WO2014117537A1 - 实现设备间信号传输的装置、方法、电子设备及通讯*** - Google Patents

实现设备间信号传输的装置、方法、电子设备及通讯*** Download PDF

Info

Publication number
WO2014117537A1
WO2014117537A1 PCT/CN2013/085038 CN2013085038W WO2014117537A1 WO 2014117537 A1 WO2014117537 A1 WO 2014117537A1 CN 2013085038 W CN2013085038 W CN 2013085038W WO 2014117537 A1 WO2014117537 A1 WO 2014117537A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
transmission
signal transmission
implementing
Prior art date
Application number
PCT/CN2013/085038
Other languages
English (en)
French (fr)
Inventor
余苏胜
曹文祥
邓杰
尹刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014117537A1 publication Critical patent/WO2014117537A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13292Time division multiplexing, TDM

Definitions

  • Device method, electronic device and communication system for realizing signal transmission between devices
  • the present invention relates to the field of communications, and in particular, to an apparatus, method, and communication system for implementing signal transmission between devices. Background technique
  • Wireless communication systems generally have base station products and terminal products.
  • the wireless communication system generally includes an indoor unit 11, an outdoor unit 12, and an antenna unit 13.
  • the indoor unit 11 is generally a network interface unit of the base station and a baseband processing unit (some including an intermediate frequency processing unit).
  • the outdoor unit 12 is a remote module of the base station, and is generally a radio frequency and power amplifier module of the base station.
  • the antenna unit 13 is a sky portion of the base station, and implements transmission and reception of wireless signals, and mainly includes an antenna (or a built-in LNA module).
  • the indoor unit 11 transmits the reference clock and the DC feed to the outdoor unit 12.
  • the signal, the implementation of the ESC 13 ESC and the activation of the tower top LNA also require an ESC control signal and a feed signal transmission between the outdoor unit 12 and the antenna unit 13.
  • each signal is to transmit separately, and the multiple signals transmitted between the wireless communication system devices use different transmission media according to the characteristics of the signal, that is, each
  • the class signal provides a separate transmission channel, such as a DC feed signal transmitted from the indoor unit 11 to the outdoor unit 12 to a feeder between the indoor unit 11 and the outdoor unit 12, and a monitoring signal of the outdoor unit 12 by the indoor unit 11 and
  • the response signal of the outdoor unit 12 to the indoor unit 11 is realized by the RS485 communication differential line between the indoor unit 11 and the outdoor unit 12, and the main communication radio frequency signal (the following line transmission signal and the uplink reception signal) uses the coaxial RF cable.
  • the transmission medium mainly the cable
  • the transmission medium mainly the cable
  • power lines, control lines, and coaxial lines are required. All need to be laid separately, and in order to prevent the interference of various types of signals in transmission, the cable racks of various signals also need to be taken separately, and the construction cost is large.
  • the ports of various types of signals should also be considered separately for the corresponding lightning protection measures. This will inevitably increase the design cost and test cost of the wireless communication system equipment, which is also a great challenge to the reliability and maintainability of the base station.
  • Another way is to use optical fiber transmission technology.
  • the various signals transmitted between the wireless communication system devices are digitized except for the power signals such as the feed (that is, the main signal, the control signal, and the clock signal are digitized first).
  • the high-speed serial digitization sequence is formed according to the standard interface protocol, and the high-speed serial digitization sequence is realized by the high-speed serial transmission path composed of the photoelectric conversion module and the optical fiber transmission resource between the devices, and the high-speed serialization sequence is recovered, and finally, The extraction and recovery of each signal is implemented in the corresponding circuit module.
  • the power signal such as the feed is still pulled by the power line separately to realize the remote feeding between the devices, and the collinear transmission of the feed power signal and other signals cannot be realized.
  • Optical fiber transmission resources are valuable and expensive, the cost of the fiber interface module is also high, and the combination of digital signals into a high-speed serial digitization sequence and a high-speed serial digitization sequence to recover corresponding digital signals requires a large amount of logic processing overhead and Software processing overhead increases the corresponding cost.
  • the invention provides a device, a method electronic device and a communication system for realizing signal transmission between devices, and solves the problem that signals of existing devices cannot be transmitted collinearly.
  • the present invention uses the following technical solutions:
  • An apparatus for implementing signal transmission between devices includes: a signal multiplexing demultiplexing module and a signal transmission module, wherein the signal multiplexing and demultiplexing module is configured to: receive multiple signals, and perform the received multiple signals Combining, transmitting the composite signal to the signal transmission module; receiving the composite signal output by the signal transmission module, demultiplexing the received composite signal into multiple signals, and transmitting the separated multiple signals to the corresponding circuit;
  • the signal transmission module is configured to: receive the composite signal output by the signal multiplexing and demultiplexing module, and transmit the composite signal to the external circuit through the coaxial cable; receive the composite signal sent by the external circuit through the coaxial cable, The received composite signal is transmitted to the signal multiplexing demultiplexing module.
  • the multiple signals received and/or separated by the signal multiplexing demultiplexing module include one or more of a modulation control signal, a reference clock signal, and a primary communication modulation signal.
  • the device for implementing signal transmission between devices further comprises a modem module, configured to: receive a digital control signal, modulate the received digital control signal into a modulation control signal, and transmit the signal to the Decoding a signal multiplexing demultiplexing module; demodulating the modulation control signal separated by the signal multiplexing demultiplexing module to obtain a digital control signal and transmitting the same to a corresponding circuit.
  • a modem module configured to: receive a digital control signal, modulate the received digital control signal into a modulation control signal, and transmit the signal to the Decoding a signal multiplexing demultiplexing module; demodulating the modulation control signal separated by the signal multiplexing demultiplexing module to obtain a digital control signal and transmitting the same to a corresponding circuit.
  • the modem module comprises at least one modulation module and at least one demodulation module.
  • the device for implementing signal transmission between devices further comprises: a DC feed module, configured to: receive a power signal, and extract a feed power signal from the power signal, and transmit the signal to the signal transmission module; the signal transmission module is configured to Receiving a feed power signal output by the DC feed module and transmitting the signal to the external circuit through the coaxial cable; or
  • the DC feed module is configured to: receive a feed power signal from the signal transmission module, convert the received feed power signal into a power signal, and transmit the signal to the power supply module; the signal transmission module is configured to: pass the coaxial cable Receiving a feed power signal sent by an external circuit, and transmitting the received feed power signal to the DC feed module.
  • the signal transmission module includes a port connector, a duplex low frequency terminal, and a duplex high frequency terminal; wherein the port connector is configured to: perform a composite signal interaction with an external circuit through the coaxial cable;
  • the duplex low frequency terminal is configured to: be connected to the DC feed module;
  • the duplex high frequency terminal is configured to: be connected to the signal multiplexing and demultiplexing module.
  • the signal transmission module further includes a lightning protection circuit unit;
  • the lightning protection circuit unit comprises an air discharge tube, a high voltage DC blocking capacitor, a hollow inductor and a varistor;
  • the air discharge tube is connected in series to the port connection Between the signal line of the device and the working ground;
  • the hollow inductor is connected in series between the port connector and the duplex low frequency terminal;
  • the high voltage DC blocking capacitor is connected in series with the signal line of the port connector Between the duplex high frequency terminals; one end of the varistor is connected between the hollow inductor and the duplex low frequency terminal, and the other end is connected to the working ground of the port connector.
  • An electronic device comprising: a device body, further comprising: the device for implementing signal transmission between devices according to any one of the preceding claims; wherein the device body is configured to: generate a multipath signal, and transmit the signal to the signal multiplexing demultiplexing module And/or for receiving a plurality of signals separated by the signal multiplexing and demultiplexing module.
  • the electronic device is an indoor unit, an outdoor unit, and an antenna unit in a wireless communication system.
  • the electronic device is an indoor unit, an outdoor unit, and an antenna unit in a wireless communication system.
  • One of the yuan is an indoor unit, an outdoor unit, and an antenna unit in a wireless communication system.
  • a communication system comprising: a first device, a second device, and a device for implementing signal transmission between devices, as described in any one of the above, connected to the first device and the second device, the first device Transmitting a multi-path signal with one of the second device and the device for realizing signal transmission between the devices, and the other device for transmitting the signal between the devices realizes the transmission of the composite signal through the coaxial cable; or
  • the communication system includes a first device and a second device, and the first device and the second device are the electronic devices according to any one of the above.
  • a method for implementing signal transmission between devices comprising: receiving a plurality of signals; combining the received multiple signals; and transmitting the composite signals to an external circuit through a coaxial cable.
  • the method for implementing signal transmission between devices further comprises: receiving, by the coaxial cable, a composite signal sent by an external circuit; separating the received composite signal from the multiple signals; and transmitting the separated multiple signals to corresponding Circuit.
  • the received and/or separated multiplex signal comprises one or more of a modulation control signal, a reference clock signal, and a primary communication modulation spectrum signal.
  • the method further comprises: modulating the received digital control signal into the modulation control signal;
  • the separated multiplex signal comprises After modulating the control signal, after separating the modulation control signal, the method further includes: demodulating the separated modulation control signal into a digital control signal, and transmitting the digital control signal to the corresponding circuit.
  • the method for implementing signal transmission between devices further includes: receiving a power signal, extracting a feed power signal from the received power signal, and transmitting the feed power signal to an external circuit through the coaxial cable; or
  • the method includes: receiving, by the coaxial cable, the feed power signal from an external circuit, converting the feed power signal into a power signal, and transmitting the signal to the power supply module.
  • the device, the method, the electronic device and the communication system for implementing the signal transmission between the devices provided by the embodiment of the present invention combine the multi-channel signals generated by one device and transmit the same to the other device through the coaxial cable.
  • the composite signal received from one device through the coaxial cable separates the multi-channel signal and transmits it to another device, which can realize the multi-channel signal transmission between the devices through the coaxial cable, so that the hardware cost of the signal transmission, engineering construction and The maintenance cost is relatively low; and the circuit is simple and easy to implement.
  • the components of the device for realizing signal transmission between devices can be flexibly and conveniently adjusted, reduced and adjusted according to actual application requirements to adapt to the wireless communication system.
  • 1 is a schematic structural diagram of a wireless communication system
  • FIG. 2 is a schematic diagram of an apparatus for implementing signal transmission between devices according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a signal multiplexing and demultiplexing module in the apparatus shown in FIG. 2;
  • FIG. 4 is a schematic diagram of an LC filter isolation unit in the signal multiplexing and demultiplexing module shown in FIG. 3;
  • FIG. 5 is a schematic diagram of an apparatus for implementing signal transmission between devices according to another embodiment of the present invention;
  • FIG. 7 is a schematic diagram of an ASK modulation unit in the ASK modem module shown in FIG. 6.
  • FIG. 8 is a schematic diagram of an ASK demodulation unit 232 in the ASK modem module shown in FIG. 6.
  • FIG. 9 is another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an apparatus for implementing signal transmission between devices according to another embodiment of the present invention;
  • FIG. 11 is a schematic diagram of a signal transmission module according to an embodiment of the present invention;
  • FIG. 12 is a schematic diagram of a signal transmission module according to another embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a communication system according to another embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a communication system according to another embodiment of the present invention.
  • 16 is a schematic diagram of a communication system according to another embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a communication system according to another embodiment of the present invention. Preferred embodiment of the invention
  • the main idea of the embodiments of the present invention is: receiving, by means of the device for transmitting signals between devices, receiving multiple signals; combining the received multiple signals; and transmitting the composite signals to an external circuit through a coaxial cable. Further, the composite signal sent by the external circuit is received by the coaxial cable; the received composite signal is separated into multiple signals; and the separated multiple signals are transmitted to the corresponding circuit.
  • the multiplexed signals received and/or separated by the means for effecting signal transmission between devices include, but are not limited to, one or more of a modulation control signal, a reference clock signal, and a primary communication modulation signal.
  • the method further includes: modulating the received digital control signal into the modulation control signal;
  • the method further includes: demodulating the separated modulation control signal into a digital control signal, and transmitting the digital control signal to the corresponding circuit.
  • a power signal may be received, a feed power signal is extracted from the received power signal, and the feed power signal is transmitted to the external circuit through the coaxial cable; or, the external circuit is passed through the coaxial cable Receiving the feed power signal, converting the feed power signal into a power signal, and transmitting the signal to the module to be powered.
  • FIG. 2 is a schematic diagram of an apparatus for implementing signal transmission between devices according to an embodiment of the present invention.
  • an apparatus for implementing signal transmission between devices includes: a signal multiplexing demultiplexing module 21 and a signal transmission module 22 , its working principle includes:
  • the main control module of a device generates a multi-channel signal, and the generated multi-channel signal is separately transmitted to the signal multiplexing demultiplexing module 21, and the signal multiplexing demultiplexing module 21 is configured to receive the multi-channel signal, and the received multi-channel signal
  • the road signal is combined to transmit the composite signal to the signal transmission module 22;
  • the signal transmission module 22 is configured to receive the composite signal output by the signal multiplexing and demultiplexing module 21, and transmit the signal to another device through the coaxial cable, the other
  • the device may separate the composite signal by another signal multiplexing demultiplexing module;
  • the signal transmission module 22 is further configured to receive a composite signal sent by a device by using the coaxial cable.
  • the received composite signal is transmitted to the signal demultiplexing module 21; the signal demultiplexing module 21 receives the composite signal output by the signal transmission module 22, separates the received composite signal into multiple signals, and transmits the separated multiple signals to The corresponding circuit of another device.
  • the signal transmission module 22 implements bidirectional transmission of signals between devices.
  • the signal transmission module 22 is composed of a transmission medium that satisfies at least the highest frequency signal transmission requirement and the power signal strength requirement of the transmitted signal, and includes a connection port at both ends, a core line in the middle, a ground line corresponding to the core line (including a shield formation), and Fill media during the period.
  • the structure of the signal multiplexing and demultiplexing module 21 is as shown in FIG. 3, and includes an LC filter isolation unit 211 and a common node 212.
  • the LC filter isolation unit 211 is used to implement the feedthrough and isolation of signals between internal signals and common nodes.
  • the common node 212 is connected to the signal output module 22.
  • the LC filter isolation unit 211 can be cascaded by a multi-stage filter isolation duplex network.
  • Each stage LC filter isolation duplex network realizes the feedthrough between the primary and lower signals to the upper cascade node and between the primary signal and the lower signal. Isolated from each other.
  • a four-stage filter-isolated duplex network as an example, as shown in FIG. 4: a first-stage filter-isolated duplex network 211a, a second-stage filter-isolated duplex network 211b, and a third-stage filter-isolated duplex network 21 lc and The fourth stage filter isolates the duplex network 21 ld.
  • the LC filter isolation unit 211 can realize a total of four different center frequency, different spectral characteristics of the signal and the first stage filter isolation duplex network 21 la common node feedthrough and isolation between each other.
  • Each stage of the filtered isolated duplex network can consist of a high pass filter and a low pass filter.
  • the high-pass filter and the low-pass filter are connected together to form a common end of the duplex network, and the other end of the two filters is a duplex terminal of the duplex network.
  • FIG. 5 is a schematic diagram of an apparatus for implementing signal transmission between devices according to another embodiment of the present invention.
  • the apparatus for implementing signal transmission between devices further includes a modem module 23 , for receiving a digital control signal generated by a device, modulating the received digital control signal into a modulation control signal, and transmitting the signal to the signal multiplexing demultiplexing module 21, the signal multiplexing demultiplexing mode
  • the block 21 receives the modulated signal, combines the modulated control signal with the received other signals, and transmits the modulated signal to the signal transmission module 22.
  • the modem module 23 is further configured to demodulate the modulation control signal separated by the signal multiplexing and demultiplexing module 21 and transmit the same to the corresponding circuit.
  • the device for implementing signal transmission between devices provided by the embodiment can realize the collinear transmission of the digital control signal, the reference clock signal and the main communication modulation spectrum signal between the devices through the coaxial cable.
  • the modem module 23 is an ASK (Amplitude Shift Keying) modem module.
  • the ASK modem module 23' further includes an ASK modulation unit 231', an ASK demodulation unit 232', and an ASK transmission/reception switching unit 233'.
  • the ASK modulation unit is configured to receive a digital control signal sent by a device main control unit, and perform ASK modulation on the signal to generate an ASK modulated transmission signal, and send the signal to an ASK transmission/reception switching unit, and the ASK transmission/reception switching unit will
  • the ASK transmit/receive switching unit is further configured to receive the separated ASK modulated received signal from the signal multiplexing and demultiplexing module 21, and send the signal to the ASK demodulation unit, the ASK demodulation unit.
  • the signal is ASK demodulated, filtered and shaped into a digital control signal, and sent to the corresponding circuit.
  • the ASK modulation unit 231' may further include a crystal carrier frequency circuit 231a', a logic gate (or gate) modulation circuit 231b', an amplitude adjustment circuit 231c', and a low-pass filter circuit 231d'.
  • the ASK demodulation unit 232' may further include a filter amplification circuit 232a', an envelope detection circuit 232b', a comparison decision circuit 232c', and a logic gate shaping circuit 232d'.
  • the filter amplifier circuit 232a' can be composed of integrated discharge
  • the envelope detection circuit 232b' can be composed of an integrated operational amplifier and a radio frequency diode
  • the comparison decision circuit 232c' can be a hysteresis comparison circuit composed of comparators.
  • the ASK transmission/reception switching unit 233' may further include an analog switch, a common-side bias generating circuit, and a common-side filter circuit.
  • the common-side bias generating circuit generates a bias voltage by means of a resistor divider.
  • the common-side filter circuit implements filtering of lower frequency signals and DC components.
  • the modem module 23 can also be composed of at least one modulation module and at least one demodulation module. According to the actual application requirements, it can be flexibly and conveniently adjusted, adjusted and adjusted to meet the requirements of signal transmission diversity, transmission cost and transmission quality between devices in wireless communication systems.
  • FIG. 9 is a schematic diagram of an apparatus for implementing signal transmission between devices according to another embodiment of the present invention.
  • the apparatus for implementing signal transmission between devices further includes a DC feed module 24 .
  • the signal transmission module 22 is configured to receive the feed power signal output by the DC feed module 24, and receive the feed
  • the electric power signal is transmitted to the external device through the coaxial cable together with the multiplexed signal outputted by the signal multiplexing and demultiplexing module 21, and the feed power signal is used to supply power to the external device.
  • the signal transmission module 22 is configured to receive a feed power signal sent by an external device through a coaxial cable, and transmit the received feed power signal to the DC feed module 24;
  • the feeding module 24 is configured to receive the feeding power signal from the signal transmission module 22, convert the received feeding power signal into a power signal, and then transmit the signal to the module to be powered, that is, obtain power from the external device.
  • the DC power feeding module 24 is directly connected to the signal transmission module 22 to realize the feeding of the DC power or to provide a schematic diagram of the signal transmission module according to an embodiment of the present invention.
  • the signal transmission module 22 further includes a port connector 221. a duplex low frequency terminal 222 and a duplex high frequency terminal 223; wherein the port connector 221 is configured to exchange a composite signal with an external circuit through a coaxial cable; the duplex low frequency terminal 222 is configured to be connected to the DC feed module 24,
  • the DC feed module 24 receives the feed power signal, or outputs a feed power signal to the DC feed module 24;
  • the duplex high frequency terminal 223 is used to connect with the signal multiplexing and demultiplexing module 21, and the signal multiplexing demultiplexing module 21
  • the composite signal is received, or the composite signal is output to the signal multiplexing demultiplexing module 21.
  • FIG. 12 is a schematic diagram of a signal transmission module according to another embodiment of the present invention.
  • the signal transmission module 22 further includes a lightning protection circuit unit.
  • the lightning protection circuit unit realizes lightning protection of component ports and duplex transmission of DC feed signals and other signals.
  • the lightning protection circuit unit includes an air discharge tube 224a, a high voltage DC blocking capacitor 224b, an air core inductor 224c, and a varistor 224d.
  • the air core inductor 224c is a high Q value air core inductor.
  • the air discharge tube 224a is directly connected in series between the signal line of the port connector 221 and the working ground to realize the near rapid bleed of the lightning surge signal at the port; the hollow inductor 224c is serially connected to the port connector 221 and the duplex low frequency terminal 222.
  • the high voltage DC blocking capacitor 224b is connected in series between the signal line of the port connector 221 and the duplex high frequency terminal 223; the varistor 224d is connected between the hollow inductor 224c and the duplex low frequency terminal 222, and the other end Connected to the working ground of the port connector 221.
  • the residual lightning surge signal frequency discharged through the air discharge tube 224a is concentrated below several MHz, and the barrier of the high voltage isolation capacitor 224b cannot enter the LC filter isolation unit in the signal multiplexing and demultiplexing module 21, and can only pass through the hollow inductor.
  • the 224c enters the duplex low frequency terminal 222 and is absorbed by the varistor 224d.
  • the hollow inductor 224c and the high voltage DC blocking capacitor 224b also directly form the duplex function of the duplex network.
  • the present invention also provides an electronic device in which the device for realizing signal transmission between devices provided by the present invention is integrated, or the device for realizing signal transmission between devices provided by the present invention is externally connected.
  • the electronic device is one of an indoor unit, an outdoor unit, and an antenna unit in the wireless communication system.
  • the present invention further provides a communication system, which includes a first device 1311, a second device 1312, and the foregoing implementation implemented between the first device 1311 and the second device 1312.
  • Coaxial cable enables the transmission of composite signals.
  • the present invention further provides another communication system.
  • the communication system 141 includes a first device 1411 and a second device 1412.
  • the first device 1411 and the second device 1412 are respectively integrated.
  • the device 1411a, 1412a for realizing signal transmission between devices is provided by the present invention.
  • the first device 1411 and the second device 1412 implement signal transmission of the coaxial cable through 1411a, 1412a.
  • a wireless communication system includes an indoor unit, an outdoor unit, and an antenna unit.
  • the indoor unit is powered by a -48V base station power supply, including a network interface module, a main control module, a MAC (Media Access Control) control module, and a baseband IF module. It can provide the N1 standard (European Data Transmission Common Criteria) Nx64kbit/s interface and lOBase. — T network interface, which implements functions such as network interface processing, baseband processing, and network management remote login.
  • the baseband IF module includes a transmitter circuit and a receiver circuit.
  • the outdoor unit can realize functions such as RF transceiver, frequency conversion and filtering. Indoor unit and room monitoring and remote power supply.
  • the indoor unit also requires remote powering of the outdoor unit and feed of the reference clock.
  • the downlink transmission IF signal sent by the indoor unit to the outdoor unit is a main communication modulation spectrum signal with a center frequency of 42M and a bandwidth of 3.5M.
  • the uplink IF signal received by the indoor unit from the outdoor unit is a main communication modulation spectrum signal with a center frequency of 176M and a bandwidth of 3.5M.
  • Monitoring between the indoor unit and the outdoor unit uses the standard asynchronous serial UART communication protocol, 9600 baud.
  • the reference clock provided by the indoor unit to the outdoor unit is a 12M sine wave signal.
  • the outdoor unit requires -48V/3A DC.
  • the indoor unit and the outdoor unit are connected by a coaxial intermediate frequency cable.
  • the foregoing downlink transmission intermediate frequency signal (main communication modulation speech signal), uplink reception intermediate frequency signal (main communication modulation spectrum signal), reference clock signal, remote monitoring signal (digital control signal), monitoring response signal (digital control signal)
  • the feed power signal can realize the transmission between the indoor unit and the outdoor unit through the coaxial intermediate frequency cable, and the specific implementation scheme is as follows:
  • the following modules are added to the indoor unit 151: a first signal transmission module 151e, a first DC feed module 151f, a first signal multiplexing demultiplexing module 151g, and a first ASK modem module 151h.
  • the port connector of the first signal transmission module 151e and the port connector of the second signal transmission module I52e are connected by a coaxial intermediate frequency cable, and the duplex low frequency terminal of the first signal transmission module 151e and the first One end of a DC feed module 151f is connected,
  • the duplex high frequency terminal of a signal transmission module 151e is connected to a common node of the first signal multiplexing demultiplexing module 151g.
  • the common end of the first ASK modem module 151h is connected to the first signal multiplexing demultiplexing module 151g-signal node.
  • the following modules are added to the outdoor unit 152: a second signal transmission module 152e, a second DC feed module 152f, a second signal multiplexing demultiplexing module 152g, and a second ASK modem module 152h.
  • the port connector of the second signal transmission module I52e and the port connector of the first signal transmission module 151e are connected by a coaxial intermediate frequency cable, and the duplex low frequency terminal of the second signal transmission module 152e and the second DC feed module.
  • One end of the 152f is connected, and the duplex high frequency terminal of the second signal transmission module 152e is connected to the common node of the second signal multiplexing and demultiplexing module I52g.
  • the common end of the second ASK modem module 152h is coupled to the second signal multiplexing demultiplexing module 152g - the signal node.
  • the principle of signal transmission between the indoor unit 151 and the outdoor unit 152 includes:
  • the -48V DC signal from the base station power supply is filtered by the first DC feed module 151f into a feed power signal and then enters the duplex low frequency terminal of the first signal transmission module 151e;
  • the outdoor unit digital monitoring signal from the base station main control circuit is modulated by the first ASK modulation and demodulation module 151h and then enters the first signal multiplexing demultiplexing module 151g-signal node; the reference clock signal from the base station clock circuit, the base station baseband
  • the downlink transmitting intermediate frequency signal from the intermediate frequency transmitting circuit enters the first signal multiplexing demultiplexing module 151g-signal node; the first signal multiplexing demultiplexing module 151g combines the multiple signals received at the signal node to compound
  • the signal (preferably, the low power signal) is transmitted to the duplex high frequency terminal of the first signal transmission module 151e through the common node, and the convergence of the same power signal in the first signal transmission module 151e is realized
  • the second signal transmission module 152e performs lightning surge signal bleed processing on the composite signal received by the port connector, and the duplex function also realizes separation of the feeding power signal and other signals. , output the feed power signal from the duplex low frequency terminal to the first
  • the DC power feeding module 152f and the second DC power feeding module 152f perform filtering processing and then send the signals to the subsequent circuit to implement power supply to the outdoor unit 152.
  • the other signals are output from the duplex high frequency terminal and then enter the second signal multiplexing and demultiplexing module 152g, and the second signal multiplexing and demultiplexing module 152g is configured to isolate the intermediate frequency signal and the reference clock signal.
  • the ASK modulated signal enters the second ASK modem module 152h, is demodulated by the second ASK modem module 152h, and then restored to receive the digital monitoring signal, and transmitted to the main control unit of the outdoor unit.
  • the transmission of the monitoring signal from the indoor unit 151 to the outdoor unit 152 is realized, and the reference clock signal is used as a reference clock to enter the frequency source circuit of the outdoor unit 152, so that the outdoor unit 151 and the indoor unit 152 are sourced with the same source.
  • the downlink transmitting intermediate frequency signal enters the up-conversion circuit of the outdoor unit, and the up-conversion circuit continues to generate and transmit the downlink transmitting radio frequency signal to the antenna unit.
  • the main control unit of the outdoor unit 152 sends a digital monitoring response signal to the second ASK modem module 152h, and generates an ASK modulated signal after ASK modulation, and enters the second signal multiplexing.
  • a signal node of the demultiplexing module 152g the uplink receiving intermediate frequency signal is directly sent to a signal node of the second signal multiplexing demultiplexing module 152g, and the second signal multiplexing demultiplexing module 152g receives more signals from each signal node.
  • the road signal is combined, and the composite signal is transmitted to the duplex high frequency terminal of the second signal transmission module 152e through the common node, and the port connector of the second signal transmission module 152e is transmitted through the coaxial intermediate frequency cable to the first signal transmission module 151e. Port connector.
  • the composite signal enters the port connector of the first signal transmission module 151e, and the signal processed by the lightning surge is discharged from the first signal transmission module.
  • the duplex high frequency terminal of the 151e enters the common node of the first signal multiplexing demultiplexing module 151g, and the first signal multiplexing and demultiplexing module 151g separates the received composite signal of the common node through the duplex filtering network of each level, and The separated uplink intermediate frequency signal is sent to the receiving circuit of the indoor unit 151, and the response ASK modulated signal is input into the first ASK modem module 151h for demodulation to generate a digital monitoring response signal, and the digital monitoring response signal enters the main unit of the indoor unit 151. Control unit, remote Acknowledge signal reception.
  • the apparatus for implementing signal transmission between devices is integrated in the indoor unit 151 and the outdoor unit 152 of the wireless communication system, and the intermediate unit 151 and the outdoor unit 152 are implemented to transmit the intermediate frequency signal and uplink receiving in the downlink.
  • a 3G wireless communication system includes an indoor unit, an outdoor unit, and an antenna unit.
  • the indoor unit is responsible for the service interface with the wireless network measurement and the baseband signal processing for the uplink and downlink signals.
  • the outdoor unit is responsible for the medium-frequency processing of the signal downlink baseband signal, completing spectrum shaping, up-conversion, gain amplification, and receiving and amplifying the uplink signal, down-conversion, anti-aliasing filtering, and uplink baseband signal extraction and recovery.
  • the antenna unit realizes the transmission of the wireless signal of the downlink RF signal, the reception and amplification of the uplink wireless signal, and provides a consistency check channel required for calibration correction.
  • the indoor unit and the outdoor unit transmit the baseband signal through the optical fiber interface.
  • the indoor unit provides remote power to the outdoor unit via a DC feeder.
  • the direct interface between the outdoor unit and the antenna unit is n main RF signal coaxial transmission lines +1 calibration signal coaxial transmission lines.
  • outdoor units are required to remotely monitor the antenna unit and control the tower LNA.
  • the outdoor unit needs to supply power to the antenna unit.
  • the aforementioned remote monitoring control signal digital control signal
  • remote monitoring response signal digital control signal
  • LNA control signal digital control signal
  • feed power signal and calibration correction signal main communication modulation spectrum signal
  • the following modules are added to the outdoor unit 161: a first signal transmission module 161e, a first DC feed module 161f, and a first A signal multiplexing demultiplexing module 161g, a first ASK modem module 161h, and a first ASK modulation module 161i.
  • the following modules are added to the antenna unit 162: a second signal transmission module 162e, a second DC feed module 162f, a second signal multiplexing demultiplexing module 162g, a second ASK modem module 162h, and a first ASK demodulation module. 162i.
  • the monitoring control signal and the monitoring response signal are in the outdoor unit 161 and the antenna unit 162.
  • the transmission mechanism of the feeding power signal between the outdoor unit 161 and the antenna unit 162 can refer to the transmission mechanism of the feeding power signal in FIG. 15;
  • the transmission mechanism of the downlink transmission intermediate frequency signal in FIG. 15 For the transmission between the outdoor unit 161 and the antenna unit 162, reference may be made to the transmission mechanism of the downlink transmission intermediate frequency signal in FIG.
  • the present embodiment provides the inter-device signal transmission provided by the present invention.
  • the device is integrated in the outdoor unit 161 and the antenna unit 162 respectively.
  • the first ASK modulation module 161i is additionally added to the outdoor unit 161, and the common end of the first ASK modulation module 161i is connected to the first signal multiplexing and decoding.
  • a first ASK demodulation module 162i is additionally added to the antenna unit 162, and the common end of the first ASK demodulation module 162i is connected to the second signal multiplexing demultiplexing module 162g-signal node .
  • the first ASK modulation module 161i is configured to access the LNA control signal generated by the outdoor unit 161, perform ASK modulation, and then transmit to a signal node of the first signal multiplexing and demultiplexing module 161g; the first ASK demodulation module 162i
  • the ASK modulated signal is received from a signal node of the second signal multiplexing and demultiplexing module I62g, and is demodulated to output an LNA control signal to a corresponding circuit of the antenna unit 162.
  • a digital microwave transmission system includes a high station and a low station, and each station has an IDU (Indoor Unit, Digital Indoor Unit), ODU (Out Door Unit) unit and an antenna.
  • IDU Indoor Unit, Digital Indoor Unit
  • ODU Out Door Unit
  • the IDU is responsible for the service interface with the wireless network measurement, as well as the baseband signal and intermediate frequency signal processing for the uplink and downlink signals, as well as the feeding and remote monitoring of the ODU.
  • the ODU is responsible for the downlink IF signal amplitude processing, up-conversion, gain amplification, and uplink signal reception amplification, down-conversion, and gain processing.
  • the monitoring control signal (digital control signal), the monitoring response signal (digital control signal), the downlink transmitting intermediate frequency signal, the uplink receiving intermediate frequency signal, and the feeding power signal can all realize transmission between the IDU and the ODU through the coaxial cable.
  • the following modules are added to the IDU 171: a first signal transmission module 171e, a first DC feed module 171f, a first signal multiplexing demultiplexing module 171g, and a first module.
  • the following modules are added to the ODU 172: a second signal transmission module 172e, a second DC feed module 172f, a second signal multiplexing demultiplexing module 172g, a second ASK modulation module 172h, and a second ASK demodulation module 172i.
  • the monitoring control signal is modulated into a OOK modulation (a special case of ASK modulation) signal by the first ASK modulation module 171h, and then sent to the first signal multiplexing and demultiplexing module 171g, and the downlink transmission intermediate frequency signal is sent to the first signal multiplexing solution.
  • the multiplexing module 171g, the first signal multiplexing and demultiplexing module 171g combines the two signals and outputs the signals to the first signal transmission module 171e, and the first signal transmission module 171e transmits the second signal transmission module 172e to the second signal transmission module 172e through the coaxial cable.
  • the second signal transmission module 172e is transmitted to the second signal multiplexing and demultiplexing module I72g, and the second signal multiplexing and demultiplexing module 172g is separated, and then the OOK modulation signal is sent to the second ASK demodulation module 172i for demodulation.
  • the monitoring control signal is output to the corresponding circuit of the ODU 172
  • the downlink transmitting intermediate frequency signal is output to the corresponding circuit of the ODU 172.
  • the OOK monitoring response signal is modulated into an OOK modulation signal by the second ASK modulation module 172h, and then sent to the second signal multiplexing and demultiplexing module 172g, and the uplink receiving intermediate frequency signal is sent to the second signal multiplexing and demultiplexing module 172g, the second signal.
  • the multiplexing demultiplexing module 172g combines the two signals and outputs the signals to the second signal transmission module 172e.
  • the second signal transmission module 172e transmits the first signal transmission module 171e to the first signal transmission module 171e through the coaxial cable.
  • the first signal multiplexing demultiplexing module 171g Up to the first signal multiplexing demultiplexing module 171g, the first signal multiplexing demultiplexing module 171g performs separation, and then transmits the OOK modulation signal to the first ASK demodulation module 171i, and after demodulation, outputs a monitoring response signal to the IDU 171.
  • the corresponding circuit outputs the uplink receiving intermediate frequency signal to the corresponding circuit of the IDU 171.
  • the transmission of the feed power signal between the IDU 171 and the ODU 172 can be referred to the transmission of the feed power signal in FIG.
  • the device for implementing signal transmission between devices according to an embodiment of the present invention may be integrated on any device of a wireless communication system, and implement various signals including a feed power signal, a digital control signal, a reference clock signal, and a main communication modulation signal.
  • Colinear transmission The hardware cost, engineering construction and maintenance cost of signal transmission between devices is relatively low.
  • each module in the device for implementing signal transmission between devices according to the embodiment of the present invention can be flexibly and conveniently adjusted, reduced, and adjusted according to actual application requirements, so as to adapt to the diversity and transmission of signal transmission between devices in the wireless communication system. Cost and transmission quality requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

实现设备间信号传输的装置、方法、电子设备及通讯***,该装置包括信号复用解复用模块和信号传输模块,信号复用解复用模块设置为:接收多路信号,进行复合后传输至信号传输模块;接收信号传输模块输出的复合信号,分离出多路信号传输至相应电路;信号传输模块设置为:接收信号复用解复用模块输出的复合信号,并通过同轴线缆传输至外部电路;通过该同轴线缆接收外部电路发出的复合信号,传输至信号解复用模块。本发明实施例通过以上技术方案,解决现有设备间的各路信号不能共线传输的问题。

Description

实现设备间信号传输的装置、 方法、 电子设备及通讯***
技术领域
本发明涉及通讯领域, 尤其涉及实现设备间信号传输的装置、 方法电子 设备及通讯***。 背景技术
无线通讯***一般有基站产品和终端产品。 如图 1所示, 无线通讯*** 一般包括室内单元 11、 室外单元 12和天线单元 13。 室内单元 11一般为基站 的网络接口单元和基带处理单元(有的包括中频处理单元) 。 室外单元 12 为基站的远端模块,一般为基站的射频和功放模块。天线单元 13是基站的天 面部分, 实现无线信号的发送和接收, 主要包括天线(或内置 LNA模块)。 各设备 (包括设备部件)间经常需要传递多种信号, 如室内单元 11与室外单 元 12之间的传递主通讯信号、 控制和应答信号, 室内单元 11向室外单元 12 传输参考时钟和直流馈电信号, 天线单元 13电调的实现以及塔顶 LNA的启 用也需要室外单元 12和天线单元 13之间实现电调控制信号和馈电信号输送。
在相关技术中, 传输方式比较常用的有两种: 一种是釆用各路信号分别 传输, 无线通讯***设备间传递的多种信号按信号的特征釆用不同的传输媒 介,也即为各类信号提供单独的传输通道,如室内单元 11传输至到室外单元 12的直流馈电信号釆用室内单元 11与室外单元 12之间的馈电线实现, 室内 单元 11对室外单元 12的监控信号以及室外单元 12对室内单元 11的应答信 号釆用室内单元 11和室外单元 12之间的 RS485通讯差分线实现, 而主通讯 射频信号 (如下行发送信号和上行接收信号)釆用同轴射频线缆实现。 这种 釆用不同的传输媒介来传输不同信号的方式, 要求传输媒介(主要是线缆) 与需要传输的信号数量成正比,这在实际工程施工中,要求电源线、控制线、 同轴线均需要单独布设, 同时为了防止各类信号在传输中的干扰, 各类信号 的走线架也需要单独走, 施工成本很大。 同时各类信号的端口也要单独考虑 相应的防雷防护措施, 这样势必增加无线通讯***设备的设计成本和试验成 本, 对基站的可靠性和可维护性也是一个很大的挑战。 另一种方式是釆用光纤传输技术, 无线通讯***设备间传递的多种信号 除了馈电等功率信号外均先釆用数字化(即所先将主信号、 控制信号以及时 钟信号等数字化) , 然后按标准接口协议形成高速串行数字化序列, 高速串 行数字化序列在设备间由光电转换模块和光纤传输资源的组成的高速串行传 输途径实现传输以及高速串行化序列的恢复, 最后在对端相应的电路模块中 实现各信号的提取和恢复。 这种方式中馈电等功率信号仍单独拉电源线实现 设备间的远程馈电, 不能实现馈电功率信号和其他信号的共线传输。 光纤传 输资源很宝贵也很昂贵, 光纤接口模块的成本也很高, 且各数字信号组合成 高速串行数字化序列以及高速串行数字化序列恢复成相应的各数字信号, 需 要大量了逻辑处理开销和软件处理开销, 增加了相应的成本。
发明内容
本发明提供实现设备间信号传输的装置、 方法电子设备及通讯***, 解 决现有设备间的各路信号不能共线传输的问题。
为解决上述技术问题, 本发明釆用以下技术方案:
一种实现设备间信号传输的装置, 包括: 信号复用解复用模块和信号传 输模块, 其中, 所述信号复用解复用模块设置为: 接收多路信号, 将接收的 多路信号进行复合, 将复合信号传输至所述信号传输模块; 接收所述信号传 输模块输出的复合信号, 将接收的复合信号解复分离出多路信号, 将分离出 的多路信号传输至相应电路; 所述信号传输模块设置为: 接收所述信号复用 解复用模块输出的复合信号, 并通过同轴线缆传输至外部电路; 通过所述同 轴线缆接收外部电路发来的复合信号 , 将接收的复合信号传输至所述信号复 用解复用模块。
优选地,所述信号复用解复用模块接收的和 /或分离出的多路信号包括调 制控制信号、 参考时钟信号、 主通讯调制语信号中的一种或多种。
优选地, 该实现设备间信号传输的装置还包括调制解调模块, 设置为: 接收数字控制信号, 将接收的数字控制信号调制成调制控制信号后传输至所 述信号复用解复用模块; 对所述信号复用解复用模块分离出的调制控制信号 进行解调得到数字控制信号后传输至相应电路。
优选地 ,所述调制解调模块包括至少一个调制模块和至少一个解调模块。 优选地, 该实现设备间信号传输的装置还包括直流馈电模块, 设置为: 接收电源信号, 并从电源信号中提取馈电功率信号, 传输至所述信号传输模 块;所述信号传输模块设置为:接收所述直流馈电模块输出的馈电功率信号, 并通过所述同轴线缆传输至外部电路; 或者,
直流馈电模块设置为: 从所述信号传输模块接收馈电功率信号, 将接收 的馈电功率信号转换为电源信号后传输至待供电模块; 所述信号传输模块设 置为: 通过所述同轴线缆接收外部电路发来的馈电功率信号, 将接收的馈电 功率信号传输至所述直流馈电模块。
优选地, 所述信号传输模块包括端口连接器、 双工低频端子和双工高频 端子; 其中, 所述端口连接器设置为: 通过所述同轴线缆与外部电路进行复 合信号的交互; 所述双工低频端子设置为: 与所述直流馈电模块连接; 所述 双工高频端子设置为: 与所述信号复用解复用模块连接。
优选地, 所述信号传输模块还包括防雷电路单元; 所述防雷电路单元包 括空气放电管、 高压隔直电容、 空心电感和压敏电阻; 所述空气放电管串接 在所述端口连接器的信号线和工作地之间; 所述空心电感串接在所述端口连 接器与所述双工低频端子之间; 所述高压隔直电容串接在所述端口连接器的 信号线与所述双工高频端子之间; 所述压敏电阻一端连接在所述空心电感与 所述双工低频端子之间,另一端与所述端口连接器的工作地连接。
一种电子设备, 包括设备本体, 还包括上述任一项所述的实现设备间信 号传输的装置; 所述设备本体设置为: 生成多路信号, 并传输至所述信号复 用解复用模块, 和 /或用于接收所述信号复用解复用模块分离出的多路信号。
优选地, 该电子设备为无线通讯***中的室内单元、 室外单元、 天线单 元中的一种。
一种通讯***, 包括第一设备、 第二设备和连接在所述第一设备与第二 设备之间的、 如上述任一项所述的实现设备间信号传输的装置, 所述第一设 备与第二设备中的一者与所述实现设备间信号传输的装置之间传输多路信号, 另一者与所述实现设备间信号传输的装置通过同轴线缆实现复合信号的传输; 或者所述通讯***包括第一设备和第二设备, 所述第一设备、 第二设备为上 述任一项所述的电子设备。
一种实现设备间信号传输的方法, 包括: 接收多路信号;将接收的多路信 号进行复合;通过同轴线缆将复合信号传输至外部电路。
优选地,该实现设备间信号传输的方法还包括:通过所述同轴线缆接收外 部电路发送的复合信号;将接收的复合信号分离出多路信号;将分离出的多路 信号传输至相应电路。
优选地, 所述接收的和 /或分离出的多路信号包括调制控制信号、 参考时 钟信号、 主通讯调制谱信号中的一种或多种。
优选地,所述接收的多路信号包括调制控制信号时,接收所述调制控制信 号之前,还包括:将接收的数字控制信号调制成所述调制控制信号; 所述分离 出的多路信号包括调制控制信号时,分离出所述调制控制信号之后,还包括:将 分离出的所述调制控制信号解调成数字控制信号, 将数字控制信号传输至相 应电路。
优选地, 该实现设备间信号传输的方法还包括: 接收电源信号, 从接收 的电源信号中提取馈电功率信号, 通过所述同轴线缆将所述馈电功率信号传 输至外部电路; 或者, 还包括: 通过所述同轴线缆从外部电路接收所述馈电 功率信号, 将所述馈电功率信号转换为电源信号后传输至待供电模块。 本发明实施例提供的实现设备间信号传输的装置、 方法电子设备及通讯 ***, 将一设备生成的多路信号复合后, 通过同轴线缆传输至另一设备, 将 通过同轴线缆从一设备接收的复合信号分离出多路信号, 传输至另一设备, 能实现多路信号在设备间通过同轴电缆共线传输,使得信号传输的硬件成本、 工程施工和维护成本相对低廉; 而且线路简单, 容易实现, 本发明提供的实 现设备间信号传输的装置中的各组成模块还可根据实际应用要求, 灵活方便 地进行增减和调整, 以适应无线通讯***中设备间信号传输的多样性、 传输 成本和传输质量的要求。
附图概述
图 1为无线通讯***的结构示意图;
图 2为本发明一实施例提供的实现设备间信号传输的装置的示意图; 图 3为图 2所示装置中信号复用解复用模块的示意图;
图 4为图 3所示信号复用解复用模块中 LC滤波隔离单元的示意图; 图 5为本发明另一实施例提供的实现设备间信号传输的装置的示意图; 图 6为本发明一实施例提供的 ASK调制解调模块的示意图;
图 7为图 6所示 ASK调制解调模块中 ASK调制单元的示意图; 图 8为图 6所示 ASK调制解调模块中 ASK解调单元 232的示意图; 图 9为本发明另一实施例提供的实现设备间信号传输的装置的示意图; 图 10为本发明另一实施例提供的实现设备间信号传输的装置的示意图; 图 11为本发明一实施例提供的信号传输模块的示意图;
图 12为本发明另一实施例提供的信号传输模块的示意图;
图 13为本发明一实施例提供的通讯***的示意图;
图 14为本发明另一实施例提供的通讯***的示意图;
图 15为本发明另一实施例提供的通讯***的示意图;
图 16为本发明另一实施例提供的通讯***的示意图;
图 17为本发明另一实施例提供的通讯***的示意图。 本发明的较佳实施方式
本发明实施例的主要构思是: 通过本发明提供的实现设备间信号传输的 装置, 接收多路信号;将接收的多路信号进行复合;通过同轴线缆将复合信号 传输至外部电路。 进一步地, 通过所述同轴线缆接收外部电路发送的复合信 号;将接收的复合信号分离出多路信号;将分离出的多路信号传输至相应电路。 本发明中, 实现设备间信号传输的装置接收的和 /或分离出的多路信号包括但 不局限于调制控制信号、参考时钟信号、主通讯调制语信号中的一种或多种。
当接收的多路信号包括调制控制信号时,接收所述调制控制信号之前,还 包括:将接收的数字控制信号调制成所述调制控制信号;
当分离出的多路信号包括调制控制信号时,分离出所述调制控制信号之 后,还包括:将分离出的所述调制控制信号解调成数字控制信号, 将数字控制 信号传输至相应电路。
进一步的, 还可以接收电源信号, 从接收的电源信号中提取馈电功率信 号, 通过所述同轴线缆将所述馈电功率信号传输至外部电路; 或者, 通过所 述同轴线缆从外部电路接收所述馈电功率信号, 将所述馈电功率信号转换为 电源信号后传输至待供电模块。
下面通过具体实施方式结合附图对本发明作进一步详细说明。
图 2为本发明一实施例提供的实现设备间信号传输的装置的示意图, 请 参考图 2, —种实现设备间信号传输的装置, 包括: 信号复用解复用模块 21 和信号传输模块 22, 其工作原理包括:
一设备的主控模块生成多路信号, 将生成的多路信号分别传输至信号复 用解复用模块 21 , 信号复用解复用模块 21用于接收该多路信号, 将接收的 该多路信号进行复合,将复合信号传输至信号传输模块 22;信号传输模块 22 用于接收信号复用解复用模块 21输出的复合信号,并通过同轴线缆传输至另 一设备, 该另一设备可以通过另一信号复用解复用模块对该复合信号进行分 离;
信号传输模块 22还用于通过上述同轴线缆接收一设备发出的复合信号, 将接收的复合信号传输至信号解复用模块 21 ; 信号解复用模块 21接收信号 传输模块 22输出的复合信号,将接收的复合信号分离出多路信号,将分离出 的多路信号传输至另一设备的相应电路。
信号传输模块 22实现设备间信号的双向传输。 信号传输模块 22由至少 满足所传输信号中最高频率信号传输要求以及功率信号强度要求的传输媒介 组成, 包括两端的连接端口、 中间的芯线、 与芯线对应的地线 (包括屏蔽地 层) 以及期间的填充介质。
在一实施例中, 信号复用解复用模块 21的结构如图 3所示, 包括 LC滤 波隔离单元 211和公共节点 212组成。 LC滤波隔离单元 211用于实现内部 各信号同公共节点间信号的馈通和相互之间的隔离。 公共节点 212同信号输 出模块 22连接。
LC滤波隔离单元 211可以由多级滤波隔离双工网络级联而成, 每级 LC 滤波隔离双工网络实现本级及下级信号到上级级连节点处的馈通以及本级信 号和下级信号间的相互隔离。 以由四级滤波隔离双工网络组成为例, 如图 4 所示: 第一级滤波隔离双工网络 211a、 第二级滤波隔离双工网络 211b、 第三 级滤波隔离双工网络 21 lc和第四级滤波隔离双工网络 21 ld。这样 LC滤波隔 离单元 211可以实现共四种不同中心频率、 不同频谱特征的信号同第一级滤 波隔离双工网 21 la公共节点馈通和相互之间的隔离。每一级的滤波隔离双工 网络可以由高通滤波器和低通滤波器组成。 高通滤波器和低通滤波器的各一 端连接在一起形成双工网络的公共端, 两滤波器的另一端即为双工网络的双 工端子。
图 5为本发明另一实施例提供的实现设备间信号传输的装置的示意图, 请参考图 5, 与图 2所不同的是, 该实现设备间信号传输的装置, 还包括调 制解调模块 23 , 用于接收一设备生成的数字控制信号, 将接收的数字控制信 号调制成调制控制信号后传输至信号复用解复用模块 21 ,信号复用解复用模 块 21接收该调制信号,将该调制控制信号与接收到的其他各路信号进行复合, 传输至信号传输模块 22。 调制解调模块 23还用于对信号复用解复用模块 21 分离出的调制控制信号进行解调后传输至相应电路。 该实施例提供的实现设 备间信号传输的装置, 能够实现设备间数字控制信号、 参考时钟信号和主通 讯调制谱信号通过同轴电缆的共线传输。
在一实施例中, 调制解调模块 23为 ASK ( Amplitude Shift Keying, 幅移 键控)调制解调模块。
在一实施例中, 如图 6所示, ASK调制解调模块 23 '进一步包括 ASK 调制单元 231 ' 、ASK解调单元 232 '和 ASK发送 /接收切换单元 233 ' 。ASK 调制单元用于接收一设备主控单元发来的数字控制信号, 并对该信号进行 ASK调制后成 ASK调制发送信号, 并送至 ASK发送 /接收切换单元, ASK 发送 /接收切换单元将其发送给信号复用解复用模块 21 ; ASK发送 /接收切换 单元还用于从信号复用解复用模块 21接收分离出的 ASK调制接收信号, 并 发送至 ASK解调单元, ASK解调单元对该信号进行 ASK解调及滤波整形后 成数字控制信号, 并送至相应电路。
如图 7所示, ASK调制单元 231 '可以进一步包括晶振载频电路 231a ' 、 逻辑门(或门)调制电路 231b '、幅度调整电路 231c '和低通滤波电路 231d ' 。
如图 8所示, ASK解调单元 232 '可以进一步包括滤波放大电路 232a ' 、 包络检波电路 232b '、 比较判决电路 232c '和逻辑门整形电路 232d '。 滤 波放大电路 232a '可以由集成放运组成,包络检波电路 232b '可以由集成运 放和射频二极管组成, 比较判决电路 232c '可以是比较器组成的迟滞比较电 路。
ASK发送 /接收切换单元 233 '可以进一步包括模拟开关、公共端偏置产 生电路、 公共端滤波电路。 其中公共端偏置产生电路釆用电阻分压的方式产 生偏置电压。 公共端滤波电路实现更低频信号和直流分量的滤除。 调制解调模块 23还可以由至少一个调制模块和至少一个解调模块组成。 可根据实际应用要求, 灵活方便地进行增减和调整, 以适应无线通讯***中 设备间信号传输的多样性、 传输成本和传输质量的要求。
图 9为本发明另一实施例提供的实现设备间信号传输的装置的示意图, 请参考图 9, 与图 5所不同的是, 该实现设备间信号传输的装置, 还包括直 流馈电模块 24, 用于接收一设备提供的电源信号, 并从电源信号中提取馈电 功率信号, 传输至信号传输模块 22; 信号传输模块 22用于接收直流馈电模 块 24输出的馈电功率信号, 将接收的馈电功率信号与信号复用解复用模块 21输出的复用信号一并通过同轴线缆传输至外部设备,馈电功率信号用于给 外部设备供电。
或者, 请参考图 10, 与图 9所不同的是, 信号传输模块 22用于通过同 轴线缆接收外部设备发出的馈电功率信号, 将接收的馈电功率信号传输至直 流馈电模块 24;直流馈电模块 24用于从信号传输模块 22接收馈电功率信号, 将接收的馈电功率信号转换为电源信号后传输至待供电模块, 即从外部设备 获取电源。
直流馈电模块 24直接同信号传输模块 22连接, 实现直流电的馈送或提 图 11为本发明一实施例提供的信号传输模块的示意图, 请参考图 11 , 信号传输模块 22进一步包括端口连接器 221、双工低频端子 222和双工高频 端子 223; 其中, 端口连接器 221用于通过同轴线缆与外部电路交互复合信 号; 双工低频端子 222用于与直流馈电模块 24连接, 从直流馈电模块 24接 收馈电功率信号, 或向直流馈电模块 24输出馈电功率信号; 双工高频端子 223用于与信号复用解复用模块 21连接, 从信号复用解复用模块 21接收复 合信号, 或向信号复用解复用模块 21输出复合信号。
图 12为本发明另一实施例提供的信号传输模块的示意图,请参考图 12, 与图 11所不同的是, 信号传输模块 22还包括防雷电路单元。 防雷电路单元 实现部件端口的防雷防护以及直流馈电信号和其他信号的双工传输。
防雷电路单元包括空气放电管 224a、高压隔直电容 224b、空心电感 224c 和压敏电阻 224d; 优选的, 空心电感 224c为高 Q值的空心电感。
空气放电管 224a直接串接在端口连接器 221的信号线和工作地之间,实 现端口处雷击浪涌信号的就近快速泄放; 空心电感 224c串接在端口连接器 221与双工低频端子 222之间; 高压隔直电容 224b串接在端口连接器 221的 信号线与双工高频端子 223之间; 压敏电阻 224d—端连接在空心电感 224c 与双工低频端子 222之间,另一端与端口连接器 221的工作地连接。经过空气 放电管 224a泄放处理的残余雷击浪涌信号频率集中在几 MHz以下, 由于高 压隔离电容 224b的阻挡无法进入信号复用解复用模块 21中的 LC滤波隔离 单元, 只能通过空心电感 224c进入双工低频端子 222 , 而被压敏电阻 224d 吸收。 空心电感 224c和高压隔直电容 224b还直接形成了双工网络的双工功 b
fj匕。
本发明还提供一种电子设备, 该电子设备中集成有本发明提供的实现设 备间信号传输的装置, 或者外部连接有本发明提供的实现设备间信号传输的 装置。 优选的, 该电子设备为无线通讯***中的室内单元、 室外单元、 天线 单元中的一种。
如图 13所示,本发明还提供一种通讯***,该通讯*** 131包括第一设 备 1311、 第二设备 1312和连接在第一设备 1311与第二设备 1312之间的、 上述所述的实现设备间信号传输的装置 1313 ,第一设备 1311与第二设备 1312 中的一者与实现设备间信号传输的装置 1313之间交互多路信号 ,另一者与实 现设备间信号传输的装置 1313通过同轴线缆实现复合信号的传输。
如图 14所示,本发明还提供另一种通讯***,该通讯*** 141包括第一 设备 1411和第二设备 1412 , 第一设备 1411和第二设备 1412中分别集成有 本发明提供的实现设备间信号传输的装置 1411a、 1412a。 第一设备 1411和 第二设备 1412通过 1411a、 1412a实现同轴线缆的信号传输。
在一实施例中, 4叚设某无线通信***包括室内单元、 室外单元和天线单 元。 室内单元由 -48V基站电源供电, 包括有网络接口模块、 主控模块、 MAC (介质访问控制)控制模块和基带中频模块, 能提供 E1标准(欧洲数据传 输通用标准)的 Nx64kbit/s接口和 lOBase— T网络接口, 实现网络接口处理、 基带处理、 网管远程登录等功能, 其中基带中频模块包括有发射机电路和接 收机电路。 而室外单元能实现射频收发、 变频和滤波等功能。 室内单元与室 监控及远程供电。室内单元还需要给室外单元远程供电以及参考时钟的馈送。 室内单元发到室外单元的下行发射中频信号为中心频率为 42M,带宽为 3.5M 的主通讯调制谱信号。 室内单元从室外单元接收的上行中频信号为中心频为 176M, 带宽为 3.5M的主通讯调制谱信号。 室内单元和室外单元之间的监控 釆用标准的异步串行 UART通讯协议, 9600波特率。 室内单元提供给室外单 元的参考时钟为 12M正弦波信号。 室外单元需要 -48V/3A的直流电。 室内单 元和室外单元通过同轴中频线缆连接。 通过本发明, 前述的下行发射中频信 号 (主通讯调制语信号) 、 上行接收中频信号 (主通讯调制谱信号) 、 参考 时钟信号、远程监控信号 (数字控制信号 )、监控应答信号 (数字控制信号 ) 和馈电功率信号均可以通过该同轴中频线缆实现室内单元和室外单元之间的 传输, 具体的实现方案如下:
如图 15所示,在室内单元 151中增加以下模块:第一信号传输模块 151e、 第一直流馈电模块 151f、 第一信号复用解复用模块 151g和第一 ASK调制解 调模块 151h。 其中, 室内单元 151中, 第一信号传输模块 151e的端口连接 器与第二信号传输模块 I52e的端口连接器通过同轴中频线缆连接,而第一信 号传输模块 151e的双工低频端子与第一直流馈电模块 151f的一端相连, 第 一信号传输模块 151e的双工高频端子与第一信号复用解复用模块 151g的公 共节点相连。 第一 ASK调制解调模块 151h的公共端连接到第一信号复用解 复用模块 151g—信号节点处。
在室外单元 152中增加以下模块: 第二信号传输模块 152e、 第二直流馈 电模块 152f、第二信号复用解复用模块 152g和第二 ASK调制解调模块 152h。 其中, 第二信号传输模块 I52e的端口连接器与第一信号传输模块 151e的端 口连接器通过同轴中频线缆连接,而第二信号传输模块 152e的双工低频端子 与第二直流馈电模块 152f的一端相连, 第二信号传输模块 152e的双工高频 端子与第二信号复用解复用模块 I52g的公共节点相连。 第二 ASK调制解调 模块 152h的公共端连接到第二信号复用解复用模块 152g—信号节点处。
室内单元 151与室外单元 152之间信号传输原理包括:
51、 下行发射方向上, 室内单元 151中: 从基站电源来的 -48V直流信号 经过第一直流馈电模块 151f滤波处理成馈电功率信号后进入第一信号传输 模块 151e的双工低频端子;基站主控电路来的室外单元数字监控信号经第一 ASK调制解调模块 151h的调制后进入第一信号复用解复用模块 151g—信号 节点处; 基站时钟电路来的参考时钟信号、 基站基带中频发射电路来的下行 发射中频信号进入第一信号复用解复用模块 151g—信号节点处;第一信号复 用解复用模块 151g对其信号节点处接收的多路信号进行复合, 将复合信号 (优选的 ,为低功率信号)通过公共节点传输至第一信号传输模块 151e的双 工高频端子, 实现同馈电功率信号在第一信号传输模块 151e的汇接, 并进入 第一信号传输模块 151e的端口连接器,通过同轴中频线缆传送后到第二信号 传输模块 l52e的端口连接器。
52、 下行发射方向上, 室外单元 152中: 第二信号传输模块 152e对端口 连接器接收的复合信号进行雷击浪涌信号泄放处理, 同时其双工功能还实现 馈电功率信号和其他信号的分离, 将馈电功率信号从双工低频端子输出至第 二直流馈电模块 152f,第二直流馈电模块 152f进行滤波处理后送进后续电路, 实现对室外单元 152的供电。 其他信号则从双工高频率端子输出后进入第二 信号复用解复用模块 152g, 第二信号复用解复用模块 152g中各级双工滤波 网络隔离实现下行发射中频信号、参考时钟信号、 ASK调制信号的分离, ASK 调制信号进入第二 ASK调制解调模块 152h,经第二 ASK调制解调模块 152h 解调后恢复成接收数字监控信号, 将其传输至室外单元的主控单元, 实现监 控信号从室内单元 151到室外单元 152的传输, 参考时钟信号作为参考时钟 进入室外单元 152的频率源电路, 实现室外单元 151和室内单元 152频率源 同源通参考。 下行发射中频信号进入室外单元的上变频电路, 上变频电路继 续产生并向天线单元发送下行发射射频信号。
53、 上行接收方向上, 室外单元 152中: 室外单元 152的主控单元发送 数字监控应答信号至第二 ASK调制解调模块 152h,经过 ASK调制后生成应 答 ASK调制信号, 进入第二信号复用解复用模块 152g的一信号节点, 上行 接收中频信号直接送进第二信号复用解复用模块 152g的一信号节点,第二信 号复用解复用模块 152g对其各信号节点接收的多路信号进行复合,通过公共 节点将复合信号传送第二信号传输模块 152e的双工高频端子,第二信号传输 模块 152e的端口连接器通过同轴中频线缆传送后到第一信号传输模块 151e 的端口连接器。
54、 上行接收方向上, 室内单元 151中: 复合信号进入第一信号传输模 块 151e的端口连接器, 经雷击浪涌泻放处理后的信号从第一信号传输模块
151e的双工高频端子进入第一信号复用解复用模块 151g的公共节点, 第一 信号复用解复用模块 151g对公共节点的接收复合信号经过各级双工滤波网 络实现分离, 将分离出的上行中频信号送进入室内单元 151的接收电路, 将 应答 ASK调制信号进入第一 ASK调制解调模块 151h进行解调,产生数字监 控应答信号, 数字监控应答信号进入到室内单元 151的主控单元, 实现远程 应答信号接收。
该实施例中, 将本发明提供的实现设备间信号传输的装置集成在无线通 讯***的室内单元 151和室外单元 152中,实现室内单元 151与室外单元 152 之间, 下行发射中频信号、 上行接收中频信号、 参考时钟信号、 远程监控信 号、 和馈电功率信号的同轴线缆传输。
在一实施例中, 4叚设某 3G无线通讯***包括室内单元、 室外单元和天 线单元。 室内单元负责同无线网络测的业务接口, 以及负责上下行信号的基 带信号处理。室外单元负责信号下行基带信号的中射频处理,完成频谱成形, 上变频, 增益放大以及上行信号的接收放大, 下变频, 抗混叠滤波, 上行基 带信号抽取和恢复。 天线单元实现下行射频信号的无线信号的发送、 上行无 线信号的接收和放大, 并提供校准校正需要的一致性检验通道。 室内单元与 室外单元通过光纤接口实现基带信号的传输。 室内单元通过直流馈电线实现 室外单元的远程供电。 室外单元和天线单元直接的接口是 n条主射频信号同 轴传输线 +1条校准信号同轴传输线。 对于运营商新的天线电调以及 LNA上 塔需求的支持, 需要室外单元实现对天线单元的远程监控和塔顶 LNA的控 制。 此外室外单元还需要对天线单元实现供电。 通过本发明, 前述的远程监 控控制信号 (数字控制信号) 、 远程监控应答信号 (数字控制信号) 、 LNA 控制信号 (数字控制信号) 、 馈电功率信号和校准校正信号 (主通讯调制谱 信号)可以通过同一同轴射频线缆实现室外单元与天线单元之间的传输, 如 图 16所示, 在室外单元 161中增加以下模块: 第一信号传输模块 161e、 第 一直流馈电模块 161f、 第一信号复用解复用模块 161g、 第一 ASK调制解调 模块 161h和第一 ASK调制模块 161i。 在天线单元 162中增加以下模块: 第 二信号传输模块 162e、 第二直流馈电模块 162f、 第二信号复用解复用模块 162g、 第二 ASK调制解调模块 162h和第一 ASK解调模块 162i。
其中, 监控控制信号、 监控应答信号在室外单元 161与天线单元 162之 间的传输可参考图 15中远程监控制信号及其应答信号的传输机制;馈电功率 信号在室外单元 161与天线单元 162之间的传输可参考图 15中馈电功率信号 的传输机制; 校准校正信号在室外单元 161与天线单元 162之间的传输可参 考图 15中下行发射中频信号的传输机制。
与图 15所不同的是, 其一, 本实施例是在室外单元 161与天线单元 162 实现同轴线缆上的多信号共线传输, 因此本实施例将本发明提供的实现设备 间信号传输的装置分别集成在室外单元 161和天线单元 162中; 其二, 在室 外单元 161中额外增加了第一 ASK调制模块 161i, 第一 ASK调制模块 161i 的公共端连接到第一信号复用解复用模块 161g—信号节点处, 在天线单元 162中额外增加了第一 ASK解调模块 162i, 第一 ASK解调模块 162i的公共 端连接到第二信号复用解复用模块 162g—信号节点处。 其中, 第一 ASK调 制模块 161i用于接入室外单元 161产生的 LNA控制信号,进行 ASK调制后 输送至第一信号复用解复用模块 161 g的一信号节点;第一 ASK解调模块 162i 用于从第二信号复用解复用模块 I62g的一信号节点接收 ASK调制信号, 进 行解调后输出 LNA控制信号至天线单元 162的相应电路。
在一实施例中,假设某数字微波传输***包括高站和低站,各站均有 IDU ( Indoor Unit, 数字微波室内单元) 、 ODU ( Out Door Unit , 数字微波收发 信机, )单元和天线单元, IDU为室内单元, ODU为室外单元。 IDU负责同 无线网络测的业务接口, 以及负责上下行信号的基带信号和中频信号处理, 以及对 ODU的馈电和远程监控。 ODU负责下行中频信号幅度处理,上变频, 增益放大以及上行信号的接收放大, 下变频, 增益处理。 通过本发明, 监控 控制信号 (数字控制信号) 、 监控应答信号 (数字控制信号) 、 下行发射中 频信号、 上行接收中频信号、馈电功率信号均可以通过同轴线缆实现 IDU和 ODU之间的传输。 如图 17所示, 在 IDU171中增加以下模块: 第一信号传 输模块 171e、 第一直流馈电模块 171f、 第一信号复用解复用模块 171g、 第 一 ASK调制模块 171h和第一 ASK解调模块 171i。 在 ODU172中增加以下 模块: 第二信号传输模块 172e、 第二直流馈电模块 172f、 第二信号复用解复 用模块 172g、 第二 ASK调制模块 172h和第二 ASK解调模块 172i。
其中,监控控制信号经过第一 ASK调制模块 171h调制成 OOK调制(ASK 调制的一个特例)信号后输送给第一信号复用解复用模块 171g, 下行发射中 频信号输送给第一信号复用解复用模块 171g,第一信号复用解复用模块 171g 对这两信号进行复合后输出至第一信号传输模块 171e, 第一信号传输模块 171e通过同轴线缆传输至第二信号传输模块 172e, 第二信号传输模块 172e 传输至第二信号复用解复用模块 I72g, 第二信号复用解复用模块 172g进行 分离后将 OOK调制信号输送至第二 ASK解调模块 172i, 经解调后输出监控 控制信号至 ODU172的相应电路,将下行发射中频信号输出至 ODU172的相 应电路。
OOK监控应答信号经过第二 ASK调制模块 172h调制成 OOK调制信号 后输送给第二信号复用解复用模块 172g,上行接收中频信号输送给第二信号 复用解复用模块 172g, 第二信号复用解复用模块 172g对这两信号进行复合 后输出至第二信号传输模块 172e, 第二信号传输模块 172e通过同轴线缆传 输至第一信号传输模块 171e, 第一信号传输模块 171e传输至第一信号复用 解复用模块 171g,第一信号复用解复用模块 171g进行分离后将 OOK调制信 号输送至第一 ASK解调模块 171i,经解调后输出监控应答信号至 IDU171的 相应电路, 将上行接收中频信号输出至 IDU171的相应电路。
馈电功率信号在 IDU171与 ODU172之间的传输可参考图 15中馈电功率 信号的传输。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不能 认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或 替换, 都应当视为属于本发明的保护范围。
工业实用性
本发明实施例提供的实现设备间信号传输的装置可以集成在无线通讯系 统的任一设备上, 实现包括馈电功率信号、 数字控制信号、 参考时钟信号和 主通讯调制语信号在内的各类信号的共线传输。 使得设备间信号传输的硬件 成本、 工程施工和维护成本相对低廉。 而且, 本发明实施例提供的实现设备 间信号传输的装置中的各模块还可根据实际应用要求, 灵活方便地进行增减 和调整, 以适应无线通讯***中设备间信号传输的多样性、 传输成本和传输 质量的要求。

Claims

权 利 要 求 书
1. 一种实现设备间信号传输的装置, 包括: 信号复用解复用模块 和信号传输模块, 其中,
所述信号复用解复用模块设置为: 接收多路信号, 将接收的多路信号进 行复合, 将复合信号传输至所述信号传输模块; 接收所述信号传输模块输出 的复合信号, 将接收的复合信号分离出多路信号, 将分离出的多路信号传输 至相应电路;
所述信号传输模块设置为: 接收所述信号复用解复用模块输出的复合信 号, 并通过同轴线缆传输至外部电路; 通过所述同轴线缆接收外部电路发出 的复合信号, 将接收的复合信号传输至所述信号复用解复用模块。
2. 如权利要求书 1所述的实现设备间信号传输的装置, 其中, 所 述信号复用解复用模块接收的和 /或分离出的多路信号包括调制控制信号、参 考时钟信号、 主通讯调制语信号中的一种或多种。
3. 如权利要求书 2所述的实现设备间信号传输的装置, 其中, 还 包括调制解调模块, 设置为: 接收数字控制信号, 将接收的数字控制信号调 制成所述调制控制信号后传输至所述信号复用解复用模块; 对所述信号复用 解复用模块分离出的调制控制信号进行解调得到数字控制信号后传输至相应 电路。
4. 如权利要求书 3所述的实现设备间信号传输的装置, 其中, 所 述调制解调模块包括至少一个调制模块和至少一个解调模块。
5. 如权利要求书 1所述的实现设备间信号传输的装置, 其中, 还 包括直流馈电模块, 设置为: 接收电源信号, 并从电源信号中提取馈电功率 信号, 传输至所述信号传输模块; 所述信号传输模块设置为: 接收所述直流 馈电模块输出的馈电功率信号,并通过所述同轴线缆传输至外部电路;或者, 直流馈电模块设置为: 从所述信号传输模块接收馈电功率信号, 将接收 的馈电功率信号转换为电源信号后传输至待供电模块; 所述信号传输模块设 置为: 通过所述同轴线缆接收外部电路发出的馈电功率信号, 将接收的馈电 功率信号传输至所述直流馈电模块。
6. 如权利要求书 5所述的实现设备间信号传输的装置, 其中, 所 述信号传输模块包括端口连接器、 双工低频端子和双工高频端子; 其中, 所 述端口连接器设置为: 通过所述同轴线缆与外部电路进行复合信号的交互; 所述双工低频端子设置为: 与所述直流馈电模块连接; 所述双工高频端子设 置为: 与所述信号复用解复用模块连接。
7. 如权利要求书 6所述的实现设备间信号传输的装置, 其中, 所 述信号传输模块还包括防雷电路单元; 所述防雷电路单元包括空气放电管、 高压隔直电容、 空心电感和压敏电阻; 所述空气放电管的串接在所述端口连 接器的信号线与工作地之间; 所述空心电感串接在所述端口连接器与所述双 工低频端子之间; 所述高压隔直电容串接在所述端口连接器的信号线与所述 双工高频端子之间; 所述压敏电阻一端连接在所述空心电感与所述双工低频 端子之间,另一端与所述端口连接器的工作地连接。
8. 一种电子设备, 包括设备本体, 还包括如权利要求书 1至 7任 一项所述的实现设备间信号传输的装置; 所述设备本体设置为: 生成多路信 号, 并传输至所述信号复用解复用模块, 和 /或用于接收所述信号复用解复用 模块分离出的多路信号。
9. 如权利要求书 8所述的电子设备, 其中, 所述电子设备为无线 通讯***中的室内单元、 室外单元、 天线单元中的一种。
10. 一种通讯***, 包括第一设备、 第二设备和连接在所述第一设 备与第二设备之间的、 如权利要求书 1至 7任一项所述的实现设备间信号传 输的装置 , 所述第一设备与第二设备中的一者与所述实现设备间信号传输的 装置之间传输多路信号, 另一者与所述实现设备间信号传输的装置通过同轴 线缆实现复合信号的传输; 或者所述通讯***包括第一设备和第二设备, 所 述第一设备、 第二设备为如权利要求书 8或 9所述的电子设备。
11. 一种实现设备间信号传输的方法, 包括:
接收多路信号;
将接收的多路信号进行复合;
通过同轴线缆将复合信号传输至外部电路。
12. 如权利要求书 11所述的实现设备间信号传输的方法,其中,还包 括:
通过所述同轴线缆接收外部电路发送的复合信号;
将接收的复合信号分离出多路信号;
将分离出的多路信号传输至相应电路。
13. 如权利要求书 12所述的实现设备间信号传输的方法, 其中, 所 述接收的和 /或分离出的多路信号包括调制控制信号、 参考时钟信号、 主通讯 调制语信号中的一种或多种。
14. 如权利要求书 13所述的实现设备间信号传输的方法, 其中, 所 述接收的多路信号包括调制控制信号时,接收所述调制控制信号之前,还包括: 将接收的数字控制信号调制成所述调制控制信号; 所述分离出的多路信号包 括调制控制信号时,分离出所述调制控制信号之后,还包括:将分离出的所述调 制控制信号解调成数字控制信号, 将数字控制信号传输至相应电路。
15. 如权利要求书 13所述的实现设备间信号传输的方法, 其中, 还 包括: 接收电源信号, 从接收的电源信号中提取馈电功率信号, 通过所述同 轴线缆将所述馈电功率信号传输至外部电路; 或者, 还包括: 通过所述同轴 线缆从外部电路接收所述馈电功率信号, 将所述馈电功率信号转换为电源信 号后传输至待供电模块。
PCT/CN2013/085038 2013-01-30 2013-10-11 实现设备间信号传输的装置、方法、电子设备及通讯*** WO2014117537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310036031.8 2013-01-30
CN201310036031.8A CN103973336A (zh) 2013-01-30 2013-01-30 实现设备间信号传输的装置、方法、电子设备及通讯***

Publications (1)

Publication Number Publication Date
WO2014117537A1 true WO2014117537A1 (zh) 2014-08-07

Family

ID=51242429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085038 WO2014117537A1 (zh) 2013-01-30 2013-10-11 实现设备间信号传输的装置、方法、电子设备及通讯***

Country Status (2)

Country Link
CN (1) CN103973336A (zh)
WO (1) WO2014117537A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558759B (zh) * 2015-09-29 2020-03-17 上海中兴软件有限责任公司 一种连接装置及利用其进行参数匹配的方法
CN109962871B (zh) * 2019-03-28 2021-07-23 四川中微芯成科技有限公司 Ask调幅信号包络检测***
CN110401181B (zh) * 2019-07-02 2022-03-01 浙江大华技术股份有限公司 一种浪涌防护电路
WO2021000611A1 (en) 2019-07-02 2021-01-07 Zhejiang Dahua Technology Co., Ltd. Eletrical surge protection circuits
CN112911360B (zh) * 2021-01-21 2023-07-28 广州视源电子科技股份有限公司 级联控制装置、级联设备及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735999A (zh) * 2003-01-08 2006-02-15 柴川斯股份有限公司 低成本无线毫米波户外装置(odu)
CN101431347A (zh) * 2008-12-04 2009-05-13 华为技术有限公司 无线分布式设备和***以及信号传输方法
CN202475770U (zh) * 2012-03-13 2012-10-03 耿直 基于无线局域网的专网对讲传输***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901437A (zh) * 2006-07-26 2007-01-24 上海华为技术有限公司 通信***双工器和多工器以及双工多工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735999A (zh) * 2003-01-08 2006-02-15 柴川斯股份有限公司 低成本无线毫米波户外装置(odu)
CN101431347A (zh) * 2008-12-04 2009-05-13 华为技术有限公司 无线分布式设备和***以及信号传输方法
CN202475770U (zh) * 2012-03-13 2012-10-03 耿直 基于无线局域网的专网对讲传输***

Also Published As

Publication number Publication date
CN103973336A (zh) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2014117537A1 (zh) 实现设备间信号传输的装置、方法、电子设备及通讯***
WO2018103469A1 (zh) 一种分布式无线信号覆盖***
CN102577187B (zh) 信号传输处理方法、装置以及分布式基站
KR102144964B1 (ko) 디지털 맵핑 데이터 전송 방법
CN107615876B (zh) 用于大规模mimo***的rru控制消息传递架构的***和方法
CN104283827B (zh) 分布式无线电***
CN103401598A (zh) 一种新型的多网融合室内分布***
CN103220268A (zh) 机载超短波多媒体通信***
CN101902281A (zh) 可环形组网自愈的数字光纤直放站***及其数据通信方法
US9215165B2 (en) Link aggregation system, protection system, and cross polarization interference cancellation applications for all outdoor radios using wireless channels operating at a licensing-free 60 GHz band
CN104935371A (zh) 一种高速率ofdm无线中继传输***
CN103825658A (zh) 一种利用光通信提升回传链路效率的lte-a中继***
CN109495179B (zh) 一种x波段宽频段大容量通信装置
CN102158281A (zh) 高速全向无线激光通信设备
CN102594410B (zh) 一种基于smartlink技术的电力线通信设备及其通信方法
CN214281517U (zh) 一种高清无压缩视频的无线传输收发***
CN104348535B (zh) 紧凑、双极化的全室外点对点微波无线电架构
CN106972911B (zh) 一种基于时间分集的突发散射通信的调制解调装置
WO2020140715A1 (zh) 中继网元设备、远端网元设备及光纤分布式***
CN204795035U (zh) 一种高速率ofdm无线中继传输***
CN102694783A (zh) 三网融合多业务光电一体化网元
US8989323B2 (en) Single cable including multiple interconnections between two radio units for cross polarization interference cancellation
KR100638532B1 (ko) 아날로그 및 디지털 겸용 중계시스템
US20150124660A1 (en) Microwave Backhaul System Having Quadruple Capacity
CN105610509B (zh) 一种160m光传输设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874186

Country of ref document: EP

Kind code of ref document: A1