WO2014118888A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2014118888A1
WO2014118888A1 PCT/JP2013/051907 JP2013051907W WO2014118888A1 WO 2014118888 A1 WO2014118888 A1 WO 2014118888A1 JP 2013051907 W JP2013051907 W JP 2013051907W WO 2014118888 A1 WO2014118888 A1 WO 2014118888A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel ratio
air
storage amount
purification catalyst
exhaust purification
Prior art date
Application number
PCT/JP2013/051907
Other languages
French (fr)
Japanese (ja)
Inventor
雄士 山口
中川 徳久
岡崎 俊太郎
圭一郎 青木
剛 林下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/051907 priority Critical patent/WO2014118888A1/en
Publication of WO2014118888A1 publication Critical patent/WO2014118888A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Definitions

  • the present invention relates to a control device for an internal combustion engine that controls the internal combustion engine in accordance with the output of an air-fuel ratio sensor.
  • control devices for internal combustion engines are widely known in which an air-fuel ratio sensor is provided in the exhaust passage of the internal combustion engine and the amount of fuel supplied to the internal combustion engine is controlled based on the output of the air-fuel ratio sensor.
  • an upstream air-fuel ratio sensor provided upstream of the exhaust purification catalyst provided in the exhaust passage, and provided downstream of the exhaust purification catalyst in the exhaust flow direction.
  • a device having a downstream air-fuel ratio sensor is known (see, for example, Patent Documents 1 to 4).
  • the fuel injection amount is feedback controlled so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes the target air-fuel ratio based on the output of the upstream air-fuel ratio sensor.
  • the target air-fuel ratio in the feedback control of the fuel injection amount is feedback-controlled based on the output of the downstream air-fuel ratio sensor.
  • the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor (hereinafter also referred to as “exhaust air-fuel ratio”) is richer than the stoichiometric air-fuel ratio (hereinafter referred to as “rich air-fuel ratio”).
  • the target air-fuel ratio is corrected to the lean side by a predetermined value.
  • the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor is leaner than the stoichiometric air-fuel ratio (hereinafter also referred to as “lean air-fuel ratio”)
  • the target air-fuel ratio is corrected to the rich side by a predetermined value.
  • the predetermined value is changed according to the catalyst capacity per unit exhaust gas amount, and is set to a smaller value as the exhaust gas amount increases, that is, as the catalyst capacity per unit exhaust gas amount decreases.
  • the control device described in Patent Document 1 when the predetermined value is set as described above, the target air-fuel ratio sensor based on the downstream air-fuel ratio sensor is slowed down when the response of the air-fuel ratio downstream of the catalyst is delayed. It is said that the response speed in the correction of the fuel ratio can be reduced. As a result, according to the control device described in Patent Document 1, the air-fuel ratio can be accurately controlled.
  • JP 2006-153026 A Japanese Patent Laid-Open No. 08-232723 JP 2009-162139 A JP 2001-234787 A
  • the performance required for the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor are different.
  • the upstream air-fuel ratio sensor is used for feedback control of the fuel injection amount so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes the target air-fuel ratio based on the output. If the exhaust air-fuel ratio detection range is narrow at this time, the output of the air-fuel ratio sensor becomes constant when the exhaust air-fuel ratio becomes higher than a certain level or lower than a certain level. On the other hand, since the air-fuel ratio of the exhaust gas flowing out from the engine body and flowing into the exhaust purification catalyst fluctuates to some extent, if the detection range of the exhaust air-fuel ratio in the upstream side air-fuel ratio sensor is narrow, the air-fuel ratio sensor is appropriately The exhaust air / fuel ratio cannot be detected. Therefore, the upstream air-fuel ratio sensor is required to have a wide exhaust air-fuel ratio detection range.
  • the upstream air-fuel ratio sensor is exposed to the exhaust gas before flowing through the exhaust purification catalyst. That is, the upstream air-fuel ratio sensor is exposed to exhaust gas containing a large amount of unburned gas (HC, CO, etc.), NOx, oxygen, and the like. For this reason, the upstream sensor is also required to be resistant to deterioration even when exposed to such exhaust gas, that is, to have high durability.
  • the downstream air-fuel ratio sensor is required to have high detection accuracy of the exhaust air-fuel ratio. That is, NOx and unburned gas in the exhaust gas are basically purified by the exhaust purification catalyst, and oxygen in the exhaust gas is basically stored in the exhaust purification catalyst. For this reason, normally, only the exhaust gas having a substantially stoichiometric air-fuel ratio is discharged from the exhaust purification catalyst.
  • the downstream air-fuel ratio sensor is required to accurately detect when the exhaust gas discharged from the exhaust purification catalyst having such an action slightly deviates from the stoichiometric air-fuel ratio. Therefore, the downstream air-fuel ratio sensor is required to have high detection accuracy of the exhaust air-fuel ratio in the vicinity of a specific air-fuel ratio (in the case of Patent Document 1, near the theoretical air-fuel ratio).
  • an object of the present invention is to provide an internal combustion engine control device configured so that the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor sufficiently satisfy the requirements for each. .
  • an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, and an upstream side empty provided in the exhaust passage upstream of the exhaust purification catalyst in the exhaust flow direction.
  • An internal combustion engine based on an output of a fuel ratio sensor, a downstream air-fuel ratio sensor provided in the exhaust passage downstream of the exhaust purification catalyst in the exhaust flow direction, and an upstream air-fuel ratio sensor or downstream air-fuel ratio sensor;
  • the upstream air-fuel ratio sensor includes a measured gas chamber into which an exhaust gas to be detected is allowed to flow, and the measured gas according to a pump current.
  • a two-cell type air-fuel ratio sensor comprising: a pump current control device for controlling the pump current; and a pump current detection device for detecting the pump current as an output current of the upstream air-fuel ratio sensor.
  • the fuel ratio sensor is disposed between the first electrode exposed to the exhaust gas to be detected through the diffusion rate limiting layer, the second electrode exposed to the reference atmosphere, and the first electrode and the second electrode.
  • a solid electrolyte layer a voltage applying device that applies a voltage between the first electrode and the second electrode, and a current flowing between the first electrode and the second electrode that flows the downstream air-fuel ratio
  • a control device for an internal combustion engine which is a one-cell air-fuel ratio sensor including a current detection device that detects the output current of the sensor.
  • the engine control device is configured such that the exhaust gas flowing into the exhaust purification catalyst is emptied so that an output current of the upstream air-fuel ratio sensor becomes a value corresponding to a target air-fuel ratio.
  • the target air-fuel ratio is controlled to be an air-fuel ratio different from the stoichiometric air-fuel ratio.
  • the target air-fuel ratio is alternately switched between an air-fuel ratio richer than the stoichiometric air-fuel ratio and an air-fuel ratio leaner than the stoichiometric air-fuel ratio.
  • the engine control device is configured such that the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor deviates from the stoichiometric air-fuel ratio and a difference from the stoichiometric air-fuel ratio is predetermined.
  • the target air-fuel ratio is set to an air-fuel ratio that deviates from the stoichiometric air-fuel ratio in a direction opposite to the direction in which the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor deviates from the stoichiometric air-fuel ratio To do.
  • the judgment reference difference is a value within 1% of the theoretical air-fuel ratio.
  • the target air-fuel ratio is set such that a difference from the theoretical air-fuel ratio is larger than the determination reference difference.
  • the engine control device is configured such that the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor is richer than the stoichiometric air-fuel ratio by a determination reference difference.
  • the target air-fuel ratio is theoretically or intermittently maintained until the oxygen storage amount of the exhaust purification catalyst becomes a predetermined storage amount smaller than the maximum oxygen storage amount when the air-fuel ratio becomes less than the rich determination air-fuel ratio.
  • the oxygen storage amount of the exhaust purification catalyst becomes equal to or greater than the predetermined storage amount, the oxygen storage amount becomes zero without reaching the maximum oxygen storage amount.
  • the time average value of the target air-fuel ratio and the stoichiometric air-fuel ratio in a period in which the oxygen storage amount increasing means is continuously or intermittently made leaner than the stoichiometric air-fuel ratio. Is larger than the difference between the time average value of the target air-fuel ratio and the stoichiometric air-fuel ratio during a period in which the oxygen storage amount reducing means continuously or intermittently enriches the oxygen storage amount.
  • the engine control device is configured such that an air-fuel ratio corresponding to an output current of the downstream air-fuel ratio sensor is leaner than a stoichiometric air-fuel ratio by a determination reference difference.
  • the oxygen storage amount of the exhaust purification catalyst becomes a predetermined storage amount greater than zero, the target air-fuel ratio is continuously or intermittently reduced from the stoichiometric air-fuel ratio.
  • the oxygen storage amount reducing means for increasing the oxygen storage amount, and when the oxygen storage amount of the exhaust purification catalyst falls below the predetermined storage amount, the oxygen storage amount increases toward the maximum oxygen storage amount without reaching zero.
  • an oxygen storage amount increasing means for making the target air-fuel ratio leaner than the stoichiometric air-fuel ratio continuously or intermittently.
  • the engine control device has a value corresponding to a rich determination air-fuel ratio in which an output current of the downstream air-fuel ratio sensor is richer than a theoretical air-fuel ratio.
  • the air-fuel ratio lean switching means for changing the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst to a lean set air-fuel ratio that is leaner than the stoichiometric air-fuel ratio, and the air-fuel ratio lean switching means After the target air-fuel ratio is changed, the target air-fuel ratio is set to the lean setting air-fuel ratio before the output current of the downstream-side air-fuel ratio sensor becomes equal to or greater than the value corresponding to the lean determination air-fuel ratio leaner than the stoichiometric air-fuel ratio.
  • the air-fuel ratio rich switching means for changing the target air-fuel ratio to a rich set air-fuel ratio richer than the stoichiometric air-fuel ratio, and after changing the target air-fuel ratio by the air-fuel ratio rich switching means, A rich air-fuel ratio that changes the target air-fuel ratio to a rich air-fuel ratio in which the difference from the stoichiometric air-fuel ratio is smaller than the rich set air-fuel ratio before the output current of the downstream air-fuel ratio sensor becomes equal to or less than the value corresponding to the rich determination air-fuel ratio.
  • Degree lowering means for changing the target air-fuel ratio to a rich set air-fuel ratio richer than the stoichiometric air-fuel ratio, and after changing the target air-fuel ratio by the air-fuel ratio rich switching means.
  • the reference cell of the upstream air-fuel ratio sensor includes a third electrode exposed to the exhaust gas in the measured gas chamber and a reference atmosphere.
  • the fourth electrode to be exposed, the solid electrolyte layer disposed between the third electrode and the fourth electrode, and the electromotive force between the third electrode and the fourth electrode are detected as the detected value.
  • a reference voltage detecting device a reference voltage detecting device.
  • a control device for an internal combustion engine configured so that the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor sufficiently satisfy the requirements for each.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used.
  • FIG. 2 is a graph showing the relationship between the oxygen storage amount of the exhaust purification catalyst and the concentrations of NOx and unburned gas in the exhaust gas flowing out from the exhaust purification catalyst.
  • FIG. 3 is a schematic cross-sectional view of the downstream air-fuel ratio sensor.
  • FIG. 4 is a diagram schematically showing the operation of the downstream air-fuel ratio sensor.
  • FIG. 5 is a diagram illustrating an example of a specific circuit constituting the voltage application device and the current detection device.
  • FIG. 6 is a diagram showing output characteristics of the downstream air-fuel ratio sensor.
  • FIG. 7 is a schematic cross-sectional view of the upstream air-fuel ratio sensor.
  • FIG. 8 is a diagram schematically showing the operation of the upstream air-fuel ratio sensor.
  • FIG. 9 is a diagram showing the relationship between the exhaust air-fuel ratio and the electromotive force in the reference cell.
  • FIG. 10 is a diagram showing the relationship between the control reference voltage and the output current in the upstream air-fuel ratio sensor.
  • FIG. 11 is a diagram for explaining hysteresis in the reference cell.
  • FIG. 12 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 13 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 14 is a functional block diagram of the control device.
  • FIG. 15 is a flowchart showing a control routine for calculation control of the air-fuel ratio correction amount.
  • FIG. 16 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 17 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 18 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 19 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a piston that reciprocates in the cylinder block
  • 4 is a cylinder head fixed on the cylinder block
  • 5 is a piston 3 and a cylinder head 4.
  • a combustion chamber formed therebetween 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust valve
  • 9 is an exhaust port.
  • the intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.
  • a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4.
  • the spark plug 10 is configured to generate a spark in response to the ignition signal.
  • the fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal.
  • the fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7.
  • gasoline having a theoretical air-fuel ratio of 14.6 in the exhaust purification catalyst is used as the fuel.
  • the internal combustion engine of the present invention may use other fuels.
  • the intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15.
  • the intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage.
  • a throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.
  • the exhaust port 9 of each cylinder is connected to an exhaust manifold 19.
  • the exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled.
  • a collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20.
  • the upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22.
  • the exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.
  • An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input.
  • a port 36 and an output port 37 are provided.
  • An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38.
  • an upstream air-fuel ratio sensor 40 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust manifold 19 (that is, the exhaust gas flowing into the upstream exhaust purification catalyst 20) is disposed at the collecting portion of the exhaust manifold 19.
  • the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24).
  • An air-fuel ratio sensor 41 is arranged. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air-fuel ratio sensors 40 and 41 will be described later.
  • a load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38.
  • the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36.
  • the CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44.
  • the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45.
  • the ECU 31 functions as an engine control device that controls the internal combustion engine based on outputs from various sensors and the like.
  • the exhaust purification catalysts 20 and 24 are three-way catalysts having an oxygen storage capacity. Specifically, the exhaust purification catalysts 20 and 24 support a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a ceramic support. It has been made. When the exhaust purification catalysts 20 and 24 reach a predetermined activation temperature, the exhaust purification catalysts 20 and 24 exhibit an oxygen storage capability in addition to the catalytic action of simultaneously purifying unburned gas (HC, CO, etc.) and nitrogen oxides (NOx).
  • the exhaust purification catalysts 20, 24 are such that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 is leaner than the stoichiometric air-fuel ratio (lean air-fuel ratio). Sometimes it stores oxygen in the exhaust gas. On the other hand, the exhaust purification catalysts 20, 24 release the oxygen stored in the exhaust purification catalysts 20, 24 when the air-fuel ratio of the inflowing exhaust gas is richer than the stoichiometric air-fuel ratio (rich air-fuel ratio).
  • the “air-fuel ratio of exhaust gas” means the ratio of the mass of fuel to the mass of air supplied until the exhaust gas is generated. Normally, combustion is performed when the exhaust gas is generated. It means the ratio of the mass of fuel to the mass of air supplied into the chamber 5.
  • the exhaust purification catalysts 20 and 24 have a catalytic action and an oxygen storage capacity, and thus have a NOx and unburned gas purification action according to the oxygen storage amount. That is, as shown in FIG. 2A, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 is a lean air-fuel ratio, the exhaust gas is exhausted by the exhaust purification catalysts 20, 24 when the oxygen storage amount is small. The oxygen inside is occluded and NOx is reduced and purified. Further, when the oxygen storage amount increases, the concentrations of oxygen and NOx in the exhaust gas flowing out from the exhaust purification catalysts 20, 24 abruptly increase with the upper limit storage amount Cuplim as a boundary.
  • the exhaust purification catalysts 20, 24 store the oxygen when the oxygen storage amount is large. The released oxygen is released and the unburned gas in the exhaust gas is oxidized and purified. Further, when the oxygen storage amount decreases, the concentration of unburned gas in the exhaust gas flowing out from the exhaust purification catalysts 20 and 24 rapidly increases with the lower limit storage amount Clowlim as a boundary.
  • the purification characteristics of NOx and unburned gas in the exhaust gas according to the air-fuel ratio and oxygen storage amount of the exhaust gas flowing into the exhaust purification catalysts 20 and 24 are obtained. Change.
  • the exhaust purification catalysts 20 and 24 may be different from the three-way catalyst as long as they have a catalytic action and an oxygen storage capacity.
  • FIG. 3 is a schematic cross-sectional view of the downstream air-fuel ratio sensor 41.
  • the downstream air-fuel ratio sensor 41 in the present embodiment is a one-cell type air-fuel ratio sensor having one cell composed of a solid electrolyte layer and a pair of electrodes.
  • the downstream air-fuel ratio sensor 41 includes a solid electrolyte layer 51, an exhaust side electrode (first electrode) 52 disposed on one side surface of the solid electrolyte layer 51, and a solid electrolyte layer 51.
  • An atmosphere-side electrode (second electrode) 53 disposed on the other side surface, a diffusion-controlling layer 54 that performs diffusion-controlling the exhaust gas that passes through, a protective layer 55 that protects the diffusion-controlling layer 54, and a downstream space
  • a heater unit 56 that heats the fuel ratio sensor 41.
  • a diffusion-controlling layer 54 is provided on one side surface of the solid electrolyte layer 51, and a protective layer 55 is provided on the side surface of the diffusion-controlling layer 54 opposite to the side surface on the solid electrolyte layer 51 side.
  • a measured gas chamber 57 is formed between the solid electrolyte layer 51 and the diffusion-controlling layer 54.
  • a gas to be detected by the downstream air-fuel ratio sensor 41 that is, exhaust gas is introduced into the measured gas chamber 57 through the diffusion rate controlling layer 54.
  • the exhaust side electrode 52 is disposed in the measured gas chamber 57, and therefore, the exhaust side electrode 52 is exposed to the exhaust gas through the diffusion rate controlling layer 54.
  • the gas chamber 57 to be measured is not necessarily provided, and may be configured such that the diffusion-controlling layer 54 is in direct contact with the surface of the exhaust-side electrode 52.
  • a heater portion 56 is provided on the other side surface of the solid electrolyte layer 51.
  • a reference gas chamber 58 is formed between the solid electrolyte layer 51 and the heater portion 56, and the reference gas is introduced into the reference gas chamber 58.
  • the reference gas chamber 58 is open to the atmosphere, and therefore the atmosphere is introduced into the reference gas chamber 58 as the reference gas.
  • the atmosphere side electrode 53 is disposed in the reference gas chamber 58, and therefore, the atmosphere side electrode 53 is exposed to the reference gas (reference atmosphere). In the present embodiment, since the atmosphere is used as the reference gas, the atmosphere side electrode 53 is exposed to the atmosphere.
  • the heater unit 56 is provided with a plurality of heaters 59, and these heaters 59 can control the temperature of the downstream air-fuel ratio sensor 41, particularly the temperature of the solid electrolyte layer 51.
  • the heater unit 56 has a heat generation capacity sufficient to heat the solid electrolyte layer 51 until it is activated.
  • the solid electrolyte layer 51 is an oxygen ion conductive oxide in which ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3, etc. are distributed with CaO, MgO, Y 2 O 3 , Yb 2 O 3 etc. as stabilizers.
  • the sintered body is formed.
  • the diffusion control layer 54 is formed of a porous sintered body of a heat-resistant inorganic substance such as alumina, magnesia, silica, spinel, mullite or the like.
  • the electrodes 52 and 53 are made of a noble metal having high catalytic activity such as platinum.
  • a sensor application voltage Vr is applied between the exhaust side electrode 52 and the atmosphere side electrode 53 by the voltage application device 60 mounted on the ECU 31.
  • the ECU 31 is provided with a current detection device 61 that detects a current (output current) flowing between the electrodes 52 and 53 via the solid electrolyte layer 51 when the sensor application voltage Vr is applied by the voltage application device 60. It is done.
  • the current detected by the current detector 61 is the output current of the downstream air-fuel ratio sensor 41.
  • FIG. 4 is a diagram schematically showing the operation of the downstream air-fuel ratio sensor 41.
  • the downstream air-fuel ratio sensor 41 is arranged so that the outer peripheral surfaces of the protective layer 55 and the diffusion-controlling layer 54 are exposed to the exhaust gas. Further, the atmosphere is introduced into the reference gas chamber 58 of the downstream air-fuel ratio sensor 41.
  • the solid electrolyte layer 51 is formed of a sintered body of an oxygen ion conductive oxide. Therefore, when a difference in oxygen concentration occurs between both side surfaces of the solid electrolyte layer 51 in a state activated by high temperature, an electromotive force E that attempts to move oxygen ions from the high concentration side surface to the low concentration side surface. Has a property (oxygen battery characteristics).
  • oxygen ions move so that an oxygen concentration ratio is generated between both side surfaces of the solid electrolyte layer according to the potential difference.
  • Characteristics oxygen pump characteristics. Specifically, when a potential difference is applied between both side surfaces, the oxygen concentration on the side surface provided with positive polarity is a ratio corresponding to the potential difference with respect to the oxygen concentration on the side surface provided with negative polarity. The movement of oxygen ions is caused to increase. Further, as shown in FIGS. 3 and 4, in the downstream air-fuel ratio sensor 41, a constant value is provided between the electrodes 52 and 53 so that the atmosphere-side electrode 53 is positive and the exhaust-side electrode 52 is negative. A sensor applied voltage Vr is applied.
  • the ratio of oxygen concentration between both side surfaces of the solid electrolyte layer 51 is small.
  • the sensor applied voltage Vr is set to an appropriate value, the actual oxygen concentration ratio becomes smaller between the both side surfaces of the solid electrolyte layer 51 than the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Therefore, as shown in FIG. 4A, the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 increases from the exhaust side electrode 52 to the atmosphere so as to increase toward the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Oxygen ions move toward the side electrode 53. As a result, a current flows from the positive electrode of the voltage application device 60 that applies the sensor application voltage Vr to the negative electrode of the voltage application device 60 via the atmosphere side electrode 53, the solid electrolyte layer 51, and the exhaust side electrode 52.
  • the magnitude of the current (output current) Ir flowing at this time is the amount of oxygen flowing into the measured gas chamber 57 from the exhaust gas through the diffusion rate controlling layer 54 if the sensor applied voltage Vr is set to an appropriate value. Is proportional to Therefore, by detecting the magnitude of the current Ir by the current detector 61, it is possible to know the oxygen concentration and thus the air-fuel ratio in the lean region.
  • the sensor applied voltage Vr is set to an appropriate value, the actual oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 becomes larger than the oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • the exhaust gas is exhausted from the atmosphere side electrode 53 so that the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 decreases toward the oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • Oxygen ions move toward the side electrode 52.
  • a current flows from the atmosphere side electrode 53 to the exhaust side electrode 52 through the voltage application device 60 that applies the sensor application voltage Vr.
  • the magnitude of the current (output current) Ir flowing at this time is that of oxygen ions that can be moved from the atmosphere side electrode 53 to the exhaust side electrode 52 in the solid electrolyte layer 51 if the sensor applied voltage Vr is set to an appropriate value. It depends on the flow rate.
  • the oxygen ions react (combust) on the exhaust-side electrode 52 with the unburned gas that flows into the measured gas chamber 57 from the exhaust gas through the diffusion-controlling layer 54 by diffusion. Therefore, the moving flow rate of oxygen ions corresponds to the concentration of unburned gas in the exhaust gas flowing into the measured gas chamber 57. Therefore, by detecting the magnitude of the current Ir by the current detection device 61, it is possible to know the unburned gas concentration and thus the air-fuel ratio in the rich region.
  • the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is the stoichiometric air-fuel ratio
  • the amount of oxygen and unburned gas flowing into the measured gas chamber 57 is the chemical equivalent ratio.
  • both of them are completely combusted by the catalytic action of the exhaust side electrode 52, and the concentration of oxygen and unburned gas in the measured gas chamber 57 does not change.
  • the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 is not changed and is maintained as the oxygen concentration ratio corresponding to the sensor applied voltage Vr.
  • oxygen ions do not move due to the oxygen pump characteristics, and as a result, no current flows through the circuit.
  • FIG. 5 shows an example of a specific circuit constituting the voltage application device 60 and the current detection device 61.
  • E is an electromotive force generated by oxygen battery characteristics
  • Ri is an internal resistance of the solid electrolyte layer 51
  • Vs is a potential difference between the electrodes 52 and 53.
  • the voltage application device 60 basically performs negative feedback control so that the electromotive force E generated by the oxygen battery characteristics matches the sensor applied voltage Vr.
  • the voltage application device 60 becomes the sensor applied voltage Vr. Negative feedback control is performed.
  • the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 is determined by sensor application.
  • the oxygen concentration ratio corresponds to the voltage Vr.
  • the electromotive force E coincides with the sensor applied voltage Vr, and the potential difference Vs between the electrodes 52 and 53 is also the sensor applied voltage Vr. As a result, the current Ir does not flow.
  • the electromotive force E has a value different from the sensor applied voltage Vr. Therefore, by negative feedback control, a potential difference Vs is applied between the electrodes 52 and 53 in order to move oxygen ions between both side surfaces of the solid electrolyte layer 51 so that the electromotive force E matches the sensor applied voltage Vr. The And current Ir flows with the movement of oxygen ions at this time. As a result, the electromotive force E converges on the sensor applied voltage Vr, and when the electromotive force E converges on the sensor applied voltage Vr, the potential difference Vs eventually converges on the sensor applied voltage Vr.
  • the voltage application device 60 substantially applies the sensor application voltage Vr between the electrodes 52 and 53.
  • the electric circuit of the voltage applying device 60 is not necessarily as shown in FIG. 5, and any device can be used as long as the sensor applied voltage Vr can be substantially applied between the electrodes 52 and 53. It may be.
  • the current detector 61 is actually a current rather than detecting, and calculates the current from the voltage E 0 by detecting the voltage E 0.
  • E 0 can be expressed as the following formula (1).
  • E 0 Vr + V 0 + IrR (1)
  • V 0 is an offset voltage (a voltage to be applied so that E 0 does not become a negative value, for example, 3 V)
  • R is a value of the resistance shown in FIG.
  • the sensor applied voltage Vr, the offset voltage V 0 and the resistance value R are constant, so that the voltage E 0 changes according to the current Ir. Therefore, if the voltage E 0 is detected, the current Ir can be calculated from the voltage E 0 .
  • the current detection device 61 substantially detects the current Ir flowing between the electrodes 52 and 53.
  • the electric circuit of the current detection device 61 does not necessarily have to be as shown in FIG. 5, and any device can be used as long as the current Ir flowing between the electrodes 52 and 53 can be detected. Good.
  • the downstream air-fuel ratio sensor 41 configured and operating as described above has a sensor applied voltage-current (VI) characteristic as shown in FIG. As can be seen from FIG. 6, when the sensor applied voltage Vr is gradually increased from a negative value when the exhaust air-fuel ratio is constant in the region where the sensor applied voltage Vr is 0 or less and in the vicinity of 0, As a result, the output current Ir increases.
  • Vr sensor applied voltage-current
  • the flow rate of oxygen ions that can move through the solid electrolyte layer 51 is small. For this reason, the flow rate of oxygen ions that can move through the solid electrolyte layer 51 is smaller than the inflow rate of the exhaust gas through the diffusion-controlling layer 54, so that the output current Ir can move through the solid electrolyte layer 51. It changes according to the flow rate of oxygen ions. Since the flow rate of oxygen ions that can move through the solid electrolyte layer 51 changes according to the sensor applied voltage Vr, the output current increases as the sensor applied voltage Vr increases. The reason why the output current Ir takes a negative value when the sensor applied voltage Vr is 0 is that an electromotive force E corresponding to the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 is generated due to oxygen battery characteristics.
  • the output current Ir changes according to the oxygen concentration or the unburned gas concentration in the exhaust gas flowing into the measured gas chamber 57 via the diffusion rate controlling layer 54. Even if the sensor applied voltage Vr is changed with the exhaust air-fuel ratio being constant, the oxygen concentration and the unburned gas concentration in the exhaust gas flowing into the measured gas chamber 57 via the diffusion-controlling layer 54 should basically not change. Therefore, the output voltage Ir does not change.
  • the output current Ir depends on the exhaust air / fuel ratio. Change. As can be seen from FIG. 6, the flow direction of the limit current is reversed between the lean air-fuel ratio and the rich air-fuel ratio, and the air-fuel ratio increases when the lean air-fuel ratio is increased, and the air-fuel ratio decreases when the air-fuel ratio is rich. The absolute value of the limit current increases.
  • the output current Ir begins to increase again accordingly.
  • the moisture contained in the exhaust gas is decomposed on the exhaust-side electrode 52, and a current flows accordingly. If the sensor applied voltage Vr is further increased, the solid electrolyte layer 51 is decomposed this time.
  • FIG. 7 is a schematic cross-sectional view of the upstream air-fuel ratio sensor 40.
  • the upstream air-fuel ratio sensor 40 in the present embodiment is a two-cell air-fuel ratio sensor having two cells each composed of a solid electrolyte layer and a pair of electrodes.
  • the upstream air-fuel ratio sensor 40 includes a measured gas chamber 81, a reference gas chamber 82, and two solid electrolyte layers 83 and 84 disposed on both sides of the measured gas chamber 81. It has.
  • the reference gas chamber 82 is provided on the opposite side of the measured gas chamber 81 with the second solid electrolyte layer 84 interposed therebetween.
  • a gas chamber side electrode (fifth electrode) 85 is disposed on the side surface of the first solid electrolyte layer 83 on the measured gas chamber 81 side, and an exhaust side electrode is disposed on the side surface of the first solid electrolyte layer 83 on the exhaust gas side. (Sixth electrode) 86 is arranged.
  • the first solid electrolyte layer 83, the gas chamber side electrode 85, and the exhaust side electrode 86 constitute a pump cell 90.
  • a gas chamber side electrode (third electrode) 87 is disposed on the side surface of the second solid electrolyte layer 84 on the measured gas chamber 81 side, and on the side surface of the second solid electrolyte layer 84 on the reference gas chamber 82 side.
  • a reference side electrode (fourth electrode) 88 is disposed.
  • the second solid electrolyte layer 84, the gas chamber side electrode 87 and the reference side electrode 88 constitute a reference cell 91.
  • a diffusion control layer 93 is provided so as to surround the gas chamber side electrode 85 of the pump cell 90 and the gas chamber side electrode 87 of the reference cell 91.
  • the measured gas chamber 81 is defined by the first solid electrolyte layer 83, the second solid electrolyte layer 84, and the diffusion-controlling layer 93. Exhaust gas is allowed to flow into the measured gas chamber 81 via the diffusion-controlling layer 93. Therefore, the electrodes arranged in the measured gas chamber 81, that is, the gas chamber side electrode 85 of the pump cell 90 and the gas chamber side electrode 87 of the reference cell 91 are exposed to the exhaust gas through the diffusion control layer 93. Become.
  • the diffusion control layer 93 is not necessarily provided so that the exhaust gas flowing into the measured gas chamber 81 passes therethrough. As long as the exhaust gas reaching the gas chamber side electrode 87 of the reference cell 91 becomes the exhaust gas that has passed through the diffusion control layer, the diffusion control layer may be arranged in any manner.
  • a heater portion 94 is provided on the side surface of the second solid electrolyte layer 84 on the side of the reference gas chamber 82 so as to surround the reference gas chamber 82. Therefore, the reference gas chamber 82 is defined by the second solid electrolyte layer 84 and the heater unit 94.
  • a reference gas is introduced into the reference gas chamber 82.
  • the reference gas chamber 82 is filled with air.
  • the reference gas chamber 82 is not opened to the atmosphere, but may be opened to the atmosphere, or a gas different from the gas in the atmosphere may be used as the reference gas.
  • the heater unit 94 is provided with a plurality of heaters 95, and the heaters 95 can control the temperature of the upstream air-fuel ratio sensor 40, particularly the temperature of the solid electrolyte layers 83 and 84.
  • the heater section 94 has a heat generation capacity sufficient to heat the solid electrolyte layers 83 and 84 until they are activated.
  • a protective layer 96 is provided on the side surface of the first solid electrolyte layer 83 on the exhaust gas side.
  • the protective layer 96 is formed of a porous material so that the exhaust gas reaches the exhaust side electrode 86 while preventing liquid or the like in the exhaust gas from directly attaching to the exhaust side electrode 86.
  • the solid electrolyte layers 83 and 84 are formed of the same material as the solid electrolyte layer 51 of the downstream air-fuel ratio sensor 41.
  • the diffusion rate controlling layer 93 is also formed of the same material as the diffusion rate controlling layer 54 of the downstream air-fuel ratio sensor 41.
  • the electrodes 85 to 88 are also made of the same material as the electrodes 52 and 53 of the downstream air-fuel ratio sensor 41. Note that the diffusion-controlling layer 93 of the upstream air-fuel ratio sensor 40 does not necessarily have the same rate-controlling effect as the diffusion-controlling layer 54 (an effect that the speed of the exhaust gas flowing into the measured gas chamber becomes substantially constant). It does not have to be.
  • the ECU 31 includes an electromotive force detection device 100 connected to the gas chamber side electrode 87 and the reference side electrode 88.
  • the electromotive force detection device 100 detects an electromotive force generated between the electrodes 87 and 88.
  • a pump voltage Vp is applied between the gas chamber side electrode 85 and the exhaust side electrode 86 of the pump cell 90 by the pump voltage application device 101 mounted on the ECU 31.
  • the pump voltage Vp applied by the pump voltage application device 101 is set according to the electromotive force Ve detected by the electromotive force detection device 100.
  • the pump voltage Vp is set according to the difference between the electromotive force Ve detected by the electromotive force detection device 100 and a preset control reference voltage (0.45 V in this embodiment). .
  • the ECU 31 has a pump current detection device 102 that detects a pump current Ip flowing between the electrodes 85 and 86 via the first solid electrolyte layer 83 when the pump voltage Vp is applied by the pump voltage application device 101. Provided.
  • the pump voltage application device 101 changes the pump voltage Vp
  • the pump current Ip flowing between the electrodes 85 and 86 changes.
  • the pump voltage application device 101 controls the pump current Ip. Therefore, the pump voltage application device 101 functions as a pump current control device that controls the pump current Ip.
  • the pump current Ip is also changed by, for example, arranging a variable resistor in series with the pump voltage application device 101 and changing the variable resistor. Therefore, means other than the pump voltage application device 101 such as a variable resistor can be used as the pump current control device.
  • FIG. 8 is a diagram schematically showing the operation of the upstream air-fuel ratio sensor 40.
  • the upstream air-fuel ratio sensor 40 is arranged so that the outer peripheral surfaces of the protective layer 96 and the diffusion-controlling layer 93 are exposed to the exhaust gas. Further, the atmosphere is introduced into the reference gas chamber 82 of the upstream air-fuel ratio sensor 40.
  • the solid electrolyte layers 83 and 84 have oxygen battery characteristics and oxygen pump characteristics. Therefore, in the pump cell 90, when the pump voltage application device 101 applies the pump voltage Vp between the gas chamber side electrode 85 and the exhaust side electrode 86, oxygen ions move accordingly. Accompanying such movement of oxygen ions, oxygen is pumped into or pumped from the exhaust gas into the measured gas chamber 81.
  • the electromotive force Ve changes according to the oxygen concentration in the measured gas chamber 81. More precisely, in the reference cell 91, an electromotive force Ve corresponding to the ratio between the oxygen partial pressure in the measured gas chamber 81 and the oxygen partial pressure in the reference gas chamber 82 is generated. As a result, the relationship between the exhaust air-fuel ratio in the measured gas chamber 81 and the electromotive force Ve is as shown in FIG. That is, the electromotive force Ve changes greatly in the vicinity of the stoichiometric air-fuel ratio.
  • the electromotive force Ve increases, and conversely, the exhaust air in the measured gas chamber 81 increases.
  • the electromotive force Ve decreases. Therefore, for example, when the electromotive force Ve is higher than a predetermined voltage (for example, 0.45 V, hereinafter referred to as “control reference voltage”), the exhaust air-fuel ratio in the measured gas chamber 81 is the rich air-fuel ratio.
  • control reference voltage for example, 0.45 V, hereinafter referred to as “control reference voltage
  • the exhaust air-fuel ratio in the measured gas chamber 81 is the rich air-fuel ratio.
  • the electromotive force Ve is lower than the control reference voltage, it can be determined that the exhaust air-fuel ratio in the measured gas chamber 81 is a lean air-fuel ratio.
  • a pump voltage is applied to the electrodes 85 and 86 of the pump cell 90 by the pump voltage application device 101 based on this.
  • a pump voltage is applied using the exhaust side electrode 86 as a positive electrode and the gas chamber side electrode 85 as a negative electrode.
  • the flow rate of oxygen pumped from the measured gas chamber 81 into the exhaust gas around the upstream air-fuel ratio sensor 40 is proportional to the pump voltage, and the pump voltage is the electromotive force Ve detected by the electromotive force detection device 100. Is proportional to the difference from the control reference voltage. Therefore, the upstream air-fuel ratio sensor from the measured gas chamber 81 increases as the exhaust air-fuel ratio in the measured gas chamber 81 deviates greatly from the stoichiometric air-fuel ratio, that is, the oxygen concentration in the measured gas chamber 81 increases. The flow rate of oxygen pumped into the exhaust gas around 40 increases.
  • the flow rate of oxygen flowing into the measured gas chamber 81 through the diffusion rate controlling layer 93 and the flow rate of oxygen pumped out by the pump cell 90 basically coincide with each other, and the inside of the measured gas chamber 81 is basically the control standard.
  • the air-fuel ratio corresponding to the voltage, that is, the stoichiometric air-fuel ratio is maintained.
  • the flow rate of oxygen pumped out by the pump cell 90 is equal to the flow rate of oxygen ions that have moved through the first solid electrolyte layer 83 of the pump cell 90.
  • the flow rate of this oxygen ion is equal to the current flowing between the electrodes 85 and 86 of the pump cell 90. Therefore, the current flowing between the electrodes 85 and 86 is detected by the pump current detection device 102, so that the flow rate of oxygen flowing into the measured gas chamber 81 via the diffusion rate controlling layer 93, and hence the surroundings of the measured gas chamber 81, is increased.
  • the lean air-fuel ratio of the exhaust gas can be detected.
  • a pump voltage is applied between the electrodes 85 and 86 of the pump cell 90 by the pump voltage application device 101 based on this.
  • a pump voltage is applied using the gas chamber side electrode 85 as a positive electrode and the exhaust side electrode 86 as a negative electrode.
  • the flow rate of oxygen pumped from the exhaust gas around the upstream air-fuel ratio sensor 40 into the measured gas chamber 81 is proportional to the pump voltage, and the pump voltage is the electromotive force Ve detected by the electromotive force detection device 100. Is proportional to the difference from the control reference voltage. Accordingly, the exhaust gas around the upstream air-fuel ratio sensor 40 increases as the exhaust air-fuel ratio in the measured gas chamber 81 is far from the stoichiometric air-fuel ratio richly, that is, as the unburned gas concentration in the measured gas chamber 81 is higher.
  • the flow rate of oxygen pumped into the measured gas chamber 81 from the inside increases.
  • the flow rate of the unburned gas flowing into the measured gas chamber 81 via the diffusion rate controlling layer 93 and the oxygen flow rate pumped by the pump cell 90 become a chemical equivalence ratio, and thus the measured gas chamber 81 has a basic structure. Therefore, the air-fuel ratio corresponding to the control reference voltage, that is, the stoichiometric air-fuel ratio is maintained.
  • the oxygen flow rate pumped by the pump cell 90 is equal to the flow rate of oxygen ions that have moved through the first solid electrolyte layer 83 in the pump cell 90.
  • the flow rate of this oxygen ion is equal to the current flowing between the electrodes 85 and 86 of the pump cell 90. Therefore, the current flowing between the electrodes 85 and 86 is detected by the pump current detection device 102, so that the flow rate of the unburned gas flowing into the measured gas chamber 81 via the diffusion rate controlling layer 93, and therefore the measured gas chamber.
  • the rich air-fuel ratio of the exhaust gas around 81 can be detected.
  • the stoichiometric air-fuel ratio is exhausted into the measured gas chamber 81 via the diffusion rate-limiting layer 93 as shown in FIG. Gas flows in.
  • exhaust gas having an air fuel ratio (theoretical air fuel ratio) corresponding to the control reference voltage flows in this way, an electromotive force voltage Ve substantially equal to the control reference voltage is generated between the electrodes 87 and 88 of the reference cell 91.
  • the electromotive force Ve is detected by the electromotive force detection device 100.
  • the pump voltage applied by the pump voltage application device 101 is made zero accordingly. For this reason, oxygen ions do not move in the first solid electrolyte layer 83 of the pump cell 90, and thus the measured gas chamber 81 is basically maintained at the air-fuel ratio corresponding to the control reference voltage. Further, since no movement of oxygen ions occurs in the first solid electrolyte layer 83 of the pump cell 90, the pump current detected by the pump current detection device 102 is also zero. Therefore, when the pump current detected by the pump current detection device 102 is zero, it can be seen that the air-fuel ratio of the exhaust gas around the measured gas chamber 81 is the air-fuel ratio corresponding to the reference voltage Vr.
  • the output is performed when the exhaust air-fuel ratio around the upstream air-fuel ratio sensor 40 matches the air-fuel ratio corresponding to the control reference voltage (that is, the theoretical air-fuel ratio).
  • the pump current which is the current, becomes zero.
  • the pump current that is the output current becomes positive, and the absolute value of the pump current increases according to the degree of lean.
  • the pump current that is the output current becomes negative, and the absolute value of the pump current increases according to the richness.
  • the upstream air-fuel ratio sensor 40 has the diffusion-controlling layer 93
  • the upstream-side air-fuel ratio sensor 40 may not necessarily have the diffusion-controlling layer 93 as long as the exhaust gas flowing into the measured gas chamber 81 can be limited. .
  • the upstream air-fuel ratio sensor (two-cell type air-fuel ratio sensor) 40 configured and operated as described above has a control reference voltage-current (VI) characteristic as shown in FIG.
  • the “limit current region” in FIG. 10 indicates the limit current region when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the relationship between the control reference voltage Ve and the output current Ip is the relationship between the sensor applied voltage Vr and the output current Ir in the downstream air-fuel ratio sensor 41 (see FIG. 6). ).
  • the exhaust air-fuel ratio becomes an air-fuel ratio that is a certain level or higher (upper limit air-fuel ratio) and an air-fuel ratio that is a certain level or lower (lower limit air-fuel ratio). Even if the exhaust air-fuel ratio changes, the output current Ir does not change. In the example shown in FIG. 6, for example, when the sensor applied voltage Vr is about 0.1 V, the output current Ir becomes a substantially constant value when the exhaust air-fuel ratio becomes 16.6 or more. Therefore, if the sensor applied voltage Vr is constant in the downstream side air-fuel ratio sensor 41, the detectable air-fuel ratio range is limited.
  • the upstream air-fuel ratio sensor 40 can detect the air-fuel ratio in a wide range by keeping the control reference voltage Ve constant.
  • the upstream air-fuel ratio sensor 40 can detect the air-fuel ratio in a wider range than the downstream air-fuel ratio sensor 41.
  • the reference cell 91 of the upstream air-fuel ratio sensor 40 has a relationship between the exhaust air-fuel ratio in the measured gas chamber 81 and the electromotive force Ve as shown in FIG.
  • the electromotive force depends on the direction of change of the air-fuel ratio. Have different values. FIG.
  • FIG. 11 is a diagram showing the situation, where a solid line A is a relationship when the air-fuel ratio is changed from the rich side to the lean side, and a solid line B is when the air-fuel ratio is changed from the lean side to the rich side. The relationship is shown respectively.
  • the electromotive force remains high near the theoretical air-fuel ratio even if the actual air-fuel ratio becomes the lean air-fuel ratio.
  • the solid line B in FIG. 11 when the air-fuel ratio is changed from the lean side to the rich side, the electromotive force remains low near the theoretical air-fuel ratio even when the actual air-fuel ratio becomes rich. It becomes.
  • the reference cell 91 has hysteresis according to the direction of change of the air-fuel ratio. As a result, even if the exhaust air-fuel ratio in the measured gas chamber 81 is the same, the electromotive force of the reference cell 91 may be different, and an error occurs in the output current of the upstream air-fuel ratio sensor 40. Cheap.
  • the downstream air-fuel ratio sensor 41 changes its output current when the internal resistance of the solid electrolyte layer 51 changes even if the exhaust air-fuel ratio is the same. For this reason, the detection accuracy of the air-fuel ratio decreases due to aging.
  • the pump cell 90 of the upstream air-fuel ratio sensor 40 the relationship between the pumping current and the pumping current of oxygen into the gas chamber 81 to be measured and the pumping current is constant even if the internal resistance changes. It is. For this reason, the pump cell 90 has little influence on the output even if the internal resistance of the first solid electrolyte layer 83 changes.
  • the upstream air-fuel ratio sensor 40 can detect the air-fuel ratio with higher accuracy than the downstream air-fuel ratio sensor even if the internal resistance changes due to aging degradation or the like.
  • the exhaust gas before purification by the upstream side exhaust purification catalyst 20 flows into the upstream side air-fuel ratio sensor 40.
  • the upstream air-fuel ratio sensor 40 is exposed to exhaust gas containing a large amount of unburned gas, NOx, etc., and therefore, compared with the downstream air-fuel ratio sensor 41, the internal resistance of the solid electrolyte layer due to aging degradation or the like. Changes are likely to occur.
  • the upstream air-fuel ratio sensor 40 is a two-cell type air-fuel ratio sensor in which the detection accuracy hardly changes even if the internal resistance changes, the influence of aging degradation or the like is minimized. be able to.
  • this output current Iupp is based on the output current Iupp of the upstream side air-fuel ratio sensor 40 (corresponding to the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 and corresponding to the above-mentioned Ip). Feedback control is performed so that becomes a value corresponding to the target air-fuel ratio.
  • the target air-fuel ratio is set based on the output current of the downstream air-fuel ratio sensor 41. Specifically, when the output current Irdwn (corresponding to Ir described above) of the downstream side air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Iref, the target air-fuel ratio is set to the lean set air-fuel ratio, Maintained.
  • the rich determination reference value Iref is a value corresponding to a predetermined rich determination air-fuel ratio (for example, 14.55) that is slightly richer than the theoretical air-fuel ratio.
  • the lean set air-fuel ratio is a predetermined air-fuel ratio that is somewhat leaner than the stoichiometric air-fuel ratio, and is, for example, 14.65 to 20, preferably 14.68 to 18, and more preferably 14.7. About 16 or so.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated.
  • the oxygen storage amount OSAsc is estimated by estimating the intake air amount into the combustion chamber 5 calculated based on the output current Iupup of the upstream air-fuel ratio sensor 40 and the air flow meter 39 or the like, or the fuel from the fuel injection valve 11. This is performed based on the injection amount.
  • the estimated value of the oxygen storage amount OSAsc becomes equal to or larger than a predetermined determination reference storage amount Cref, the target air-fuel ratio that has been the lean set air-fuel ratio until then becomes the weak rich set air-fuel ratio, and is maintained at that air-fuel ratio.
  • the The weak rich set air-fuel ratio is a predetermined air-fuel ratio that is slightly richer than the stoichiometric air-fuel ratio, and is, for example, 13.5 to 14.58, preferably 14 to 14.57, more preferably 14.3. About 14.55. Thereafter, when the output current Irdwn of the downstream air-fuel ratio sensor 41 again becomes equal to or less than the rich determination reference value Iref, the target air-fuel ratio is again set to the lean set air-fuel ratio, and thereafter the same operation is repeated.
  • the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is alternately set to the lean set air-fuel ratio and the weak rich set air-fuel ratio.
  • the difference between the lean set air-fuel ratio and the stoichiometric air-fuel ratio is larger than the difference between the weak rich set air-fuel ratio and the stoichiometric air-fuel ratio. Therefore, in this embodiment, the target air-fuel ratio is alternately set to a short-term lean set air-fuel ratio and a long-term weak rich set air-fuel ratio.
  • the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 deviates from the stoichiometric air-fuel ratio
  • the difference from the stoichiometric air-fuel ratio is determined in advance as a reference difference (that is, (The difference between the rich determination air-fuel ratio and the stoichiometric air-fuel ratio) becomes equal to or greater than the target air-fuel ratio in the direction in which the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 deviates from the stoichiometric air-fuel ratio (rich direction).
  • the air / fuel ratio (in this embodiment, the lean set air / fuel ratio) is set.
  • the reference difference is within 1% of the theoretical air-fuel ratio, preferably within 0.5%, more preferably within 0.35%. Therefore, when the theoretical air-fuel ratio is 14.6, the reference difference is 0.15 or less, preferably 0.073 or less, more preferably 0.051 or less. Further, the difference between the target air-fuel ratio (for example, the weak rich set air-fuel ratio and the lean set air-fuel ratio) from the theoretical air-fuel ratio is set to be larger than the reference difference.
  • FIG. 12 shows the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20, the output current Irdwn of the downstream side air-fuel ratio sensor 41, and the air-fuel ratio correction amount AFC when air-fuel ratio control is performed in the control apparatus for an internal combustion engine of the present invention.
  • 4 is a time chart of the output current Iupup of the upstream air-fuel ratio sensor 40 and the NOx concentration in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20.
  • the output current Iupup of the upstream side air-fuel ratio sensor 40 becomes zero when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio, and the air-fuel ratio of the exhaust gas is rich air-fuel ratio. Is a negative value, and a positive value when the air-fuel ratio of the exhaust gas is a lean air-fuel ratio. Further, when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the rich air-fuel ratio or the lean air-fuel ratio, the absolute value of the output current Iupp of the upstream air-fuel ratio sensor 40 increases as the difference from the stoichiometric air-fuel ratio increases. The value increases.
  • the output current Irdwn of the downstream side air-fuel ratio sensor 41 also changes in the same manner as the output current Iupp of the upstream side air-fuel ratio sensor 40 according to the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20.
  • the air-fuel ratio correction amount AFC is a correction amount related to the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
  • the target air-fuel ratio is the stoichiometric air-fuel ratio.
  • the air-fuel ratio correction amount AFC is a positive value
  • the target air-fuel ratio is a lean air-fuel ratio
  • the air-fuel ratio correction amount AFC is a negative value. In some cases, the target air-fuel ratio becomes a rich air-fuel ratio.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich.
  • the weak rich set correction amount AFCrich is a value corresponding to the weak rich set air-fuel ratio, and is a value smaller than zero. Accordingly, the target air-fuel ratio is set to a rich air-fuel ratio, and accordingly, the output current Iupp of the upstream air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains unburned gas, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases.
  • the output current Irdwn of the downstream side air-fuel ratio sensor becomes substantially 0 (corresponding to the theoretical air-fuel ratio).
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the oxygen storage amount OSAsc decreases beyond the lower limit storage amount (see Clowlim in FIG. 2) at time t 1.
  • the oxygen storage amount OSAsc decreases below the lower limit storage amount, a part of the unburned gas that has flowed into the upstream side exhaust purification catalyst 20 flows out without being purified by the upstream side exhaust purification catalyst 20. Therefore, after time t 1 , the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually decreases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref corresponding to the rich determination air-fuel ratio.
  • the air-fuel ratio correction amount AFC is set to be lean so as to suppress the decrease in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20.
  • the correction amount is switched to AFClean.
  • the lean set correction amount AFClean is a value corresponding to the lean set air-fuel ratio, and is a value larger than zero. Therefore, the target air-fuel ratio is a lean air-fuel ratio.
  • the air-fuel ratio correction amount AFC is switched. This is because even if the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 may slightly deviate from the stoichiometric air-fuel ratio. is there.
  • the oxygen storage amount has decreased beyond the lower limit storage amount only after the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 reaches the rich determination air-fuel ratio.
  • the rich determination air-fuel ratio is such that the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 does not reach when the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient. It is said.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output current Irdwn of the downstream side air-fuel ratio sensor 41 converges to zero.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio.
  • the oxygen storage capacity of the upstream side exhaust purification catalyst 20 has a sufficient margin, the inflowing exhaust gas The oxygen therein is stored in the upstream side exhaust purification catalyst 20, and NOx is reduced and purified. For this reason, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is increased, the oxygen storage amount OSAsc at time t 4 reaches the determination reference storage amount Cref.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich (less than 0) in order to stop storing oxygen in the upstream side exhaust purification catalyst 20. (Small value). Therefore, the target air-fuel ratio is set to a rich air-fuel ratio.
  • the criterion storage amount Cref is the maximum oxygen storage amount Cmax and upper storage amount since it is set sufficiently lower than (see Cuplim in FIG. 2), the oxygen storage amount OSAsc even at time t 5 is the maximum oxygen storage amount Cmax And the upper limit occlusion amount is not reached.
  • the determination reference storage amount Cref is equal to the oxygen storage amount OSAsc. The amount is sufficiently small so as not to reach the maximum oxygen storage amount Cmax or the upper limit storage amount.
  • the criterion storage amount Cref is 3/4 or less, preferably 1/2 or less, more preferably 1/5 or less of the maximum oxygen storage amount Cmax. Therefore, the NOx emission amount from the upstream side exhaust purification catalyst 20 is also suppressed from time t 4 to t 5 .
  • the air-fuel ratio correction amount AFC there is a weak rich set correction amount AFCrich. Accordingly, the target air-fuel ratio is set to a rich air-fuel ratio, and accordingly, the output current Iupp of the upstream air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream exhaust purification catalyst 20 will include unburned gas, the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is gradually decreased at time t 6, the time Similar to t 1 , the oxygen storage amount OSAsc decreases beyond the lower limit storage amount. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
  • the control of the air-fuel ratio correction amount AFC is performed by the ECU 31. Therefore, the ECU 31 determines that the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is equal to the determination reference storage amount Cref when the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio.
  • the oxygen storage amount increasing means for continuously setting the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 to the lean set air-fuel ratio and the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 are determined as the reference storage. When the amount Cref is equal to or greater than the amount Cref, the oxygen storage amount decreases continuously so that the target air-fuel ratio decreases toward zero without reaching the maximum oxygen storage amount Cmax. Means.
  • the NOx emission amount from the upstream side exhaust purification catalyst 20 can always be suppressed. That is, as long as the above-described control is performed, the NOx emission amount from the upstream side exhaust purification catalyst 20 can be basically reduced.
  • the oxygen storage amount OSAsc when the oxygen storage amount OSAsc is estimated based on the output current Iupp of the upstream air-fuel ratio sensor 40, the estimated value of the intake air amount, and the like, an error may occur. Also in this embodiment, since the oxygen storage amount OSAsc is estimated from time t 3 to t 4 , the estimated value of the oxygen storage amount OSAsc includes some errors. However, even if such an error is included, if the reference storage amount Cref is set sufficiently lower than the maximum oxygen storage amount Cmax or the upper limit storage amount, the actual oxygen storage amount OSAsc will be the maximum oxygen storage amount. The amount Cmax and the upper limit storage amount are hardly reached. Therefore, the NOx emission amount from the upstream side exhaust purification catalyst 20 can be suppressed also from such a viewpoint.
  • the oxygen storage amount of the exhaust purification catalyst is kept constant, the oxygen storage capacity of the exhaust purification catalyst will be reduced.
  • the oxygen storage amount OSAsc constantly fluctuates up and down, it is possible to suppress a decrease in the oxygen storage capacity.
  • the downstream air-fuel ratio sensor 41 detects whether or not the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is equal to or less than the rich determination air-fuel ratio.
  • the air-fuel ratio is an air-fuel ratio that is slightly deviated from the stoichiometric air-fuel ratio. Therefore, the range of the air-fuel ratio that can be detected by the downstream air-fuel ratio sensor 41 may be narrow. However, when the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 becomes equal to or lower than the rich determination air-fuel ratio, it is necessary to quickly switch the target air-fuel ratio. Accuracy is required.
  • the upstream air-fuel ratio sensor 40 is used for feedback control so that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the target air-fuel ratio.
  • the range of the air-fuel ratio that can be detected by the upstream air-fuel ratio sensor 40 is required to be wide.
  • the upstream air-fuel ratio sensor 40 a two-cell type air-fuel ratio sensor having a wide range of detectable air-fuel ratio is used as the upstream air-fuel ratio sensor 40, and the downstream air-fuel ratio sensor 41 has high detection accuracy.
  • a one-cell air-fuel ratio sensor is used. Therefore, according to the present embodiment, the upstream air-fuel ratio sensor 40 and the downstream air-fuel ratio sensor 41 can sufficiently satisfy the requirements for each.
  • the air-fuel ratio correction amount AFC is maintained at the lean set correction amount AFClean from time t 2 to t 4 .
  • the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set so as to fluctuate, for example, gradually decrease.
  • the air-fuel ratio correction amount AFC is maintained at the weak rich set correction amount AFrich.
  • the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set so as to fluctuate, for example, gradually decrease.
  • the air-fuel ratio correction amount AFC at the times t 2 to t 4 is the difference between the time average value of the target air-fuel ratio and the theoretical air-fuel ratio in the period, and the target at the times t 4 to t 7 . It is set to be larger than the difference between the time average value of the air-fuel ratio and the theoretical air-fuel ratio.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated based on the output current Iupup of the upstream side air-fuel ratio sensor 40 and the estimated value of the intake air amount into the combustion chamber 5. Yes.
  • the oxygen storage amount OSAsc may be calculated based on other parameters in addition to these parameters, or may be estimated based on parameters different from these parameters.
  • the target air-fuel ratio is switched from the lean set air-fuel ratio to the slightly rich set air-fuel ratio.
  • the timing at which the target air-fuel ratio is switched from the lean set air-fuel ratio to the weakly rich set air-fuel ratio is determined by other parameters such as the engine operation time after the target air-fuel ratio is switched from the weak rich set air-fuel ratio to the lean set air-fuel ratio. May be used as a reference.
  • the target air-fuel ratio is changed from the lean set air-fuel ratio to the slightly rich set air-fuel ratio while the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated to be smaller than the maximum oxygen storage amount. It is necessary to switch.
  • a downstream side exhaust purification catalyst 24 is also provided.
  • the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 is set to a value in the vicinity of the maximum storage amount Cmax by fuel cut control performed every certain period. For this reason, even if exhaust gas containing unburned gas flows out from the upstream side exhaust purification catalyst 20, these unburned gas is oxidized and purified in the downstream side exhaust purification catalyst 24.
  • the fuel cut control is a control that does not inject fuel from the fuel injection valve 11 even when the crankshaft or the piston 3 is moving, for example, during deceleration of a vehicle equipped with an internal combustion engine. .
  • This control is performed, a large amount of air flows into both exhaust purification catalysts 20, 24.
  • FIG. 13 is a diagram similar to FIG. 12, and instead of the transition of the NOx concentration in FIG. 12, the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 and the exhaust gas in the exhaust gas flowing out from the downstream side exhaust purification catalyst 24 are not shown. It shows the transition of the concentration of fuel gas (HC, CO, etc.). Moreover, in the example shown in FIG. 13, the same control as the example shown in FIG. 12 is performed.
  • the fuel cut control is performed before time t 1 .
  • the oxygen storage amount OSAvemc the downstream exhaust purifying catalyst 24 has a value of the maximum oxygen storage amount Cmax vicinity.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is maintained substantially at the stoichiometric air-fuel ratio. For this reason, the oxygen storage amount OSAvemc of the downstream side exhaust purification catalyst 24 is kept constant.
  • unburned gas flows out from the upstream side exhaust purification catalyst 20 at a certain time interval as in the case of time t 1 to t 4 .
  • the unburned gas flowing out in this manner is basically reduced and purified by oxygen stored in the downstream side exhaust purification catalyst 24. Therefore, the unburned gas hardly flows out from the downstream side exhaust purification catalyst 24.
  • the amount of unburned gas and NOx emitted from the downstream side exhaust purification catalyst 24 Will always be less.
  • FIG. 14 which is a functional block diagram
  • the control device in the present embodiment is configured to include each of the functional blocks A1 to A9.
  • each functional block will be described with reference to FIG.
  • the in-cylinder intake air amount calculation means A1 includes an intake air flow rate Ga measured by the air flow meter 39, an engine speed NE calculated based on the output of the crank angle sensor 44, and a map stored in the ROM 34 of the ECU 31 or Based on the calculation formula, the intake air amount Mc to each cylinder is calculated.
  • the basic fuel injection amount calculation means A2 divides the in-cylinder intake air amount Mc calculated by the in-cylinder intake air amount calculation means A1 by the target air-fuel ratio AFT calculated by the target air-fuel ratio setting means A6 described later.
  • An injection instruction is issued to the fuel injection valve 11 so that the fuel of the fuel injection amount Qi calculated in this way is injected from the fuel injection valve 11.
  • the oxygen storage amount calculation means A4 is an estimated value OSAest of the oxygen storage amount of the upstream side exhaust purification catalyst 20 based on the fuel injection amount Qi calculated by the fuel injection amount calculation means A3 and the output current Iupp of the upstream side air-fuel ratio sensor 40. Is calculated. For example, the oxygen storage amount calculating means A4 multiplies the difference between the air-fuel ratio corresponding to the output current Iupp of the upstream air-fuel ratio sensor 40 and the theoretical air-fuel ratio by the fuel injection amount Qi and integrates the obtained value. An estimated value OSAest of the oxygen storage amount is calculated. The estimation of the oxygen storage amount of the upstream side exhaust purification catalyst 20 by the oxygen storage amount calculation means A4 may not always be performed.
  • the oxygen storage amount estimated value OSAest reaches the determination reference storage amount Cref (in FIG. 12).
  • the oxygen storage amount may be estimated only until the time t 4 ).
  • the air-fuel ratio of the target air-fuel ratio is calculated based on the estimated value OSAest of the oxygen storage amount calculated by the oxygen storage amount calculation means A4 and the output current Irdwn of the downstream air-fuel ratio sensor 41.
  • a correction amount AFC is calculated. Specifically, the air-fuel ratio correction amount AFC is the lean set correction amount AFClean when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Iref (value corresponding to the rich determination air-fuel ratio). It is said.
  • the air-fuel ratio correction amount AFC is maintained at the lean set correction amount AFClean until the estimated value OSAest of the oxygen storage amount reaches the determination reference storage amount Cref.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich.
  • the air-fuel ratio correction amount AFC is maintained at the weak rich set correction amount AFCrich until the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref (a value corresponding to the rich determination air-fuel ratio).
  • the target air-fuel ratio setting means A6 adds the air-fuel ratio correction amount AFC calculated by the target air-fuel ratio correction amount calculation means A5 to the reference air-fuel ratio, in this embodiment, the theoretical air-fuel ratio AFR, so that the target air-fuel ratio is set. AFT is calculated. Therefore, the target air-fuel ratio AFT is a slightly rich set air-fuel ratio (when the air-fuel ratio correction amount AFC is a weak rich set correction amount AFCrich) slightly richer than the stoichiometric air-fuel ratio AFR, or is more than the stoichiometric air-fuel ratio AFR.
  • Any lean set air-fuel ratio (in the case where the air-fuel ratio correction amount AFC is the lean set correction amount AFClean) that is lean to some extent.
  • the target air-fuel ratio AFT calculated in this way is input to the basic fuel injection amount calculating means A2 and an air-fuel ratio difference calculating means A8 described later.
  • FIG. 15 is a flowchart showing a control routine for calculation control of the air-fuel ratio correction amount AFC.
  • the illustrated control routine is performed by interruption at regular time intervals.
  • step S11 it is determined whether the calculation condition for the air-fuel ratio correction amount AFC is satisfied.
  • the case where the calculation condition of the air-fuel ratio correction amount is satisfied includes, for example, that fuel cut control is not being performed. If it is determined in step S11 that the target air-fuel ratio calculation condition is satisfied, the process proceeds to step S12.
  • step S12 the output current Iupup of the upstream side air-fuel ratio sensor 40, the output current Irdwn of the downstream side air-fuel ratio sensor 41, and the fuel injection amount Qi are acquired.
  • step S13 the estimated value OSAest of the oxygen storage amount is calculated based on the output current Iupup and the fuel injection amount Qi of the upstream air-fuel ratio sensor 40 acquired in step S12.
  • step S14 it is determined whether or not the lean setting flag Fr is set to zero.
  • the lean setting flag Fr is set to 1 when the air-fuel ratio correction amount AFC is set to the lean setting correction amount AFClean, and is set to 0 otherwise. If the lean setting flag Fr is set to 0 in step S14, the process proceeds to step S15.
  • step S15 it is determined whether or not the output current Irdwn of the downstream air-fuel ratio sensor 41 is equal to or less than the rich determination reference value Iref. When it is determined that the output current Irdwn of the downstream air-fuel ratio sensor 41 is larger than the rich determination reference value Iref, the control routine is ended.
  • the output current Irdwn of the downstream side air-fuel ratio sensor 41 in step S15 Is determined to be less than or equal to the rich determination reference value Iref.
  • the process proceeds to step S16, and the air-fuel ratio correction amount AFC is set to the lean set correction amount AFClean.
  • the lean setting flag Fr is set to 1, and the control routine is ended.
  • step S14 it is determined in step S14 that the lean setting flag Fr is not set to 0, and the process proceeds to step S18.
  • step S18 it is determined whether or not the estimated value OSAest of the oxygen storage amount calculated in step S13 is smaller than the determination reference storage amount Cref.
  • the routine proceeds to step S19, where the air-fuel ratio correction amount AFC is continuously set to the lean set correction amount AFClean.
  • step S18 when the oxygen storage amount of the upstream side exhaust purification catalyst 20 increases, it is determined in step S18 that the estimated value OSAest of the oxygen storage amount is equal to or greater than the determination reference storage amount Cref, and the process proceeds to step S20.
  • step S20 the air-fuel ratio correction amount AFC is set to the weak rich setting correction amount AFCrich.
  • step S21 the lean setting flag Fr is reset to 0, and the control routine is ended.
  • the numerical value conversion means A7 corresponds to the output current Iupup based on the output current Iupup of the upstream air-fuel ratio sensor 40 and a map or calculation formula that defines the relationship between the output current Iupup of the air-fuel ratio sensor 40 and the air-fuel ratio.
  • An upstream exhaust air-fuel ratio AFup is calculated. Therefore, the upstream side exhaust air-fuel ratio AFup corresponds to the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
  • This air-fuel ratio difference DAF is a value that represents the excess or deficiency of the fuel supply amount with respect to the target air-fuel ratio AFT.
  • the F / B correction amount calculation means A9 supplies fuel based on the following equation (1) by subjecting the air-fuel ratio difference DAF calculated by the air-fuel ratio difference calculation means A8 to proportional / integral / differential processing (PID processing). An F / B correction amount DFi for compensating for the excess or deficiency of the amount is calculated. The F / B correction amount DFi calculated in this way is input to the fuel injection amount calculation means A3.
  • DFi Kp / DAF + Ki / SDAF + Kd / DDAF (1)
  • Kp is a preset proportional gain (proportional constant)
  • Ki is a preset integral gain (integral constant)
  • Kd is a preset differential gain (differential constant).
  • DDAF is a time differential value of the air-fuel ratio difference DAF, and is calculated by dividing the difference between the air-fuel ratio difference DAF updated this time and the air-fuel ratio difference DAF updated last time by the time corresponding to the update interval. Is done.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is detected by the upstream side air-fuel ratio sensor 40.
  • this exhaust gas is based on the fuel injection amount from the fuel injection valve 11 and the output of the air flow meter 39. You may make it estimate the air fuel ratio of gas.
  • a control device for an internal combustion engine according to a second embodiment of the present invention will be described with reference to FIG.
  • the configuration and control of the internal combustion engine control device according to the second embodiment are basically the same as the configuration and control of the internal combustion engine control device according to the first embodiment.
  • the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich, the air-fuel ratio correction amount AFC is over a short time at certain time intervals.
  • the value temporarily corresponds to the lean air-fuel ratio (for example, a lean set correction amount AFClean). That is, in the control device of the present embodiment, even when the target air-fuel ratio is the weak rich set air-fuel ratio, the lean air-fuel ratio is temporarily reduced over a short period of time at a certain time interval.
  • the fuel ratio is set.
  • FIG. 16 is a diagram similar to FIG. 12, and the times t 1 to t 7 in FIG. 16 show the same control timing as the times t 1 to t 7 in FIG. Therefore, also in the control shown in FIG. 16, the same control as the control shown in FIG. 7 is performed at each timing from time t 1 to time t 7 .
  • the control shown in FIG. 16 during the time t 4 to t 7 , that is, while the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich, the control is temporarily performed for a plurality of times.
  • the fuel ratio correction amount AFC is set to the lean set correction amount AFClean.
  • the air-fuel ratio correction amount AFC is a lean set correction amount AFClean over a short time from the time t 8. Since the delays in the change in the air-fuel ratio as described above, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is a lean air-fuel ratio over a short time from the time t 9. Thus, when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the lean air-fuel ratio, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 temporarily increases during that time.
  • the air-fuel ratio correction amount AFC is a lean set correction amount AFClean even over a short period of time at time t 10. Accordingly, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is a lean air-fuel ratio over the time t 11 in a short time, during which, the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 Increases temporarily.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is temporarily increased or the oxygen storage amount OSAsc. Can be temporarily reduced. Therefore, according to this embodiment, switch the air-fuel ratio correction quantity AFC weak rich set correction amount AFCrich at time t 4, the output current Irdwn rich determination reference value of the downstream air-fuel ratio sensor 41 at time t 7 The time required to reach Iref can be increased. That is, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 becomes near zero, and the timing at which unburned gas flows out of the upstream side exhaust purification catalyst 20 can be delayed. Thereby, the outflow amount of unburned gas from the upstream side exhaust purification catalyst 20 can be reduced.
  • the air-fuel ratio correction amount AFC is basically set to the weak rich set correction amount AFCrich (time t 4 to t 7 )
  • the air-fuel ratio correction amount AFC is temporarily changed to the lean set correction amount.
  • AFClean When the air-fuel ratio correction amount AFC is temporarily changed in this way, it is not always necessary to change the air-fuel ratio correction amount AFC to the lean set correction amount AFClean, and any value that is leaner than the weak rich set correction amount AFCrich is used. You may change to an air fuel ratio.
  • the air-fuel ratio correction amount AFC is basically set to the lean set correction amount AFClean (time t 2 to t 4 )
  • the air-fuel ratio correction amount AFC may be temporarily set to the weak rich set correction amount AFCrich.
  • the air-fuel ratio correction amount AFC may be changed to any air-fuel ratio as long as it is richer than the lean set correction amount AFClean.
  • the air-fuel ratio correction amount AFC is at time t 2 ⁇ t 4, the difference between the time average value and the stoichiometric air-fuel ratio the target air-fuel ratio in the period, the target air at time t 4 ⁇ t 7 It is set to be larger than the difference between the time average value of the fuel ratio and the stoichiometric air-fuel ratio.
  • the ECU 31 detects that the upstream side when the air-fuel ratio of the exhaust gas detected by the downstream side air-fuel ratio sensor 41 becomes equal to or lower than the rich determination air-fuel ratio.
  • the oxygen storage is performed to make the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 continuously or intermittently the lean set air-fuel ratio.
  • the oxygen storage amount OSAsc of the amount increasing means and the upstream side exhaust purification catalyst 20 becomes equal to or larger than the determination reference storage amount Cref
  • the oxygen storage amount OSAsc decreases toward zero without reaching the maximum oxygen storage amount Cmax.
  • an oxygen storage amount reducing means for continuously or intermittently setting the target air-fuel ratio to a slightly rich set air-fuel ratio.
  • a control device for an internal combustion engine according to a third embodiment of the present invention will be described with reference to FIG.
  • the configuration and control of the control device for the internal combustion engine according to the third embodiment are basically the same as the configuration and control of the control device for the internal combustion engine according to the above embodiment.
  • the air-fuel ratio is controlled so that the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 does not include unburned gas.
  • the target air-fuel ratio is set based on the output current of the downstream air-fuel ratio sensor 41. Specifically, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or greater than the lean determination reference value Iref, the target air-fuel ratio is set to the rich set air-fuel ratio and is maintained at that air-fuel ratio.
  • the lean determination reference value Iref is a value corresponding to a predetermined lean determination air-fuel ratio (for example, 14.65) that is slightly leaner than the theoretical air-fuel ratio.
  • the rich set air-fuel ratio is a predetermined air-fuel ratio that is somewhat richer than the theoretical air-fuel ratio, and is, for example, 10 to 14.55, preferably 12 to 14.52, more preferably 13 to 14.5. It is said to be about.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated.
  • the oxygen storage amount OSAsc is estimated by estimating the intake air amount into the combustion chamber 5 calculated based on the output current Iupup of the upstream air-fuel ratio sensor 40 and the air flow meter 39 or the like, or the fuel from the fuel injection valve 11. This is performed based on the injection amount. Then, when the estimated value of the oxygen storage amount OSAsc becomes equal to or less than a predetermined determination reference storage amount Cref, the target air-fuel ratio that has been the rich set air-fuel ratio until then becomes the weak lean set air-fuel ratio, and is maintained at that air-fuel ratio.
  • the weak lean set air-fuel ratio is a predetermined air-fuel ratio that is slightly leaner than the stoichiometric air-fuel ratio, and is, for example, 14.62 to 15.5, preferably 14.63 to 15, and more preferably 14.65. About 14.8. Thereafter, when the output current Irdwn of the downstream side air-fuel ratio sensor 41 again becomes equal to or greater than the lean determination reference value Iref, the target air-fuel ratio is again set to the rich set air-fuel ratio, and thereafter the same operation is repeated.
  • the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is alternately set to the rich set air-fuel ratio and the weak lean set air-fuel ratio.
  • the difference between the rich set air-fuel ratio and the stoichiometric air-fuel ratio is larger than the difference between the weak lean set air-fuel ratio and the stoichiometric air-fuel ratio. Therefore, in the present embodiment, the target air-fuel ratio is alternately set to the short-time rich set air-fuel ratio and the long-term weak lean set air-fuel ratio.
  • the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 deviates from the stoichiometric air-fuel ratio
  • the difference from the stoichiometric air-fuel ratio is determined in advance as a reference difference (that is, (The difference between the lean determination air-fuel ratio and the stoichiometric air-fuel ratio) becomes equal to or greater than the target air-fuel ratio in the direction in which the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 deviates from the stoichiometric air-fuel ratio (lean direction).
  • the air-fuel ratio (in this embodiment, the rich set air-fuel ratio) is set.
  • the reference difference is set in the same manner as in the first embodiment. Further, the difference between the target air-fuel ratio (for example, the weak lean set air-fuel ratio and the rich set air-fuel ratio) from the theoretical air-fuel ratio is set to be larger than the reference difference.
  • the target air-fuel ratio for example, the weak lean set air-fuel ratio and the rich set air-fuel ratio
  • FIG. 17 is a time chart similar to FIG. 12 when the air-fuel ratio control is performed in the present embodiment.
  • the air-fuel ratio correction amount AFC is set to the weak lean set correction amount AFClean.
  • the weak lean set correction amount AFClean is a value corresponding to the weak lean set air-fuel ratio, and is a value larger than zero. Accordingly, the target air-fuel ratio is set to a lean air-fuel ratio, and accordingly, the output current Iupp of the upstream air-fuel ratio sensor 40 becomes a positive value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains oxygen, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually increases.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually increases, the oxygen storage amount OSAsc increases beyond the upper limit storage amount (see Cuplim in FIG. 2) at time t 1 .
  • the oxygen storage amount OSAsc increases above the upper limit storage amount, part of the oxygen in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 flows out without being stored in the upstream side exhaust purification catalyst 20. Therefore, after time t 1 , the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually increases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the lean determination reference value Iref corresponding to the lean determination air-fuel ratio.
  • the air-fuel ratio correction amount AFC is set to be rich so as to suppress an increase in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20.
  • the correction amount is switched to AFCrich.
  • the rich set correction amount AFCrich is a value corresponding to the rich set air-fuel ratio, and is a value larger than zero. Therefore, the target air-fuel ratio is set to a rich air-fuel ratio.
  • the air-fuel ratio correction amount AFC is switched. This is the same as in the first embodiment when the air-fuel ratio correction amount AFC is switched after the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 reaches the rich determination air-fuel ratio. This is for a reason.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 does not immediately become the rich air-fuel ratio, and some delay occurs.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 changes from the lean air-fuel ratio to the rich air-fuel ratio at time t 3 .
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is the lean air-fuel ratio, so this exhaust gas contains oxygen and NOx. .
  • the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output current Irdwn of the downstream side air-fuel ratio sensor 41 converges to zero.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio.
  • the upstream side exhaust purification catalyst 20 stores a large amount of oxygen, The fuel gas is purified by the upstream side exhaust purification catalyst 20. For this reason, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
  • the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is reduced, the oxygen storage amount OSAsc at time t 4 reaches the determination reference storage amount Cref.
  • the air-fuel ratio correction amount AFC is set to the weak lean set correction amount AFCrich (less than 0) in order to stop the release of oxygen from the upstream side exhaust purification catalyst 20. Switch to a large value). Therefore, the target air-fuel ratio is a lean air-fuel ratio.
  • the criterion occlusion amount Cref because it is set sufficiently higher than zero and lower absorption amount (see Clowlim in FIG. 2), the oxygen storage amount OSAsc even at time t 5 does not reach the zero or lower storage amount .
  • the determination reference storage amount Cref is equal to the oxygen storage amount OSAsc.
  • the amount is sufficiently large so as not to reach zero or the lower limit storage amount.
  • the criterion storage amount Cref is set to 1 ⁇ 4 or more, preferably 1 ⁇ 2 or more, more preferably 4/5 or more of the maximum oxygen storage amount Cmax. Accordingly, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is also suppressed from time t 4 to t 5 .
  • the air-fuel ratio correction amount AFC is a slightly lean set correction amount AFCrich. Accordingly, the target air-fuel ratio is set to a lean air-fuel ratio, and accordingly, the output current Iupp of the upstream air-fuel ratio sensor 40 becomes a positive value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains oxygen, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually increases, and at time t 6 , at time t 1 Similarly, the oxygen storage amount OSAsc decreases beyond the upper limit storage amount. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
  • the control of the air-fuel ratio correction amount AFC is performed by the ECU 31. Therefore, the ECU 31 determines that the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is equal to the determination reference storage amount Cref when the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 becomes equal to or greater than the lean determination air-fuel ratio.
  • the oxygen storage amount reducing means for continuously or intermittently setting the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 to the rich set air-fuel ratio and the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 are When the oxygen storage amount OSAsc does not reach zero, the target air-fuel ratio is continuously or intermittently slightly lean set air-fuel ratio so that the oxygen storage amount OSAsc increases toward the maximum oxygen storage amount Cmax when the reference storage amount Cref is equal to or less than the determination reference storage amount Cref. It can be said that it comprises oxygen storage amount increasing means.
  • the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 can be suppressed. That is, as long as the above-described control is performed, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 can be basically reduced.
  • the air-fuel ratio correction amount AFC is maintained at the rich set correction amount AFCrich from time t 2 to t 4 .
  • the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set to vary, for example, by gradually increasing it.
  • the air-fuel ratio correction amount AFC is maintained at the weak lean set correction amount AFlean.
  • the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set to vary, for example, by gradually increasing it.
  • the air-fuel ratio correction amount AFC at the times t 2 to t 4 is the difference between the time average value of the target air-fuel ratio and the theoretical air-fuel ratio in the period, and the target at the times t 4 to t 7 . It is set to be larger than the difference between the time average value of the air-fuel ratio and the theoretical air-fuel ratio.
  • control device for an internal combustion engine according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the configuration of the control device for the internal combustion engine according to the fourth embodiment is basically the same as the configuration of the control device for the internal combustion engine according to the above embodiment.
  • the control device of this embodiment performs air-fuel ratio control different from the control in the above embodiment.
  • the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is set based on the output current Irdwn of the downstream side air-fuel ratio sensor 41 and the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. . Specifically, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Irrich, the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 becomes the rich air-fuel ratio. To be judged. In this case, the target air-fuel ratio is made the lean set air-fuel ratio by the lean switching means, and is maintained at that air-fuel ratio.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 reaches a predetermined storage amount larger than zero with the target air-fuel ratio set to the lean set air-fuel ratio, the target air-fuel ratio is weakened by the lean degree reducing means.
  • the lean set air-fuel ratio is switched to (the oxygen storage amount at this time is referred to as “lean degree change reference storage amount”).
  • the lean degree change reference storage amount is the storage amount whose difference from zero is the predetermined change reference difference ⁇ .
  • the target air-fuel ratio is set to the rich set air-fuel ratio by the rich switching means.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 reaches a predetermined storage amount smaller than the maximum storage amount with the target air-fuel ratio set to the rich set air-fuel ratio
  • the target air-fuel ratio is reduced by the rich degree reducing means.
  • the oxygen storage amount at this time is referred to as “rich degree change reference storage amount”.
  • the rich degree change reference storage amount is the storage amount whose difference from the maximum oxygen storage amount is the predetermined change reference difference ⁇ .
  • the target air-fuel ratio is first set to the lean set air-fuel ratio, and then the oxygen storage amount OSAsc is When it increases to a certain extent, it is set to a slightly lean set air-fuel ratio. Thereafter, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or greater than the lean determination reference value Irlean, first, the target air-fuel ratio is set to the rich set air-fuel ratio, and then the oxygen storage amount OSAsc is reduced to some extent to weakly rich set-empty. The fuel ratio is set and the same operation is repeated.
  • FIG. 18 is a time chart of the oxygen storage amount OSAsc and the like of the upstream side exhaust purification catalyst 20 when air-fuel ratio control is performed in the control device for an internal combustion engine according to the present embodiment.
  • the air-fuel ratio correction amount AFC of the target air-fuel ratio is set to the weak rich set correction amount AFCsrich.
  • the weak rich set correction amount AFCsrich is a value corresponding to the weak rich set air-fuel ratio, and is a value smaller than zero. Therefore, the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is set to a rich air-fuel ratio, and accordingly, the output current Iupp of the upstream side air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains unburned gas, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases.
  • the unburned gas in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is oxidized and purified by oxygen stored in the upstream side exhaust purification catalyst 20. For this reason, not only the amount of oxygen (and NOx) discharged from the upstream side exhaust purification catalyst 20 but also the amount of unburned gas discharged is suppressed.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases, at time t 1 , the oxygen storage amount OSAsc decreases beyond the lower limit storage amount (see Crowlim in FIG. 2).
  • the oxygen storage amount OSAsc decreases below the lower limit storage amount, a part of the unburned gas that has flowed into the upstream side exhaust purification catalyst 20 flows out without being purified by the upstream side exhaust purification catalyst 20. Therefore, after time t 1 , the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually decreases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases.
  • the unburned gas contained in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is oxidized and purified by the downstream side exhaust purification catalyst 24.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 is gradually decreased, reaches the rich determination reference value Irrich corresponding to rich determination air-fuel ratio at time t 2.
  • the air-fuel ratio correction amount AFC is made lean so as to suppress the decrease in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. It is switched to the set correction amount AFCgreen.
  • the lean set correction amount AFCgreen is a value corresponding to the lean set air-fuel ratio, and is a value larger than zero.
  • the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is changed to the lean air-fuel ratio at time t 2, the output current Ipup of the upstream air-fuel ratio sensor 40 with a positive value, the upstream exhaust purification catalyst 20
  • the oxygen storage amount OSAsc begins to increase.
  • the output current Iupp of the upstream side air-fuel ratio sensor 40 changes simultaneously with the switching of the air-fuel ratio correction amount AFC in order to make the explanation easy to understand. So that a delay occurs.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 decreases. This is because there is a delay from when the target air-fuel ratio is switched until the exhaust gas reaches the upstream side exhaust purification catalyst 20, and the unburned gas still flows out of the upstream side exhaust purification catalyst 20.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output of the downstream side air-fuel ratio sensor 41
  • the current Irdwn also increases. Therefore, the output current Irdwn of the downstream air-fuel ratio sensor 41 is larger than the rich determination reference value Irrich at time t 3 or later. Also during this time, the air-fuel ratio correction amount AFC of the target air-fuel ratio is maintained at the lean set correction amount AFCglan, and the output current Iupup of the upstream side air-fuel ratio sensor 40 is maintained at a positive value.
  • the upstream exhaust purification catalyst 20 When increase of the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 continues to reach the degree of leanness change reference occlusion amount Clean at time t 4.
  • the air-fuel ratio correction is performed so as to slow down the increase rate of the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20.
  • the amount AFC is switched to the weak lean set correction amount AFCslen.
  • the weak lean set correction amount AFCslen is a value corresponding to the weak lean set air-fuel ratio, and is a value smaller than AFCgreen and larger than zero.
  • the target air-fuel ratio is switched to the slightly lean set air-fuel ratio at time t 4 , the difference between the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 and the stoichiometric air-fuel ratio is also reduced. Along with this, the value of the output current Iupp of the upstream side air-fuel ratio sensor 40 decreases, and the increase rate of the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. Note that oxygen and NOx in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 are occluded and purified by the upstream side exhaust purification catalyst 20. For this reason, not only the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 but also the amount of NOx discharged is suppressed.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually increases although its increase rate is slow.
  • the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 gradually increases, at time t 5, the oxygen storage amount OSAsc increases beyond the upper limit storage amount (see Cuplim in FIG. 2).
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually increases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases. Note that NOx is not reduced or purified as part of the oxygen is not occluded in the upstream side exhaust purification catalyst 20, but this NOx is reduced and purified by the downstream side exhaust purification catalyst 24.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 is gradually increased, at time t 6 reaches the lean determination reference value Irlean corresponding to lean determination air-fuel ratio.
  • the air-fuel ratio correction amount AFC is set to be rich so as to suppress an increase in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20.
  • the correction amount is switched to AFCgrich.
  • the rich set correction amount AFCgrich is a value corresponding to the rich set air-fuel ratio, and is a value smaller than zero.
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output of the downstream side air-fuel ratio sensor 41
  • the current Irdwn is also reduced.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes zero or less after time t 7 .
  • the air-fuel ratio correction amount AFC of the target air-fuel ratio is maintained at the rich set correction amount AFCgrich, and the output current Iupup of the upstream air-fuel ratio sensor 40 is maintained at a negative value.
  • the upstream exhaust purification catalyst 20 When reduction of the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 continues to reach the degree of richness change reference occlusion amount Crich at time t 8.
  • the air-fuel ratio correction is performed so as to slow down the decrease rate of the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20.
  • the amount AFC is switched to the weak rich set correction amount AFCsrich.
  • the weak rich set correction amount AFCsrich is a value corresponding to the weak rich set air-fuel ratio, and is a value larger than AFCgrich and smaller than 0.
  • the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases although its decrease rate is slow, and as a result, unburned gas flows out of the upstream side exhaust purification catalyst 20.
  • the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Irrich. Thereafter, an operation similar to the operation at times t 1 to t 8 is repeated.
  • the target air-fuel ratio is a rich air-fuel ratio immediately after being changed from the rich air-fuel ratio to the lean air-fuel ratio, and the target air-fuel ratio at time t 6 from the lean air-fuel ratio at time t 2 Immediately after the change to, the difference from the stoichiometric air-fuel ratio is made large (that is, the rich degree or lean degree is made large). Therefore, it is possible to reduce the NOx that has been flowing from the upstream exhaust purification catalyst 20 in the unburnt gas and the time t 6 that was flowing out of the upstream exhaust purification catalyst 20 at time t 2 quickly. Therefore, the outflow of unburned gas and NOx from the upstream side exhaust purification catalyst 20 can be suppressed.
  • the target air-fuel ratio is switched to the weak lean set air-fuel ratio at time t 4.
  • the target air-fuel ratio is switched to the weak lean set air-fuel ratio at time t 4.
  • the outflow amount of NOx and unburned gas from the upstream side exhaust purification catalyst 20 per unit time can be reduced. Furthermore, according to the air-fuel ratio control, at time t 5, it can be suppressed to be small the outflow even when the NOx flows out of the upstream exhaust purification catalyst 20. Therefore, the outflow of NOx from the upstream side exhaust purification catalyst 20 can be suppressed.
  • the target air-fuel ratio control of the present embodiment after setting the target air-fuel ratio to a rich set air-fuel ratio at time t 6, it stops the outflow of NOx (oxygen) from the upstream exhaust purification catalyst 20 and the upstream side from reduced oxygen storage amount OSAsc of the exhaust purification catalyst 20 to some extent, the target air-fuel ratio is switched to the weak rich set air-fuel ratio at time t 8.
  • NOx oxygen
  • OSAsc oxygen storage amount
  • the outflow amount of NOx and unburned gas from the upstream side exhaust purification catalyst 20 per unit time can be reduced. Furthermore, according to the above air-fuel ratio control, even when unburned gas flows out from the upstream side exhaust purification catalyst 20 at time t 1 , the outflow amount can be reduced. Therefore, the outflow of unburned gas from the upstream side exhaust purification catalyst 20 can be suppressed.
  • the target air-fuel ratio is changed so that the difference from the stoichiometric air-fuel ratio becomes small.
  • the timing for changing the target air-fuel ratio so that the difference from the stoichiometric air-fuel ratio becomes small may be any time between the times t 2 and t 6 .
  • the target air-fuel ratio is changed so as to reduce the difference from the stoichiometric air-fuel ratio. May be.
  • the target air-fuel ratio is changed so that the difference from the stoichiometric air-fuel ratio becomes small. I am letting.
  • the timing for changing the target air-fuel ratio so that the difference from the stoichiometric air-fuel ratio becomes small may be any time between the times t 6 and t 2 . For example, as shown in FIG.
  • the target air-fuel ratio is fixed to the weak lean set air-fuel ratio or the weak rich set air-fuel ratio between time t 4 and t 6 and between time t 8 and t 2 .
  • the target air-fuel ratio may be set so that the difference becomes smaller in steps, or may be set so that the difference becomes smaller continuously.
  • the ECU 31 An air-fuel ratio lean switching means for changing the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 20 to a lean set air-fuel ratio, and a downstream air-fuel ratio sensor after the target air-fuel ratio is changed by the air-fuel ratio lean switching means
  • the target air-fuel ratio is set to a lean air-fuel ratio (weak lean setting) in which the difference from the stoichiometric air-fuel ratio is smaller than the lean air-fuel ratio before the output current 41 becomes equal to or greater than the lean determination air-fuel ratio that is leaner than the stoichiometric air-fuel ratio.
  • the target air-fuel ratio is reduced.
  • the oxygen storage amount of the exhaust purification catalyst is described as changing between the maximum oxygen storage amount and zero. This means that the amount of oxygen that can be further stored by the exhaust purification catalyst varies between zero (when the oxygen storage amount is the maximum oxygen storage amount) and the maximum value (when the oxygen storage amount is zero). Means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A control device for an internal combustion engine, equipped with: an exhaust purification catalyst (20) provided in the exhaust passage; an upstream air-fuel ratio sensor (40) and a downstream air-fuel ratio sensor (41), respectively provided upstream and downstream from the exhaust purification catalyst; and an engine control device that controls the internal combustion engine in response to the output from these air-fuel ratio sensors. The upstream air-fuel ratio sensor (40) is a two-cell air-fuel ratio sensor equipped with: a gas measurement chamber (81) into which exhaust gas can be made to flow; a pump cell (90) that pumps in oxygen or pumps out oxygen with respect to the exhaust gas in the gas measurement chamber, in response to the pump current; and a standard cell (91) the detection value of which changes in response to the oxygen concentration in the gas measurement chamber. The downstream air-fuel ratio sensor (41) is a one-cell air fuel-ratio sensor equipped with: a first electrode (52) exposed to the exhaust gas through a diffusion-controlling layer; a second electrode (53) exposed to a standard atmosphere; a solid electrolyte layer (51) arranged between the two electrodes; a voltage application device (60) that applies a voltage between the two electrodes; and a current detection device (61) that detects the current flowing between the two electrodes.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、空燃比センサの出力に応じて内燃機関を制御する内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine that controls the internal combustion engine in accordance with the output of an air-fuel ratio sensor.
 従来から、内燃機関の排気通路に空燃比センサを設け、この空燃比センサの出力に基づいて内燃機関に供給する燃料量を制御する内燃機関の制御装置が広く知られている。斯かる制御装置としては、例えば、排気通路に設けられた排気浄化触媒よりも排気流れ方向上流側に設けられた上流側空燃比センサと、排気浄化触媒よりも排気流れ方向下流側に設けられた下流側空燃比センサとを具備するものが知られている(例えば、特許文献1~4を参照)。 2. Description of the Related Art Conventionally, control devices for internal combustion engines are widely known in which an air-fuel ratio sensor is provided in the exhaust passage of the internal combustion engine and the amount of fuel supplied to the internal combustion engine is controlled based on the output of the air-fuel ratio sensor. As such a control device, for example, an upstream air-fuel ratio sensor provided upstream of the exhaust purification catalyst provided in the exhaust passage, and provided downstream of the exhaust purification catalyst in the exhaust flow direction. A device having a downstream air-fuel ratio sensor is known (see, for example, Patent Documents 1 to 4).
 斯かる制御装置では、上流側空燃比センサの出力に基づいて排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるように燃料噴射量をフィードバック制御している。加えて、斯かる制御装置では、下流側空燃比センサの出力に基づいて、燃料噴射量のフィードバック制御における目標空燃比をフィードバック制御している。 In such a control device, the fuel injection amount is feedback controlled so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes the target air-fuel ratio based on the output of the upstream air-fuel ratio sensor. In addition, in such a control device, the target air-fuel ratio in the feedback control of the fuel injection amount is feedback-controlled based on the output of the downstream air-fuel ratio sensor.
 特に、特許文献1に記載の制御装置では、下流側空燃比センサによって検出された排気ガスの空燃比(以下、「排気空燃比」ともいう)が理論空燃比よりもリッチ(以下、「リッチ空燃比」ともいう)であるときには目標空燃比が所定値だけリーン側へ補正される。一方、下流側空燃比センサによって検出された排気空燃比が理論空燃比よりもリーン(以下、「リーン空燃比」ともいう)であるときには目標空燃比が所定値だけリッチ側へ補正される。そして、この所定値は、単位排気ガス量あたりの触媒容量に応じて変化せしめられ、排気ガス量が多いほど、すなわち単位排気ガス量あたりの触媒容量が小さいほど、小さい値とされている。 In particular, in the control device described in Patent Document 1, the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor (hereinafter also referred to as “exhaust air-fuel ratio”) is richer than the stoichiometric air-fuel ratio (hereinafter referred to as “rich air-fuel ratio”). The target air-fuel ratio is corrected to the lean side by a predetermined value. On the other hand, when the exhaust air-fuel ratio detected by the downstream air-fuel ratio sensor is leaner than the stoichiometric air-fuel ratio (hereinafter also referred to as “lean air-fuel ratio”), the target air-fuel ratio is corrected to the rich side by a predetermined value. The predetermined value is changed according to the catalyst capacity per unit exhaust gas amount, and is set to a smaller value as the exhaust gas amount increases, that is, as the catalyst capacity per unit exhaust gas amount decreases.
 ここで、単位排気ガス量あたりの触媒容量が小さくなると、触媒の浄化能力が低くなって触媒上流の空燃比に対する触媒下流の空燃比の応答性が遅くなる。したがって、特許文献1に記載の制御装置によれば、上述するように所定値を設定することで、触媒下流の空燃比の応答性が遅くなるときに、下流側空燃比センサに基づいた目標空燃比の補正における応答速度を遅くすることができるとされている。そして、その結果、特許文献1に記載の制御装置によれば、空燃比を精度良く制御することができるとしている。 Here, when the catalyst capacity per unit exhaust gas amount becomes small, the purification capacity of the catalyst becomes low, and the response of the air-fuel ratio downstream of the catalyst to the air-fuel ratio upstream of the catalyst becomes slow. Therefore, according to the control device described in Patent Document 1, when the predetermined value is set as described above, the target air-fuel ratio sensor based on the downstream air-fuel ratio sensor is slowed down when the response of the air-fuel ratio downstream of the catalyst is delayed. It is said that the response speed in the correction of the fuel ratio can be reduced. As a result, according to the control device described in Patent Document 1, the air-fuel ratio can be accurately controlled.
特開2006-153026号公報JP 2006-153026 A 特開平08-232723号公報Japanese Patent Laid-Open No. 08-232723 特開2009-162139号公報JP 2009-162139 A 特開2001-234787号公報JP 2001-234787 A
 ところで、上述したように空燃比の制御を行った場合には、上流側空燃比センサと下流側空燃比センサとに求められる性能が異なる。 Incidentally, when the air-fuel ratio is controlled as described above, the performance required for the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor are different.
 上流側空燃比センサは、その出力に基づいて排気浄化触媒に流入する排気ガスの空燃比が目標空燃比となるように燃料噴射量をフィードバック制御するのに用いられる。このとき排気空燃比の検出範囲が狭いと、排気空燃比が或る一定以上高くなるか又は或る一定以上低くなったときに、空燃比センサの出力は一定になる。一方、機関本体から流出して排気浄化触媒に流入する排気ガスの空燃比は或る程度変動することから、上流側空燃比センサにおける排気空燃比の検出範囲が狭いと、空燃比センサは適切に排気空燃比を検出することができない。したがって、上流側空燃比センサには、排気空燃比の検出範囲が広いことが要求される。 The upstream air-fuel ratio sensor is used for feedback control of the fuel injection amount so that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst becomes the target air-fuel ratio based on the output. If the exhaust air-fuel ratio detection range is narrow at this time, the output of the air-fuel ratio sensor becomes constant when the exhaust air-fuel ratio becomes higher than a certain level or lower than a certain level. On the other hand, since the air-fuel ratio of the exhaust gas flowing out from the engine body and flowing into the exhaust purification catalyst fluctuates to some extent, if the detection range of the exhaust air-fuel ratio in the upstream side air-fuel ratio sensor is narrow, the air-fuel ratio sensor is appropriately The exhaust air / fuel ratio cannot be detected. Therefore, the upstream air-fuel ratio sensor is required to have a wide exhaust air-fuel ratio detection range.
 また、上流側空燃比センサは、排気浄化触媒を流通する前の排気ガスに曝される。すなわち、上流側空燃比センサは、未燃ガス(HCやCO等)、NOx及び酸素等を多量に含んだ排気ガスに曝される。このため、上流側センサには、斯かる排気ガスに曝されても劣化しにくいこと、すなわち、耐久性が高いことも要求される。 Further, the upstream air-fuel ratio sensor is exposed to the exhaust gas before flowing through the exhaust purification catalyst. That is, the upstream air-fuel ratio sensor is exposed to exhaust gas containing a large amount of unburned gas (HC, CO, etc.), NOx, oxygen, and the like. For this reason, the upstream sensor is also required to be resistant to deterioration even when exposed to such exhaust gas, that is, to have high durability.
 一方、下流側空燃比センサについては、排気空燃比の検出精度が高いことが要求される。すなわち、排気ガス中のNOxや未燃ガスは基本的に排気浄化触媒で浄化され、また、排気ガス中の酸素は基本的に排気浄化触媒に吸蔵される。このため、通常、排気浄化触媒からはほぼ理論空燃比の排気ガスのみが排出される。そして、下流側空燃比センサは、斯かる作用を有する排気浄化触媒から排出された排気ガスが理論空燃比から僅かにでもずれた場合に、それを正確に検出することが必要とされる。したがって、下流側空燃比センサに対しては、特定の空燃比付近(特許文献1の場合には理論空燃比付近)における排気空燃比の検出精度が高いことが要求される。 On the other hand, the downstream air-fuel ratio sensor is required to have high detection accuracy of the exhaust air-fuel ratio. That is, NOx and unburned gas in the exhaust gas are basically purified by the exhaust purification catalyst, and oxygen in the exhaust gas is basically stored in the exhaust purification catalyst. For this reason, normally, only the exhaust gas having a substantially stoichiometric air-fuel ratio is discharged from the exhaust purification catalyst. The downstream air-fuel ratio sensor is required to accurately detect when the exhaust gas discharged from the exhaust purification catalyst having such an action slightly deviates from the stoichiometric air-fuel ratio. Therefore, the downstream air-fuel ratio sensor is required to have high detection accuracy of the exhaust air-fuel ratio in the vicinity of a specific air-fuel ratio (in the case of Patent Document 1, near the theoretical air-fuel ratio).
 これに対して、上記特許文献1~4のいずれにおいても、上流側空燃比センサとしては排気空燃比に対する出力特性がリニアに変化する空燃比センサを用い、下流側空燃比センサとして排気空燃比に対する出力特性が図9に示したようないわゆる「Z特性」を有する酸素センサを用いている。しかしながら、上流側空燃比センサ及び下流側空燃比センサとして斯かるセンサを用いるだけでは、上述した要求を十分に満たすことはできない。 On the other hand, in any of the above Patent Documents 1 to 4, an air-fuel ratio sensor whose output characteristic with respect to the exhaust air-fuel ratio changes linearly as the upstream air-fuel ratio sensor, and the exhaust air-fuel ratio as the downstream air-fuel ratio sensor. An oxygen sensor having a so-called “Z characteristic” as shown in FIG. 9 is used as the output characteristic. However, just using such sensors as the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor cannot sufficiently satisfy the above-described requirements.
 そこで、上記課題に鑑みて、本発明の目的は、上流側空燃比センサ及び下流側空燃比センサがそれぞれに対する要求を十分に満たすように構成された、内燃機関の制御装置を提供することにある。 Therefore, in view of the above problems, an object of the present invention is to provide an internal combustion engine control device configured so that the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor sufficiently satisfy the requirements for each. .
 上記課題を解決するために、第1の発明では、内燃機関の排気通路に設けられた排気浄化触媒と、該排気浄化触媒よりも排気流れ方向上流側において前記排気通路に設けられた上流側空燃比センサと、前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた下流側空燃比センサと、前記上流側空燃比センサ又は下流側空燃比センサの出力に基づいて内燃機関を制御する機関制御装置とを具備する、内燃機関の制御装置において、前記上流側空燃比センサは、検出対象である排気ガスが流入せしめられる被測ガス室と、ポンプ電流に応じて該被測ガス室内の排気ガスに対して酸素の汲み入れ及び汲み出しを行うポンプセルと、前記被測ガス室内の空燃比に応じて検出値が変化する基準セルと、該検出値が一定になるようにポンプ電流を制御するポンプ電流制御装置と、前記ポンプ電流を当該上流側空燃比センサの出力電流として検出するポンプ電流検出装置とを具備する2セル型の空燃比センサであり、前記下流側空燃比センサは、拡散律速層を介して検出対象である排気ガスに曝される第一電極と、基準雰囲気に曝される第二電極と、前記第一電極と前記第二電極との間に配置された固体電解質層と、前記第一電極と前記第二電極との間に電圧を印加する電圧印加装置と、前記第一電極と前記第二電極との間に流れる電流を当該下流側空燃比センサの出力電流として検出する電流検出装置とを具備する1セル型の空燃比センサである、内燃機関の制御装置が提供される。 In order to solve the above problems, according to a first aspect of the present invention, an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, and an upstream side empty provided in the exhaust passage upstream of the exhaust purification catalyst in the exhaust flow direction. An internal combustion engine based on an output of a fuel ratio sensor, a downstream air-fuel ratio sensor provided in the exhaust passage downstream of the exhaust purification catalyst in the exhaust flow direction, and an upstream air-fuel ratio sensor or downstream air-fuel ratio sensor; In the control device for an internal combustion engine, the upstream air-fuel ratio sensor includes a measured gas chamber into which an exhaust gas to be detected is allowed to flow, and the measured gas according to a pump current. A pump cell that pumps oxygen into and out of the indoor exhaust gas, a reference cell whose detection value changes according to the air-fuel ratio in the measured gas chamber, and the detection value is constant A two-cell type air-fuel ratio sensor comprising: a pump current control device for controlling the pump current; and a pump current detection device for detecting the pump current as an output current of the upstream air-fuel ratio sensor. The fuel ratio sensor is disposed between the first electrode exposed to the exhaust gas to be detected through the diffusion rate limiting layer, the second electrode exposed to the reference atmosphere, and the first electrode and the second electrode. A solid electrolyte layer, a voltage applying device that applies a voltage between the first electrode and the second electrode, and a current flowing between the first electrode and the second electrode that flows the downstream air-fuel ratio There is provided a control device for an internal combustion engine, which is a one-cell air-fuel ratio sensor including a current detection device that detects the output current of the sensor.
 第2の発明では、第1の発明において、前記機関制御装置は、前記上流側空燃比センサの出力電流が目標空燃比に相当する値となるように前記排気浄化触媒に流入する排気ガスの空燃比を制御し、前記目標空燃比は、理論空燃比とは異なる空燃比とされる。 According to a second aspect, in the first aspect, the engine control device is configured such that the exhaust gas flowing into the exhaust purification catalyst is emptied so that an output current of the upstream air-fuel ratio sensor becomes a value corresponding to a target air-fuel ratio. The target air-fuel ratio is controlled to be an air-fuel ratio different from the stoichiometric air-fuel ratio.
 第3の発明では、第2の発明において、前記目標空燃比は、理論空燃比よりもリッチの空燃比と理論空燃比よりもリーンの空燃比との間で交互に切り替えられる。 In the third invention, in the second invention, the target air-fuel ratio is alternately switched between an air-fuel ratio richer than the stoichiometric air-fuel ratio and an air-fuel ratio leaner than the stoichiometric air-fuel ratio.
 第4の発明では、第3の発明において、前記機関制御装置は、前記下流側空燃比センサの出力電流に相当する空燃比が理論空燃比からずれて理論空燃比からの差が予め定められた判定基準差以上になったときには、前記目標空燃比を、下流側空燃比センサの出力電流に相当する空燃比が理論空燃比からずれた方向とは反対方向に理論空燃比からずれた空燃比とする。 According to a fourth aspect, in the third aspect, the engine control device is configured such that the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor deviates from the stoichiometric air-fuel ratio and a difference from the stoichiometric air-fuel ratio is predetermined. When the difference is greater than or equal to the determination reference difference, the target air-fuel ratio is set to an air-fuel ratio that deviates from the stoichiometric air-fuel ratio in a direction opposite to the direction in which the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor deviates from the stoichiometric air-fuel ratio To do.
 第5の発明では、第4の発明において、前記判定基準差は、理論空燃比の1%以内の値である。 In the fifth invention, in the fourth invention, the judgment reference difference is a value within 1% of the theoretical air-fuel ratio.
 第6の発明では、第4又は第5の発明において、前記目標空燃比は、その理論空燃比からの差が前記判定基準差よりも大きくなるように設定される。 In the sixth invention, in the fourth or fifth invention, the target air-fuel ratio is set such that a difference from the theoretical air-fuel ratio is larger than the determination reference difference.
 第7の発明では、第4~第6のいずれか一つの発明において、前記機関制御装置は、前記下流側空燃比センサの出力電流に相当する空燃比が理論空燃比から判定基準差分だけリッチ側にずれたリッチ判定空燃比以下となったときに、前記排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量よりも少ない所定の吸蔵量となるまで、前記目標空燃比を継続的又は断続的に理論空燃比よりもリーンにする酸素吸蔵量増加手段と、前記排気浄化触媒の酸素吸蔵量が前記所定の吸蔵量以上になったときに、該酸素吸蔵量が最大酸素吸蔵量に達することなく零に向けて減少するように、前記目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする酸素吸蔵量減少手段とを具備する。 In a seventh invention, in any one of the fourth to sixth inventions, the engine control device is configured such that the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor is richer than the stoichiometric air-fuel ratio by a determination reference difference. The target air-fuel ratio is theoretically or intermittently maintained until the oxygen storage amount of the exhaust purification catalyst becomes a predetermined storage amount smaller than the maximum oxygen storage amount when the air-fuel ratio becomes less than the rich determination air-fuel ratio. When the oxygen storage amount of the exhaust purification catalyst becomes equal to or greater than the predetermined storage amount, the oxygen storage amount becomes zero without reaching the maximum oxygen storage amount. Oxygen storage amount reducing means for continuously or intermittently making the target air-fuel ratio richer than the stoichiometric air-fuel ratio so as to decrease toward the target.
 第8の発明では、第7の発明において、前記酸素吸蔵量増加手段によって継続的又は断続的に理論空燃比よりもリーンにされている期間における前記目標空燃比の時間平均値と理論空燃比との差は、前記酸素吸蔵量減少手段によって継続的又は断続的にリッチにされている期間における前記目標空燃比の時間平均値と理論空燃比との差よりも大きい。 According to an eighth invention, in the seventh invention, the time average value of the target air-fuel ratio and the stoichiometric air-fuel ratio in a period in which the oxygen storage amount increasing means is continuously or intermittently made leaner than the stoichiometric air-fuel ratio. Is larger than the difference between the time average value of the target air-fuel ratio and the stoichiometric air-fuel ratio during a period in which the oxygen storage amount reducing means continuously or intermittently enriches the oxygen storage amount.
 第9の発明では、第4~第6のいずれか一つの発明において、前記機関制御装置は、前記下流側空燃比センサの出力電流に相当する空燃比が理論空燃比から判定基準差分だけリーン側にずれたリーン判定空燃比以下となったときに、前記排気浄化触媒の酸素吸蔵量が零よりも多い所定の吸蔵量となるまで、前記目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする酸素吸蔵量減少手段と、前記排気浄化触媒の酸素吸蔵量が前記所定の吸蔵量以下になったときに、該酸素吸蔵量が零に達することなく最大酸素吸蔵量に向けて増加するように、前記目標空燃比を継続的又は断続的に理論空燃比よりもリーンにする酸素吸蔵量増加手段とを具備する。 In a ninth aspect based on any one of the fourth to sixth aspects, the engine control device is configured such that an air-fuel ratio corresponding to an output current of the downstream air-fuel ratio sensor is leaner than a stoichiometric air-fuel ratio by a determination reference difference. Until the oxygen storage amount of the exhaust purification catalyst becomes a predetermined storage amount greater than zero, the target air-fuel ratio is continuously or intermittently reduced from the stoichiometric air-fuel ratio. And the oxygen storage amount reducing means for increasing the oxygen storage amount, and when the oxygen storage amount of the exhaust purification catalyst falls below the predetermined storage amount, the oxygen storage amount increases toward the maximum oxygen storage amount without reaching zero. And an oxygen storage amount increasing means for making the target air-fuel ratio leaner than the stoichiometric air-fuel ratio continuously or intermittently.
 第10の発明では、第9の発明において、前記酸素吸蔵量減少手段によって継続的又は断続的に理論空燃比よりもリッチにされている期間における前記目標空燃比の時間平均値と理論空燃比との差は、前記酸素吸蔵量増加手段によって継続的又は断続的にリーンにされている期間における目標空燃比の時間平均値と理論空燃比との差よりも大きい。 According to a tenth aspect, in the ninth aspect, the time average value of the target air-fuel ratio and the stoichiometric air-fuel ratio in a period in which the oxygen storage amount reducing means is continuously or intermittently made richer than the stoichiometric air-fuel ratio. Is greater than the difference between the time average value of the target air-fuel ratio and the stoichiometric air-fuel ratio during the period in which the oxygen storage amount increasing means continuously or intermittently leans.
 第11の発明では、第4~第6のいずれか一つの発明において、前記機関制御装置は、前記下流側空燃比センサの出力電流が理論空燃比よりもリッチなリッチ判定空燃比に相当する値以下となったときに、前記排気浄化触媒に流入する排気ガスの目標空燃比を理論空燃比よりもリーンのリーン設定空燃比まで変化させる空燃比リーン切替手段と、該空燃比リーン切替手段によって前記目標空燃比を変化させた後であって前記下流側空燃比センサの出力電流が理論空燃比よりもリーンなリーン判定空燃比に相当する値以上になる前に前記目標空燃比を前記リーン設定空燃比よりも理論空燃比からの差が小さいリーン空燃比に変化させるリーン度合い低下手段と、前記下流側空燃比センサの出力電流が前記リーン判定空燃比に相当する値以上なったときに、前記目標空燃比を理論空燃比よりもリッチのリッチ設定空燃比まで変化させる空燃比リッチ切替手段と、該空燃比リッチ切替手段によって前記目標空燃比を変化させた後であって前記下流側空燃比センサの出力電流が前記リッチ判定空燃比に相当する値以下となる前に前記目標空燃比を前記リッチ設定空燃比よりも理論空燃比からの差が小さいリッチ空燃比に変化させるリッチ度合い低下手段とを具備する。 In an eleventh aspect of the invention, in any one of the fourth to sixth aspects of the invention, the engine control device has a value corresponding to a rich determination air-fuel ratio in which an output current of the downstream air-fuel ratio sensor is richer than a theoretical air-fuel ratio. The air-fuel ratio lean switching means for changing the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst to a lean set air-fuel ratio that is leaner than the stoichiometric air-fuel ratio, and the air-fuel ratio lean switching means After the target air-fuel ratio is changed, the target air-fuel ratio is set to the lean setting air-fuel ratio before the output current of the downstream-side air-fuel ratio sensor becomes equal to or greater than the value corresponding to the lean determination air-fuel ratio leaner than the stoichiometric air-fuel ratio. A lean degree reducing means for changing to a lean air-fuel ratio that has a smaller difference from the stoichiometric air-fuel ratio than the fuel ratio, and an output current of the downstream air-fuel ratio sensor is not less than a value corresponding to the lean determination air-fuel ratio. The air-fuel ratio rich switching means for changing the target air-fuel ratio to a rich set air-fuel ratio richer than the stoichiometric air-fuel ratio, and after changing the target air-fuel ratio by the air-fuel ratio rich switching means, A rich air-fuel ratio that changes the target air-fuel ratio to a rich air-fuel ratio in which the difference from the stoichiometric air-fuel ratio is smaller than the rich set air-fuel ratio before the output current of the downstream air-fuel ratio sensor becomes equal to or less than the value corresponding to the rich determination air-fuel ratio. Degree lowering means.
 第12の発明では、第1~第11のいずれか一つの発明において、前記上流側空燃比センサの基準セルは、前記被測ガス室内の排気ガスに曝される第三電極と、基準雰囲気に曝される第四電極と、前記第三電極と前記第四電極との間に配置された固体電解質層と、前記第三電極と前記第四電極との間の起電力を前記検出値として検出する基準電圧検出装置とを具備する。 In a twelfth invention according to any one of the first to eleventh inventions, the reference cell of the upstream air-fuel ratio sensor includes a third electrode exposed to the exhaust gas in the measured gas chamber and a reference atmosphere. The fourth electrode to be exposed, the solid electrolyte layer disposed between the third electrode and the fourth electrode, and the electromotive force between the third electrode and the fourth electrode are detected as the detected value. And a reference voltage detecting device.
 本発明によれば、上流側空燃比センサ及び下流側空燃比センサがそれぞれに対する要求を十分に満たすように構成された、内燃機関の制御装置が提供される。 According to the present invention, there is provided a control device for an internal combustion engine configured so that the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor sufficiently satisfy the requirements for each.
図1は、本発明の第一実施形態に係る制御装置が用いられる内燃機関を概略的に示す図である。FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used. 図2は、排気浄化触媒の酸素吸蔵量と排気浄化触媒から流出する排気ガス中のNOx及び未燃ガスの濃度との関係を示す図である。FIG. 2 is a graph showing the relationship between the oxygen storage amount of the exhaust purification catalyst and the concentrations of NOx and unburned gas in the exhaust gas flowing out from the exhaust purification catalyst. 図3は、下流側空燃比センサの概略的な断面図である。FIG. 3 is a schematic cross-sectional view of the downstream air-fuel ratio sensor. 図4は、下流側空燃比センサの動作を概略的に示した図である。FIG. 4 is a diagram schematically showing the operation of the downstream air-fuel ratio sensor. 図5は、電圧印加装置及び電流検出装置を構成する具体的な回路の一例を示す図である。FIG. 5 is a diagram illustrating an example of a specific circuit constituting the voltage application device and the current detection device. 図6は、下流側空燃比センサの出力特性を示す図である。FIG. 6 is a diagram showing output characteristics of the downstream air-fuel ratio sensor. 図7は、上流側空燃比センサの概略的な断面図である。FIG. 7 is a schematic cross-sectional view of the upstream air-fuel ratio sensor. 図8は、上流側空燃比センサの動作を概略的に示した図である。FIG. 8 is a diagram schematically showing the operation of the upstream air-fuel ratio sensor. 図9は、基準セルにおける排気空燃比と起電力との関係を示す図である。FIG. 9 is a diagram showing the relationship between the exhaust air-fuel ratio and the electromotive force in the reference cell. 図10は、上流側空燃比センサにおける制御基準電圧と出力電流との関係を示した図である。FIG. 10 is a diagram showing the relationship between the control reference voltage and the output current in the upstream air-fuel ratio sensor. 図11は、基準セルにおけるヒステリシスを説明するための図である。FIG. 11 is a diagram for explaining hysteresis in the reference cell. 図12は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。FIG. 12 is a time chart of the oxygen storage amount of the exhaust purification catalyst. 図13は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。FIG. 13 is a time chart of the oxygen storage amount of the exhaust purification catalyst. 図14は、制御装置の機能ブロック図である。FIG. 14 is a functional block diagram of the control device. 図15は、空燃比補正量の算出制御の制御ルーチンを示すフローチャートである。FIG. 15 is a flowchart showing a control routine for calculation control of the air-fuel ratio correction amount. 図16は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。FIG. 16 is a time chart of the oxygen storage amount of the exhaust purification catalyst. 図17は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。FIG. 17 is a time chart of the oxygen storage amount of the exhaust purification catalyst. 図18は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。FIG. 18 is a time chart of the oxygen storage amount of the exhaust purification catalyst. 図19は、排気浄化触媒の酸素吸蔵量等のタイムチャートである。FIG. 19 is a time chart of the oxygen storage amount of the exhaust purification catalyst.
 以下、図面を参照して本発明の内燃機関の制御装置について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。図1は、本発明の第一実施形態に係る制御装置が用いられる内燃機関を概略的に示す図である。 Hereinafter, the control apparatus for an internal combustion engine of the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals are assigned to similar components. FIG. 1 is a diagram schematically showing an internal combustion engine in which a control device according to a first embodiment of the present invention is used.
<内燃機関全体の説明>
 図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
<Description of the internal combustion engine as a whole>
Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a piston that reciprocates in the cylinder block 2, 4 is a cylinder head fixed on the cylinder block 2, and 5 is a piston 3 and a cylinder head 4. A combustion chamber formed therebetween, 6 is an intake valve, 7 is an intake port, 8 is an exhaust valve, and 9 is an exhaust port. The intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.
 図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として排気浄化触媒における理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の内燃機関は他の燃料を用いても良い。 As shown in FIG. 1, a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4. The spark plug 10 is configured to generate a spark in response to the ignition signal. The fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal. The fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7. In the present embodiment, gasoline having a theoretical air-fuel ratio of 14.6 in the exhaust purification catalyst is used as the fuel. However, the internal combustion engine of the present invention may use other fuels.
 各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。 The intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15. The intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage. A throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.
 一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。 On the other hand, the exhaust port 9 of each cylinder is connected to an exhaust manifold 19. The exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled. A collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20. The upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22. The exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.
 電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。 An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input. A port 36 and an output port 37 are provided. An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38. Further, an upstream air-fuel ratio sensor 40 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust manifold 19 (that is, the exhaust gas flowing into the upstream exhaust purification catalyst 20) is disposed at the collecting portion of the exhaust manifold 19. In addition, in the exhaust pipe 22, the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24). An air-fuel ratio sensor 41 is arranged. The outputs of these air- fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air- fuel ratio sensors 40 and 41 will be described later.
 また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。なお、ECU31は、各種センサ等の出力に基づいて内燃機関を制御する機関制御装置として機能する。 A load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38. The For example, the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36. The CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44. On the other hand, the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45. The ECU 31 functions as an engine control device that controls the internal combustion engine based on outputs from various sensors and the like.
<排気浄化触媒の説明>
 上流側排気浄化触媒20及び下流側排気浄化触媒24は、いずれも同様な構成を有する。排気浄化触媒20、24は、酸素吸蔵能力を有する三元触媒である。具体的には、排気浄化触媒20、24は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させたものである。排気浄化触媒20、24は、所定の活性温度に達すると、未燃ガス(HCやCO等)と窒素酸化物(NOx)とを同時に浄化する触媒作用に加えて、酸素吸蔵能力を発揮する。
<Description of exhaust purification catalyst>
Both the upstream side exhaust purification catalyst 20 and the downstream side exhaust purification catalyst 24 have the same configuration. The exhaust purification catalysts 20 and 24 are three-way catalysts having an oxygen storage capacity. Specifically, the exhaust purification catalysts 20 and 24 support a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a ceramic support. It has been made. When the exhaust purification catalysts 20 and 24 reach a predetermined activation temperature, the exhaust purification catalysts 20 and 24 exhibit an oxygen storage capability in addition to the catalytic action of simultaneously purifying unburned gas (HC, CO, etc.) and nitrogen oxides (NOx).
 排気浄化触媒20、24の酸素吸蔵能力によれば、排気浄化触媒20、24は、排気浄化触媒20、24に流入する排気ガスの空燃比が理論空燃比よりもリーン(リーン空燃比)であるときには排気ガス中の酸素を吸蔵する。一方、排気浄化触媒20、24は、流入する排気ガスの空燃比が理論空燃比よりもリッチ(リッチ空燃比)であるときには、排気浄化触媒20、24に吸蔵されている酸素を放出する。なお、「排気ガスの空燃比」は、その排気ガスが生成されるまでに供給された空気の質量に対する燃料の質量の比率を意味するものであり、通常はその排気ガスが生成されるにあたって燃焼室5内に供給された空気の質量に対する燃料の質量の比率を意味する。 According to the oxygen storage capacity of the exhaust purification catalysts 20, 24, the exhaust purification catalysts 20, 24 are such that the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 is leaner than the stoichiometric air-fuel ratio (lean air-fuel ratio). Sometimes it stores oxygen in the exhaust gas. On the other hand, the exhaust purification catalysts 20, 24 release the oxygen stored in the exhaust purification catalysts 20, 24 when the air-fuel ratio of the inflowing exhaust gas is richer than the stoichiometric air-fuel ratio (rich air-fuel ratio). Note that the “air-fuel ratio of exhaust gas” means the ratio of the mass of fuel to the mass of air supplied until the exhaust gas is generated. Normally, combustion is performed when the exhaust gas is generated. It means the ratio of the mass of fuel to the mass of air supplied into the chamber 5.
 排気浄化触媒20、24は、触媒作用及び酸素吸蔵能力を有することにより、酸素吸蔵量に応じてNOx及び未燃ガスの浄化作用を有する。すなわち、図2(A)に示したように、排気浄化触媒20、24に流入する排気ガスの空燃比がリーン空燃比である場合、酸素吸蔵量が少ないときには排気浄化触媒20、24により排気ガス中の酸素が吸蔵され、NOxが還元浄化される。また、酸素吸蔵量が多くなると、上限吸蔵量Cuplimを境に排気浄化触媒20、24から流出する排気ガス中の酸素及びNOxの濃度が急激に上昇する。 The exhaust purification catalysts 20 and 24 have a catalytic action and an oxygen storage capacity, and thus have a NOx and unburned gas purification action according to the oxygen storage amount. That is, as shown in FIG. 2A, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 is a lean air-fuel ratio, the exhaust gas is exhausted by the exhaust purification catalysts 20, 24 when the oxygen storage amount is small. The oxygen inside is occluded and NOx is reduced and purified. Further, when the oxygen storage amount increases, the concentrations of oxygen and NOx in the exhaust gas flowing out from the exhaust purification catalysts 20, 24 abruptly increase with the upper limit storage amount Cuplim as a boundary.
 一方、図2(B)に示したように、排気浄化触媒20、24に流入する排気ガスの空燃比がリッチ空燃比である場合、酸素吸蔵量が多いときには排気浄化触媒20、24に吸蔵されている酸素が放出され、排気ガス中の未燃ガスは酸化浄化される。また、酸素吸蔵量が少なくなると、下限吸蔵量Clowlimを境に排気浄化触媒20、24から流出する排気ガス中の未燃ガスの濃度が急激に上昇する。 On the other hand, as shown in FIG. 2B, when the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalysts 20, 24 is a rich air-fuel ratio, the exhaust purification catalysts 20, 24 store the oxygen when the oxygen storage amount is large. The released oxygen is released and the unburned gas in the exhaust gas is oxidized and purified. Further, when the oxygen storage amount decreases, the concentration of unburned gas in the exhaust gas flowing out from the exhaust purification catalysts 20 and 24 rapidly increases with the lower limit storage amount Clowlim as a boundary.
 本実施形態において用いられる排気浄化触媒20、24によれば、排気浄化触媒20、24に流入する排気ガスの空燃比及び酸素吸蔵量に応じて排気ガス中のNOx及び未燃ガスの浄化特性が変化する。なお、触媒作用及び酸素吸蔵能力を有していれば、排気浄化触媒20、24は三元触媒とは異なる触媒であってもよい。 According to the exhaust purification catalysts 20 and 24 used in the present embodiment, the purification characteristics of NOx and unburned gas in the exhaust gas according to the air-fuel ratio and oxygen storage amount of the exhaust gas flowing into the exhaust purification catalysts 20 and 24 are obtained. Change. The exhaust purification catalysts 20 and 24 may be different from the three-way catalyst as long as they have a catalytic action and an oxygen storage capacity.
<下流側空燃比センサの構成>
 次に、図3を参照して、本実施形態における下流側空燃比センサ41の構成について説明する。図3は、下流側空燃比センサ41の概略的な断面図である。図3から分かるように、本実施形態における下流側空燃比センサ41は、固体電解質層及び一対の電極から成るセルが1つである1セル型の空燃比センサである。
<Configuration of downstream air-fuel ratio sensor>
Next, the configuration of the downstream air-fuel ratio sensor 41 in the present embodiment will be described with reference to FIG. FIG. 3 is a schematic cross-sectional view of the downstream air-fuel ratio sensor 41. As can be seen from FIG. 3, the downstream air-fuel ratio sensor 41 in the present embodiment is a one-cell type air-fuel ratio sensor having one cell composed of a solid electrolyte layer and a pair of electrodes.
 図3に示したように、下流側空燃比センサ41は、固体電解質層51と、固体電解質層51の一方の側面上に配置された排気側電極(第一電極)52と、固体電解質層51の他方の側面上に配置された大気側電極(第二電極)53と、通過する排気ガスの拡散律速を行う拡散律速層54と、拡散律速層54を保護する保護層55と、下流側空燃比センサ41の加熱を行うヒータ部56とを具備する。 As shown in FIG. 3, the downstream air-fuel ratio sensor 41 includes a solid electrolyte layer 51, an exhaust side electrode (first electrode) 52 disposed on one side surface of the solid electrolyte layer 51, and a solid electrolyte layer 51. An atmosphere-side electrode (second electrode) 53 disposed on the other side surface, a diffusion-controlling layer 54 that performs diffusion-controlling the exhaust gas that passes through, a protective layer 55 that protects the diffusion-controlling layer 54, and a downstream space And a heater unit 56 that heats the fuel ratio sensor 41.
 固体電解質層51の一方の側面上には拡散律速層54が設けられ、拡散律速層54の固体電解質層51側の側面とは反対側の側面上には保護層55が設けられる。本実施形態では、固体電解質層51と拡散律速層54との間には被測ガス室57が形成される。この被測ガス室57には拡散律速層54を介して下流側空燃比センサ41による検出対象であるガス、すなわち排気ガスが導入せしめられる。また、排気側電極52は被測ガス室57内に配置され、したがって、排気側電極52は拡散律速層54を介して排気ガスに曝されることになる。なお、被測ガス室57は必ずしも設ける必要はなく、排気側電極52の表面上に拡散律速層54が直接接触するように構成されてもよい。 A diffusion-controlling layer 54 is provided on one side surface of the solid electrolyte layer 51, and a protective layer 55 is provided on the side surface of the diffusion-controlling layer 54 opposite to the side surface on the solid electrolyte layer 51 side. In the present embodiment, a measured gas chamber 57 is formed between the solid electrolyte layer 51 and the diffusion-controlling layer 54. A gas to be detected by the downstream air-fuel ratio sensor 41, that is, exhaust gas is introduced into the measured gas chamber 57 through the diffusion rate controlling layer 54. Further, the exhaust side electrode 52 is disposed in the measured gas chamber 57, and therefore, the exhaust side electrode 52 is exposed to the exhaust gas through the diffusion rate controlling layer 54. The gas chamber 57 to be measured is not necessarily provided, and may be configured such that the diffusion-controlling layer 54 is in direct contact with the surface of the exhaust-side electrode 52.
 固体電解質層51の他方の側面上にはヒータ部56が設けられる。固体電解質層51とヒータ部56との間には基準ガス室58が形成され、この基準ガス室58内には基準ガスが導入される。本実施形態では、基準ガス室58は大気に開放されており、よって基準ガス室58内には基準ガスとして大気が導入される。大気側電極53は、基準ガス室58内に配置され、したがって、大気側電極53は、基準ガス(基準雰囲気)に曝される。本実施形態では、基準ガスとして大気が用いられているため、大気側電極53は大気に曝されることになる。 A heater portion 56 is provided on the other side surface of the solid electrolyte layer 51. A reference gas chamber 58 is formed between the solid electrolyte layer 51 and the heater portion 56, and the reference gas is introduced into the reference gas chamber 58. In the present embodiment, the reference gas chamber 58 is open to the atmosphere, and therefore the atmosphere is introduced into the reference gas chamber 58 as the reference gas. The atmosphere side electrode 53 is disposed in the reference gas chamber 58, and therefore, the atmosphere side electrode 53 is exposed to the reference gas (reference atmosphere). In the present embodiment, since the atmosphere is used as the reference gas, the atmosphere side electrode 53 is exposed to the atmosphere.
 ヒータ部56には複数のヒータ59が設けられており、これらヒータ59によって下流側空燃比センサ41の温度、特に固体電解質層51の温度を制御することができる。ヒータ部56は、固体電解質層51を活性化するまで加熱するのに十分な発熱容量を有している。 The heater unit 56 is provided with a plurality of heaters 59, and these heaters 59 can control the temperature of the downstream air-fuel ratio sensor 41, particularly the temperature of the solid electrolyte layer 51. The heater unit 56 has a heat generation capacity sufficient to heat the solid electrolyte layer 51 until it is activated.
 固体電解質層51は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、電極52、53は、白金等の触媒活性の高い貴金属により形成されている。 The solid electrolyte layer 51 is an oxygen ion conductive oxide in which ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3, etc. are distributed with CaO, MgO, Y 2 O 3 , Yb 2 O 3 etc. as stabilizers. The sintered body is formed. The diffusion control layer 54 is formed of a porous sintered body of a heat-resistant inorganic substance such as alumina, magnesia, silica, spinel, mullite or the like. Furthermore, the electrodes 52 and 53 are made of a noble metal having high catalytic activity such as platinum.
 また、排気側電極52と大気側電極53との間には、ECU31に搭載された電圧印加装置60によりセンサ印加電圧Vrが印加される。加えて、ECU31には、電圧印加装置60によってセンサ印加電圧Vrを印加したときに固体電解質層51を介してこれら電極52、53間に流れる電流(出力電流)を検出する電流検出装置61が設けられる。この電流検出装置61によって検出される電流が下流側空燃比センサ41の出力電流である。 Further, a sensor application voltage Vr is applied between the exhaust side electrode 52 and the atmosphere side electrode 53 by the voltage application device 60 mounted on the ECU 31. In addition, the ECU 31 is provided with a current detection device 61 that detects a current (output current) flowing between the electrodes 52 and 53 via the solid electrolyte layer 51 when the sensor application voltage Vr is applied by the voltage application device 60. It is done. The current detected by the current detector 61 is the output current of the downstream air-fuel ratio sensor 41.
<下流側空燃比センサの動作>
 次に、図4を参照して、このように構成された下流側空燃比センサ41の動作の基本的な概念について説明する。図4は、下流側空燃比センサ41の動作を概略的に示した図である。使用時において、下流側空燃比センサ41は、保護層55及び拡散律速層54の外周面が排気ガスに曝されるように配置される。また、下流側空燃比センサ41の基準ガス室58には大気が導入される。
<Operation of downstream air-fuel ratio sensor>
Next, the basic concept of the operation of the downstream air-fuel ratio sensor 41 configured as described above will be described with reference to FIG. FIG. 4 is a diagram schematically showing the operation of the downstream air-fuel ratio sensor 41. In use, the downstream air-fuel ratio sensor 41 is arranged so that the outer peripheral surfaces of the protective layer 55 and the diffusion-controlling layer 54 are exposed to the exhaust gas. Further, the atmosphere is introduced into the reference gas chamber 58 of the downstream air-fuel ratio sensor 41.
 上述したように、固体電解質層51は、酸素イオン伝導性酸化物の焼結体で形成される。したがって、高温により活性化した状態で固体電解質層51の両側面間に酸素濃度の差が生じると、濃度の高い側面側から濃度の低い側面側へと酸素イオンを移動させようとする起電力Eが発生する性質(酸素電池特性)を有している。 As described above, the solid electrolyte layer 51 is formed of a sintered body of an oxygen ion conductive oxide. Therefore, when a difference in oxygen concentration occurs between both side surfaces of the solid electrolyte layer 51 in a state activated by high temperature, an electromotive force E that attempts to move oxygen ions from the high concentration side surface to the low concentration side surface. Has a property (oxygen battery characteristics).
 逆に、固体電解質層51は、両側面間に電位差が与えられると、この電位差に応じて固体電解質層の両側面間で酸素濃度比が生じるように、酸素イオンの移動を引き起こそうとする特性(酸素ポンプ特性)を有する。具体的には、両側面間に電位差が与えられた場合には、正極性を与えられた側面における酸素濃度が、負極性を与えられた側面における酸素濃度に対して、電位差に応じた比率で高くなるように、酸素イオンの移動が引き起こされる。また、図3及び図4に示したように、下流側空燃比センサ41では、大気側電極53が正極性、排気側電極52が負極性となるように、これら電極52、53間に一定のセンサ印加電圧Vrが印加されている。 Conversely, when a potential difference is applied between both side surfaces of the solid electrolyte layer 51, oxygen ions move so that an oxygen concentration ratio is generated between both side surfaces of the solid electrolyte layer according to the potential difference. Characteristics (oxygen pump characteristics). Specifically, when a potential difference is applied between both side surfaces, the oxygen concentration on the side surface provided with positive polarity is a ratio corresponding to the potential difference with respect to the oxygen concentration on the side surface provided with negative polarity. The movement of oxygen ions is caused to increase. Further, as shown in FIGS. 3 and 4, in the downstream air-fuel ratio sensor 41, a constant value is provided between the electrodes 52 and 53 so that the atmosphere-side electrode 53 is positive and the exhaust-side electrode 52 is negative. A sensor applied voltage Vr is applied.
 下流側空燃比センサ41周りにおける排気空燃比が理論空燃比よりもリーンのときには、固体電解質層51の両側面間での酸素濃度の比は小さい。このため、センサ印加電圧Vrを適切な値に設定すれば、固体電解質層51の両側面間ではセンサ印加電圧Vrに対応した酸素濃度比よりも実際の酸素濃度比の方が小さくなる。このため、固体電解質層51の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比に向けて大きくなるように、図4(A)に示した如く、排気側電極52から大気側電極53に向けて酸素イオンの移動が起こる。その結果、センサ印加電圧Vrを印加する電圧印加装置60の正極から、大気側電極53、固体電解質層51、及び排気側電極52を介して電圧印加装置60の負極へと電流が流れる。 When the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is leaner than the stoichiometric air-fuel ratio, the ratio of oxygen concentration between both side surfaces of the solid electrolyte layer 51 is small. For this reason, if the sensor applied voltage Vr is set to an appropriate value, the actual oxygen concentration ratio becomes smaller between the both side surfaces of the solid electrolyte layer 51 than the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Therefore, as shown in FIG. 4A, the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 increases from the exhaust side electrode 52 to the atmosphere so as to increase toward the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Oxygen ions move toward the side electrode 53. As a result, a current flows from the positive electrode of the voltage application device 60 that applies the sensor application voltage Vr to the negative electrode of the voltage application device 60 via the atmosphere side electrode 53, the solid electrolyte layer 51, and the exhaust side electrode 52.
 このとき流れる電流(出力電流)Irの大きさは、センサ印加電圧Vrを適切な値に設定すれば、排気中から拡散律速層54を通って被測ガス室57へと拡散によって流入する酸素量に比例する。したがって、この電流Irの大きさを電流検出装置61によって検出することにより、酸素濃度を知ることができ、ひいてはリーン領域における空燃比を知ることができる。 The magnitude of the current (output current) Ir flowing at this time is the amount of oxygen flowing into the measured gas chamber 57 from the exhaust gas through the diffusion rate controlling layer 54 if the sensor applied voltage Vr is set to an appropriate value. Is proportional to Therefore, by detecting the magnitude of the current Ir by the current detector 61, it is possible to know the oxygen concentration and thus the air-fuel ratio in the lean region.
 一方、下流側空燃比センサ41周りにおける排気空燃比が理論空燃比よりもリッチのときには、排気中から拡散律速層54を通って未燃ガスが被測ガス室57内に流入するため、排気側電極52上に酸素が存在しても、未燃ガスと反応して除去される。このため、被測ガス室57内では酸素濃度が極めて低くなり、その結果、固体電解質層51の両側面間での酸素濃度の比は大きなものとなる。このため、センサ印加電圧Vrを適切な値に設定すれば、固体電解質層51の両側面間ではセンサ印加電圧Vrに対応した酸素濃度比よりも実際の酸素濃度比の方が大きくなる。このため、固体電解質層51の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比に向けて小さくなるように、図4(B)に示した如く、大気側電極53から排気側電極52に向けて酸素イオンの移動が起こる。その結果、大気側電極53から、センサ印加電圧Vrを印加する電圧印加装置60を通って排気側電極52へと電流が流れる。 On the other hand, when the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is richer than the stoichiometric air-fuel ratio, unburned gas flows from the exhaust gas through the diffusion-controlled layer 54 into the measured gas chamber 57, so that the exhaust side Even if oxygen is present on the electrode 52, it reacts with the unburned gas and is removed. For this reason, the oxygen concentration in the measured gas chamber 57 becomes extremely low, and as a result, the ratio of the oxygen concentration between both side surfaces of the solid electrolyte layer 51 becomes large. For this reason, if the sensor applied voltage Vr is set to an appropriate value, the actual oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 becomes larger than the oxygen concentration ratio corresponding to the sensor applied voltage Vr. For this reason, as shown in FIG. 4B, the exhaust gas is exhausted from the atmosphere side electrode 53 so that the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 decreases toward the oxygen concentration ratio corresponding to the sensor applied voltage Vr. Oxygen ions move toward the side electrode 52. As a result, a current flows from the atmosphere side electrode 53 to the exhaust side electrode 52 through the voltage application device 60 that applies the sensor application voltage Vr.
 このとき流れる電流(出力電流)Irの大きさは、センサ印加電圧Vrを適切な値に設定すれば、固体電解質層51中を大気側電極53から排気側電極52へと移動せしめられる酸素イオンの流量によって決まる。その酸素イオンは、排気中から拡散律速層54を通って被測ガス室57へと拡散によって流入する未燃ガスと排気側電極52上で反応(燃焼)する。よって、酸素イオンの移動流量は被測ガス室57内に流入した排気ガス中の未燃ガスの濃度に対応する。したがって、この電流Irの大きさを電流検出装置61によって検出することで、未燃ガス濃度を知ることができ、ひいてはリッチ領域における空燃比を知ることができる。 The magnitude of the current (output current) Ir flowing at this time is that of oxygen ions that can be moved from the atmosphere side electrode 53 to the exhaust side electrode 52 in the solid electrolyte layer 51 if the sensor applied voltage Vr is set to an appropriate value. It depends on the flow rate. The oxygen ions react (combust) on the exhaust-side electrode 52 with the unburned gas that flows into the measured gas chamber 57 from the exhaust gas through the diffusion-controlling layer 54 by diffusion. Therefore, the moving flow rate of oxygen ions corresponds to the concentration of unburned gas in the exhaust gas flowing into the measured gas chamber 57. Therefore, by detecting the magnitude of the current Ir by the current detection device 61, it is possible to know the unburned gas concentration and thus the air-fuel ratio in the rich region.
 また、下流側空燃比センサ41周りにおける排気空燃比が理論空燃比のときには、被測ガス室57へ流入する酸素及び未燃ガスの量が化学当量比となっている。このため、排気側電極52の触媒作用によって両者は完全に燃焼し、被測ガス室57内の酸素及び未燃ガスの濃度に変動は生じない。この結果、固体電解質層51の両側面間の酸素濃度比は、変動せずに、センサ印加電圧Vrに対応した酸素濃度比のまま維持される。このため、図4(C)に示したように、酸素ポンプ特性による酸素イオンの移動は起こらず、その結果、回路を流れる電流は生じない。 Further, when the exhaust air-fuel ratio around the downstream air-fuel ratio sensor 41 is the stoichiometric air-fuel ratio, the amount of oxygen and unburned gas flowing into the measured gas chamber 57 is the chemical equivalent ratio. For this reason, both of them are completely combusted by the catalytic action of the exhaust side electrode 52, and the concentration of oxygen and unburned gas in the measured gas chamber 57 does not change. As a result, the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 is not changed and is maintained as the oxygen concentration ratio corresponding to the sensor applied voltage Vr. For this reason, as shown in FIG. 4C, oxygen ions do not move due to the oxygen pump characteristics, and as a result, no current flows through the circuit.
<電圧印加装置及び電流検出装置の回路>
 図5に、電圧印加装置60及び電流検出装置61を構成する具体的な回路の一例を示す。図示した例では、酸素電池特性により生じる起電力をE、固体電解質層51の内部抵抗をRi、両電極52、53間の電位差をVsと表している。
<Circuit of voltage application device and current detection device>
FIG. 5 shows an example of a specific circuit constituting the voltage application device 60 and the current detection device 61. In the illustrated example, E is an electromotive force generated by oxygen battery characteristics, Ri is an internal resistance of the solid electrolyte layer 51, and Vs is a potential difference between the electrodes 52 and 53.
 図5からわかるように、電圧印加装置60は、基本的に、酸素電池特性により生じる起電力Eがセンサ印加電圧Vrに一致するように、負帰還制御を行っている。換言すると、電圧印加装置60は、固体電解質層51の両側面間の酸素濃度比の変化によって両電極52、53間の電位差Vsが変化した際にも、この電位差Vsがセンサ印加電圧Vrとなるように負帰還制御を行っている。 As can be seen from FIG. 5, the voltage application device 60 basically performs negative feedback control so that the electromotive force E generated by the oxygen battery characteristics matches the sensor applied voltage Vr. In other words, when the potential difference Vs between the electrodes 52 and 53 changes due to the change in the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51, the voltage application device 60 becomes the sensor applied voltage Vr. Negative feedback control is performed.
 したがって、排気空燃比が理論空燃比となっていて、固体電解質層51の両側面間に酸素濃度比の変化が生じない場合には、固体電解質層51の両側面間の酸素濃度比はセンサ印加電圧Vrに対応した酸素濃度比となっている。この場合、起電力Eはセンサ印加電圧Vrに一致し、両電極52、53間の電位差Vsもセンサ印加電圧Vrとなっており、その結果、電流Irは流れない。 Therefore, when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio and the change in the oxygen concentration ratio does not occur between the both side surfaces of the solid electrolyte layer 51, the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 is determined by sensor application. The oxygen concentration ratio corresponds to the voltage Vr. In this case, the electromotive force E coincides with the sensor applied voltage Vr, and the potential difference Vs between the electrodes 52 and 53 is also the sensor applied voltage Vr. As a result, the current Ir does not flow.
 一方、排気空燃比が理論空燃比とは異なる空燃比となっていて、固体電解質層51の両側面間に酸素濃度比の変化が生じる場合には、固体電解質層51の両側面間の酸素濃度比がセンサ印加電圧Vrに対応した酸素濃度比とはなっていない。この場合、起電力Eはセンサ印加電圧Vrとは異なる値となる。このため、負帰還制御により、起電力Eがセンサ印加電圧Vrと一致するように固体電解質層51の両側面間で酸素イオンの移動をさせるべく、両電極52、53間に電位差Vsが付与される。そして、このときの酸素イオンの移動に伴って電流Irが流れる。この結果、起電力Eはセンサ印加電圧Vrに収束し、起電力Eがセンサ印加電圧Vrに収束すると、やがて、電位差Vsもセンサ印加電圧Vrに収束することになる。 On the other hand, when the exhaust air-fuel ratio is different from the stoichiometric air-fuel ratio and the oxygen concentration ratio changes between both side surfaces of the solid electrolyte layer 51, the oxygen concentration between both side surfaces of the solid electrolyte layer 51 The ratio is not the oxygen concentration ratio corresponding to the sensor applied voltage Vr. In this case, the electromotive force E has a value different from the sensor applied voltage Vr. Therefore, by negative feedback control, a potential difference Vs is applied between the electrodes 52 and 53 in order to move oxygen ions between both side surfaces of the solid electrolyte layer 51 so that the electromotive force E matches the sensor applied voltage Vr. The And current Ir flows with the movement of oxygen ions at this time. As a result, the electromotive force E converges on the sensor applied voltage Vr, and when the electromotive force E converges on the sensor applied voltage Vr, the potential difference Vs eventually converges on the sensor applied voltage Vr.
 したがって、電圧印加装置60は、実質的に、両電極52、53間にセンサ印加電圧Vrを印加しているということができる。なお、電圧印加装置60の電気回路は必ずしも図5に示したようなものである必要はなく、両電極52、53間にセンサ印加電圧Vrを実質的に印加することができれば、如何なる態様の装置であってもよい。 Therefore, it can be said that the voltage application device 60 substantially applies the sensor application voltage Vr between the electrodes 52 and 53. The electric circuit of the voltage applying device 60 is not necessarily as shown in FIG. 5, and any device can be used as long as the sensor applied voltage Vr can be substantially applied between the electrodes 52 and 53. It may be.
 また、電流検出装置61は、実際に電流を検出するのではなく、電圧E0を検出してこの電圧E0から電流を算出している。ここで、E0は、下記式(1)のように表せる。
  E0=Vr+V0+IrR   …(1)
 ここで、V0はオフセット電圧(E0が負値とならないように印加しておく電圧であり例えば3V)、Rは図5に示した抵抗の値である。
The current detector 61 is actually a current rather than detecting, and calculates the current from the voltage E 0 by detecting the voltage E 0. Here, E 0 can be expressed as the following formula (1).
E 0 = Vr + V 0 + IrR (1)
Here, V 0 is an offset voltage (a voltage to be applied so that E 0 does not become a negative value, for example, 3 V), and R is a value of the resistance shown in FIG.
 式(1)において、センサ印加電圧Vr、オフセット電圧V0及び抵抗値Rは一定であるから、電圧E0は電流Irに応じて変化する。このため、電圧E0を検出すれば、その電圧E0から電流Irを算出することが可能である。 In the equation (1), the sensor applied voltage Vr, the offset voltage V 0 and the resistance value R are constant, so that the voltage E 0 changes according to the current Ir. Therefore, if the voltage E 0 is detected, the current Ir can be calculated from the voltage E 0 .
 したがって、電流検出装置61は、実質的に、両電極52、53間に流れる電流Irを検出しているということができる。なお、電流検出装置61の電気回路は必ずしも図5に示したようなものである必要はなく、両電極52、53間を流れる電流Irを検出することができれば、如何なる態様の装置であってもよい。 Therefore, it can be said that the current detection device 61 substantially detects the current Ir flowing between the electrodes 52 and 53. Note that the electric circuit of the current detection device 61 does not necessarily have to be as shown in FIG. 5, and any device can be used as long as the current Ir flowing between the electrodes 52 and 53 can be detected. Good.
<下流側空燃比センサの出力特性>
 上述したように構成され且つ動作する下流側空燃比センサ41は、図6に示したようなセンサ印加電圧-電流(V-I)特性を有する。図6からわかるように、センサ印加電圧Vrが0以下及び0近傍の領域では、排気空燃比が一定である場合には、センサ印加電圧Vrを負の値から徐々に増加していくと、これに伴って出力電流Irが増加していく。
<Output characteristics of downstream air-fuel ratio sensor>
The downstream air-fuel ratio sensor 41 configured and operating as described above has a sensor applied voltage-current (VI) characteristic as shown in FIG. As can be seen from FIG. 6, when the sensor applied voltage Vr is gradually increased from a negative value when the exhaust air-fuel ratio is constant in the region where the sensor applied voltage Vr is 0 or less and in the vicinity of 0, As a result, the output current Ir increases.
 すなわち、この電圧領域では、センサ印加電圧Vrが低いため、固体電解質層51を介して移動可能な酸素イオンの流量が少ない。このため、拡散律速層54を介した排気ガスの流入速度よりも固体電解質層51を介して移動可能な酸素イオンの流量が少なくなり、よって、出力電流Irは固体電解質層51を介して移動可能な酸素イオンの流量に応じて変化する。固体電解質層51を介して移動可能な酸素イオンの流量はセンサ印加電圧Vrに応じて変化するため、結果的にセンサ印加電圧Vrの増加に伴って出力電流が増加する。なお、センサ印加電圧Vrが0のときに出力電流Irが負値をとるのは、酸素電池特性により固体電解質層51の両側面間の酸素濃度比に応じた起電力Eが生じるためである。 That is, in this voltage region, since the sensor applied voltage Vr is low, the flow rate of oxygen ions that can move through the solid electrolyte layer 51 is small. For this reason, the flow rate of oxygen ions that can move through the solid electrolyte layer 51 is smaller than the inflow rate of the exhaust gas through the diffusion-controlling layer 54, so that the output current Ir can move through the solid electrolyte layer 51. It changes according to the flow rate of oxygen ions. Since the flow rate of oxygen ions that can move through the solid electrolyte layer 51 changes according to the sensor applied voltage Vr, the output current increases as the sensor applied voltage Vr increases. The reason why the output current Ir takes a negative value when the sensor applied voltage Vr is 0 is that an electromotive force E corresponding to the oxygen concentration ratio between the both side surfaces of the solid electrolyte layer 51 is generated due to oxygen battery characteristics.
 その後、排気空燃比を一定としたまま、センサ印加電圧Vrを徐々に増加していくと、これに対する出力電流の増加の割合は次第に小さくなり、ついにはほぼ飽和状態となる。その結果、センサ印加電圧Vrを増加しても出力電流はほとんど変化しなくなる。このほぼ飽和した電流は限界電流と称され、以下では、この限界電流が発生する電圧領域を限界電流領域と称する(図6の「限界電流領域」は、は排気空燃比が理論空燃比であるときの限界電流領域を示している)。 Thereafter, when the sensor applied voltage Vr is gradually increased while the exhaust air-fuel ratio is kept constant, the rate of increase of the output current with respect to this gradually decreases, and finally becomes almost saturated. As a result, the output current hardly changes even if the sensor applied voltage Vr is increased. This almost saturated current is referred to as a limit current, and hereinafter, a voltage region where the limit current is generated is referred to as a limit current region (the “limit current region” in FIG. 6 is the exhaust air-fuel ratio is the stoichiometric air-fuel ratio). Shows the limiting current region when).
 すなわち、この限界電流領域では、センサ印加電圧Vrが或る程度高いため、固体電解質層51を介して移動可能な酸素イオンの流量が多い。このため、拡散律速層54を介した排気ガスの流入速度よりも固体電解質層51を介して移動可能な酸素イオンの流量の方が多くなる。したがって、出力電流Irは拡散律速層54を介して被測ガス室57に流入する排気ガス中の酸素濃度や未燃ガス濃度に応じて変化する。排気空燃比を一定としてセンサ印加電圧Vrを変化させても、基本的には拡散律速層54を介して被測ガス室57に流入する排気ガス中の酸素濃度や未燃ガス濃度は変化しないことから、出力電圧Irは変化しない。 That is, in this limit current region, since the sensor applied voltage Vr is somewhat high, the flow rate of oxygen ions that can move through the solid electrolyte layer 51 is large. For this reason, the flow rate of oxygen ions that can move through the solid electrolyte layer 51 is greater than the inflow rate of exhaust gas through the diffusion-controlling layer 54. Therefore, the output current Ir changes according to the oxygen concentration or the unburned gas concentration in the exhaust gas flowing into the measured gas chamber 57 via the diffusion rate controlling layer 54. Even if the sensor applied voltage Vr is changed with the exhaust air-fuel ratio being constant, the oxygen concentration and the unburned gas concentration in the exhaust gas flowing into the measured gas chamber 57 via the diffusion-controlling layer 54 should basically not change. Therefore, the output voltage Ir does not change.
 ただし、排気空燃比が異なれば、拡散律速層54を介して被測ガス室57に流入する排気ガス中の酸素濃度や未燃ガス濃度も異なることから、出力電流Irは排気空燃比に応じて変化する。図6からわかるように、リーン空燃比とリッチ空燃比とでは限界電流の流れる向きが逆になっており、リーン空燃比であるときには空燃比が大きくなるほど、リッチ空燃比であるときには空燃比が小さくなるほど、限界電流の絶対値が大きくなる。 However, if the exhaust air / fuel ratio is different, the oxygen concentration and the unburned gas concentration in the exhaust gas flowing into the measured gas chamber 57 via the diffusion rate controlling layer 54 are also different, so the output current Ir depends on the exhaust air / fuel ratio. Change. As can be seen from FIG. 6, the flow direction of the limit current is reversed between the lean air-fuel ratio and the rich air-fuel ratio, and the air-fuel ratio increases when the lean air-fuel ratio is increased, and the air-fuel ratio decreases when the air-fuel ratio is rich. The absolute value of the limit current increases.
 その後、排気空燃比を一定としたまま、センサ印加電圧Vrをさらに増加していくと、これに伴って再び出力電流Irが増加し始める。このように高いセンサ印加電圧Vrを印加すると、排気側電極52上では排気ガス中に含まれる水分の分解が発生し、これに伴って電流が流れる。また、センサ印加電圧Vrをさらに増加していくと、今度は固体電解質層51の分解が発生する。 Thereafter, when the sensor applied voltage Vr is further increased while the exhaust air-fuel ratio is kept constant, the output current Ir begins to increase again accordingly. When such a high sensor applied voltage Vr is applied, the moisture contained in the exhaust gas is decomposed on the exhaust-side electrode 52, and a current flows accordingly. If the sensor applied voltage Vr is further increased, the solid electrolyte layer 51 is decomposed this time.
<上流側空燃比センサの構成>
 図7を参照して、本実施形態における上流側空燃比センサ40の構成について説明する。図7は、上流側空燃比センサ40の概略的な断面図である。図7から分かるように、本実施形態における上流側空燃比センサ40は、固体電解質層及び一対の電極から成るセルが2つである2セル型の空燃比センサである。
<Configuration of upstream air-fuel ratio sensor>
The configuration of the upstream air-fuel ratio sensor 40 in the present embodiment will be described with reference to FIG. FIG. 7 is a schematic cross-sectional view of the upstream air-fuel ratio sensor 40. As can be seen from FIG. 7, the upstream air-fuel ratio sensor 40 in the present embodiment is a two-cell air-fuel ratio sensor having two cells each composed of a solid electrolyte layer and a pair of electrodes.
 図7に示したように、上流側空燃比センサ40は、被測ガス室81と、基準ガス室82と、被測ガス室81の両側に配置された二つの固体電解質層83、84とを具備する。基準ガス室82は、第二固体電解質層84を挟んで被測ガス室81の反対側に設けられる。第一固体電解質層83の被測ガス室81側の側面上にはガス室側電極(第五電極)85が配置され、第一固体電解質層83の排気ガス側の側面上には排気側電極(第六電極)86が配置される。これら第一固体電解質層83、ガス室側電極85及び排気側電極86は、ポンプセル90を構成する。 As shown in FIG. 7, the upstream air-fuel ratio sensor 40 includes a measured gas chamber 81, a reference gas chamber 82, and two solid electrolyte layers 83 and 84 disposed on both sides of the measured gas chamber 81. It has. The reference gas chamber 82 is provided on the opposite side of the measured gas chamber 81 with the second solid electrolyte layer 84 interposed therebetween. A gas chamber side electrode (fifth electrode) 85 is disposed on the side surface of the first solid electrolyte layer 83 on the measured gas chamber 81 side, and an exhaust side electrode is disposed on the side surface of the first solid electrolyte layer 83 on the exhaust gas side. (Sixth electrode) 86 is arranged. The first solid electrolyte layer 83, the gas chamber side electrode 85, and the exhaust side electrode 86 constitute a pump cell 90.
 一方、第二固体電解質層84の被測ガス室81側の側面上にはガス室側電極(第三電極)87が配置され、第二固体電解質層84の基準ガス室82側の側面上には基準側電極(第四電極)88が配置される。これら第二固体電解質層84、ガス室側電極87及び基準側電極88は、基準セル91を構成する。 On the other hand, a gas chamber side electrode (third electrode) 87 is disposed on the side surface of the second solid electrolyte layer 84 on the measured gas chamber 81 side, and on the side surface of the second solid electrolyte layer 84 on the reference gas chamber 82 side. A reference side electrode (fourth electrode) 88 is disposed. The second solid electrolyte layer 84, the gas chamber side electrode 87 and the reference side electrode 88 constitute a reference cell 91.
 二つの固体電解質層83、84の間には、ポンプセル90のガス室側電極85及び基準セル91のガス室側電極87を囲うように拡散律速層93が設けられる。したがって、被測ガス室81は、第一固体電解質層83、第二固体電解質層84及び拡散律速層93によって画成される。被測ガス室81には、拡散律速層93を介して排気ガスが流入せしめられる。よって、被測ガス室81内に配置された電極、すなわちポンプセル90のガス室側電極85及び基準セル91のガス室側電極87は、拡散律速層93を介して排気ガスに曝されることになる。なお、拡散律速層93は、必ずしも被測ガス室81に流入する排気ガスが通過するように設けられる必要はない。基準セル91のガス室側電極87に到達する排気ガスが拡散律速層を通過した排気ガスになれば、拡散律速層は如何なる態様で配置されてもよい。 Between the two solid electrolyte layers 83, 84, a diffusion control layer 93 is provided so as to surround the gas chamber side electrode 85 of the pump cell 90 and the gas chamber side electrode 87 of the reference cell 91. Accordingly, the measured gas chamber 81 is defined by the first solid electrolyte layer 83, the second solid electrolyte layer 84, and the diffusion-controlling layer 93. Exhaust gas is allowed to flow into the measured gas chamber 81 via the diffusion-controlling layer 93. Therefore, the electrodes arranged in the measured gas chamber 81, that is, the gas chamber side electrode 85 of the pump cell 90 and the gas chamber side electrode 87 of the reference cell 91 are exposed to the exhaust gas through the diffusion control layer 93. Become. The diffusion control layer 93 is not necessarily provided so that the exhaust gas flowing into the measured gas chamber 81 passes therethrough. As long as the exhaust gas reaching the gas chamber side electrode 87 of the reference cell 91 becomes the exhaust gas that has passed through the diffusion control layer, the diffusion control layer may be arranged in any manner.
 また、第二固体電解質層84の基準ガス室82側の側面上には、基準ガス室82を囲うようにヒータ部94が設けられる。したがって、基準ガス室82は、第二固体電解質層84及びヒータ部94によって画成される。この基準ガス室82内には基準ガスが導入される。本実施形態では、基準ガス室82内には大気が満たされる。なお、本実施形態では、基準ガス室82は大気には開放されていないが、大気開放されてもよいし、また、大気中のガスとは異なるガスを基準ガスとしてもよい。 Further, a heater portion 94 is provided on the side surface of the second solid electrolyte layer 84 on the side of the reference gas chamber 82 so as to surround the reference gas chamber 82. Therefore, the reference gas chamber 82 is defined by the second solid electrolyte layer 84 and the heater unit 94. A reference gas is introduced into the reference gas chamber 82. In the present embodiment, the reference gas chamber 82 is filled with air. In the present embodiment, the reference gas chamber 82 is not opened to the atmosphere, but may be opened to the atmosphere, or a gas different from the gas in the atmosphere may be used as the reference gas.
 また、ヒータ部94には複数のヒータ95が設けられており、これらヒータ95によって上流側空燃比センサ40の温度、特に固体電解質層83、84の温度を制御することができる。ヒータ部94は、固体電解質層83、84を活性化するまで加熱するのに十分な発熱容量を有している。加えて、第一固体電解質層83の排気ガス側の側面上には、保護層96が設けられる。保護層96は、排気ガス中の液体等が排気側電極86に直接付着するのを防止しつつ排気ガスが排気側電極86に到達するように多孔質材料で形成される。 Further, the heater unit 94 is provided with a plurality of heaters 95, and the heaters 95 can control the temperature of the upstream air-fuel ratio sensor 40, particularly the temperature of the solid electrolyte layers 83 and 84. The heater section 94 has a heat generation capacity sufficient to heat the solid electrolyte layers 83 and 84 until they are activated. In addition, a protective layer 96 is provided on the side surface of the first solid electrolyte layer 83 on the exhaust gas side. The protective layer 96 is formed of a porous material so that the exhaust gas reaches the exhaust side electrode 86 while preventing liquid or the like in the exhaust gas from directly attaching to the exhaust side electrode 86.
 固体電解質層83、84は、下流側空燃比センサ41の固体電解質層51と同様な材料により形成されている。また、拡散律速層93も、下流側空燃比センサ41の拡散律速層54と同様な材料により形成されている。さらに、電極85~88も、下流側空燃比センサ41の電極52、53と同様な材料により形成されている。なお、上流側空燃比センサ40の拡散律速層93は、必ずしも拡散律速層54と同等の律速効果(被測ガス室内に流入する排気ガスの速度がほぼ一定になるようにする効果)を有していなくてもよい。 The solid electrolyte layers 83 and 84 are formed of the same material as the solid electrolyte layer 51 of the downstream air-fuel ratio sensor 41. The diffusion rate controlling layer 93 is also formed of the same material as the diffusion rate controlling layer 54 of the downstream air-fuel ratio sensor 41. Further, the electrodes 85 to 88 are also made of the same material as the electrodes 52 and 53 of the downstream air-fuel ratio sensor 41. Note that the diffusion-controlling layer 93 of the upstream air-fuel ratio sensor 40 does not necessarily have the same rate-controlling effect as the diffusion-controlling layer 54 (an effect that the speed of the exhaust gas flowing into the measured gas chamber becomes substantially constant). It does not have to be.
 ECU31は、ガス室側電極87と基準側電極88とに接続された起電力検出装置100を有する。起電力検出装置100は、これら電極87、88間に生じた起電力を検出する。また、ポンプセル90のガス室側電極85と排気側電極86との間には、ECU31に搭載されたポンプ電圧印加装置101によりポンプ電圧Vpが印加される。ポンプ電圧印加装置101によって印加されるポンプ電圧Vpは、起電力検出装置100によって検出された起電力Veに応じて設定される。具体的には、起電力検出装置100によって検出された起電力Veと予め設定されたその制御基準電圧(本実施形態では、0.45V)との差に応じて、ポンプ電圧Vpが設定される。加えて、ECU31には、ポンプ電圧印加装置101によってポンプ電圧Vpを印加したときに第一固体電解質層83を介してこれら電極85、86間に流れるポンプ電流Ipを検出するポンプ電流検出装置102が設けられる。 The ECU 31 includes an electromotive force detection device 100 connected to the gas chamber side electrode 87 and the reference side electrode 88. The electromotive force detection device 100 detects an electromotive force generated between the electrodes 87 and 88. A pump voltage Vp is applied between the gas chamber side electrode 85 and the exhaust side electrode 86 of the pump cell 90 by the pump voltage application device 101 mounted on the ECU 31. The pump voltage Vp applied by the pump voltage application device 101 is set according to the electromotive force Ve detected by the electromotive force detection device 100. Specifically, the pump voltage Vp is set according to the difference between the electromotive force Ve detected by the electromotive force detection device 100 and a preset control reference voltage (0.45 V in this embodiment). . In addition, the ECU 31 has a pump current detection device 102 that detects a pump current Ip flowing between the electrodes 85 and 86 via the first solid electrolyte layer 83 when the pump voltage Vp is applied by the pump voltage application device 101. Provided.
 なお、ポンプ電圧印加装置101によってポンプ電圧Vpを変化させると、電極85、86間に流れるポンプ電流Ipが変化する。換言すると、ポンプ電圧印加装置101はポンプ電流Ipを制御していると言える。したがって、ポンプ電圧印加装置101は、ポンプ電流Ipを制御するポンプ電流制御装置として作用する。なお、ポンプ電流Ipは例えばポンプ電圧印加装置101と直列に可変抵抗を配置し、この可変抵抗を変更することによっても変化する。したがって、ポンプ電流制御装置としては可変抵抗等、ポンプ電圧印加装置101以外の手段を用いることも可能である。 Note that when the pump voltage application device 101 changes the pump voltage Vp, the pump current Ip flowing between the electrodes 85 and 86 changes. In other words, it can be said that the pump voltage application device 101 controls the pump current Ip. Therefore, the pump voltage application device 101 functions as a pump current control device that controls the pump current Ip. The pump current Ip is also changed by, for example, arranging a variable resistor in series with the pump voltage application device 101 and changing the variable resistor. Therefore, means other than the pump voltage application device 101 such as a variable resistor can be used as the pump current control device.
<上流側空燃比センサの動作>
 次に、図8を参照して、このように構成された上流側空燃比センサ40の動作の基本的な概念について説明する。図8は、上流側空燃比センサ40の動作を概略的に示した図である。使用時において、上流側空燃比センサ40は、保護層96及び拡散律速層93の外周面が排気ガスに曝されるように配置される。また、上流側空燃比センサ40の基準ガス室82には大気が導入される。
<Operation of upstream air-fuel ratio sensor>
Next, the basic concept of the operation of the upstream air-fuel ratio sensor 40 configured as described above will be described with reference to FIG. FIG. 8 is a diagram schematically showing the operation of the upstream air-fuel ratio sensor 40. In use, the upstream air-fuel ratio sensor 40 is arranged so that the outer peripheral surfaces of the protective layer 96 and the diffusion-controlling layer 93 are exposed to the exhaust gas. Further, the atmosphere is introduced into the reference gas chamber 82 of the upstream air-fuel ratio sensor 40.
 上述したように、固体電解質層83、84は、酸素電池特性及び酸素ポンプ特性を有する。したがって、ポンプセル90では、ポンプ電圧印加装置101によってガス室側電極85と排気側電極86との間にポンプ電圧Vpが印加されると、これに応じて酸素イオンの移動が生じる。このような酸素イオンの移動に伴って、排気ガス中から被測ガス室81内に酸素が汲み入れられたり汲み出されたりする。 As described above, the solid electrolyte layers 83 and 84 have oxygen battery characteristics and oxygen pump characteristics. Therefore, in the pump cell 90, when the pump voltage application device 101 applies the pump voltage Vp between the gas chamber side electrode 85 and the exhaust side electrode 86, oxygen ions move accordingly. Accompanying such movement of oxygen ions, oxygen is pumped into or pumped from the exhaust gas into the measured gas chamber 81.
 一方、本実施形態の基準セル91では、被測ガス室81内の酸素濃度に応じて起電力Veが変化する。より正確には、基準セル91では、被測ガス室81内の酸素分圧と、基準ガス室82内の酸素分圧との比率に応じた起電力Veが発生する。この結果、被測ガス室81内の排気空燃比と起電力Veとの関係は図9に示したような関係となる。すなわち、起電力Veは理論空燃比近傍で大きく変化し、被測ガス室81内の排気空燃比がリッチ空燃比となると起電力Veが高くなり、逆に、被測ガス室81内の排気空燃比がリーン空燃比となると起電力Veが低くなる。したがって、例えば、起電力Veが予め設定された或る電圧(例えば、0.45V。以下、「制御基準電圧」という)よりも高いときには被測ガス室81内の排気空燃比がリッチ空燃比であると判断することができ、また、起電力Veが制御基準電圧よりも低いときには被測ガス室81内の排気空燃比がリーン空燃比であると判断することができる。 On the other hand, in the reference cell 91 of the present embodiment, the electromotive force Ve changes according to the oxygen concentration in the measured gas chamber 81. More precisely, in the reference cell 91, an electromotive force Ve corresponding to the ratio between the oxygen partial pressure in the measured gas chamber 81 and the oxygen partial pressure in the reference gas chamber 82 is generated. As a result, the relationship between the exhaust air-fuel ratio in the measured gas chamber 81 and the electromotive force Ve is as shown in FIG. That is, the electromotive force Ve changes greatly in the vicinity of the stoichiometric air-fuel ratio. When the exhaust air-fuel ratio in the measured gas chamber 81 becomes a rich air-fuel ratio, the electromotive force Ve increases, and conversely, the exhaust air in the measured gas chamber 81 increases. When the fuel ratio becomes a lean air-fuel ratio, the electromotive force Ve decreases. Therefore, for example, when the electromotive force Ve is higher than a predetermined voltage (for example, 0.45 V, hereinafter referred to as “control reference voltage”), the exhaust air-fuel ratio in the measured gas chamber 81 is the rich air-fuel ratio. When the electromotive force Ve is lower than the control reference voltage, it can be determined that the exhaust air-fuel ratio in the measured gas chamber 81 is a lean air-fuel ratio.
 上流側空燃比センサ40周りにおける排気空燃比がリーン空燃比のときには、図8(A)に示したように、被測ガス室81内には拡散律速層93を介して酸素を多量に含んだリーン空燃比の排気ガスが流入する。このように多量の酸素を含むリーン空燃比の排気ガスが流入すると、基準セル91の電極87、88間には制御基準電圧よりも低い起電力Veが発生する。この起電力Veは起電力検出装置100によって検出される。 When the exhaust air-fuel ratio around the upstream air-fuel ratio sensor 40 is a lean air-fuel ratio, a large amount of oxygen is contained in the measured gas chamber 81 via the diffusion-controlling layer 93 as shown in FIG. Lean air-fuel ratio exhaust gas flows in. When the lean air-fuel ratio exhaust gas containing a large amount of oxygen flows in this way, an electromotive force Ve lower than the control reference voltage is generated between the electrodes 87 and 88 of the reference cell 91. This electromotive force Ve is detected by the electromotive force detection device 100.
 起電力検出装置100によって起電力Veが検出されると、これに基づいてポンプ電圧印加装置101によりポンプセル90の電極85、86にポンプ電圧が印加される。特に、起電力検出装置100によって制御基準電圧よりも低い起電力Veが検出されると、排気側電極86を正電極、ガス室側電極85を負電極として、ポンプ電圧が印加される。このようにポンプセル90の電極85、86間にポンプ電圧を印加することにより、ポンプセル90の第一固体電解質層83では負電極から正電極に向かって、すなわちガス室側電極85から排気側電極86に向かって酸素イオンの移動が生じる。このため、被測ガス室81内の酸素が上流側空燃比センサ40周りの排気ガス中に汲み出される。 When the electromotive force Ve is detected by the electromotive force detection device 100, a pump voltage is applied to the electrodes 85 and 86 of the pump cell 90 by the pump voltage application device 101 based on this. In particular, when an electromotive force Ve lower than the control reference voltage is detected by the electromotive force detection device 100, a pump voltage is applied using the exhaust side electrode 86 as a positive electrode and the gas chamber side electrode 85 as a negative electrode. Thus, by applying a pump voltage between the electrodes 85 and 86 of the pump cell 90, in the first solid electrolyte layer 83 of the pump cell 90, from the negative electrode to the positive electrode, that is, from the gas chamber side electrode 85 to the exhaust side electrode 86. The movement of oxygen ions occurs toward. For this reason, oxygen in the measured gas chamber 81 is pumped into the exhaust gas around the upstream air-fuel ratio sensor 40.
 被測ガス室81内から上流側空燃比センサ40周りの排気ガス中へ汲み出される酸素の流量は、ポンプ電圧に比例し、また、ポンプ電圧は起電力検出装置100によって検出された起電力Veの制御基準電圧からの差に比例する。したがって、被測ガス室81内の排気空燃比が理論空燃比からリーンに大きくずれるほど、すなわち、被測ガス室81内の酸素濃度が高いほど、被測ガス室81内から上流側空燃比センサ40周りの排気ガス中へ汲み出される酸素の流量が多くなる。この結果、拡散律速層93を介して被測ガス室81に流入する酸素流量と、ポンプセル90によって汲み出される酸素流量とは基本的に一致し、被測ガス室81内は基本的に制御基準電圧に対応する空燃比、すなわち理論空燃比に保たれることになる。 The flow rate of oxygen pumped from the measured gas chamber 81 into the exhaust gas around the upstream air-fuel ratio sensor 40 is proportional to the pump voltage, and the pump voltage is the electromotive force Ve detected by the electromotive force detection device 100. Is proportional to the difference from the control reference voltage. Therefore, the upstream air-fuel ratio sensor from the measured gas chamber 81 increases as the exhaust air-fuel ratio in the measured gas chamber 81 deviates greatly from the stoichiometric air-fuel ratio, that is, the oxygen concentration in the measured gas chamber 81 increases. The flow rate of oxygen pumped into the exhaust gas around 40 increases. As a result, the flow rate of oxygen flowing into the measured gas chamber 81 through the diffusion rate controlling layer 93 and the flow rate of oxygen pumped out by the pump cell 90 basically coincide with each other, and the inside of the measured gas chamber 81 is basically the control standard. The air-fuel ratio corresponding to the voltage, that is, the stoichiometric air-fuel ratio is maintained.
 ポンプセル90によって汲み出される酸素流量は、ポンプセル90の第一固体電解質層83内を移動した酸素イオンの流量に等しい。そして、この酸素イオンの流量は、ポンプセル90の電極85、86間で流れた電流に等しい。よって電極85、86間で流れた電流をポンプ電流検出装置102により検出することで、拡散律速層93を介して被測ガス室81に流入する酸素流量を、したがって、被測ガス室81周りの排気ガスのリーン空燃比を検出することができる。 The flow rate of oxygen pumped out by the pump cell 90 is equal to the flow rate of oxygen ions that have moved through the first solid electrolyte layer 83 of the pump cell 90. The flow rate of this oxygen ion is equal to the current flowing between the electrodes 85 and 86 of the pump cell 90. Therefore, the current flowing between the electrodes 85 and 86 is detected by the pump current detection device 102, so that the flow rate of oxygen flowing into the measured gas chamber 81 via the diffusion rate controlling layer 93, and hence the surroundings of the measured gas chamber 81, is increased. The lean air-fuel ratio of the exhaust gas can be detected.
 一方、上流側空燃比センサ40周りにおける排気空燃比がリッチ空燃比のときには、図8(B)に示したように、被測ガス室81内には拡散律速層93を介して未燃ガスを多量に含んだリッチ空燃比の排気ガスが流入する。このように多量の未燃ガスを含むリッチ空燃比の排気ガスが流入すると、基準セル91の電極87、88間には制御基準電圧よりも高い起電力Veが発生する。この起電力Veは起電力検出装置100によって検出される。 On the other hand, when the exhaust air-fuel ratio around the upstream air-fuel ratio sensor 40 is a rich air-fuel ratio, unburned gas is introduced into the measured gas chamber 81 via the diffusion-controlling layer 93 as shown in FIG. Rich air-fuel ratio exhaust gas containing a large amount flows in. When the rich air-fuel ratio exhaust gas containing a large amount of unburned gas flows in this way, an electromotive force Ve higher than the control reference voltage is generated between the electrodes 87 and 88 of the reference cell 91. This electromotive force Ve is detected by the electromotive force detection device 100.
 起電力検出装置100によって起電力Veが検出されると、これに基づいてポンプ電圧印加装置101によりポンプセル90の電極85、86間にポンプ電圧が印加される。特に、起電力検出装置100によって制御基準電圧よりも高い電圧Veが検出されると、ガス室側電極85を正電極、排気側電極86を負電極として、ポンプ電圧が印加される。このようにポンプ電圧を印加することにより、ポンプセル90の第一固体電解質層83では負電極から正電極に向かって、すなわち排気側電極86からガス室側電極85に向かって酸素イオンの移動が生じる。このため、上流側空燃比センサ40周りの排気ガス中の酸素が被測ガス室81内に汲み入れられる。 When the electromotive force Ve is detected by the electromotive force detection device 100, a pump voltage is applied between the electrodes 85 and 86 of the pump cell 90 by the pump voltage application device 101 based on this. In particular, when a voltage Ve higher than the control reference voltage is detected by the electromotive force detection device 100, a pump voltage is applied using the gas chamber side electrode 85 as a positive electrode and the exhaust side electrode 86 as a negative electrode. By applying the pump voltage in this way, in the first solid electrolyte layer 83 of the pump cell 90, oxygen ions move from the negative electrode to the positive electrode, that is, from the exhaust side electrode 86 to the gas chamber side electrode 85. . Therefore, oxygen in the exhaust gas around the upstream air-fuel ratio sensor 40 is pumped into the measured gas chamber 81.
 上流側空燃比センサ40周りの排気ガス中から被測ガス室81内へ汲み入れられる酸素の流量は、ポンプ電圧に比例し、また、ポンプ電圧は起電力検出装置100によって検出された起電力Veの制御基準電圧からの差に比例する。したがって、被測ガス室81内の排気空燃比が理論空燃比からリッチに大きく離れるほど、すなわち、被測ガス室81内の未燃ガス濃度が高いほど、上流側空燃比センサ40周りの排気ガス中から被測ガス室81内へ汲み入れられる酸素の流量が多くなる。この結果、拡散律速層93を介して被測ガス室81に流入する未燃ガスの流量と、ポンプセル90によって汲み入れられる酸素流量とは化学当量比となり、よって被測ガス室81内は基本的に制御基準電圧に対応する空燃比、すなわち理論空燃比に保たれることになる。 The flow rate of oxygen pumped from the exhaust gas around the upstream air-fuel ratio sensor 40 into the measured gas chamber 81 is proportional to the pump voltage, and the pump voltage is the electromotive force Ve detected by the electromotive force detection device 100. Is proportional to the difference from the control reference voltage. Accordingly, the exhaust gas around the upstream air-fuel ratio sensor 40 increases as the exhaust air-fuel ratio in the measured gas chamber 81 is far from the stoichiometric air-fuel ratio richly, that is, as the unburned gas concentration in the measured gas chamber 81 is higher. The flow rate of oxygen pumped into the measured gas chamber 81 from the inside increases. As a result, the flow rate of the unburned gas flowing into the measured gas chamber 81 via the diffusion rate controlling layer 93 and the oxygen flow rate pumped by the pump cell 90 become a chemical equivalence ratio, and thus the measured gas chamber 81 has a basic structure. Therefore, the air-fuel ratio corresponding to the control reference voltage, that is, the stoichiometric air-fuel ratio is maintained.
 ポンプセル90によって汲み入れられる酸素流量は、ポンプセル90内の第一固体電解質層83内を移動した酸素イオンの流量に等しい。そして、この酸素イオンの流量は、ポンプセル90の電極85、86間で流れた電流に等しい。よって電極85、86間で流れた電流をポンプ電流検出装置102により検出することで、拡散律速層93を介して被測ガス室81に流入する未燃ガスの流量を、したがって、被測ガス室81周りの排気ガスのリッチ空燃比を検出することができる。 The oxygen flow rate pumped by the pump cell 90 is equal to the flow rate of oxygen ions that have moved through the first solid electrolyte layer 83 in the pump cell 90. The flow rate of this oxygen ion is equal to the current flowing between the electrodes 85 and 86 of the pump cell 90. Therefore, the current flowing between the electrodes 85 and 86 is detected by the pump current detection device 102, so that the flow rate of the unburned gas flowing into the measured gas chamber 81 via the diffusion rate controlling layer 93, and therefore the measured gas chamber. The rich air-fuel ratio of the exhaust gas around 81 can be detected.
 また、上流側空燃比センサ40周りにおける排気空燃比が理論空燃比のときには、図8(C)に示したように、被測ガス室81内に拡散律速層93を介して理論空燃比の排気ガスが流入する。このように制御基準電圧に対応する空燃比(理論空燃比)の排気ガスが流入すると、基準セル91の電極87、88間には制御基準電圧にほぼ等しい起電力電圧Veが発生する。斯かる起電力Veは、起電力検出装置100によって検出される。 When the exhaust air-fuel ratio around the upstream air-fuel ratio sensor 40 is the stoichiometric air-fuel ratio, the stoichiometric air-fuel ratio is exhausted into the measured gas chamber 81 via the diffusion rate-limiting layer 93 as shown in FIG. Gas flows in. When exhaust gas having an air fuel ratio (theoretical air fuel ratio) corresponding to the control reference voltage flows in this way, an electromotive force voltage Ve substantially equal to the control reference voltage is generated between the electrodes 87 and 88 of the reference cell 91. The electromotive force Ve is detected by the electromotive force detection device 100.
 起電力検出装置100によって検出された起電力Veが制御基準電圧にほぼ等しいと、これに伴ってポンプ電圧印加装置101により印加されるポンプ電圧は零とされる。このためポンプセル90の第一固体電解質層83では酸素イオンの移動は生じず、よって被測ガス室81内は基本的に制御基準電圧に対応する空燃比に保たれることになる。そして、ポンプセル90の第一固体電解質層83において酸素イオンの移動が生じていないため、ポンプ電流検出装置102によって検出されるポンプ電流も零となる。したがって、ポンプ電流検出装置102によって検出されるポンプ電流が零であるときには、被測ガス室81周りの排気ガスの空燃比が基準電圧Vrに対応する空燃比であることがわかる。 When the electromotive force Ve detected by the electromotive force detection device 100 is substantially equal to the control reference voltage, the pump voltage applied by the pump voltage application device 101 is made zero accordingly. For this reason, oxygen ions do not move in the first solid electrolyte layer 83 of the pump cell 90, and thus the measured gas chamber 81 is basically maintained at the air-fuel ratio corresponding to the control reference voltage. Further, since no movement of oxygen ions occurs in the first solid electrolyte layer 83 of the pump cell 90, the pump current detected by the pump current detection device 102 is also zero. Therefore, when the pump current detected by the pump current detection device 102 is zero, it can be seen that the air-fuel ratio of the exhaust gas around the measured gas chamber 81 is the air-fuel ratio corresponding to the reference voltage Vr.
 このように、本実施形態の上流側空燃比センサ40によれば、上流側空燃比センサ40周りにおける排気空燃比が制御基準電圧に対応する空燃比(すなわち、理論空燃比)に一致するときには出力電流であるポンプ電流が零となる。また、上流側空燃比センサ40周りにおける排気空燃比が理論空燃比よりもリーンのときには出力電流であるポンプ電流が正となり、そのリーンの程度に応じてポンプ電流の絶対値が大きくなる。逆に、上流側空燃比センサ40周りにおける排気空燃比が理論空燃比よりもリッチのときには出力電流であるポンプ電流が負となり、そのリッチの程度に応じてポンプ電流の絶対値が大きくなる。 As described above, according to the upstream air-fuel ratio sensor 40 of the present embodiment, the output is performed when the exhaust air-fuel ratio around the upstream air-fuel ratio sensor 40 matches the air-fuel ratio corresponding to the control reference voltage (that is, the theoretical air-fuel ratio). The pump current, which is the current, becomes zero. Also, when the exhaust air-fuel ratio around the upstream air-fuel ratio sensor 40 is leaner than the stoichiometric air-fuel ratio, the pump current that is the output current becomes positive, and the absolute value of the pump current increases according to the degree of lean. Conversely, when the exhaust air-fuel ratio around the upstream air-fuel ratio sensor 40 is richer than the stoichiometric air-fuel ratio, the pump current that is the output current becomes negative, and the absolute value of the pump current increases according to the richness.
 なお、上流側空燃比センサ40は拡散律速層93を有しているが、被測ガス室81に流入する排気ガスを制限することができれば、必ずしも拡散律速層93を有していなくても良い。 Although the upstream air-fuel ratio sensor 40 has the diffusion-controlling layer 93, the upstream-side air-fuel ratio sensor 40 may not necessarily have the diffusion-controlling layer 93 as long as the exhaust gas flowing into the measured gas chamber 81 can be limited. .
<上流側空燃比センサの出力特性>
 上述したように構成され且つ動作する上流側空燃比センサ(2セル型の空燃比センサ)40は、図10に示したような制御基準電圧-電流(V-I)特性を有する。なお、図10の「限界電流領域」は、排気空燃比が理論空燃比であるときの限界電流領域を示している。図10からわかるように、上流側空燃比センサ40においても、制御基準電圧Veと出力電流Ipとの関係は下流側空燃比センサ41におけるセンサ印加電圧Vrと出力電流Irとの関係(図6参照)と同様である。
<Output characteristics of upstream air-fuel ratio sensor>
The upstream air-fuel ratio sensor (two-cell type air-fuel ratio sensor) 40 configured and operated as described above has a control reference voltage-current (VI) characteristic as shown in FIG. The “limit current region” in FIG. 10 indicates the limit current region when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio. As can be seen from FIG. 10, also in the upstream air-fuel ratio sensor 40, the relationship between the control reference voltage Ve and the output current Ip is the relationship between the sensor applied voltage Vr and the output current Ir in the downstream air-fuel ratio sensor 41 (see FIG. 6). ).
 しかしながら、図6に示した下流側空燃比センサ41の電圧-電流特性では、排気空燃比に応じて限界電流領域が変化していくのに対して、図10に示した上流側空燃比センサ40の電圧-電流特性では、排気空燃比が変化しても限界電流領域の変化は小さい。 However, in the voltage-current characteristics of the downstream air-fuel ratio sensor 41 shown in FIG. 6, the limit current region changes according to the exhaust air-fuel ratio, whereas the upstream air-fuel ratio sensor 40 shown in FIG. In the voltage-current characteristics, even if the exhaust air-fuel ratio changes, the change in the limit current region is small.
 例えば、下流側空燃比センサ41では、センサ印加電圧Vrを一定にすると、排気空燃比が或る一定以上の空燃比(上限空燃比)及び或る一定以下の空燃比(下限空燃比)になると、排気空燃比が変化しても出力電流Irが変化しなくなる。図6に示した例では、例えば、センサ印加電圧Vrを0.1V程度にすると、排気空燃比が16.6以上となった場合には、出力電流Irはほぼ一定の値となる。したがって、下流側空燃比センサ41ではセンサ印加電圧Vrを一定にしていると、検出可能な空燃比の範囲は限られてしまう。 For example, in the downstream side air-fuel ratio sensor 41, when the sensor applied voltage Vr is made constant, the exhaust air-fuel ratio becomes an air-fuel ratio that is a certain level or higher (upper limit air-fuel ratio) and an air-fuel ratio that is a certain level or lower (lower limit air-fuel ratio). Even if the exhaust air-fuel ratio changes, the output current Ir does not change. In the example shown in FIG. 6, for example, when the sensor applied voltage Vr is about 0.1 V, the output current Ir becomes a substantially constant value when the exhaust air-fuel ratio becomes 16.6 or more. Therefore, if the sensor applied voltage Vr is constant in the downstream side air-fuel ratio sensor 41, the detectable air-fuel ratio range is limited.
 これに対して、図10に示したように、上流側空燃比センサ40では、排気空燃比が変化しても限界電流領域の変化は小さい。このため、上流側空燃比センサ40では、制御基準電圧Veを一定にしておけば、広い範囲で空燃比の検出を行うことができる。このように、上流側空燃比センサ40によれば、下流側空燃比センサ41に比べて、広い範囲で空燃比の検出を行うことができる。 On the other hand, as shown in FIG. 10, in the upstream air-fuel ratio sensor 40, even if the exhaust air-fuel ratio changes, the change in the limit current region is small. Therefore, the upstream air-fuel ratio sensor 40 can detect the air-fuel ratio in a wide range by keeping the control reference voltage Ve constant. Thus, the upstream air-fuel ratio sensor 40 can detect the air-fuel ratio in a wider range than the downstream air-fuel ratio sensor 41.
<両空燃比センサの比較>
 上流側空燃比センサ40の基準セル91では、図9に示したような被測ガス室81内の排気空燃比と起電力Veとの関係を有する。しかしながら、基準セル91では、各電極87、88上において未燃ガスや酸素等の反応性が低いことにより、実際の排気空燃比が同一であっても空燃比の変化の方向に応じて起電力が異なる値となる。図11は、その様子を示した図であり、実線Aは空燃比をリッチ側からリーン側へと変化させたときの関係、実線Bは空燃比をリーン側からリッチ側へと変化させたときの関係をそれぞれ示している。
<Comparison of both air-fuel ratio sensors>
The reference cell 91 of the upstream air-fuel ratio sensor 40 has a relationship between the exhaust air-fuel ratio in the measured gas chamber 81 and the electromotive force Ve as shown in FIG. However, in the reference cell 91, since the reactivity of unburned gas, oxygen, etc. is low on each electrode 87, 88, even if the actual exhaust air-fuel ratio is the same, the electromotive force depends on the direction of change of the air-fuel ratio. Have different values. FIG. 11 is a diagram showing the situation, where a solid line A is a relationship when the air-fuel ratio is changed from the rich side to the lean side, and a solid line B is when the air-fuel ratio is changed from the lean side to the rich side. The relationship is shown respectively.
 図11に実線Aで示したように、空燃比をリッチ側からリーン側へと変化させたときには、実際の空燃比がリーン空燃比になっても理論空燃比付近では起電力は高いままとなる。一方、図11に実線Bで示したように、空燃比をリーン側からリッチ側へと変化させたときには、実際の空燃比がリッチ空燃比になっても理論空燃比付近では起電力は低いままとなる。このように、基準セル91は、空燃比の変化の方向に応じてヒステリシスを有する。この結果、被測ガス室81内の排気空燃比が同一であっても基準セル91の起電力が異なる値となっている場合があり、上流側空燃比センサ40の出力電流には誤差が生じやすい。 As shown by the solid line A in FIG. 11, when the air-fuel ratio is changed from the rich side to the lean side, the electromotive force remains high near the theoretical air-fuel ratio even if the actual air-fuel ratio becomes the lean air-fuel ratio. . On the other hand, as shown by the solid line B in FIG. 11, when the air-fuel ratio is changed from the lean side to the rich side, the electromotive force remains low near the theoretical air-fuel ratio even when the actual air-fuel ratio becomes rich. It becomes. Thus, the reference cell 91 has hysteresis according to the direction of change of the air-fuel ratio. As a result, even if the exhaust air-fuel ratio in the measured gas chamber 81 is the same, the electromotive force of the reference cell 91 may be different, and an error occurs in the output current of the upstream air-fuel ratio sensor 40. Cheap.
 これに対して、下流側空燃比センサ41では、電極52、53間にセンサ印加電圧Vrを印加しているため、各電極52、53上での反応が促進される。このため、下流側空燃比センサ41では空燃比の変化の方向に応じたヒステリシスはほとんど生じることはなく、よって出力電流には誤差が生じにくい。 In contrast, in the downstream air-fuel ratio sensor 41, since the sensor applied voltage Vr is applied between the electrodes 52 and 53, the reaction on the electrodes 52 and 53 is promoted. For this reason, in the downstream air-fuel ratio sensor 41, there is almost no hysteresis corresponding to the direction of change of the air-fuel ratio, and therefore an error is unlikely to occur in the output current.
 加えて、上流側空燃比センサ40及び下流側空燃比センサ41のいずれにおいても、固体電解質層は直接的に排気ガスに曝されることから、経年劣化により固体電解質層の内部抵抗は変化する。 In addition, in both the upstream air-fuel ratio sensor 40 and the downstream air-fuel ratio sensor 41, since the solid electrolyte layer is directly exposed to the exhaust gas, the internal resistance of the solid electrolyte layer changes due to aging.
 下流側空燃比センサ41では、排気空燃比が同一であっても固体電解質層51の内部抵抗が変化するとその出力電流が変化する。このため、経年劣化により空燃比の検出精度が低下する。これに対して、上流側空燃比センサ40のポンプセル90では、ポンプ電流に対する被測ガス室81内への酸素の汲み入れ流量及び汲み出し流量とポンプ電流との関係は内部抵抗が変化しても一定である。このため、ポンプセル90については、第一固体電解質層83の内部抵抗が変化しても出力に影響はほとんどない。また、基準セル91については、第二固体電解質層84の内部抵抗によって変化しない起電力のみを検出しているため、内部抵抗が変化しても出力に影響はない。したがって、上流側空燃比センサ40では、下流側空燃比センサと比べて、経年劣化等によって内部抵抗が変化しても高い精度で空燃比の検出を行うことができる。 The downstream air-fuel ratio sensor 41 changes its output current when the internal resistance of the solid electrolyte layer 51 changes even if the exhaust air-fuel ratio is the same. For this reason, the detection accuracy of the air-fuel ratio decreases due to aging. In contrast, in the pump cell 90 of the upstream air-fuel ratio sensor 40, the relationship between the pumping current and the pumping current of oxygen into the gas chamber 81 to be measured and the pumping current is constant even if the internal resistance changes. It is. For this reason, the pump cell 90 has little influence on the output even if the internal resistance of the first solid electrolyte layer 83 changes. In addition, for the reference cell 91, only the electromotive force that does not change due to the internal resistance of the second solid electrolyte layer 84 is detected, so even if the internal resistance changes, the output is not affected. Therefore, the upstream air-fuel ratio sensor 40 can detect the air-fuel ratio with higher accuracy than the downstream air-fuel ratio sensor even if the internal resistance changes due to aging degradation or the like.
 ここで、上流側空燃比センサ40には、上流側排気浄化触媒20による浄化前の排気ガスが流入する。このため、上流側空燃比センサ40は、未燃ガスやNOx等を多量に含んだ排気ガスに曝されるため、下流側空燃比センサ41に比べて、経年劣化等により固体電解質層の内部抵抗に変化が生じやすい。これに関して、本実施形態では、上流側空燃比センサ40は内部抵抗に変化が生じても検出精度の変化しにくい2セル型の空燃比センサであるため、経年劣化等の影響を最小限に抑えることができる。 Here, the exhaust gas before purification by the upstream side exhaust purification catalyst 20 flows into the upstream side air-fuel ratio sensor 40. For this reason, the upstream air-fuel ratio sensor 40 is exposed to exhaust gas containing a large amount of unburned gas, NOx, etc., and therefore, compared with the downstream air-fuel ratio sensor 41, the internal resistance of the solid electrolyte layer due to aging degradation or the like. Changes are likely to occur. In this regard, in the present embodiment, since the upstream air-fuel ratio sensor 40 is a two-cell type air-fuel ratio sensor in which the detection accuracy hardly changes even if the internal resistance changes, the influence of aging degradation or the like is minimized. be able to.
<空燃比制御の概要>
 次に、本発明の内燃機関の制御装置における空燃比制御の概要を説明する。本実施形態では、上流側空燃比センサ40の出力電流Ipup(上流側排気浄化触媒20に流入する排気ガスの空燃比に相当するものであり、上述したIpに対応)に基づいてこの出力電流Ipupが目標空燃比に相当する値となるようにフィードバック制御が行われる。
<Outline of air-fuel ratio control>
Next, an outline of air-fuel ratio control in the control apparatus for an internal combustion engine of the present invention will be described. In the present embodiment, this output current Iupp is based on the output current Iupp of the upstream side air-fuel ratio sensor 40 (corresponding to the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 and corresponding to the above-mentioned Ip). Feedback control is performed so that becomes a value corresponding to the target air-fuel ratio.
 目標空燃比は、下流側空燃比センサ41の出力電流に基づいて設定される。具体的には、下流側空燃比センサ41の出力電流Irdwn(上述したIrに相当)がリッチ判定基準値Iref以下となったときに、目標空燃比はリーン設定空燃比とされ、その空燃比に維持される。ここで、リッチ判定基準値Irefは、理論空燃比よりも僅かにリッチである予め定められたリッチ判定空燃比(例えば、14.55)に相当する値である。また、リーン設定空燃比は、理論空燃比よりも或る程度リーンである予め定められた空燃比であり、例えば、14.65~20、好ましくは14.68~18、より好ましくは14.7~16程度とされる。 The target air-fuel ratio is set based on the output current of the downstream air-fuel ratio sensor 41. Specifically, when the output current Irdwn (corresponding to Ir described above) of the downstream side air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Iref, the target air-fuel ratio is set to the lean set air-fuel ratio, Maintained. Here, the rich determination reference value Iref is a value corresponding to a predetermined rich determination air-fuel ratio (for example, 14.55) that is slightly richer than the theoretical air-fuel ratio. The lean set air-fuel ratio is a predetermined air-fuel ratio that is somewhat leaner than the stoichiometric air-fuel ratio, and is, for example, 14.65 to 20, preferably 14.68 to 18, and more preferably 14.7. About 16 or so.
 目標空燃比がリーン設定空燃比に変更されると、上流側排気浄化触媒20の酸素吸蔵量OSAscが推定される。酸素吸蔵量OSAscの推定は、上流側空燃比センサ40の出力電流Ipup、及びエアフロメータ39等に基づいて算出される燃焼室5内への吸入空気量の推定値又は燃料噴射弁11からの燃料噴射量等に基づいて行われる。そして、酸素吸蔵量OSAscの推定値が予め定められた判定基準吸蔵量Cref以上になると、それまでリーン設定空燃比だった目標空燃比が、弱リッチ設定空燃比とされ、その空燃比に維持される。弱リッチ設定空燃比は、理論空燃比よりも僅かにリッチである予め定められた空燃比であり、例えば、13.5~14.58、好ましくは14~14.57、より好ましくは14.3~14.55程度とされる。その後、下流側空燃比センサ41の出力電流Irdwnが再びリッチ判定基準値Iref以下となったときに再び目標空燃比がリーン設定空燃比とされ、その後、同様な操作が繰り返される。 When the target air-fuel ratio is changed to the lean set air-fuel ratio, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated. The oxygen storage amount OSAsc is estimated by estimating the intake air amount into the combustion chamber 5 calculated based on the output current Iupup of the upstream air-fuel ratio sensor 40 and the air flow meter 39 or the like, or the fuel from the fuel injection valve 11. This is performed based on the injection amount. When the estimated value of the oxygen storage amount OSAsc becomes equal to or larger than a predetermined determination reference storage amount Cref, the target air-fuel ratio that has been the lean set air-fuel ratio until then becomes the weak rich set air-fuel ratio, and is maintained at that air-fuel ratio. The The weak rich set air-fuel ratio is a predetermined air-fuel ratio that is slightly richer than the stoichiometric air-fuel ratio, and is, for example, 13.5 to 14.58, preferably 14 to 14.57, more preferably 14.3. About 14.55. Thereafter, when the output current Irdwn of the downstream air-fuel ratio sensor 41 again becomes equal to or less than the rich determination reference value Iref, the target air-fuel ratio is again set to the lean set air-fuel ratio, and thereafter the same operation is repeated.
 このように本実施形態では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比がリーン設定空燃比と弱リッチ設定空燃比とに交互に設定される。特に、本実施形態では、リーン設定空燃比の理論空燃比からの差は、弱リッチ設定空燃比の理論空燃比からの差よりも大きい。したがって、本実施形態では、目標空燃比は、短期間のリーン設定空燃比と、長期間の弱リッチ設定空燃比とに交互に設定されることになる。 Thus, in the present embodiment, the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is alternately set to the lean set air-fuel ratio and the weak rich set air-fuel ratio. In particular, in the present embodiment, the difference between the lean set air-fuel ratio and the stoichiometric air-fuel ratio is larger than the difference between the weak rich set air-fuel ratio and the stoichiometric air-fuel ratio. Therefore, in this embodiment, the target air-fuel ratio is alternately set to a short-term lean set air-fuel ratio and a long-term weak rich set air-fuel ratio.
 また、見方を変えると、本実施形態では、下流側空燃比センサ41の出力電流Irdwnに相当する空燃比が理論空燃比からずれて理論空燃比からの差が予め定められた基準差(すなわち、リッチ判定空燃比と理論空燃比との差)以上になったときには、目標空燃比は下流側空燃比センサ41の出力電流Irdwnに相当する空燃比が理論空燃比からずれた方向(リッチ方向)とは反対方向(リーン方向)に理論空燃比からずれた空燃比とされる。すなわち、下流側空燃比センサ41の出力電流Irdwnに相当する空燃比がリッチ側にずれた場合には、目標空燃比は、理論空燃比に対してリッチ方向とは反対方向、すなわちリーン方向にずれた空燃比(本実施形態では、リーン設定空燃比)とされる。 In other words, in the present embodiment, the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 deviates from the stoichiometric air-fuel ratio, and the difference from the stoichiometric air-fuel ratio is determined in advance as a reference difference (that is, (The difference between the rich determination air-fuel ratio and the stoichiometric air-fuel ratio) becomes equal to or greater than the target air-fuel ratio in the direction in which the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 deviates from the stoichiometric air-fuel ratio (rich direction). Is the air-fuel ratio deviating from the stoichiometric air-fuel ratio in the opposite direction (lean direction). In other words, when the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 has shifted to the rich side, the target air-fuel ratio shifts in the opposite direction to the rich direction, that is, the lean direction with respect to the theoretical air-fuel ratio. The air / fuel ratio (in this embodiment, the lean set air / fuel ratio) is set.
 なお、基準差は、理論空燃比の1%以内、好ましくは0.5%以内、より好ましくは0.35%以内とされる。したがって、理論空燃比が14.6の場合には、基準差は、0.15以下、好ましくは0.073以下、より好ましくは0.051以下とされる。また、目標空燃比(例えば、弱リッチ設定空燃比やリーン設定空燃比)の理論空燃比からの差は、基準差よりも大きくなるように設定される。 The reference difference is within 1% of the theoretical air-fuel ratio, preferably within 0.5%, more preferably within 0.35%. Therefore, when the theoretical air-fuel ratio is 14.6, the reference difference is 0.15 or less, preferably 0.073 or less, more preferably 0.051 or less. Further, the difference between the target air-fuel ratio (for example, the weak rich set air-fuel ratio and the lean set air-fuel ratio) from the theoretical air-fuel ratio is set to be larger than the reference difference.
<タイムチャートを用いた制御の説明>
 図12を参照して、上述したような操作について具体的に説明する。図12は、本発明の内燃機関の制御装置における空燃比制御を行った場合における、上流側排気浄化触媒20の酸素吸蔵量OSAsc、下流側空燃比センサ41の出力電流Irdwn、空燃比補正量AFC、上流側空燃比センサ40の出力電流Ipup、及び上流側排気浄化触媒20から流出する排気ガス中のNOx濃度のタイムチャートである。
<Description of control using time chart>
With reference to FIG. 12, the operation as described above will be specifically described. FIG. 12 shows the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20, the output current Irdwn of the downstream side air-fuel ratio sensor 41, and the air-fuel ratio correction amount AFC when air-fuel ratio control is performed in the control apparatus for an internal combustion engine of the present invention. 4 is a time chart of the output current Iupup of the upstream air-fuel ratio sensor 40 and the NOx concentration in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20.
 なお、上流側空燃比センサ40の出力電流Ipupは、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比であるときに零になり、当該排気ガスの空燃比がリッチ空燃比であるときに負の値となり、当該排気ガスの空燃比がリーン空燃比であるときに正の値となる。また、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比又はリーン空燃比であるときには、理論空燃比からの差が大きくなるほど、上流側空燃比センサ40の出力電流Ipupの絶対値が大きくなる。下流側空燃比センサ41の出力電流Irdwnも、上流側排気浄化触媒20から流出する排気ガスの空燃比に応じて、上流側空燃比センサ40の出力電流Ipupと同様に変化する。また、空燃比補正量AFCは、上流側排気浄化触媒20に流入する排気ガスの目標空燃比に関する補正量である。空燃比補正量AFCが0のときには目標空燃比は理論空燃比とされ、空燃比補正量AFCが正の値であるときには目標空燃比はリーン空燃比となり、空燃比補正量AFCが負の値であるときには目標空燃比はリッチ空燃比となる。 The output current Iupup of the upstream side air-fuel ratio sensor 40 becomes zero when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the stoichiometric air-fuel ratio, and the air-fuel ratio of the exhaust gas is rich air-fuel ratio. Is a negative value, and a positive value when the air-fuel ratio of the exhaust gas is a lean air-fuel ratio. Further, when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the rich air-fuel ratio or the lean air-fuel ratio, the absolute value of the output current Iupp of the upstream air-fuel ratio sensor 40 increases as the difference from the stoichiometric air-fuel ratio increases. The value increases. The output current Irdwn of the downstream side air-fuel ratio sensor 41 also changes in the same manner as the output current Iupp of the upstream side air-fuel ratio sensor 40 according to the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20. The air-fuel ratio correction amount AFC is a correction amount related to the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20. When the air-fuel ratio correction amount AFC is 0, the target air-fuel ratio is the stoichiometric air-fuel ratio. When the air-fuel ratio correction amount AFC is a positive value, the target air-fuel ratio is a lean air-fuel ratio, and the air-fuel ratio correction amount AFC is a negative value. In some cases, the target air-fuel ratio becomes a rich air-fuel ratio.
 図示した例では、時刻t1以前の状態では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている。弱リッチ設定補正量AFCrichは、弱リッチ設定空燃比に相当する値であり、0よりも小さな値である。したがって、目標空燃比はリッチ空燃比とされ、これに伴って上流側空燃比センサ40の出力電流Ipupが負の値となる。上流側排気浄化触媒20に流入する排気ガス中には未燃ガスが含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に減少していく。しかしながら、排気ガス中に含まれている未燃ガスは、上流側排気浄化触媒20で浄化されるため、下流側空燃比センサの出力電流Irdwnはほぼ0(理論空燃比に相当)となる。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。 In the illustrated example, before the time t 1 , the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich. The weak rich set correction amount AFCrich is a value corresponding to the weak rich set air-fuel ratio, and is a value smaller than zero. Accordingly, the target air-fuel ratio is set to a rich air-fuel ratio, and accordingly, the output current Iupp of the upstream air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains unburned gas, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases. However, since the unburned gas contained in the exhaust gas is purified by the upstream side exhaust purification catalyst 20, the output current Irdwn of the downstream side air-fuel ratio sensor becomes substantially 0 (corresponding to the theoretical air-fuel ratio). At this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
 上流側排気浄化触媒20の酸素吸蔵量OSAscが徐々に減少すると、酸素吸蔵量OSAscは時刻t1において下限吸蔵量(図2のClowlim参照)を超えて減少する。酸素吸蔵量OSAscが下限吸蔵量よりも減少すると、上流側排気浄化触媒20に流入した未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出する。このため、時刻t1以降、上流側排気浄化触媒20の酸素吸蔵量OSAscが減少するのに伴って、下流側空燃比センサ41の出力電流Irdwnが徐々に低下する。このときも、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。 When the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is gradually reduced, the oxygen storage amount OSAsc decreases beyond the lower limit storage amount (see Clowlim in FIG. 2) at time t 1. When the oxygen storage amount OSAsc decreases below the lower limit storage amount, a part of the unburned gas that has flowed into the upstream side exhaust purification catalyst 20 flows out without being purified by the upstream side exhaust purification catalyst 20. Therefore, after time t 1 , the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually decreases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
 その後、時刻t2において、下流側空燃比センサ41の出力電流Irdwnがリッチ判定空燃比に相当するリッチ判定基準値Irefに到達する。本実施形態では、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irefになると、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少を抑制すべく、空燃比補正量AFCがリーン設定補正量AFCleanに切り替えられる。リーン設定補正量AFCleanは、リーン設定空燃比に相当する値であり、0よりも大きな値である。したがって、目標空燃比はリーン空燃比とされる。 Thereafter, at time t 2 , the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref corresponding to the rich determination air-fuel ratio. In the present embodiment, when the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref, the air-fuel ratio correction amount AFC is set to be lean so as to suppress the decrease in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. The correction amount is switched to AFClean. The lean set correction amount AFClean is a value corresponding to the lean set air-fuel ratio, and is a value larger than zero. Therefore, the target air-fuel ratio is a lean air-fuel ratio.
 なお、本実施形態では、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irefに到達してから、すなわち上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比に到達してから、空燃比補正量AFCの切替を行っている。これは、上流側排気浄化触媒20の酸素吸蔵量が十分であっても、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比から極わずかにずれてしまう場合があるためである。すなわち、仮に出力電流Irdwnが零(理論空燃比に相当)から僅かにずれた場合にも酸素吸蔵量が下限吸蔵量を超えて減少していると判断してしまうと、実際には十分な酸素吸蔵量があっても、酸素吸蔵量が下限吸蔵量を超えて減少したと判断される可能性がある。そこで、本実施形態では、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比に到達して始めて酸素吸蔵量が下限吸蔵量を超えて減少したと判断することとしている。逆に言うと、リッチ判定空燃比は、上流側排気浄化触媒20の酸素吸蔵量が十分であるときには上流側排気浄化触媒20から流出する排気ガスの空燃比が到達することのないような空燃比とされる。 In the present embodiment, after the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref, that is, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 becomes the rich determination air-fuel ratio. After reaching, the air-fuel ratio correction amount AFC is switched. This is because even if the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 may slightly deviate from the stoichiometric air-fuel ratio. is there. That is, even if the output current Irdwn is slightly deviated from zero (corresponding to the stoichiometric air-fuel ratio), if it is determined that the oxygen storage amount has decreased beyond the lower limit storage amount, sufficient oxygen Even if there is an occlusion amount, it may be determined that the oxygen occlusion amount has decreased beyond the lower limit occlusion amount. Therefore, in the present embodiment, it is determined that the oxygen storage amount has decreased beyond the lower limit storage amount only after the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 reaches the rich determination air-fuel ratio. Conversely, the rich determination air-fuel ratio is such that the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 does not reach when the oxygen storage amount of the upstream side exhaust purification catalyst 20 is sufficient. It is said.
 時刻t2において、目標空燃比をリーン空燃比に切り替えても、上流側排気浄化触媒20に流入する排気ガスの空燃比はすぐにはリーン空燃比にならず、或る程度の遅れが生じる。その結果、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t3においてリッチ空燃比からリーン空燃比に変化する。なお、時刻t2~t3においては、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ空燃比となっているため、この排気ガス中には未燃ガスが含まれることになる。しかしながら、上流側排気浄化触媒20からのNOx排出量は抑制される。 Even when the target air-fuel ratio is switched to the lean air-fuel ratio at time t 2 , the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 does not immediately become the lean air-fuel ratio, and some delay occurs. As a result, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 changes from the rich air-fuel ratio to the lean air-fuel ratio at time t 3 . At times t 2 to t 3 , since the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, this exhaust gas contains unburned gas. . However, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
 時刻t3において、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化すると、上流側排気浄化触媒20の酸素吸蔵量OSAscは増大する。また、これに伴って、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へと変化し、下流側空燃比センサ41の出力電流Irdwnも0に収束する。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比となっているが、上流側排気浄化触媒20の酸素吸蔵能力には十分な余裕があるため、流入する排気ガス中の酸素は上流側排気浄化触媒20に吸蔵され、NOxは還元浄化される。このため、上流側排気浄化触媒20からのNOx排出量は抑制される。 When the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 changes to the lean air-fuel ratio at time t 3 , the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases. As a result, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output current Irdwn of the downstream side air-fuel ratio sensor 41 converges to zero. At this time, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio. However, since the oxygen storage capacity of the upstream side exhaust purification catalyst 20 has a sufficient margin, the inflowing exhaust gas The oxygen therein is stored in the upstream side exhaust purification catalyst 20, and NOx is reduced and purified. For this reason, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
 その後、上流側排気浄化触媒20の酸素吸蔵量OSAscが増大すると、時刻t4において酸素吸蔵量OSAscは判定基準吸蔵量Crefに到達する。本実施形態では、酸素吸蔵量OSAscが判定基準吸蔵量Crefになると、上流側排気浄化触媒20への酸素の吸蔵を中止すべく、空燃比補正量AFCが弱リッチ設定補正量AFCrich(0よりも小さな値)に切り替えられる。したがって、目標空燃比はリッチ空燃比とされる。 Thereafter, when the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is increased, the oxygen storage amount OSAsc at time t 4 reaches the determination reference storage amount Cref. In the present embodiment, when the oxygen storage amount OSAsc reaches the determination reference storage amount Cref, the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich (less than 0) in order to stop storing oxygen in the upstream side exhaust purification catalyst 20. (Small value). Therefore, the target air-fuel ratio is set to a rich air-fuel ratio.
 ただし、上述したように、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が実際に変化するまでには遅れが生じる。このため、時刻t4にて切替を行っても、上流側排気浄化触媒20に流入する排気ガスの空燃比は或る程度時間が経過した時刻t5においてリーン空燃比からリッチ空燃比に変化する。時刻t4~t5においては、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比であるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは増大していく。 However, as described above, there is a delay from when the target air-fuel ratio is switched to when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 actually changes. For this reason, even if switching is performed at time t 4 , the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 changes from the lean air-fuel ratio to the rich air-fuel ratio at time t 5 when a certain amount of time has elapsed. . From time t 4 to t 5 , the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio, so the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases.
 しかしながら、判定基準吸蔵量Crefは最大酸素吸蔵量Cmaxや上限吸蔵量(図2のCuplim参照)よりも十分に低く設定されているため、時刻t5においても酸素吸蔵量OSAscは最大酸素吸蔵量Cmaxや上限吸蔵量には到達しない。逆に言うと、判定基準吸蔵量Crefは、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が実際に変化するまで遅延が生じても、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxや上限吸蔵量に到達しないように十分少ない量とされる。例えば、判定基準吸蔵量Crefは、最大酸素吸蔵量Cmaxの3/4以下、好ましくは1/2以下、より好ましくは1/5以下とされる。したがって、時刻t4~t5においても、上流側排気浄化触媒20からのNOx排出量は抑制される。 However, the criterion storage amount Cref is the maximum oxygen storage amount Cmax and upper storage amount since it is set sufficiently lower than (see Cuplim in FIG. 2), the oxygen storage amount OSAsc even at time t 5 is the maximum oxygen storage amount Cmax And the upper limit occlusion amount is not reached. In other words, even if a delay occurs until the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 actually changes after switching the target air-fuel ratio, the determination reference storage amount Cref is equal to the oxygen storage amount OSAsc. The amount is sufficiently small so as not to reach the maximum oxygen storage amount Cmax or the upper limit storage amount. For example, the criterion storage amount Cref is 3/4 or less, preferably 1/2 or less, more preferably 1/5 or less of the maximum oxygen storage amount Cmax. Therefore, the NOx emission amount from the upstream side exhaust purification catalyst 20 is also suppressed from time t 4 to t 5 .
 時刻t5以降においては、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている。したがって、目標空燃比はリッチ空燃比とされ、これに伴って上流側空燃比センサ40の出力電流Ipupが負の値となる。上流側排気浄化触媒20に流入する排気ガス中には未燃ガスが含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に減少していき、時刻t6において、時刻t1と同様に、酸素吸蔵量OSAscが下限吸蔵量を超えて減少する。このときも、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているため、上流側排気浄化触媒20からのNOx排出量は抑制される。 At time t 5 or later, the air-fuel ratio correction amount AFC there is a weak rich set correction amount AFCrich. Accordingly, the target air-fuel ratio is set to a rich air-fuel ratio, and accordingly, the output current Iupp of the upstream air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream exhaust purification catalyst 20 will include unburned gas, the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is gradually decreased at time t 6, the time Similar to t 1 , the oxygen storage amount OSAsc decreases beyond the lower limit storage amount. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the NOx emission amount from the upstream side exhaust purification catalyst 20 is suppressed.
 次いで、時刻t7において、時刻t2と同様に、下流側空燃比センサ41の出力電流Irdwnがリッチ判定空燃比に相当するリッチ判定基準値Irefに到達する。これにより、空燃比補正量AFCがリーン設定空燃比に相当する値AFCleanに切り替えられる。その後、上述した時刻t1~t6のサイクルが繰り返される。 Next, at time t 7 , similarly to time t 2 , the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref corresponding to the rich determination air-fuel ratio. As a result, the air-fuel ratio correction amount AFC is switched to a value AFClean corresponding to the lean set air-fuel ratio. Thereafter, the cycle from the time t 1 to t 6 described above is repeated.
 なお、このような空燃比補正量AFCの制御は、ECU31によって行われる。したがって、ECU31は、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ判定空燃比以下となったときに、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Crefとなるまで、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を継続的にリーン設定空燃比にする酸素吸蔵量増加手段と、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Cref以上となったときに、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxに達することなく零に向けて減少するように、目標空燃比を継続的に弱リッチ設定空燃比にする酸素吸蔵量減少手段とを具備するといえる。 Note that the control of the air-fuel ratio correction amount AFC is performed by the ECU 31. Therefore, the ECU 31 determines that the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is equal to the determination reference storage amount Cref when the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination air-fuel ratio. The oxygen storage amount increasing means for continuously setting the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 to the lean set air-fuel ratio and the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 are determined as the reference storage. When the amount Cref is equal to or greater than the amount Cref, the oxygen storage amount decreases continuously so that the target air-fuel ratio decreases toward zero without reaching the maximum oxygen storage amount Cmax. Means.
 以上の説明から分かるように上記実施形態によれば、上流側排気浄化触媒20からのNOx排出量を常に抑制することができる。すなわち、上述した制御を行っている限り、基本的には上流側排気浄化触媒20からのNOx排出量を少ないものとすることができる。 As can be seen from the above description, according to the above embodiment, the NOx emission amount from the upstream side exhaust purification catalyst 20 can always be suppressed. That is, as long as the above-described control is performed, the NOx emission amount from the upstream side exhaust purification catalyst 20 can be basically reduced.
 また、一般に、上流側空燃比センサ40の出力電流Ipup及び吸入空気量の推定値等に基づいて酸素吸蔵量OSAscを推定した場合には誤差が生じる可能性がある。本実施形態においても、時刻t3~t4に亘って酸素吸蔵量OSAscを推定しているため、酸素吸蔵量OSAscの推定値には多少の誤差が含まれる。しかしながら、このような誤差が含まれていたとしても、判定基準吸蔵量Crefを最大酸素吸蔵量Cmaxや上限吸蔵量よりも十分に低く設定しておけば、実際の酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxや上限吸蔵量にまで到達することはほとんどない。したがって、斯かる観点からも上流側排気浄化触媒20からのNOx排出量を抑制することができる。 In general, when the oxygen storage amount OSAsc is estimated based on the output current Iupp of the upstream air-fuel ratio sensor 40, the estimated value of the intake air amount, and the like, an error may occur. Also in this embodiment, since the oxygen storage amount OSAsc is estimated from time t 3 to t 4 , the estimated value of the oxygen storage amount OSAsc includes some errors. However, even if such an error is included, if the reference storage amount Cref is set sufficiently lower than the maximum oxygen storage amount Cmax or the upper limit storage amount, the actual oxygen storage amount OSAsc will be the maximum oxygen storage amount. The amount Cmax and the upper limit storage amount are hardly reached. Therefore, the NOx emission amount from the upstream side exhaust purification catalyst 20 can be suppressed also from such a viewpoint.
 また、排気浄化触媒の酸素吸蔵量が一定に維持されると、その排気浄化触媒の酸素吸蔵能力が低下する。これに対して、本実施形態によれば、酸素吸蔵量OSAscは常に上下に変動しているため、酸素吸蔵能力が低下することが抑制される。 Also, if the oxygen storage amount of the exhaust purification catalyst is kept constant, the oxygen storage capacity of the exhaust purification catalyst will be reduced. On the other hand, according to this embodiment, since the oxygen storage amount OSAsc constantly fluctuates up and down, it is possible to suppress a decrease in the oxygen storage capacity.
 加えて、本実施形態では、下流側空燃比センサ41は上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比以下であるか否かを検出しており、また、リッチ判定空燃比は理論空燃比から僅かにのみずれた空燃比である。したがって、下流側空燃比センサ41によって検出可能な空燃比の範囲は狭くても良い。ただし、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比以下となったら迅速に目標空燃比を切り替えることが必要になることから、下流側空燃比センサ41には高い検出精度が要求される。 In addition, in the present embodiment, the downstream air-fuel ratio sensor 41 detects whether or not the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is equal to or less than the rich determination air-fuel ratio. The air-fuel ratio is an air-fuel ratio that is slightly deviated from the stoichiometric air-fuel ratio. Therefore, the range of the air-fuel ratio that can be detected by the downstream air-fuel ratio sensor 41 may be narrow. However, when the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 becomes equal to or lower than the rich determination air-fuel ratio, it is necessary to quickly switch the target air-fuel ratio. Accuracy is required.
 一方、上流側空燃比センサ40は、上流側排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比となるようにフィードバック制御するのに用いられている。フィードバック制御を迅速に行うためには、上流側排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比から大きくずれた場合であってもその差を検出することができることが必要になる。したがって、上流側空燃比センサ40によって検出可能な空燃比の範囲は広いことが必要とされる。 On the other hand, the upstream air-fuel ratio sensor 40 is used for feedback control so that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the target air-fuel ratio. In order to perform feedback control quickly, it is necessary to be able to detect the difference even when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 deviates greatly from the target air-fuel ratio. Therefore, the range of the air-fuel ratio that can be detected by the upstream air-fuel ratio sensor 40 is required to be wide.
 これに対して、本実施形態では、上流側空燃比センサ40として、検出可能な空燃比の範囲が広い2セル型の空燃比センサが用いられ、下流側空燃比センサ41として、検出精度の高い1セル型の空燃比センサが用いられている。したがって、本実施形態によれば、上流側空燃比センサ40及び下流側空燃比センサ41はそれぞれに対する要求を十分満たすことができる。 In contrast, in the present embodiment, a two-cell type air-fuel ratio sensor having a wide range of detectable air-fuel ratio is used as the upstream air-fuel ratio sensor 40, and the downstream air-fuel ratio sensor 41 has high detection accuracy. A one-cell air-fuel ratio sensor is used. Therefore, according to the present embodiment, the upstream air-fuel ratio sensor 40 and the downstream air-fuel ratio sensor 41 can sufficiently satisfy the requirements for each.
 なお、上記実施形態では、時刻t2~t4において、空燃比補正量AFCはリーン設定補正量AFCleanに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に減少させる等、変動するように設定されてもよい。同様に、時刻t4~t7において、空燃比補正量AFCは弱リッチ設定補正量AFrichに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に減少させる等、変動するように設定されてもよい。 In the above embodiment, the air-fuel ratio correction amount AFC is maintained at the lean set correction amount AFClean from time t 2 to t 4 . However, in such a period, the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set so as to fluctuate, for example, gradually decrease. Similarly, from time t 4 to t 7 , the air-fuel ratio correction amount AFC is maintained at the weak rich set correction amount AFrich. However, in such a period, the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set so as to fluctuate, for example, gradually decrease.
 ただし、この場合であっても、時刻t2~t4における空燃比補正量AFCは、当該期間における目標空燃比の時間平均値と理論空燃比との差が、時刻t4~t7における目標空燃比の時間平均値と理論空燃比との差よりも大きくなるように設定される。 However, even in this case, the air-fuel ratio correction amount AFC at the times t 2 to t 4 is the difference between the time average value of the target air-fuel ratio and the theoretical air-fuel ratio in the period, and the target at the times t 4 to t 7 . It is set to be larger than the difference between the time average value of the air-fuel ratio and the theoretical air-fuel ratio.
 また、上記実施形態では、上流側空燃比センサ40の出力電流Ipup及び燃焼室5内への吸入空気量の推定値等に基づいて、上流側排気浄化触媒20の酸素吸蔵量OSAscが推定されている。しかしながら、酸素吸蔵量OSAscはこれらパラメータに加えて他のパラメータに基づいて算出されてもよいし、これらパラメータとは異なるパラメータに基づいて推定されてもよい。また、上記実施形態では、酸素吸蔵量OSAscの推定値が判定基準吸蔵量Cref以上になると、目標空燃比がリーン設定空燃比から弱リッチ設定空燃比へと切り替えられる。しかしながら、目標空燃比をリーン設定空燃比から弱リッチ設定空燃比へと切り替えるタイミングは、例えば目標空燃比を弱リッチ設定空燃比からリーン設定空燃比へ切り替えてからの機関運転時間等、他のパラメータを基準としてもよい。ただし、この場合であっても、上流側排気浄化触媒20の酸素吸蔵量OSAscが最大酸素吸蔵量よりも少ないと推定される間に、目標空燃比をリーン設定空燃比から弱リッチ設定空燃比へと切り替えることが必要となる。 In the above embodiment, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated based on the output current Iupup of the upstream side air-fuel ratio sensor 40 and the estimated value of the intake air amount into the combustion chamber 5. Yes. However, the oxygen storage amount OSAsc may be calculated based on other parameters in addition to these parameters, or may be estimated based on parameters different from these parameters. In the above embodiment, when the estimated value of the oxygen storage amount OSAsc is equal to or greater than the determination reference storage amount Cref, the target air-fuel ratio is switched from the lean set air-fuel ratio to the slightly rich set air-fuel ratio. However, the timing at which the target air-fuel ratio is switched from the lean set air-fuel ratio to the weakly rich set air-fuel ratio is determined by other parameters such as the engine operation time after the target air-fuel ratio is switched from the weak rich set air-fuel ratio to the lean set air-fuel ratio. May be used as a reference. However, even in this case, the target air-fuel ratio is changed from the lean set air-fuel ratio to the slightly rich set air-fuel ratio while the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated to be smaller than the maximum oxygen storage amount. It is necessary to switch.
<下流側触媒も用いた制御の説明>
 また、本実施形態では、上流側排気浄化触媒20に加えて下流側排気浄化触媒24も設けられている。下流側排気浄化触媒24の酸素吸蔵量OSAufcは或る程度の期間毎に行われる燃料カット制御によって最大吸蔵量Cmax近傍の値とされる。このため、たとえ上流側排気浄化触媒20から未燃ガスを含んだ排気ガスが流出したとしても、これら未燃ガスは下流側排気浄化触媒24において酸化浄化される。
<Description of control using downstream catalyst>
In the present embodiment, in addition to the upstream side exhaust purification catalyst 20, a downstream side exhaust purification catalyst 24 is also provided. The oxygen storage amount OSAufc of the downstream side exhaust purification catalyst 24 is set to a value in the vicinity of the maximum storage amount Cmax by fuel cut control performed every certain period. For this reason, even if exhaust gas containing unburned gas flows out from the upstream side exhaust purification catalyst 20, these unburned gas is oxidized and purified in the downstream side exhaust purification catalyst 24.
 なお、燃料カット制御とは、内燃機関を搭載する車両の減速時等において、クランクシャフトやピストン3が運動している状態であっても、燃料噴射弁11から燃料の噴射を行わない制御である。この制御を行うと、両排気浄化触媒20、24には多量の空気が流入することになる。 The fuel cut control is a control that does not inject fuel from the fuel injection valve 11 even when the crankshaft or the piston 3 is moving, for example, during deceleration of a vehicle equipped with an internal combustion engine. . When this control is performed, a large amount of air flows into both exhaust purification catalysts 20, 24.
 以下、図13を参照して、下流側排気浄化触媒24における酸素吸蔵量OSAufcの推移について説明する。図13は、図12と同様な図であり、図12のNOx濃度の推移に換えて、下流側排気浄化触媒24の酸素吸蔵量OSAufc及び下流側排気浄化触媒24から流出する排気ガス中の未燃ガス(HCやCO等)の濃度の推移を示している。また、図13に示した例では、図12に示した例と同一の制御を行っている。 Hereinafter, transition of the oxygen storage amount OSAufc in the downstream side exhaust purification catalyst 24 will be described with reference to FIG. FIG. 13 is a diagram similar to FIG. 12, and instead of the transition of the NOx concentration in FIG. 12, the oxygen storage amount OSAufc of the downstream side exhaust purification catalyst 24 and the exhaust gas in the exhaust gas flowing out from the downstream side exhaust purification catalyst 24 are not shown. It shows the transition of the concentration of fuel gas (HC, CO, etc.). Moreover, in the example shown in FIG. 13, the same control as the example shown in FIG. 12 is performed.
 図13に示した例では、時刻t1以前に燃料カット制御が行われている。このため、時刻t1以前において、下流側排気浄化触媒24の酸素吸蔵量OSAufcは最大酸素吸蔵量Cmax近傍の値となっている。また、時刻t1以前においては、上流側排気浄化触媒20から流出する排気ガスの空燃比はほぼ理論空燃比に保たれる。このため、下流側排気浄化触媒24の酸素吸蔵量OSAufcは一定に維持される。 In the example shown in FIG. 13, the fuel cut control is performed before time t 1 . Thus, at time t 1 earlier, the oxygen storage amount OSAufc the downstream exhaust purifying catalyst 24 has a value of the maximum oxygen storage amount Cmax vicinity. Further, before the time t 1 , the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is maintained substantially at the stoichiometric air-fuel ratio. For this reason, the oxygen storage amount OSAufc of the downstream side exhaust purification catalyst 24 is kept constant.
 その後、時刻t1~t4において、上流側排気浄化触媒20から流出する排気ガスの空燃比はリッチ空燃比となっている。このため、下流側排気浄化触媒24には、未燃ガスを含む排気ガスが流入する。 Thereafter, from time t 1 to time t 4 , the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 becomes a rich air-fuel ratio. For this reason, exhaust gas containing unburned gas flows into the downstream side exhaust purification catalyst 24.
 上述したように、下流側排気浄化触媒24には多量の酸素が吸蔵されているため、下流側排気浄化触媒24に流入する排気ガス中に未燃ガスが含まれていると、吸蔵されている酸素により未燃ガスが酸化浄化される。また、これに伴って、下流側排気浄化触媒24の酸素吸蔵量OSAufcは減少する。ただし、時刻t1~t4において上流側排気浄化触媒20から流出する未燃ガスはそれほど多くないため、この間の酸素吸蔵量OSAufcの減少量はわずかである。このため、時刻t1~t4において上流側排気浄化触媒20から流出する未燃ガスは全て下流側排気浄化触媒24において還元浄化される。 As described above, since a large amount of oxygen is stored in the downstream side exhaust purification catalyst 24, if the exhaust gas flowing into the downstream side exhaust purification catalyst 24 contains unburned gas, it is stored. Unburned gas is oxidized and purified by oxygen. Along with this, the oxygen storage amount OSAufc of the downstream side exhaust purification catalyst 24 decreases. However, since there is not so much unburned gas flowing out of the upstream side exhaust purification catalyst 20 from time t 1 to t 4 , the amount of decrease in the oxygen storage amount OSAufc during this period is slight. Therefore, all the unburned gas flowing out from the upstream side exhaust purification catalyst 20 from time t 1 to t 4 is reduced and purified by the downstream side exhaust purification catalyst 24.
 時刻t6以降についても、或る程度の時間間隔毎に時刻t1~t4における場合と同様に、上流側排気浄化触媒20から未燃ガスが流出する。このようにして流出した未燃ガスは基本的に下流側排気浄化触媒24に吸蔵されている酸素により還元浄化される。したがって、下流側排気浄化触媒24からは未燃ガスが流出することは少ない。上述したように、上流側排気浄化触媒20からのNOx排出量が少ないものとされることを考えると、本実施形態によれば、下流側排気浄化触媒24からの未燃ガス及びNOxの排出量は常に少ないものとされる。 Also after time t 6, unburned gas flows out from the upstream side exhaust purification catalyst 20 at a certain time interval as in the case of time t 1 to t 4 . The unburned gas flowing out in this manner is basically reduced and purified by oxygen stored in the downstream side exhaust purification catalyst 24. Therefore, the unburned gas hardly flows out from the downstream side exhaust purification catalyst 24. As described above, considering that the amount of NOx emission from the upstream side exhaust purification catalyst 20 is small, according to this embodiment, the amount of unburned gas and NOx emitted from the downstream side exhaust purification catalyst 24 Will always be less.
<具体的な制御の説明>
 次に、図14及び図15を参照して、上記実施形態における制御装置について具体的に説明する。本実施形態における制御装置は、機能ブロック図である図14に示したように、A1~A9の各機能ブロックを含んで構成されている。以下、図14を参照しながら各機能ブロックについて説明する。
<Description of specific control>
Next, with reference to FIG. 14 and FIG. 15, the control apparatus in the said embodiment is demonstrated concretely. As shown in FIG. 14 which is a functional block diagram, the control device in the present embodiment is configured to include each of the functional blocks A1 to A9. Hereinafter, each functional block will be described with reference to FIG.
<燃料噴射量の算出>
 まず、燃料噴射量の算出について説明する。燃料噴射量の算出に当たっては、筒内吸入空気量算出手段A1、基本燃料噴射量算出手段A2、及び燃料噴射量算出手段A3が用いられる。
<Calculation of fuel injection amount>
First, calculation of the fuel injection amount will be described. In calculating the fuel injection amount, in-cylinder intake air amount calculation means A1, basic fuel injection amount calculation means A2, and fuel injection amount calculation means A3 are used.
 筒内吸入空気量算出手段A1は、エアフロメータ39によって計測される吸入空気流量Gaと、クランク角センサ44の出力に基づいて算出される機関回転数NEと、ECU31のROM34に記憶されたマップ又は計算式とに基づいて、各気筒への吸入空気量Mcを算出する。 The in-cylinder intake air amount calculation means A1 includes an intake air flow rate Ga measured by the air flow meter 39, an engine speed NE calculated based on the output of the crank angle sensor 44, and a map stored in the ROM 34 of the ECU 31 or Based on the calculation formula, the intake air amount Mc to each cylinder is calculated.
 基本燃料噴射量算出手段A2は、筒内吸入空気量算出手段A1によって算出された筒内吸入空気量Mcを、後述する目標空燃比設定手段A6によって算出された目標空燃比AFTで除算することにより、基本燃料噴射量Qbaseを算出する(Qbase=Mc/AFT)。 The basic fuel injection amount calculation means A2 divides the in-cylinder intake air amount Mc calculated by the in-cylinder intake air amount calculation means A1 by the target air-fuel ratio AFT calculated by the target air-fuel ratio setting means A6 described later. The basic fuel injection amount Qbase is calculated (Qbase = Mc / AFT).
 燃料噴射量算出手段A3は、基本燃料噴射量算出手段A2によって算出された基本燃料噴射量Qbaseに、後述するF/B補正量DQiを加えることで燃料噴射量Qiを算出する(Qi=Qbase+DQi)。このようにして算出された燃料噴射量Qiの燃料が燃料噴射弁11から噴射されるように、燃料噴射弁11に対して噴射指示が行われる。 The fuel injection amount calculation means A3 calculates the fuel injection amount Qi by adding an F / B correction amount DQi described later to the basic fuel injection amount Qbase calculated by the basic fuel injection amount calculation means A2 (Qi = Qbase + DQi). . An injection instruction is issued to the fuel injection valve 11 so that the fuel of the fuel injection amount Qi calculated in this way is injected from the fuel injection valve 11.
<目標空燃比の算出>
 次に、目標空燃比の算出について説明する。目標空燃比の算出に当たっては、酸素吸蔵量算出手段A4、目標空燃比補正量算出手段A5、及び目標空燃比設定手段A6が用いられる。
<Calculation of target air-fuel ratio>
Next, calculation of the target air-fuel ratio will be described. In calculating the target air-fuel ratio, oxygen storage amount calculation means A4, target air-fuel ratio correction amount calculation means A5, and target air-fuel ratio setting means A6 are used.
 酸素吸蔵量算出手段A4は、燃料噴射量算出手段A3によって算出された燃料噴射量Qi及び上流側空燃比センサ40の出力電流Ipupに基づいて上流側排気浄化触媒20の酸素吸蔵量の推定値OSAestを算出する。例えば、酸素吸蔵量算出手段A4は、上流側空燃比センサ40の出力電流Ipupに対応する空燃比と理論空燃比との差分に燃料噴射量Qiを乗算すると共に、求めた値を積算することによって酸素吸蔵量の推定値OSAestを算出する。なお、酸素吸蔵量算出手段A4による上流側排気浄化触媒20の酸素吸蔵量の推定は、常時行われていなくてもよい。例えば、目標空燃比がリッチ空燃比からリーン空燃比へ実際に切り替えられたとき(図12における時刻t3)から、酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達する(図12における時刻t4)までの間のみ酸素吸蔵量を推定してもよい。 The oxygen storage amount calculation means A4 is an estimated value OSAest of the oxygen storage amount of the upstream side exhaust purification catalyst 20 based on the fuel injection amount Qi calculated by the fuel injection amount calculation means A3 and the output current Iupp of the upstream side air-fuel ratio sensor 40. Is calculated. For example, the oxygen storage amount calculating means A4 multiplies the difference between the air-fuel ratio corresponding to the output current Iupp of the upstream air-fuel ratio sensor 40 and the theoretical air-fuel ratio by the fuel injection amount Qi and integrates the obtained value. An estimated value OSAest of the oxygen storage amount is calculated. The estimation of the oxygen storage amount of the upstream side exhaust purification catalyst 20 by the oxygen storage amount calculation means A4 may not always be performed. For example, when the target air-fuel ratio is actually switched from the rich air-fuel ratio to the lean air-fuel ratio (time t 3 in FIG. 12), the oxygen storage amount estimated value OSAest reaches the determination reference storage amount Cref (in FIG. 12). The oxygen storage amount may be estimated only until the time t 4 ).
 目標空燃比補正量算出手段A5では、酸素吸蔵量算出手段A4によって算出された酸素吸蔵量の推定値OSAestと、下流側空燃比センサ41の出力電流Irdwnとに基づいて、目標空燃比の空燃比補正量AFCが算出される。具体的には、空燃比補正量AFCは、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref(リッチ判定空燃比に相当する値)以下となったときに、リーン設定補正量AFCleanとされる。その後、空燃比補正量AFCは、酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達するまで、リーン設定補正量AFCleanに維持される。酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefに到達すると、空燃比補正量AFCは弱リッチ設定補正量AFCrichとされる。その後、空燃比補正量AFCは、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref(リッチ判定空燃比に相当する値)となるまで、弱リッチ設定補正量AFCrichに維持される。 In the target air-fuel ratio correction amount calculation means A5, the air-fuel ratio of the target air-fuel ratio is calculated based on the estimated value OSAest of the oxygen storage amount calculated by the oxygen storage amount calculation means A4 and the output current Irdwn of the downstream air-fuel ratio sensor 41. A correction amount AFC is calculated. Specifically, the air-fuel ratio correction amount AFC is the lean set correction amount AFClean when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Iref (value corresponding to the rich determination air-fuel ratio). It is said. Thereafter, the air-fuel ratio correction amount AFC is maintained at the lean set correction amount AFClean until the estimated value OSAest of the oxygen storage amount reaches the determination reference storage amount Cref. When the estimated value OSAest of the oxygen storage amount reaches the determination reference storage amount Cref, the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich. Thereafter, the air-fuel ratio correction amount AFC is maintained at the weak rich set correction amount AFCrich until the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Iref (a value corresponding to the rich determination air-fuel ratio).
 目標空燃比設定手段A6は、基準となる空燃比、本実施形態では理論空燃比AFRに、目標空燃比補正量算出手段A5で算出された空燃比補正量AFCを加算することで、目標空燃比AFTを算出する。したがって、目標空燃比AFTは、理論空燃比AFRよりも僅かにリッチである弱リッチ設定空燃比(空燃比補正量AFCが弱リッチ設定補正量AFCrichの場合)か、又は理論空燃比AFRよりも或る程度リーンであるリーン設定空燃比(空燃比補正量AFCがリーン設定補正量AFCleanの場合)のいずれかとされる。このようにして算出された目標空燃比AFTは、基本燃料噴射量算出手段A2及び後述する空燃比差算出手段A8に入力される。 The target air-fuel ratio setting means A6 adds the air-fuel ratio correction amount AFC calculated by the target air-fuel ratio correction amount calculation means A5 to the reference air-fuel ratio, in this embodiment, the theoretical air-fuel ratio AFR, so that the target air-fuel ratio is set. AFT is calculated. Therefore, the target air-fuel ratio AFT is a slightly rich set air-fuel ratio (when the air-fuel ratio correction amount AFC is a weak rich set correction amount AFCrich) slightly richer than the stoichiometric air-fuel ratio AFR, or is more than the stoichiometric air-fuel ratio AFR. Any lean set air-fuel ratio (in the case where the air-fuel ratio correction amount AFC is the lean set correction amount AFClean) that is lean to some extent. The target air-fuel ratio AFT calculated in this way is input to the basic fuel injection amount calculating means A2 and an air-fuel ratio difference calculating means A8 described later.
 図15は、空燃比補正量AFCの算出制御の制御ルーチンを示すフローチャートである。図示した制御ルーチンは一定時間間隔の割り込みによって行われる。 FIG. 15 is a flowchart showing a control routine for calculation control of the air-fuel ratio correction amount AFC. The illustrated control routine is performed by interruption at regular time intervals.
 図15に示したように、まず、ステップS11において空燃比補正量AFCの算出条件が成立しているか否かが判定される。空燃比補正量の算出条件が成立している場合とは、例えば燃料カット制御中ではないこと等が挙げられる。ステップS11において目標空燃比の算出条件が成立していると判定された場合には、ステップS12へと進む。S12では、上流側空燃比センサ40の出力電流Ipup、下流側空燃比センサ41の出力電流Irdwn、燃料噴射量Qiが取得せしめられる。次いでステップS13では、ステップS12で取得された上流側空燃比センサ40の出力電流Ipup及び燃料噴射量Qiに基づいて酸素吸蔵量の推定値OSAestが算出される。 As shown in FIG. 15, first, in step S11, it is determined whether the calculation condition for the air-fuel ratio correction amount AFC is satisfied. The case where the calculation condition of the air-fuel ratio correction amount is satisfied includes, for example, that fuel cut control is not being performed. If it is determined in step S11 that the target air-fuel ratio calculation condition is satisfied, the process proceeds to step S12. In S12, the output current Iupup of the upstream side air-fuel ratio sensor 40, the output current Irdwn of the downstream side air-fuel ratio sensor 41, and the fuel injection amount Qi are acquired. Next, in step S13, the estimated value OSAest of the oxygen storage amount is calculated based on the output current Iupup and the fuel injection amount Qi of the upstream air-fuel ratio sensor 40 acquired in step S12.
 次いでステップS14において、リーン設定フラグFrが0に設定されているか否かが判定される。リーン設定フラグFrは、空燃比補正量AFCがリーン設定補正量AFCleanに設定されると1とされ、それ以外の場合には0とされる。ステップS14においてリーン設定フラグFrが0に設定されている場合には、ステップS15へと進む。ステップS15では、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref以下であるか否かが判定される。下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irefよりも大きいと判定された場合には制御ルーチンが終了せしめられる。 Next, in step S14, it is determined whether or not the lean setting flag Fr is set to zero. The lean setting flag Fr is set to 1 when the air-fuel ratio correction amount AFC is set to the lean setting correction amount AFClean, and is set to 0 otherwise. If the lean setting flag Fr is set to 0 in step S14, the process proceeds to step S15. In step S15, it is determined whether or not the output current Irdwn of the downstream air-fuel ratio sensor 41 is equal to or less than the rich determination reference value Iref. When it is determined that the output current Irdwn of the downstream air-fuel ratio sensor 41 is larger than the rich determination reference value Iref, the control routine is ended.
 一方、上流側排気浄化触媒20の酸素吸蔵量OSAscが減少して、上流側排気浄化触媒20から流出する排気ガスの空燃比が低下すると、ステップS15にて下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Iref以下であると判定される。この場合には、ステップS16へと進み、空燃比補正量AFCがリーン設定補正量AFCleanとされる。次いで、ステップS17では、リーン設定フラグFrが1に設定され、制御ルーチンが終了せしめられる。 On the other hand, when the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases and the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 decreases, the output current Irdwn of the downstream side air-fuel ratio sensor 41 in step S15. Is determined to be less than or equal to the rich determination reference value Iref. In this case, the process proceeds to step S16, and the air-fuel ratio correction amount AFC is set to the lean set correction amount AFClean. Next, at step S17, the lean setting flag Fr is set to 1, and the control routine is ended.
 次の制御ルーチンにおいては、ステップS14において、リーン設定フラグFrが0に設定されていないと判定されて、ステップS18へと進む。ステップS18では、ステップS13で算出された酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefよりも少ないか否かが判定される。酸素吸蔵量の推定値OSAestが判定基準吸蔵量Crefよりも少ないと判定された場合にはステップS19へと進み、空燃比補正量AFCが引き続きリーン設定補正量AFCleanとされる。一方、上流側排気浄化触媒20の酸素吸蔵量が増大すると、やがてステップS18において酸素吸蔵量の推定値OSAestが判定基準吸蔵量Cref以上であると判定されてステップS20へと進む。ステップS20では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされ、次いで、ステップS21では、リーン設定フラグFrが0にリセットされ、制御ルーチンが終了せしめられる。 In the next control routine, it is determined in step S14 that the lean setting flag Fr is not set to 0, and the process proceeds to step S18. In step S18, it is determined whether or not the estimated value OSAest of the oxygen storage amount calculated in step S13 is smaller than the determination reference storage amount Cref. When it is determined that the estimated value OSAest of the oxygen storage amount is smaller than the determination reference storage amount Cref, the routine proceeds to step S19, where the air-fuel ratio correction amount AFC is continuously set to the lean set correction amount AFClean. On the other hand, when the oxygen storage amount of the upstream side exhaust purification catalyst 20 increases, it is determined in step S18 that the estimated value OSAest of the oxygen storage amount is equal to or greater than the determination reference storage amount Cref, and the process proceeds to step S20. In step S20, the air-fuel ratio correction amount AFC is set to the weak rich setting correction amount AFCrich. Next, in step S21, the lean setting flag Fr is reset to 0, and the control routine is ended.
<F/B補正量の算出>
 再び図14に戻って、上流側空燃比センサ40の出力電流Ipupに基づいたF/B補正量の算出について説明する。F/B補正量の算出に当たっては、数値変換手段A7、空燃比差算出手段A8、F/B補正量算出手段A9が用いられる。
<Calculation of F / B correction amount>
Returning to FIG. 14 again, calculation of the F / B correction amount based on the output current Iupup of the upstream air-fuel ratio sensor 40 will be described. In calculating the F / B correction amount, numerical value conversion means A7, air-fuel ratio difference calculation means A8, and F / B correction amount calculation means A9 are used.
 数値変換手段A7は、上流側空燃比センサ40の出力電流Ipupと、空燃比センサ40の出力電流Ipupと空燃比との関係を規定したマップ又は計算式とに基づいて、出力電流Ipupに相当する上流側排気空燃比AFupを算出する。したがって、上流側排気空燃比AFupは、上流側排気浄化触媒20に流入する排気ガスの空燃比に相当する。 The numerical value conversion means A7 corresponds to the output current Iupup based on the output current Iupup of the upstream air-fuel ratio sensor 40 and a map or calculation formula that defines the relationship between the output current Iupup of the air-fuel ratio sensor 40 and the air-fuel ratio. An upstream exhaust air-fuel ratio AFup is calculated. Therefore, the upstream side exhaust air-fuel ratio AFup corresponds to the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20.
 空燃比差算出手段A8は、数値変換手段A7によって求められた上流側排気空燃比AFupから目標空燃比設定手段A6によって算出された目標空燃比AFTを減算することによって空燃比差DAFを算出する(DAF=AFup-AFT)。この空燃比差DAFは、目標空燃比AFTに対する燃料供給量の過不足を表す値である。 The air-fuel ratio difference calculating means A8 calculates the air-fuel ratio difference DAF by subtracting the target air-fuel ratio AFT calculated by the target air-fuel ratio setting means A6 from the upstream side exhaust air-fuel ratio AFup determined by the numerical value converting means A7 ( DAF = AFup−AFT). This air-fuel ratio difference DAF is a value that represents the excess or deficiency of the fuel supply amount with respect to the target air-fuel ratio AFT.
 F/B補正量算出手段A9は、空燃比差算出手段A8によって算出された空燃比差DAFを、比例・積分・微分処理(PID処理)することで、下記式(1)に基づいて燃料供給量の過不足を補償するためのF/B補正量DFiを算出する。このようにして算出されたF/B補正量DFiは、燃料噴射量算出手段A3に入力される。
 DFi=Kp・DAF+Ki・SDAF+Kd・DDAF   …(1)
The F / B correction amount calculation means A9 supplies fuel based on the following equation (1) by subjecting the air-fuel ratio difference DAF calculated by the air-fuel ratio difference calculation means A8 to proportional / integral / differential processing (PID processing). An F / B correction amount DFi for compensating for the excess or deficiency of the amount is calculated. The F / B correction amount DFi calculated in this way is input to the fuel injection amount calculation means A3.
DFi = Kp / DAF + Ki / SDAF + Kd / DDAF (1)
 なお、上記式(1)において、Kpは予め設定された比例ゲイン(比例定数)、Kiは予め設定された積分ゲイン(積分定数)、Kdは予め設定された微分ゲイン(微分定数)である。また、DDAFは、空燃比差DAFの時間微分値であり、今回更新された空燃比差DAFと前回更新されていた空燃比差DAFとの差を更新間隔に対応する時間で除算することで算出される。また、SDAFは、空燃比差DAFの時間積分値であり、この時間積分値DDAFは前回更新された時間積分値DDAFに今回更新された空燃比差DAFを加算することで算出される(SDAF=DDAF+DAF)。 In the above equation (1), Kp is a preset proportional gain (proportional constant), Ki is a preset integral gain (integral constant), and Kd is a preset differential gain (differential constant). DDAF is a time differential value of the air-fuel ratio difference DAF, and is calculated by dividing the difference between the air-fuel ratio difference DAF updated this time and the air-fuel ratio difference DAF updated last time by the time corresponding to the update interval. Is done. SDAF is a time integral value of the air-fuel ratio difference DAF, and this time integral value DDAF is calculated by adding the currently updated air-fuel ratio difference DAF to the previously updated time integral value DDAF (SDAF = DDAF + DAF).
 なお、上記実施形態では、上流側排気浄化触媒20に流入する排気ガスの空燃比を上流側空燃比センサ40によって検出している。しかしながら、上流側排気浄化触媒20に流入する排気ガスの空燃比の検出精度は必ずしも高い必要はないことから、例えば、燃料噴射弁11からの燃料噴射量及びエアフロメータ39の出力に基づいてこの排気ガスの空燃比を推定するようにしてもよい。 In the above embodiment, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is detected by the upstream side air-fuel ratio sensor 40. However, since the detection accuracy of the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is not necessarily high, for example, this exhaust gas is based on the fuel injection amount from the fuel injection valve 11 and the output of the air flow meter 39. You may make it estimate the air fuel ratio of gas.
<第二実施形態>
 次に、図16を参照して、本発明の第二実施形態に係る内燃機関の制御装置について説明する。第二実施形態に係る内燃機関の制御装置の構成及び制御は、基本的に、第一実施形態に係る内燃機関の制御装置の構成及び制御と同様である。しかしながら、本実施形態の制御装置では、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている間においても、或る程度の時間間隔毎に、空燃比補正量AFCが短い時間に亘って一時的にリーン空燃比に相当する値(例えば、リーン設定補正量AFClean)とされる。すなわち、本実施形態の制御装置では、目標空燃比が弱リッチ設定空燃比とされている間においても、或る程度の時間間隔毎に、目標空燃比が短い時間に亘って一時的にリーン空燃比とされる。
<Second embodiment>
Next, a control device for an internal combustion engine according to a second embodiment of the present invention will be described with reference to FIG. The configuration and control of the internal combustion engine control device according to the second embodiment are basically the same as the configuration and control of the internal combustion engine control device according to the first embodiment. However, in the control device according to the present embodiment, even when the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich, the air-fuel ratio correction amount AFC is over a short time at certain time intervals. The value temporarily corresponds to the lean air-fuel ratio (for example, a lean set correction amount AFClean). That is, in the control device of the present embodiment, even when the target air-fuel ratio is the weak rich set air-fuel ratio, the lean air-fuel ratio is temporarily reduced over a short period of time at a certain time interval. The fuel ratio is set.
 図16は、図12と同様な図であり、図16における時刻t1~t7は図12における時刻t1~t7と同様な制御タイミングを示している。したがって、図16に示した制御においても、時刻t1~t7の各タイミングにおいては、図7に示した制御と同様な制御が行われている。加えて、図16に示した制御では、時刻t4~t7の間、すなわち、空燃比補正量AFCが弱リッチ設定補正量AFCrichとされている間に、複数回に亘って一時的に空燃比補正量AFCがリーン設定補正量AFCleanとされている。 FIG. 16 is a diagram similar to FIG. 12, and the times t 1 to t 7 in FIG. 16 show the same control timing as the times t 1 to t 7 in FIG. Therefore, also in the control shown in FIG. 16, the same control as the control shown in FIG. 7 is performed at each timing from time t 1 to time t 7 . In addition, in the control shown in FIG. 16, during the time t 4 to t 7 , that is, while the air-fuel ratio correction amount AFC is set to the weak rich set correction amount AFCrich, the control is temporarily performed for a plurality of times. The fuel ratio correction amount AFC is set to the lean set correction amount AFClean.
 図16に示した例では、時刻t8から短い時間に亘って空燃比補正量AFCがリーン設定補正量AFCleanとされる。上述したように空燃比の変化には遅れが生じることから、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t9から短い時間に亘ってリーン空燃比とされる。このように、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比になると、その間は、上流側排気浄化触媒20の酸素吸蔵量OSAscが一時的に増大する。 In the example shown in FIG. 16, the air-fuel ratio correction amount AFC is a lean set correction amount AFClean over a short time from the time t 8. Since the delays in the change in the air-fuel ratio as described above, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is a lean air-fuel ratio over a short time from the time t 9. Thus, when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the lean air-fuel ratio, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 temporarily increases during that time.
 図16に示した例では、同様に、時刻t10においても短い時間に亘って空燃比補正量AFCがリーン設定補正量AFCleanとされる。これに伴って、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t11から短い時間に亘ってリーン空燃比とされ、この間は、上流側排気浄化触媒20の酸素吸蔵量OSAscが一時的に増大する。 In the example shown in FIG. 16, similarly, the air-fuel ratio correction amount AFC is a lean set correction amount AFClean even over a short period of time at time t 10. Accordingly, the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is a lean air-fuel ratio over the time t 11 in a short time, during which, the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 Increases temporarily.
 このように、上流側排気浄化触媒20に流入する排気ガスの空燃比を一時的に増大させることによって、上流側排気浄化触媒20の酸素吸蔵量OSAscを一時的に増大させるか或いは酸素吸蔵量OSAscの減少を一時的に低減することができる。このため、本実施形態によれば、時刻t4において空燃比補正量AFCを弱リッチ設定補正量AFCrichに切り替えてから、時刻t7において下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irefに到達するまでの時間を長くすることができる。すなわち、上流側排気浄化触媒20の酸素吸蔵量OSAscが零近傍となって上流側排気浄化触媒20から未燃ガスが流出するタイミングを遅らせることができる。これにより、上流側排気浄化触媒20からの未燃ガスの流出量を減少させることができる。 In this way, by temporarily increasing the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is temporarily increased or the oxygen storage amount OSAsc. Can be temporarily reduced. Therefore, according to this embodiment, switch the air-fuel ratio correction quantity AFC weak rich set correction amount AFCrich at time t 4, the output current Irdwn rich determination reference value of the downstream air-fuel ratio sensor 41 at time t 7 The time required to reach Iref can be increased. That is, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 becomes near zero, and the timing at which unburned gas flows out of the upstream side exhaust purification catalyst 20 can be delayed. Thereby, the outflow amount of unburned gas from the upstream side exhaust purification catalyst 20 can be reduced.
 なお、上記実施形態では、空燃比補正量AFCが基本的に弱リッチ設定補正量AFCrichとされている間(時刻t4~t7)において、一時的に空燃比補正量AFCをリーン設定補正量AFCleanとしている。このように一時的に空燃比補正量AFCを変更する場合には、必ずしも空燃比補正量AFCをリーン設定補正量AFCleanに変更する必要はなく、弱リッチ設定補正量AFCrichよりもリーンであれば如何なる空燃比に変更してもよい。 In the above embodiment, while the air-fuel ratio correction amount AFC is basically set to the weak rich set correction amount AFCrich (time t 4 to t 7 ), the air-fuel ratio correction amount AFC is temporarily changed to the lean set correction amount. AFClean. When the air-fuel ratio correction amount AFC is temporarily changed in this way, it is not always necessary to change the air-fuel ratio correction amount AFC to the lean set correction amount AFClean, and any value that is leaner than the weak rich set correction amount AFCrich is used. You may change to an air fuel ratio.
 また、空燃比補正量AFCが基本的にリーン設定補正量AFCleanとされている間(時刻t2~t4)においても、一時的に空燃比補正量AFCを弱リッチ設定補正量AFCrichとしてもよい。この場合も同様に、一時的に空燃比補正量AFCを変更する場合には、リーン設定補正量AFCleanよりもリッチであれば如何なる空燃比に空燃比補正量AFCを変更してもよい。 Further, while the air-fuel ratio correction amount AFC is basically set to the lean set correction amount AFClean (time t 2 to t 4 ), the air-fuel ratio correction amount AFC may be temporarily set to the weak rich set correction amount AFCrich. . In this case as well, when the air-fuel ratio correction amount AFC is temporarily changed, the air-fuel ratio correction amount AFC may be changed to any air-fuel ratio as long as it is richer than the lean set correction amount AFClean.
 ただし、本実施形態においても、時刻t2~t4における空燃比補正量AFCは、当該期間における目標空燃比の時間平均値と理論空燃比との差が、時刻t4~t7における目標空燃比の時間平均値と理論空燃比との差よりも大きくなるように設定される。 However, also in this embodiment, the air-fuel ratio correction amount AFC is at time t 2 ~ t 4, the difference between the time average value and the stoichiometric air-fuel ratio the target air-fuel ratio in the period, the target air at time t 4 ~ t 7 It is set to be larger than the difference between the time average value of the fuel ratio and the stoichiometric air-fuel ratio.
 いずれにせよ、第一実施形態及び第二実施形態をまとめて表現すると、ECU31は、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ判定空燃比以下となったときに、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Crefとなるまで、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を継続的又は断続的にリーン設定空燃比にする酸素吸蔵量増加手段と、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Cref以上となったときに、酸素吸蔵量OSAscが最大酸素吸蔵量Cmaxに達することなく零に向けて減少するように、目標空燃比を継続的又は断続的に弱リッチ設定空燃比にする酸素吸蔵量減少手段とを具備するといえる。 In any case, when the first embodiment and the second embodiment are collectively expressed, the ECU 31 detects that the upstream side when the air-fuel ratio of the exhaust gas detected by the downstream side air-fuel ratio sensor 41 becomes equal to or lower than the rich determination air-fuel ratio. Until the oxygen storage amount OSAsc of the side exhaust purification catalyst 20 reaches the determination reference storage amount Cref, the oxygen storage is performed to make the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 continuously or intermittently the lean set air-fuel ratio. When the oxygen storage amount OSAsc of the amount increasing means and the upstream side exhaust purification catalyst 20 becomes equal to or larger than the determination reference storage amount Cref, the oxygen storage amount OSAsc decreases toward zero without reaching the maximum oxygen storage amount Cmax. Furthermore, it can be said that there is provided an oxygen storage amount reducing means for continuously or intermittently setting the target air-fuel ratio to a slightly rich set air-fuel ratio.
<第三実施形態>
 次に、図17を参照して、本発明の第三実施形態に係る内燃機関の制御装置について説明する。第三実施形態に係る内燃機関の制御装置の構成及び制御は、基本的に、上記実施形態に係る内燃機関の制御装置の構成及び制御と同様である。しかしながら、本実施形態の制御装置では、上流側排気浄化触媒20から流出する排気ガス中に未燃ガスが含まれないように空燃比の制御を行っている。
<Third embodiment>
Next, a control device for an internal combustion engine according to a third embodiment of the present invention will be described with reference to FIG. The configuration and control of the control device for the internal combustion engine according to the third embodiment are basically the same as the configuration and control of the control device for the internal combustion engine according to the above embodiment. However, in the control device of the present embodiment, the air-fuel ratio is controlled so that the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 does not include unburned gas.
<空燃比制御の概要>
 以下では、第三実施形態の制御装置における空燃比制御の概要を説明する。本実施形態でも、上流側空燃比センサ40の出力電流Ipupに基づいてこの出力電流Ipupが目標空燃比に相当する値となるようにフィードバック制御が行われる。
<Outline of air-fuel ratio control>
Below, the outline | summary of the air fuel ratio control in the control apparatus of 3rd embodiment is demonstrated. Also in this embodiment, feedback control is performed based on the output current Iupp of the upstream side air-fuel ratio sensor 40 so that the output current Iupp becomes a value corresponding to the target air-fuel ratio.
 目標空燃比は、下流側空燃比センサ41の出力電流に基づいて設定される。具体的には、下流側空燃比センサ41の出力電流Irdwnがリーン判定基準値Iref以上となったときに、目標空燃比はリッチ設定空燃比とされ、その空燃比に維持される。ここで、リーン判定基準値Irefは、理論空燃比よりも僅かにリーンである予め定められたリーン判定空燃比(例えば、14.65)に相当する値である。リッチ設定空燃比は、理論空燃比よりも或る程度リッチである予め定められた空燃比であり、例えば、10~14.55、好ましくは12~14.52、より好ましくは13~14.5程度とされる。 The target air-fuel ratio is set based on the output current of the downstream air-fuel ratio sensor 41. Specifically, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or greater than the lean determination reference value Iref, the target air-fuel ratio is set to the rich set air-fuel ratio and is maintained at that air-fuel ratio. Here, the lean determination reference value Iref is a value corresponding to a predetermined lean determination air-fuel ratio (for example, 14.65) that is slightly leaner than the theoretical air-fuel ratio. The rich set air-fuel ratio is a predetermined air-fuel ratio that is somewhat richer than the theoretical air-fuel ratio, and is, for example, 10 to 14.55, preferably 12 to 14.52, more preferably 13 to 14.5. It is said to be about.
 目標空燃比がリッチ設定空燃比に変更されると、上流側排気浄化触媒20の酸素吸蔵量OSAscが推定される。酸素吸蔵量OSAscの推定は、上流側空燃比センサ40の出力電流Ipup、及びエアフロメータ39等に基づいて算出される燃焼室5内への吸入空気量の推定値又は燃料噴射弁11からの燃料噴射量等に基づいて行われる。そして、酸素吸蔵量OSAscの推定値が予め定められた判定基準吸蔵量Cref以下になると、それまでリッチ設定空燃比だった目標空燃比が、弱リーン設定空燃比とされ、その空燃比に維持される。弱リーン設定空燃比は、理論空燃比よりも僅かにリーンである予め定められた空燃比であり、例えば、14.62~15.5、好ましくは14.63~15、より好ましくは14.65~14.8程度とされる。その後、下流側空燃比センサ41の出力電流Irdwnが再びリーン判定基準値Iref以上となったときに再び目標空燃比がリッチ設定空燃比とされ、その後、同様な操作が繰り返される。 When the target air-fuel ratio is changed to the rich set air-fuel ratio, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is estimated. The oxygen storage amount OSAsc is estimated by estimating the intake air amount into the combustion chamber 5 calculated based on the output current Iupup of the upstream air-fuel ratio sensor 40 and the air flow meter 39 or the like, or the fuel from the fuel injection valve 11. This is performed based on the injection amount. Then, when the estimated value of the oxygen storage amount OSAsc becomes equal to or less than a predetermined determination reference storage amount Cref, the target air-fuel ratio that has been the rich set air-fuel ratio until then becomes the weak lean set air-fuel ratio, and is maintained at that air-fuel ratio. The The weak lean set air-fuel ratio is a predetermined air-fuel ratio that is slightly leaner than the stoichiometric air-fuel ratio, and is, for example, 14.62 to 15.5, preferably 14.63 to 15, and more preferably 14.65. About 14.8. Thereafter, when the output current Irdwn of the downstream side air-fuel ratio sensor 41 again becomes equal to or greater than the lean determination reference value Iref, the target air-fuel ratio is again set to the rich set air-fuel ratio, and thereafter the same operation is repeated.
 このように本実施形態では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比がリッチ設定空燃比と弱リーン設定空燃比とに交互に設定される。特に、本実施形態では、リッチ設定空燃比の理論空燃比からの差は、弱リーン設定空燃比の理論空燃比からの差よりも大きい。したがって、本実施形態では、目標空燃比は、短期間のリッチ設定空燃比と、長期間の弱リーン設定空燃比とに交互に設定されることになる。 Thus, in this embodiment, the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is alternately set to the rich set air-fuel ratio and the weak lean set air-fuel ratio. In particular, in the present embodiment, the difference between the rich set air-fuel ratio and the stoichiometric air-fuel ratio is larger than the difference between the weak lean set air-fuel ratio and the stoichiometric air-fuel ratio. Therefore, in the present embodiment, the target air-fuel ratio is alternately set to the short-time rich set air-fuel ratio and the long-term weak lean set air-fuel ratio.
 また、見方を変えると、本実施形態では、下流側空燃比センサ41の出力電流Irdwnに相当する空燃比が理論空燃比からずれて理論空燃比からの差が予め定められた基準差(すなわち、リーン判定空燃比と理論空燃比との差)以上になったときには、目標空燃比は下流側空燃比センサ41の出力電流Irdwnに相当する空燃比が理論空燃比からずれた方向(リーン方向)とは反対方向(リッチ方向)に理論空燃比からずれた空燃比とされる。すなわち、下流側空燃比センサ41の出力電流Irdwnに相当する空燃比がリーン側にずれた場合には、目標空燃比は、理論空燃比に対してリーン方向とは反対方向、すなわちリッチ方向にずれた空燃比(本実施形態では、リッチ設定空燃比)とされる。 In other words, in the present embodiment, the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 deviates from the stoichiometric air-fuel ratio, and the difference from the stoichiometric air-fuel ratio is determined in advance as a reference difference (that is, (The difference between the lean determination air-fuel ratio and the stoichiometric air-fuel ratio) becomes equal to or greater than the target air-fuel ratio in the direction in which the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 deviates from the stoichiometric air-fuel ratio (lean direction). Is the air-fuel ratio deviating from the stoichiometric air-fuel ratio in the opposite direction (rich direction). That is, when the air-fuel ratio corresponding to the output current Irdwn of the downstream air-fuel ratio sensor 41 has shifted to the lean side, the target air-fuel ratio shifts in the direction opposite to the lean direction with respect to the theoretical air-fuel ratio, that is, in the rich direction. The air-fuel ratio (in this embodiment, the rich set air-fuel ratio) is set.
 なお、基準差は、上記第一実施形態と同様に設定される。また、目標空燃比(例えば、弱リーン設定空燃比やリッチ設定空燃比)の理論空燃比からの差は、基準差よりも大きくなるように設定される。 Note that the reference difference is set in the same manner as in the first embodiment. Further, the difference between the target air-fuel ratio (for example, the weak lean set air-fuel ratio and the rich set air-fuel ratio) from the theoretical air-fuel ratio is set to be larger than the reference difference.
<タイムチャートを用いた制御の説明>
 図17を参照して、上述したような操作について具体的に説明する。図17は、本実施形態における空燃比制御を行った場合における、図12と同様なタイムチャートである。
<Description of control using time chart>
The operation as described above will be specifically described with reference to FIG. FIG. 17 is a time chart similar to FIG. 12 when the air-fuel ratio control is performed in the present embodiment.
 図示した例では、時刻t1以前の状態では、空燃比補正量AFCが弱リーン設定補正量AFCleanとされている。弱リーン設定補正量AFCleanは、弱リーン設定空燃比に相当する値であり、0よりも大きな値である。したがって、目標空燃比はリーン空燃比とされ、これに伴って上流側空燃比センサ40の出力電流Ipupが正の値となる。上流側排気浄化触媒20に流入する排気ガス中には酸素が含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に増大していく。しかしながら、上流側排気浄化触媒20に流入する排気ガス中に含まれている酸素は、上流側排気浄化触媒20で吸蔵されるため、下流側空燃比センサの出力電流Irdwnはほぼ0(理論空燃比に相当)となる。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比となっているため、上流側排気浄化触媒20からの未燃ガス排出量は抑制される。 In the illustrated example, before the time t 1 , the air-fuel ratio correction amount AFC is set to the weak lean set correction amount AFClean. The weak lean set correction amount AFClean is a value corresponding to the weak lean set air-fuel ratio, and is a value larger than zero. Accordingly, the target air-fuel ratio is set to a lean air-fuel ratio, and accordingly, the output current Iupp of the upstream air-fuel ratio sensor 40 becomes a positive value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains oxygen, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually increases. However, since oxygen contained in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is occluded by the upstream side exhaust purification catalyst 20, the output current Irdwn of the downstream side air-fuel ratio sensor is almost 0 (theoretical air-fuel ratio). Equivalent). At this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
 上流側排気浄化触媒20の酸素吸蔵量OSAscが徐々に増大すると、酸素吸蔵量OSAscは時刻t1において上限吸蔵量(図2のCuplim参照)を超えて増大する。酸素吸蔵量OSAscが上限吸蔵量よりも増大すると、上流側排気浄化触媒20に流入した排気ガス中の酸素の一部は上流側排気浄化触媒20で吸蔵されずに流出する。このため、時刻t1以降、上流側排気浄化触媒20の酸素吸蔵量OSAscが増加するのに伴って、下流側空燃比センサ41の出力電流Irdwnが徐々に増加する。このときも、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比となっているため、上流側排気浄化触媒20からの未燃ガス排出量は抑制される。 When the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually increases, the oxygen storage amount OSAsc increases beyond the upper limit storage amount (see Cuplim in FIG. 2) at time t 1 . When the oxygen storage amount OSAsc increases above the upper limit storage amount, part of the oxygen in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 flows out without being stored in the upstream side exhaust purification catalyst 20. Therefore, after time t 1 , the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually increases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
 その後、時刻t2において、下流側空燃比センサ41の出力電流Irdwnがリーン判定空燃比に相当するリーン判定基準値Irefに到達する。本実施形態では、下流側空燃比センサ41の出力電流Irdwnがリーン判定基準値Irefになると、上流側排気浄化触媒20の酸素吸蔵量OSAscの増大を抑制すべく、空燃比補正量AFCがリッチ設定補正量AFCrichに切り替えられる。リッチ設定補正量AFCrichは、リッチ設定空燃比に相当する値であり、0よりも大きな値である。したがって、目標空燃比はリッチ空燃比とされる。 Thereafter, at time t 2 , the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the lean determination reference value Iref corresponding to the lean determination air-fuel ratio. In the present embodiment, when the output current Irdwn of the downstream side air-fuel ratio sensor 41 reaches the lean determination reference value Iref, the air-fuel ratio correction amount AFC is set to be rich so as to suppress an increase in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. The correction amount is switched to AFCrich. The rich set correction amount AFCrich is a value corresponding to the rich set air-fuel ratio, and is a value larger than zero. Therefore, the target air-fuel ratio is set to a rich air-fuel ratio.
 なお、本実施形態では、下流側空燃比センサ41の出力電流Irdwnがリーン判定基準値Irefに到達してから、すなわち上流側排気浄化触媒20から流出する排気ガスの空燃比がリーン判定空燃比に到達してから、空燃比補正量AFCの切替を行っている。これは、上記第一実施形態において、上流側排気浄化触媒20から流出する排気ガスの空燃比がリッチ判定空燃比に到達してから、空燃比補正量AFCの切替を行っているのと同様な理由によるものである。 In the present embodiment, after the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the lean determination reference value Iref, that is, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 becomes the lean determination air-fuel ratio. After reaching, the air-fuel ratio correction amount AFC is switched. This is the same as in the first embodiment when the air-fuel ratio correction amount AFC is switched after the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 reaches the rich determination air-fuel ratio. This is for a reason.
 時刻t2において、目標空燃比をリッチ空燃比に切り替えても、上流側排気浄化触媒20に流入する排気ガスの空燃比はすぐにはリッチ空燃比にならず、或る程度の遅れが生じる。その結果、上流側排気浄化触媒20に流入する排気ガスの空燃比は時刻t3においてリーン空燃比からリッチ空燃比に変化する。なお、時刻t2~t3においては、上流側排気浄化触媒20から流出する排気ガスの空燃比がリーン空燃比となっているため、この排気ガス中には酸素及びNOxが含まれることになる。しかしながら、上流側排気浄化触媒20からの未燃ガス排出量は抑制される。 Even when the target air-fuel ratio is switched to the rich air-fuel ratio at time t 2 , the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 does not immediately become the rich air-fuel ratio, and some delay occurs. As a result, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 changes from the lean air-fuel ratio to the rich air-fuel ratio at time t 3 . From time t 2 to t 3 , the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is the lean air-fuel ratio, so this exhaust gas contains oxygen and NOx. . However, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
 時刻t3において、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比に変化すると、上流側排気浄化触媒20の酸素吸蔵量OSAscは減少する。また、これに伴って、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へと変化し、下流側空燃比センサ41の出力電流Irdwnも0に収束する。このとき、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比となっているが、上流側排気浄化触媒20には多量の酸素が吸蔵されているため、排気ガス中の未燃ガスは上流側排気浄化触媒20において浄化される。このため、上流側排気浄化触媒20からの未燃ガス排出量は抑制される。 When the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 changes to a rich air-fuel ratio at time t 3 , the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. As a result, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output current Irdwn of the downstream side air-fuel ratio sensor 41 converges to zero. At this time, the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio. However, since the upstream side exhaust purification catalyst 20 stores a large amount of oxygen, The fuel gas is purified by the upstream side exhaust purification catalyst 20. For this reason, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
 その後、上流側排気浄化触媒20の酸素吸蔵量OSAscが減少すると、時刻t4において酸素吸蔵量OSAscは判定基準吸蔵量Crefに到達する。本実施形態では、酸素吸蔵量OSAscが判定基準吸蔵量Crefになると、上流側排気浄化触媒20からの酸素の放出を中止すべく、空燃比補正量AFCが弱リーン設定補正量AFCrich(0よりも大きな値)に切り替えられる。したがって、目標空燃比はリーン空燃比とされる。 Thereafter, when the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 is reduced, the oxygen storage amount OSAsc at time t 4 reaches the determination reference storage amount Cref. In the present embodiment, when the oxygen storage amount OSAsc reaches the determination reference storage amount Cref, the air-fuel ratio correction amount AFC is set to the weak lean set correction amount AFCrich (less than 0) in order to stop the release of oxygen from the upstream side exhaust purification catalyst 20. Switch to a large value). Therefore, the target air-fuel ratio is a lean air-fuel ratio.
 ただし、上述したように、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が実際に変化するまでには遅れが生じる。このため、時刻t4にて切替を行っても、上流側排気浄化触媒20に流入する排気ガスの空燃比は或る程度時間が経過した時刻t5においてリッチ空燃比からリーン空燃比に変化する。時刻t4~t5においては、上流側排気浄化触媒20に流入する排気ガスの空燃比はリッチ空燃比であるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは減少していく。 However, as described above, there is a delay from when the target air-fuel ratio is switched to when the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 actually changes. For this reason, even if switching is performed at time t 4 , the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 changes from the rich air-fuel ratio to the lean air-fuel ratio at time t 5 when a certain amount of time has elapsed. . From time t 4 to t 5 , since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases.
 しかしながら、判定基準吸蔵量Crefは零や下限吸蔵量(図2のClowlim参照)よりも十分に高く設定されているため、時刻t5においても酸素吸蔵量OSAscは零や下限吸蔵量には到達しない。逆に言うと、判定基準吸蔵量Crefは、目標空燃比を切り替えてから上流側排気浄化触媒20に流入する排気ガスの空燃比が実際に変化するまで遅延が生じても、酸素吸蔵量OSAscが零や下限吸蔵量に到達しないように十分に多い量とされる。例えば、判定基準吸蔵量Crefは、最大酸素吸蔵量Cmaxの1/4以上、好ましくは1/2以上、より好ましくは4/5以上とされる。したがって、時刻t4~t5においても、上流側排気浄化触媒20からの未燃ガス排出量は抑制される。 However, the criterion occlusion amount Cref because it is set sufficiently higher than zero and lower absorption amount (see Clowlim in FIG. 2), the oxygen storage amount OSAsc even at time t 5 does not reach the zero or lower storage amount . In other words, even if a delay occurs until the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 actually changes after switching the target air-fuel ratio, the determination reference storage amount Cref is equal to the oxygen storage amount OSAsc. The amount is sufficiently large so as not to reach zero or the lower limit storage amount. For example, the criterion storage amount Cref is set to ¼ or more, preferably ½ or more, more preferably 4/5 or more of the maximum oxygen storage amount Cmax. Accordingly, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is also suppressed from time t 4 to t 5 .
 時刻t5以降においては、空燃比補正量AFCが弱リーン設定補正量AFCrichとされている。したがって、目標空燃比はリーン空燃比とされ、これに伴って上流側空燃比センサ40の出力電流Ipupが正の値となる。上流側排気浄化触媒20に流入する排気ガス中には酸素が含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に増加していき、時刻t6において、時刻t1と同様に、酸素吸蔵量OSAscが上限吸蔵量を超えて減少する。このときも、上流側排気浄化触媒20に流入する排気ガスの空燃比はリーン空燃比となっているため、上流側排気浄化触媒20からの未燃ガス排出量は抑制される。 In after time t 5, the air-fuel ratio correction amount AFC is a slightly lean set correction amount AFCrich. Accordingly, the target air-fuel ratio is set to a lean air-fuel ratio, and accordingly, the output current Iupp of the upstream air-fuel ratio sensor 40 becomes a positive value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains oxygen, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually increases, and at time t 6 , at time t 1 Similarly, the oxygen storage amount OSAsc decreases beyond the upper limit storage amount. Also at this time, since the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 is suppressed.
 次いで、時刻t7において、時刻t2と同様に、下流側空燃比センサ41の出力電流Irdwnがリーン判定空燃比に相当するリーン判定基準値Irefに到達する。これにより、空燃比補正量AFCがリッチ設定空燃比に相当する値AFCrichに切り替えられる。その後、上述した時刻t1~t6のサイクルが繰り返される。 Next, at time t 7 , similarly to time t 2 , the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the lean determination reference value Iref corresponding to the lean determination air-fuel ratio. As a result, the air-fuel ratio correction amount AFC is switched to a value AFCrich corresponding to the rich set air-fuel ratio. Thereafter, the cycle from the time t 1 to t 6 described above is repeated.
 なお、このような空燃比補正量AFCの制御は、ECU31によって行われる。したがって、ECU31は、下流側空燃比センサ41によって検出された排気ガスの空燃比がリーン判定空燃比以上となったときに、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Crefとなるまで、上流側排気浄化触媒20に流入する排気ガスの目標空燃比を継続的又は断続的にリッチ設定空燃比にする酸素吸蔵量減少手段と、上流側排気浄化触媒20の酸素吸蔵量OSAscが判定基準吸蔵量Cref以下となったときに、酸素吸蔵量OSAscが零に達することなく最大酸素吸蔵量Cmaxに向けて増加するように、目標空燃比を継続的又は断続的に弱リーン設定空燃比にする酸素吸蔵量増加手段とを具備するといえる。 Note that the control of the air-fuel ratio correction amount AFC is performed by the ECU 31. Therefore, the ECU 31 determines that the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 is equal to the determination reference storage amount Cref when the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 becomes equal to or greater than the lean determination air-fuel ratio. The oxygen storage amount reducing means for continuously or intermittently setting the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 to the rich set air-fuel ratio and the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 are When the oxygen storage amount OSAsc does not reach zero, the target air-fuel ratio is continuously or intermittently slightly lean set air-fuel ratio so that the oxygen storage amount OSAsc increases toward the maximum oxygen storage amount Cmax when the reference storage amount Cref is equal to or less than the determination reference storage amount Cref. It can be said that it comprises oxygen storage amount increasing means.
 以上の説明から分かるように上記実施形態によれば、上流側排気浄化触媒20からの未燃ガス排出量を抑制することができる。すなわち、上述した制御を行っている限り、基本的には上流側排気浄化触媒20からの未燃ガス排出量を少ないものとすることができる。 As can be seen from the above description, according to the above embodiment, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 can be suppressed. That is, as long as the above-described control is performed, the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 can be basically reduced.
 なお、上記実施形態では、時刻t2~t4において、空燃比補正量AFCはリッチ設定補正量AFCrichに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に増加させる等、変動するように設定されてもよい。同様に、時刻t4~t7において、空燃比補正量AFCは弱リーン設定補正量AFleanに維持される。しかしながら、斯かる期間において、空燃比補正量AFCは必ずしも一定に維持されている必要はなく、徐々に増加させる等、変動するように設定されてもよい。 In the above embodiment, the air-fuel ratio correction amount AFC is maintained at the rich set correction amount AFCrich from time t 2 to t 4 . However, in such a period, the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set to vary, for example, by gradually increasing it. Similarly, from time t 4 to time t 7 , the air-fuel ratio correction amount AFC is maintained at the weak lean set correction amount AFlean. However, in such a period, the air-fuel ratio correction amount AFC does not necessarily have to be kept constant, and may be set to vary, for example, by gradually increasing it.
 ただし、この場合であっても、時刻t2~t4における空燃比補正量AFCは、当該期間における目標空燃比の時間平均値と理論空燃比との差が、時刻t4~t7における目標空燃比の時間平均値と理論空燃比との差よりも大きくなるように設定される。 However, even in this case, the air-fuel ratio correction amount AFC at the times t 2 to t 4 is the difference between the time average value of the target air-fuel ratio and the theoretical air-fuel ratio in the period, and the target at the times t 4 to t 7 . It is set to be larger than the difference between the time average value of the air-fuel ratio and the theoretical air-fuel ratio.
<第四実施形態>
 次に、図18を参照して、本発明の第四実施形態に係る内燃機関の制御装置について説明する。第四実施形態に係る内燃機関の制御装置の構成は、基本的に、上記実施形態に係る内燃機関の制御装置の構成と同様である。しかしながら、本実施形態の制御装置は、上記実施形態における制御とは異なる空燃比制御を行っている。
<Fourth embodiment>
Next, a control device for an internal combustion engine according to a fourth embodiment of the present invention will be described with reference to FIG. The configuration of the control device for the internal combustion engine according to the fourth embodiment is basically the same as the configuration of the control device for the internal combustion engine according to the above embodiment. However, the control device of this embodiment performs air-fuel ratio control different from the control in the above embodiment.
<第四実施形態における空燃比制御の概要>
 本実施形態では、上流側排気浄化触媒20に流入する排気ガスの目標空燃比は、下流側空燃比センサ41の出力電流Irdwn及び上流側排気浄化触媒20の酸素吸蔵量OSAscに基づいて設定される。具体的には、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irrich以下となったときに、下流側空燃比センサ41によって検出された排気ガスの空燃比がリッチ空燃比になったと判断される。この場合、リーン切替手段により、目標空燃比がリーン設定空燃比とされ、その空燃比に維持される。
<Outline of air-fuel ratio control in the fourth embodiment>
In the present embodiment, the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is set based on the output current Irdwn of the downstream side air-fuel ratio sensor 41 and the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. . Specifically, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Irrich, the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 becomes the rich air-fuel ratio. To be judged. In this case, the target air-fuel ratio is made the lean set air-fuel ratio by the lean switching means, and is maintained at that air-fuel ratio.
 その後、目標空燃比をリーン設定空燃比に設定した状態で上流側排気浄化触媒20の酸素吸蔵量OSAscが零よりも多い所定の吸蔵量に到達すると、リーン度合い低下手段により、目標空燃比が弱リーン設定空燃比に切り替えられる(なお、このときの酸素吸蔵量を「リーン度合い変更基準吸蔵量」という)。また、リーン度合い変更基準吸蔵量は、零からの差が所定の変更基準差αである吸蔵量とされる。 Thereafter, when the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 reaches a predetermined storage amount larger than zero with the target air-fuel ratio set to the lean set air-fuel ratio, the target air-fuel ratio is weakened by the lean degree reducing means. The lean set air-fuel ratio is switched to (the oxygen storage amount at this time is referred to as “lean degree change reference storage amount”). Further, the lean degree change reference storage amount is the storage amount whose difference from zero is the predetermined change reference difference α.
 一方、下流側空燃比センサ41の出力電流Irdwnがリーン判定基準値Irlean以上となったときには、下流側空燃比センサ41によって検出された排気ガスの空燃比がリーン空燃比になったと判断される。この場合、リッチ切替手段により、目標空燃比がリッチ設定空燃比に設定される。 On the other hand, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or greater than the lean determination reference value Irlean, it is determined that the air-fuel ratio of the exhaust gas detected by the downstream air-fuel ratio sensor 41 has become the lean air-fuel ratio. In this case, the target air-fuel ratio is set to the rich set air-fuel ratio by the rich switching means.
 その後、目標空燃比をリッチ設定空燃比に設定した状態で上流側排気浄化触媒20の酸素吸蔵量OSAscが最大吸蔵量よりも少ない所定の吸蔵量に到達すると、リッチ度合い低下手段により、目標空燃比が弱リッチ設定空燃比に切り替えられる(なお、このときの酸素吸蔵量を「リッチ度合い変更基準吸蔵量」という)。また、リッチ度合い変更基準吸蔵量は、最大酸素吸蔵量からの差が上記所定の変更基準差αである吸蔵量とされる。 Thereafter, when the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 reaches a predetermined storage amount smaller than the maximum storage amount with the target air-fuel ratio set to the rich set air-fuel ratio, the target air-fuel ratio is reduced by the rich degree reducing means. Is switched to a slightly rich set air-fuel ratio (the oxygen storage amount at this time is referred to as “rich degree change reference storage amount”). Further, the rich degree change reference storage amount is the storage amount whose difference from the maximum oxygen storage amount is the predetermined change reference difference α.
 この結果、本実施形態では、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irrich以下になると、まず、目標空燃比がリーン設定空燃比に設定され、その後、酸素吸蔵量OSAscが或る程度多くなると弱リーン設定空燃比に設定される。その後、下流側空燃比センサ41の出力電流Irdwnがリーン判定基準値Irlean以上になると、まず、目標空燃比がリッチ設定空燃比に設定され、その後、酸素吸蔵量OSAscがある程度少なくなると弱リッチ設定空燃比に設定され、同様な操作が繰り返される。 As a result, in the present embodiment, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Irrich, the target air-fuel ratio is first set to the lean set air-fuel ratio, and then the oxygen storage amount OSAsc is When it increases to a certain extent, it is set to a slightly lean set air-fuel ratio. Thereafter, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or greater than the lean determination reference value Irlean, first, the target air-fuel ratio is set to the rich set air-fuel ratio, and then the oxygen storage amount OSAsc is reduced to some extent to weakly rich set-empty. The fuel ratio is set and the same operation is repeated.
<タイムチャートを用いた制御の説明>
 図18を参照して、上述したような操作について具体的に説明する。図18は、本実施形態に係る内燃機関の制御装置における空燃比制御を行った場合の、上流側排気浄化触媒20の酸素吸蔵量OSAsc等のタイムチャートである。
<Description of control using time chart>
The operation as described above will be specifically described with reference to FIG. FIG. 18 is a time chart of the oxygen storage amount OSAsc and the like of the upstream side exhaust purification catalyst 20 when air-fuel ratio control is performed in the control device for an internal combustion engine according to the present embodiment.
 図示した例では、時刻t1以前の状態では、目標空燃比の空燃比補正量AFCが弱リッチ設定補正量AFCsrichとされている。弱リッチ設定補正量AFCsrichは、弱リッチ設定空燃比に相当する値であり、0よりも小さな値である。したがって、上流側排気浄化触媒20に流入する排気ガスの目標空燃比はリッチ空燃比とされ、これに伴って上流側空燃比センサ40の出力電流Ipupが負の値となる。上流側排気浄化触媒20に流入する排気ガス中には未燃ガスが含まれることになるため、上流側排気浄化触媒20の酸素吸蔵量OSAscは徐々に減少していく。なお、このときには、上流側排気浄化触媒20に流入する排気ガス中の未燃ガスは上流側排気浄化触媒20に吸蔵されている酸素により酸化、浄化される。このため、上流側排気浄化触媒20からの酸素(及びNOx)排出量のみならず未燃ガス排出量も抑制される。 In the illustrated example, before the time t 1 , the air-fuel ratio correction amount AFC of the target air-fuel ratio is set to the weak rich set correction amount AFCsrich. The weak rich set correction amount AFCsrich is a value corresponding to the weak rich set air-fuel ratio, and is a value smaller than zero. Therefore, the target air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is set to a rich air-fuel ratio, and accordingly, the output current Iupp of the upstream side air-fuel ratio sensor 40 becomes a negative value. Since the exhaust gas flowing into the upstream side exhaust purification catalyst 20 contains unburned gas, the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases. At this time, the unburned gas in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is oxidized and purified by oxygen stored in the upstream side exhaust purification catalyst 20. For this reason, not only the amount of oxygen (and NOx) discharged from the upstream side exhaust purification catalyst 20 but also the amount of unburned gas discharged is suppressed.
 上流側排気浄化触媒20の酸素吸蔵量OSAscが徐々に減少すると、時刻t1において、酸素吸蔵量OSAscは下限吸蔵量(図2のClowlim参照)を超えて減少する。酸素吸蔵量OSAscが下限吸蔵量よりも減少すると、上流側排気浄化触媒20に流入した未燃ガスの一部は上流側排気浄化触媒20で浄化されずに流出する。このため、時刻t1以降、上流側排気浄化触媒20の酸素吸蔵量OSAscが減少するのに伴って、下流側空燃比センサ41の出力電流Irdwnが徐々に低下する。なお、上流側排気浄化触媒20から流出した排気ガス中に含まれる未燃ガスは、下流側排気浄化触媒24によって酸化、浄化される。 When the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases, at time t 1 , the oxygen storage amount OSAsc decreases beyond the lower limit storage amount (see Crowlim in FIG. 2). When the oxygen storage amount OSAsc decreases below the lower limit storage amount, a part of the unburned gas that has flowed into the upstream side exhaust purification catalyst 20 flows out without being purified by the upstream side exhaust purification catalyst 20. Therefore, after time t 1 , the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually decreases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. The unburned gas contained in the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is oxidized and purified by the downstream side exhaust purification catalyst 24.
 その後、下流側空燃比センサ41の出力電流Irdwnは徐々に低下して、時刻t2においてリッチ判定空燃比に相当するリッチ判定基準値Irrichに到達する。本実施形態では、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irrich以下になると、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少を抑制すべく、空燃比補正量AFCがリーン設定補正量AFCgleanに切り替えられる。リーン設定補正量AFCgleanは、リーン設定空燃比に相当する値であり、0よりも大きい値である。 Thereafter, the output current Irdwn of the downstream air-fuel ratio sensor 41 is gradually decreased, reaches the rich determination reference value Irrich corresponding to rich determination air-fuel ratio at time t 2. In the present embodiment, when the output current Irdwn of the downstream side air-fuel ratio sensor 41 becomes equal to or less than the rich determination reference value Irrich, the air-fuel ratio correction amount AFC is made lean so as to suppress the decrease in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. It is switched to the set correction amount AFCgreen. The lean set correction amount AFCgreen is a value corresponding to the lean set air-fuel ratio, and is a value larger than zero.
 時刻t2において、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリーン設定空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比もリッチ空燃比からリーン空燃比に変化する。時刻t2において上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比に変化すると、上流側空燃比センサ40の出力電流Ipupは正の値になると共に、上流側排気浄化触媒20の酸素吸蔵量OSAscは増大し始める。 In time t 2, the switch the target air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 to a lean set air-fuel ratio, a lean air from the air-fuel ratio rich air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 Change to fuel ratio. When the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 is changed to the lean air-fuel ratio at time t 2, the output current Ipup of the upstream air-fuel ratio sensor 40 with a positive value, the upstream exhaust purification catalyst 20 The oxygen storage amount OSAsc begins to increase.
 なお、図18に示した例では、説明をわかりやすくするために、空燃比補正量AFCの切り替えと同時に上流側空燃比センサ40の出力電流Ipupが変化することとしているが、実際には上述したように遅れが生じる。また、図示した例では、目標空燃比を切り替えた直後は、下流側空燃比センサ41の出力電流Irdwnが低下している。これは、目標空燃比を切り替えてからその排気ガスが上流側排気浄化触媒20に到達するまでに遅れが生じ、上流側排気浄化触媒20から未燃ガスが流出したままとなるためである。 In the example shown in FIG. 18, the output current Iupp of the upstream side air-fuel ratio sensor 40 changes simultaneously with the switching of the air-fuel ratio correction amount AFC in order to make the explanation easy to understand. So that a delay occurs. In the illustrated example, immediately after the target air-fuel ratio is switched, the output current Irdwn of the downstream air-fuel ratio sensor 41 decreases. This is because there is a delay from when the target air-fuel ratio is switched until the exhaust gas reaches the upstream side exhaust purification catalyst 20, and the unburned gas still flows out of the upstream side exhaust purification catalyst 20.
 その後、上流側排気浄化触媒20の酸素吸蔵量OSAscの増大に伴って、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へと変化し、下流側空燃比センサ41の出力電流Irdwnも大きくなる。このため、下流側空燃比センサ41の出力電流Irdwnは、時刻t3以降においてリッチ判定基準値Irrichよりも大きくなる。この間も、目標空燃比の空燃比補正量AFCは、リーン設定補正量AFCgleanに維持され、上流側空燃比センサ40の出力電流Ipupは正の値に維持される。 Thereafter, as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output of the downstream side air-fuel ratio sensor 41 The current Irdwn also increases. Therefore, the output current Irdwn of the downstream air-fuel ratio sensor 41 is larger than the rich determination reference value Irrich at time t 3 or later. Also during this time, the air-fuel ratio correction amount AFC of the target air-fuel ratio is maintained at the lean set correction amount AFCglan, and the output current Iupup of the upstream side air-fuel ratio sensor 40 is maintained at a positive value.
 上流側排気浄化触媒20の酸素吸蔵量OSAscの増大が続くと、時刻t4においてリーン度合い変更基準吸蔵量Cleanに到達する。本実施形態では、上流側排気浄化触媒20の酸素吸蔵量OSAscがリーン度合い変更基準吸蔵量Clean以上になると、上流側排気浄化触媒20の酸素吸蔵量OSAscの増加速度を遅くすべく、空燃比補正量AFCが弱リーン設定補正量AFCsleanに切り替えられる。弱リーン設定補正量AFCsleanは、弱リーン設定空燃比に相当する値であって、AFCgleanよりも小さく且つ0よりも大きな値である。 When increase of the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 continues to reach the degree of leanness change reference occlusion amount Clean at time t 4. In the present embodiment, when the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 becomes equal to or greater than the lean degree change reference storage amount Clean, the air-fuel ratio correction is performed so as to slow down the increase rate of the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. The amount AFC is switched to the weak lean set correction amount AFCslen. The weak lean set correction amount AFCslen is a value corresponding to the weak lean set air-fuel ratio, and is a value smaller than AFCgreen and larger than zero.
 時刻t4において、目標空燃比を弱リーン設定空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比の理論空燃比に対する差も小さくなる。これに伴って、上流側空燃比センサ40の出力電流Ipupの値は小さくなると共に、上流側排気浄化触媒20の酸素吸蔵量OSAscの増加速度が低下する。なお、上流側排気浄化触媒20に流入する排気ガス中の酸素及びNOxは、上流側排気浄化触媒20に吸蔵及び浄化される。このため、上流側排気浄化触媒20からの未燃ガス排出量のみならずNOx排出量も抑制される。 When the target air-fuel ratio is switched to the slightly lean set air-fuel ratio at time t 4 , the difference between the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 and the stoichiometric air-fuel ratio is also reduced. Along with this, the value of the output current Iupp of the upstream side air-fuel ratio sensor 40 decreases, and the increase rate of the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. Note that oxygen and NOx in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 are occluded and purified by the upstream side exhaust purification catalyst 20. For this reason, not only the amount of unburned gas discharged from the upstream side exhaust purification catalyst 20 but also the amount of NOx discharged is suppressed.
 時刻t4以降においては、上流側排気浄化触媒20の酸素吸蔵量OSAscは、その増加速度が遅いながらも徐々に増加していく。上流側排気浄化触媒20の酸素吸蔵量OSAscが徐々に増加すると、時刻t5において、酸素吸蔵量OSAscは上限吸蔵量(図2のCuplim参照)を超えて増加する。酸素吸蔵量OSAscが上限吸蔵量よりも増大すると、上流側排気浄化触媒20に流入した酸素の一部は、上流側排気浄化触媒20で吸蔵されずに流出する。このため、時刻t5以降、上流側排気浄化触媒20の酸素吸蔵量OSAscが増加するのに伴って、下流側空燃比センサ41の出力電流Irdwnが徐々に上昇する。なお、上流側排気浄化触媒20において酸素の一部が吸蔵されなくなるのに伴ってNOxも還元、浄化されなくなるが、このNOxは下流側排気浄化触媒24によって還元、浄化される。 After time t 4 , the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually increases although its increase rate is slow. When the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 gradually increases, at time t 5, the oxygen storage amount OSAsc increases beyond the upper limit storage amount (see Cuplim in FIG. 2). When the oxygen storage amount OSAsc increases beyond the upper limit storage amount, part of the oxygen that flows into the upstream side exhaust purification catalyst 20 flows out without being stored in the upstream side exhaust purification catalyst 20. Therefore, after time t 5 , the output current Irdwn of the downstream air-fuel ratio sensor 41 gradually increases as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 increases. Note that NOx is not reduced or purified as part of the oxygen is not occluded in the upstream side exhaust purification catalyst 20, but this NOx is reduced and purified by the downstream side exhaust purification catalyst 24.
 その後、下流側空燃比センサ41の出力電流Irdwnは徐々に上昇して、時刻t6においてリーン判定空燃比に相当するリーン判定基準値Irleanに到達する。本実施形態では、下流側空燃比センサ41の出力電流がリーン判定基準値Irlean以上になると、上流側排気浄化触媒20の酸素吸蔵量OSAscの増大を抑制すべく、空燃比補正量AFCがリッチ設定補正量AFCgrichに切り替えられる。リッチ設定補正量AFCgrichは、リッチ設定空燃比に相当する値であり、0よりも小さい値である。 Thereafter, the output current Irdwn of the downstream air-fuel ratio sensor 41 is gradually increased, at time t 6 reaches the lean determination reference value Irlean corresponding to lean determination air-fuel ratio. In the present embodiment, when the output current of the downstream side air-fuel ratio sensor 41 becomes equal to or greater than the lean determination reference value Irlean, the air-fuel ratio correction amount AFC is set to be rich so as to suppress an increase in the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. The correction amount is switched to AFCgrich. The rich set correction amount AFCgrich is a value corresponding to the rich set air-fuel ratio, and is a value smaller than zero.
 時刻t6において、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリッチ設定空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比もリーン空燃比からリッチ空燃比に変化する。時刻t6において上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比に変化すると、上流側空燃比センサ40の出力電流Ipupは負の値になると共に、上流側排気浄化触媒20の酸素吸蔵量OSAscは減少し始める。 At time t 6, when switching the target air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 a rich set air-fuel ratio, a rich air also air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 from lean air-fuel ratio Change to fuel ratio. When the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20 changes to a rich air-fuel ratio at time t 6, along with the output current Ipup of the upstream air-fuel ratio sensor 40 becomes a negative value, the upstream exhaust purification catalyst 20 The oxygen storage amount OSAsc begins to decrease.
 その後、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少に伴って、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比へと変化し、下流側空燃比センサ41の出力電流Irdwnも小さくなる。このため、下流側空燃比センサ41の出力電流Irdwnは、時刻t7以降において零以下になる。この間も、目標空燃比の空燃比補正量AFCは、リッチ設定補正量AFCgrichに維持され、上流側空燃比センサ40の出力電流Ipupは負の値に維持される。 Thereafter, as the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases, the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 changes to the stoichiometric air-fuel ratio, and the output of the downstream side air-fuel ratio sensor 41 The current Irdwn is also reduced. For this reason, the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes zero or less after time t 7 . Also during this time, the air-fuel ratio correction amount AFC of the target air-fuel ratio is maintained at the rich set correction amount AFCgrich, and the output current Iupup of the upstream air-fuel ratio sensor 40 is maintained at a negative value.
 上流側排気浄化触媒20の酸素吸蔵量OSAscの減少が続くと、時刻t8においてリッチ度合い変更基準吸蔵量Crichに到達する。本実施形態では、上流側排気浄化触媒20の酸素吸蔵量OSAscがリッチ度合い変更基準吸蔵量Crich以下になると、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少速度を遅くすべく、空燃比補正量AFCが弱リッチ設定補正量AFCsrichに切り替えられる。弱リッチ設定補正量AFCsrichは、弱リッチ設定空燃比に相当する値であり、AFCgrichよりも大きく且つ0よりも小さな値である。 When reduction of the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20 continues to reach the degree of richness change reference occlusion amount Crich at time t 8. In the present embodiment, when the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 becomes equal to or less than the rich degree change reference storage amount Crich, the air-fuel ratio correction is performed so as to slow down the decrease rate of the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20. The amount AFC is switched to the weak rich set correction amount AFCsrich. The weak rich set correction amount AFCsrich is a value corresponding to the weak rich set air-fuel ratio, and is a value larger than AFCgrich and smaller than 0.
 時刻t8において、目標空燃比を弱リッチ設定空燃比に切り替えると、上流側排気浄化触媒20に流入する排気ガスの空燃比の理論空燃比に対する差も小さくなる。これに伴って、上流側空燃比センサ40の出力電流Ipupの値は大きくなると共に、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少速度が低下する。なお、上流側排気浄化触媒20に流入する排気ガス中の未燃ガスは、上流側排気浄化触媒20において酸化、浄化される。このため、上流側排気浄化触媒20からの酸素及びNOx排出量のみならず未燃ガス排出量も抑制される。 At time t 8, when switching the target air-fuel ratio to the weak rich set air-fuel ratio, the difference becomes small with respect to the theoretical air-fuel ratio of the air-fuel ratio of the exhaust gas flowing into the upstream exhaust purification catalyst 20. Along with this, the value of the output current Iupp of the upstream side air-fuel ratio sensor 40 increases, and the rate of decrease of the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 decreases. The unburned gas in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is oxidized and purified by the upstream side exhaust purification catalyst 20. For this reason, not only the amount of oxygen and NOx discharged from the upstream side exhaust purification catalyst 20, but also the amount of unburned gas discharged is suppressed.
 時刻t8以降においては、上流側排気浄化触媒20の酸素吸蔵量OSAscは、その減少速度が遅いながらも徐々に減少していき、その結果、上流側排気浄化触媒20から未燃ガスが流出し始め、その結果、時刻t2と同様に下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irrichに到達する。その後は、時刻t1~t8の操作と同様な操作が繰り返される。 After time t 8 , the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 gradually decreases although its decrease rate is slow, and as a result, unburned gas flows out of the upstream side exhaust purification catalyst 20. First, as a result, similarly to the time t 2 the output current Irdwn of the downstream air-fuel ratio sensor 41 reaches the rich determination reference value Irrich. Thereafter, an operation similar to the operation at times t 1 to t 8 is repeated.
<本実施形態の制御における作用効果>
 上述した本実施形態の空燃比制御によれば、時刻t2において目標空燃比がリッチ空燃比からリーン空燃比に変更された直後、及び時刻t6において目標空燃比がリーン空燃比からリッチ空燃比に変更された直後には、理論空燃比からの差が大きなものとされる(すなわち、リッチ度合い又はリーン度合いが大きいものとされる)。このため、時刻t2において上流側排気浄化触媒20から流出していた未燃ガス及び時刻t6において上流側排気浄化触媒20から流出していたNOxを迅速に減少させることができる。したがって、上流側排気浄化触媒20からの未燃ガス及びNOxの流出を抑制することができる。
<Operational effects in the control of this embodiment>
According to the air-fuel ratio control of the present embodiment described above, the target air-fuel ratio is a rich air-fuel ratio immediately after being changed from the rich air-fuel ratio to the lean air-fuel ratio, and the target air-fuel ratio at time t 6 from the lean air-fuel ratio at time t 2 Immediately after the change to, the difference from the stoichiometric air-fuel ratio is made large (that is, the rich degree or lean degree is made large). Therefore, it is possible to reduce the NOx that has been flowing from the upstream exhaust purification catalyst 20 in the unburnt gas and the time t 6 that was flowing out of the upstream exhaust purification catalyst 20 at time t 2 quickly. Therefore, the outflow of unburned gas and NOx from the upstream side exhaust purification catalyst 20 can be suppressed.
 また、本実施形態の空燃比制御によれば、時刻t2において目標空燃比をリーン設定空燃比に設定した後、上流側排気浄化触媒20からの未燃ガスの流出が止まり且つ上流側排気浄化触媒20の酸素吸蔵量OSAscがある程度回復してから、時刻t4において目標空燃比が弱リーン設定空燃比に切り替えられる。このように目標空燃比の理論空燃比からの差を小さくすることにより、時刻t4から時刻t5において、上流側排気浄化触媒20の酸素吸蔵量OSAscの増加速度を遅くすることができる。これにより、時刻t4から時刻t6までの時間間隔を長くすることができる。この結果、単位時間当たりにおける上流側排気浄化触媒20からのNOxや未燃ガスの流出量を減少させることができる。さらに、上記空燃比制御によれば、時刻t5において、上流側排気浄化触媒20からNOxが流出するときにもその流出量を少なく抑えることができる。したがって、上流側排気浄化触媒20からのNOxの流出を抑制することができる。 Further, according to the air-fuel ratio control of the present embodiment, after setting the target air-fuel ratio to a lean set air-fuel ratio at time t 2, the stops outflow of unburned gas from the upstream exhaust purification catalyst 20 and the upstream exhaust purifying after recovering oxygen storage amount OSAsc catalyst 20 to some extent, the target air-fuel ratio is switched to the weak lean set air-fuel ratio at time t 4. By thus reducing the difference from the theoretical air-fuel ratio the target air-fuel ratio, at time t 5 from time t 4, it is possible to slow down the increase rate of the oxygen storage amount OSAsc the upstream exhaust purification catalyst 20. This makes it possible to increase the time interval from time t 4 to time t 6. As a result, the outflow amount of NOx and unburned gas from the upstream side exhaust purification catalyst 20 per unit time can be reduced. Furthermore, according to the air-fuel ratio control, at time t 5, it can be suppressed to be small the outflow even when the NOx flows out of the upstream exhaust purification catalyst 20. Therefore, the outflow of NOx from the upstream side exhaust purification catalyst 20 can be suppressed.
 加えて、本実施形態の空燃比制御によれば、時刻t6において目標空燃比をリッチ設定空燃比に設定した後、上流側排気浄化触媒20からのNOx(酸素)の流出が止まり且つ上流側排気浄化触媒20の酸素吸蔵量OSAscがある程度減少してから、時刻t8において目標空燃比が弱リッチ設定空燃比に切り替えられる。このように目標空燃比の理論空燃比からの差を小さくすることにより、時刻t8から時刻t1において、上流側排気浄化触媒20の酸素吸蔵量OSAscの減少速度を遅くすることができる。これにより、時刻t8から時刻t1までの時間間隔を長くすることができる。この結果、単位時間当たりにおける上流側排気浄化触媒20からのNOxや未燃ガスの流出量を減少させることができる。さらに、上記空燃比制御によれば、時刻t1において、上流側排気浄化触媒20から未燃ガスが流出するときにもその流出量を少なく抑えることができる。したがって、上流側排気浄化触媒20からの未燃ガスの流出を抑制することができる。 In addition, according to the air-fuel ratio control of the present embodiment, after setting the target air-fuel ratio to a rich set air-fuel ratio at time t 6, it stops the outflow of NOx (oxygen) from the upstream exhaust purification catalyst 20 and the upstream side from reduced oxygen storage amount OSAsc of the exhaust purification catalyst 20 to some extent, the target air-fuel ratio is switched to the weak rich set air-fuel ratio at time t 8. By thus reducing the difference from the theoretical air-fuel ratio the target air-fuel ratio, at time t 1 from the time t 8, it is possible to slow the rate of decrease in oxygen storage amount OSAsc the upstream exhaust purification catalyst 20. This makes it possible to increase the time interval from time t 8 to time t 1. As a result, the outflow amount of NOx and unburned gas from the upstream side exhaust purification catalyst 20 per unit time can be reduced. Furthermore, according to the above air-fuel ratio control, even when unburned gas flows out from the upstream side exhaust purification catalyst 20 at time t 1 , the outflow amount can be reduced. Therefore, the outflow of unburned gas from the upstream side exhaust purification catalyst 20 can be suppressed.
 なお、上記実施形態では、上流側排気浄化触媒20の酸素吸蔵量OSAscがリーン度合い変更基準吸蔵量Clean以上となったときに、目標空燃比を理論空燃比からの差が小さくなるように変化させている。しかしながら、目標空燃比を理論空燃比からの差が小さくなるように変化させるタイミングは、時刻t2~t6の間のいつでもよい。例えば、図19に示したように、下流側空燃比センサ41の出力電流Irdwnがリッチ判定基準値Irrich以上になったときに、目標空燃比を理論空燃比からの差を小さくなるように変化させてもよい。 In the above embodiment, when the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 becomes equal to or greater than the lean degree change reference storage amount Clean, the target air-fuel ratio is changed so that the difference from the stoichiometric air-fuel ratio becomes small. ing. However, the timing for changing the target air-fuel ratio so that the difference from the stoichiometric air-fuel ratio becomes small may be any time between the times t 2 and t 6 . For example, as shown in FIG. 19, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or greater than the rich determination reference value Irrich, the target air-fuel ratio is changed so as to reduce the difference from the stoichiometric air-fuel ratio. May be.
 同様に、上記実施形態では、上流側排気浄化触媒20の酸素吸蔵量OSAscがリッチ度合い変更基準吸蔵量Crich以下となったときに、目標空燃比を理論空燃比からの差が小さくなるように変化させている。しかしながら、目標空燃比を理論空燃比からの差が小さくなるように変化させるタイミングは、時刻t6~t2の間のいつでもよい。例えば、図19に示したように、下流側空燃比センサ41の出力電流Irdwnがリーン判定基準値Irlean以下になったときに、目標空燃比を理論空燃比からの差が小さくなるように変化させてもよい。 Similarly, in the above embodiment, when the oxygen storage amount OSAsc of the upstream side exhaust purification catalyst 20 becomes equal to or less than the rich degree change reference storage amount Crich, the target air-fuel ratio is changed so that the difference from the stoichiometric air-fuel ratio becomes small. I am letting. However, the timing for changing the target air-fuel ratio so that the difference from the stoichiometric air-fuel ratio becomes small may be any time between the times t 6 and t 2 . For example, as shown in FIG. 19, when the output current Irdwn of the downstream air-fuel ratio sensor 41 becomes equal to or less than the lean determination reference value Irlean, the target air-fuel ratio is changed so that the difference from the stoichiometric air-fuel ratio becomes small. May be.
 さらに、上記実施形態では、時刻t4~t6の間、及び時刻t8~t2の間、目標空燃比は弱リーン設定空燃比又は弱リッチ設定空燃比に固定されている。しかしながら、これら期間において、目標空燃比は、その差が段階的に小さくなるように設定されてもよいし、その差が連続的に小さくなるように設定されてもよい。 Further, in the above embodiment, the target air-fuel ratio is fixed to the weak lean set air-fuel ratio or the weak rich set air-fuel ratio between time t 4 and t 6 and between time t 8 and t 2 . However, during these periods, the target air-fuel ratio may be set so that the difference becomes smaller in steps, or may be set so that the difference becomes smaller continuously.
 これらをまとめて表現すると、本発明によれば、ECU31は、下流側空燃比センサ41の出力電流が理論空燃比よりもリッチなリッチ判定空燃比に相当する値以下になったときに、上流側排気浄化触媒20に流入する排気ガスの目標空燃比をリーン設定空燃比まで変化させる空燃比リーン切替手段と、空燃比リーン切替手段によって目標空燃比を変化させた後であって下流側空燃比センサ41の出力電流が理論空燃比よりもリーンなリーン判定空燃比に相当する値以上になる前に目標空燃比をリーン設定空燃比よりも理論空燃比からの差が小さいリーン空燃比(弱リーン設定空燃比)に変化させるリーン度合い低下手段と、下流側空燃比センサ41の出力電流が上記リーン判定空燃比に相当する値以上になったときに、目標空燃比をリッチ設定空燃比まで変化させる空燃比リッチ切替手段と、空燃比リッチ切替手段によって空燃比を変化させた後であって下流側空燃比センサ41の出力電流が上記リッチ判定空燃比に相当する値以下となる前に目標空燃比をリッチ設定空燃比よりも理論空燃比からの差が小さいリッチ空燃比に変化させるリッチ度合い低下手段とを具備すると言える。 In summary, according to the present invention, when the output current of the downstream air-fuel ratio sensor 41 becomes equal to or less than the value corresponding to the rich determination air-fuel ratio richer than the stoichiometric air-fuel ratio, the ECU 31 An air-fuel ratio lean switching means for changing the target air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 20 to a lean set air-fuel ratio, and a downstream air-fuel ratio sensor after the target air-fuel ratio is changed by the air-fuel ratio lean switching means The target air-fuel ratio is set to a lean air-fuel ratio (weak lean setting) in which the difference from the stoichiometric air-fuel ratio is smaller than the lean air-fuel ratio before the output current 41 becomes equal to or greater than the lean determination air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. When the output current of the lean degree reducing means for changing the air-fuel ratio and the downstream air-fuel ratio sensor 41 becomes equal to or greater than the value corresponding to the lean determination air-fuel ratio, the target air-fuel ratio is reduced. The air-fuel ratio rich switching means for changing to the set air-fuel ratio, and after the air-fuel ratio is changed by the air-fuel ratio rich switching means, the output current of the downstream air-fuel ratio sensor 41 is equal to or less than the value corresponding to the rich determination air-fuel ratio. It can be said that a rich degree reducing means for changing the target air-fuel ratio to a rich air-fuel ratio having a smaller difference from the stoichiometric air-fuel ratio than the rich set air-fuel ratio is obtained.
 なお、本明細書において、排気浄化触媒の酸素吸蔵量は、最大酸素吸蔵量と零との間で変化するものとして説明している。このことは、排気浄化触媒によって更に吸蔵可能な酸素の量が、零(酸素吸蔵量が最大酸素吸蔵量である場合)と最大値(酸素吸蔵量が零である場合)の間で変化することを意味するものである。 In the present specification, the oxygen storage amount of the exhaust purification catalyst is described as changing between the maximum oxygen storage amount and zero. This means that the amount of oxygen that can be further stored by the exhaust purification catalyst varies between zero (when the oxygen storage amount is the maximum oxygen storage amount) and the maximum value (when the oxygen storage amount is zero). Means.
 5  燃焼室
 6  吸気弁
 8  排気弁
 10  点火プラグ
 11  燃料噴射弁
 13  吸気枝管
 15  吸気管
 18  スロットル弁
 19  排気マニホルド
 20  上流側排気浄化触媒
 21  上流側ケーシング
 22  排気管
 23  下流側ケーシング
 24  下流側排気浄化触媒
 31  ECU
 39  エアフロメータ
 40  上流側空燃比センサ
 41  下流側空燃比センサ
DESCRIPTION OF SYMBOLS 5 Combustion chamber 6 Intake valve 8 Exhaust valve 10 Spark plug 11 Fuel injection valve 13 Intake branch pipe 15 Intake pipe 18 Throttle valve 19 Exhaust manifold 20 Upstream exhaust purification catalyst 21 Upstream casing 22 Exhaust pipe 23 Downstream casing 24 Downstream exhaust Purification catalyst 31 ECU
39 Air flow meter 40 Upstream air-fuel ratio sensor 41 Downstream air-fuel ratio sensor

Claims (12)

  1.  内燃機関の排気通路に設けられた排気浄化触媒と、該排気浄化触媒よりも排気流れ方向上流側において前記排気通路に設けられた上流側空燃比センサと、前記排気浄化触媒よりも排気流れ方向下流側において前記排気通路に設けられた下流側空燃比センサと、前記上流側空燃比センサ又は下流側空燃比センサの出力に基づいて内燃機関を制御する機関制御装置とを具備する、内燃機関の制御装置において、
     前記上流側空燃比センサは、検出対象である排気ガスが流入せしめられる被測ガス室と、ポンプ電流に応じて該被測ガス室内の排気ガスに対して酸素の汲み入れ及び汲み出しを行うポンプセルと、前記被測ガス室内の空燃比に応じて検出値が変化する基準セルと、該検出値が一定になるようにポンプ電流を制御するポンプ電流制御装置と、前記ポンプ電流を当該上流側空燃比センサの出力電流として検出するポンプ電流検出装置とを具備する2セル型の空燃比センサであり、
     前記下流側空燃比センサは、拡散律速層を介して検出対象である排気ガスに曝される第一電極と、基準雰囲気に曝される第二電極と、前記第一電極と前記第二電極との間に配置された固体電解質層と、前記第一電極と前記第二電極との間に電圧を印加する電圧印加装置と、前記第一電極と前記第二電極との間に流れる電流を当該下流側空燃比センサの出力電流として検出する電流検出装置とを具備する1セル型の空燃比センサである、内燃機関の制御装置。
    An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine, an upstream air-fuel ratio sensor provided in the exhaust passage upstream of the exhaust purification catalyst, and downstream of the exhaust purification catalyst in the exhaust flow direction Control of the internal combustion engine, comprising: a downstream air-fuel ratio sensor provided in the exhaust passage on the side; and an engine control device that controls the internal combustion engine based on an output of the upstream air-fuel ratio sensor or the downstream air-fuel ratio sensor In the device
    The upstream air-fuel ratio sensor includes a measured gas chamber into which exhaust gas to be detected flows, and a pump cell that pumps oxygen into and out of the exhaust gas in the measured gas chamber according to a pump current. A reference cell whose detection value changes according to the air-fuel ratio in the measured gas chamber, a pump current control device for controlling the pump current so that the detection value becomes constant, and the pump current as the upstream air-fuel ratio A two-cell type air-fuel ratio sensor comprising a pump current detection device that detects the output current of the sensor;
    The downstream air-fuel ratio sensor includes a first electrode that is exposed to an exhaust gas to be detected through a diffusion rate limiting layer, a second electrode that is exposed to a reference atmosphere, the first electrode, and the second electrode. A solid electrolyte layer disposed between the first electrode and the second electrode, and a current flowing between the first electrode and the second electrode. A control device for an internal combustion engine, which is a one-cell type air-fuel ratio sensor comprising a current detection device that detects an output current of a downstream air-fuel ratio sensor.
  2.  前記機関制御装置は、前記上流側空燃比センサの出力電流が目標空燃比に相当する値となるように前記排気浄化触媒に流入する排気ガスの空燃比を制御し、前記目標空燃比は、理論空燃比とは異なる空燃比とされる、請求項1に記載の内燃機関の制御装置。 The engine control device controls the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst so that the output current of the upstream air-fuel ratio sensor becomes a value corresponding to the target air-fuel ratio, The control apparatus for an internal combustion engine according to claim 1, wherein the air-fuel ratio is different from the air-fuel ratio.
  3.  前記目標空燃比は、理論空燃比よりもリッチの空燃比と理論空燃比よりもリーンの空燃比との間で交互に切り替えられる、請求項2に記載の内燃機関の制御装置。 3. The control apparatus for an internal combustion engine according to claim 2, wherein the target air-fuel ratio is alternately switched between an air-fuel ratio richer than the stoichiometric air-fuel ratio and an air-fuel ratio leaner than the stoichiometric air-fuel ratio.
  4.  前記機関制御装置は、前記下流側空燃比センサの出力電流に相当する空燃比が理論空燃比からずれて理論空燃比からの差が予め定められた判定基準差以上になったときには、前記目標空燃比を、下流側空燃比センサの出力電流に相当する空燃比が理論空燃比からずれた方向とは反対方向に理論空燃比からずれた空燃比とする、請求項3に記載の内燃機関の制御装置。 When the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor deviates from the stoichiometric air-fuel ratio and the difference from the stoichiometric air-fuel ratio becomes equal to or greater than a predetermined criterion difference, the engine control device 4. The control of an internal combustion engine according to claim 3, wherein the air-fuel ratio is an air-fuel ratio in which the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor deviates from the stoichiometric air-fuel ratio in a direction opposite to the direction deviated from the stoichiometric air-fuel ratio. apparatus.
  5.  前記判定基準差は、理論空燃比の1%以内の値である、請求項4に記載の内燃機関の制御装置。 5. The control device for an internal combustion engine according to claim 4, wherein the judgment reference difference is a value within 1% of a theoretical air-fuel ratio.
  6.  前記目標空燃比は、その理論空燃比からの差が前記判定基準差よりも大きくなるように設定される、請求項4又は5に記載の内燃機関の制御装置。 6. The control apparatus for an internal combustion engine according to claim 4, wherein the target air-fuel ratio is set such that a difference from the stoichiometric air-fuel ratio is larger than the determination reference difference.
  7.  前記機関制御装置は、前記下流側空燃比センサの出力電流に相当する空燃比が理論空燃比から判定基準差分だけリッチ側にずれたリッチ判定空燃比以下となったときに、前記排気浄化触媒の酸素吸蔵量が最大酸素吸蔵量よりも少ない所定の吸蔵量となるまで、前記目標空燃比を継続的又は断続的に理論空燃比よりもリーンにする酸素吸蔵量増加手段と、前記排気浄化触媒の酸素吸蔵量が前記所定の吸蔵量以上になったときに、該酸素吸蔵量が最大酸素吸蔵量に達することなく零に向けて減少するように、前記目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする酸素吸蔵量減少手段とを具備する、請求項4~6のいずれか1項に記載の内燃機関の制御装置。 When the air-fuel ratio corresponding to the output current of the downstream air-fuel ratio sensor becomes equal to or less than the rich judgment air-fuel ratio that is shifted to the rich side by the judgment reference difference from the theoretical air-fuel ratio, the engine control device Until the oxygen storage amount becomes a predetermined storage amount smaller than the maximum oxygen storage amount, the oxygen storage amount increasing means for making the target air-fuel ratio leaner than the stoichiometric air-fuel ratio continuously or intermittently, and the exhaust purification catalyst The target air-fuel ratio is theoretically or continuously calculated so that when the oxygen storage amount becomes equal to or greater than the predetermined storage amount, the oxygen storage amount decreases toward zero without reaching the maximum oxygen storage amount. The control apparatus for an internal combustion engine according to any one of claims 4 to 6, further comprising oxygen storage amount reducing means that makes the air-fuel ratio richer.
  8.  前記酸素吸蔵量増加手段によって継続的又は断続的に理論空燃比よりもリーンにされている期間における前記目標空燃比の時間平均値と理論空燃比との差は、前記酸素吸蔵量減少手段によって継続的又は断続的に理論空燃比よりもリッチにされている期間における前記目標空燃比の時間平均値と理論空燃比との差よりも大きい、請求項7に記載の内燃機関の制御装置。 The difference between the time average value of the target air-fuel ratio and the stoichiometric air-fuel ratio during the period in which the oxygen storage amount increasing means is continuously or intermittently leaner than the stoichiometric air-fuel ratio is continued by the oxygen storage amount reducing means. 8. The control device for an internal combustion engine according to claim 7, wherein the control device is larger than a difference between a time average value of the target air-fuel ratio and the stoichiometric air-fuel ratio in a period in which the air-fuel ratio is made richer than the stoichiometric air-fuel ratio.
  9.  前記機関制御装置は、前記下流側空燃比センサの出力電流に相当する空燃比が理論空燃比から判定基準差分だけリーン側にずれたリーン判定空燃比以下となったときに、前記排気浄化触媒の酸素吸蔵量が零よりも多い所定の吸蔵量となるまで、前記目標空燃比を継続的又は断続的に理論空燃比よりもリッチにする酸素吸蔵量減少手段と、前記排気浄化触媒の酸素吸蔵量が前記所定の吸蔵量以下になったときに、該酸素吸蔵量が零に達することなく最大酸素吸蔵量に向けて増加するように、前記目標空燃比を継続的又は断続的に理論空燃比よりもリーンにする酸素吸蔵量増加手段とを具備する、請求項4~6のいずれか1項に記載の内燃機関の制御装置。 When the air-fuel ratio corresponding to the output current of the downstream-side air-fuel ratio sensor becomes equal to or less than the lean determination air-fuel ratio that is shifted from the theoretical air-fuel ratio to the lean side by the determination reference difference, the engine control device Oxygen storage amount reducing means for continuously or intermittently making the target air-fuel ratio richer than the stoichiometric air-fuel ratio until the oxygen storage amount becomes a predetermined storage amount greater than zero, and the oxygen storage amount of the exhaust purification catalyst The target air-fuel ratio is increased from the stoichiometric air-fuel ratio continuously or intermittently so that the oxygen storage amount increases toward the maximum oxygen storage amount without reaching zero when the oxygen storage amount becomes less than the predetermined storage amount. The control device for an internal combustion engine according to any one of claims 4 to 6, further comprising oxygen storage amount increasing means for making the air lean.
  10.  前記酸素吸蔵量減少手段によって継続的又は断続的に理論空燃比よりもリッチにされている期間における前記目標空燃比の時間平均値と理論空燃比との差は、前記酸素吸蔵量増加手段によって継続的又は断続的に理論空燃比よりもリーンにされている期間における前記目標空燃比の時間平均値と理論空燃比との差よりも大きい、請求項9に記載の内燃機関の制御装置。 The difference between the time average value of the target air-fuel ratio and the theoretical air-fuel ratio during the period in which the oxygen storage amount reducing means is continuously or intermittently made richer than the stoichiometric air-fuel ratio is continued by the oxygen storage amount increasing means. The control device for an internal combustion engine according to claim 9, wherein the control device is larger than a difference between a time average value of the target air-fuel ratio and a stoichiometric air-fuel ratio in a period in which the air-fuel ratio is made leaner than the stoichiometric air-fuel ratio.
  11.  前記機関制御装置は、前記下流側空燃比センサの出力電流が理論空燃比よりもリッチなリッチ判定空燃比に相当する値以下となったときに、前記排気浄化触媒に流入する排気ガスの目標空燃比を理論空燃比よりもリーンのリーン設定空燃比まで変化させる空燃比リーン切替手段と、
     該空燃比リーン切替手段によって前記目標空燃比を変化させた後であって前記下流側空燃比センサの出力電流が理論空燃比よりもリーンなリーン判定空燃比に相当する値以上になる前に前記目標空燃比を前記リーン設定空燃比よりも理論空燃比からの差が小さいリーン空燃比に変化させるリーン度合い低下手段と、
     前記下流側空燃比センサの出力電流が前記リーン判定空燃比に相当する値以上なったときに、前記目標空燃比を理論空燃比よりもリッチのリッチ設定空燃比まで変化させる空燃比リッチ切替手段と、
     該空燃比リッチ切替手段によって前記目標空燃比を変化させた後であって前記下流側空燃比センサの出力電流が前記リッチ判定空燃比に相当する値以下となる前に前記目標空燃比を前記リッチ設定空燃比よりも理論空燃比からの差が小さいリッチ空燃比に変化させるリッチ度合い低下手段とを具備する、請求項4~6のいずれか1項に記載の内燃機関の制御装置。
    When the output current of the downstream side air-fuel ratio sensor becomes equal to or less than the value corresponding to the rich judgment air-fuel ratio richer than the stoichiometric air-fuel ratio, the engine control device is configured to target exhaust gas flowing into the exhaust purification catalyst. Air-fuel ratio lean switching means for changing the fuel ratio to a lean set air-fuel ratio that is leaner than the stoichiometric air-fuel ratio;
    After the target air-fuel ratio is changed by the air-fuel ratio lean switching means, before the output current of the downstream air-fuel ratio sensor becomes equal to or higher than the value corresponding to the lean determination air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. A lean degree reducing means for changing the target air-fuel ratio to a lean air-fuel ratio having a smaller difference from the stoichiometric air-fuel ratio than the lean set air-fuel ratio;
    Air-fuel ratio rich switching means for changing the target air-fuel ratio to a rich set air-fuel ratio richer than the stoichiometric air-fuel ratio when an output current of the downstream air-fuel ratio sensor becomes equal to or greater than a value corresponding to the lean determination air-fuel ratio; ,
    After the target air-fuel ratio is changed by the air-fuel ratio rich switching means, the target air-fuel ratio is made rich before the downstream air-fuel ratio sensor output current becomes equal to or less than a value corresponding to the rich determination air-fuel ratio. The control device for an internal combustion engine according to any one of claims 4 to 6, further comprising rich degree reduction means for changing to a rich air-fuel ratio in which a difference from the stoichiometric air-fuel ratio is smaller than a set air-fuel ratio.
  12.  前記上流側空燃比センサの基準セルは、前記被測ガス室内の排気ガスに曝される第三電極と、基準雰囲気に曝される第四電極と、前記第三電極と前記第四電極との間に配置された固体電解質層と、前記第三電極と前記第四電極との間の起電力を前記検出値として検出する基準電圧検出装置とを具備する、請求項1~11のいずれか1項に記載の内燃機関の制御装置。 The reference cell of the upstream air-fuel ratio sensor includes a third electrode exposed to the exhaust gas in the measured gas chamber, a fourth electrode exposed to a reference atmosphere, the third electrode, and the fourth electrode. 12. A solid electrolyte layer disposed therebetween, and a reference voltage detection device that detects an electromotive force between the third electrode and the fourth electrode as the detection value. The control apparatus for an internal combustion engine according to the item.
PCT/JP2013/051907 2013-01-29 2013-01-29 Control device for internal combustion engine WO2014118888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051907 WO2014118888A1 (en) 2013-01-29 2013-01-29 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051907 WO2014118888A1 (en) 2013-01-29 2013-01-29 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2014118888A1 true WO2014118888A1 (en) 2014-08-07

Family

ID=51261637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051907 WO2014118888A1 (en) 2013-01-29 2013-01-29 Control device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2014118888A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125982A (en) * 2015-01-08 2016-07-11 株式会社デンソー Oxygen sensor
JP2017057760A (en) * 2015-09-15 2017-03-23 トヨタ自動車株式会社 Internal combustion engine control device
CN111412044A (en) * 2019-01-08 2020-07-14 丰田自动车株式会社 Electrochemical reactor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082760A (en) * 1996-07-19 1998-03-31 Denso Corp Method for controlling air-fuel ratio
JPH10246139A (en) * 1997-03-04 1998-09-14 Unisia Jecs Corp Air-fuel ratio control device for internal combustion engine
JP2000356620A (en) * 1999-06-14 2000-12-26 Nippon Soken Inc Gas concentration detection device
JP2002202285A (en) * 2000-10-31 2002-07-19 Denso Corp Gas concentration detection device
JP2005127259A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Control device for engine
JP2010236450A (en) * 2009-03-31 2010-10-21 Denso Corp Exhaust gas purifying apparatus for internal combustion engine
WO2012120676A1 (en) * 2011-03-10 2012-09-13 トヨタ自動車株式会社 Internal combustion engine control apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1082760A (en) * 1996-07-19 1998-03-31 Denso Corp Method for controlling air-fuel ratio
JPH10246139A (en) * 1997-03-04 1998-09-14 Unisia Jecs Corp Air-fuel ratio control device for internal combustion engine
JP2000356620A (en) * 1999-06-14 2000-12-26 Nippon Soken Inc Gas concentration detection device
JP2002202285A (en) * 2000-10-31 2002-07-19 Denso Corp Gas concentration detection device
JP2005127259A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Control device for engine
JP2010236450A (en) * 2009-03-31 2010-10-21 Denso Corp Exhaust gas purifying apparatus for internal combustion engine
WO2012120676A1 (en) * 2011-03-10 2012-09-13 トヨタ自動車株式会社 Internal combustion engine control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125982A (en) * 2015-01-08 2016-07-11 株式会社デンソー Oxygen sensor
JP2017057760A (en) * 2015-09-15 2017-03-23 トヨタ自動車株式会社 Internal combustion engine control device
CN111412044A (en) * 2019-01-08 2020-07-14 丰田自动车株式会社 Electrochemical reactor

Similar Documents

Publication Publication Date Title
JP6075394B2 (en) Control device for internal combustion engine
JP5949957B2 (en) Control device for internal combustion engine
JP6036853B2 (en) Control device for internal combustion engine
JP5360312B1 (en) Control device for internal combustion engine
JP6107586B2 (en) Control device for internal combustion engine
JP5958561B2 (en) Control device for internal combustion engine
JP6015629B2 (en) Control device for internal combustion engine
JP5949958B2 (en) Control device for internal combustion engine
JP6094438B2 (en) Control device for internal combustion engine
JP5915779B2 (en) Control device for internal combustion engine
JP6110270B2 (en) Abnormality diagnosis device for internal combustion engine
JP5949959B2 (en) Control device for internal combustion engine
JP6056726B2 (en) Control device for internal combustion engine
JP6268976B2 (en) Control device for internal combustion engine
WO2014118888A1 (en) Control device for internal combustion engine
JP6733648B2 (en) Catalyst deterioration detector
JP6268933B2 (en) Control device for internal combustion engine
JP2015071985A (en) Control device for internal combustion engine
JP6255909B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP