WO2014117455A1 - 锑的冶炼装置和冶炼方法 - Google Patents

锑的冶炼装置和冶炼方法 Download PDF

Info

Publication number
WO2014117455A1
WO2014117455A1 PCT/CN2013/075719 CN2013075719W WO2014117455A1 WO 2014117455 A1 WO2014117455 A1 WO 2014117455A1 CN 2013075719 W CN2013075719 W CN 2013075719W WO 2014117455 A1 WO2014117455 A1 WO 2014117455A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimony
reducing agent
lead
smelting
bismuth
Prior art date
Application number
PCT/CN2013/075719
Other languages
English (en)
French (fr)
Inventor
姚素平
李赋屏
王玮
刘庆华
符志坚
甘平
宋照荣
汪金良
戴曦
***
Original Assignee
中国瑞林工程技术有限公司
广西有色金属集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国瑞林工程技术有限公司, 广西有色金属集团有限公司 filed Critical 中国瑞林工程技术有限公司
Publication of WO2014117455A1 publication Critical patent/WO2014117455A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/02Obtaining antimony
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/02Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of single-chamber fixed-hearth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners

Definitions

  • the present invention relates to the field of metal smelting, and in particular to a smelting apparatus for bismuth and a smelting method for bismuth. Background technique
  • the brittle bismuth lead ore has been smelted by boiling roasting, reduction smelting, blowing and refining. That is, the brittle sulphur-lead lead concentrate is calcined by boiling furnace desulfurization, calcined batch sintering, blast furnace reduction smelting to produce bismuth-lead alloy, bismuth-lead alloy is blown by reverberatory furnace to obtain bismuth oxide powder and bottom lead, and bismuth oxygen powder is passed through reverberatory furnace. The refining process is fine, and the lead is electrolyzed to produce lead by electrolysis of lead silicate.
  • the existing brittle sulphur bismuth lead ore smelting process has the defects of complicated process and high energy consumption. Summary of the invention
  • the present invention is directed to solving at least some of the above technical problems or at least providing a useful commercial option. To this end, it is an object of the present invention to provide a crucible smelting apparatus.
  • Another object of the present invention is to provide a method of smelting a crucible.
  • a smelting apparatus for a crucible comprising: a reaction tower, a lower portion of the reaction tower is provided with a sedimentation tank, and a separation member is disposed in the sedimentation tank to set the sedimentation tank
  • the furnace chamber is divided into an oxidation zone and a reduction zone, and the oxidation zone is connected to the reduction zone, a top of the reaction tower is provided with a reducing agent feed port, and an upper portion of the oxidation zone is provided with an oxidation zone outlet.
  • a reducing agent inlet port is disposed on one of the side wall and the top wall of the reduction zone, and a reduction zone outlet port is disposed on a top wall of the reduction zone; and a nozzle, wherein the nozzle is disposed in the reaction tower The top is sprayed into the reaction column with one of flux, powdered brittle bismuth lead, and oxygen-enriched gas and oxygen.
  • the smelting apparatus smelts the powdery brittle bismuth bismuth ore
  • the unit weight of the powdery brittle bismuth sulphide has a large specific surface area, in the form of oxygen enrichment, high temperature and "suspension, , the state provides good heat and mass transfer conditions, so that the metallurgical reaction can be completed quickly, and self-heating smelting can be achieved (that is, the thermal equilibrium of the metallurgical process can be maintained by itself without adding fuel).
  • the device has the advantages of large output (the capacity of single-seat smelting plant 1 can reach 1.02 million tons) and high production efficiency.
  • the crucible smelting apparatus according to the embodiment of the present invention only needs to blow the flux and the powdery brittle bismuth lead ore into the top of the reaction tower by using an oxygen-rich gas or oxygen.
  • the crucible smelting apparatus according to the embodiment of the present invention can reduce the conveying pressure of the process wind by more than 95%, so that the refining apparatus also has advantages such as low power consumption.
  • the smelting apparatus according to the embodiment of the present invention also has the advantages of low energy consumption, and the energy consumption per ton of bismuth-lead alloy is about 250 kg of standard coal - 400 kg of standard coal.
  • the crucible smelting apparatus according to the embodiment of the present invention does not generate foaming slag. Moreover, the opening of the crucible smelting apparatus according to the embodiment of the present invention is less than that of the existing crucible smelting apparatus, so that the smelting apparatus does not leak dust and dioxide. Sulphur fumes. That is to say, the smelting apparatus of the crucible according to the embodiment of the present invention has advantages of high safety, environmental protection, and the like.
  • the reducing agent feed port is provided on a top wall of the furnace chamber of the reaction column.
  • each of the wall of the oxidation zone and the wall of the reduction zone is provided with a fire resistant protective layer, and a cooling water jacket is disposed on the inner wall or the outer wall of the fireproof protective layer.
  • the lower end of the partition is spaced apart from the bottom wall of the furnace chamber of the settling tank by a predetermined distance.
  • the lower end of the partition member is connected to the bottom wall of the furnace chamber of the sedimentation tank, and the partition member is provided with a communication passage for communicating the oxidation zone and the reduction zone.
  • the partition member is made of a refractory material and the partition member is provided with a cooling water jacket or the partition member is composed of a cooling water jacket.
  • the reducing agent inlet port is plural and a plurality of the reducing agent inlet ports are spaced apart circumferentially along a side wall of the reduction zone.
  • the second reducing agent can be more uniformly added into the slag phase layer located in the reduction zone, so that the unreduced cerium oxide in the cerium-rich lead slag can be more quickly and completely Lead oxide reduction.
  • the side wall of the reduction zone is further provided with a burner above the sedimentation tank. This makes it possible to maintain the temperature in the smelting unit during furnace opening and production anomalies.
  • the burner is a plurality and the plurality of burners are spaced apart circumferentially along a sidewall of the reduction zone. This makes it possible to better maintain the temperature in the smelting unit during furnace opening and production anomalies.
  • a smelting method using smelting apparatus comprising the steps of: first reducing by the reducing agent feed port a reagent is added to the precipitation tank to form a reducing agent filtration layer above the slag phase layer of the sedimentation tank; the flux, the powdery brittle bismuth sulphide ore and one of the oxygen-rich gas and oxygen are injected through the nozzle In the reaction tower, the powdery brittle bismuth sulphide ore is smelted to obtain a bismuth-lead alloy and a bismuth-rich lead slag, and then the bismuth-lead alloy and the bismuth-rich lead slag pass through the reducing agent filter layer.
  • the powdery brittle bismuth sulphide ore is mixed with an oxygen-rich gas or oxygen gas and then enters the reaction column and is suspended in the upper portion of the reaction column. Since the unit weight of the powdery brittle bismuth sulphide has a very large specific surface area, the powder enters the reaction column in order to provide good heat and mass transfer conditions in an oxygen-rich, high-temperature and "suspended" state.
  • the smelting method of the crucible according to the embodiment of the present invention has the advantages of high melting speed, high production efficiency, and the like.
  • the smelting method of ruthenium according to an embodiment of the present invention only requires the use of an oxygen-rich gas or oxygen to treat the flux and the powder
  • the brittle sulphur bismuth lead ore is blown into the top of the reaction tower.
  • the smelting method of bismuth according to the embodiment of the present invention can reduce the conveying pressure of the process wind by more than 95%. Therefore, the smelting method of the crucible according to the embodiment of the present invention also has advantages such as low power consumption.
  • the powdered brittle bismuth sulphide can be autothermally smelted under conditions of blowing oxygen-enriched gas or oxygen (ie, the heat balance of the metallurgical process can be maintained by itself without adding fuel), and thus according to the present invention
  • the smelting method of the crucible of the embodiment also has the advantages of low energy consumption, and the energy consumption per ton of bismuth-lead alloy is about 250 kg of standard coal-400 kg of standard coal.
  • the powdered brittle bismuth lead ore is smelted at a temperature of from 1100 degrees Celsius to 1500 degrees Celsius.
  • the smelting time of the powdery brittle bismuth sulphide ore can be further shortened, and the smelting efficiency of the powdery brittle bismuth sulphide ore can be improved.
  • the powdered brittle bismuth sulphide has a particle size no greater than minus 400 mesh.
  • the particle size is not greater than the negative 400.
  • the powdery brittle bismuth bismuth ore has a large specific surface area, which can further shorten the smelting time of the powdery brittle sulphur bismuth ore and improve the smelting efficiency of the powdery brittle bismuth bismuth ore.
  • the oxygen-rich gas has an oxygen content of from 40% to 99. 6v°/».
  • the smelting method further comprises: before the adding the first reducing agent to the sedimentation tank and injecting the powdery brittle bismuth sulphide and the flux into the chamber
  • the first reducing agent, the powdered brittle bismuth lead and the flux are dried before the oxidation zone.
  • the heat that the water turns into high-temperature steam can be greatly reduced during the smelting process, thereby further reducing the energy consumption of the smelting crucible.
  • it can reduce the total amount of smelting flue gas and reduce the pressure of flue gas treatment.
  • each of the first reducing agent, the powdered brittle bismuth ore and the flux has a water content of not more than 1 wt ° /».
  • the first reducing agent is coke and the second reducing agent is pulverized coal, coal particles or coal gas.
  • FIG. 1 is a schematic structural view of a smelting apparatus of a crucible according to an embodiment of the present invention.
  • FIG. 1 is a flow chart of a method of smelting a crucible according to an embodiment of the present invention. detailed description
  • first,” and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first,”, “second,” may include one or more of the features, either explicitly or implicitly.
  • the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or connected integrally; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise explicitly defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "over,”, “above,” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicates that the first feature is higher than the second feature .
  • the first feature under the second feature ",”, “below” and “below” includes the first feature directly below and below the second feature, or merely indicating that the first feature level is less than the second feature.
  • a smelting apparatus 1 includes a reaction tower 10 and a nozzle 20.
  • a sedimentation tank 130 is disposed in a lower portion of the reaction tower 10, and a partitioning member 140 is disposed in the sedimentation tank 130 to divide the furnace chamber of the sedimentation tank 130 into an oxidation zone 110 and a reduction zone 120, and the oxidation zone 110 and the reduction zone 120 are connected, and the reaction tower 10 is
  • a reducing agent feeding port is arranged at the top
  • an oxidation zone outlet 111 is arranged on the top wall of the oxidation zone 110
  • a reducing agent inlet 121 and a top of the reduction zone 120 are disposed on one of the side wall and the top wall of the reduction zone 120.
  • a reduction zone outlet 122 is provided on the wall.
  • a nozzle 20 is provided on the top of the reaction column 10 to inject a flux, a powdery brittle bismuth sulphide, and one of an oxygen-rich gas and oxygen into the reaction column 10.
  • the smelting apparatus 1 of the crucible smelts the powdery brittle bismuth sulphide ore
  • the unit weight of the powdery brittle bismuth sulphide has a large specific surface area for oxygen-rich, high-temperature and "suspended" , in the state, provides good heat and mass transfer conditions, so that metallurgical reaction can be completed quickly, and self-heating smelting can be achieved (that is, the thermal equilibrium of the metallurgical process can be maintained by itself without adding fuel).
  • 1 It has the advantages of large output (the capacity of single-seat smelting plant 1 can reach 1.02 million tons) and high production efficiency.
  • the crucible smelting apparatus 1 according to the embodiment of the present invention only needs to blow the flux and the powdery brittle bismuth sulphide ore into the top of the reaction tower 10 by using an oxygen-rich gas or oxygen.
  • the smelting apparatus 1 according to the embodiment of the present invention can reduce the conveying pressure of the process wind by more than 95%, and therefore the smelting apparatus 1 also has advantages such as low power consumption.
  • the smelting apparatus 1 according to the embodiment of the present invention also has the advantages of low energy consumption, and the energy consumption per ton of bismuth-lead alloy is about 250 kg of standard coal - 400 kg of standard coal.
  • the crucible smelting apparatus 1 according to the embodiment of the present invention does not generate foaming slag. Moreover, the opening of the smelting apparatus 1 according to the embodiment of the present invention is smaller than that of the existing smelting apparatus, so that the smelting apparatus 1 does not leak smoke containing dust and sulfur dioxide. That is, the crucible smelting apparatus 1 according to the embodiment of the present invention is also highly safe, environmentally friendly, etc.
  • the smelting method of the crucible by the smelting apparatus 1 according to the embodiment of the present invention will be described below with reference to Fig. 1 . As shown in FIG. 1, the smelting method according to an embodiment of the present invention includes the following steps:
  • the first reducing agent is introduced into the sedimentation tank 130 through the reducing agent feed port to form a reducing agent filtration layer 131 above the slag phase layer 133 of the sedimentation tank 130.
  • a flux, a powdery brittle bismuth sulphide ore and one of an oxygen-rich gas and oxygen are injected into the reaction column 10 through the nozzle to smelt the powdery brittle bismuth sulphide ore to obtain a bismuth-lead alloy and a bismuth-rich alloy.
  • Lead slag, and then the bismuth-lead alloy and the bismuth-rich lead slag pass through the reducing agent filter layer 131 to reduce a part of the cerium oxide and lead oxide in the cerium-rich lead slag, wherein the bismuth-lead alloy is formed in the sedimentation tank 130 Layer 132 and a slag phase layer 133 over the bismuth-lead alloy layer 132.
  • the second reducing agent is added to the slag phase layer 133 of the precipitation tank 130 of the reduction zone 120 through the reducing agent addition port 121 to treat the remaining cerium oxide in the cerium-rich lead slag flowing from the oxidizing zone 110 to the reduction zone 120. Reduction with lead oxide gives depleted slag.
  • the depleted slag and the bismuth-lead alloy are separately discharged.
  • the powdery brittle bismuth sulphide ore is mixed with an oxygen-rich gas or oxygen, and then enters the reaction column 10 and is suspended in the upper portion of the reaction column 10. Since the unit weight of the powdery brittle bismuth sulphide has a very large specific surface area, the powder is introduced into the reaction column 10 in order to provide good heat and mass transfer conditions in an oxygen-rich, high-temperature and "suspended" state.
  • the brittle bismuth lead ore and the oxygen-enriched gas or oxygen rapidly heat up and undergo a series of metallurgical reactions such as decomposition and oxidation, and can realize self-heating smelting (that is, the heat balance of the metallurgical process can be maintained by itself without adding fuel). Therefore, the smelting method of ruthenium according to the embodiment of the present invention has the advantages of high smelting speed, high production efficiency, and the like.
  • the smelting method of ruthenium according to an embodiment of the present invention only needs to blow the flux and the powdery brittle bismuth sulphide ore into the top of the reaction column 10 by using an oxygen-rich gas or oxygen.
  • the smelting method of the crucible according to the embodiment of the present invention can reduce the conveying pressure of the process wind by more than 95% as compared with the existing smelting method of bismuth. Therefore, the smelting method of the crucible according to the embodiment of the present invention also has advantages such as low power consumption.
  • the powdered brittle bismuth sulphide can be autothermally smelted under conditions of blowing oxygen-enriched gas or oxygen (ie, the thermal equilibrium of the metallurgical process can be maintained by itself without adding fuel), and thus according to the present invention
  • the smelting method of the crucible of the embodiment also has the advantages of low energy consumption, and the energy consumption per ton of bismuth-lead alloy is about 250 kg of standard coal-400 kg of standard coal.
  • a bismuth-lead alloy layer 132 and a slag phase layer above the bismuth-lead alloy layer 132 may be formed in the precipitation cell 130. 133.
  • the partition member 140 may protrude into the liquid surface L of the slag phase layer 133 to divide the furnace chamber of the sedimentation tank 130 into the oxidation zone 110 and the reduction zone 120.
  • the oxidation zone 110 of the precipitation tank 130 may be in communication with the furnace cavity 11 of the reaction column 10.
  • the reductant feed port may be provided on top of the reaction column 10.
  • the reducing agent feed port may be provided on the top of the reaction column 10.
  • the first reducing agent for example, coke, lump coal or coal particles having a particle diameter of 20 mm to 30 mm, etc.
  • the first reducing agent may be passed through the reducing agent feed port before the smelting of the powdery brittle bismuth sulphide ore. It is added to the oxidation zone 110 of the precipitation tank 130 to form a reducing agent filtration layer 131 on the slag phase layer 133.
  • the reducing agent feed port may be provided on the top wall of the furnace chamber 11 of the reaction column 10.
  • the powdered brittle bismuth lead and the flux may be mixed.
  • the mass ratio of the powdered brittle bismuth sulphide and the flux may be from 2 to 20:1.
  • the powdered brittle bismuth lead may have a particle size of not more than 100 ⁇ m.
  • the powdered brittle bismuth lead ore can be selected using a 400-mesh to obtain a powdery brittle bismuth sulphide that meets the process requirements.
  • the powdery brittle bismuth bismuth ore having a particle size of not more than 100 ⁇ m has a large specific surface area, thereby further shortening the smelting time of the powdery brittle bismuth sulphide ore and improving the smelting efficiency of the powdery brittle bismuth bismuth ore.
  • the flux may be quartz sand or limestone, and the flux may also be a mixture of quartz sand and limestone.
  • the smelting method may further include: injecting the first reducing agent into the oxidation zone 110 of the precipitation tank 130 and injecting the powdery brittle bismuth sulphide and the flux into the furnace chamber of the reaction tower 10 Before the 11th, the first reducing agent, the powdered brittle bismuth lead, and the flux may be dried.
  • the first reducing agent, the powdered brittle bismuth lead, and the flux may be dried.
  • each of the first reducing agent, the powdered brittle sulphide ore and the flux has a water content of no greater than 1 wt% (by weight).
  • the powdery brittle sulphide ore and the flux may be dried by steam, and the first reducing agent may be dried by a dryer.
  • the powdery brittle sulphide ore may be dried before being mixed with the flux, or may be dried after the powdery brittle bismuth ore and the flux are mixed.
  • the powdery brittle sulphide ore and the flux may be continuously added to the central tube of the nozzle 20, and oxygen-rich oxygen may be utilized.
  • the powdery brittle sulphide ore and the flux are sprayed into the furnace chamber 11 of the reaction column 10 by a body or oxygen.
  • the flow rate of the oxygen-enriched gas or oxygen may be from 100 m / sec to 160 m / sec.
  • the oxygen-rich gas may have an oxygen content of 40% by weight to 99.5% by volume.
  • the powdered brittle bismuth ore can be mixed with oxygen and entangled with high temperature flue gas under the action of a process wind jet. Under the action of radiation and flue gas conduction heat, the powdery brittle bismuth sulphide and oxygen entering the reaction column 10 rapidly heat up and undergo a series of smelting reactions such as decomposition and oxidation.
  • the powdered brittle bismuth lead ore is smelted at a temperature of from 1100 degrees Celsius to 1500 degrees Celsius. In other words, the temperature in the oxidation zone 110 is between 1100 degrees Celsius and 1500 degrees Celsius.
  • the smelting time of the powdery brittle bismuth sulphide ore can be further shortened, and the smelting efficiency of the powdery brittle bismuth sulphide ore can be improved.
  • the smelting method may further include: adding a first fuel to the oxidation zone 110
  • the first fuel is combusted in the oxidation zone 110.
  • the heat generated by burning the first fuel can be used to maintain the thermal balance of the smelting process of the powdered brittle bismuth ore.
  • the first fuel may also be natural gas, heavy oil, or the like, and a first fuel inlet may be provided on the top wall of the oxidation zone 110 at this time.
  • the first fuel may be pulverized coal, the pulverized coal may be mixed with the powdered brittle bismuth sulphide ore and the flux, and the pulverized coal, the powdery brittle may be utilized by using an oxygen-rich gas or oxygen. The sulphide ore and the flux are sprayed into the oxidation zone 110.
  • pulverized coal Compared with natural gas, heavy oil, etc., pulverized coal has not only the advantage of low cost, but also can be added to the oxidation zone 110 together with the powdered brittle bismuth sulphide ore and the flux, so that the wall of the oxidation zone 110 is not required.
  • An opening dedicated to the addition of the pulverized coal is provided, whereby not only the structure of the smelting apparatus 1 but also the leakage of the flue gas can be prevented (the more the opening on the smelting apparatus 1, the more easily the flue gas leaks).
  • the powdery brittle bismuth sulphide entering the reaction column 10 and oxygen rapidly heat up and undergo a series of smelting reactions such as decomposition and oxidation.
  • the high-temperature melt such as bismuth-lead alloy and bismuth-rich slag formed by the smelting reaction first falls on the reducing agent filter layer 131, and then penetrates the reducing agent filter layer 131 and falls into the slag phase layer 133 located in the oxidized region 110, and the lead-rich layer 133 A part of the cerium oxide and lead oxide in the slag are reduced while passing through the reducing agent filter layer 131. Specifically, most of the cerium oxide and lead oxide in the cerium-rich lead slag are reduced while passing through the reducing agent filter layer 131.
  • the unreduced yttrium oxide and lead oxide in the ruthenium-rich lead slag flow from the slag phase layer 133 of the oxidation zone 110 into the slag phase layer 133 of the reduction zone 120.
  • the lower end of the partition 140 may be spaced apart from the bottom wall of the furnace chamber of the settling tank 130 by a predetermined distance.
  • a communication passage for communicating the oxidation zone 110 and the reduction zone 120 may be formed between the lower end of the partition member 140 and the bottom wall of the furnace chamber of the sedimentation tank 130.
  • the unreduced yttrium oxide and lead oxide in the ruthenium-rich lead slag may flow into the slag phase layer 133 of the reduction zone 120 through the communication passage.
  • the lower end of the partition member 140 may be connected to the bottom wall of the furnace chamber of the sedimentation tank 130, and the partition member 140 may be provided with a communication passage for communicating the oxidation zone 110 and the reduction zone 120.
  • the unreduced yttrium oxide and lead oxide in the ruthenium-rich lead slag may flow into the slag phase layer 133 of the reduction zone 120 through a communication passage provided in the separator 140.
  • the second reducing agent for example, pulverized coal, lump coal, coal gas, coal particles having a particle diameter of 20 mm to 30 mm or other carbonaceous solid reducing agent, etc.
  • the layer 133 reduces the remaining cerium oxide and lead oxide (i.e., unreduced cerium oxide and lead oxide) in the cerium-rich lead slag flowing from the oxidizing zone 110 to the reducing zone 120 to obtain a depleted slag.
  • the reduced bismuth-lead alloy is introduced into the bismuth-lead alloy layer 132.
  • the reducing agent addition port 121 may be opposed to the slag phase layer 133 in the reduction zone 120 of the sedimentation tank 130, and the second reducing agent side may be blown to the slag phase of the reduction zone 120 located in the sedimentation tank 130 through the reducing agent addition port 121.
  • layer 133 eg, through a blow port;
  • the reducing agent inlet port 121 may be plural and the plurality of reducing agent inlet ports 121 may be spaced apart along the circumferential direction of the side wall of the reduction zone 120.
  • the second reducing agent can be more uniformly added into the slag phase layer 133 located in the reduction zone 120, so that the unreduced cerium oxide in the cerium-rich lead slag can be more quickly and completely Lead oxide reduction.
  • the reducing agent addition port 121 may also be provided on the top wall of the reduction zone 120.
  • a burner 123 located above the sedimentation tank 130 may also be disposed on the side wall of the reduction zone 120.
  • the smelting method may further include: adding a second fuel to the reduction zone 120 through the combustor 123 and combusting the second fuel in the reduction zone 120. Since the reaction of reducing the unreduced cerium oxide and lead oxide in the cerium-rich lead slag by the second reducing agent is an endothermic reaction, heat can be supplied to the reduction reaction by burning the second fuel. This makes it possible to maintain the temperature in the smelting unit during furnace opening and production anomalies.
  • the burner 123 may be a plurality and the plurality of burners 123 may be spaced apart circumferentially along the side walls of the reduction zone 120. This makes it possible to better maintain the temperature in the smelting unit during furnace opening and production anomalies.
  • the second fuel may be pulverized coal, natural gas, heavy oil, or the like.
  • the crucible smelting apparatus 1 may further include an oxidation zone waste heat boiler 30 and an oxidation zone electric precipitator (not shown), and the oxidation zone waste heat boiler 30 may be connected to the oxidation zone outlet port 111 and The oxidizing zone electric precipitator can be connected to the oxidation zone waste heat boiler 30.
  • waste heat recovery and dust removal can be performed on the oxidizing zone flue gas discharged from the venting port 111 of the oxidation zone, and then the acid is sent.
  • the recovered waste heat can be used for power generation or for residential use, and the recovered soot can be returned to the oxidation zone 110.
  • the crucible smelting apparatus 1 may further include a reduction zone waste heat boiler and a reduction zone electric precipitator, wherein the reduction zone waste heat boiler may be connected to the reduction zone outlet port 122 and the reduction zone electric precipitator It can be connected to the reduction zone waste heat boiler.
  • the waste gas from the reduction zone discharged from the outlet port 122 of the reduction zone can be subjected to waste heat recovery and dust removal, and the recovered soot can be returned to the oxidation zone 110.
  • the smelting method of the bismuth according to the embodiment of the present invention may further include: recovering waste heat of the oxidizing zone flue gas discharged from the venting port 111 of the oxidation zone; dedusting the oxidizing zone flue gas after recovering the residual heat; and utilizing the oxidizing zone after the dust removing The smoke produces acid.
  • the smelting method of the crucible according to the embodiment of the present invention may further include: recovering waste heat of the flue gas in the reduction zone discharged from the outlet port 122 of the reduction zone; cooling the flue gas in the reduction zone after recovering the waste heat; and flue gas in the reduction zone of the cooling zone Discharge after dust removal.
  • the soot from the oxidizing zone flue gas and the flue gas from the reduction zone can be returned to the oxidizing zone 110. Since the soot contains strontium and other useful elements, the recovery of hydrazine can be improved by returning the ash in the oxidizing zone and the dust obtained in the reducing zone to the oxidizing zone 110. Specifically, soot may be mixed with the powdered brittle bismuth lead and the flux and returned to the oxidation zone 110 through the nozzle 20.
  • the side wall of the sedimentation tank 130 opposite to the bismuth-lead alloy layer 132 may be provided with a bismuth-lead alloy discharge port through which the bismuth-lead alloy in the bismuth-lead alloy layer 132 may be discharged.
  • the discharged bismuth-lead alloy can be advanced to the next step for bismuth-lead separation.
  • the bismuth-lead alloy vent can be remote from the reduction zone 120.
  • a depleted slag discharge port may be provided on the side wall of the sedimentation tank 130 opposite to the slag phase layer 133.
  • the lean slag in the slag phase layer 133 can be discharged through the depleted slag discharge port.
  • the discharged depleted slag can be passed to the next step for the smouldering treatment (recovery of metallic zinc).
  • the lean slag discharge port can be remote from the oxidation zone 110.
  • a refractory protective layer may be disposed on the wall of the oxidation zone 110 and a refractory protective layer may be disposed on the wall of the reduction zone 120, and a cooling water jacket may be disposed in the refractory protective layer.
  • the refractory protective layer may be a fire-resistant layer.
  • the partition 140 may be made of a refractory material and a cooling water jacket may be provided in the partition 140. Separator 140 can also It consists of a cooling water jacket.
  • the spacer 140 may be made of a copper water jacket.
  • the smelting apparatus of the crucible 1 annual production of 43114 tons of lead-lead alloy (achievable annual output of 30,000 tons of fine boring), the annual working days of 330 days, the operating rate of 95%.
  • the crucible smelting apparatus 1 has the advantages of large output, high production efficiency, low power consumption, low energy consumption, high safety, and environmental protection.
  • the main chemical composition (dry basis, wt%) of the powdery brittle bismuth lead ore is shown in Table 1.
  • Coke is added to the settling tank 1 30 through a reducing agent feed port to form a reducing agent filtration layer 1 31.
  • the water content of the limestone and the powdery brittle bismuth bismuth ore is not more than 0. 3wt ° /».
  • the pulverized coal is introduced into the slag phase layer 133 located in the reduction zone 120 through the reducing agent addition port 121 to reduce the remaining cerium oxide and lead oxide in the cerium-rich lead slag to obtain a depleted slag. Finally, the lean slag and the bismuth-lead alloy are separately discharged.
  • the average bismuth content of bismuth-lead alloy is 74.50%, and the average lead content is 19.80%.
  • the average strontium content of depleted slag is 1.13%, and the average lead content is 1.11%.
  • the desulfurization rate is greater than 98%, and the comprehensive energy consumption per ton of lead-lead alloy is 378 kg of standard coal.
  • the powdery brittle bismuth sulphide used in this example was the same as the powdery brittle bismuth sulphide used in Example 1.
  • Coke is added to the settling tank 1 30 through a reducing agent feed port to form a reducing agent filtration layer 1 31.
  • % of the oxygen-rich gas is sprayed into the reaction column 10 by mixing a mixture of pulverized coal, quartz sand and powdered brittle bismuth sulphide ore, and smelting the powdery brittle bismuth sulphide ore at 1500 degrees Celsius to obtain a bismuth-lead alloy. And rich bismuth lead.
  • the water content of pulverized coal, quartz sand and powdery brittle bismuth bismuth ore is not more than lw «.
  • the pulverized coal is added to the slag phase layer 133 located in the reduction zone 120 through the reducing agent addition port 121 to reduce the remaining cerium oxide and lead oxide in the cerium-rich lead slag to obtain a lean slag, and passes through the burner 123 to the reduction zone. Pulverized coal is added to 120 and the pulverized coal is burned in the reduction zone 120. Finally, the lean slag and the bismuth-lead alloy are separately discharged.
  • the average lead content of the bismuth-lead alloy is 74.50%, and the average lead content is 19.80%.
  • the average lead content of the depleted slag is 1.11%, and the average lead content is 1.11%.
  • the desulfurization rate is greater than 98%, and the comprehensive energy consumption per ton of lead-lead alloy is 350 kg of standard coal.
  • the powdery brittle bismuth sulphide used in this example was the same as the powdery brittle bismuth sulphide used in Example 1.
  • Coke is introduced into the precipitation tank 130 through a reducing agent feed port to form a reducing agent filtration layer 131.
  • the weight ratio of soot, pulverized coal, and terminal brittle bismuth sulphide is 1: 2), and then a mixture of soot, pulverized coal, flux and powdery brittle bismuth sulphide is sprayed into the reaction using oxygen (ie, pure oxygen).
  • oxygen ie, pure oxygen
  • the powdery brittle bismuth sulphide ore is smelted at 1300 degrees Celsius to obtain a bismuth-lead alloy and a bismuth-rich lead slag. 5wt°/» ⁇
  • the pulverized coal, flux and powdery brittle bismuth bismuth ore has a water content of not more than 0. 5wt ° /».
  • the pulverized coal is added to the slag phase layer 133 located in the reduction zone 120 through the reducing agent addition port 121 to reduce the remaining cerium oxide and lead oxide in the cerium-rich lead slag to obtain a lean slag, and passes through the burner 123 to the reduction zone. Pulverized coal is added to 120 and the pulverized coal is burned in the reduction zone 120. Finally, the lean slag and the bismuth-lead alloy are separately discharged.
  • the average bismuth content of bismuth-lead alloy is 74.50%, and the average lead content is 19.80%.
  • the average strontium content of depleted slag is 1.13%, and the average lead content is 1.11%.
  • the desulfurization rate is greater than 98%, and the comprehensive energy consumption per ton of lead-lead alloy is 275 kg of standard coal.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
  • a structure, material or feature is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种锑的冶炼装置(1)和冶炼方法。冶炼装置(1)包括反应塔(10)和喷嘴(20)。反应塔(10)的下部设有沉淀池(130),沉淀池(130)内设有分隔件(140)以将沉淀池(130)的炉腔分成氧化区(110)和还原区(120)且氧化区(110)和还原区(120)连通,反应塔(10)的顶部设有还原剂加料口,氧化区(110)的顶壁上设有氧化区出烟口(111),还原区(120)的侧壁和顶壁中的一个上设有还原剂加入口(121)且还原区(120)的顶壁上设有还原区出烟口(122)。喷嘴(20)设在反应塔(10)的顶部上以便将熔剂、粉末状脆硫锑铅矿以及富氧气体和氧气中的一种喷入反应塔(10)内。

Description

锑的冶炼装置和冶炼方法 技术领域
本发明涉及金属冶炼领域, 具体而言, 涉及一种锑的冶炼装置和锑的冶炼方法。 背景技术
目前, 脆硫锑铅矿一直采用沸腾焙烧一还原熔炼一吹炼一精炼这一流程进行冶炼。 即 脆硫锑铅精矿经沸腾炉焙烧脱硫、 焙砂配料烧结、 鼓风炉还原熔炼产出锑铅合金, 锑铅合 金再经反射炉吹炼以得到锑氧粉和底铅, 锑氧粉经反射炉精炼生产精锑, 底铅经硅氟酸铅 电解生产电铅。 现有的脆硫锑铅矿冶炼工艺存在工艺复杂、 能耗高等缺陷。 发明内容
本发明旨在至少在一定程度上解决上述技术问题之一或至少提供一种有用的商业选 择。 为此, 本发明的一个目的在于提出一种锑的冶炼装置。
本发明的另一个目的在于提出一种锑的冶炼方法。
为了实现上述目的, 根据本发明提出一种锑的冶炼装置, 所述冶炼装置包括: 反应塔, 所述反应塔的下部设有沉淀池, 所述沉淀池内设有分隔件以将所述沉淀池的炉腔分成氧化 区和还原区且所述氧化区和所述还原区连通, 所述反应塔的顶部设有还原剂加料口, 所述 氧化区的顶壁上设有氧化区出烟口, 所述还原区的侧壁和顶壁中的一个上设有还原剂加入 口且所述还原区的顶壁上设有还原区出烟口; 和喷嘴, 所述喷嘴设在所述反应塔的顶部上 以便将熔剂、 粉末状脆硫锑铅矿以及富氧气体和氧气中的一种喷入所述反应塔内。
由于根据本发明实施例的锑的冶炼装置对粉末状脆硫锑铅矿进行冶炼, 而单位重量的 粉末状脆硫锑铅矿具有极大的比表面积, 为在富氧、 高温和 "悬浮,, 状态下提供了良好的 传热传质条件, 从而可以快速地完成冶金反应, 并可以实现自热熔炼 (即在不加入燃料的 情况下, 冶金过程的热平衡可以自行维持)。 因此所述冶炼装置具有产量大(单座冶炼装置 1的产能可以达到 10 20万吨)、 生产效率高等优点。
根据本发明实施例的锑的冶炼装置只需要利用富氧气体或氧气将所述熔剂和所述粉末 状脆硫锑铅矿吹入所述反应塔的顶部即可。 与现有的锑的冶炼装置相比, 根据本发明实施 例的锑的冶炼装置可以将工艺风的输送压力降低 95 %以上, 因此所述冶炼装置还具有动力 消耗小等优点。 根据本发明实施例的锑的冶炼装置还具有能耗低等优点, 冶炼每吨锑铅合 金的能耗约为 250千克标煤 -400千克标煤。
根据本发明实施例的锑的冶炼装置不会产生泡沫渣。 而且, 根据本发明实施例的锑的 冶炼装置的开口少于现有的锑的冶炼装置, 因此所述冶炼装置不会泄露含有粉尘和二氧化 硫的烟气。 也就是说, 根据本发明实施例的锑的冶炼装置还具有安全性高、 环保等优点。 在本发明的一个实施例中, 所述还原剂加料口设在所述反应塔的炉腔的顶壁上。
在本发明的一个实施例中, 所述氧化区的壁和所述还原区的壁中的每一个上都设有耐 火保护层, 所述耐火保护层的内壁或外壁上设有冷却水套。 由此可以提高所述冶炼装置的 使用寿命。
在本发明的一个实施例中, 所述分隔件的下端与所述沉淀池的炉腔的底壁间隔预定距 离。
在本发明的一个实施例中, 所述分隔件的下端与所述沉淀池的炉腔的底壁相连, 所述 分隔件上设有用于连通所述氧化区和所述还原区的连通通道。
在本发明的一个实施例中, 所述分隔件由耐火材料制成且所述分隔件内设有冷却水套 或者所述分隔件由冷却水套构成。 由此可以提高所述分隔件的使用寿命, 进而可以提高所 述冶炼装置的使用寿命。
在本发明的一个实施例中, 所述还原剂加入口为多个且多个所述还原剂加入口沿所述 还原区的侧壁的周向间隔开设置。 由此可以将所述第二还原剂更加均匀地加入到位于所述 还原区的渣相层内, 从而可以更加快速地、 完全地将所述富锑铅渣中的未被还原的氧化锑 和氧化铅还原。
在本发明的一个实施例中,所述还原区的侧壁上还设有位于所述沉淀池上方的燃烧器。 由此可以在开炉和生产异常时维持所述冶炼装置内的温度。
在本发明的一个实施例中, 所述燃烧器为多个且多个所述燃烧器沿所述还原区的侧壁 的周向间隔开设置。 由此可以在开炉和生产异常时更好地维持所述冶炼装置内的温度。
根据本发明第二方面的实施例提出一种利用根据本发明第一方面所述的冶炼装置进行 的锑的冶炼方法, 所述冶炼方法包括以下步骤: 通过所述还原剂加料口将第一还原剂加入 到所述沉淀池内以在所述沉淀池的渣相层上方形成还原剂过滤层; 通过所述喷嘴将熔剂、 粉末状脆硫锑铅矿以及富氧气体和氧气中的一种喷入所述反应塔内以对所述粉末状脆硫锑 铅矿进行熔炼得到锑铅合金和富锑铅渣, 然后所述锑铅合金和所述富锑铅渣穿过所述还原 剂过滤层以还原所述富锑铅渣中的一部分氧化锑和氧化铅, 其中所述沉淀池内形成有锑铅 合金层和位于所述锑铅合金层上方的渣相层; 通过所述还原剂加入口将第二还原剂加入到 位于所述还原区的渣相层内以对从所述氧化区流到所述还原区的所述富锑铅渣中的其余氧 化锑和氧化铅进行还原得到贫化渣; 和分别排出所述贫化渣和所述锑铅合金。
所述粉末状脆硫锑铅矿与富氧气体或氧气混合后进入所述反应塔并悬浮在所述反应塔 的上部。 由于单位重量的粉末状脆硫锑铅矿具有极大的比表面积, 为在富氧、 高温和 "悬 浮,, 状态下提供了良好的传热传质条件, 进入所述反应塔的所述粉末状脆硫锑铅矿以及富 氧气体或氧气迅速升温并发生分解和氧化等一系列的冶金反应, 并可以实现自热熔炼 (即 在不加入燃料的情况下, 冶金过程的热平衡可以自行维持)。 因此根据本发明实施例的锑的 冶炼方法具有熔炼速度快、 生产效率高等优点。
根据本发明实施例的锑的冶炼方法只需要利用富氧气体或氧气将所述熔剂和所述粉末 状脆硫锑铅矿吹入所述反应塔的顶部即可。 与现有的锑的冶炼方法相比, 根据本发明实施 例的锑的冶炼方法可以将工艺风的输送压力降低 95%以上。 因此根据本发明实施例的锑的 冶炼方法还具有动力消耗小等优点。 由于在吹入富氧气体或氧气的条件下, 所述粉末状脆 硫锑铅矿可以实现自热熔炼(即在不加入燃料的情况下,冶金过程的热平衡可以自行维持), 因此根据本发明实施例的锑的冶炼方法还具有能耗低等优点, 冶炼每吨锑铅合金的能耗约 为 250千克标煤 -400千克标煤。
在本发明的一个实施例中, 在 1100摄氏度 -1500摄氏度的条件下对所述粉末状脆硫锑 铅矿进行熔炼。 由此可以进一步缩短所述粉末状脆硫锑铅矿的冶炼时间、 提高所述粉末状 脆硫锑铅矿的冶炼效率。
在本发明的一个实施例中, 所述粉末状脆硫锑铅矿的粒度不大于负 400 目。 粒度不大 于负 400 目的粉末状脆硫锑铅矿具有极大的比表面积, 从而可以进一步缩短粉末状脆硫锑 铅矿的冶炼时间、 提高粉末状脆硫锑铅矿的冶炼效率。
在本发明的一个实施例中, 所述富氧气体的含氧量为 40v%-99. 6v°/»。
在本发明的一个实施例中, 所述冶炼方法还包括: 在将所述第一还原剂加入到所述沉 淀池之前以及在将所述粉末状脆硫锑铅矿和所述熔剂喷入所述氧化区之前对所述第一还原 剂、 所述粉末状脆硫锑铅矿和所述熔剂进行干燥。 由此可以在冶炼过程中大幅度减少水变 为高温水蒸气带走的热量, 从而可以进一步降低冶炼锑的能耗。 此外还可以减少熔炼烟气 总量, 减轻烟气处理压力。
在本发明的一个实施例中, 所述第一还原剂、 所述粉末状脆 锑铅矿和所述熔剂中的 每一个的含水量都不大于 lwt°/»。
在本发明的一个实施例中, 所述第一还原剂为焦炭, 所述第二还原剂为粉煤、 煤颗粒 或煤气。
本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得明 显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明显 和容易理解, 其中:
图 1是根据本发明实施例的锑的冶炼装置的结构示意图; 和
图 1是根据本发明实施例的锑的冶炼方法的流程图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相同 或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通过参考附图描 述的实施例是示例性的, 旨在用于解释本发明, 而不能理解为对本发明的限制。 在本发明的描述中,需要理解的是,术语"中心"、 "纵向"、 "横向"、 "长度"、 "宽度"、 "厚度"、 "上,,、 "下,,、 "前,,、 "后,,、 "左,,、 "右,,、 "竖直"、 "水平"、 "顶,,、 "底" "内,,、 "外"、 "顺时针"、 "逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和筒化描述, 而不是指示或暗示所指的装置或元件必须具有特定 的方位、 以特定的方位构造和操作, 因此不能理解为对本发明的限制。
此外, 术语 "第一,,、 "第二,, 仅用于描述目的, 而不能理解为指示或暗示相对重要性 或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一,,、 "第二,, 的特征可以明示 或者隐含地包括一个或者更多个该特征。 在本发明的描述中, "多个"的含义是两个或两个 以上, 除非另有明确具体的限定。
在本发明中, 除非另有明确的规定和限定, 术语 "安装"、 "相连"、 "连接"、 "固定" 等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或一体地连接; 可 以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒介间接相连, 可以 是两个元件内部的连通。 对于本领域的普通技术人员而言, 可以根据具体情况理解上述术 语在本发明中的具体含义。
在本发明中, 除非另有明确的规定和限定, 第一特征在第二特征之 "上" 或之 "下" 可以包括第一和第二特征直接接触, 也可以包括第一和第二特征不是直接接触而是通 过它们之间的另外的特征接触。 而且, 第一特征在第二特征 "之上,, 、 "上方,, 和 "上 面" 包括第一特征在第二特征正上方和斜上方, 或仅仅表示第一特征水平高度高于第 二特征。 第一特征在第二特征 "之下,, 、 "下方" 和 "下面" 包括第一特征在第二特 征正下方和斜下方, 或仅仅表示第一特征水平高度小于第二特征。
由于不同金属的物理性质和化学性质存在很大差异, 因此不同金属的冶炼装置也存在 很大差异。 如果直接利用一种金属的冶炼装置来冶炼另一种金属, 那么不仅会导致冶炼失 败, 甚至还会引发生产安全事故。
下面参照图 1描述 #居本发明实施例的锑的冶炼装置 1。如图 1所示,才艮据本发明实施 例的冶炼装置 1包括反应塔 10和喷嘴 20。
反应塔 10的下部设有沉淀池 130 , 沉淀池 130内设有分隔件 140以将沉淀池 130的炉 腔分成氧化区 110和还原区 120且氧化区 110和还原区 120连通,反应塔 10的顶部设有还 原剂加料口, 氧化区 110的顶壁上设有氧化区出烟口 111 , 还原区 120的侧壁和顶壁中的 一个上设有还原剂加入口 121且还原区 120的顶壁上设有还原区出烟口 122。 喷嘴 20设在 反应塔 10的顶部上以便将熔剂、粉末状脆硫锑铅矿以及富氧气体和氧气中的一种喷入反应 塔 10内。
由于根据本发明实施例的锑的冶炼装置 1对粉末状脆硫锑铅矿进行冶炼, 而单位重量 的粉末状脆硫锑铅矿具有极大的比表面积, 为在富氧、 高温和 "悬浮,, 状态下提供了良好 的传热传质条件, 从而可以快速地完成冶金反应, 并可以实现自热熔炼 (即在不加入燃料 的情况下, 冶金过程的热平衡可以自行维持)。 因此冶炼装置 1具有产量大(单座冶炼装置 1的产能可以达到 10 20万吨)、 生产效率高等优点。 根据本发明实施例的锑的冶炼装置 1 只需要利用富氧气体或氧气将所述熔剂和所述粉 末状脆硫锑铅矿吹入反应塔 10的顶部即可。 与现有的锑的冶炼装置相比,根据本发明实施 例的锑的冶炼装置 1可以将工艺风的输送压力降低 95%以上, 因此冶炼装置 1还具有动力 消耗小等优点。 根据本发明实施例的锑的冶炼装置 1还具有能耗低等优点, 冶炼每吨锑铅 合金的能耗约为 250千克标煤 -400千克标煤。
根据本发明实施例的锑的冶炼装置 1 不会产生泡沫渣。 而且, 根据本发明实施例的锑 的冶炼装置 1的开口少于现有的锑的冶炼装置, 因此冶炼装置 1不会泄露含有粉尘和二氧 化硫的烟气。 也就是说, 根据本发明实施例的锑的冶炼装置 1还具有安全性高、 环保等优 下面参照图 1描述利用根据本发明实施例的冶炼装置 1进行的锑的冶炼方法。 如图 1 所示, 才艮据本发明实施例的冶炼方法包括以下步骤:
通过所述还原剂加料口将第一还原剂加入到沉淀池 130内以在沉淀池 130的渣相层 133 上方形成还原剂过滤层 131。
通过所述喷嘴将熔剂、 粉末状脆硫锑铅矿以及富氧气体和氧气中的一种喷入反应塔 10 内以对所述粉末状脆硫锑铅矿进行熔炼得到锑铅合金和富锑铅渣, 然后所述锑铅合金和所 述富锑铅渣穿过还原剂过滤层 131 以还原所述富锑铅渣中的一部分氧化锑和氧化铅, 其中 沉淀池 130内形成有锑铅合金层 132和位于锑铅合金层 132上方的渣相层 133。
通过还原剂加入口 121将第二还原剂加入到位于还原区 120的沉淀池 130的渣相层 133 内以对从氧化区 110流到还原区 120的所述富锑铅渣中的其余氧化锑和氧化铅进行还原得 到贫化渣。
分别排出所述贫化渣和所述锑铅合金。
所述粉末状脆硫锑铅矿与富氧气体或氧气混合后进入反应塔 10并悬浮在反应塔 10的 上部。 由于单位重量的粉末状脆硫锑铅矿具有极大的比表面积, 为在富氧、 高温和 "悬浮,, 状态下提供了良好的传热传质条件,进入反应塔 10的所述粉末状脆硫锑铅矿以及富氧气体 或氧气迅速升温并发生分解和氧化等一系列的冶金反应, 并可以实现自热熔炼 (即在不加 入燃料的情况下, 冶金过程的热平衡可以自行维持)。 因此根据本发明实施例的锑的冶炼方 法具有熔炼速度快、 生产效率高等优点。
根据本发明实施例的锑的冶炼方法只需要利用富氧气体或氧气将所述熔剂和所述粉末 状脆硫锑铅矿吹入反应塔 10的顶部即可。 与现有的锑的冶炼方法相比,根据本发明实施例 的锑的冶炼方法可以将工艺风的输送压力降低 95 %以上。 因此根据本发明实施例的锑的冶 炼方法还具有动力消耗小等优点。 由于在吹入富氧气体或氧气的条件下, 所述粉末状脆硫 锑铅矿可以实现自热熔炼 (即在不加入燃料的情况下, 冶金过程的热平衡可以自行维持), 因此根据本发明实施例的锑的冶炼方法还具有能耗低等优点, 冶炼每吨锑铅合金的能耗约 为 250千克标煤 -400千克标煤。
下面参照图 1和图 1更加详细地描述 #居本发明实施例的锑的冶炼装置 1和冶炼方法。 首先, 可以在沉淀池 130内形成锑铅合金层 132和位于锑铅合金层 132上方的渣相层 133。 其中, 分隔件 140可以伸入到渣相层 133的液面 L下以便将沉淀池 130的炉腔分成氧 化区 110和还原区 120。 其中, 沉淀池 130的氧化区 110可以与反应塔 10的炉腔 11连通。
在本发明的一些实施例中, 所述还原剂加料口可以设在反应塔 10的顶部上。 换言之, 反应塔 10的顶部上可以设有所述还原剂加料口。 在对所述粉末状脆硫锑铅矿进行冶炼前, 可以通过所述还原剂加料口将所述第一还原剂 (例如焦炭、 块煤或粒径为 20毫米 -30毫米 的煤颗粒等)加入到沉淀池 130的氧化区 110内以在渣相层 133上形成还原剂过滤层 131。 有利地, 所述还原剂加料口可以设在反应塔 10的炉腔 11的顶壁上。
可以对所述粉末状脆硫锑铅矿和所述熔剂进行混合。 有利地, 所述粉末状脆硫锑铅矿 和所述熔剂的质量比可以是 2-20: 1。 所述粉末状脆硫锑铅矿的粒度可以不大于 100微米。 换言之, 可以利用 400 目的 子对粉末状脆硫锑铅矿进行 选以便得到满足工艺要求的粉 末状脆硫锑铅矿。 粒度不大于 100微米的粉末状脆硫锑铅矿具有极大的比表面积, 从而可 以进一步缩短粉末状脆硫锑铅矿的冶炼时间、 提高粉末状脆硫锑铅矿的冶炼效率。 所述熔 剂可以是石英砂或石灰石, 所述熔剂还可以是石英砂和石灰石的混合物。
所述冶炼方法还可以包括: 在将所述第一还原剂加入到沉淀池 130的氧化区 110之前 以及在将所述粉末状脆硫锑铅矿和所述熔剂喷入反应塔 10的炉腔 11 之前, 可以对所述第 一还原剂、 所述粉末状脆硫锑铅矿和所述熔剂进行干燥。 通过对所述第一还原剂、 所述粉 末状脆硫锑铅矿和所述熔剂进行预先干燥, 从而可以在冶炼过程中大幅度减少水变为高温 水蒸气带走的热量, 从而可以进一步降低冶炼锑的能耗。 此外还可以减少熔炼烟气总量, 减轻烟气处理压力。
有利地, 所述第一还原剂、 所述粉末状脆硫锑铅矿和所述熔剂中的每一个的含水量都 不大于 lwt% (重量百分比)。 可以利用蒸汽对所述粉末状脆硫锑铅矿和所述熔剂进行干燥, 可以利用干燥机对所述第一还原剂进行干燥。 其中, 可以在所述粉末状脆硫锑铅矿和所述 熔剂混合前对其进行干燥, 也可以在所述粉末状脆硫锑铅矿和所述熔剂混合后对其进行干 燥。
待所述粉末状脆硫锑铅矿和所述熔剂混合均匀后, 可以将所述粉末状脆硫锑铅矿和所 述熔剂连续地加入到喷嘴 20的中心料管中,并可以利用富氧气体或氧气将所述粉末状脆硫 锑铅矿和所述熔剂喷入反应塔 10的炉腔 11 内。 其中, 富氧气体或氧气的流速可以是 100 米 /秒 -160米 /秒。 所述富氧气体的含氧量可以是 40v%-99. 6v% (体积百分比)。
在工艺风射流的作用下, 所述粉末状脆 锑铅矿可以与氧气充分混合并卷吸着高温烟 气一道混合。 在辐射和烟气传导热的作用下, 进入反应塔 10 的所述粉末状脆硫锑铅矿和 氧气迅速升温并发生分解和氧化等一系列的熔炼反应。 有利地, 在 1100摄氏度 -1500摄氏 度的条件下对所述粉末状脆硫锑铅矿进行熔炼。 换言之, 氧化区 110内的温度为 1100摄氏 度 -1500摄氏度。 由此可以进一步缩短所述粉末状脆硫锑铅矿的冶炼时间、 提高所述粉末 状脆硫锑铅矿的冶炼效率。
在本发明的一个实施例中, 所述冶炼方法还可以包括: 向氧化区 110 内加入第一燃料 并使所述第一燃料在氧化区 110 内燃烧。 燃烧所述第一燃料产生的热量可以用于维持所述 粉末状脆硫锑铅矿的冶炼过程的热平衡。 通过加入所述第一燃料, 可以进一步缩短所述粉 末状脆硫锑铅矿的冶炼时间、 提高所述粉末状脆硫锑铅矿的冶炼效率。
所述第一燃料还可以是天然气、 重油等, 此时可以在氧化区 110的顶壁上设置第一燃 料加入口。 有利地, 所述第一燃料可以是粉煤, 可以将粉煤与所述粉末状脆硫锑铅矿和所 述熔剂混合, 并可以利用富氧气体或氧气将粉煤、 所述粉末状脆硫锑铅矿和所述熔剂喷入 氧化区 110 内。 与天然气、 重油等相比, 粉煤不仅具有成本低的优点, 而且可以与所述粉 末状脆硫锑铅矿和所述熔剂一起加入到氧化区 110内, 这样不需要在氧化区 110的壁上设 置专门用于加入粉煤的开口, 由此不仅可以筒化冶炼装置 1 的结构, 而且可以防止烟气泄 漏 (冶炼装置 1上的开口越多, 烟气越容易泄漏)。
进入反应塔 10 的所述粉末状脆硫锑铅矿和氧气迅速升温并发生分解和氧化等一系列 的熔炼反应。熔炼反应所生成的锑铅合金和富锑铅渣等高温熔体首先落在还原剂过滤层 131 上, 再穿透还原剂过滤层 131落入位于氧化区 110的渣相层 133 , 富锑铅渣中的一部分氧 化锑和氧化铅在透过还原剂过滤层 131 时被还原。 具体地, 富锑铅渣中的大部分氧化锑和 氧化铅在透过还原剂过滤层 131时被还原。
富锑铅渣中的未被还原的氧化锑和氧化铅从氧化区 110的渣相层 133流入到还原区 120 的渣相层 133内。 如图 1所示, 在本发明的一些示例中, 分隔件 140的下端可以与沉淀池 130的炉腔的底壁间隔预定距离。 由此分隔件 140的下端与沉淀池 130的炉腔的底壁之间 可以形成用于连通氧化区 110和还原区 120的连通通道。 富锑铅渣中的未被还原的氧化锑 和氧化铅可以通过所述连通通道流入到还原区 120的渣相层 133内。
此外, 在本发明的一个示例中, 分隔件 140的下端可以与沉淀池 130的炉腔的底壁相 连, 分隔件 140上可以设有用于连通氧化区 110和还原区 120的连通通道。 富锑铅渣中的 未被还原的氧化锑和氧化铅可以通过设在分隔件 140上的连通通道流入到还原区 120的渣 相层 133内。
通过还原剂加入口 121将第二还原剂 (例如粉煤、 块煤、 煤气、 粒径为 20毫米 -30毫 米的煤颗粒或其他碳质固体还原剂等)加入到位于还原区 120的渣相层 133内以对从氧化 区 110流到还原区 120的所述富锑铅渣中的其余氧化锑和氧化铅(即未被还原的氧化锑和 氧化铅)进行还原得到贫化渣。 还原得到的锑铅合金进入锑铅合金层 132内。
还原剂加入口 121可以与沉淀池 130的还原区 120内的渣相层 133相对, 通过还原剂 加入口 121可以将所述第二还原剂侧吹到位于沉淀池 130的还原区 120的渣相层 133内(例 如通过喷吹口;)。
如图 1所示, 有利地, 还原剂加入口 121可以是多个且多个还原剂加入口 121可以沿 还原区 120的侧壁的周向间隔开设置。 由此可以将所述第二还原剂更加均匀地加入到位于 还原区 120的渣相层 133内, 从而可以更加快速地、 完全地将所述富锑铅渣中的未被还原 的氧化锑和氧化铅还原。 此外, 还原剂加入口 121还可以设在还原区 120的顶壁上。 在本发明的一个具体示例中, 如图 1所示, 还原区 120的侧壁上还可以设有位于沉淀 池 130上方的燃烧器 123。 所述冶炼方法还可以包括: 通过燃烧器 123向还原区 120内加 入第二燃料并使所述第二燃料在还原区 120 内燃烧。 由于利用所述第二还原剂还原所述富 锑铅渣中的未被还原的氧化锑和氧化铅的反应是吸热反应 , 因此通过燃烧所述第二燃料可 以向该还原反应提供热量。 由此可以在开炉和生产异常时维持所述冶炼装置内的温度。
如图 1所示, 有利地, 燃烧器 123可以是多个且多个燃烧器 123可以沿还原区 120的 侧壁的周向间隔开设置。由此可以在开炉和生产异常时更好地维持所述冶炼装置内的温度。 具体地, 所述第二燃料可以是粉煤、 天然气、 重油等。
根据本发明实施例的锑的冶炼装置 1可以进一步包括氧化区余热锅炉 30和氧化区电收 尘器(图中未示出), 氧化区余热锅炉 30可以与氧化区出烟口 111相连且所述氧化区电收 尘器可以与氧化区余热锅炉 30相连。由此可以对从氧化区出烟口 111排出的氧化区烟气进 行余热回收和除尘, 然后送去制酸。 回收的余热可以发电或供居民生活用, 回收的烟尘可 以返回氧化区 110。
根据本发明实施例的锑的冶炼装置 1可以进一步包括还原区余热锅炉和还原区电收尘 器, 所述还原区余热锅炉可以与还原区出烟口 122相连且所述还原区电收尘器可以与所述 还原区余热锅炉相连。 由此可以对从还原区出烟口 122排出的还原区烟气进行余热回收和 除尘, 回收的烟尘可以返回氧化区 110。
根据本发明实施例的锑的冶炼方法还可以包括: 回收从氧化区出烟口 111排出的氧化 区烟气的余热; 对回收余热后的氧化区烟气进行除尘; 和利用除尘后的氧化区烟气制酸。 根据本发明实施例的锑的冶炼方法还可以进一步包括: 回收从还原区出烟口 122排出的还 原区烟气的余热; 冷却回收余热后的还原区烟气; 和对冷却的还原区烟气进行除尘后排放。
有利地, 可以将氧化区烟气除尘和还原区烟气除尘得到的烟尘返回到氧化区 110 内。 由于烟尘内含有锑元素和其他有用元素, 因此通过将氧化区烟气除尘和还原区烟气除尘得 到的烟尘返回到氧化区 110 内, 可以提高锑的回收率。 具体地, 可以将烟尘与所述粉末状 脆硫锑铅矿和所述熔剂混合后通过喷嘴 20返回到氧化区 110内。
沉淀池 130的与锑铅合金层 132相对的侧壁上可以设有锑铅合金排放口, 锑铅合金层 132 内的锑铅合金可以通过所述锑铅合金排放口排出。 排出的锑铅合金可以进入下一工序 以进行锑铅分离。 有利地, 所述锑铅合金排放口可以远离还原区 120。
沉淀池 130的与渣相层 133相对的侧壁上可以设有贫化渣排放口。 渣相层 133内的贫 化渣可以通过所述贫化渣排放口排出。排出的贫化渣可以进入下一工序以进行烟化处理(回 收金属锌)。 有利地, 所述贫化渣排放口可以远离氧化区 110。
在本发明的一些实施例中, 氧化区 110的壁上可以设有耐火保护层且还原区 120的壁 上也可以设有耐火保护层, 所述耐火保护层内可以设有冷却水套。 由此可以提高冶炼装置 1的使用寿命。 具体地, 所述耐火保护层可以是耐火转层。
分隔件 140可以由耐火材料制成且分隔件 140内可以设有冷却水套。 分隔件 140还可 以由冷却水套构成。 例如, 分隔件 140可以由铜水套制成。 由此可以提高分隔件 140的使 用寿命, 进而可以提高冶炼装置 1的使用寿命。
才艮据本发明实施例的锑的冶炼装置 1年产锑铅合金 43114吨(可实现年产 30000吨精 锑), 年工作天数 330天, 作业率 95%。
根据本发明实施例的锑的冶炼装置 1具有产量大、 生产效率高、 动力消耗小、 能耗低、 安全性高、 环保等优点。
实施例 1
粉末状脆硫锑铅矿的主要化学成分(干基, wt% )如表 1所示。
表 1
Figure imgf000011_0001
通过还原剂加料口将焦炭加入到沉淀池 1 30内以形成还原剂过滤层 1 31。将石灰石和粒 度不大于 100微米的粉末状脆硫锑铅矿按 1 : 20 (重量比) 混合, 然后利用含氧量为 40ν% 的富氧气体将石灰石和粉末状脆硫锑铅矿的混合物喷入反应塔 10内, 并在 1100摄氏度的 条件下对粉末状脆硫锑铅矿进行冶炼以得到锑铅合金和富锑铅渣。 其中, 石灰石和粉末状 脆硫锑铅矿的含水量都不大于 0. 3wt°/»。
通过还原剂加入口 121将粉煤加入到位于还原区 120的渣相层 133内以对富锑铅渣中 的其余氧化锑和氧化铅进行还原得到贫化渣。 最后分别排出贫化渣和锑铅合金。
锑铅合金平均含锑为 74. 50% , 平均含铅为 19. 80%。 贫化渣平均含锑为 1. 1 3% , 平均含 铅为 1. 11%。 脱硫率大于 98% , 每吨锑铅合金的综合能耗为 378千克标煤。 实施例 2
本实施例使用的粉末状脆硫锑铅矿与实施例 1使用的粉末状脆硫锑铅矿相同。
通过还原剂加料口将焦炭加入到沉淀池 1 30内以形成还原剂过滤层 1 31。将粉煤、石英 砂和粒度不大于 80微米的粉末状脆硫锑铅矿混合(石英砂和粉末状脆硫锑铅矿的重量比为 1 : 5 ), 然后利用含氧量为 99. 6ν%的富氧气体将粉煤、 石英砂和粉末状脆硫锑铅矿的混合 物喷入反应塔 10内, 并在 1500摄氏度的条件下对粉末状脆硫锑铅矿进行冶炼以得到锑铅 合金和富锑铅渣。 其中, 粉煤、 石英砂和粉末状脆硫锑铅矿的含水量都不大于 lw«。
通过还原剂加入口 121将粉煤加入到位于还原区 120的渣相层 133内以对富锑铅渣中 的其余氧化锑和氧化铅进行还原得到贫化渣, 并通过燃烧器 123向还原区 120内加入粉煤 且使粉煤在还原区 120内燃烧。 最后分别排出贫化渣和锑铅合金。
锑铅合金平均含锑为 74. 50% , 平均含铅为 19. 80%。 贫化渣平均含锑为 1. 1 3% , 平均含 铅为 1. 11%。 脱硫率大于 98% , 每吨锑铅合金的综合能耗为 350千克标煤。 实施例 3
本实施例使用的粉末状脆硫锑铅矿与实施例 1使用的粉末状脆硫锑铅矿相同。
通过还原剂加料口将焦炭加入到沉淀池 130内以形成还原剂过滤层 131。将烟尘、粉煤、 末状脆硫锑铅矿的重量比为 1 : 2 ), 然后利用氧气(即纯氧)将烟尘、 粉煤、 熔剂和粉末 状脆硫锑铅矿的混合物喷入反应塔 10内, 并在 1300摄氏度的条件下对粉末状脆硫锑铅矿 进行冶炼以得到锑铅合金和富锑铅渣。 其中, 粉煤、 熔剂和粉末状脆硫锑铅矿的含水量都 不大于 0. 5wt°/»。
通过还原剂加入口 121将粉煤加入到位于还原区 120的渣相层 133内以对富锑铅渣中 的其余氧化锑和氧化铅进行还原得到贫化渣, 并通过燃烧器 123向还原区 120内加入粉煤 且使粉煤在还原区 120内燃烧。 最后分别排出贫化渣和锑铅合金。
锑铅合金平均含锑为 74. 50%, 平均含铅为 19. 80%。 贫化渣平均含锑为 1. 13%, 平均含 铅为 1. 11%。 脱硫率大于 98%, 每吨锑铅合金的综合能耗为 275千克标煤。
在本说明书的描述中, 参考术语 "一个实施例"、 "一些实施例"、 "示例"、 "具体示 例"、 或 "一些示例" 等的描述意指结合该实施例或示例描述的具体特征、 结构、 材料或者 特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语的示意性表述 不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或者特点可以在 任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例, 可以理解的是, 上述实施例是示例性的, 不能理解为对本发明的限制, 本领域的普通技术人员在不脱离本发明的原理和宗旨的情况 下在本发明的范围内可以对上述实施例进行变化、 修改、 替换和变型。

Claims

权利要求
1、 一种锑的冶炼装置, 其特征在于, 包括:
反应塔, 所述反应塔的下部设有沉淀池, 所述沉淀池内设有分隔件以将所述沉淀池的 炉腔分成氧化区和还原区且所述氧化区和所述还原区连通, 所述反应塔的顶部设有还原剂 加料口, 所述氧化区的顶壁上设有氧化区出烟口, 所述还原区的侧壁和顶壁中的一个上设 有还原剂加入口且所述还原区的顶壁上设有还原区出烟口; 和
喷嘴, 所述喷嘴设在所述反应塔的顶部上以便将熔剂、 粉末状脆硫锑铅矿以及富氧气 体和氧气中的一种喷入所述反应塔内。
2、 根据权利要求 1所述的锑的冶炼装置, 其特征在于, 所述还原剂加料口设在所述反 应塔的炉腔的顶壁上。
3、 根据权利要求 1所述的锑的冶炼装置, 其特征在于, 所述氧化区的壁和所述还原区 的壁中的每一个上都设有耐火保护层, 所述耐火保护层的内壁或外壁上设有冷却水套。
4、 根据权利要求 1所述的锑的冶炼装置, 其特征在于, 所述分隔件的下端与所述沉淀 池的炉腔的底壁间隔预定距离。
5、 根据权利要求 1所述的锑的冶炼装置, 其特征在于, 所述分隔件的下端与所述沉淀 池的炉腔的底壁相连, 所述分隔件上设有用于连通所述氧化区和所述还原区的连通通道。
6、 根据权利要求 1所述的锑的冶炼装置, 其特征在于, 所述分隔件由耐火材料制成且 所述分隔件内设有冷却水套或者所述分隔件由冷却水套构成。
7、 根据权利要求 1-6中任一项所述的锑的冶炼装置, 其特征在于, 所述还原剂加入口 为多个且多个所述还原剂加入口沿所述还原区的侧壁的周向间隔开设置。
8、 根据权利要求 1-7中任一项所述的锑的冶炼装置, 其特征在于, 所述还原区的侧壁 上还设有位于所述沉淀池上方的燃烧器。
9、 根据权利要求 8所述的锑的冶炼装置, 其特征在于, 所述燃烧器为多个且多个所述 燃烧器沿所述还原区的侧壁的周向间隔开设置。
10、 一种利用权利要求 1-9 中任一项所述的冶炼装置进行的锑的冶炼方法, 其特征在 于, 所述冶炼方法包括以下步骤:
通过所述还原剂加料口将第一还原剂加入到所述沉淀池内以在所述沉淀池的渣相层上 方形成还原剂过滤层;
通过所述喷嘴将熔剂、 粉末状脆硫锑铅矿以及富氧气体和氧气中的一种喷入所述反应 塔内以对所述粉末状脆硫锑铅矿进行熔炼得到锑铅合金和富锑铅渣, 然后所述锑铅合金和 所述富锑铅渣穿过所述还原剂过滤层以还原所述富锑铅渣中的一部分氧化锑和氧化铅, 其 中所述沉淀池内形成有锑铅合金层和位于所述锑铅合金层上方的渣相层;
通过所述还原剂加入口将第二还原剂加入到位于所述还原区的渣相层内以对从所述氧 化区流到所述还原区的所述富锑铅渣中的其余氧化锑和氧化铅进行还原得到贫化渣; 和 分别排出所述贫化渣和所述锑铅合金。
11、根据权利要求 10所述的冶炼方法, 其特征在于, 在 1100摄氏度 -1500摄氏度的条 件下对所述粉末状脆硫锑铅矿进行熔炼。
12、 根据权利要求 10所述的冶炼方法, 其特征在于, 所述粉末状脆硫锑铅矿的粒度不 大于负 400目。
13、 根据权利要求 10 所述的冶炼方法, 其特征在于, 所述富氧气体的含氧量为 40v%-99. 6v%0
14、 根据权利要求 10所述的冶炼方法, 其特征在于, 还包括: 在将所述第一还原剂加 入到所述沉淀池之前以及在将所述粉末状脆硫锑铅矿和所述熔剂喷入所述氧化区之前对所 述第一还原剂、 所述粉末状脆硫锑铅矿和所述熔剂进行干燥。
15、 根据权利要求 14所述的冶炼方法, 其特征在于, 所述第一还原剂、 所述粉末状脆 硫锑铅矿和所述熔剂中的每一个的含水量都不大于 lwt°/»。
16、 根据权利要求 10所述的冶炼方法, 其特征在于, 所述第一还原剂为焦炭, 所述第 二还原剂为粉煤、 煤颗粒或煤气。
PCT/CN2013/075719 2013-02-01 2013-05-16 锑的冶炼装置和冶炼方法 WO2014117455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310041034.0A CN103114212B (zh) 2013-02-01 2013-02-01 锑的冶炼装置和冶炼方法
CN201310041034.0 2013-02-01

Publications (1)

Publication Number Publication Date
WO2014117455A1 true WO2014117455A1 (zh) 2014-08-07

Family

ID=48412629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075719 WO2014117455A1 (zh) 2013-02-01 2013-05-16 锑的冶炼装置和冶炼方法

Country Status (2)

Country Link
CN (1) CN103114212B (zh)
WO (1) WO2014117455A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107227412A (zh) * 2017-07-21 2017-10-03 中国恩菲工程技术有限公司 锑精矿熔炼***
CN109764679A (zh) * 2017-11-09 2019-05-17 中国瑞林工程技术股份有限公司 冶炼装置和冶炼方法
CN115354171A (zh) * 2022-08-11 2022-11-18 中国恩菲工程技术有限公司 锑氧粉还原方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104087763A (zh) * 2014-07-31 2014-10-08 湖南娄底华星锑业有限公司 一种锑粉吹炼炉上锑粉、煤灰分流***
CN104263933B (zh) * 2014-09-05 2016-09-07 昆明理工大学 一种风煤吹炉和利用风煤吹炉冶炼脆硫铅锑矿的方法
CN104263934B (zh) * 2014-09-05 2016-09-21 昆明理工大学 一种风煤吹炉和锡精矿风煤吹炉冶炼方法
CN104894378A (zh) * 2015-06-15 2015-09-09 中国瑞林工程技术有限公司 双顶吹冶炼装置和双顶吹冶炼方法
CN104894377B (zh) * 2015-06-15 2018-01-19 中国瑞林工程技术有限公司 顶吹侧吹连续冶炼装置和顶吹侧吹连续冶炼方法
CN106086477B (zh) * 2016-08-12 2019-03-01 中国恩菲工程技术有限公司 锑精矿的冶炼***
CN107674997A (zh) * 2017-11-07 2018-02-09 中国恩菲工程技术有限公司 从锑氧化矿中富集锑的装置
CN110629041B (zh) * 2019-10-24 2024-03-19 中国恩菲工程技术有限公司 锑氧还原冶炼装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741770A (en) * 1985-04-03 1988-05-03 Cra Services Limited Zinc smelting process using oxidation zone and reduction zone
CN201514112U (zh) * 2009-10-21 2010-06-23 长沙有色冶金设计研究院 悬浮熔炼侧吹还原炼铅炉
CN201628476U (zh) * 2010-03-23 2010-11-10 中国瑞林工程技术有限公司 直接炼铅炉
CN101935766A (zh) * 2010-08-31 2011-01-05 河南豫光金铅股份有限公司 脆硫铅锑矿底吹熔池熔炼方法及装置
CN102011014A (zh) * 2010-11-21 2011-04-13 中国恩菲工程技术有限公司 连续炼铅装置及连续炼铅工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886183B (zh) * 2009-05-12 2012-05-23 济源市万洋冶炼(集团)有限公司 一种炼铅装置及使用该装置的炼铅方法
CN203144499U (zh) * 2013-02-01 2013-08-21 中国瑞林工程技术有限公司 锑的冶炼装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741770A (en) * 1985-04-03 1988-05-03 Cra Services Limited Zinc smelting process using oxidation zone and reduction zone
CN201514112U (zh) * 2009-10-21 2010-06-23 长沙有色冶金设计研究院 悬浮熔炼侧吹还原炼铅炉
CN201628476U (zh) * 2010-03-23 2010-11-10 中国瑞林工程技术有限公司 直接炼铅炉
CN101935766A (zh) * 2010-08-31 2011-01-05 河南豫光金铅股份有限公司 脆硫铅锑矿底吹熔池熔炼方法及装置
CN102011014A (zh) * 2010-11-21 2011-04-13 中国恩菲工程技术有限公司 连续炼铅装置及连续炼铅工艺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107227412A (zh) * 2017-07-21 2017-10-03 中国恩菲工程技术有限公司 锑精矿熔炼***
CN109764679A (zh) * 2017-11-09 2019-05-17 中国瑞林工程技术股份有限公司 冶炼装置和冶炼方法
CN109764679B (zh) * 2017-11-09 2024-04-23 中国瑞林工程技术股份有限公司 冶炼装置和冶炼方法
CN115354171A (zh) * 2022-08-11 2022-11-18 中国恩菲工程技术有限公司 锑氧粉还原方法

Also Published As

Publication number Publication date
CN103114212B (zh) 2015-04-22
CN103114212A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
WO2014117455A1 (zh) 锑的冶炼装置和冶炼方法
CN102230090B (zh) 铅锌一体化冶炼炉和及其回收铅和锌的方法
WO2015196887A1 (zh) 连续侧吹炼锡工艺
WO2012065327A1 (zh) 连续炼铅装置及连续炼铅工艺
CN102978405B (zh) 一种电子废料的侧吹连续冶炼装置
CN108588442B (zh) 一种粗铜火法连续精炼工艺
CN102796875B (zh) 锌浸出渣处理装置和处理工艺
WO2011137737A1 (zh) 分离高温气体携带的熔化状态粉尘的方法、设备及其应用
WO2017185859A1 (zh) 一种天闪炉
CN104928492A (zh) 闪速侧吹熔炼装置和闪速侧吹熔炼方法
CN103320614A (zh) 一种铅冰铜火法处理工艺
CN105821214A (zh) 再生铅高纯度节能环保冶炼工艺
CN104073653A (zh) 连续侧吹炼锡装置
CN106996695A (zh) 一种冶金炉
JPH0136539B2 (zh)
CN102796883A (zh) 一种针对复杂难处理金精矿的富氧侧吹熔炼炉
CN203049010U (zh) 一种电子废料的侧吹连续冶炼装置
CN201729861U (zh) 铅锌一体化冶炼炉
CN203960305U (zh) 连续侧吹炼锡装置
CN203602694U (zh) 双侧吹冶炼设备
CN202786369U (zh) 锌浸出渣处理装置
ES2969731T3 (es) Horno de volatilización inducido por plasma mejorado
CN203144499U (zh) 锑的冶炼装置
WO2015196889A1 (zh) 侧吹炼锡装置
CN211626117U (zh) 侧吹熔炼炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873792

Country of ref document: EP

Kind code of ref document: A1