の二価脂肪族基を表す。)
 (Y2)環状エステルの開環重合物からなる直鎖状脂肪族ポリエステル。
 本発明の他の実施形態による成形用材料は、前記セルロース系樹脂組成物を含む。
 本発明の他の実施形態による成形体は、前記成形用材料を成形して得られる。
 本発明の実施形態によれば、前記の課題のいずれかを解決するセルロース系樹脂組成物、特に耐衝撃性が改善されたセルロース系樹脂組成物を提供することができる。
 本発明者らは、前述のように、セルロース系樹脂組成物が前記セルロース系樹脂(X)と、前記直鎖状脂肪族ポリエステル又はその架橋体(Y)とを含有することにより、セルロース系樹脂への直鎖状脂肪族ポリエステル又はその架橋体の分散性を向上でき、耐衝撃性が改善できることを見出した。
 本発明の実施形態における前記セルロース系樹脂(X)は、セルロース又はその誘導体への前記カルボン酸、前記アルコール、前記フェノールの結合により、その構造内に、アシル基、エーテル基又はエステル基等の酸素原子を含む有機基を有する。すなわち、セルロース又はその誘導体に、エステル結合、エーテル結合等の酸素原子を含む結合を介して有機基が結合している。セルロース又はその誘導体に、酸素原子を含む結合としてウレタン結合を介して有機基が結合してもよい。この有機基の結合は、セルロース又はその誘導体のグルコース環のヒドロキシ基を利用して行うことができる。すなわち、グルコース環のヒドロキシ基が結合していた炭素原子に、酸素原子を含む結合を介して、または酸素原子を含む結合を有する有機連結基を介して、有機基を結合することができる。このような酸素原子を含む結合または有機連結基に結合する有機基は、その炭素数が1~32の範囲にあることが好ましく、炭素数1~32の炭化水素基が挙げられる。
 このように、アシル基、エーテル基又はエステル基等の酸素原子を含む有機基を有する前記セルロース系樹脂(X)と、エステル基を有する前記直鎖脂肪族ポリエステル又はその架橋体(Y)とを使用することにより、前者のアシル基、エーテル基又はエステル基等の酸素原子を含む有機基と、後者のエステル基との相乗効果によって、分散性が向上すると考えられる。
 そして、前記セルロース系樹脂(X)と前記直鎖状脂肪族ポリエステル又はその架橋体(Y)とを含有することで、セルロース系樹脂組成物の耐衝撃性、透明性を向上させると共に、耐水性、可塑性を向上させることが可能となった。このため、セルロース系樹脂組成物に対して、例えば、可塑剤の添加量を減少でき、又は、可塑剤を未添加とすることも可能となり、可塑剤の添加による、セルロース系樹脂組成物の耐熱性及び強度(特に剛性)の低下を抑制すると共に、成形体における可塑剤等の添加剤のブリードアウトも抑制可能となった。
 以下に、本発明の好適な実施の形態について説明する。
 まず、本発明の実施形態によるセルロース系樹脂組成物の構成について説明する。
 本発明の実施形態によるセルロース系樹脂組成物は、前述のように、下記セルロース系樹脂(X)と、下記直鎖状脂肪族ポリエステル(Y1)及び(Y2)の少なくとも一方の直鎖状脂肪族ポリエステル又はその架橋体(Y)とを含む。
 (X)セルロース又はその誘導体に、炭素数1~32のカルボン酸、アルコール、フェノール及びこれらの誘導体からなる群から選択された少なくとも一種が結合したセルロース系樹脂
 (Y1)下記式(I)及び式(II)で表される繰り返し単位の少なくとも一方を含む直鎖状脂肪族ポリエステル
  -(CO-R1-COO-R2-O)-   式(I)
(式(I)中、R1は、炭素数1~12の二価脂肪族基、R2は、炭素数2~12の二価脂肪族基を表す。)
  -(CO-R3-O)-   式(II)
(式(II)中、R3は、炭素数2~10の二価脂肪族基を表す。)
 (Y2)環状エステルの開環重合物からなる直鎖状脂肪族ポリエステル。
 本発明の実施形態において、前記セルロース系樹脂(X)として、例えば、アシル基及びエーテル基の少なくとも一方を有するセルロース系樹脂が挙げられる。
 前記セルロース系樹脂(X)は、セルロース又はその誘導体に、下記の化合物(X1)、(X2)及び(X3)の少なくとも一種が結合した樹脂を用いることができる。
  (X1)炭素数1~32のカルボン酸又はその誘導体、
  (X2)炭素数1~32のアルコール又はその誘導体、
  (X3)炭素数1~32のフェノール又はその誘導体。
 化合物(X1)、(X2)及び(X3)は、それぞれ、一種単独であってもよいし、2種以上の混合物であってもよい。その中でも化合物(X1)が単独で結合したセルロース系樹脂(X)が好ましい。
 以下、特に示さない限り、「セルロース」という記載は、「セルロース誘導体」に置換可能である。
 前記セルロース系樹脂(X)は、例えば、セルロースに前記化合物(X1)、(X2)及び(X3)の少なくとも一種が結合したものでもよいし、セルロース誘導体に前記化合物(X1)、(X2)及び(X3)の少なくとも一種が結合したものでもよいし、両方を含んでもよい。前記セルロース系樹脂(X)は、前記化合物(X1)の2種以上、化合物(X2)の2種以上、化合物(X3)の2種以上が結合したものでもよい。これらの中でも特にセルロース又はその誘導体に前記化合物(X1)の1種又は2種以上が結合したセルロース系樹脂(X)が好ましい。
 前記セルロース系樹脂(X)のうち、セルロース又はその誘導体に前記化合物(X1:炭素数1~32のカルボン酸(R-CO-OH)又はその誘導体)が結合した樹脂は、例えば、セルロース又はその誘導体のヒドロキシ基の水素原子が、下記有機基(X1’)で置換された樹脂ということもできる。
(X1’)炭素数1~32のアシル基(R-CO-)。
 セルロース又はその誘導体に前記化合物(X1)が結合した樹脂は、例えば、セルロースのヒドロキシ基もしくはその置換基(ヒドロキシ基と置き換えた他の基)と、炭素数1~32のカルボン酸のカルボキシ基(-COOH)もしくはその置換基(カルボキシ基と置き換えた他の基)との反応により、前記セルロース又はその誘導体に、炭素数1~32のアシル基(R-CO-)が付加される。具体的には、例えば、前記セルロースのヒドロキシ基(-OH)の水素原子Hが、前記アシル基(R-CO-)に置換され、前記セルロースの炭素(ヒドロキシ基が結合していた炭素)に、カルボン酸から水素原子を除いた基(R-CO-O-)が結合(付加)されたことになる。前記セルロースのヒドロキシ基もしくはその置換基と、カルボキシ基もしくはその置換基との反応は、例えば、脱水反応であり、エステル結合を形成する。カルボキシ基、ヒドロキシ基は、そのOHが、Cl、F、Br、I等のハロゲン原子(X)で置換されてもよい。この場合、例えば、-COXと-OHとの間、又は、-COOHと-Xとの間で、脱HX結合が生じる。
 前記カルボン酸又はその誘導体(X1)は、例えばカルダノール(又はその水素添加物)にそのヒドロキシ基を利用してカルボキシ基が導入されたもの、また、そのカルボキシ基を酸ハロゲン化した酸ハロゲン化物も含まれる。
 前記セルロース系樹脂(X)のうち、セルロース又はその誘導体に、前記化合物(X2:炭素数1~32のアルコール(ROH)又はその誘導体)が結合した樹脂は、例えば、下記有機基(X2’)が付加された樹脂ということもできる。
(X2’)炭素数1~32のエーテル基(RO-)。
 前記化合物(X2)が結合した樹脂は、例えば、セルロースのヒドロキシ基もしくはその置換基と、炭素数1~32のアルコールのヒドロキシ基(-OH)もしくはその置換基との反応により、前記セルロースに、炭素数1~32のエーテル基(RO-)が付加される。具体的には、例えば、前記セルロースのヒドロキシ基(-OH)の水素原子Hが、炭素数1~32の炭化水素基(R-)に置換され、前記セルロースの炭素(ヒドロキシ基が結合していた炭素)に、エーテル基(RO-)が結合(付加)されたことになる。前記セルロースのヒドロキシ基もしくはその置換基と、前記アルコールのヒドロキシ基もしくはその置換基との反応は、例えば、脱水反応であり、エーテル結合を形成する。ヒドロキシ基は、Cl、F、Br、I等のハロゲン原子(X)で置換されてもよい。この場合、例えば、-Xと-OHとの間で、脱HX結合が生じる。
 前記セルロース系樹脂(X)のうち、セルロース又はその誘導体に、前記化合物(X3:炭素数1~32のフェノール(ROH)又はその誘導体)が結合した樹脂は、例えば、下記有機基(X3’)が付加された樹脂ということもできる。
(X3’)炭素数1~32のエーテル基(RO-)。
 前記化合物(X3)が結合した樹脂は、例えば、セルロースのヒドロキシ基もしくはその置換基と、炭素数1~32のフェノールのヒドロキシ基(-OH)もしくはその置換基との反応により、前記セルロースに、炭素数1~32のエーテル基(RO-)が付加される。具体的には、例えば、前記セルロースのヒドロキシ基(-OH)の水素原子Hが、炭素数1~32の炭化水素基(R-)に置換され、前記セルロースの炭素(ヒドロキシ基が結合していた炭素)に、エーテル基(RO-)が結合(付加)されたことになる。前記セルロースのヒドロキシ基もしくはその置換基と、前記フェノールのヒドロキシル基もしくはその置換基との反応は、例えば、脱水反応であり、エーテル結合を形成する。その際、硫酸、トルエンスルホン酸、塩化水素などの脱水触媒を添加することができる。ヒドロキシ基は、Cl、F、Br、I等のハロゲン原子(X)で置換されてもよい。この場合、例えば、-Xと-OHとの間で、脱HX結合が生じる。
 また、前記セルロースのヒドロキシ基もしくはその置換基と、前記フェノール(又はアルコール)のヒドロキシ基もしくはその置換基との反応は、前記セルロースのヒドロキシ基および前記フェノール(又はアルコール)のヒドロキシ基と反応できる多官能化合物を用いて行うことができる。結果、セルロース(又はその誘導体)中のヒドロキシ基が結合しているセルロース炭素原子と、フェノール(又はその誘導体)のヒドロキシ基が結合しているフェノール炭素原子(またはアルコールのヒドロキシ基が結合しているアルコール炭素原子)とが、有機連結基を介して連結される。この有機連結基としては、前記セルロース炭素原子に結合する結合基(エステル結合、エーテル結合、ウレタン結合等の酸素を含む結合基)と、前記フェノール炭素原子(又はアルコール炭素)に結合する結合基(エーテル結合、エステル結合、ウレタン結合等の酸素を含む結合基)を含むことができる。また、この有機連結基は、これらの結合基の間に、例えば炭素数1~20、好ましくは炭素数1~14、より好ましくは炭素数1~8の2価の炭化水素基を含むことができる。
 前記セルロース系樹脂(X)は、例えば、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のアシル化セルロースや、カルダノール又はその誘導体等の長鎖有機基がセルロース又はアシル化セルロースに結合したグラフト化セルロースが挙げられる。
 前記セルロース系樹脂(X)は、例えば、前記フェノール、アルコール若しくはカルボン酸又はそれらの誘導体として、カルダノール又はその誘導体(例えば、水素添加物、ヒドロキシ基を利用してカルボキシ基が導入されたもの、また、そのカルボキシ基を酸ハロゲン化した酸ハロゲン化物)がセルロース又はその誘導体に結合したものを用いることができる。この結合としては、例えば、カルダノール又はその誘導体をセルロース又はその誘導体にグラフト状に結合するグラフト化が挙げられる。前記セルロース系樹脂(X)は、例えば、カルダノールグラフト化セルロースアセテート、カルダノールグラフト化セルロースプロピオネート、カルダノールグラフト化セルロースアセテートプロピオネート、カルダノールグラフト化セルロースアセテートブチレート等が挙げられる。このようなセルロース系樹脂のカルダノール部分は、その二重結合(芳香環の二重結合、直鎖状炭化水素基の二重結合)の全部または一部が水素添加されていてもよい。
 本発明の実施形態によるセルロース系樹脂組成物において、前記セルロース系樹脂(X)は、例えば、上述の樹脂のいずれか一種類でもよいし、二種類以上の併用でもよい。本発明の実施形態によるセルロース系樹脂組成物における樹脂成分は、例えば、前記セルロース系樹脂(X)のみでもよいし、さらにその他の樹脂を含んでもよい。
 本発明の実施形態よるセルロース系樹脂組成物において、前記直鎖状脂肪族ポリエステル又はその架橋体(Y)は、前記直鎖状脂肪族ポリエステル(Y1)及び(Y2)の一方又はその架橋体でもよいし、両方を併用してもよい。
 前記の直鎖状脂肪族ポリエステル(Y1)は、例えば、前記式(I)で表される繰り返し単位を含むものでもよいし、前記式(II)で表される繰り返し単位を含むものでもよいし、前記式(I)で表される繰り返し単位と前記式(II)で表される繰り返し単位の両方を含むものでもよい。
 本発明の実施形態よるセルロース系樹脂組成物において、前記直鎖状脂肪族ポリエステル(Y1)は、いずれか一種類でもよいし、二種類以上を併用してもよい。前記直鎖状脂肪族ポリエステル(Y1)は、例えば、脂肪族ジカルボン酸、その酸無水物及びそのジエステル体からなる群から選択された少なくとも一種と、脂肪族ジオールとが縮合した直鎖状脂肪族ポリエステルであることが好ましい。
 本発明の実施形態よるセルロース系樹脂組成物において、前記直鎖状脂肪族ポリエステル(Y2)は、いずれか一種類でもよいし、二種類以上を併用してもよい。
 前記直鎖状脂肪族ポリエステル又はその架橋体(Y)は、例えば、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリカプロラクトン、又はそれらの架橋体が挙げられる。
 前記ポリカプロラクトンは、特に制限されないが、例えば、ε-カプロラクトンの開環重合物が挙げられ、繰り返し単位が[-(CH25CO-O-]で表され、構造式が[-(CH25CO-O-]n(nは正の整数)で表されるものが挙げられる。
 前記直鎖状脂肪族ポリエステル(Y)は、その数平均分子量は、例えば、10000~200000の範囲に設定でき、好ましい範囲は10000~100000であり、より好ましくは20000~80000であり、さらに好ましくは20000~50000であり、重量平均分子量の範囲は、例えば、20000~200000であり、好ましくは30000~100000であり、より好ましくは30000~80000である。前記直鎖状脂肪族ポリエステル(Y)は、例えば、前記数平均分子量および前記重量平均分子量のいずれか一方を満たしていることが好ましく、両方を満たしていることがより好ましい。前記数平均分子量および前記重量平均分子量は、それぞれ、例えば、ゲル浸透クロマトグラフィーを用いて測定でき、具体的な方法は、実施例の記載に従うことができる。
 本発明の実施形態よるセルロース系樹脂組成物における、直鎖状脂肪族ポリエステルの架橋体(Y)としては、例えば、直鎖状脂肪族ポリエステルを、カルボジイミド化合物、エポキシ化合物、イソシアネート化合物、オキサゾリン化合物、オキサジン化合物、アジリジン化合物など、直鎖状脂肪族ポリエステルと反応可能な多官能化合物(架橋剤)で架橋して高分子量化したものを使用できる。それらの中でも、安定性やカルボキシ基末端との反応性などの面で優れるカルボジイミド化合物、例えば脂肪族ポリカルボジイミドや芳香族ポリカルボジイミドが好ましく用いられる。
 このような架橋剤の使用量(架橋剤と直鎖状脂肪族ポリエステルの合計に対する架橋剤の質量比)は、0.1~10質量%の範囲に設定でき、好ましくは0.3~5質量%の範囲に設定でき、より好ましくは0.5~3質量%の範囲に設定できる。
 直鎖状脂肪族ポリエステルを架橋剤により、架橋することで直鎖状脂肪族ポリエステル分子の絡み合いが増大するため、本実施形態によるセルロース系樹脂組成物の曲げ破断ひずみや衝撃強度などを改良できる。
 本発明の実施形態によるセルロース系樹脂組成物において、前記セルロース系樹脂(X)と前記直鎖状脂肪族ポリエステル又はその架橋体(Y)との含有割合は、特に制限されないが、例えば、質量比(X:Y)が、95:5~30:70の範囲にあることが好ましく、90:10~30:70の範囲にあることがより好ましく、90:10~40:60の範囲にあることが特に好ましい。さらに、この質量比(X:Y)は、90:10~50:50の範囲に設定でき、また90:10~70:30の範囲に設定できる。
 本発明の実施形態によるセルロース系樹脂組成物は、前記セルロース系樹脂(X)と前記直鎖状脂肪族ポリエステル又はその架橋体(Y)のみからなってもよいし、さらにその他の添加剤を含んでもよい。
 本発明の実施形態によるセルロース系樹脂組成物は、例えば、相溶化剤を実質的に未含有であることが好ましい。実質的に未含有とは、完全に未含有である他に、例えば、前記セルロース系樹脂組成物において、前記相溶化剤としての機能を実質的に発揮できない割合の意味も含む。実質的に未含有とは、例えば、前記セルロース系樹脂組成物における前記相溶化剤の含有割合(質量%)が、例えば、10%以下が好ましく、5%以下がより好ましく、4%以下、3%以下、2%以下、又は1%以下がさらに好ましく、特に好ましくは検出限界以下であり、最も好ましくは0%である。
 相溶化は、一般に、二種類のポリマーが互いにまじりあう、つまり、溶解し合うことを意味し、前記相溶化剤は、一般に、二種類のポリマーを相溶させる剤を意味する。本発明の実施形態において、前記相溶化剤の添加の有無、添加する場合はその種類や添加量は、前記セルロース系樹脂(X)および前記直鎖状脂肪族ポリエステル又はその架橋体(Y)の種類に応じて適宜決定できる。本発明においては、前述のように、前記セルロース系樹脂(X)と前記直鎖状脂肪族ポリエステル又はその架橋体(Y)とを相溶する相溶化剤を含まないことが好ましい。前記相溶化剤としては、例えば、エチレン-グリシジルメタクリレート共重合体にスチレン-アクリルニトリル共重合体をグラフト重合させたグラフト共重合体、エチレン-グリシジルメタクリレート共重合体にスチレンをグラフト重合させたグラフト共重合体、低密度ポリプロピレンにスチレンをグラフト重合させたグラフト共重合体、エチレン-エチルアクリレート共重合体にスチレンをグラフト重合させたグラフト共重合体等が挙げられる。
 以下に、本発明の好適な実施の形態について、さらに具体的に説明する。なお、以下の説明は例示であって、本発明は、これらの例示には制限されない。
 (1)セルロース又はその誘導体
 セルロースは、下記式(1)で示されるβ-グルコースの直鎖状重合物であり、セルロースを構成する各グルコース単位は、三つのヒドロキシ基を有している。前記セルロース系樹脂(X)は、例えば、これらのヒドロキシ基を利用して、前記化合物(X1)、(X2)及び(X3)の少なくとも一種類をセルロース又はその誘導体に結合することで合成できる。例えば、カルダノール又はその誘導体を、前記セルロース又はその誘導体に結合(グラフト化)することができる。
Figure JPOXMLDOC01-appb-C000001
 前記セルロースは、草木類の主成分であり、例えば、草木類から、リグニン等の他の成分を分離処理することによって得られる。本発明においては、例えば、このようにして得たセルロースの他に、セルロース含有量の高い綿及びパルプ等を、精製して、又はそのまま使用できる。
 セルロース及びその誘導体の重合度は、特に制限されず、例えば、グルコース重合度として、50~5000の範囲が好ましく、100~3000の範囲がより好ましい。前記重合度を前記範囲とすることによって、例えば、セルロース系樹脂、それから得られるセルロース系樹脂組成物及び成形体について、十分な強度及び耐熱性が得られ、また、樹脂の溶融粘度が高くなることによる成形への支障を抑制できる。
 前記セルロース誘導体は、例えば、セルロースを原料として、生物的方法又は化学的合成方法により、置換基を導入したものがあげられる。前記セルロース誘導体は、具体的には、例えば、セルロースのヒドロキシ基の一部又は全部を、アシル化、エーテル化又はグラフト化したもの等があげられる。前記セルロース誘導体の具体例として、例えば、セルロースアセテート、セルロースブチレート、セルロースプロピオネート等の有機酸エステル;硝酸セルロース、硫酸セルロース、リン酸セルロース等の無機酸エステル;セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、硝酸酢酸セルロース等の混成エステル;メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のエーテル化セルロース等があげられる。また、前記セルロース誘導体として、例えば、スチレン、(メタ)アクリル酸、(メタ)アクリル酸エステル、ε-カプロラクトン、ラクチド、グリコリド等の重合体を、セルロースに結合させた、グラフト化セルロースがあげられる。
 前記セルロース誘導体は、中でも、セルロースのヒドロキシ基の一部がアシル化されたアシル化セルロースを用いることができる。このアシル化セルロースとしては、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートからなる群から選択された少なくとも一種のアシル化セルロースが好ましい。
 前記セルロース誘導体において、例えば、グルコース単位当たりのヒドロキシ基の置換の程度は、特に制限されない。具体例として、グルコース単位当たりにおける、ヒドロキシ基との反応により導入されたアシル基等の前記置換基の個数の平均値、すなわちグルコース単位当たりの変換されたヒドロキシ基の個数の平均値(水酸基置換度)(DSXX)は、例えば、耐水性、機械的特性及び耐熱性等の点から、1.0以上2.8以下が好ましく、2.0以上2.8以下がより好ましい。また、前記セルロース誘導体において、例えば、グルコース単位あたりの残存するヒドロキシ基の個数の平均値、すなわち水酸基残存度(DSOH)は、例えば、耐水性を十分に確保する点から、0.9以下が好ましく、より好ましくは0.7以下である。
 本発明の実施形態において、セルロース及び前記セルロース誘導体は、例えば、いずれか一種類を用いてもよいし、二種類以上を併用してもよい。また、前記セルロース誘導体は、例えば、いずれか一種類を単独で使用してもよいし、二種類以上を併用してもよい。
 本発明の実施形態におけるセルロース及び前記セルロース誘導体においては、セルロースの類縁体として、例えば、通常の非食用の多糖類、すなわち、キチン、キトサン、ヘミセルロース、グルコマンナン、カードラン等も適用可能である。
 (2)セルロース系樹脂(X)
 前記セルロース系樹脂(X)は、前記セルロース又はその誘導体に、前述の通り、化合物(X1)、(X2)及び(X3)の少なくとも一種が結合した樹脂である。
  (X1)炭素数1~32のカルボン酸又はその誘導体
  (X2)炭素数1~32のアルコール又はその誘導体
  (X3)炭素数1~32のフェノール又はその誘導体。
 前記セルロース系樹脂(X)は、例えば、セルロース又はその誘導体のヒドロキシ基と、前記カルボン酸のカルボキシ基、又は、アルコール若しくはフェノールのヒドロキシ基とが反応し、エステル結合又はグリコシド結合を形成する。ここで、セルロース又はその誘導体と、前記カルボン酸のカルボキシ基又は前記アルコール若しくはフェノールのヒドロキシ基とが反応してエステル結合又はグリコシド結合を形成することを、セルロース又はその誘導体のグラフト化ともいう。
 前記カルボン酸、前記アルコール又は前記フェノールが、芳香族基及び脂環基の少なくとも一方を有する場合、これらを用いたセルロース又はその誘導体のグラフト化は、例えば、最終的に得られる成形体の、曲げ強度等の剛性及び耐熱性の改善に有効である。また、前記カルボン酸、前記アルコール又は前記フェノールが、脂肪族基を有する場合、これらを用いたセルロース又はその誘導体のグラフト化は、最終的に得られる成形体の靭性の改善に有効である。
 前記化合物(X1)、(X2)及び(X3)は、炭素数1~32であり、好ましくは炭素数1~20である。炭素数がこの範囲であると、例えば、立体障害を抑制し、セルロース又はその誘導体のヒドロキシ基の反応率(グラフト化率)を上昇できる。
 前記化合物(X1)の前記カルボン酸は、特に制限されず、鎖式カルボン酸及び環式カルボン酸があげられ、いずれか一種であっても2種以上であってもよい。前記鎖式カルボン酸は、例えば、直鎖状及び分枝状の脂肪族カルボン酸があげられ、特に鎖式脂肪族モノカルボン酸が好ましい。前記環式カルボン酸は、例えば、脂環式カルボン酸及び芳香族カルボン酸が挙げられ、特に環式モノカルボン酸が好ましい。前記環式モノカルボン酸において、前記カルボキシ基は、例えば、脂環基又は芳香族環に直接結合してもよいし、脂環基又は芳香族環の置換基に結合してもよい。また、前記カルボン酸は、例えば、カルボン酸無水物でもよい。
 前記カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和モノカルボン酸;ブテン酸、ペンテン酸、ヘキセン酸、オクテン酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和モノカルボン酸が挙げられる。前記脂環族カルボン酸としては、例えば、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、シクロヘキシル酢酸等が挙げられ、前記芳香族カルボン酸としては、例えば、安息香酸、トルイル酸、フェニル酢酸、フェニルプロピオン酸、ビフェニルカルボン酸、ビフェニル酢酸、ナフタリンカルボン酸、テトラリンカルボン酸等が挙げられる。これらのカルボン酸のうち、例えば、酢酸、プロピオン酸、酪酸(ブチリル酸)が好ましい。
 前記カルボン酸の誘導体は、例えば、カルボキシ基が変換された置換基、カルボキシ基とは別の置換基を有するものである。前記置換基としては、例えば、セルロースのヒドロキシ基との反応性を有する官能基が好ましく、具体例として、例えば、カルボン酸クロライド基等のカルボン酸ハライド基、カルボン酸無水物基、この他に、エポキシ基、イソシアネート基、塩素原子等のハロゲン原子等があげられる。これらの中でも、例えば、カルボン酸クロライド等のカルボン酸ハライド基、イソシアネート基が好ましい。
 前記(X2)のアルコールは、特に制限されず、例えば、脂肪族アルコール及び環式アルコールが挙げられ、いずれか一種であっても2種以上であってもよい。前記脂肪族アルコールは、例えば、メタノール、エタノール、プロパノール等があげられる。前記環式アルコールは、例えば、脂環式アルコール及び芳香族アルコールがあげられる。前記脂環式アルコールは、例えば、シクロヘキシロール、シクロヘプタロール等が挙げられ、前記芳香族アルコールは、例えば、ベンジルアルコール等が挙げられる。
 前記(X3)のフェノールが、炭素数6~32のフェノール(例えばC65OH)又はその誘導体である場合、前記セルロース系樹脂(X)は、例えば、炭素数6~32のフェノキシ基(例えばC65O-)又はその誘導体が付加された樹脂ということができる。フェノール又はその誘導体が結合した樹脂は、例えば、セルロースのヒドロキシ基もしくはその置換基と、前記フェノールのフェノール性ヒドロキシ基(-OH)もしくはその置換基との反応により、前記セルロースに、炭素数6~32のフェノキシ基(例えばC65O-)又はその誘導体が付加される。具体的には、例えば、前記セルロースのヒドロキシ基(-OH)の水素原子Hが、前記フェニル基(C65-)又はその誘導体に置換され、前記セルロースの炭素に、前記フェノキシ基(C65O-)又はその誘導体が結合(付加)されたことになる。前記セルロースのヒドロキシ基もしくはその置換基と、フェノール性ヒドロキシ基もしくはその置換基との反応は、例えば、脱水反応であり、エーテル結合を形成する。ヒドロキシ基の一方は、例えば、その水素原子が、Cl、F、Br、I等のハロゲン原子(X)で置換されてもよい。この場合、例えば、-OXと-OHとの間で、脱HOX結合が生じる。
 また、前記フェノールとしては、カルダノール又はその誘導体が好ましい。カルダノールは、カシューナッツの殻に含まれる成分であり、下記式(2)で示すように、フェノール部分と直鎖状炭化水素部分Rとを有する有機化合物である。カルダノールには、その直鎖状炭化水素基Rにおいて、不飽和結合数の異なる4種類が存在し、通常、これらの4種類の異性体の混合物である。すなわち、下記式(2)において、R1のペンタデシル基を有する化合物(3-ペンタデシルフェノール)、R2の8-ペンタデセニル基を有する化合物(3-ペンタデシルフェノールモノエン)、R3のペンタデシル8,11-ジエン基を有する化合物(3-ペンタデシルフェノールジエン)、及びR4のペンタデシル8,11,14-トリエン基を有する化合物(3-ペンタデシルフェノールトリエン)の混合物である。前記カルダノールは、例えば、カシューナッツ殻液から抽出及び精製して得られたカルダノール成分を使用できる。
Figure JPOXMLDOC01-appb-C000002
前記式(2)において、Rは、以下のR1、R2、R3又はR4であり、ヒドロキシ基(OH)の水素原子は、置換されてもよい。
1: -(CH214CH3
2: -(CH27CH=CH(CH25CH3
3: -(CH27CH=CHCH2CH=CH(CH22CH3
4: -(CH27CH=CHCH2CH=CHCH2CH=CH2
 前記カルダノールにおいて、直鎖状炭化水素基(R)は、例えば、樹脂の柔軟性と疎水性の向上に寄与し、フェノール部分は、例えば、グラフト化に利用される反応性に富むフェノール性ヒドロキシ基を有し、このヒドロキシ基は、例えば、セルロース又はその誘導体とグルコシド結合を形成する。前記カルダノール又はその誘導体を、セルロース又はその誘導体に結合させると、例えば、カルダノール成分がブラシ状に結合されたセルロース系樹脂が形成され、この結果、セルロース又はその誘導体にグリコシド結合したカルダノール同士の相互作用によって、例えば、機械的特性、特に靭性を改善できるとともに、熱可塑性も付与でき、さらに、カルダノールの疎水性によって、耐水性を改善できる。前記カルダノールとセルロース又はその誘導体とのグリコシド結合を形成する際、例えば、硫酸、トルエンスルホン酸、塩化水素等の脱水触媒を添加してもよい。
 カルダノールは、例えば、カルダノールの直鎖状炭化水素基(R)部分の不飽和結合(二重結合)が、水素添加により飽和結合に変換されていることが好ましい。水素添加により前記直鎖状炭化水素基の不飽和結合が飽和結合に十分に変換されたカルダノール誘導体を使用することにより、例えば、副反応が抑制され、セルロースとカルダノールとの結合を、効率的に行うことができ、また、溶媒への生成物の溶解性低下を抑制できる。水素添加による不飽和結合の変換率(水添率)は、例えば、90モル%以上が好ましく、より好ましくは95モル%以上である。水素添加後のカルダノール中の不飽和結合の残存率、すなわち、カルダノール1分子当たりの不飽和結合の数は、例えば、0.2個/分子以下が好ましく、より好ましくは0.1個/分子以下である。また、カルダノールのフェノール部分の芳香環が水素添加され、シクロヘキサン環に変換されてもよい。
 カルダノールに水素添加する方法は、特に制限されず、通常の方法を用いることができる。前記水素添加の反応に使用する触媒は、パラジウム、ルテニウム、ロジウム等の貴金属、ニッケル等の金属があげられる。前記触媒は、例えば、前記各種金属を、活性炭素、活性アルミナ、珪藻土等の担体上に担持したものも使用できる。前記水素添加の反応方式は、例えば、粉末状の触媒を懸濁攪拌しながら反応を行うバッチ方式、成形した触媒を充填した反応塔を用いた連続方式等を採用できる。前記水素添加の際の溶媒は、特に制限されず、例えば、反応方式に応じて、使用してもよいし、使用しなくてもよい。前記溶媒を使用する場合、例えば、通常、アルコール類、エーテル類、エステル類、飽和炭化水素類等の溶媒が挙げられる。水素添加の際の反応温度は、特に制限されず、例えば、水素化速度を適当に調整するため、通常、20~250℃、好ましくは50~200℃に設定できる。水素添加の際の水素圧は、特に制限されず、例えば、通常、10~80kgf/cm2(9.8×105~78.4×105Pa)、好ましくは20~50kgf/cm2(19.6×105~49.0×105Pa)に設定できる。
 カルダノールに対する水素添加は、例えば、カルダノール誘導体をセルロース又はその誘導体に結合する場合、カルダノール誘導体を形成する前、カルダノール誘導体を形成した後且つセルロースとの結合前、カルダノール誘導体とセルロースとの結合後のいずれにおいて行ってもよい。中でも、例えば、水素添加及びグラフト化の反応効率等の観点から、カルダノール誘導体とセルロースとの結合前が好ましく、より好ましくは、カルダノール誘導体の形成前である。
 前記(X3)のフェノール又はその誘導体によるセルロース又はその誘導体のグラフト化は、例えば、これら双方のヒドロキシ基と結合できる官能基を有する多官能化合物を用いて行うことができ、前記多官能化合物を介して、セルロース又はその誘導体とフェノール又はその誘導体が結合できる。前記セルロースに前記多官能化合物が結合したものは、セルロースの誘導体であり、前記フェノールのヒドロキシ基に前記多官能化合物が結合したものは、フェノールの誘導体である。前記多官能化合物の使用によって、例えば、フェノールのヒドロキシ基に前記多官能化合物の一つの官能基を結合させてフェノール誘導体(例えばカルダノール誘導体)とし、このフェノール誘導体(例えばカルダノール誘導体)の官能基とセルロースのヒドロキシ基とを結合できる。前記多官能化合物による結合によれば、例えば、セルロースのヒドロキシ基の反応効率を向上でき、また、副反応を抑制できる。同様に、前記(X2)のアルコール又はその誘導体によるセルロース又はその誘導体のグラフト化は、例えば、これら双方のヒドロキシ基と結合できる官能基を有する多官能化合物を用いて行うことができ、前記多官能化合物を介して、セルロース又はその誘導体とアルコール又はその誘導体が結合できる。前記アルコールのヒドロキシ基に前記多官能化合物が結合したものは、アルコール誘導体である。
 前記多官能化合物は、例えば、セルロース及び前記フェノール(又はアルコール)のヒドロキシ基と結合できる官能基が、炭化水素基に結合したものが好ましい。前記炭化水素基の炭素数は、特に制限されず、下限側として、例えば、1以上が好ましく、より好ましくは2以上であり、上限側として、例えば、20以下が好ましく、より好ましくは14以下であり、さらに好ましくは8以下である。前記炭素数をこの範囲に設定することで、例えば、反応性の低下を抑制し、グラフト化の効率を向上できる。前記炭化水素基とは、例えば、2価基が好ましく、具体例として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、ヘキサデカメチレン基等の2価の直鎖状脂肪族炭化水素基;シクロヘプタン環、シクロヘキサン環、シクロオクタン環、ビシクロペンタン環、トリシクロヘキサン環、ビシクロオクタン環、ビシクロノナン環、トリシクロデカン環等の2価の脂環式炭化水素基;ベンゼン環、ナフタレン環、ビフェニレン基等の2価の芳香族炭化水素基、これらの組み合わせからなる2価基等があげられる。これらのうち、例えば、鎖状アルキレン基が好ましい。
 前記炭化水素基が、前記芳香族炭化水素基又は前記脂環式炭化水素基の場合、例えば、それらの剛直性から、樹脂の剛性を向上できる。また、前記炭化水素基が、直鎖状脂肪族炭化水素基の場合、例えば、その柔軟性から、樹脂の靭性を向上できる。
 前記多官能化合物の官能基は、特に制限されないが、例えば、カルボキシ基、カルボン酸無水物基、カルボン酸クロライド等のカルボン酸ハライド基、エポキシ基、イソシアネート基、ハロゲン原子等が挙げられる。中でも、例えば、カルボキシ基、カルボン酸無水物基、塩素原子等のハロゲン原子、及びイソシアネート基が好ましい。前記フェノール又はアルコールのヒドロキシ基と反応させる官能基は、例えば、カルボン酸無水物基、塩素原子等のハロゲン原子、イソシアネート基が好ましく、セルロース又はその誘導体のヒドロキシ基と反応させる官能基は、例えば、カルボン酸クロライド基等のカルボン酸ハライド基、イソシアネート基が好ましい。前記カルボン酸ハライド基は、例えば、カルボキシ基を酸ハライド化して形成できる。
 前記多官能化合物の具体例は、例えば、ジカルボン酸、カルボン酸無水物、ジカルボン酸ハライド、モノクロロカルボン酸、ジイソシアネート類等があげられる。ジカルボン酸は、例えば、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸等があげられる。前記カルボン酸無水物は、例えば、列挙した前記ジカルボン酸の無水物等があげられ、前記ジカルボン酸ハライドは、列挙した前記ジカルボン酸の酸ハライド等があげられる。モノクロロカルボン酸は、例えば、モノクロロ酢酸、3-クロロプロピオン酸、3-フルオロプロピオン酸、4-クロロ酪酸、4-フルオロ酪酸、5-クロロ吉草酸、5-フルオロ吉草酸、6-クロロヘキサン酸、6-フルオロヘキサン酸、8-クロロオクタン酸、8-フルオロオクタン酸、12-クロロドデカン酸、12-フルオロドデカン酸、18-クロロステアリン酸、18-フルオロステアリン酸等があげられる。ジイソシアネート類は、例えば、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート(NDI)、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、ジシクロヘキシルメタンジイソシアネート(HMDI:水素添加MDI)等があげられる。これらの中でも、例えば、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)及び1,6-ヘキサメチレンジイソシアネート(HDI)等がより好ましい。
 前記多官能化合物を介して、前記フェノール(又はアルコール)によるセルロース又はその誘導体のグラフト化を行う場合、例えば、エステル結合、エーテル結合及びウレタン結合の少なくともいずれかを介するグラフト化が行われる。
 前記カルボン酸、前記アルコール、前記フェノール又はこれらの誘導体は、例えば、耐水性の改善効果を得るために、それらの構造中に、有機シリコン化合物及び有機フッ素化合物等を由来とする基を有してもよい。
 セルロース又はその誘導体に対する前記カルボン酸、アルコール、フェノール又はこれらの誘導体によるグラフト化率は、特に制限されない。前記グラフト化率は、例えば、セルロース又はその誘導体のグルコース単位中に含まれるヒドロキシ基が前記カルボン酸、アルコール、フェノール又はこれらの誘導体と反応したその個数の平均値、すなわち水酸基置換度(DSXX)で表わされる。前記水酸基置換度は、例えば、耐水性、機械的特性及び耐熱性等の点から、0.1以上、2.9以下が好ましく、0.2以上、2.8以下がより好ましく、0.4以上、2.8以下がさらに好ましく、例えば1.0以上2.8以下に設定できる。また、セルロース又はその誘導体のグルコース単位中に残存するヒドロキシ基の個数の平均値、すなわち水酸基残存度(DSOH)は、例えば、耐水性、機械的強度及び可塑性を十分に確保する点から、0.9以下が好ましく、より好ましくは0.7以下である。
 前記カルダノール又はその誘導体によるセルロース又はその誘導体のグラフト化率は、特に制限されない。このグラフト化率は、例えば、セルロース又はその誘導体のグルコース単位中に含まれるヒドロキシ基がカルダノール又はその誘導体と結合したその個数の平均値、すなわち水酸基置換度(DSCD)で表わされる。前記水酸基置換度(DSCD)は、例えば、耐水性、機械的特性、耐熱性の向上の点から、0.1以上が好ましく、より好ましくは0.2以上であり、さらに好ましくは0.4以上である。
 前記DSCDの最大値は、理論上「3」であるが、例えば、効率のよい結合を行うために、2.5以下が好ましく、より好ましくは2以下であり、さらに好ましくは1.5以下である。また、DSCDは、例えば、1以下でもよく、この場合も、十分な改善効果を得ることができる。DSCDは、例えば、所望の特性に応じて適宜設定できる。前記DSCDは、例えば、前記上限値以下とすることによって、例えば、引張破断歪みや曲げ破断歪み(靱性)の向上を十分に抑制し、且つ、最大強度(引張強度、曲げ強度)の低下も十分に抑制できる。また、カルダノール又はその誘導体が結合したセルロース又はその誘導体のグルコース単位中に残存するヒドロキシ基の個数の平均値、すなわち水酸基残存度(DSOH)は、例えば、耐水性、機械的強度、可塑性を十分に確保する点から、0.9以下が好ましく、より好ましくは0.7以下である。
 セルロース又はその誘導体に対する、前記カルボン酸、前記アルコール、前記フェノール又はこれらの誘導体によるグラフト化は、例えば、溶媒中で実施できる。前記溶媒は、例えば、セルロース又はその誘導体、前記カルボン酸、前記アルコール、前記フェノール又はこれらの誘導体を溶解できる溶媒が好ましい。また、グラフト化反応は、例えば、適切な温度で加熱することが好ましい。前記セルロース又はその誘導体を溶解する溶媒は、例えば、ジメチルスルホキシド-アミン系溶媒、ジメチルホルムアミド-クロラール-ピリジン系溶媒、ジメチルアセトアミド-リチウムクロライド系溶媒、イミダゾリウム系イオン液体等が使用できる。また、一般的な溶媒に対する溶解性を向上できることから、グラフト化反応を行う場合、予め、セルロース又はその誘導体のヒドロキシ基の一部に、前記カルボン酸、前記アルコール、前記フェノール又はこれらの誘導体を結合させ、分子間力の低下により溶解性を向上させたセルロース誘導体を用いてもよい。前記溶媒としては、例えば、ジオキサン、クロロホルム、塩化メチレン、アセトン等が挙げられる。前記セルロース誘導体は、具体例として、例えば、アセチルセルロース、プロピオニルセルロース、ブチリルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のアシル化セルロース等が挙げられ、中でも、特にアセチルセルロースが好ましい。
 前記アシル化セルロースにおけるアシル化率は、例えば、セルロース又はその誘導体のグルコース単位中に含まれるヒドロキシ基がアシル化された個数の平均値、すなわち水酸基置換度(DSAC)で表わされる。前記水酸基置換度(DSAC)は、例えば、セルロースの溶解性を高めるために、0.5以上が好ましく、より好ましくは1.0以上であり、さらに好ましくは1.5以上であり、また、例えば、効率のよいセルロース又はその誘導体のグラフト化を行うために、2.9以下が好ましく、より好ましくは2.8以下である。
 このようにして、前記アシル化セルロースのヒドロキシ基と、前記カルボン酸、前記アルコール、前記フェノール(例えばカルダノール)の官能基(カルボキシ基、ヒドロキシ基)を利用した反応により、セルロース又はその誘導体のグラフト化を行うことができる。
 (3)直鎖状脂肪族ポリエステル又はその架橋体(Y)
 前記直鎖状脂肪族ポリエステル又はその架橋体(Y)は、前記直鎖状脂肪族ポリエステル(Y1)及び(Y2)の少なくとも一方又はその架橋体である。
 前記直鎖状脂肪族ポリエステル(Y1)は、前記式(I)及び式(II)で表される繰り返し単位の少なくとも一方を含む直鎖状脂肪族ポリエステルである。
 前記式(I)において、二価脂肪族基R1の炭素数は、1~12であり、好ましくは2~8であり、より好ましくは2~4である。また、二価脂肪族基R2の炭素数は、2~12であり、好ましくは2~8であり、より好ましくは2~4である。
 前記式(II)において、二価脂肪族基R3の炭素数は、2~10であり、好ましくは2~8であり、より好ましくは2~4である。
 前記直鎖状脂肪族ポリエステル(Y1)は、例えば、脂肪族ジカルボン酸、その酸無水物及びそのジエステル体からなる群から選択された少なくとも一種と、脂肪族ジオールとの縮合反応により得られる(式(I)の単位からなるポリエステル)。また、直鎖状脂肪族ポリエステル(Y1)は、ヒドロキシ基をもつカルボン酸(ヒドロキシカルボン酸)又はそのエステル体の縮合反応により得られる(式(II)の単位からなるポリエステル)。さらに、直鎖状脂肪族ポリエステル(Y1)は、脂肪族ジカルボン酸、その酸無水物及びそのジエステル体からなる群から選択された少なくとも一種と、脂肪族ジオールと、ヒドロキシカルボン酸又はそのエステル体との縮合反応により得られる(式(I)の単位及び式(II)の単位を含むポリエステル)。ヒドロキシカルボン酸としては、グリコール酸、4-ヒドロキシ酪酸等の炭素数2~10のヒドロキシカルボン酸が挙げられる。
 前記脂肪族ジカルボン酸は、例えば、炭素数3~12であり、好ましくは炭素数3~9であり、より好ましくは炭素数3~5である。前記脂肪族カルボン酸は、例えば、アルカンジカルボン酸であり、具体例として、例えば、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸等が挙げられる。前記脂肪族ジカルボン酸は、例えば、いずれか一種類を使用してもよいし、二種類以上を併用してもよい。
 前記脂肪族ジオールは、例えば、炭素数2~12であり、好ましくは炭素数2~8であり、より好ましくは炭素数2~6である。前記脂肪族ジオールは、例えば、アルキレングリコールであり、具体例として、例えば、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール及び1,12-ドデカンジオール等が挙げられる。中でも、炭素数2~6の直鎖型脂肪族ジオールが好ましく、特に、エチレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましい。前記脂肪族ジオールは、例えば、いずれか一種類を使用してもよいし、二種類以上を併用してもよい。
 前記直鎖状脂肪族ポリエステル(Y2)は、環状エステルが開環重合した直鎖状脂肪族ポリエステルである。前記環状エステルは、例えば、炭素数2~12のラクトンが挙げられ、具体例として、例えば、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン等が挙げられる。前記環状エステルは、例えば、いずれか一種類を使用してもよいし、二種類以上を併用してもよい。
 前記直鎖状脂肪族ポリエステル(Y)の数平均分子量は、特に制限されず、下限側は、例えば、10000以上が好ましく、より好ましくは20000以上であり、また、上限側は、例えば、200000以下が好ましく、より好ましくは100000以下である。前記直鎖状脂肪族ポリエステル(Y)は、その分子量を前記範囲に設定することで、例えば、樹脂組成物中の分散性がより優れ、より均一な成形体を得ることができる。
 前記数平均分子量あるいは重量平均分子量は、例えば、試料のクロロホルム0.1質量%溶液を用いたGPCによる測定値(ポリスチレン標準試料で較正)を採用できる。
 前記セルロース系樹脂組成物における前記直鎖状脂肪族ポリエステル(Y)の含有量は、特に制限されないが、例えば、得られる成形体の耐衝撃性を十分に改善する点から、前記セルロース系樹脂組成物全体に対して、例えば、1質量%以上が好ましく、5質量%以上がより好ましい。また、例えば、前記セルロース系樹脂の強度等の特性を十分に確保する点から、前記セルロース系樹脂組成物全体に対して、例えば、90質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がさらに好ましい。また、例えば、透明性を十分に確保する点から、前記セルロース系樹脂組成物全体に対して、例えば、50質量%以下が好ましく、50質量%未満がより好ましい。前記セルロース系樹脂(X)と前記直鎖状脂肪族ポリエステル又はその架橋体(Y)との含有割合(質量比、X:Y)としては、例えば、95:5~30:70の範囲にあることが好ましく、90:10~30:70の範囲にあることがより好ましく、90:10~40:60の範囲にあることが特に好ましい。
 (4)セルロース系樹脂組成物
 本発明の実施形態によるセルロース系樹脂組成物は、前述のような直鎖状脂肪族ポリエステル(Y)を、セルロース系樹脂(X)に混合することにより得ることができる。例えば、前記セルロース系樹脂に、前記直鎖状脂肪族ポリエステルを、分子オーダーで高分散させることができる。直鎖状脂肪族ポリエステル又はその架橋体(Y)をセルロース系樹脂(X)に混合して得られたセルロース系樹脂組成物の成形体は、衝撃破壊時のせん断変形を促進できるため、耐衝撃性を向上できる。
 前記セルロース系樹脂組成物は、例えば、必要に応じて、着色剤、酸化防止剤、熱安定剤、可塑剤、難燃剤等の添加剤を添加してもよい。
 前記セルロース系樹脂組成物の製造方法は、セルロース系樹脂(X)及び直鎖状脂肪族ポリエステル(Y)を使用する以外は、特に制限されず、公知の方法が採用できる。具体例として、前記セルロース系樹脂と前記直鎖状脂肪族ポリエステルと必要により各種添加剤とを、ハンドミキシングで混合し溶融し、又は混合機(例えば、タンブラーミキサー、リボンブレンダー、単軸又は多軸混合押出機、混練ニーダー、混練ロール等のコンパウンディング装置)を用いて溶融混合し、必要に応じ、所望の形状に造粒等を行うことで製造できる。また、この他の好適な製造方法として、例えば、有機溶媒等の溶剤に分散させて、前記セルロース系樹脂と前記直鎖状脂肪族ポリエステルと必要により各種添加剤とを混合し、さらに、必要に応じて凝固用溶剤を添加して、これらの混合組成物を得て、その後、前記溶剤を蒸発させる方法が挙げられる。
 本発明の実施形態によるセルロース系樹脂組成物の形態は、特に制限されず、溶液であってもよく、ペレット、粉末、粒子、ブロック等の固体であってもよい。
 前記セルロース系樹脂組成物は、例えば、成形用材料として使用でき、例えば、電子機器用外装等の筺体などの成形体の材料に好適である。
 本発明の実施形態による成形用材料は、前記セルロース系樹脂組成物を含むことを特徴とし、例えば、電子機器用外装等の筺体等、様々な成形体の原料として有用である。このような成形材料は、前記セルロース系樹脂組成物をベース樹脂として含むことが好ましい。
 前記ベース樹脂とは、成形用材料中の主成分を意味し、この主成分の機能を妨げない範囲で、他の成分を含有することを許容することを意味する。本発明の実施形態による成形用材料において、主成分である前記ベース樹脂(すなわち、本発明の実施形態によるセルロース系樹脂組成物)の含有割合は、特に制限されず、例えば、全体の30質量%以上が好ましく、より好ましくは50質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上である。
 本発明の実施形態による成形用材料は、前記セルロース系樹脂組成物の他に、バインダー、溶媒等を含んでもよい。
 本発明の実施形態による成形用材料の形態は、特に制限されず、溶液であっても、ペレット、粉末、粒子、ブロック等の固体であってもよい。
 本発明の実施形態による成形体は、前記成形用材料を用いたことを特徴とする。本発明の実施形態による成形体は、前記成形用材料を使用していればよく、その他の構成は、何ら制限されない。前記成形体は、例えば、電子機器用外装等の筺体、電子機器の内部部品、シート、フィルム、包装容器、等が挙げられる。
 以下、具体例を挙げて本発明を更に詳しく説明する。
 [セルロース系樹脂]
 セルロース系樹脂として、以下に示すセルロース系樹脂1、2および3を準備した。
 (1)セルロース系樹脂1
 セルロース系樹脂1として、セルロースアセテートプロピオネート(製品名:CAP482-20、イーストマンケミカル社製)を用いた。
上記セルロース系樹脂のグルコース単位当りのヒドロキシ基のアセチル化率(アセチル化による水酸基置換度):DSAce=0.18、
上記セルロース系樹脂のグルコース単位当りのヒドロキシ基のプロピオニル化率(プロピオニル化による水酸基置換度):DSPro=2.49。
 (2)セルロース系樹脂2
 セルロース系樹脂2として、セルロースアセテートブチレート(製品名:CAB381-20、イーストマンケミカル社製)を用いた。
上記セルロース系樹脂のグルコース単位当りのヒドロキシ基のアセチル化率(アセチル化による水酸基置換度):DSAce=1.0、
上記セルロース系樹脂のグルコース単位当りのヒドロキシ基のブチリル化率(ブチリル化による水酸基置換度):DSBu=1.66。
 (3)セルロース系樹脂3
 以下に示す合成例1~4により、セルロース系樹脂3として、カルダノールグラフト化セルロースアセテートプロピオネートを作製した。
 (3-1)合成例1:水添カルダノール
 前記式(2)に示すカルダノールの水素添加を行い、水添カルダノールとして、3-ペンタデシルシクロヘキサノールを調製した。
 まず、内容積1.0リットルのバッチ式オートクレーブに、熱処理したカシューナッツオイルから蒸留精製により得たカルダノール20g、ルテニウム/炭素触媒(Ru:5質量%)2g、テトラヒドロフラン20mlを仕込み、室温下、20kgf/cm2(1.96×106Pa)の水素を圧入し、80℃で3時間攪拌することにより、水素化反応を行った。その後、前記オートクレーブから取り出した反応液を、平均孔径0.2μmのフッ素樹脂製メンブレンフィルターを用いて濾過することにより、前記ルテニウム/炭素触媒を除去した。得られた濾液を加熱下で減圧にすることにより、テトラヒドロフランを留去した。これによって、室温で白色固体である水添カルダノール20.6gを得た。
 得られた水添カルダノールの純度を液体クロマトグラフ(製品名:LC-10ADVP、島津製作所製)で測定したところ、純度は99質量%であった。また、得られた水添カルダノールを1H-NMR(製品名:AV-400、400MHz、Bruker社製)で測定したところ、水素化率(炭化水素部分の二重結合と芳香環の二重結合の変換率)は99mol%以上であった。
 (3-2)合成例2:ジイソシアネート付加カルダノール誘導体
 ヘキサメチレンジイソシアネート(HDI)92.7g(0.55mol)を攪拌しながら50℃に昇温し、そこへ、前記合成例1で得られた水添カルダノール17.1g(0.055mol)を加え、80℃で3時間攪拌を継続した。その反応液を40℃まで冷却した後、アセトニトリル375mLを加えて室温で1時間攪拌した後、-15℃で17時間放置した。放置後の前記反応液から結晶をろ過(5A、185mmφ)し、氷冷したアセトニトリル125mlを用いて通液洗浄した。得られた結晶をアセトニトリル125mlにスラリー化し、室温で1時間攪拌した。-15℃で終夜放置した後、前記結晶をろ過(5A、185mmφ)し、30℃で6時間、減圧乾燥(~0.4kPa)した。これによって、HDIと水添カルダノールとがモル比1:1で結合したジイソシアネート付加カルダノール誘導体の白色粉末(乾燥結晶)22.61gを得た。
 得られたジイソシアネート付加カルダノール誘導体を液体クロマトグラフ(製品名:LC-10ADVP、島津製作所製)で測定したところ、純度は91質量%であった。
 (3-3)合成例3:カルダノールグラフト化セルロースアセテート
 前記合成例2で得られたジイソシアネート付加カルダノール誘導体を、セルロースアセテート(製品名:LM-80、ダイセル化学工業(株)製):セルロースのグルコース単位当りのヒドロキシ基のアセチル化率:DSAce=2.1)に結合させ、カルダノールグラフト化セルロースアセテートを得た。
 具体的には、まず、前記セルロースアセテート27.5g(0.11mol/Glc)に脱水ジオキサン385mLを添加し、液温80~88度で1時間かけて溶解させた。つぎに、前記溶液を40℃まで冷却し、これに、ジブチルスズラウレート0.276g(0.437mmol)を脱水ジオキサン2.8mlに溶解して加えた。続けて、これに、合成例2で合成した前記ジイソシアネート付加カルダノール誘導体11.56g(純度91.0%、0.022mol)を脱水ジオキサン50mlに加熱溶解してから加え、液温80℃で3時間攪拌した。さらに、前記溶液を80℃に維持した状態で、ジイソシアネート付加カルダノール誘導体11.05g(純度91.0%、0.022mol)を脱水ジオキサン50mlに加熱溶解してから加え、80℃で18時間攪拌した。前記溶液を30℃まで冷却した後、攪拌しながらメタノール4.5Lを加えてポリマーを沈殿させた。ポリマーをろ過した後、前記ポリマーを105℃で14時間、減圧乾燥(~0.7kPa)して、乾燥ポリマー43.9gを得た。前記乾燥ポリマーにメチルエチルケトン600mlを添加して、液温70~80℃で1時間攪拌し、前記ポリマーを溶解させた後、30℃まで冷却した。つぎに、前記ポリマー溶液を遠心分離機にかけ、不溶物を沈降分離した(3500rpm×15分)。不溶物を分離除去した前記ポリマー溶液にヘキサン1L加え、前記ポリマーを沈殿させた。前記ポリマーをろ過して、2回の洗浄を行った(ヘキサン1L×2回)。得られたポリマーをメチルエチルケトンに加温溶解させ、冷却した後、遠心分離、沈降分離、ポリマー沈澱およびヘキサン洗浄する操作を更に2回繰り返した後、50℃、14時間、減圧乾燥(~0.8kPa)して、カルダノールグラフト化セルロースアセテート36.4gを得た。
 (3-4)合成例4:カルダノールグラフト化セルロースアセテートプロピオネート
 前記合成例3で得たカルダノールグラフト化セルロースアセテート36.4gと脱水ピリジン310mlとを仕込み、液温75~80℃で20分かけて溶解させた。前記溶液に、液温76℃で、N,N-ジメチルアミノピリジン18.3g(0.15mol)と無水プロピオン酸390mlとを加え、液温100℃で1時間攪拌した。そして、前記溶液を液温30℃まで冷却した後、氷冷しながらメタノール130mlを70分かけて加えた。その間、液温を30~40℃に保った。さらに、前記反応溶液を攪拌しながらメタノール250mlを加え、ポリマーを沈殿させた。前記ポリマーをろ過し、2回の洗浄を行った(メタノール200ml×2回)。得られたポリマーを乾燥した後、クロロホルム250mlに液温60℃で溶解させた。前記溶液を冷却した後、攪拌しながらメタノール1.3Lを加え、ポリマーを沈殿させた。前記ポリマーをろ過して、2回の洗浄を行った(メタノール100ml×2回)。そして、前記ポリマーを、105℃で16時間、減圧乾燥(~0.7kPa)して、カルダノールグラフト化セルロースアセテートプロピオネート35.8gを得た。
 得られたカルダノールグラフト化セルロースアセテートプロピオネートを1H-NMR(製品名:AV-400、400MHz、Bruker社製)によって測定したところ、DSAce:2.1、DSPro:0.59、DSCD:0.25であった。
 (4)セルロース系樹脂4
 以下に示す合成例5及び6により、セルロース系樹脂4として、カルダノールグラフト化セルロースアセテートを作製した。
 (4-1)合成例5:酸クロライド化水添カルダノール
 モノクロロ酢酸変性カルダノール(カルボキシル化水添カルダノール)を調製し、次いでそのクロライド化合物を調製した。その原料として、カルダノールにおける直鎖状炭化水素部分の不飽和結合が水素化された水添カルダノールである、前記式(2)のm-n-ペンタデシルフェノール(3-ペンタデシルフェノール、製品名:ACROS、Organics社製)を使用した。そして、前記原料のフェノール性水酸基をモノクロロ酢酸と反応させ、カルボキシル化水添カルダノールを得た。次に、前記カルボキシル化水添カルダノールのカルボキシ基を、オキサリルクロライドでクロライド化して酸クロライド基へ変換し、酸クロライド化水添カルダノールを得た。この酸クロライド化水添カルダノールについて、より具体的な方法を下記に示す。
 まず、水添カルダノール(3-ペンタデシルフェノール)80g(0.26mol)をメタノール120mLに溶解させ、これに、水酸化ナトリウム64g(1.6mol)を蒸留水40mLに溶解した水溶液を加えた。前記溶液に、室温で、さらに、モノクロロ酢酸(関東化学株式会社製)66g(0.70mol)をメタノール50mLに溶解させた溶液を滴下した。滴下完了後、前記反応液を、73℃で4時間還流させながら、攪拌を継続し、その後、前記反応液を室温まで冷却した。前記反応液を、pH=1になるまで希塩酸で酸性化した後、メタノール250mLとジエチルエーテル500mLとを添加し、さらに、蒸留水200mLを添加した。この混合液を分液漏斗に入れ、水層とエーテル層とに分離し、前記水層を廃棄し、前記エーテル層を、蒸留水400mLで2回洗浄した。回収したエーテル層に無水マグネシウムを加え乾燥させた後、これを濾別した。得られた濾液(エーテル層)をエバポレーター(90℃/3mmHg)で減圧濃縮し、残渣として黄茶色粉末状の粗生成物を得た。前記粗生成物をn-ヘキサンから再結晶し、真空乾燥させることにより、カルボキシル化水添カルダノールの白色粉末46g(0.12mol)を得た。
 得られたカルボキシル化水添カルダノール46g(0.12mol)を脱水クロロホルム250mLに溶解させ、オキサリルクロライド24g(0.19mol)とN,N-ジメチルホルムアミド0.25mL(3.2mmol)とを加え、室温で72時間撹拌した。その後、クロロホルム及び過剰のオキサリルクロライドを減圧留去し、酸クロライド化水添カルダノール48g(0.13mol)を得た。
 (4-2)合成例6:カルダノールグラフト化セルロースアセテート
 前記合成例5で得られた酸クロライド化水添カルダノール(カルダノール誘導体)を、セルロースアセテート(製品名:LM-80、ダイセル化学工業(株)製、セルロースのグルコース単位当りのヒドロキシ基のアセチル化率:DSAce=2.1)に結合させ、グラフト化セルロースアセテートを得た。
 具体的には、まず、前記セルロースアセテート30g(水酸基量0.108mol)を脱水ジオキサン600mLに溶解させ、反応触媒及び酸捕捉剤としてトリエチルアミン15mL(0.108mol)を加えた。前記溶液に、前記合成例5で得られた酸クロライド化水添カルダノール32g(0.084mol)を溶解したジオキサン溶液300mLを加え、100℃で5時間、加熱還流した。この反応液を、メタノール4.5Lに撹拌しながらゆっくりと滴下し、再沈殿させ、沈殿した固体を濾別した。濾別した前記固体を、一晩、空気乾燥し、さらに、105℃で5時間真空乾燥した。これにより、セルロース系樹脂4として、カルダノールグラフト化セルロースアセテート23gを得た。
 得られたカルダノールグラフト化セルロースアセテート(セルロース系樹脂4)を1H-NMR(製品名:AV-400、400MHz、Bruker社製)によって測定したところ、DSCDは0.47であった。
 (5)セルロース系樹脂5
 以下に示す合成例7~9により、セルロース系樹脂5として、長鎖短鎖結合セルロース誘導体を作製した。
 (5-1)合成例7:水添カルダノキシ酢酸の合成
 カルダノールの直鎖状炭化水素部分の不飽和結合が水素化された水添カルダノール(製品名:ACROS、Organics製、m-n-ペンタデシルフェノール)を原料とし、そのフェノール性水酸基を、モノクロロ酢酸と反応させることで、カルボキシメチル基を付与し、水添カルダノキシ酢酸(CH3(CH214-C64-O-CH2-COOH)を得た。具体的には、下記の手順に従って、水添カルダノキシ酢酸を作製した。
 まず、水添カルダノール80g(0.26mol)をメタノール120mLに溶解させ、これに、水酸化ナトリウム64g(1.6mol)を蒸留水40mLに溶解させた水溶液を加えた。
 その後、室温で、関東化学(株)製モノクロロ酢酸66g(0.70mol)をメタノール50mLに溶解させた溶液を滴下した。滴下完了後、73℃で4時間還流させつつ攪拌を継続した。反応溶液を室温まで冷却後、この反応溶液を、希塩酸でpH=1となるまで酸性化した。その後、メタノール250mLとジエチルエーテル500mL、さらに、蒸留水200mLを加えた。分液漏斗で水層を分離、廃棄し、エーテル層を蒸留水400mLで2回洗浄した。エーテル層に無水硫酸マグネシウムを加え乾燥させた後、これを濾別した。濾液(エーテル層)をエバポレーター(90℃/3mmHg)で減圧濃縮し、固形分として黄茶色粉末状の粗生成物を得た。得られた粗生成物をn-ヘキサンから再結晶し、真空乾燥した。
 以上の手順により、水添カルダノキシ酢酸(CH3(CH214-C64-O-CH2-COOH)の白色粉末46g(0.12mol)を得た。
 (5-2)合成例8:混合酸無水物1(水添カルダノキシ酢酸・酢酸混合酸無水物)の合成
 合成例7の水添カルダノキシ酢酸を、無水酢酸と混合し加熱することで、混合酸無水物1(水添カルダノキシ酢酸・酢酸混合酸無水物、CH3(CH214-C64-O-CH2-CO-O-CO-CH3)を得た。具体的には、下記の手順に従って、混合酸無水物1を作製した。
 合成例7の水添カルダノキシ酢酸40.2g(0.11mol)と、無水酢酸21.0ml(0.22mol)を、100℃で1時間、加熱しながら攪拌した。これにより、混合酸無水物1を含む混合物1を得た。
 得られた混合物1を1H-NMR(Bruker社製、製品名:AV-400、400MHz)によって分析した。その結果、混合物1に含まれる、無水酢酸、混合酸無水物1、水添カルダノキシ酢酸無水物、水添カルダノキシ酢酸、酢酸のモル比は、この順で43.0:20.8:2.0:10.0:24.2であった。
 (5-3)合成例9:長鎖短鎖結合セルロース誘導体(セルロース系樹脂5)の合成
 セルロースの活性化処理を行った後、合成例8の混合酸無水物1を反応させることで、長鎖短鎖結合セルロース誘導体を得た。具体的には、下記の手順に従って、長鎖短鎖結合セルロース誘導体を作製した。
 まず、以下の方法でセルロースの活性化処理を行った。
 セルロース(日本製紙ケミカル製、製品名:KCフロック、銘柄:W-50GK)6.37g(吸着水分6.23%を含む重量:セルロース分6.0g(0.037mol/グルコース単位))を、90mLの純水に分散させた。この分散液を15分間攪拌し、5分間の吸引濾過によって純水を除去した。得られた固形分を90mLの酢酸に分散し、15分間攪拌し、5分間の吸引濾過によって酢酸を除去した。この酢酸への分散と酢酸の除去は2回行った。これにより、活性化処理済みセルロースを得た。
 次に、以下の方法でセルロース誘導体を合成した。
 上記の活性化処理済みセルロースを、N-メチルピロリジノン(NMP)150mLに分散させた。この分散液に、ジメチルアミノピリジン(DMAP)3.0gと合成例8の混合酸無水物1を含む混合物1を加え、100℃で15時間過熱しながら攪拌した。その後、反応溶液にメタノール1.5Lを加えて再沈殿し、固体を濾別した。濾別した固形分を60℃のイソプロピルアルコール150mlで2回洗浄した後、105℃で5時間真空乾燥した。これにより、長鎖短鎖結合セルロース誘導体17.6gを得た。
 得られた長鎖短鎖結合セルロース誘導体の短鎖アシル基の置換度(DSSH)、長鎖アシル基の置換度(DSLO)をIR(日本分光(株)製、製品名:FT/IR-4100)により測定した。測定結果は、DSSHは2.02、DSLOは0.53であった。従って、IR測定に基づく結果から、グルコース単位当たりに残存するヒドロキシ基の個数(水酸基残存度、DSOH)(平均値)は、DSOH=0.45と見積もられる。
 上記のIR測定によるDSLOは、ベンゼン環骨格由来の伸縮ピーク(1586cm-1)の強度を用いて算出した。IR測定によるDSSHは、エステル結合のC=O伸縮ピーク(1750cm-1)の強度を用いて決定したアシル基トータルの置換度(DSSH+DSLO)からDSLOを差し引いた値とした。これらピーク強度は、グルコピラノース環のエーテル結合の伸縮ピーク(1050cm-1)の強度で規格化した。アセチルセルロース(2,6-ジアセチルセルロース)と水添カルダノキシ酢酸クロライドから合成される基準材料(NMRで置換度DSSH及びDSLOの算出が可能)で置換度とピーク強度との関係を校正した。
 なお、得られた長鎖短鎖結合セルロース誘導体は一部クロロホルムに可溶であるため、その可溶分について1H-NMR(Bruker社製、製品名:AV-400、400MHz)を用いてDSSH、DSLOを測定したところ、DSSHは2.4、DSLOは0.6であった。
 [脂肪族ポリエステル]
 以下に示す直鎖状脂肪族ポリエステルおよび分岐状脂肪族ポリエステルを準備した。
 (1)直鎖状脂肪族ポリエステル
 直鎖状脂肪族ポリエステルとして、ポリブチレンサクシネート(PBS)(昭和電工(株)製、製品名:ビオノーレ1001MD、又はビオノーレ1020MD)、ポリブチレンサクシネートアジペート(PBSA)(昭和電工(株)製、製品名:ビオノーレ3001MD)、繰り返し単位が[-(CH25CO-O-]nで表されるポリカプロラクトン(PCL)(ダイセル(株)製、製品名:CELGREEN PH7)の3種類を使用した。前記ポリカプロラクトンの分子量は、クロロホルム溶液(1質量%)を用いたゲル浸透クロマトグラフィー(製品名:LC-10ADvp CLASS-VPシステム、株式会社島津製作所製)により得られた結果から、ポリスチレン換算で算出した結果、数平均分子量(Mn)が26,683であり、重量平均分子量(Mw)が54,980であった。
 (2)分岐状脂肪族ポリエステル
 分岐状脂肪族ポリエステルとして、ポリ乳酸(ユニチカ(株)製、製品名:テラマックTE-4000N)とポリ-3-ヒドロキシブチレート(三菱ガス化学(株)製、製品名:ビオグリーン)を用いた。
 [相溶化剤]
 相溶化剤として、エチレン-グリシジルメタクリレート共重合体にスチレン-アクリルニトリル共重合体をグラフト重合させたグラフト共重合体(日本油脂製、製品名:モディパーA4400)を用いた。
 [強化繊維]
 強化繊維として、ガラス繊維(オーウェンス・コーニング(株)製、製品名:03JAFT792(Φ10μm)と、セルロース繊維(日本製紙ケミカル(株)製、製品名:KCフロックW-50GK)を用いた。
 [難燃剤]
 難燃剤として、芳香族リン酸エステル(大八化学工業(株)製、製品名:クレジルジフェニルホスフェート(CDP)と、金属水酸化物(日本軽金属(株)製、低ソーダ水酸化アルミニウム、製品名:BE033、平均粒径3μm、アルカリ金属系物質の含有量0.02質量%)を用いた。
 [架橋剤]
 直鎖状ポリエステル系樹脂の架橋体を形成するための架橋剤として、脂肪族ポリカルボジイミド(日清ケミカル(株)製、製品名:カルボジライト LA-1)および芳香族ポリカルボジイミド(Rhein Chemie社製、製品名:スタバクゾールP)を用いた。
 直鎖状脂肪族ポリエステルとして前記ポリブチレンサクシネートアジペート(昭和電工(株)製、製品名:ビオノーレ3001MD)と、架橋剤としてカルボジライトLA-1またはスタバクゾールPを下記表に示す配合(質量比)で、2軸混練機(製品名:HAKKE-MiniLab Micro-Extruder、Thermo Electron Corp.製)を用いて、180℃、回転数60rpmの条件で、15分間、溶融混練し、架橋直鎖状ポリエステル系樹脂PBSA-1~4を得た。
Figure JPOXMLDOC01-appb-T000003
 [特性評価]
 後述する成形体(試験片)について、以下の方法により各種特性の評価を行った。
 (1)相溶性の評価
 各成形体(試験片)の外観を目視で観察し、下記の基準にて相溶性を評価した。前記相溶性の評価結果が○、○~△および△である場合を、実用化における合格評価とした。
 ○:透明(完全に溶解)
 ○~△:半透明(高度に分散)
 △:白濁(均一に分散)
 ×:不均一に分散。
 (2)アイゾット衝撃強度の評価
 各成形体(試験片)について、JIS K7110に準拠して、ノッチ付アイゾット衝撃強度を測定した。この衝撃強度は、6.0kJ/m2以上を、実用化における合格値として設定した。なお、前記強度は、好ましくは6.2kJ/m2以上であり、より好ましくは6.9kJ/m2以上であり、さらに好ましくは8.0kJ/m2以上であり、特に好ましくは9.0kJ/m2以上である。
 (3)曲げ試験の評価
 各成形体(試験片)について、JIS K7171に準拠して曲げ試験を行った。曲げ強度は15MPa以上を、曲げ弾性率は0.4GPa以上を、曲げひずみは6%以上を、それぞれ実用化における合格値として設定した。
 (4)メルトフローレート(MFR)の評価
 得られたセルロース系樹脂組成物を、105℃で7時間乾燥した後、測定装置(島津製作所製、製品名:島津フローテスター CFT-500D)を用いて、JIS K7210に準拠して、200℃、500kgf/cm2(49MPa)の条件で、メルトフローレート(MFR)を測定した。測定したMFRが1000g/10min以上である値を、実用化における合格値として設定した。
 (5)吸水率の評価
 各成形体(試験片)について、JIS K7209に準拠して吸水率を測定した。測定した吸水率が3.0%以下である値を、実用化における合格値として設定した。
 [実施例1~5および比較例1、2]
 実施例1~5のセルロース系樹脂組成物および比較例1、2の組成物を以下の通り調製し、成形を行い、得られた組成物または成形体について各種特性を評価した。各組成物の組成比と評価結果を表2に示す。
 (1)混練
 前記セルロース系樹脂として前記セルロースアセテートプロピオネート(セルロース系樹脂1)、前記直鎖状脂肪族ポリエステルとして前記ポリブチレンサクシネート(昭和電工(株)製、製品名:ビオノーレ1001MD)を使用した。これらを、下記表2に示す配合比(質量%)とし、2軸混練機(製品名:HAKKE-MiniLab Micro-Extruder、Thermo Electron Corp.製)を用いて、180~210℃、回転数60rpmの条件で、7分間、溶融混練し、セルロース系樹脂組成物を得た。
 (2)射出成形
 得られたセルロース系樹脂組成物を、射出成形装置(製品名:HAKKE-MiniJetII、Thermo Scientific製)を用いて、射出温度180~210℃、射出圧力800bar~1200bar、金型温度100℃、保圧400barの条件で射出成形し、厚み2mm、幅13mm、長さ80mmの試験片を得た。
 なお、比較例1は、前記直鎖状脂肪族ポリエステルを未添加とし、比較例2は、前記セルロース系樹脂を未添加とした以外は、実施例と同様にして組成物を調製し、成形を行った。
 得られた試験片について、前述した特性の評価を行った。これらの結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、実施例1~5のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。さらに、実施例1~5のセルロース系樹脂組成物は、比較例1のセルロース系樹脂単独(直鎖状脂肪族ポリエステル無添加)に比べ、衝撃強度および耐水性に優れることがわかった。
 また、比較例1のセルロース系樹脂単独(直鎖状脂肪族ポリエステル無添加)は、MFRが1000g/100minよりも低いことから、例えば、流動性が足りずに、薄肉成形できない可能性があり、さらに、吸水率が3.0%より大きいことから、例えば、寸法安定性が不十分となり、成形体の寸法が使用時に変化するため、部材の勘合があわなくなる等の問題が生じる可能性があり、実用性に劣ると考えられる。
 また、実施例1-5のセルロース系樹脂組成物は、比較例2の直鎖状脂肪族ポリエステル単独(セルロース系樹脂1無添加)に比べ、衝撃強度が高いことがわかる。
 [実施例6~10]
 前記セルロース系樹脂として前記セルロースアセテートプロピオネート(セルロース系樹脂1)、前記直鎖状脂肪族ポリエステルとして前記ポリカプロラクトン(PCL)を使用した。これらを下記表4の組成比とした以外は、前記実施例と同様にして、組成物を調製し、成形を行った。得られた組成物または成形体について、各種特性の評価を行った。これらの結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表3に示すように、実施例の6~10のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。さらに、実施例6~10のセルロース系樹脂組成物は、表2の比較例1のセルロース系樹脂1単独に比べ、衝撃強度、耐水性および成形性に優れることがわかった。
 [比較例3および実施例11]
 前記セルロース系樹脂として前記セルロースアセテートブチレート(セルロース系樹脂2)を使用し、前記直鎖状脂肪族ポリエステルとしてポリブチレンサクシネート(昭和電工(株)製、製品名:ビオノーレ1001MD)を使用した。これらを下記表5の組成比とした以外は、前記実施例1と同様にして、組成物を調製し、成形を行った。得られた組成物または成形体について、各種特性の評価を行った。これらの結果を、下記表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表4に示すように、実施例11のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。さらに、実施例11のセルロース系樹脂組成物は、比較例3のセルロース系樹脂2単独に比べ、衝撃強度、耐水性および成形性に優れることがわかった。
 [比較例4~6および実施例12~22]
 前記セルロース系樹脂として、前記カルダノールグラフト化セルロースアセテートプロピオネート(セルロース系樹脂3)を使用し、直鎖状脂肪族ポリエステルとしてポリブチレンサクシネート(昭和電工(株)製、製品名:ビオノーレ1001MD)を使用した。また、強化繊維として、前記ガラス繊維と前記セルロース繊維を使用し、これらは、前記セルロース系樹脂と共に混練した。これらを下記表5~8の組成比とした以外は、前記実施例1と同様にして、組成物を調製し、成形を行った。得られた組成物また成形体について、各種特性の評価を行った。これらの結果を、下記表5~8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表5および表6に示すように、実施例12~17のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。そして、実施例12~17のセルロース系樹脂組成物は、比較例4のセルロース系樹脂3単独(直鎖状脂肪族ポリエステル未添加)に比べ、衝撃強度、耐水性、成形性に優れることがわかった。また、実施例12~17のセルロース系樹脂組成物は、前記直鎖状脂肪族ポリエステル(ポリブチレンサクシネート)の含有量が0%より大きく50%より少ない範囲で透明性が維持されることがわかる。
 また、表7に示すように、実施例18~22のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。そして、前記強化線維を添加した実施例19および20のセルロース系樹脂組成物は、実施例18のセルロース系樹脂組成物に対して、曲げ強度や曲げ弾性率を、より一層向上することができ、また、前記セルロース系樹脂3単独の比較例6に比べ、衝撃強度も良好であることがわかった。さらに、実施例22のセルロース系樹脂組成物は、前記セルロース系樹脂3と前記ポリブチレンサクシネートと前記強化繊維を含むことによって、前記セルロース系樹脂3単独の比較例6に比べ、衝撃強度、曲げ強度、曲げ弾性率、曲げひずみ、成形性、耐水性に優れることがわかった。
 また、表8に示すように、実施例23、24のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。そして、前記直鎖状脂肪族ポリエステルを50%以上添加すると、衝撃強度、成形性および耐水性を、より一層向上することができることがわかった。
 [実施例25~27および比較例7~8]
 前記セルロース系樹脂として、前記セルロース系樹脂3を使用し、前記直鎖状脂肪族ポリエステルとして、ポリブチレンサクシネートアジペート、ポリブチレンサクシネート、ポリカプロラクトンを使用し、前記分岐状脂肪族ポリエステルとして、前記ポリ乳酸(PLA)と前記ポリ-3-ヒドロキシブチレート(PHB)を使用した。これらを下記表9の組成比とした以外は、前記実施例1と同様にして、組成物を調製し、成形を行った。得られた組成物また成形体について、各種特性の評価を行った。これらの結果を、下記表9に示す。
Figure JPOXMLDOC01-appb-T000011
 表9に示すように、実施例25~27のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。そして、実施例25~27は、前記表7に示すセルロース系樹脂3単独の比較例6に比べ、衝撃強度、成形性、耐水性に優れることがわかった。一方、直鎖状脂肪族ポリエステルではなく分岐状脂肪族ポリエステルを含む比較例7および8は、表7に示すセルロース系樹脂3単独の比較例6に比べ、衝撃強度が向上しなかった。
 [実施例28~32および比較例9]
 前記セルロース系樹脂として前記セルロースアセテートプロピオネート(セルロース系樹脂1)、前記直鎖状脂肪族ポリエステルとして、前記ポリブチレンサクシネートアジペートを使用した。これらを下記表10の組成比とした以外は、前記実施例と同様にして、組成物を調製し、成形を行った。得られた組成物または成形体について、各種特性の評価を行った。これらの結果を、下記表10に示す。
Figure JPOXMLDOC01-appb-T000012
 表10に示すように、実施例28~32のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。さらに、実施例28~32のセルロース系樹脂組成物は、比較例9のセルロース系樹脂単独(直鎖状脂肪族ポリエステル無添加)に比べ、衝撃強度および耐水性に優れることがわかった。
 また、比較例9のセルロース系樹脂単独(直鎖状脂肪族ポリエステル無添加)は、MFRが1000g/100minよりも低いことから、例えば、流動性が足りずに、薄肉成形できない可能性があり、さらに、吸水率が3.0%より大きいことから、例えば、寸法安定性が不十分となり、成形体の寸法が使用時に変化するため、部材の勘合があわなくなる等の問題が生じる可能性があり、実用性に劣ると考えられる。
 また、実施例28-32のセルロース系樹脂組成物は、比較例10の直鎖状脂肪族ポリエステル単独(セルロース系樹脂1無添加)に比べ、衝撃強度が高いことがわかる。
 [実施例33~39および比較例11]
 前記セルロース系樹脂として前記カルダノールグラフト化セルロースアセテート(セルロース系樹脂4)、前記直鎖状脂肪族ポリエステルとして、前記ポリブチレンサクシネートまたは前記ポリブチレンサクシネートアジペートを使用した。これらを下記表11、表12の組成比とした以外は、前記実施例1と同様にして、組成物を調製し、成形を行った。得られた組成物または成形体について、各種特性の評価を行った。これらの結果を、下記表11、表12に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表11、表12に示すように、実施例33~47のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。さらに、実施例34,35,37,40,41,44~46のセルロース系樹脂組成物は、比較例11のセルロース系樹脂単独(直鎖状脂肪族ポリエステル無添加)に比べ、衝撃強度および流動性に優れることがわかった。また、実施例35,36,38,39,41~44,46のセルロース系樹脂組成物は、ガラス繊維の添加により剛性が向上し、優れた衝撃強度を保持しつつ、曲げ強度が向上することがわかった。
 [実施例48~55および比較例12]
 前記セルロース系樹脂として前記カルダノールグラフト化セルロースアセテート(セルロース系樹脂4)、前記直鎖状脂肪族ポリエステルとして、前記ポリブチレンサクシネートアジペートを使用した。これらを下記表13の組成比とした以外は、前記実施例1と同様にして、組成物を調製し、成形を行った。得られた組成物または成形体について、各種特性の評価を行った。これらの結果を、下記表13に示す。なお、表中の「PTFE」はポリテトラフルオロエチレンを示し、「2.4mm燃焼性」はUL94規格による厚み2.4mmの燃焼性試験による判定を示す。
Figure JPOXMLDOC01-appb-T000015
 表13に示すように、実施例48~55のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしつつ、高度な難燃性を有していた。さらに、実施例48~55のセルロース系樹脂組成物は、比較例12のセルロース系樹脂単独(直鎖状脂肪族ポリエステル無添加)に比べ、衝撃強度に優れることがわかった。また、実施例49,50および52~55のセルロース系樹脂組成物は、ガラス繊維の添加により剛性が向上し、優れた衝撃強度を保持しつつ、曲げ強度が向上することがわかった。
 [実施例56~59および比較例13]
 前記セルロース系樹脂として前記長鎖短鎖結合セルロース誘導体(セルロース系樹脂5)、前記直鎖状脂肪族ポリエステルとして、前記ポリブチレンサクシネートアジペートを使用した。これらを下記表14の組成比とした以外は、実施例1と同様にして、組成物を調製し、成形を行った。得られた組成物または成形体について、各種特性の評価を行った。これらの結果を、下記表14に示す。
Figure JPOXMLDOC01-appb-T000016
 表14に示すように、実施例56~59のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。さらに、実施例56~59のセルロース系樹脂組成物は、比較例13のセルロース系樹脂単独(直鎖状脂肪族ポリエステル無添加)に比べ、衝撃強度に優れることがわかった。また、実施例57および59のセルロース系樹脂組成物は、ガラス繊維の添加により剛性が向上し、優れた衝撃強度を保持しつつ、曲げ強度が向上することがわかった。
 [実施例60~77]
 前記セルロース系樹脂として前記カルダノールグラフト化セルロースアセテート(セルロース系樹脂4)、前記架橋直鎖状脂肪族ポリエステルとして、前記架橋ポリブチレンサクシネートアジペート(PBSA-1~4)を使用した。これらを下記表15~17の組成比とした以外は、前記実施例1と同様にして、組成物を調製し、成形を行った。得られた組成物または成形体について、各種特性の評価を行った。これらの結果を、下記表15~17に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表15~17に示すように、実施例60~77のセルロース系樹脂組成物は、全項目について、実用化の合格値を満たしていた。また、実施例63,65,67のセルロース系樹脂組成物は、ガラス繊維の添加により剛性が向上し、優れた衝撃強度を保持しつつ、曲げ強度が向上することがわかった。
 以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 本発明の実施形態によるセルロース系樹脂組成物は、例えば、バイオプラスチックでありながら、耐衝撃性の向上を図り、石油プラスチックと同様の電気機器の筐体等の外装体に利用できる。
 この出願は、2013年1月30日に出願された日本出願特願2013-16255及び2013年10月18日に出願された日本出願特願2013-217702を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  セルロース又はその誘導体に有機基が結合したセルロース系樹脂(X)と、下記直鎖状脂肪族ポリエステル(Y1)及び(Y2)の少なくとも一方の直鎖状脂肪族ポリエステル又はその架橋体(Y)とを含む、セルロース系樹脂組成物。
     (Y1)下記式(I)及び式(II)で表される繰り返し単位の少なくとも一方を含む直鎖状脂肪族ポリエステル
      -(CO-R1-COO-R2-O)-   式(I)
    (式(I)中、R1は、炭素数1~12の二価脂肪族基、R2は、炭素数2~12の二価脂肪族基を表す。)
      -(CO-R3-O)-   式(II)
    (式(II)中、R3は、炭素数2~10の二価脂肪族基を表す。)
     (Y2)環状エステルの開環重合物からなる直鎖状脂肪族ポリエステル
  2.  前記セルロース系樹脂(X)は、セルロース又はその誘導体に、酸素を含む結合を介して有機基が結合したセルロース系樹脂である、請求項1記載のセルロース系樹脂組成物。
  3.  前記セルロース系樹脂(X)は、セルロース又はその誘導体に、炭素数1~32のカルボン酸、アルコール、フェノール及びこれらの誘導体からなる群から選択された少なくとも一種が結合したセルロース系樹脂である、請求項1又は2記載のセルロース系樹脂組成物。
  4.  前記セルロース系樹脂(X)における前記カルボン酸が、モノカルボン酸であり、
     前記セルロース系樹脂(X)における前記アルコールが、脂肪族アルコール及び脂環式アルコールから選ばれる少なくとも一種であり、
     前記セルロース系樹脂(X)における前記フェノールが、カルダノール及びカルダノール誘導体から選ばれる少なくとも一種である、請求項3記載のセルロース系樹脂組成物。
  5.  前記セルロース系樹脂(X)が、カルダノール又はその誘導体が結合した、セルロースまたはアシル化セルロースである、請求項1記載のセルロース系樹脂組成物。
  6.  前記直鎖状脂肪族ポリエステル(Y1)が、脂肪族ジカルボン酸、その酸無水物及びそのジエステル体からなる群から選択された少なくとも一種と、脂肪族ジオールとの縮合物である、請求項1から5のいずれか一項に記載のセルロース系樹脂組成物。
  7.  前記直鎖状脂肪族ポリエステル又はその架橋体(Y)が、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート及びポリカプロラクトンからなる群から選択された少なくとも一種又はその架橋体である、請求項1から5のいずれか一項に記載のセルロース系樹脂組成物。
  8.  前記セルロース系樹脂(X)と前記直鎖状脂肪族ポリエステル又はその架橋体(Y)との含有割合(質量比、X:Y)が、95:5~30:70である、請求項1から7のいずれか一項に記載のセルロース系樹脂組成物。
  9.  請求項1から8のいずれか一項に記載のセルロース系樹脂組成物を含む、成形用材料。
  10.  請求項9記載の成形用材料を成形して得られる、成形体。
PCT/JP2014/052070 2013-01-30 2014-01-30 セルロース系樹脂組成物、成形用材料および成形体 WO2014119657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014559736A JPWO2014119657A1 (ja) 2013-01-30 2014-01-30 セルロース系樹脂組成物、成形用材料および成形体
US14/764,244 US20150368442A1 (en) 2013-01-30 2014-01-30 Cellulose resin composition, molding material and molded article
EP14745520.8A EP2952540A4 (en) 2013-01-30 2014-01-30 CELLULOSIC RESIN COMPOSITION, FORMAL MATERIAL AND FORM BODY

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-016255 2013-01-30
JP2013016255 2013-01-30
JP2013217702 2013-10-18
JP2013-217702 2013-10-18

Publications (1)

Publication Number Publication Date
WO2014119657A1 true WO2014119657A1 (ja) 2014-08-07

Family

ID=51262368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052070 WO2014119657A1 (ja) 2013-01-30 2014-01-30 セルロース系樹脂組成物、成形用材料および成形体

Country Status (4)

Country Link
US (1) US20150368442A1 (ja)
EP (1) EP2952540A4 (ja)
JP (1) JPWO2014119657A1 (ja)
WO (1) WO2014119657A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024781A (ja) * 2016-08-10 2018-02-15 三菱ケミカル株式会社 樹脂組成物、該樹脂組成物を成形してなるフィルム、および該フィルムを成形してなる袋
JPWO2017217503A1 (ja) * 2016-06-17 2019-04-11 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品
WO2019171610A1 (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
WO2019171612A1 (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物及びその樹脂成形体
WO2019171611A1 (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
WO2019171613A1 (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
JP2020037612A (ja) * 2018-08-31 2020-03-12 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
JP2020523461A (ja) * 2017-06-15 2020-08-06 ウッドリー オイ セルロース系組成物
JPWO2019117316A1 (ja) * 2017-12-15 2020-12-03 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品
JP2021518863A (ja) * 2018-04-23 2021-08-05 ウッドリー オイ 均一なポリマー混合物、それに関連する方法、およびその使用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624740B2 (ja) * 2017-03-27 2019-12-25 学校法人同志社 樹脂組成物及び樹脂組成物の難燃性判定方法
WO2018221663A1 (ja) * 2017-06-01 2018-12-06 日本電気株式会社 セルロース系樹脂、成形用材料、成形体及びセルロース系樹脂の製造方法
JP7114942B2 (ja) * 2018-03-06 2022-08-09 富士フイルムビジネスイノベーション株式会社 樹脂組成物および樹脂成形体
JP7311251B2 (ja) * 2018-08-31 2023-07-19 イーストマン ケミカル カンパニー 樹脂組成物及び樹脂成形体
FI20195902A1 (en) * 2019-10-22 2021-04-23 Welmu Int Oy Composite material
JP2024047765A (ja) * 2022-09-27 2024-04-08 セイコーエプソン株式会社 成形用材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108035A (ja) 1996-06-25 1998-01-13 Akebono Brake Ind Co Ltd 非石綿系摩擦材
JPH11255801A (ja) 1998-03-12 1999-09-21 Daicel Chem Ind Ltd 生分解性グラフト重合体およびその製造方法
JP2001032869A (ja) 1999-07-21 2001-02-06 Toyota Motor Corp 摩擦材
JP2005162870A (ja) 2003-12-02 2005-06-23 Sony Corp 樹脂組成物、成形品、電気製品、樹脂組成物の製造方法
WO2011043279A1 (ja) * 2009-10-05 2011-04-14 日本電気株式会社 セルロース系樹脂およびその製造方法
JP2011148976A (ja) * 2009-12-25 2011-08-04 Fujifilm Corp 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011148975A (ja) 2009-12-25 2011-08-04 Fujifilm Corp 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2012017772A1 (ja) * 2010-08-06 2012-02-09 日本電気株式会社 セルロース系樹脂
JP2012219112A (ja) * 2011-04-04 2012-11-12 Nec Corp セルロース系樹脂およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5292783A (en) * 1990-11-30 1994-03-08 Eastman Kodak Company Aliphatic-aromatic copolyesters and cellulose ester/polymer blends
KR100220443B1 (ko) * 1990-11-30 1999-09-15 그윈넬 해리 제이 지방족-방향족 코폴리에스테르 및 셀룰로스 에스테르/중합체 배합물
US6495656B1 (en) * 1990-11-30 2002-12-17 Eastman Chemical Company Copolyesters and fibrous materials formed therefrom
TW256845B (ja) * 1992-11-13 1995-09-11 Taisyal Kagaku Kogyo Kk
JP3390278B2 (ja) * 1994-12-05 2003-03-24 ダイセル化学工業株式会社 セルロースエステル組成物および成形品
US7037959B1 (en) * 1999-04-12 2006-05-02 The United States Of America As Represented By The Secretary Of The Agriculture Biodegradable polymer compositions methods for making same and articles therefrom
EP1690899A4 (en) * 2003-12-02 2011-07-06 Sony Corp RESIN COMPOSITION, FORM BODY THEREOF AND METHOD FOR PRODUCING THE RESIN COMPOSITION
JP5119920B2 (ja) * 2005-06-29 2013-01-16 コニカミノルタアドバンストレイヤー株式会社 セルロースエステルフィルム、それを用いた横電界駆動式表示装置用偏光板及び横電界駆動式表示装置
JP5761177B2 (ja) * 2010-03-30 2015-08-12 日本電気株式会社 難燃性ポリ乳酸系樹脂組成物、その成形体及びその製造方法
JP5786861B2 (ja) * 2010-08-06 2015-09-30 日本電気株式会社 セルロース系樹脂組成物
GB201104263D0 (en) * 2011-03-14 2011-04-27 Biome Bioplastics Ltd Bio-resins
JP5873643B2 (ja) * 2011-04-18 2016-03-01 富士フイルム株式会社 セルロースエステルフィルム、偏光板、及び液晶表示装置
JP2013234273A (ja) * 2012-05-09 2013-11-21 Adeka Corp セルロース系樹脂組成物
JP5729627B2 (ja) * 2013-01-25 2015-06-03 Dic株式会社 セルロースエステル樹脂用ポリエステル系改質剤組成物、セルロースエステル光学フィルム及び偏光板用保護フィルム
US9441096B2 (en) * 2014-09-26 2016-09-13 Fuji Xerox Co., Ltd. Resin composition and resin shaped product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108035A (ja) 1996-06-25 1998-01-13 Akebono Brake Ind Co Ltd 非石綿系摩擦材
JPH11255801A (ja) 1998-03-12 1999-09-21 Daicel Chem Ind Ltd 生分解性グラフト重合体およびその製造方法
JP2001032869A (ja) 1999-07-21 2001-02-06 Toyota Motor Corp 摩擦材
JP2005162870A (ja) 2003-12-02 2005-06-23 Sony Corp 樹脂組成物、成形品、電気製品、樹脂組成物の製造方法
WO2011043279A1 (ja) * 2009-10-05 2011-04-14 日本電気株式会社 セルロース系樹脂およびその製造方法
JP2011148976A (ja) * 2009-12-25 2011-08-04 Fujifilm Corp 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
JP2011148975A (ja) 2009-12-25 2011-08-04 Fujifilm Corp 成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体
WO2012017772A1 (ja) * 2010-08-06 2012-02-09 日本電気株式会社 セルロース系樹脂
JP2012219112A (ja) * 2011-04-04 2012-11-12 Nec Corp セルロース系樹脂およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEORGE JOHN ET AL., POLYMER BULLETIN, vol. 22, 1989, pages 89 - 94
See also references of EP2952540A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017217503A1 (ja) * 2016-06-17 2019-04-11 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品
US11149133B2 (en) 2016-06-17 2021-10-19 Nec Corporation Cellulose resin composition, molded body and product using same
JP2018024781A (ja) * 2016-08-10 2018-02-15 三菱ケミカル株式会社 樹脂組成物、該樹脂組成物を成形してなるフィルム、および該フィルムを成形してなる袋
JP7281417B2 (ja) 2017-06-15 2023-05-25 ウッドリー オイ セルロース系組成物
US11466142B2 (en) 2017-06-15 2022-10-11 Woodly Oy Cellulose based composition
JP2020523461A (ja) * 2017-06-15 2020-08-06 ウッドリー オイ セルロース系組成物
JPWO2019117316A1 (ja) * 2017-12-15 2020-12-03 日本電気株式会社 セルロース系樹脂組成物、成形体及びこれを用いた製品
US11505681B2 (en) 2017-12-15 2022-11-22 Nec Corporation Cellulose resin composition, molded body and product using same
WO2019171613A1 (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
CN111836852A (zh) * 2018-03-06 2020-10-27 伊士曼化工公司 树脂组合物及其树脂成型体
CN111819234A (zh) * 2018-03-06 2020-10-23 伊士曼化工公司 树脂组合物及树脂成型体
WO2019171611A1 (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
WO2019171612A1 (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物及びその樹脂成形体
CN111819234B (zh) * 2018-03-06 2023-02-17 伊士曼化工公司 树脂组合物及树脂成型体
WO2019171610A1 (ja) * 2018-03-06 2019-09-12 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
US11834567B2 (en) 2018-03-06 2023-12-05 Eastman Chemical Company Resin composition and molded article thereof
US11845861B2 (en) 2018-03-06 2023-12-19 Eastman Chemical Company Resin composition and molded article thereof
JP2021518863A (ja) * 2018-04-23 2021-08-05 ウッドリー オイ 均一なポリマー混合物、それに関連する方法、およびその使用
JP7434162B2 (ja) 2018-04-23 2024-02-20 ウッドリー オイ 均一なポリマー混合物、それに関連する方法、およびその使用
JP2020037612A (ja) * 2018-08-31 2020-03-12 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
JP7481084B2 (ja) 2018-08-31 2024-05-10 イーストマン ケミカル カンパニー 樹脂組成物及び樹脂成形体

Also Published As

Publication number Publication date
EP2952540A4 (en) 2016-07-06
EP2952540A1 (en) 2015-12-09
JPWO2014119657A1 (ja) 2017-01-26
US20150368442A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
WO2014119657A1 (ja) セルロース系樹脂組成物、成形用材料および成形体
JP5853697B2 (ja) セルロース系樹脂およびその製造方法
JP5853698B2 (ja) セルロース系樹脂およびその製造方法
JP5786861B2 (ja) セルロース系樹脂組成物
JP2018059125A (ja) セルロース誘導体、樹脂組成物および成形体
JP7435563B2 (ja) セルロース系樹脂、成形用材料、成形体及びセルロース系樹脂の製造方法
US9458251B2 (en) Cellulose resin and process for producing the same
JP6572903B2 (ja) セルロース誘導体を含む成形体用樹脂組成物、成形体および筐体
JP5928448B2 (ja) セルロース系樹脂およびその製造方法
WO2015060122A1 (ja) セルロース誘導体の製造方法およびセルロース誘導体
WO2014087801A1 (ja) セルロース系樹脂組成物およびその用途
JP2015081326A (ja) カルダノール類縁体を用いたセルロース系樹脂およびその製造方法
JP2014162804A (ja) セルロース系樹脂組成物
WO2013186957A1 (ja) セルロース系樹脂組成物およびその用途
JP6274107B2 (ja) セルロース誘導体の製造方法およびセルロース系樹脂組成物の製造方法
WO2014087881A1 (ja) セルロース系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559736

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014745520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14764244

Country of ref document: US

Ref document number: 2014745520

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE