WO2014119451A1 - Image acquisition device, and imaging device - Google Patents

Image acquisition device, and imaging device Download PDF

Info

Publication number
WO2014119451A1
WO2014119451A1 PCT/JP2014/051260 JP2014051260W WO2014119451A1 WO 2014119451 A1 WO2014119451 A1 WO 2014119451A1 JP 2014051260 W JP2014051260 W JP 2014051260W WO 2014119451 A1 WO2014119451 A1 WO 2014119451A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
signal readout
imaging
imaging control
signal
Prior art date
Application number
PCT/JP2014/051260
Other languages
French (fr)
Japanese (ja)
Inventor
英児 戸田
卓生 亀山
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51262165&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014119451(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201480002237.1A priority Critical patent/CN104584533B/en
Priority to GB1501530.8A priority patent/GB2522793B/en
Priority to US14/413,602 priority patent/US9423601B2/en
Priority to DE112014000195.3T priority patent/DE112014000195B4/en
Publication of WO2014119451A1 publication Critical patent/WO2014119451A1/en
Priority to US15/145,031 priority patent/US10142566B2/en
Priority to US16/149,642 priority patent/US10362245B2/en
Priority to US16/435,084 priority patent/US10602087B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/10Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical
    • H04N3/14Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices
    • H04N3/15Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation
    • H04N3/1506Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation with addressing of the image-sensor elements
    • H04N3/1512Scanning details of television systems; Combination thereof with generation of supply voltages by means not exclusively optical-mechanical by means of electrically scanned solid-state devices for picture signal generation with addressing of the image-sensor elements for MOS image-sensors, e.g. MOS-CCD

Definitions

  • the present invention relates to an image acquisition device and an imaging device that acquire an image of an observation object.
  • CMOS Complementary Metal Oxide Semiconductor
  • advantages such as a high reading speed and easy partial reading as compared with a CCD (Charge Coupled Device) camera.
  • Non-Patent Document 1 and Patent Document 1 below disclose that a CMOS sensor is used as an imaging element in a light sheet fluorescence microscope system (Light Sheet Microscopy system).
  • a CMOS sensor is used as an imaging element in a light sheet fluorescence microscope system (Light Sheet Microscopy system).
  • the observation object is imaged while scanning the excitation beam with respect to the observation object, and the scanning of the excitation beam is synchronized with the operation of the rolling shutter of the CMOS sensor.
  • the present invention has been made in view of such problems, and provides an image acquisition device and an imaging device that enable flexible observation by increasing the degree of freedom of scanning speed of illumination light with respect to an observation object. With the goal.
  • an image acquisition device is an image acquisition device that acquires an image of an object by scanning the object with irradiation light, and emits illumination light.
  • a light source a light scanning unit that receives light from the light source and scans the object with illumination light
  • a light scanning control unit controls the light scanning unit
  • an optical system that guides light from the object
  • An image pickup apparatus capable of reading out a signal, and a calculation unit that calculates a signal read-out interval between adjacent pixel columns based on a moving speed of an irradiated region on the light receiving unit by scanning of the optical scanning unit, Unit reads the calculated signal Based on the distance, to control the signal readout of each pixel row.
  • the illumination light emitted from the light source is scanned with respect to the object by the light scanning unit, and the light emitted from the object in response thereto is a signal from the rolling shutter via the optical system.
  • An image is picked up by an image pickup device capable of reading.
  • the signal readout interval between adjacent pixel columns of the light receiving unit is calculated, and each pixel column is calculated based on the calculation result.
  • the signal readout is controlled. This reduces the effect of background noise such as scattered light on the entire image of the optical scanning range of the object while allowing flexible observation of the object by giving freedom to the scanning speed of the illumination light on the object.
  • the spatial resolution can be improved.
  • an imaging apparatus is an imaging apparatus capable of reading signals by rolling readout for each of a plurality of pixel columns, and a light receiving unit in which the plurality of pixel columns are arranged, and a signal of the light receiving unit
  • An imaging control unit that controls readout, and the imaging control unit is configured to control signal readout based on a drive clock and variably set a signal readout interval between adjacent pixel columns. ing.
  • the signal readout interval between adjacent pixel columns of the light receiving unit is changed based on the drive clock.
  • FIG. 1 is a plan view showing a schematic configuration of an image acquisition device 1 according to a preferred embodiment of the present invention. It is a side view which shows schematic structure of the image acquisition apparatus 1 of FIG. It is a figure which shows the relationship between the scanning state of the illumination light with respect to the sample S in the image acquisition apparatus 1 of FIG. 1, and the irradiated area of the fluorescence image in the image pick-up element 19a.
  • 2 is a diagram showing a scanning state of an irradiated region R1 on the light receiving surface 19c of the imaging device 19 of FIG. 1 and exposure and signal readout timings in each pixel column 19d of the light receiving surface 19c controlled in accordance with the scanning state. is there.
  • 3 is a timing chart showing a relationship between an exposure period and a signal readout period set for each pixel column 19d in the imaging device 19 of FIG. It is a figure which shows the to-be-irradiated area
  • 6 is a timing chart showing an exposure period set for each pixel row 19d on the light receiving surface 19c when the number of stages of the exposure region R2 is controlled by the imaging control unit 19b of FIG.
  • FIG. 6 is a timing chart showing an exposure period set for each pixel row 19d on the light receiving surface 19c when the number of stages of the exposure region R2 is controlled by the imaging control unit 19b of FIG. 6 is a timing chart showing an exposure period set for each pixel row 19d on the light receiving surface 19c when the number of stages of the exposure region R2 is controlled by the imaging control unit 19b of FIG. It is a timing chart which shows the relationship between the exposure period and signal read-out period which are set to each pixel row
  • FIG. 1 is a plan view schematically showing the configuration of an image acquisition device 1 according to an embodiment of the present invention
  • FIG. 2 is a side view of the image acquisition device 1 of FIG.
  • the image acquisition apparatus 1 according to the present embodiment is an apparatus for irradiating a sample (object) S with illumination light and acquiring a fluorescent image (image) generated as a result.
  • the direction along the optical axis of the illumination optical system of the illumination light applied to the sample S is defined as the X-axis direction
  • the optical axis of the fluorescence detection optical system from the sample S perpendicular to the direction is defined as the X-axis direction.
  • the direction along the direction is the Y-axis direction, and the direction perpendicular to the X-axis direction and the Y-axis direction is the Z-axis direction.
  • the image acquisition device 1 is not limited to the configuration for acquiring the fluorescent image of the sample S, and may be a configuration for acquiring the reflection image, the transmission image, and the scattering image of the sample S.
  • Various image acquisition apparatuses such as a microscope apparatus and a flow cytometer having various configurations such as a field microscope apparatus and a reflection microscope apparatus may be used.
  • the image acquisition device 1 includes a light source 3 that emits illumination light having a predetermined wavelength that excites a fluorescent substance in a sample S, and an optical scanner (light scanning unit) that receives illumination light from the light source 3 via a light guide 5. 7, an optical scanner control unit (optical scanning control unit) 9 that controls the optical scanner 7, a relay optical system (irradiation optical system) 11 that guides illumination light from the optical scanner 7, and the relay optical system 11.
  • An objective lens (irradiation optical system) 13 that condenses the illumination light toward the sample S
  • an objective lens (detection optical system) 15 that condenses the fluorescence from the sample S, and the fluorescence from the objective lens 15 are guided.
  • a relay optical system (detection optical system) 17, an imaging device 19 that captures a fluorescent image from the sample S guided by the relay optical system 17, and the imaging device 19 and the optical scanner controller 9 are electrically connected. Including the calculation unit 21 In is configured.
  • the fluorescent image picked up by the image pickup device 19 is output by output means (not shown) such as a display device connected to the image acquisition device 1.
  • the light guiding means 5 may be constituted by an optical fiber such as a single mode fiber, or may be constituted by another type of optical fiber or lens.
  • the optical scanner 7 scans the illumination light from the light guide 5 in at least one direction (for example, one direction along the XZ plane in FIG. 2).
  • the optical scanner 7 is a galvano scanner configured by a galvanometer mirror.
  • the optical scanner 7 scans the illumination light so that the irradiated area of the illumination light condensed in the sample S via the relay optical system 11 and the objective lens 13 is arranged in at least one direction (for example, FIG. 2). (In the Z-axis direction).
  • the illumination light applied to the sample S from the light source 3 via the light guide 5, the optical scanner 7, the relay optical system 11, and the objective lens 13 may be spot-like light or in one direction. It may be sheet-shaped light that spreads (for example, in the Y-axis direction).
  • the imaging device 19 includes an imaging device 19a including a light receiving unit in which a plurality of pixel columns are arranged, and an imaging control unit 19b that controls exposure and signal readout of the imaging device 19a.
  • This is a device capable of reading signals by rolling reading.
  • the imaging device 19 is a camera device including a CMOS image sensor, and enables exposure and signal readout by a so-called rolling shutter of the CMOS image sensor.
  • the calculation unit 21 connected to the imaging device 19 is configured by an information processing device such as a personal computer, receives a signal related to the scanning speed of the optical scanner 7 from the optical scanner control unit 9, and based on the signal, the imaging device 19.
  • a signal for controlling exposure and signal readout for each pixel column is generated and sent to the imaging controller 19b of the imaging device 19 (details will be described later).
  • FIGS. 3A to 3D are side views showing the scanning state of the illumination light with respect to the sample S in time series
  • FIGS. 3E to 3H are FIGS. 3A to 3D, respectively.
  • the illumination light irradiated into the sample S by scanning with the optical scanner 7 moves (scans) along one direction (Z-axis direction).
  • the image sensor 19a is arranged so that its light receiving surface (light receiving portion) 19c is perpendicular to the optical axis (Y-axis direction) of the detection optical system.
  • a plurality of pixel rows 19d for capturing a fluorescent image formed on the light receiving surface 19c are arranged along the Z-axis direction.
  • the fluorescent image of the sample S imaged on the light receiving surface 19c is irradiated in accordance with the movement of the fluorescence generation location in the sample S due to the scanning of the illumination light by the optical scanner 7.
  • the region R1 moves (scans) along the arrangement direction (Z-axis direction) of the plurality of pixel rows 19d.
  • the range of the irradiated region R1 can be set in various ranges. In the example of FIG. 3, the entire irradiation optical system and detection optical system are set so as to cover the four pixel columns 19d. .
  • FIGS. 4A to 4E are side views showing the scanning state of the irradiated region R1 on the light receiving surface 19c of the imaging device 19 in time series.
  • FIGS. 4F to 4J are respectively shown in FIG. 5 is a timing chart showing the timing of exposure and signal readout in each pixel column 19d of the light receiving surface 19c controlled corresponding to the scanning states of FIGS. 4 (a) to 4 (e).
  • the scanning speed SP0 of the optical scanner 7 is controlled by the optical scanner controller 9 so that the moving speed on the light receiving surface 19c becomes a predetermined speed SP1.
  • a relationship between the scanning speed SP0 and the moving speed SP1 is a parameter determined by the configuration of the optical scanner 7, the configuration of the irradiation optical system including the relay optical system 11 and the objective lens 13, and the objective lens 15 and the relay optical system 17.
  • a parameter determined by a detection optical system including
  • the timing of exposure and signal readout in each pixel column 19d is controlled by the imaging control unit 19b. Specifically, for each pixel column 19d, the imaging control unit 19b sets a signal readout period for reading out the charge signal immediately after the exposure period, which is a period for exposing the fluorescent image and accumulating the charge signal, Control is performed so that a period including the exposure period and the signal readout period is repeated at a predetermined cycle. The length of the exposure period and the signal readout period, their start timing, and end timing are set based on an internally generated drive clock.
  • the imaging control unit 19b generates a reset signal RST at a timing in which a certain pixel row 19dn (n is an arbitrary natural number) is synchronized with a drive clock that enters the irradiated region R1 according to the scanning of the optical scanner 7. Then, the charge in the pixel row 19dn is discharged and the exposure process is started (FIGS. 4A and 4F). Thereafter, the imaging control unit 19b generates the reset signal RST so as to start the exposure period of the pixel row 19d (n + 1) adjacent in the scanning direction by a predetermined period by counting the drive clock (FIG. 4B). ), (G)). As described above, the exposure of all the pixel rows 19d on the light receiving surface 19c is sequentially started by shifting the pixel rows 19d adjacent in the scanning direction by a predetermined period.
  • the imaging control unit 19b generates a read start signal S1 at a timing when the exposure period of the pixel column 19dn is continued for a predetermined period T1n by counting the drive clock, thereby reading the charge signal of the pixel column 19dn. Is controlled to start (FIGS. 4C and 4H). That is, the charge signal accumulated in the pixel column 19dn is converted into a voltage and read. Furthermore, the imaging control unit 19b generates the readout end signal S2 at a timing at which the signal readout period of the pixel column 19dn is continued for a predetermined period T2n by counting the drive clock, thereby generating the charge signal of the pixel column 19dn. Control is performed so as to terminate the reading (FIGS. 4D and 4I).
  • the imaging control unit 19b sets the signal readout period T2 (n + 1) of the pixel column 19d (n + 1) adjacent to the pixel column 19dn.
  • the imaging control unit 19b sets the generation timing of the readout start signal S1 between the adjacent pixel columns 19d so as to leave a predetermined interval ⁇ T1, thereby starting the signal readout between the adjacent pixel columns 19d. The timing is shifted by a predetermined interval ⁇ T1.
  • the shift (interval) ⁇ T1 of the signal readout start timing set by the imaging control unit 19b is made variable by a control signal sent from the calculation unit 21 to the imaging control unit 19b.
  • the calculation unit 21 acquires information related to the scanning speed SP0 of the optical scanner 7 from the optical scanner control unit 9, and determines the parameters determined by the scanning speed SP0, the magnification of the irradiation optical system, the magnification of the detection optical system, and the like. Based on the determined parameters, the moving speed SP1 of the irradiated region R1 on the light receiving surface 19c is calculated.
  • the calculating unit 21 performs exposure so that the pixel rows 19d that enter the irradiated region R1 are sequentially exposed in synchronization with the movement of the irradiated region R1 on the light receiving surface 19c based on the calculated moving speed SP1.
  • the interval between the start timings of the periods is calculated, and accordingly, the interval ⁇ T1 ′ of the signal read start timing between the adjacent pixel columns 19d is determined as the signal read interval between the adjacent pixel columns 19d.
  • the calculation unit 21 sends the calculated signal read start timing interval ⁇ T1 'to the external signal reception unit 19e of the imaging device 19 as an external signal.
  • the received signal read start timing interval ⁇ T1 ' is sent as data to the imaging control unit 19b.
  • the imaging control unit 19b controls the signal readout start timing of each pixel column, for example, the signal readout start timing of each pixel column, based on the signal readout start timing interval ⁇ T1 ′ set by the calculation unit 21.
  • the imaging device 19 may include the calculation unit 21.
  • the external signal receiving unit 19e of the imaging device 19 receives data such as parameters determined by the scanning speed SP0, the magnification of the irradiation optical system, and the parameters determined by the magnification of the detection optical system, etc., as external signals.
  • the external signal is not limited to these as long as it is data and parameters for setting the interval ⁇ T1 ′ of the signal read start timing.
  • FIG. 5 is a timing chart showing the relationship between the exposure period and the signal readout period set for each pixel column 19d in the imaging device 19.
  • FIG. 5A is a timing chart showing the relationship between the exposure period and the signal readout period during normal rolling readout.
  • the signal reading period T2 is set to the time required for signal reading, and the interval ⁇ T1 of the signal reading start timing is set to be the signal reading period T2. Therefore, the imaging control unit 19b counts the drive clock CLK repeated at a predetermined cycle T0 from the read start signal S1 for the previous pixel column 19d by a number corresponding to the signal read start timing interval ⁇ T1. A read start signal S1 is generated for the next pixel column 19d.
  • FIG. 1 is a timing chart showing the relationship between the exposure period and the signal readout period during normal rolling readout.
  • a signal readout period T2 corresponding to the time required for signal readout. Is followed by a variable delay period T3.
  • the imaging control unit 19b calculates the delay time T3 from the signal readout start timing interval ⁇ T1 ′ and the signal readout period T2, and corresponds to the signal readout period T2 in the drive clock CLK.
  • the drive clock is adjusted so as to provide the delay period T3 at the timing after the previous drive clock CLK reaching the number of clocks (immediately before the generation of the read start signal S1).
  • the imaging control unit 19b since the imaging control unit 19b does not generate a driving clock in the delay period T3, the imaging control unit 19b counts the number of driving clocks CLK equal to the number of driving clocks CLK corresponding to ⁇ T1 in FIG.
  • the readout start signal S1 is generated for the pixel column 19d of the next column.
  • the imaging control unit 19b can variably control the signal readout start timing of each pixel column in accordance with the signal readout start timing interval ⁇ T1 ′ calculated by the calculation unit 21. It is. Note that the timing for providing the delay period T3 is not limited to the timing immediately before the generation of the read start signal S1, but may be provided during the signal read period T2.
  • the imaging control unit 19b is configured to be able to variably set the number of pixel columns in the exposure region on the light receiving surface 19c to be exposed at the same time by adjusting the exposure period for each pixel column 19d.
  • FIG. 6 shows an illuminated region R1 on the light receiving surface 19c of the imaging device 19 and an exposure region R2 on the light receiving surface 19c set by the imaging control unit 19b.
  • it is optically difficult to make the fluorescence from the sample S incident on the light receiving surface 19c into a slit shape. Therefore, by setting the range (number of steps) of the exposure region R2 including the pixel column 19d to be exposed at the same time by the imaging control unit 19b, it is possible to perform imaging in a state where pseudo-slit fluorescence is incident.
  • FIGS. 7 to 9 show exposure periods set for each pixel row 19d on the light receiving surface 19c when the number of exposure regions R2 is controlled by the imaging control unit 19b.
  • (a) shows an exposure region R2 set on the light receiving surface 19c
  • (b) shows each pixel set corresponding to the exposure region R2 shown in (a).
  • An exposure period T1 and a signal readout period T2 in column 19d are shown.
  • the interval of the respective start timings between the adjacent pixel columns 19d is based on the calculation result of the calculation unit 21, and the irradiation region R1 on the light receiving surface 19c. Set to synchronize with movement.
  • the length of the exposure period T1 is set by the imaging control unit 19b so that the number of stages of the pixel column 19d in which the exposure periods T1 overlap is four. Is set. That is, the calculation unit 21 acquires information related to the scanning speed SP0 of the optical scanner 7 from the optical scanner control unit 9, and the movement speed SP1 of the irradiated region R1 on the light receiving surface 19c calculated based on the scanning speed SP0, the light receiving surface. Based on the width W1 (FIG.
  • the length T1 of the exposure period set for each pixel column 19d Is calculated. Furthermore, the calculation unit 21 sends the calculated exposure period length T1 to the external signal reception unit 19e of the imaging device 19 as an external signal. The received external signal is sent to the imaging control unit 19b. Accordingly, the length T1 of the exposure period is variably adjusted by the imaging control unit 19b. For example, the length T1 of the exposure period is changed by changing the number of drive clocks that define the length of the exposure period in the imaging control unit 19b.
  • the calculation unit 21 is configured so that the number of stages of the pixel column 19d in the exposure region R2 that determines the length T1 of the exposure period can be variably set. As described above, the exposure region R2 is set in a plurality of stages, thereby improving the sensitivity of capturing the fluorescent image.
  • the imaging control unit 19b sets the exposure period T1 of the adjacent pixel column 19d based on the calculation result of the calculation unit 21.
  • the length of the exposure period T1 is set so as not to overlap. In this way, by setting the exposure area R2 to a relatively small number of stages such as one, the spatial resolution of fluorescent image capturing is improved.
  • the exposure region R2 is set to one stage, and based on the calculation result of the calculation unit 21, the imaging control unit 19b performs exposure so that the exposure periods T1 of the adjacent pixel columns 19d do not overlap.
  • the length of the period T1 is set.
  • the exposure region R2 is set with a relatively small number of stages, so that the spatial resolution of fluorescent image capturing is improved, and the exposure time of each pixel row 19d is longer than in the case of FIGS. Therefore, the sensitivity is improved.
  • the time resolution is excellent because the scanning speed is higher than that in FIG.
  • the number of pixels from which signals are read may be set, and the number of pixels may be used as a parameter for calculating the exposure period T1.
  • the signal readout period T2 it is possible to set the signal readout period T2 to be short, and it is possible to give more flexibility to the setting of the signal readout start timing interval ⁇ T1.
  • the illumination light emitted from the light source 3 is scanned with respect to the sample S by the optical scanner 7, and the fluorescence emitted from the sample S is imaged via the detection optical system accordingly.
  • Imaged by device 19 based on the moving speed of the irradiated region R1 on the light receiving surface 19c of the imaging device 19 by scanning of the illumination light, the interval of the signal reading start timing between the adjacent pixel rows 19d on the light receiving surface 19c is calculated, Based on the calculation result, the signal readout start timing of each pixel column 19d is controlled.
  • the signal readout timing in the image sensor can be optimized accordingly, so that the flexible scanning of the sample S can be performed by giving the scanning speed of the illumination light to the sample S flexible. Is realized. Further, by performing exposure of the necessary pixel columns only while the fluorescence is irradiated, it is possible to improve the spatial resolution by reducing the influence of background noise such as scattered light in the image of the entire optical scanning range of the sample S. it can.
  • the signal read start timing is controlled based on the drive clock, and the interval of the signal read start timing is adjusted by providing a delay period in the drive clock.
  • the signal read start timing of each pixel column 19d can be set easily and reliably without being limited to the upper limit of the counter for counting the drive clock. Further, it is possible to finely set the interval of the signal readout start timing of each pixel column 19d. Furthermore, since the frequency of the drive clock is maintained, the rolling read timing optimization process by changing the frequency becomes unnecessary.
  • the number of exposure regions R2 on the light receiving surface 19c can be set as necessary.
  • time resolution and imaging sensitivity can be adjusted as appropriate.
  • the number of pixels for signal readout can be set variably.
  • the signal readout period T2 can be adjusted, and the setting of the signal readout start timing interval ⁇ T1 can be further improved.
  • the present invention is not limited to the embodiment described above.
  • other adjustment methods may be employed as the adjustment method of the signal readout start timing interval ⁇ T1 by the imaging control unit 19b.
  • FIG. 10 is a timing chart showing the relationship between the exposure period and the signal readout period set for each pixel column 19d in the imaging device 19 according to the modification of the present invention.
  • the imaging control unit 19b sets the interval ⁇ T1 of the signal readout start timing of the adjacent pixel column 19d by adjusting the number of drive clocks that define the signal readout period T2 of each pixel column. . That is, the imaging control unit 19b corresponds to the signal readout start timing interval ⁇ T1 ′ calculated based on the signal readout start timing interval ⁇ T1 ′ calculated by the calculation unit 21 and the frequency 1 / T0 of the drive clock CLK.
  • the number of drive clocks CLK is calculated, and the number of drive clocks is adjusted as the number of clocks corresponding to the signal readout period T2a. Therefore, the imaging control unit 19b counts the drive clock CLK repeated at a predetermined period T0 from the readout start signal S1 for the previous pixel column 19d by a number corresponding to the signal readout start timing interval ⁇ T1 ′, thereby adjacent to the adjacent pixel row 19d. A read start signal S1 for the next pixel column 19d to be generated is generated. In this way, the imaging control unit 19b can variably control the signal readout start timing of each pixel column in accordance with the signal readout start timing interval ⁇ T1 calculated by the calculation unit 21. is there.
  • the signal readout start timing of each pixel column 19d can be set easily and reliably. Further, even if the drive clock is supplied at the timing when the signal readout of each pixel column 19d is completed, empty readout is performed, so that the signal readout processing is not affected. Furthermore, since the frequency of the drive clock is maintained, the rolling read timing optimization process by changing the frequency becomes unnecessary.
  • FIG. 11 is a timing chart showing the relationship between the exposure period and the signal readout period set for each pixel column 19d in the imaging device 19 of another modification of the present invention.
  • the imaging control unit 19b sets the signal readout start timing of each pixel column 19d by adjusting the frequency of the drive clock that defines the signal readout period T2 of each pixel column. That is, based on the signal readout start timing interval ⁇ T1 ′ calculated by the calculation unit 21 and the number of clocks that define the signal readout period T2, the frequency of the drive clock is changed to a frequency corresponding to the signal readout period T2b.
  • the frequency 1 / T0a is calculated, and the frequency of the drive clock CLK is adjusted to the calculated frequency 1 / T0a. Accordingly, the imaging control unit 19b counts the drive clock CLK repeated at a predetermined cycle T0a from the readout start signal S1 for the previous pixel column 19d by a number corresponding to the signal readout start timing interval ⁇ T1 ′. A read start signal S1 for the next pixel column 19d to be generated is generated. In this way, the imaging control unit 19b can variably control the signal readout start timing of each pixel column according to the interval ⁇ T1 of the signal readout start timing calculated by the calculation unit 21. is there. In this case, the signal readout start timing of each pixel column 19d can be set easily and reliably without being limited to the upper limit of the counter for counting the drive clock.
  • FIG. 12 is a timing chart showing the relationship between the exposure period and the signal readout period set for each pixel column 19d in the imaging device 19 according to another modification of the present invention.
  • the imaging control unit 19b drives the interval ⁇ T2 between the signal readout end timing of the previous pixel column 19d and the signal readout start timing of the next pixel column to define the interval ⁇ T2.
  • the interval ⁇ T2 is calculated based on the signal reading start timing interval ⁇ T1 ′ calculated by the calculation unit 21, the signal reading period T2, and the frequency 1 / T0 of the drive clock CLK.
  • the imaging control unit 19b first counts the drive clock CLK repeated at a predetermined period T0 from the readout start signal S1 for the previous pixel column 19d by a number corresponding to the signal readout period T2, thereby causing a readout end signal. S2 is generated. Then, the number of clocks corresponding to the interval ⁇ T2 is counted from the read end signal S2, and a read start signal S1 for the next adjacent pixel column 19d is generated. That is, since the imaging control unit 19b counts the number of clocks corresponding to the period T2c obtained by adding the signal readout period T2 and the interval ⁇ T2, the signal readout start timing calculated by the calculation unit 21 is set to the signal readout start timing of each pixel column. It is possible to variably control according to the start timing interval ⁇ T1. In this case, since the frequency of the drive clock is maintained, the rolling read timing optimization process by changing the frequency becomes unnecessary.
  • the signal readout start timing interval setting methods shown in FIGS. 5 and 10 to 12 may be configured to be combined as appropriate. Further, the setting method shown in FIG. 5 and FIGS. 10 to 12 may be selected according to the interval ⁇ T1 ′ of the signal readout start timing.
  • the imaging control unit 19b may include an image sensor.
  • the signal readout start timing interval is calculated (set) as the signal readout interval, and the imaging control unit 19b controls the signal readout start timing of each pixel column.
  • the interval of signal reading end timing may be calculated (set), and the signal reading end timing of each pixel column may be controlled.
  • the imaging apparatus controls signal readout based on the driving clock, and the imaging control unit adjusts the driving clock based on the calculated signal readout interval. is there.
  • the imaging apparatus controls signal readout based on the driving clock, and the imaging control unit adjusts the driving clock based on the calculated signal readout interval.
  • the imaging control unit adjusts the drive clock by providing a delay period.
  • the signal readout interval of each pixel column of the imaging device can be set finely.
  • the imaging control unit sets the delay period before signal readout. In this way, it is possible to easily set a signal readout shift between the pixel columns.
  • the imaging control unit adjusts the drive clock by changing the frequency of the drive clock. In this way, the signal readout interval of each pixel column can be set easily.
  • the image pickup apparatus controls signal readout based on the drive clock, and the image pickup control unit adjusts the number of drive clocks that define the signal read based on the calculated signal readout interval and the drive clock frequency. Is preferred. By adopting such a configuration, it is possible to easily and reliably set the signal readout interval of each pixel column of the imaging device.
  • the imaging control unit adjusts the number of drive clocks that define the signal readout interval. In this way, it is possible to easily set a signal readout shift between the pixel columns.
  • the imaging control unit adjusts the number of drive clocks that define a signal readout period. In this way, it is possible to easily set a signal readout shift between the pixel columns.
  • the calculation unit sets the exposure period by the light receiving unit based on the moving speed of the irradiated region, the width of the pixel column, and the number of stages of the pixel column corresponding to the irradiated region.
  • the number of pixel columns corresponding to the irradiated region is set variably. In this case, the spatial resolution can be adjusted freely.
  • the imaging control unit variably sets the number of pixels from which a signal is read out among a plurality of pixels constituting each pixel column. In this case, it is easy to adjust the signal readout period, and it is possible to give more flexibility to the setting of the signal readout interval.
  • the signal readout interval between adjacent pixel columns is set based on the moving speed of the irradiated region on the light receiving unit.
  • the imaging control unit adjusts the drive clock based on the signal readout interval calculated based on the moving speed of the irradiated area on the light receiving unit.
  • the imaging control unit adjusts the drive clock by providing a delay period.
  • the signal readout interval of each pixel column of the imaging device can be set finely.
  • the imaging control unit sets the delay period before signal readout. In this way, it is possible to easily set a signal readout shift between the pixel columns.
  • the imaging control unit adjusts the drive clock by changing the frequency of the drive clock. In this way, the signal readout interval of each pixel column can be set easily.
  • the imaging control unit may adjust the number of drive clocks that define the signal readout based on the signal readout interval and the drive clock frequency calculated based on the moving speed of the irradiated region on the light receiving unit. Is preferred. By adopting such a configuration, it is possible to easily and reliably set the signal readout interval of each pixel column of the imaging device.
  • the imaging control unit adjusts the number of drive clocks that define the signal readout interval. In this way, it is possible to easily set a signal readout shift between the pixel columns.
  • the imaging control unit adjusts the number of drive clocks that define a signal readout period. In this way, it is possible to easily set a signal readout shift between the pixel columns.
  • the exposure period by the light receiving unit is set based on the moving speed of the irradiated region, the width of the pixel row, and the number of stages of the pixel row corresponding to the irradiated region.
  • the number of pixel columns corresponding to the irradiated region is set variably. In this case, the spatial resolution can be adjusted freely.
  • an external signal receiving unit for receiving an external signal is further provided, and the signal readout interval between adjacent pixel columns is set based on the external signal.
  • the imaging control unit variably sets the number of pixels from which a signal is read out among a plurality of pixels constituting each of the pixel columns. In this case, it is easy to adjust the signal readout period, and it is possible to give more flexibility to the setting of the signal readout interval.
  • the present invention uses an image acquisition device and an imaging device that acquire an image of an observation object, and increases flexibility in the scanning speed of illumination light with respect to the observation object to enable flexible observation.
  • SYMBOLS 1 ... Image acquisition device, 3 ... Light source, 7 ... Optical scanner (optical scanning part), 9 ... Optical scanner control part (optical scanning control part), 15 ... Objective lens (detection optical system), 17 ... Relay optical system (detection) Optical system), 19 ... Imaging device, 19b ... Imaging control unit, 19c ... Light receiving surface (light receiving unit), 19d ... Pixel array, 19e ... External signal receiving unit, 21 ... Calculation unit, S ... Sample (object).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

An image acquisition device (1) is provided with: a light source (3) that emits illuminating light; an optical scanner (7) that scans a sample (S) with the illuminating light; an optical scanner control unit (9); a detection optical system (15, 17) that focuses fluorescence from the sample (S); an imaging device (19) including a light receiving surface (19c) having a plurality of pixel lines (19d) for imaging a focused fluorescence image, and an imaging control unit (19b), the imaging device being capable of reading signals from the light receiving surface (19c) on a pixel line (19d) by pixel line (19d) basis; and a calculation unit (21) that calculates a signal reading interval between adjacent pixel lines (19d) on the basis of the speed of movement of an irradiated region over the light receiving surface (19c) due to the scan by the optical scanner (7). The imaging control unit (19b) controls the reading of the signals from the individual pixel lines (19d) on the basis of the calculated signal reading interval.

Description

画像取得装置及び撮像装置Image acquisition apparatus and imaging apparatus
 本発明は、観察対象物の画像を取得する画像取得装置及び撮像装置に関する。 The present invention relates to an image acquisition device and an imaging device that acquire an image of an observation object.
 最近では、対象物からの光を観察する際にCMOS(Complementary Metal Oxide Semiconductor)カメラが用いられるようになってきている。CMOSカメラは、一般的に、CCD(Charge Coupled Device)カメラに比較して、読み出し速度が速い、容易に部分読み出しが可能である、等の利点がある。 Recently, CMOS (Complementary Metal Oxide Semiconductor) cameras have been used to observe light from objects. In general, a CMOS camera has advantages such as a high reading speed and easy partial reading as compared with a CCD (Charge Coupled Device) camera.
 下記非特許文献1及び下記特許文献1には、光シート蛍光顕微鏡装置(Light Sheet Microscopy system)において、撮像素子としてCMOSセンサを用いることが開示されている。この顕微鏡装置では、観察対象物に対する励起ビームをスキャンしながら観察対象が撮像され、この励起ビームのスキャニングがCMOSセンサのローリングシャッターの動作に同期される。 Non-Patent Document 1 and Patent Document 1 below disclose that a CMOS sensor is used as an imaging element in a light sheet fluorescence microscope system (Light Sheet Microscopy system). In this microscope apparatus, the observation object is imaged while scanning the excitation beam with respect to the observation object, and the scanning of the excitation beam is synchronized with the operation of the rolling shutter of the CMOS sensor.
国際公開WO2011/120629号パンフレットInternational Publication WO2011 / 120629 Pamphlet
 しかしながら、上記の従来の顕微鏡装置においては、CMOSセンサのローリングシャッターの動作に励起ビームのスキャンを同期するとしているため、励起光のスキャン速度に自由度を持たせることが困難である。その結果、様々な観察対象物に対する多様な条件での柔軟な観察ができない傾向にあった。 However, in the conventional microscope apparatus described above, since the scanning of the excitation beam is synchronized with the operation of the rolling shutter of the CMOS sensor, it is difficult to provide flexibility in the scanning speed of the excitation light. As a result, there was a tendency that flexible observation of various observation objects under various conditions was not possible.
 そこで、本発明は、かかる課題に鑑みて為されたものであり、観察対象物に対する照明光のスキャン速度の自由度を高めて柔軟な観察を可能とする画像取得装置及び撮像装置を提供することを目的とする。 Therefore, the present invention has been made in view of such problems, and provides an image acquisition device and an imaging device that enable flexible observation by increasing the degree of freedom of scanning speed of illumination light with respect to an observation object. With the goal.
 上記課題を解決するため、本発明の一側面に係る画像取得装置は、対象物に対して照射光を走査することによって対象物の画像を取得する画像取得装置であって、照明光を出射する光源と、光源からの光を受けて照明光を対象物に対して走査する光走査部と、光走査部を制御する光走査制御部と、対象物からの光を導光する光学系と、光学系により導光された光を撮像する複数の画素列が配列された受光部、及び受光部の信号読み出しを制御する撮像制御部を有し、受光部から複数の画素列ごとのローリング読み出しによる信号読み出しが可能な撮像装置と、光走査部の走査による受光部上の被照射領域の移動速度に基づいて、隣接する画素列間の信号読み出しの間隔を算出する算出部とを備え、撮像制御部は、算出された該信号読み出しの間隔に基づいて、各画素列の信号読み出しを制御する。 In order to solve the above problems, an image acquisition device according to one aspect of the present invention is an image acquisition device that acquires an image of an object by scanning the object with irradiation light, and emits illumination light. A light source, a light scanning unit that receives light from the light source and scans the object with illumination light, a light scanning control unit that controls the light scanning unit, an optical system that guides light from the object, A light receiving unit in which a plurality of pixel columns for imaging light guided by the optical system are arranged, and an imaging control unit for controlling signal readout of the light receiving unit, and rolling readout for each of the plurality of pixel columns from the light receiving unit. An image pickup apparatus capable of reading out a signal, and a calculation unit that calculates a signal read-out interval between adjacent pixel columns based on a moving speed of an irradiated region on the light receiving unit by scanning of the optical scanning unit, Unit reads the calculated signal Based on the distance, to control the signal readout of each pixel row.
 このような画像取得装置によれば、光源から出射された照明光が光走査部によって対象物に対して走査され、それに応じて対象物から発せられた光が光学系を介してローリングシャッターによる信号読み出しが可能な撮像装置によって撮像される。その際、照明光の走査による撮像装置の受光部上の被照射領域の移動速度を基に、受光部の隣接する画素列間の信号読み出しの間隔が算出され、算出結果を基に各画素列の信号読み出しが制御される。これにより、対象物に対する照明光の走査速度に自由度を持たせることで柔軟な対象物の観察を実現しつつ、対象物の光走査範囲全体の像における散乱光等の背景ノイズの影響を低減して空間分解能を向上させることができる。 According to such an image acquisition device, the illumination light emitted from the light source is scanned with respect to the object by the light scanning unit, and the light emitted from the object in response thereto is a signal from the rolling shutter via the optical system. An image is picked up by an image pickup device capable of reading. At that time, based on the moving speed of the irradiated region on the light receiving unit of the imaging device by scanning of the illumination light, the signal readout interval between adjacent pixel columns of the light receiving unit is calculated, and each pixel column is calculated based on the calculation result. The signal readout is controlled. This reduces the effect of background noise such as scattered light on the entire image of the optical scanning range of the object while allowing flexible observation of the object by giving freedom to the scanning speed of the illumination light on the object. Thus, the spatial resolution can be improved.
 或いは、本発明の他の側面に係る撮像装置は、複数の画素列ごとのローリング読み出しによる信号読み出しが可能な撮像装置であって、複数の画素列が配列された受光部と、受光部の信号読み出しを制御する撮像制御部とを備え、撮像制御部は、駆動クロックに基づいて信号読み出しを制御し、隣接する画素列間の信号読み出しの間隔を可変に設定することが可能なように構成されている。 Alternatively, an imaging apparatus according to another aspect of the present invention is an imaging apparatus capable of reading signals by rolling readout for each of a plurality of pixel columns, and a light receiving unit in which the plurality of pixel columns are arranged, and a signal of the light receiving unit An imaging control unit that controls readout, and the imaging control unit is configured to control signal readout based on a drive clock and variably set a signal readout interval between adjacent pixel columns. ing.
 このような撮像装置によれば、駆動クロックを基に受光部の隣接する画素列間の信号読み出しの間隔が変更される。これにより、観察対象物の画像信号の各画素列の信号読み出しのずれに自由度を持たせることで柔軟な対象物の観察を実現することができる。 According to such an imaging apparatus, the signal readout interval between adjacent pixel columns of the light receiving unit is changed based on the drive clock. Thereby, flexible observation of the object can be realized by giving a degree of freedom to the signal reading shift of each pixel column of the image signal of the object to be observed.
 本発明によれば、観察対象物に対する照明光のスキャン速度の自由度を高めて柔軟な観察が可能となる。 According to the present invention, flexible observation is possible by increasing the degree of freedom of the scanning speed of the illumination light with respect to the observation object.
本発明の好適な一実施形態に係る画像取得装置1の概略構成を示す平面図である。1 is a plan view showing a schematic configuration of an image acquisition device 1 according to a preferred embodiment of the present invention. 図1の画像取得装置1の概略構成を示す側面図である。It is a side view which shows schematic structure of the image acquisition apparatus 1 of FIG. 図1の画像取得装置1におけるサンプルSに対する照明光の走査状態と撮像素子19aにおける蛍光像の被照射領域との関係を示す図である。It is a figure which shows the relationship between the scanning state of the illumination light with respect to the sample S in the image acquisition apparatus 1 of FIG. 1, and the irradiated area of the fluorescence image in the image pick-up element 19a. 図1の撮像装置19の受光面19c上における被照射領域R1の走査状態と、その走査状態に対応して制御された受光面19cの各画素列19dにおける露光及び信号読み出しのタイミングを示す図である。2 is a diagram showing a scanning state of an irradiated region R1 on the light receiving surface 19c of the imaging device 19 of FIG. 1 and exposure and signal readout timings in each pixel column 19d of the light receiving surface 19c controlled in accordance with the scanning state. is there. 図1の撮像装置19における各画素列19dに設定される露光期間及び信号読み出し期間の関係を示すタイミングチャートである。3 is a timing chart showing a relationship between an exposure period and a signal readout period set for each pixel column 19d in the imaging device 19 of FIG. 図1の撮像装置19の受光面19c上の被照射領域R1と、それに対して撮像制御部19bによって設定された受光面19c上の露光領域R2とを示す図である。It is a figure which shows the to-be-irradiated area | region R1 on the light-receiving surface 19c of the imaging device 19 of FIG. 1, and the exposure area | region R2 on the light-receiving surface 19c set with respect to it by the imaging control part 19b. 図1の撮像制御部19bによって露光領域R2の段数が制御された際の受光面19c上の各画素列19dに対して設定される露光期間を示すタイミングチャートである。6 is a timing chart showing an exposure period set for each pixel row 19d on the light receiving surface 19c when the number of stages of the exposure region R2 is controlled by the imaging control unit 19b of FIG. 図1の撮像制御部19bによって露光領域R2の段数が制御された際の受光面19c上の各画素列19dに対して設定される露光期間を示すタイミングチャートである。6 is a timing chart showing an exposure period set for each pixel row 19d on the light receiving surface 19c when the number of stages of the exposure region R2 is controlled by the imaging control unit 19b of FIG. 図1の撮像制御部19bによって露光領域R2の段数が制御された際の受光面19c上の各画素列19dに対して設定される露光期間を示すタイミングチャートである。6 is a timing chart showing an exposure period set for each pixel row 19d on the light receiving surface 19c when the number of stages of the exposure region R2 is controlled by the imaging control unit 19b of FIG. 本発明の変形例の撮像装置19における各画素列19dに設定される露光期間及び信号読み出し期間の関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the exposure period and signal read-out period which are set to each pixel row | line | column 19d in the imaging device 19 of the modification of this invention. 本発明の変形例の撮像装置19における各画素列19dに設定される露光期間及び信号読み出し期間の関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the exposure period and signal read-out period which are set to each pixel row | line | column 19d in the imaging device 19 of the modification of this invention. 本発明の変形例の撮像装置19における各画素列19dに設定される露光期間及び信号読み出し期間の関係を示すタイミングチャートである。It is a timing chart which shows the relationship between the exposure period and signal read-out period which are set to each pixel row | line | column 19d in the imaging device 19 of the modification of this invention.
 以下、添付図面を参照しながら本発明による画像取得装置、及び撮像装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、各図面は説明用のために作成されたものであり、説明の対象部位を特に強調するように描かれている。そのため、図面における各部材の寸法比率は、必ずしも実際のものとは一致しない。 Hereinafter, embodiments of an image acquisition device and an imaging device according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Each drawing is made for the purpose of explanation, and is drawn so as to particularly emphasize the target portion of the explanation. Therefore, the dimensional ratio of each member in the drawings does not necessarily match the actual one.
 図1は、本発明の一実施形態の画像取得装置1の構成を模式的に示す平面図であり、図2は、図1の画像取得装置1の側面図である。本実施形態による画像取得装置1は、サンプル(対象物)Sに対して照明光を照射してその結果生じた蛍光像(画像)を取得するための装置である。以下の説明において、サンプルSに対して照射される照明光の照射光学系の光軸に沿った方向をX軸方向とし、その方向に垂直なサンプルSからの蛍光の検出光学系の光軸に沿った方向をY軸方向とし、X軸方向及びY軸方向に垂直な方向をZ軸方向とする。なお、画像取得装置1は、サンプルSの蛍光像を取得する構成には限定されず、サンプルSの反射像、透過像、散乱像を取得する構成であってもよく、明視野顕微鏡装置、暗視野顕微鏡装置、反射型顕微鏡装置などの様々な構成の顕微鏡装置やフローサイトメータなどの様々な画像取得装置であってもよい。 FIG. 1 is a plan view schematically showing the configuration of an image acquisition device 1 according to an embodiment of the present invention, and FIG. 2 is a side view of the image acquisition device 1 of FIG. The image acquisition apparatus 1 according to the present embodiment is an apparatus for irradiating a sample (object) S with illumination light and acquiring a fluorescent image (image) generated as a result. In the following description, the direction along the optical axis of the illumination optical system of the illumination light applied to the sample S is defined as the X-axis direction, and the optical axis of the fluorescence detection optical system from the sample S perpendicular to the direction is defined as the X-axis direction. The direction along the direction is the Y-axis direction, and the direction perpendicular to the X-axis direction and the Y-axis direction is the Z-axis direction. The image acquisition device 1 is not limited to the configuration for acquiring the fluorescent image of the sample S, and may be a configuration for acquiring the reflection image, the transmission image, and the scattering image of the sample S. Various image acquisition apparatuses such as a microscope apparatus and a flow cytometer having various configurations such as a field microscope apparatus and a reflection microscope apparatus may be used.
 画像取得装置1は、サンプルS中の蛍光物質を励起する所定の波長の照明光を出射する光源3と、光源3からの照明光を導光手段5を介して受ける光スキャナ(光走査部)7と、光スキャナ7を制御する光スキャナ制御部(光走査制御部)9と、光スキャナ7からの照明光を導くリレー光学系(照射光学系)11と、リレー光学系11によって導かれた照明光をサンプルSに向けて集光する対物レンズ(照射光学系)13と、サンプルSからの蛍光を集光する対物レンズ(検出光学系)15と、対物レンズ15からの蛍光を導光するリレー光学系(検出光学系)17と、リレー光学系17によって導光されたサンプルSからの蛍光像を撮像する撮像装置19と、撮像装置19及び光スキャナ制御部9に電気的に接続された算出部21とを含んで構成されている。撮像装置19によって撮像された蛍光像は、画像取得装置1に接続されるディスプレイ装置等の出力手段(図示せず)によって出力される。 The image acquisition device 1 includes a light source 3 that emits illumination light having a predetermined wavelength that excites a fluorescent substance in a sample S, and an optical scanner (light scanning unit) that receives illumination light from the light source 3 via a light guide 5. 7, an optical scanner control unit (optical scanning control unit) 9 that controls the optical scanner 7, a relay optical system (irradiation optical system) 11 that guides illumination light from the optical scanner 7, and the relay optical system 11. An objective lens (irradiation optical system) 13 that condenses the illumination light toward the sample S, an objective lens (detection optical system) 15 that condenses the fluorescence from the sample S, and the fluorescence from the objective lens 15 are guided. A relay optical system (detection optical system) 17, an imaging device 19 that captures a fluorescent image from the sample S guided by the relay optical system 17, and the imaging device 19 and the optical scanner controller 9 are electrically connected. Including the calculation unit 21 In is configured. The fluorescent image picked up by the image pickup device 19 is output by output means (not shown) such as a display device connected to the image acquisition device 1.
 導光手段5は、シングルモードファイバ等の光ファイバによって構成されてもよいし、他の種類の光ファイバやレンズによって構成されてもよい。光スキャナ7は、導光手段5からの照明光を少なくとも一方向(例えば、図2のXZ平面に沿った一方向)に走査する。例えば、光スキャナ7は、ガルバノミラーによって構成されるガルバノスキャナである。光スキャナ7は、照明光を走査することにより、リレー光学系11及び対物レンズ13を経由してサンプルS中に集光される照明光の被照射領域を、少なくとも一方向(例えば、図2のZ軸方向に)に移動させることを可能にする。ここで、光源3から導光手段5、光スキャナ7、リレー光学系11、対物レンズ13を経由してサンプルSに照射される照明光は、スポット状の光であってもよいし、一方向(例えば、Y軸方向)に広がったシート形状の光であってもよい。 The light guiding means 5 may be constituted by an optical fiber such as a single mode fiber, or may be constituted by another type of optical fiber or lens. The optical scanner 7 scans the illumination light from the light guide 5 in at least one direction (for example, one direction along the XZ plane in FIG. 2). For example, the optical scanner 7 is a galvano scanner configured by a galvanometer mirror. The optical scanner 7 scans the illumination light so that the irradiated area of the illumination light condensed in the sample S via the relay optical system 11 and the objective lens 13 is arranged in at least one direction (for example, FIG. 2). (In the Z-axis direction). Here, the illumination light applied to the sample S from the light source 3 via the light guide 5, the optical scanner 7, the relay optical system 11, and the objective lens 13 may be spot-like light or in one direction. It may be sheet-shaped light that spreads (for example, in the Y-axis direction).
 撮像装置19は、複数の画素列が配列された受光部を含む撮像素子19aと、撮像素子19aの露光及び信号読み出しを制御する撮像制御部19bとを含み、受光部から複数の画素列ごとのローリング読み出しによる信号読み出しが可能な装置である。例えば、撮像装置19は、CMOSイメージセンサを含むカメラ装置であり、CMOSイメージセンサのいわゆるローリングシャッターによって露光及び信号読み出しを可能とする。この撮像装置19に接続された算出部21は、パーソナルコンピュータ等の情報処理装置によって構成され、光スキャナ制御部9から光スキャナ7の走査速度に関する信号を受けて、その信号を基に撮像装置19における画素列毎の露光及び信号読み出しを制御するための信号を生成し、撮像装置19の撮像制御部19bに向けて送出する(詳細は、後述する。)。 The imaging device 19 includes an imaging device 19a including a light receiving unit in which a plurality of pixel columns are arranged, and an imaging control unit 19b that controls exposure and signal readout of the imaging device 19a. This is a device capable of reading signals by rolling reading. For example, the imaging device 19 is a camera device including a CMOS image sensor, and enables exposure and signal readout by a so-called rolling shutter of the CMOS image sensor. The calculation unit 21 connected to the imaging device 19 is configured by an information processing device such as a personal computer, receives a signal related to the scanning speed of the optical scanner 7 from the optical scanner control unit 9, and based on the signal, the imaging device 19. A signal for controlling exposure and signal readout for each pixel column is generated and sent to the imaging controller 19b of the imaging device 19 (details will be described later).
 ここで、図3を参照して、画像取得装置1におけるサンプルSに対する照明光の走査状態と撮像素子19aにおける蛍光像の被照射領域との関係について説明する。図3(a)~(d)は、サンプルSに対する照明光の走査状態を時系列に示す側面図であり、図3(e)~(h)は、それぞれ、図3(a)~(d)の走査状態に対応した撮像素子19aにおける蛍光像の結像状態を示している。 Here, with reference to FIG. 3, the relationship between the scanning state of the illumination light with respect to the sample S in the image acquisition apparatus 1 and the irradiated region of the fluorescent image in the image sensor 19a will be described. 3A to 3D are side views showing the scanning state of the illumination light with respect to the sample S in time series, and FIGS. 3E to 3H are FIGS. 3A to 3D, respectively. The imaging state of the fluorescent image in the image sensor 19a corresponding to the scanning state of
 図3(a)~(d)に示すように、光スキャナ7の走査によりサンプルS中に照射される照明光は一方向(Z軸方向)に沿って移動する(走査される)。ここで、図3(e)~(h)に示すように、撮像素子19aは、その受光面(受光部)19cが検出光学系の光軸(Y軸方向)に垂直になるように配置され、その受光面19cには、受光面19c上に結像された蛍光像を撮像する複数の画素列19dがZ軸方向に沿って配列されている。このような撮像素子19aの配置及び構成により、光スキャナ7による照明光の走査によるサンプルS中の蛍光発生個所の移動に応じて、受光面19cに結像されるサンプルSの蛍光像の被照射領域R1は、複数の画素列19dの配列方向(Z軸方向)に沿って移動する(走査される)。被照射領域R1の範囲は、様々な範囲に設定されうるが、図3の例では4列の画素列19dをカバーする範囲になるように全体の照射光学系及び検出光学系が設定されている。 As shown in FIGS. 3A to 3D, the illumination light irradiated into the sample S by scanning with the optical scanner 7 moves (scans) along one direction (Z-axis direction). Here, as shown in FIGS. 3E to 3H, the image sensor 19a is arranged so that its light receiving surface (light receiving portion) 19c is perpendicular to the optical axis (Y-axis direction) of the detection optical system. On the light receiving surface 19c, a plurality of pixel rows 19d for capturing a fluorescent image formed on the light receiving surface 19c are arranged along the Z-axis direction. With such an arrangement and configuration of the imaging device 19a, the fluorescent image of the sample S imaged on the light receiving surface 19c is irradiated in accordance with the movement of the fluorescence generation location in the sample S due to the scanning of the illumination light by the optical scanner 7. The region R1 moves (scans) along the arrangement direction (Z-axis direction) of the plurality of pixel rows 19d. The range of the irradiated region R1 can be set in various ranges. In the example of FIG. 3, the entire irradiation optical system and detection optical system are set so as to cover the four pixel columns 19d. .
 次に、図4を参照して、サンプルSの被照射領域の走査に応じた撮像装置19の露光及び信号読み出しの動作について説明する。図4(a)~(e)は、撮像装置19の受光面19c上における被照射領域R1の走査状態を時系列に示す側面図であり、図4(f)~(j)は、それぞれ、図4(a)~(e)の走査状態に対応して制御された受光面19cの各画素列19dにおける露光及び信号読み出しのタイミングを示すタイミングチャートである。 Next, with reference to FIG. 4, the exposure and signal readout operations of the imaging device 19 corresponding to the scanning of the irradiated area of the sample S will be described. 4A to 4E are side views showing the scanning state of the irradiated region R1 on the light receiving surface 19c of the imaging device 19 in time series. FIGS. 4F to 4J are respectively shown in FIG. 5 is a timing chart showing the timing of exposure and signal readout in each pixel column 19d of the light receiving surface 19c controlled corresponding to the scanning states of FIGS. 4 (a) to 4 (e).
 図4(a)~(e)に示すように、光スキャナ制御部9により、受光面19c上の移動速度が所定速度SP1になるように光スキャナ7の走査速度SP0が制御される。このような走査速度SP0と移動速度SP1との関係は、光スキャナ7の構成と、リレー光学系11及び対物レンズ13を含む照射光学系の構成によって定まるパラメータと、対物レンズ15及びリレー光学系17を含む検出光学系によって定まるパラメータとによって決定される。 As shown in FIGS. 4A to 4E, the scanning speed SP0 of the optical scanner 7 is controlled by the optical scanner controller 9 so that the moving speed on the light receiving surface 19c becomes a predetermined speed SP1. Such a relationship between the scanning speed SP0 and the moving speed SP1 is a parameter determined by the configuration of the optical scanner 7, the configuration of the irradiation optical system including the relay optical system 11 and the objective lens 13, and the objective lens 15 and the relay optical system 17. And a parameter determined by a detection optical system including
 このような被照射領域R1の走査状態に対応して、撮像制御部19bによって各画素列19dにおける露光及び信号読み出しのタイミングが制御される。具体的には、撮像制御部19bは、各画素列19d毎に、蛍光像を露光して電荷信号を蓄積する期間である露光期間の直後に、その電荷信号を読み出す信号読み出し期間を設定し、その露光期間と信号読み出し期間とを含む期間を所定周期で繰り返すように制御する。このような露光期間及び信号読み出し期間の長さ、それらの開始タイミング、及び終了タイミングは、内部で発生する駆動クロックを基に設定する。 Corresponding to the scanning state of the irradiated region R1, the timing of exposure and signal readout in each pixel column 19d is controlled by the imaging control unit 19b. Specifically, for each pixel column 19d, the imaging control unit 19b sets a signal readout period for reading out the charge signal immediately after the exposure period, which is a period for exposing the fluorescent image and accumulating the charge signal, Control is performed so that a period including the exposure period and the signal readout period is repeated at a predetermined cycle. The length of the exposure period and the signal readout period, their start timing, and end timing are set based on an internally generated drive clock.
 より詳しくは、撮像制御部19bは、ある画素列19dn(nは任意の自然数)が光スキャナ7の走査に応じて被照射領域R1に入る駆動クロックに同期したタイミングで、リセット信号RSTを発生させてその画素列19dnの電荷を排出させると共に露光処理を開始させる(図4(a)、(f))。その後、撮像制御部19bは、駆動クロックをカウントすることにより走査方向に隣接する画素列19d(n+1)の露光期間を所定期間だけ空けて開始させるようにリセット信号RSTを発生させる(図4(b)、(g))。このように、走査方向に隣接する各画素列19d間で所定期間だけずらして、順次受光面19cの全画素列19dの露光が開始される。 More specifically, the imaging control unit 19b generates a reset signal RST at a timing in which a certain pixel row 19dn (n is an arbitrary natural number) is synchronized with a drive clock that enters the irradiated region R1 according to the scanning of the optical scanner 7. Then, the charge in the pixel row 19dn is discharged and the exposure process is started (FIGS. 4A and 4F). Thereafter, the imaging control unit 19b generates the reset signal RST so as to start the exposure period of the pixel row 19d (n + 1) adjacent in the scanning direction by a predetermined period by counting the drive clock (FIG. 4B). ), (G)). As described above, the exposure of all the pixel rows 19d on the light receiving surface 19c is sequentially started by shifting the pixel rows 19d adjacent in the scanning direction by a predetermined period.
 また、撮像制御部19bは、画素列19dnの露光期間を駆動クロックをカウントすることにより所定期間T1nほど継続させたタイミングで、読み出し開始信号S1を発生させることにより、画素列19dnの電荷信号の読み出しを開始させるように制御する(図4(c)、(h))。すなわち、画素列19dnで蓄積された電荷信号が電圧に変換されて読み出される。さらに、撮像制御部19bは、画素列19dnの信号読み出し期間を駆動クロックをカウントすることにより所定期間T2nほど継続させたタイミングで、読み出し終了信号S2を発生させることにより、画素列19dnの電荷信号の読み出しを終了させるように制御する(図4(d),(i))。 In addition, the imaging control unit 19b generates a read start signal S1 at a timing when the exposure period of the pixel column 19dn is continued for a predetermined period T1n by counting the drive clock, thereby reading the charge signal of the pixel column 19dn. Is controlled to start (FIGS. 4C and 4H). That is, the charge signal accumulated in the pixel column 19dn is converted into a voltage and read. Furthermore, the imaging control unit 19b generates the readout end signal S2 at a timing at which the signal readout period of the pixel column 19dn is continued for a predetermined period T2n by counting the drive clock, thereby generating the charge signal of the pixel column 19dn. Control is performed so as to terminate the reading (FIGS. 4D and 4I).
 同様にして、撮像制御部19bは、画素列19dnに隣接する画素列19d(n+1)の信号読み出し期間T2(n+1)を設定する。撮像装置19におけるローリング読み出しによる信号読み出しでは、画素列19dごとに読み出すタイミングを異ならせる必要があり、画素列19d毎の露光期間を同一に揃えるためには露光開始のタイミングを画素列毎にずらす必要がある。図4の例では、撮像制御部19bにより、隣接する画素列19d間の読み出し開始信号S1の発生タイミングを所定間隔ΔT1だけ空けるように設定することにより、隣接する画素列19d間の信号読み出しの開始タイミングが所定間隔ΔT1だけずらされている。 Similarly, the imaging control unit 19b sets the signal readout period T2 (n + 1) of the pixel column 19d (n + 1) adjacent to the pixel column 19dn. In signal readout by rolling readout in the imaging device 19, it is necessary to change the readout timing for each pixel column 19d, and in order to make the exposure period for each pixel column 19d the same, it is necessary to shift the exposure start timing for each pixel column. There is. In the example of FIG. 4, the imaging control unit 19b sets the generation timing of the readout start signal S1 between the adjacent pixel columns 19d so as to leave a predetermined interval ΔT1, thereby starting the signal readout between the adjacent pixel columns 19d. The timing is shifted by a predetermined interval ΔT1.
 ここで、撮像制御部19bによって設定される信号読み出しの開始タイミングのずれ(間隔)ΔT1は、算出部21から撮像制御部19bに送出される制御信号によって可変にされている。詳細には、算出部21は、光スキャナ制御部9から光スキャナ7の走査速度SP0に関する情報を取得し、走査速度SP0、照射光学系の倍率等によって定まるパラメータ、及び検出光学系の倍率等によって定まるパラメータを基に、受光面19c上の被照射領域R1の移動速度SP1を算出する。さらに、算出部21は、算出した移動速度SP1を基に、受光面19c上の被照射領域R1の移動に同期して被照射領域R1に入った画素列19dが順次露光開始されるように露光期間の開始タイミングの間隔を計算し、それに合わせて、隣接する画素列19d間の信号読み出しの間隔として、隣接する画素列19d間の信号読み出しの開始タイミングの間隔ΔT1’を決定する。そして、算出部21は、算出した信号読み出しの開始タイミングの間隔ΔT1’を、外部信号として、撮像装置19の外部信号受信部19eに送出する。受信された信号読み出しの開始タイミングの間隔ΔT1’は、撮像制御部19bにデータとして送られる。これにより、撮像制御部19bは、算出部21で設定された信号読み出しの開始タイミングの間隔ΔT1’に基づいて、各画素列の信号読み出し、例えば、各画素列の信号読み出しの開始タイミングを制御する。なお、撮像装置19が算出部21を備えてもよい。その場合、撮像装置19の外部信号受信部19eは、外部信号として、走査速度SP0、照射光学系の倍率等によって定まるパラメータ、及び検出光学系の倍率等によって定まるパラメータなどのデータを受信する。また、外部信号としては、信号読み出しの開始タイミングの間隔ΔT1’を設定するためのデータやパラメータであれば、これらに限るものではない。 Here, the shift (interval) ΔT1 of the signal readout start timing set by the imaging control unit 19b is made variable by a control signal sent from the calculation unit 21 to the imaging control unit 19b. Specifically, the calculation unit 21 acquires information related to the scanning speed SP0 of the optical scanner 7 from the optical scanner control unit 9, and determines the parameters determined by the scanning speed SP0, the magnification of the irradiation optical system, the magnification of the detection optical system, and the like. Based on the determined parameters, the moving speed SP1 of the irradiated region R1 on the light receiving surface 19c is calculated. Further, the calculating unit 21 performs exposure so that the pixel rows 19d that enter the irradiated region R1 are sequentially exposed in synchronization with the movement of the irradiated region R1 on the light receiving surface 19c based on the calculated moving speed SP1. The interval between the start timings of the periods is calculated, and accordingly, the interval ΔT1 ′ of the signal read start timing between the adjacent pixel columns 19d is determined as the signal read interval between the adjacent pixel columns 19d. Then, the calculation unit 21 sends the calculated signal read start timing interval ΔT1 'to the external signal reception unit 19e of the imaging device 19 as an external signal. The received signal read start timing interval ΔT1 'is sent as data to the imaging control unit 19b. Accordingly, the imaging control unit 19b controls the signal readout start timing of each pixel column, for example, the signal readout start timing of each pixel column, based on the signal readout start timing interval ΔT1 ′ set by the calculation unit 21. . Note that the imaging device 19 may include the calculation unit 21. In that case, the external signal receiving unit 19e of the imaging device 19 receives data such as parameters determined by the scanning speed SP0, the magnification of the irradiation optical system, and the parameters determined by the magnification of the detection optical system, etc., as external signals. Further, the external signal is not limited to these as long as it is data and parameters for setting the interval ΔT1 ′ of the signal read start timing.
 次に、図5を参照して、撮像制御部19bによる信号読み出しの開始タイミングの間隔ΔT1の調整動作について、より詳細に説明する。図5は、撮像装置19における各画素列19dに設定される露光期間及び信号読み出し期間の関係を示すタイミングチャートである。 Next, with reference to FIG. 5, the adjustment operation of the interval ΔT1 of the signal readout start timing by the imaging control unit 19b will be described in more detail. FIG. 5 is a timing chart showing the relationship between the exposure period and the signal readout period set for each pixel column 19d in the imaging device 19.
 図5(a)は、通常のローリング読み出しの際の露光期間及び信号読み出し期間の関係を示すタイミングチャートである。通常のローリング読み出しの場合、信号読み出し期間T2は、信号読み出しにかかる時間に設定され、信号読み出しの開始タイミングの間隔ΔT1は、信号読み出し期間T2となるように設定される。従って、撮像制御部19bは、前の画素列19dに対する読み出し開始信号S1から、所定周期T0で繰り返される駆動クロックCLKを信号読み出しの開始タイミングの間隔ΔT1に相当する数だけカウントすることによって、隣接する次の画素列19dに対する読み出し開始信号S1を発生させる。これに対して、図5(b)では、信号読み出しの開始タイミングの間隔ΔT1を設定された信号読み出しの開始タイミングの間隔ΔT1’とするために、信号読み出しにかかる時間に相当する信号読み出し期間T2の後に可変の遅延期間T3を設けている。詳細には、図5(b)において、撮像制御部19bは、信号読み出しの開始タイミングの間隔ΔT1’および信号読み出し期間T2から遅延時間T3を算出し、駆動クロックCLKにおいて信号読み出し期間T2に相当するクロック数に達する一つ前の駆動クロックCLKの後(読み出し開始信号S1の発生直前)のタイミングで遅延期間T3を設けるように駆動クロックを調整する。このとき、撮像制御部19bは、遅延期間T3では、駆動クロックを発生させないため、図5(a)のΔT1に相当する駆動クロックCLKの数と同じ数だけ駆動クロックCLKの数をカウントすることによって、次の列の画素列19dに対して読み出し開始信号S1を発生させる。その結果、隣接する画素列19d間の信号読み出しの開始タイミングの間隔が時間ΔT1’=T2+T3に設定される。このようにすることで、撮像制御部19bは、各画素列の信号読み出しの開始タイミングを、算出部21によって算出された信号読み出しの開始タイミングの間隔ΔT1’に応じて可変に制御することが可能である。なお、遅延期間T3を設けるタイミングは、読み出し開始信号S1の発生直前のタイミングに限らず、信号読み出し期間T2中に設けても良い。 FIG. 5A is a timing chart showing the relationship between the exposure period and the signal readout period during normal rolling readout. In the case of normal rolling reading, the signal reading period T2 is set to the time required for signal reading, and the interval ΔT1 of the signal reading start timing is set to be the signal reading period T2. Therefore, the imaging control unit 19b counts the drive clock CLK repeated at a predetermined cycle T0 from the read start signal S1 for the previous pixel column 19d by a number corresponding to the signal read start timing interval ΔT1. A read start signal S1 is generated for the next pixel column 19d. On the other hand, in FIG. 5B, in order to set the signal readout start timing interval ΔT1 to the set signal readout start timing interval ΔT1 ′, a signal readout period T2 corresponding to the time required for signal readout. Is followed by a variable delay period T3. Specifically, in FIG. 5B, the imaging control unit 19b calculates the delay time T3 from the signal readout start timing interval ΔT1 ′ and the signal readout period T2, and corresponds to the signal readout period T2 in the drive clock CLK. The drive clock is adjusted so as to provide the delay period T3 at the timing after the previous drive clock CLK reaching the number of clocks (immediately before the generation of the read start signal S1). At this time, since the imaging control unit 19b does not generate a driving clock in the delay period T3, the imaging control unit 19b counts the number of driving clocks CLK equal to the number of driving clocks CLK corresponding to ΔT1 in FIG. The readout start signal S1 is generated for the pixel column 19d of the next column. As a result, the interval of the signal readout start timing between the adjacent pixel columns 19d is set to time ΔT1 ′ = T2 + T3. In this way, the imaging control unit 19b can variably control the signal readout start timing of each pixel column in accordance with the signal readout start timing interval ΔT1 ′ calculated by the calculation unit 21. It is. Note that the timing for providing the delay period T3 is not limited to the timing immediately before the generation of the read start signal S1, but may be provided during the signal read period T2.
 また、撮像制御部19bは、画素列19d毎の露光期間を調整することで同時に露光する受光面19c上の露光領域の画素列の段数を可変に設定することも可能に構成されている。図6には、撮像装置19の受光面19c上の被照射領域R1と、それに対して撮像制御部19bによって設定された受光面19c上の露光領域R2とを示している。一般に、受光面19cに入射するサンプルSからの蛍光をスリット状にすることは光学的に難しい。そこで、撮像制御部19bにより、同時に露光する画素列19dを含む露光領域R2の範囲(段数)を設定することで疑似的にスリット状の蛍光が入射した状態で撮像することが可能である。 Further, the imaging control unit 19b is configured to be able to variably set the number of pixel columns in the exposure region on the light receiving surface 19c to be exposed at the same time by adjusting the exposure period for each pixel column 19d. FIG. 6 shows an illuminated region R1 on the light receiving surface 19c of the imaging device 19 and an exposure region R2 on the light receiving surface 19c set by the imaging control unit 19b. In general, it is optically difficult to make the fluorescence from the sample S incident on the light receiving surface 19c into a slit shape. Therefore, by setting the range (number of steps) of the exposure region R2 including the pixel column 19d to be exposed at the same time by the imaging control unit 19b, it is possible to perform imaging in a state where pseudo-slit fluorescence is incident.
 具体的には、図7~図9には、撮像制御部19bによって露光領域R2の段数が制御された際の受光面19c上の各画素列19dに対して設定される露光期間を示している。それぞれの図において、(a)には、受光面19c上に設定される露光領域R2を示しており、(b)には、(a)に示す露光領域R2に対応して設定される各画素列19dの露光期間T1及び信号読み出し期間T2を示している。それぞれにおいて設定される露光期間T1及び信号読み出し期間T2は、隣接する画素列19d間のそれぞれの開始タイミングの間隔が、算出部21の算出結果を基に、受光面19c上の被照射領域R1の移動に同期するように設定される。 Specifically, FIGS. 7 to 9 show exposure periods set for each pixel row 19d on the light receiving surface 19c when the number of exposure regions R2 is controlled by the imaging control unit 19b. . In each figure, (a) shows an exposure region R2 set on the light receiving surface 19c, and (b) shows each pixel set corresponding to the exposure region R2 shown in (a). An exposure period T1 and a signal readout period T2 in column 19d are shown. In each of the exposure period T1 and the signal readout period T2 set in each, the interval of the respective start timings between the adjacent pixel columns 19d is based on the calculation result of the calculation unit 21, and the irradiation region R1 on the light receiving surface 19c. Set to synchronize with movement.
 図7に示すように、露光領域R2が4段に設定される場合には、撮像制御部19bによって、露光期間T1が重複する画素列19dの段数が4段になるように露光期間T1の長さが設定される。すなわち、算出部21が、光スキャナ制御部9から光スキャナ7の走査速度SP0に関する情報を取得し、走査速度SP0を基に算出した受光面19c上の被照射領域R1の移動速度SP1、受光面19cの走査方向(ローリング読み出し方向)における画素列19dの幅W1(図6)、及び設定したい露光領域R2の画素列19dの段数に基づいて、各画素列19dに設定する露光期間の長さT1を算出する。さらに、算出部21は、算出した露光期間の長さT1を、外部信号として、撮像装置19の外部信号受信部19eに送出する。受信された外部信号は、撮像制御部19bに送出される。これにより、撮像制御部19bによって露光期間の長さT1が可変に調整される。例えば、撮像制御部19bにおいて露光期間の長さを規定する駆動クロック数が変更されることにより露光期間の長さT1が変更される。なお、算出部21は、露光期間の長さT1を決める露光領域R2の画素列19dの段数が可変に設定可能なように構成されている。このように、露光領域R2が複数段に設定されることにより、蛍光像の撮像の感度が向上する。 As shown in FIG. 7, when the exposure area R2 is set to four stages, the length of the exposure period T1 is set by the imaging control unit 19b so that the number of stages of the pixel column 19d in which the exposure periods T1 overlap is four. Is set. That is, the calculation unit 21 acquires information related to the scanning speed SP0 of the optical scanner 7 from the optical scanner control unit 9, and the movement speed SP1 of the irradiated region R1 on the light receiving surface 19c calculated based on the scanning speed SP0, the light receiving surface. Based on the width W1 (FIG. 6) of the pixel column 19d in the scanning direction (rolling readout direction) 19c and the number of stages of the pixel column 19d in the exposure region R2 to be set, the length T1 of the exposure period set for each pixel column 19d Is calculated. Furthermore, the calculation unit 21 sends the calculated exposure period length T1 to the external signal reception unit 19e of the imaging device 19 as an external signal. The received external signal is sent to the imaging control unit 19b. Accordingly, the length T1 of the exposure period is variably adjusted by the imaging control unit 19b. For example, the length T1 of the exposure period is changed by changing the number of drive clocks that define the length of the exposure period in the imaging control unit 19b. The calculation unit 21 is configured so that the number of stages of the pixel column 19d in the exposure region R2 that determines the length T1 of the exposure period can be variably set. As described above, the exposure region R2 is set in a plurality of stages, thereby improving the sensitivity of capturing the fluorescent image.
 同様に、図8に示すように、露光領域R2が1段に設定される場合には、算出部21の算出結果を基に、撮像制御部19bによって、隣接する画素列19dの露光期間T1が重複しないように露光期間T1の長さが設定される。このように、露光領域R2が1段などの比較的少ない段数に設定されることにより、蛍光像の撮像の空間分解能が向上する。 Similarly, as shown in FIG. 8, when the exposure region R2 is set to one stage, the imaging control unit 19b sets the exposure period T1 of the adjacent pixel column 19d based on the calculation result of the calculation unit 21. The length of the exposure period T1 is set so as not to overlap. In this way, by setting the exposure area R2 to a relatively small number of stages such as one, the spatial resolution of fluorescent image capturing is improved.
 さらに、図9に示すように、露光領域R2が1段に設定され、算出部21の算出結果を基に、撮像制御部19bによって、隣接する画素列19dの露光期間T1が重複しないように露光期間T1の長さが設定される。このとき、図8に比較して被照射領域R1の移動速度SP1が遅く設定されているため、露光期間T1及び信号読み出し期間T2の長さが比較的長く設定される。このように、露光領域R2が比較的少ない段数で設定されることで、蛍光像の撮像の空間分解能が向上し、図7及び図8の場合に比較して各画素列19dの露光時間が長くなるので感度が向上する。一方で、図7及び図8の場合は、図9に比較して走査速度が速いために時間分解能が優れている。 Further, as shown in FIG. 9, the exposure region R2 is set to one stage, and based on the calculation result of the calculation unit 21, the imaging control unit 19b performs exposure so that the exposure periods T1 of the adjacent pixel columns 19d do not overlap. The length of the period T1 is set. At this time, since the moving speed SP1 of the irradiated region R1 is set slower than that in FIG. 8, the lengths of the exposure period T1 and the signal readout period T2 are set to be relatively long. As described above, the exposure region R2 is set with a relatively small number of stages, so that the spatial resolution of fluorescent image capturing is improved, and the exposure time of each pixel row 19d is longer than in the case of FIGS. Therefore, the sensitivity is improved. On the other hand, in the case of FIGS. 7 and 8, the time resolution is excellent because the scanning speed is higher than that in FIG.
 さらに、画素列19dを構成する複数の画素のうち、信号を読み出す画素数を設定し、その画素数を、露光期間T1を算出するパラメータとしてもよい。この場合、画素列19d全体を読み出す必要がない場合、必要な画素だけ読み出すことが可能になる。また、信号読み出し期間T2を短く設定することも可能となり、信号読み出しの開始タイミングの間隔ΔT1の設定にさらに自由度を持たせることが可能となる。 Furthermore, among the plurality of pixels constituting the pixel row 19d, the number of pixels from which signals are read may be set, and the number of pixels may be used as a parameter for calculating the exposure period T1. In this case, when it is not necessary to read out the entire pixel column 19d, only the necessary pixels can be read out. In addition, it is possible to set the signal readout period T2 to be short, and it is possible to give more flexibility to the setting of the signal readout start timing interval ΔT1.
 以上説明した画像取得装置1によれば、光源3から出射された照明光が光スキャナ7によってサンプルSに対して走査され、それに応じてサンプルSから発せられた蛍光が検出光学系を介して撮像装置19によって撮像される。その際、照明光の走査による撮像装置19の受光面19c上の被照射領域R1の移動速度を基に、受光面19cの隣接する画素列19d間の信号読み出しの開始タイミングの間隔が算出され、算出結果を基に各画素列19dの信号読み出しの開始タイミングが制御される。これにより、照明光の走査速度を変更してもそれに合わせて撮像素子における信号読み出しタイミングを最適化できるので、サンプルSに対する照明光の走査速度に自由度を持たせることで柔軟なサンプルSの観察が実現される。また、蛍光が照射されている間のみ必要な画素列の露光を行うことで、サンプルSの光走査範囲全体の像における散乱光等の背景ノイズの影響を低減して空間分解能を向上させることができる。 According to the image acquisition device 1 described above, the illumination light emitted from the light source 3 is scanned with respect to the sample S by the optical scanner 7, and the fluorescence emitted from the sample S is imaged via the detection optical system accordingly. Imaged by device 19. At that time, based on the moving speed of the irradiated region R1 on the light receiving surface 19c of the imaging device 19 by scanning of the illumination light, the interval of the signal reading start timing between the adjacent pixel rows 19d on the light receiving surface 19c is calculated, Based on the calculation result, the signal readout start timing of each pixel column 19d is controlled. As a result, even if the scanning speed of the illumination light is changed, the signal readout timing in the image sensor can be optimized accordingly, so that the flexible scanning of the sample S can be performed by giving the scanning speed of the illumination light to the sample S flexible. Is realized. Further, by performing exposure of the necessary pixel columns only while the fluorescence is irradiated, it is possible to improve the spatial resolution by reducing the influence of background noise such as scattered light in the image of the entire optical scanning range of the sample S. it can.
 ここで、撮像装置19は、信号読み出しの開始タイミングが駆動クロックに基づいて制御され、信号読み出しの開始タイミングの間隔が駆動クロックに遅延期間を設けることで調整される。これにより、駆動クロックをカウントするためのカウンターの上限に制限されること無く、各画素列19dの信号読み出しの開始タイミングが簡易かつ確実に設定できる。また、各画素列19dの信号読み出しの開始タイミングの間隔を細かく設定することができる。さらに、駆動クロックの周波数は維持されるため周波数変更によるローリング読み出しタイミングの最適化処理が不要になる。 Here, in the imaging device 19, the signal read start timing is controlled based on the drive clock, and the interval of the signal read start timing is adjusted by providing a delay period in the drive clock. Thereby, the signal read start timing of each pixel column 19d can be set easily and reliably without being limited to the upper limit of the counter for counting the drive clock. Further, it is possible to finely set the interval of the signal readout start timing of each pixel column 19d. Furthermore, since the frequency of the drive clock is maintained, the rolling read timing optimization process by changing the frequency becomes unnecessary.
 また、受光面19cによる各画素列19dの露光期間を設定することにより、受光面19c上の露光領域R2の段数を必要に応じて設定することができるので、観察や測定に応じて、空間分解能、時間分解能、及び撮像の感度を適宜調整することができる。 In addition, by setting the exposure period of each pixel row 19d by the light receiving surface 19c, the number of exposure regions R2 on the light receiving surface 19c can be set as necessary. In addition, time resolution and imaging sensitivity can be adjusted as appropriate.
 また、各画素列19dを構成する複数の画素のうち、信号読み出しを行う画素数を可変に設定できる。これにより、信号読み出し期間T2の調整が可能となり、信号読み出しの開始タイミングの間隔ΔT1の設定にさらに自由度を持たせることが可能となる。 In addition, among the plurality of pixels constituting each pixel column 19d, the number of pixels for signal readout can be set variably. As a result, the signal readout period T2 can be adjusted, and the setting of the signal readout start timing interval ΔT1 can be further improved.
 なお、本発明は、前述した実施形態に限定されるものではない。例えば、撮像制御部19bによる信号読み出しの開始タイミングの間隔ΔT1の調整方法は、他の調整方法が採用されてもよい。 Note that the present invention is not limited to the embodiment described above. For example, other adjustment methods may be employed as the adjustment method of the signal readout start timing interval ΔT1 by the imaging control unit 19b.
 図10は、本発明の変形例の撮像装置19における各画素列19dに設定される露光期間及び信号読み出し期間の関係を示すタイミングチャートである。同図に示す場合は、撮像制御部19bは、隣接する画素列19dの信号読み出しの開始タイミングの間隔ΔT1を、各画素列の信号読み出し期間T2を規定する駆動クロック数を調整することによって設定する。すなわち、撮像制御部19bは、算出部21で算出された信号読み出しの開始タイミングの間隔ΔT1’、及び駆動クロックCLKの周波数1/T0を基に、信号読み出しの開始タイミングの間隔ΔT1’に相当する駆動クロックCLKのクロック数を算出し、信号読み出し期間T2aに対応するクロック数として、駆動クロック数を調整する。従って、撮像制御部19bは、前の画素列19dに対する読み出し開始信号S1から、所定周期T0で繰り返される駆動クロックCLKを信号読み出しの開始タイミングの間隔ΔT1’に相当する数だけカウントすることによって、隣接する次の画素列19dに対する読み出し開始信号S1を発生させる。このようにすることで、撮像制御部19bは、各画素列の信号読み出しの開始タイミングを、算出部21によって算出された信号読み出しの開始タイミングの間隔ΔT1に応じて可変に制御することが可能である。この場合、各画素列19dの信号読み出しの開始タイミングが簡易かつ確実に設定できる。また、各画素列19dの信号読み出しが終了したタイミングで駆動クロックが供給されても、空読み出しが行われるので信号読み出し処理には影響は与えない。さらに、駆動クロックの周波数は維持されるため周波数変更によるローリング読み出しタイミングの最適化処理が不要になる。 FIG. 10 is a timing chart showing the relationship between the exposure period and the signal readout period set for each pixel column 19d in the imaging device 19 according to the modification of the present invention. In the case shown in the drawing, the imaging control unit 19b sets the interval ΔT1 of the signal readout start timing of the adjacent pixel column 19d by adjusting the number of drive clocks that define the signal readout period T2 of each pixel column. . That is, the imaging control unit 19b corresponds to the signal readout start timing interval ΔT1 ′ calculated based on the signal readout start timing interval ΔT1 ′ calculated by the calculation unit 21 and the frequency 1 / T0 of the drive clock CLK. The number of drive clocks CLK is calculated, and the number of drive clocks is adjusted as the number of clocks corresponding to the signal readout period T2a. Therefore, the imaging control unit 19b counts the drive clock CLK repeated at a predetermined period T0 from the readout start signal S1 for the previous pixel column 19d by a number corresponding to the signal readout start timing interval ΔT1 ′, thereby adjacent to the adjacent pixel row 19d. A read start signal S1 for the next pixel column 19d to be generated is generated. In this way, the imaging control unit 19b can variably control the signal readout start timing of each pixel column in accordance with the signal readout start timing interval ΔT1 calculated by the calculation unit 21. is there. In this case, the signal readout start timing of each pixel column 19d can be set easily and reliably. Further, even if the drive clock is supplied at the timing when the signal readout of each pixel column 19d is completed, empty readout is performed, so that the signal readout processing is not affected. Furthermore, since the frequency of the drive clock is maintained, the rolling read timing optimization process by changing the frequency becomes unnecessary.
 さらに、図11は、本発明の別の変形例の撮像装置19における各画素列19dに設定される露光期間及び信号読み出し期間の関係を示すタイミングチャートである。同図に示す場合は、撮像制御部19bは、各画素列19dの信号読み出しの開始タイミングを、各画素列の信号読み出し期間T2を規定する駆動クロックの周波数を調整することによって設定する。すなわち、算出部21で算出された信号読み出しの開始タイミングの間隔ΔT1’、及び信号読み出し期間T2を規定するクロック数を基に、信号読み出し期間T2bに対応する周波数に変更するように、駆動クロックの周波数1/T0aを算出し、駆動クロックCLKの周波数を算出された周波数1/T0aに調整する。従って、撮像制御部19bは、前の画素列19dに対する読み出し開始信号S1から、所定周期T0aで繰り返される駆動クロックCLKを信号読み出しの開始タイミングの間隔ΔT1’に相当する数だけカウントすることによって、隣接する次の画素列19dに対する読み出し開始信号S1を発生させる。このようにすることで、撮像制御部19bは、各画素列の信号読み出しの開始タイミングを、算出部21の算出された信号読み出しの開始タイミングの間隔ΔT1に応じて可変に制御することが可能である。この場合、駆動クロックをカウントするためのカウンターの上限に制限されること無く、各画素列19dの信号読み出しの開始タイミングが簡易かつ確実に設定できる。 Further, FIG. 11 is a timing chart showing the relationship between the exposure period and the signal readout period set for each pixel column 19d in the imaging device 19 of another modification of the present invention. In the case shown in the figure, the imaging control unit 19b sets the signal readout start timing of each pixel column 19d by adjusting the frequency of the drive clock that defines the signal readout period T2 of each pixel column. That is, based on the signal readout start timing interval ΔT1 ′ calculated by the calculation unit 21 and the number of clocks that define the signal readout period T2, the frequency of the drive clock is changed to a frequency corresponding to the signal readout period T2b. The frequency 1 / T0a is calculated, and the frequency of the drive clock CLK is adjusted to the calculated frequency 1 / T0a. Accordingly, the imaging control unit 19b counts the drive clock CLK repeated at a predetermined cycle T0a from the readout start signal S1 for the previous pixel column 19d by a number corresponding to the signal readout start timing interval ΔT1 ′. A read start signal S1 for the next pixel column 19d to be generated is generated. In this way, the imaging control unit 19b can variably control the signal readout start timing of each pixel column according to the interval ΔT1 of the signal readout start timing calculated by the calculation unit 21. is there. In this case, the signal readout start timing of each pixel column 19d can be set easily and reliably without being limited to the upper limit of the counter for counting the drive clock.
 図12は、本発明の別の変形例の撮像装置19における各画素列19dに設定される露光期間及び信号読み出し期間の関係を示すタイミングチャートである。同図に示す場合は、撮像制御部19bは、前段の画素列19dの信号読み出しの終了タイミングと、次段の画素列の信号読み出しの開始タイミングとの間隔ΔT2を、その間隔ΔT2を規定する駆動クロック数を調整することによって設定する。すなわち、算出部21で算出された信号読み出しの開始タイミングの間隔ΔT1’、及び信号読み出し期間T2、駆動クロックCLKの周波数1/T0を基に、間隔ΔT2を算出する。詳細すると、撮像制御部19bは、まず、前の画素列19dに対する読み出し開始信号S1から、所定周期T0で繰り返される駆動クロックCLKを信号読み出し期間T2に相当する数だけカウントすることによって、読み出し終了信号S2を発生させる。そして、読み出し終了信号S2から間隔ΔT2に相当するクロック数をカウントし、隣接する次の画素列19dに対する読み出し開始信号S1を発生させる。つまり、撮像制御部19bは、信号読み出し期間T2と間隔ΔT2を加えた期間T2cに相当するクロック数をカウントするため、各画素列の信号読み出しの開始タイミングを、算出部21の算出された信号読み出しの開始タイミングの間隔ΔT1に応じて可変に制御することが可能である。この場合、駆動クロックの周波数は維持されるため周波数変更によるローリング読み出しタイミングの最適化処理が不要になる。 FIG. 12 is a timing chart showing the relationship between the exposure period and the signal readout period set for each pixel column 19d in the imaging device 19 according to another modification of the present invention. In the case shown in the figure, the imaging control unit 19b drives the interval ΔT2 between the signal readout end timing of the previous pixel column 19d and the signal readout start timing of the next pixel column to define the interval ΔT2. Set by adjusting the number of clocks. That is, the interval ΔT2 is calculated based on the signal reading start timing interval ΔT1 ′ calculated by the calculation unit 21, the signal reading period T2, and the frequency 1 / T0 of the drive clock CLK. Specifically, the imaging control unit 19b first counts the drive clock CLK repeated at a predetermined period T0 from the readout start signal S1 for the previous pixel column 19d by a number corresponding to the signal readout period T2, thereby causing a readout end signal. S2 is generated. Then, the number of clocks corresponding to the interval ΔT2 is counted from the read end signal S2, and a read start signal S1 for the next adjacent pixel column 19d is generated. That is, since the imaging control unit 19b counts the number of clocks corresponding to the period T2c obtained by adding the signal readout period T2 and the interval ΔT2, the signal readout start timing calculated by the calculation unit 21 is set to the signal readout start timing of each pixel column. It is possible to variably control according to the start timing interval ΔT1. In this case, since the frequency of the drive clock is maintained, the rolling read timing optimization process by changing the frequency becomes unnecessary.
 なお、図5、図10~12に示した信号読み出しの開始タイミングの間隔の設定方法は、適宜組み合わせるように構成されていてもよい。また、図5、図10~12に示した設定方法の中から、信号読み出しの開始タイミングの間隔ΔT1’に応じて、選択しても良い。 It should be noted that the signal readout start timing interval setting methods shown in FIGS. 5 and 10 to 12 may be configured to be combined as appropriate. Further, the setting method shown in FIG. 5 and FIGS. 10 to 12 may be selected according to the interval ΔT1 ′ of the signal readout start timing.
 また、撮像制御部19bは、イメージセンサが内蔵されていてもよい。また、上述の実施形態では、信号読み出しの間隔として、信号読み出しの開始タイミングの間隔を算出し(設定し)、撮像制御部19bは、各画素列の信号読み出しの開始タイミングを制御したが、これに限らず、例えば、信号読み出しの終了タイミングの間隔を算出し(設定し)、各画素列の信号読み出しの終了タイミングを制御してもよい。 Further, the imaging control unit 19b may include an image sensor. In the above-described embodiment, the signal readout start timing interval is calculated (set) as the signal readout interval, and the imaging control unit 19b controls the signal readout start timing of each pixel column. For example, the interval of signal reading end timing may be calculated (set), and the signal reading end timing of each pixel column may be controlled.
 ここで、上述した画像取得装置において、撮像装置は、信号読み出しが駆動クロックに基づいて制御され、撮像制御部は、算出された信号読み出しの間隔に基づいて、駆動クロックを調整することが好適である。かかる構成を採れば、撮像装置の各画素列の信号読み出しの間隔が簡易かつ確実に設定できる。 Here, in the above-described image acquisition apparatus, it is preferable that the imaging apparatus controls signal readout based on the driving clock, and the imaging control unit adjusts the driving clock based on the calculated signal readout interval. is there. By adopting such a configuration, it is possible to easily and reliably set the signal readout interval of each pixel column of the imaging device.
 また、撮像制御部は、遅延期間を設けることで駆動クロックを調整することも好適である。この場合、撮像装置の各画素列の信号読み出しの間隔を細かく設定することができる。 It is also preferable that the imaging control unit adjusts the drive clock by providing a delay period. In this case, the signal readout interval of each pixel column of the imaging device can be set finely.
 さらに、撮像制御部は、遅延期間を信号読み出しの前に設定することも好適である。こうすれば、各画素列間の信号読み出しのずれを容易に設定できる。 Furthermore, it is also preferable that the imaging control unit sets the delay period before signal readout. In this way, it is possible to easily set a signal readout shift between the pixel columns.
 またさらに、撮像制御部は、駆動クロックの周波数を変更することで駆動クロックを調整することも好適である。こうすれば、各画素列の信号読み出しの間隔を簡易に設定できる。 Furthermore, it is also preferable that the imaging control unit adjusts the drive clock by changing the frequency of the drive clock. In this way, the signal readout interval of each pixel column can be set easily.
 また、撮像装置は、信号読み出しが駆動クロックに基づいて制御され、撮像制御部は、算出された信号読み出しの間隔と駆動クロックの周波数に基づいて、信号読み出しを規定する駆動クロックの数を調整することが好適である。かかる構成を採れば、撮像装置の各画素列の信号読み出しの間隔が簡易かつ確実に設定できる。 The image pickup apparatus controls signal readout based on the drive clock, and the image pickup control unit adjusts the number of drive clocks that define the signal read based on the calculated signal readout interval and the drive clock frequency. Is preferred. By adopting such a configuration, it is possible to easily and reliably set the signal readout interval of each pixel column of the imaging device.
 さらに、撮像制御部は、信号読み出しの間隔を規定する駆動クロックの数を調整することも好適である。こうすれば、各画素列間の信号読み出しのずれを容易に設定できる。 Furthermore, it is also preferable that the imaging control unit adjusts the number of drive clocks that define the signal readout interval. In this way, it is possible to easily set a signal readout shift between the pixel columns.
 またさらに、撮像制御部は、信号読み出しの期間を規定する駆動クロックの数を調整することも好適である。こうすれば、各画素列間の信号読み出しのずれを容易に設定できる。 Furthermore, it is also preferable that the imaging control unit adjusts the number of drive clocks that define a signal readout period. In this way, it is possible to easily set a signal readout shift between the pixel columns.
 また、算出部は、被照射領域の移動速度、画素列の幅、及び被照射領域に対応する画素列の段数に基づいて、受光部による露光期間を設定することが好適である。かかる構成を採れば、同時に露光可能な画素列の段数を必要に応じて設定することができるので、空間分解能及び時間分解能を適宜調整することができる。 Further, it is preferable that the calculation unit sets the exposure period by the light receiving unit based on the moving speed of the irradiated region, the width of the pixel column, and the number of stages of the pixel column corresponding to the irradiated region. By adopting such a configuration, the number of pixel columns that can be exposed simultaneously can be set as necessary, so that the spatial resolution and temporal resolution can be appropriately adjusted.
 またさらに、被照射領域に対応する画素列の段数は可変に設定されることも好適である。この場合、空間分解能を自由に調整することができる。 Furthermore, it is also preferable that the number of pixel columns corresponding to the irradiated region is set variably. In this case, the spatial resolution can be adjusted freely.
 さらにまた、撮像制御部は、それぞれの画素列を構成する複数の画素のうち、信号読み出しを行う画素数を可変に設定することも好適である。この場合、信号読み出し期間の調整が容易であり、信号読み出しの間隔の設定にさらに自由度を持たせることが可能となる。 Furthermore, it is also preferable that the imaging control unit variably sets the number of pixels from which a signal is read out among a plurality of pixels constituting each pixel column. In this case, it is easy to adjust the signal readout period, and it is possible to give more flexibility to the setting of the signal readout interval.
 ここで、上述した撮像装置において、隣接する画素列間の信号読み出しの間隔は、受光部上の被照射領域の移動速度に基づいて設定されることが好適である。こうすれば、対象物の光走査範囲全体の像における散乱光等の背景ノイズの影響を低減して空間分解能を向上させることができる。 Here, in the above-described imaging apparatus, it is preferable that the signal readout interval between adjacent pixel columns is set based on the moving speed of the irradiated region on the light receiving unit. By so doing, it is possible to improve the spatial resolution by reducing the influence of background noise such as scattered light in the image of the entire optical scanning range of the object.
 また、撮像制御部は、受光部上の被照射領域の移動速度を基に算出された信号読み出しの間隔に基づいて、駆動クロックを調整することが好適である。かかる構成を採れば、撮像装置の各画素列の信号読み出しの間隔が簡易かつ確実に設定できる。 Further, it is preferable that the imaging control unit adjusts the drive clock based on the signal readout interval calculated based on the moving speed of the irradiated area on the light receiving unit. By adopting such a configuration, it is possible to easily and reliably set the signal readout interval of each pixel column of the imaging device.
 また、撮像制御部は、遅延期間を設けることで駆動クロックを調整することも好適である。この場合、撮像装置の各画素列の信号読み出しの間隔を細かく設定することができる。 It is also preferable that the imaging control unit adjusts the drive clock by providing a delay period. In this case, the signal readout interval of each pixel column of the imaging device can be set finely.
 さらに、撮像制御部は、遅延期間を信号読み出しの前に設定することも好適である。こうすれば、各画素列間の信号読み出しのずれを容易に設定できる。 Furthermore, it is also preferable that the imaging control unit sets the delay period before signal readout. In this way, it is possible to easily set a signal readout shift between the pixel columns.
 またさらに、撮像制御部は、駆動クロックの周波数を変更することで駆動クロックを調整することも好適である。こうすれば、各画素列の信号読み出しの間隔を簡易に設定できる。 Furthermore, it is also preferable that the imaging control unit adjusts the drive clock by changing the frequency of the drive clock. In this way, the signal readout interval of each pixel column can be set easily.
 また、撮像制御部は、受光部上の被照射領域の移動速度を基に算出された信号読み出しの間隔と駆動クロックの周波数に基づいて、信号読み出しを規定する駆動クロックの数を調整することが好適である。かかる構成を採れば、撮像装置の各画素列の信号読み出しの間隔が簡易かつ確実に設定できる。 In addition, the imaging control unit may adjust the number of drive clocks that define the signal readout based on the signal readout interval and the drive clock frequency calculated based on the moving speed of the irradiated region on the light receiving unit. Is preferred. By adopting such a configuration, it is possible to easily and reliably set the signal readout interval of each pixel column of the imaging device.
 さらに、撮像制御部は、信号読み出しの間隔を規定する駆動クロックの数を調整することも好適である。こうすれば、各画素列間の信号読み出しのずれを容易に設定できる。 Furthermore, it is also preferable that the imaging control unit adjusts the number of drive clocks that define the signal readout interval. In this way, it is possible to easily set a signal readout shift between the pixel columns.
 またさらに、撮像制御部は、信号読み出しの期間を規定する駆動クロックの数を調整することも好適である。こうすれば、各画素列間の信号読み出しのずれを容易に設定できる。 Furthermore, it is also preferable that the imaging control unit adjusts the number of drive clocks that define a signal readout period. In this way, it is possible to easily set a signal readout shift between the pixel columns.
 また、被照射領域の移動速度、画素列の幅、及び被照射領域に対応する画素列の段数に基づいて、受光部による露光期間が設定されることが好適である。かかる構成を採れば、同時に露光可能な画素列の段数を必要に応じて設定することができるので、空間分解能及び時間分解能を適宜調整することができる。 Further, it is preferable that the exposure period by the light receiving unit is set based on the moving speed of the irradiated region, the width of the pixel row, and the number of stages of the pixel row corresponding to the irradiated region. By adopting such a configuration, the number of pixel columns that can be exposed simultaneously can be set as necessary, so that the spatial resolution and temporal resolution can be appropriately adjusted.
 またさらに、被照射領域に対応する画素列の段数は可変に設定されることも好適である。この場合、空間分解能を自由に調整することができる。 Furthermore, it is also preferable that the number of pixel columns corresponding to the irradiated region is set variably. In this case, the spatial resolution can be adjusted freely.
 さらにまた、外部信号を受信する外部信号受信部をさらに備え、隣接する画素列間の信号読み出しの間隔は、外部信号に基づいて設定される、ことも好適である。かかる構成を採れば、観察対象物の画像信号の各画素列の信号読み出しの間隔を容易に設定することができ、柔軟な対象物の観察を実現することができる。 It is also preferable that an external signal receiving unit for receiving an external signal is further provided, and the signal readout interval between adjacent pixel columns is set based on the external signal. By adopting such a configuration, it is possible to easily set the signal readout interval of each pixel column of the image signal of the observation object, and to realize flexible observation of the object.
 また、撮像制御部は、それぞれの前記画素列を構成する複数の画素のうち、信号読み出しを行う画素数を可変に設定することも好適である。この場合、信号読み出し期間の調整が容易であり、信号読み出しの間隔の設定にさらに自由度を持たせることが可能となる。 It is also preferable that the imaging control unit variably sets the number of pixels from which a signal is read out among a plurality of pixels constituting each of the pixel columns. In this case, it is easy to adjust the signal readout period, and it is possible to give more flexibility to the setting of the signal readout interval.
 本発明は、観察対象物の画像を取得する画像取得装置及び撮像装置を使用用途とし、観察対象物に対する照明光のスキャン速度の自由度を高めて柔軟な観察を可能とするものである。 The present invention uses an image acquisition device and an imaging device that acquire an image of an observation object, and increases flexibility in the scanning speed of illumination light with respect to the observation object to enable flexible observation.
 1…画像取得装置、3…光源、7…光スキャナ(光走査部)、9…光スキャナ制御部(光走査制御部)、15…対物レンズ(検出光学系)、17…リレー光学系(検出光学系)、19…撮像装置、19b…撮像制御部、19c…受光面(受光部)、19d…画素列、19e…外部信号受信部、21…算出部、S…サンプル(対象物)。 DESCRIPTION OF SYMBOLS 1 ... Image acquisition device, 3 ... Light source, 7 ... Optical scanner (optical scanning part), 9 ... Optical scanner control part (optical scanning control part), 15 ... Objective lens (detection optical system), 17 ... Relay optical system (detection) Optical system), 19 ... Imaging device, 19b ... Imaging control unit, 19c ... Light receiving surface (light receiving unit), 19d ... Pixel array, 19e ... External signal receiving unit, 21 ... Calculation unit, S ... Sample (object).

Claims (24)

  1.  対象物に対して照射光を走査することによって前記対象物の画像を取得する画像取得装置であって、
     照明光を出射する光源と、
     前記光源からの光を受けて前記照明光を前記対象物に対して走査する光走査部と、
     前記光走査部を制御する光走査制御部と、
     前記対象物からの光を導光する光学系と、
     前記光学系により導光された光を撮像する複数の画素列が配列された受光部、及び前記受光部の信号読み出しを制御する撮像制御部を有し、前記受光部から前記複数の画素列ごとのローリング読み出しによる信号読み出しが可能な撮像装置と、
     前記光走査部の走査による前記受光部上の被照射領域の移動速度に基づいて、隣接する前記画素列間の信号読み出しの間隔を算出する算出部とを備え、
     前記撮像制御部は、算出された該信号読み出しの間隔に基づいて、各画素列の信号読み出しを制御する、
    ことを特徴とする画像取得装置。
    An image acquisition device for acquiring an image of the object by scanning irradiation light with respect to the object,
    A light source that emits illumination light;
    A light scanning unit that receives light from the light source and scans the object with the illumination light;
    An optical scanning control unit for controlling the optical scanning unit;
    An optical system for guiding light from the object;
    A light receiving unit in which a plurality of pixel columns that image light guided by the optical system are arranged; and an imaging control unit that controls signal readout of the light receiving unit; An imaging device capable of reading out signals by rolling readout of
    A calculation unit that calculates an interval of signal readout between adjacent pixel columns based on a moving speed of an irradiated region on the light receiving unit by scanning of the optical scanning unit;
    The imaging control unit controls signal readout of each pixel column based on the calculated signal readout interval.
    An image acquisition apparatus characterized by that.
  2.  前記撮像装置は、前記信号読み出しが駆動クロックに基づいて制御され、
     前記撮像制御部は、算出された前記信号読み出しの間隔に基づいて、前記駆動クロックを調整する、
    ことを特徴とする請求項1記載の画像取得装置。
    In the imaging device, the signal readout is controlled based on a drive clock,
    The imaging control unit adjusts the driving clock based on the calculated signal readout interval.
    The image acquisition apparatus according to claim 1.
  3.  前記撮像制御部は、遅延期間を設けることで前記駆動クロックを調整する、
    ことを特徴とする請求項2記載の画像取得装置。
    The imaging control unit adjusts the driving clock by providing a delay period;
    The image acquisition apparatus according to claim 2.
  4.  前記撮像制御部は、前記遅延期間を前記信号読み出しの前に設定する、
    ことを特徴とする請求項3記載の画像取得装置。
    The imaging control unit sets the delay period before the signal readout;
    The image acquisition apparatus according to claim 3.
  5.  前記撮像制御部は、前記駆動クロックの周波数を変更することで前記駆動クロックを調整する、
    ことを特徴とする請求項2記載の画像取得装置。
    The imaging control unit adjusts the driving clock by changing a frequency of the driving clock;
    The image acquisition apparatus according to claim 2.
  6.  前記撮像装置は、前記信号読み出しが駆動クロックに基づいて制御され、
     前記撮像制御部は、算出された前記信号読み出しの間隔と前記駆動クロックの周波数に基づいて、前記信号読み出しを規定する駆動クロックの数を調整する、
    ことを特徴とする請求項1記載の画像取得装置。
    In the imaging device, the signal readout is controlled based on a drive clock,
    The imaging control unit adjusts the number of drive clocks defining the signal readout based on the calculated signal readout interval and the frequency of the drive clock.
    The image acquisition apparatus according to claim 1.
  7.  前記撮像制御部は、前記信号読み出しの間隔を規定する駆動クロックの数を調整する、
    ことを特徴とする請求項6記載の画像取得装置。
    The imaging control unit adjusts the number of drive clocks that define the interval of signal readout;
    The image acquisition apparatus according to claim 6.
  8.  前記撮像制御部は、前記信号読み出しの期間を規定する駆動クロックの数を調整する、
    ことを特徴とする請求項7記載の画像取得装置。
    The imaging control unit adjusts the number of drive clocks that define the period of signal readout;
    The image acquisition apparatus according to claim 7.
  9.  前記算出部は、前記被照射領域の移動速度、前記画素列の幅、及び前記被照射領域に対応する前記画素列の段数に基づいて、前記受光部による露光期間を設定する、
    ことを特徴とする請求項1~8のいずれか1項に記載の画像取得装置。
    The calculation unit sets an exposure period by the light receiving unit based on the moving speed of the irradiated region, the width of the pixel column, and the number of stages of the pixel column corresponding to the irradiated region.
    The image acquisition apparatus according to any one of claims 1 to 8, wherein
  10.  前記被照射領域に対応する前記画素列の段数は可変に設定される、
    ことを特徴とする請求項9記載の画像取得装置。
    The number of stages of the pixel column corresponding to the irradiated region is variably set;
    The image acquisition apparatus according to claim 9.
  11.  前記撮像制御部は、それぞれの前記画素列を構成する複数の画素のうち、信号読み出しを行う画素数を可変に設定する、
    ことを特徴とする請求項1~10のいずれか1項に記載の画像取得装置。
    The imaging control unit variably sets the number of pixels for signal readout among a plurality of pixels constituting each of the pixel columns.
    The image acquisition device according to any one of claims 1 to 10, wherein:
  12.  複数の画素列ごとのローリング読み出しによる信号読み出しが可能な撮像装置であって、
     前記複数の画素列が配列された受光部と、
     前記受光部の信号読み出しを制御する撮像制御部とを備え、
     前記撮像制御部は、駆動クロックに基づいて前記信号読み出しを制御し、隣接する前記画素列間の信号読み出しの間隔を可変に設定することが可能なように構成されている、
    ことを特徴とする撮像装置。
    An imaging device capable of signal readout by rolling readout for each of a plurality of pixel columns,
    A light receiving unit in which the plurality of pixel columns are arranged;
    An imaging control unit for controlling signal readout of the light receiving unit,
    The imaging control unit is configured to control the signal readout based on a drive clock, and to be able to variably set a signal readout interval between the adjacent pixel columns.
    An imaging apparatus characterized by that.
  13.  隣接する前記画素列間の信号読み出しの間隔は、前記受光部上の被照射領域の移動速度に基づいて設定される、
    ことを特徴とする請求項12記載の撮像装置。
    The signal readout interval between the adjacent pixel columns is set based on the moving speed of the irradiated region on the light receiving unit,
    The imaging apparatus according to claim 12.
  14.  前記撮像制御部は、前記受光部上の被照射領域の移動速度を基に算出された前記信号読み出しの間隔に基づいて、前記駆動クロックを調整する、
    ことを特徴とする請求項13記載の撮像装置。
    The imaging control unit adjusts the driving clock based on the signal readout interval calculated based on the moving speed of the irradiated region on the light receiving unit.
    The imaging apparatus according to claim 13.
  15.  前記撮像制御部は、遅延期間を設けることで前記駆動クロックを調整する、
    ことを特徴とする請求項14記載の撮像装置。
    The imaging control unit adjusts the driving clock by providing a delay period;
    The imaging apparatus according to claim 14.
  16.  前記撮像制御部は、前記遅延期間を前記信号読み出しの前に設定する、
    ことを特徴とする請求項15記載の撮像装置。
    The imaging control unit sets the delay period before the signal readout;
    The imaging apparatus according to claim 15.
  17.  前記撮像制御部は、前記駆動クロックの周波数を変更することで前記駆動クロックを調整する、
    ことを特徴とする請求項14記載の撮像装置。
    The imaging control unit adjusts the driving clock by changing a frequency of the driving clock;
    The imaging apparatus according to claim 14.
  18.  前記撮像制御部は、前記受光部上の被照射領域の移動速度を基に算出された前記信号読み出しの間隔と前記駆動クロックの周波数に基づいて、前記信号読み出しを規定する駆動クロックの数を調整する、
    ことを特徴とする請求項13記載の撮像装置。
    The imaging control unit adjusts the number of driving clocks that define the signal reading based on the interval between the signal readings calculated based on the moving speed of the irradiated region on the light receiving unit and the frequency of the driving clock. To
    The imaging apparatus according to claim 13.
  19.  前記撮像制御部は、前記信号読み出しの間隔を規定する駆動クロックの数を調整する、
    ことを特徴とする請求項18記載の撮像装置。
    The imaging control unit adjusts the number of drive clocks that define the interval of signal readout;
    The imaging device according to claim 18.
  20.  前記撮像制御部は、前記信号読み出しの期間を規定する駆動クロックの数を調整する、
    ことを特徴とする請求項18記載の撮像装置。
    The imaging control unit adjusts the number of drive clocks that define the period of signal readout;
    The imaging device according to claim 18.
  21.  前記受光部上の被照射領域の移動速度、前記画素列の幅、及び前記被照射領域に対応する前記画素列の段数に基づいて、前記受光部による露光期間が設定される、
    ことを特徴とする請求項12~20のいずれか1項に記載の撮像装置。
    The exposure period by the light receiving unit is set based on the moving speed of the irradiated region on the light receiving unit, the width of the pixel column, and the number of stages of the pixel column corresponding to the irradiated region.
    The imaging apparatus according to any one of claims 12 to 20, wherein:
  22.  前記被照射領域に対応する前記画素列の段数は可変に設定される、
    ことを特徴とする請求項20記載の撮像装置。
    The number of stages of the pixel column corresponding to the irradiated region is variably set;
    The imaging apparatus according to claim 20.
  23.  外部信号を受信する外部信号受信部をさらに備え、隣接する前記画素列間の信号読み出しの間隔は、外部信号に基づいて設定される、
    ことを特徴とする請求項12~22のいずれか1項に記載の撮像装置。
    An external signal receiving unit that receives an external signal is further provided, and a signal readout interval between the adjacent pixel columns is set based on the external signal.
    The image pickup apparatus according to any one of claims 12 to 22, wherein the image pickup apparatus is provided.
  24.  前記撮像制御部は、それぞれの前記画素列を構成する複数の画素のうち、信号読み出しを行う画素数を可変に設定する、
    ことを特徴とする請求項12~23のいずれか1項に記載の撮像装置。
    The imaging control unit variably sets the number of pixels for signal readout among a plurality of pixels constituting each of the pixel columns.
    The imaging device according to any one of claims 12 to 23, wherein:
PCT/JP2014/051260 2013-02-01 2014-01-22 Image acquisition device, and imaging device WO2014119451A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480002237.1A CN104584533B (en) 2013-02-01 2014-01-22 Image capturing device and camera device
GB1501530.8A GB2522793B (en) 2013-02-01 2014-01-22 Image acquisition device, and imaging device
US14/413,602 US9423601B2 (en) 2013-02-01 2014-01-22 Image acquisition device, and imaging device that scans an object with illumination light to acquire an image of the object
DE112014000195.3T DE112014000195B4 (en) 2013-02-01 2014-01-22 Image capture device and imaging device
US15/145,031 US10142566B2 (en) 2013-02-01 2016-05-03 Rolling readout type camera and imaging method for using the same
US16/149,642 US10362245B2 (en) 2013-02-01 2018-10-02 Imaging device that performs rolling readout of pixel rows to acquire an image of an object
US16/435,084 US10602087B2 (en) 2013-02-01 2019-06-07 Image acquisition device, and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-018124 2013-02-01
JP2013018124A JP5639670B2 (en) 2013-02-01 2013-02-01 Image acquisition apparatus and imaging apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/413,602 A-371-Of-International US9423601B2 (en) 2013-02-01 2014-01-22 Image acquisition device, and imaging device that scans an object with illumination light to acquire an image of the object
US15/145,031 Continuation US10142566B2 (en) 2013-02-01 2016-05-03 Rolling readout type camera and imaging method for using the same

Publications (1)

Publication Number Publication Date
WO2014119451A1 true WO2014119451A1 (en) 2014-08-07

Family

ID=51262165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051260 WO2014119451A1 (en) 2013-02-01 2014-01-22 Image acquisition device, and imaging device

Country Status (6)

Country Link
US (4) US9423601B2 (en)
JP (1) JP5639670B2 (en)
CN (3) CN108111774B (en)
DE (3) DE112014000195B4 (en)
GB (10) GB2524183B (en)
WO (1) WO2014119451A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450832B2 (en) * 2015-03-17 2019-01-09 浜松ホトニクス株式会社 Fluorescence image generation apparatus and fluorescence image generation method
WO2016199328A1 (en) * 2015-06-12 2016-12-15 パナソニックIpマネジメント株式会社 Lighting device, image-capture system, and lighting method
US10883931B2 (en) * 2016-02-24 2021-01-05 Sony Corporation Optical measuring instrument, flow cytometer, and radiation counter
US10890520B2 (en) 2016-09-06 2021-01-12 The University Of Tokyo Flow cytometer
US10114997B2 (en) * 2016-11-16 2018-10-30 Hand Held Products, Inc. Reader for optical indicia presented under two or more imaging conditions within a single frame time
US10768400B2 (en) 2017-04-24 2020-09-08 Igor Lyuboshenko Varying an illumination path of a selective plane illumination microscopy
US11156822B2 (en) 2017-04-24 2021-10-26 Igor Lyuboshenko Selective plane illumination microscopy with multiple illumination units scanning an object in sync with a digital camera rolling shutter
FI20175410A (en) * 2017-05-08 2018-11-09 Grundium Oy Apparatus and method for scanning microscope slides
JP6839768B2 (en) * 2017-09-15 2021-03-10 富士フイルム株式会社 Imaging control device, imaging device, imaging control method, and imaging control program
US11371929B2 (en) * 2018-02-16 2022-06-28 The Regents Of The University Of California Systems, devices and methods for three-dimensional imaging of moving particles
US10754149B2 (en) * 2018-04-20 2020-08-25 Amd (Shanghai) Co., Ltd. Efficient radial lens shading correction
DE102020104634B4 (en) 2020-02-21 2023-12-28 Excelitas Pco Gmbh Method for reading out image data and for detecting an object, image recording device and light sheet microscope
JP2021142172A (en) * 2020-03-13 2021-09-24 株式会社トプコン Ophthalmologic device, control method thereof, and program
CN114205487A (en) 2020-08-28 2022-03-18 超威半导体公司 Content adaptive lens shading correction method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016977A (en) * 2006-07-03 2008-01-24 Canon Inc Imaging apparatus and control method thereof, and imaging system
JP2008507719A (en) * 2004-07-23 2008-03-13 ジーイー・ヘルスケア・ナイアガラ・インク Confocal fluorescence microscopy and equipment
JP2013098792A (en) * 2011-11-01 2013-05-20 Ricoh Co Ltd Imaging device and control method for imaging device

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537841B2 (en) 1972-09-14 1978-03-23
JPS576491A (en) 1980-06-16 1982-01-13 Mitsubishi Electric Corp Semiconductor device
US5989835A (en) 1997-02-27 1999-11-23 Cellomics, Inc. System for cell-based screening
US7117098B1 (en) 1997-02-27 2006-10-03 Cellomics, Inc. Machine-readable storage medium for analyzing distribution of macromolecules between the cell membrane and the cell cytoplasm
US6727071B1 (en) 1997-02-27 2004-04-27 Cellomics, Inc. System for cell-based screening
AU730100B2 (en) 1997-02-27 2001-02-22 Cellomics, Inc. A system for cell-based screening
US6759206B1 (en) 1997-02-27 2004-07-06 Cellomics, Inc. System for cell-based screening
US6416959B1 (en) 1997-02-27 2002-07-09 Kenneth Giuliano System for cell-based screening
US7160687B1 (en) 1997-05-29 2007-01-09 Cellomics, Inc. Miniaturized cell array methods and apparatus for cell-based screening
ATE231617T1 (en) 1998-07-13 2003-02-15 Cellomics Inc CELL BASED SCREENING SYSTEM
AU3605600A (en) 1999-02-26 2000-09-14 Cellomics, Inc. A system for cell-based screening
EP1203214B1 (en) 1999-08-05 2005-11-09 Cellomics, Inc. Optical system analysis of cells
US6986993B1 (en) 1999-08-05 2006-01-17 Cellomics, Inc. System for cell-based screening
US6365367B1 (en) 1999-12-06 2002-04-02 Cellomics, Inc. Environmental chamber for the analysis of live cells
US6716588B2 (en) 1999-12-09 2004-04-06 Cellomics, Inc. System for cell-based screening
JP2002039716A (en) 2000-07-25 2002-02-06 Olympus Optical Co Ltd Depth map input device
AU2002246792A1 (en) 2000-12-22 2002-08-12 Cellomics, Inc. Identification of individual cells during kinetic assays
DK1368689T3 (en) 2001-02-02 2006-09-18 Cellomics Inc Procedure for estimating the best initial focus position
EP1368653B1 (en) 2001-03-12 2013-01-23 Cellomics, Inc. Methods to increase the capacity of high content cell-based screening assays
US6894719B2 (en) * 2001-08-23 2005-05-17 Eastman Kodak Company Method and apparatus for creating a preselected lenticular image
EP1416708A1 (en) * 2002-10-28 2004-05-06 Fuji Photo Film Co., Ltd. Method and apparatus for image readout
JP2007135073A (en) 2005-11-11 2007-05-31 Canon Inc Solid state imaging device
JP4949709B2 (en) * 2006-03-23 2012-06-13 オリンパスイメージング株式会社 Camera, camera determination method, camera control method
US7831106B2 (en) 2006-05-31 2010-11-09 Indiana University Research And Technology Corporation Laser scanning digital camera with simplified optics and potential for multiply scattered light imaging
ATE447879T1 (en) * 2006-07-07 2009-11-15 Od Os Gmbh OPHTHALMOSCOPE
JP4948090B2 (en) * 2006-08-25 2012-06-06 キヤノン株式会社 Imaging apparatus and drive control method
KR100782768B1 (en) * 2006-11-16 2007-12-05 삼성전기주식회사 Camera module for high-speed shutter driving
US8237808B2 (en) * 2007-01-17 2012-08-07 Sony Corporation Solid state imaging device and imaging apparatus adjusting the spatial positions of pixels after addition by controlling the ratio of weight values during addition
DE102007009550B4 (en) * 2007-02-27 2008-12-18 Ludwig-Maximilian-Universität Method and microscope device for observing a moving sample
JP5082532B2 (en) * 2007-03-26 2012-11-28 ソニー株式会社 Display device, driving method thereof, and electronic apparatus
EP2192764B1 (en) * 2007-09-05 2015-05-20 Tohoku University Solid state imaging element and imaging device
JP5053869B2 (en) * 2008-01-10 2012-10-24 キヤノン株式会社 Solid-state imaging device, imaging system, and driving method of solid-state imaging device
JP5439825B2 (en) * 2008-01-25 2014-03-12 株式会社リコー Image forming apparatus and image forming method
JP5233639B2 (en) 2008-12-15 2013-07-10 株式会社ニコン Electronic camera and program
JP2011101273A (en) 2009-11-09 2011-05-19 Sony Corp Image processing apparatus, method and program
JP5495740B2 (en) 2009-12-02 2014-05-21 オリンパス株式会社 Confocal scanning microscope
DE102010013223B4 (en) 2010-03-29 2016-05-12 Lavision Biotec Gmbh Method and arrangement for microscopy
JP5357329B2 (en) * 2010-04-30 2013-12-04 浜松ホトニクス株式会社 Observation device
JP2011244253A (en) * 2010-05-19 2011-12-01 Nikon Corp Imaging apparatus
US10027855B2 (en) * 2010-06-30 2018-07-17 Ge Healthcare Bio-Science Corp. System for synchronization in a line scanning imaging microscope
JP5498282B2 (en) * 2010-07-06 2014-05-21 オリンパス株式会社 Fluorescence observation equipment
DE102010060121C5 (en) * 2010-10-22 2023-09-28 Leica Microsystems Cms Gmbh SPIM microscope with sequential lightsheet
JP2012118363A (en) 2010-12-02 2012-06-21 Nikon Corp Confocal microscope
JP5794666B2 (en) 2011-03-23 2015-10-14 キヤノン株式会社 Imaging apparatus and imaging method
JP5447430B2 (en) * 2011-04-27 2014-03-19 株式会社ニコン Imaging device
US8237835B1 (en) * 2011-05-19 2012-08-07 Aeon Imaging, LLC Confocal imaging device using spatially modulated illumination with electronic rolling shutter detection
US20130021474A1 (en) 2011-07-20 2013-01-24 Raytheon Company Rolling-shutter imaging system with synchronized scanning illumination and methods for higher-resolution imaging
CN102695004B (en) * 2012-05-30 2014-09-17 昆山锐芯微电子有限公司 CMOS image sensor and exposure control method thereof
US10330910B2 (en) * 2013-04-26 2019-06-25 Hamamatsu Photonics K.K. Image acquisition device and method and system for acquiring focusing information for specimen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507719A (en) * 2004-07-23 2008-03-13 ジーイー・ヘルスケア・ナイアガラ・インク Confocal fluorescence microscopy and equipment
JP2008016977A (en) * 2006-07-03 2008-01-24 Canon Inc Imaging apparatus and control method thereof, and imaging system
JP2013098792A (en) * 2011-11-01 2013-05-20 Ricoh Co Ltd Imaging device and control method for imaging device

Also Published As

Publication number Publication date
GB201600729D0 (en) 2016-03-02
GB201603877D0 (en) 2016-04-20
GB2544667B (en) 2017-10-18
GB2531200A (en) 2016-04-13
GB2535367A (en) 2016-08-17
CN108111775A (en) 2018-06-01
GB2524183A (en) 2015-09-16
CN108111774B (en) 2020-11-03
JP5639670B2 (en) 2014-12-10
GB2522793A (en) 2015-08-05
US20190037158A1 (en) 2019-01-31
DE112014006152B3 (en) 2018-10-11
GB2544666A (en) 2017-05-24
GB2523012A (en) 2015-08-12
US10602087B2 (en) 2020-03-24
GB2535367B (en) 2017-02-08
US10142566B2 (en) 2018-11-27
GB2532906A (en) 2016-06-01
CN108111775B (en) 2020-04-07
GB201509411D0 (en) 2015-07-15
GB201700876D0 (en) 2017-03-01
GB2544666B (en) 2017-10-18
GB2523012B (en) 2015-12-30
GB201701481D0 (en) 2017-03-15
GB2523263A (en) 2015-08-19
US10362245B2 (en) 2019-07-23
GB2532906A8 (en) 2016-12-14
GB201501530D0 (en) 2015-03-18
DE112014000195B4 (en) 2016-07-28
GB2532906B8 (en) 2016-12-14
CN104584533A (en) 2015-04-29
US20160248997A1 (en) 2016-08-25
US20150350573A1 (en) 2015-12-03
CN108111774A (en) 2018-06-01
GB2544913A (en) 2017-05-31
DE112014000240B4 (en) 2016-11-10
US20190297281A1 (en) 2019-09-26
GB2531200B (en) 2016-10-26
GB2544667A (en) 2017-05-24
US9423601B2 (en) 2016-08-23
GB2544913B (en) 2017-11-15
JP2014150412A (en) 2014-08-21
CN104584533B (en) 2018-03-13
GB2524183B (en) 2017-08-30
GB201503247D0 (en) 2015-04-15
GB201503245D0 (en) 2015-04-15
GB2532906B (en) 2016-10-26
DE112014000195T5 (en) 2015-05-21
GB2523263B (en) 2015-12-30
GB2522793B (en) 2016-01-06
GB201700874D0 (en) 2017-03-01
DE112014000240T5 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
JP5639670B2 (en) Image acquisition apparatus and imaging apparatus
JP6266601B2 (en) Image acquisition device, method and system for creating focus map of sample
JP6154291B2 (en) Image acquisition device and image acquisition method of image acquisition device
JP6433888B2 (en) Image acquisition apparatus, method and system for acquiring in-focus information of sample
WO2014174919A1 (en) Image acquisition device and focusing method for image acquisition device
JP6134249B2 (en) Image acquisition device and image acquisition method of image acquisition device
JP5770958B1 (en) Image acquisition apparatus and imaging apparatus
JP6475307B2 (en) Image acquisition device, imaging device, and calculation unit
JP6496772B2 (en) Image acquisition apparatus and image acquisition method
JP6240056B2 (en) Image acquisition apparatus and imaging apparatus
CN109040536A (en) Solid-state imager, the driving method and recording medium for observing device, image pickup part
JP6076205B2 (en) Image acquisition device and focus method of image acquisition device
WO2014174920A1 (en) Image acquisition device and focusing method for image acquisition device
JP6010506B2 (en) Image acquisition device and focus method of image acquisition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14413602

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1501530

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140122

WWE Wipo information: entry into national phase

Ref document number: 1501530.8

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 112014000195

Country of ref document: DE

Ref document number: 1120140001953

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746464

Country of ref document: EP

Kind code of ref document: A1