WO2014116042A1 - Recombinant strain for producing 2,3-butanediol, comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator - Google Patents

Recombinant strain for producing 2,3-butanediol, comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator Download PDF

Info

Publication number
WO2014116042A1
WO2014116042A1 PCT/KR2014/000677 KR2014000677W WO2014116042A1 WO 2014116042 A1 WO2014116042 A1 WO 2014116042A1 KR 2014000677 W KR2014000677 W KR 2014000677W WO 2014116042 A1 WO2014116042 A1 WO 2014116042A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanediol
genus
sucrose
strain
producing
Prior art date
Application number
PCT/KR2014/000677
Other languages
French (fr)
Korean (ko)
Inventor
이진원
오민규
정무영
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130083817A external-priority patent/KR101542879B1/en
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Priority to US14/785,607 priority Critical patent/US9994875B2/en
Publication of WO2014116042A1 publication Critical patent/WO2014116042A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric

Definitions

  • Recombinant strain for producing 2,3-butanediol comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose modulator
  • the present invention was made by the task number 10035578 under the support of the Ministry of Knowledge Economy of Korea, the research management specialized organization of the task is the Korea Industrial Technology Evaluation and Management Institute, the research project name is “industrial technology development project”, the research title is "2, 3-butane Development of technology for discovering strains for diol production and optimization of metabolic circuits ", The lead organization is Sogang University Industry-Academic Cooperation Group, and the research period is 2010. 04. 01 ⁇ 2015. 03. 31.
  • the present invention relates to a recombinant strain for the production of 2,3-butanediol comprising (a) an inactivated lactate dehydrogenase and (b) an inactivated sucrose modulator.
  • Biorefinery development can produce environmentally friendly compounds that can reduce dependence on petroleum resources.
  • the production of microorganisms of 2, 3-butanediol which is a flat compound, has recently attracted attention due to the high applicability of the industry (Ji et al., 2011). Therefore, some bacteria, such as Krebsiella pneumoniae (Ma et al., 2009), Serratia Marcenses ( 2010) and Enterobacter aerogenes (Jung et al., 2012), 3-butanedai is being developed as an industrial strain for production.
  • FTS-dependent transport introduces sucrose by phosphorylation by EII scr identified in the crab forla pneumoniae scr operon (Sprenger & Lengeler, 1988).
  • EII scr identified in the crab forla pneumoniae scr operon
  • the non-PTS permease found in E. coli csc operon transfers sucrose into cells without chemical modulation (Bockmann et al., 1992).
  • operons are fructokinase (ScrK), sucrose-specific envelope membrane (ScrY) ⁇ PTS ⁇ transport protein (ScrA), sucrose-6-phosphate hydrolase (ScrB) and sucrose It consists of 50RF of dependent regulators (ScrR) (Fig. Lb).
  • the present inventors have tried to develop a strain and a carbon source that can reduce the production cost of 2, 3-butanedi.
  • a recombinant strain comprising an inactivated lactate dehydrogenase and an inactivated sucrose regulator was developed and cultured in a culture medium containing molasses as a carbon source.
  • This invention was completed by confirming showing 2, 3- butanediol production efficiency.
  • Another object of the present invention is to provide a method for producing 2,3-butanediol.
  • Another object of the present invention is to provide 2,3-butanedi.
  • the invention comprises ( a ) an inactivated lactate dehydrogenase and (b) an inactivated sucrose regulator.
  • an inactivated lactate dehydrogenase and (b) an inactivated sucrose regulator.
  • the present inventors have tried to develop a strain and a carbon source that can reduce the production cost of 2,3-butanediol.
  • a recombinant strain comprising an inactivated lactate dehydrogenase and an inactivated sucrose regulator was developed to produce molasses.
  • the basic strategy of the present invention is to inactivate the lactate dehydrogenase and sucrose modulators found in strains for producing 2,3-butanedi.
  • the lactate dehydrogenase is a triose phosphate isomerase, and is an enzyme that catalyzes the reaction of converting pyruvic acid into lactate by reducing NADH (Nicotinamide adenine dinucleotide) in glycolysis.
  • the sucrose modulator is one of the LacI-GalR family, a transcriptional inhibitor that suppresses the expression of ScrB encoding sucrose hydrolase, and a sucrose operon repressor and Lac I family transcription. It is synonymous with Lacl family transcriptional regulator.
  • Lactate dehydrogenase and sucrose modulators to be inactivated have been found and identified in various strains.
  • lactate dehydrogenase of Enterobacter aerogenes of SEQ ID NO: 1 and sucrose modulators of Enterobacter aerogenes of SEQ ID NO: 2 are illustrated, but various lactate dehydrogenases And sucrose adjusters are included in the present invention.
  • lactate dehydrogenase is GenBank accession number CP_002824 (/ Z ⁇ e aerogenes), accession number K_015663 (En terobacter aerogenes), accession number NC_018522 (/ i7e / «/ e // pneumonia), accession number NC_011283 7eZ?
  • accession number NC_017540 (/ e /? 5 / e // 3 pneumoniae)
  • accession number NC_012731 (/ i7eZ «/ e // s pneumoniae)
  • accession number NC_016612 (A7 ⁇ / e // oxytoca)
  • accession number i8106 (Iebs / ella oxytoca) ⁇
  • the disclosed lactate dehydrogenases may be subject to inactivation of the invention, and the sucrose modulator is GenBank accession number CP_002824 3 ⁇ 4 eOtoc: er aerogenes), Access number
  • the disclosed sucrose modulators may be subject to inactivation in the present invention.
  • W 201 Endobacter aerogenes
  • accession number NC_01852 accession number NC_01852
  • accession number NC_011283 accession number NC_011283
  • accession number j ⁇ 2 accession number NC OlSlOe VeZ ⁇ / e / oxytoca
  • the term "inactivation”, referring to lactate dehydrogenase and sucrose modulators, refers to any variation (eg, deletion, substitution, or loss of function of lactate dehydrogenase and sucrose modulators). Additional variation).
  • the deletion of the lactate dehydrogenase gene and the sucrose modulator gene include all, partial or complete deletions of the lactate dehydrogenase or sucrose modulator coding sequences.
  • the inactivated lactate dehydrogenase is a deletion, substitution or addition mutation in the nucleotide sequence encoding the lactate dehydrogenase.
  • the inactivated sucrose modulator is a deletion, substitution or addition mutation occurred in the nucleotide sequence encoding the sucrose modulator.
  • Such mutation of the lactate dehydrogenase or sucrose regulator coding sequence can be carried out through various mutagenesis methods known in the art. For example, PCR mutagenesis, cassette mutagenesis (Sambrook, J. et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (200D), ⁇ Red recombination method (Jung et al., 2012, Datsenko and Wanner, Proc. Natl. Acad. Sci.
  • the inactivated lactate dehydrogenase is one in which a deletion mutation occurs in the nucleotide sequence encoding the lactate dehydrogenase.
  • the inactivated sucrose modulator is a deletion mutation occurred in the nucleotide sequence encoding the sucrose modulator.
  • said deletion mutations result in deletion mutations via a red lambda recombination method.
  • the recombinant strain for producing 2,3-butanediol additionally generates a deletion, substitution or additional mutation in the nucleotide sequence encoding wabG.
  • a deletion mutation occurs in the nucleotide sequence encoding wabG.
  • Recombinant for producing 2,3-butanedi comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator of the present invention
  • the strain can be applied to various strains that produce 2, 3-butanedi.
  • the strain is genus Aeromonas C4er ⁇ /?
  • Bacillus genus Brevibacillus ( ⁇ e / Z c /// i / s) genus Corynebacterium (Coynebacteriu) genus , Enterobacter ieOto ⁇ er) in Klebsiella 7e / e //), Lactobacillus a C ofec /// "s) in Lactococcus ( ⁇ 3 0C0" S) in Leukonostock ( ⁇ g / CiMCiS C ) In Oenocaucus in Pedao Caucus (/ 3 ⁇ 4 // £ a?: C / s) in Lao Ultella 0 / e // 3), Serratia (5err / 3), Streptococcus (Yre o?
  • the strain is of the genus Enterobacter or of the genus Klebsiella, and according to certain embodiments of the present invention, enterobacter aerogenes ( ⁇ e / OZ c aerogenes) or crab forla pneumoniae / e / / pneumoniae).
  • the strain for producing 2,3-butanediol of the present invention uses sugarcane molasses as a carbon source.
  • the present invention when culturing in a culture medium containing sugarcane molasses as a carbon source of the strain for producing 2, 3-butanedi of the present invention, glucose, other carbon sources (eg, fructose or sucrose)
  • glucose, other carbon sources eg, fructose or sucrose
  • the 2,3-butanediol efficiency and productivity are excellent compared to the case of culturing in a culture medium containing.
  • it provides a method for producing 2,3-butanediol comprising culturing the strain of the present invention in a culture medium.
  • the medium in the culturing step of the method for producing 2,3-butane iol of the present invention includes any medium used for culturing Enterobacter strains, and basically includes a carbon source, a nitrogen source, and an energy source.
  • the carbon source used in the method of the present invention may be a variety of carbohydrates, according to one embodiment of the present invention, molasses, glucose, sucrose or fructose, according to another embodiment of the present invention, molasses.
  • Nitrogen source used in the method of the present invention is an organic nitrogen source is used, according to one embodiment of the present invention, yeast extract and peptone, according to another embodiment of the present invention, yeast extract.
  • the energy source used in the process of the invention is used simultaneously with a carbon source and a nitrogen source.
  • the culture medium may further include a trace element source and an essential amino acid source in addition to a carbon source, a nitrogen source and an energy source.
  • a trace element source KCl (NH 4) S0 4 , Na 2 S0 4, MgS0 4 - 7H 2 0, ZnCl 2, FeCl 3 ⁇ 6H 2 0, MnCl 2 ⁇ 4H 2 0, CuCl 2 ⁇ 2H 2 0 and 3 ⁇ 4B0 3
  • the trace element source KCl include casamino acid as the essential amino acid source.
  • the pH of the sugarcane molasses used as a carbon source in the present invention is very low at pH 4.94, the pH should be adjusted during the culturing process for normal strain growth.
  • the culture medium has an optimal pH of pH 5.5 to pH 7.0.
  • the culture temperature is 30 ° C to 40 ° C, according to one embodiment of the present invention, the culture temperature is 33 ° C to 39 ° C, according to another embodiment of the present invention ;
  • the incubation temperature is 35 ° C to 38 ° C.
  • Method for producing 2, 3-butanedi of the present invention is carried out through various methods of culturing the recombinant strain of the present invention.
  • the culture is batch fermentation (Batch ferment at ion) or fed-batch fermentation (Fed one batch fermentat ion).
  • the term 'batch fermentation' refers to a fermentation that proceeds to the first medium only without treatment to add or remove the medium during fermentation
  • 'feed fermentation' means fermentation that proceeds with addition and removal of medium during fermentation.
  • 2,3-butanes per 0.329 g / g improved by at least 10% compared to the cultivation of wild-type strains when the 2, 3-butanediol preparation of the present invention is carried out by batch fermentation.
  • the present invention provides 2,3-butanedi produced by the production method of the present invention.
  • 2,3-butanedi' refers to the yield of 2,3-butanediol per gram of sugar added to the medium as a carbon source
  • '2,3-butanediol productivity' refers to 1 hour It means 2,3-butanedi produced in L. Since 2,3-butanediol of the present invention is 2,3-butanediol prepared by the above production method, the common content between the two is omitted in order to avoid excessive complexity of the present specification. ⁇ effect ⁇
  • the present invention provides a strain for producing 2,3-butanediol.
  • the present invention can economically produce 2,3-butaneiol using an inexpensive carbon source.
  • La shows the PTS and non-PTS sugar transporter sucrose catabolic pathways of bacteria.
  • Lb shows the gene sequence of three types of intestinal bacterial genomes.
  • ScrA is an ⁇ sucrose transfer protein
  • CscB is a sucrose-specific permease
  • CscA is a sucrose-6-phosphate hydrolase
  • ScrK and CscK are fructokinase
  • Pgm is phosphoglucomutase
  • ScrY is outer membrane number Crossporin
  • ScrR and CscR represent genes of sucrose metabolism inhibitors.
  • FIG. 2 shows cultures of (a) glucose, (b) fructose, (c) sucrose, or (d) sugarcane molasses of wild type (closed rectangle), EMY-0K open circle) and EMY-68 (cross). One 2,3-butanediol production is shown. Error bars are the standard deviation for three experiments.
  • Figure 3 shows sugars for (a) wild type, (b) glucose (closed circle), sucrose (cross), fructose (open triangle) and total sugar (closed rectangle) of EMY-01 and (c) EMY-68. The result of the batch fermentation of consumption is shown.
  • FIG. 4 shows the fermentation results of sugar cane molasses for concentrations of ⁇ (plus), 2, 3-butanedi (open circle), ethanol (open diamond), acetoin (open square) and total sugar (closed square).
  • Indicates. 5A to 5D show the yields of 2 and 3-butanedies of KMK-01 (closed square), KM-02 (open circle) and KMK-08 (x table),
  • FIG. 5A is glucose
  • FIG. 5B is Fructose
  • FIG. 5C is a result of flask culture using sucrose and FIG. 5D with molasses as the only carbon source.
  • 6A-6C show MK-0K in flask culture 6A), KMK-02
  • Enterobacter aerogenes strains were derived from wild type strains (KCTC 2190).
  • EMY-01 was prepared by deleting the lactate dehydrogenase (LdhA) of Enterobacter aerogenes KCTC2190 using the ⁇ red recombination method (Jung et al., 2012).
  • SCRR a gene encoding the sucrose regulator of the Lacl family in the genome of EMY-01, was deleted by a similar method and named EMY-68.
  • the scrR_F F_fw and scrR_F F_rv primers were used to delete ScrR and confirmed by colony PCR (Polymerase Chain React ion) with scrR_con_A and scrR ⁇ con ⁇ B primers.
  • the strains, plasmids and primers used in the present invention are shown in Table 1.
  • the underlined sequence matches the scrR sequence of Enterobacter aerogenes.
  • Red lambda recombination was used to remove the scrR gene from Enterobacter aerogenes.
  • gamma and beta were transformed into enterobacter aerogenes prepared with competent cells to prevent degradation of linear genes and enhance the effect of homologous recombinat ion.
  • An ampicillin resistant pKM208 vector with a tac promoter was used in the present invention and transformation was confirmed.
  • a linear gene for homologous recombination was constructed, and a pKD4 vector with an FRT-kanamycin-FRT cassette was used as a template.
  • enterobacter aerobics was confirmed that the transformed pKM208 vector was incubated at 30 ° C.
  • the pKM208 vector was a temperature sensitive vector and was incubated at 30 ° C because its activity was lost above 37 ° C.
  • OD600 was about 0.1 hours after incubation
  • 1 mM of IPTG (Isopropylthio-p-galactoside) induced red lambda recombinase expression of pKM208.
  • 0D600 was about 0.6, the produced linear genes were transformed into competent cells for electroporation.
  • kanamycin was spread on LB solid medium to which 12.5 wg / mi was added and incubated for 12 hours.
  • Two primers were prepared to confirm the success of homologous recombination.
  • Two to 24 base pairs homologous to both sides of lactate dehydrogenase were named scrR_con_A and _B. When colony PCR was performed using these two primers, homologous recombination was confirmed through the length of the PCR product.
  • FLP recombinase production vector pSClOl ori, cI857, (Datsenko & pCP20
  • scrR_con_A CCGCTTCTTTGCGGATTAT beam 3 ⁇ 4 scrR_con_B GCGCTCATTCATGAAAAATTC beam balm culture medium and culture conditions
  • Fermentation medium of the present invention is 3 g H 2 P0 4) 6.8 g Na 2 HP0 4 , 0.75 g KCl, 5.35 g (NH 4 ) S0 4> 0.28 g Na 2 S0 4 , 0.26 g MgS0 4 ⁇ 7H 2 0, 0.42 g citric acid, 5 g yeast extract, 10 g casamino acid, and 34.2 g / L ZnCl 2 , 2.7 g / L FeCl 3 ⁇ 6H 2 0, 10 g / L MnCl 2 .4H 2 0, 0.85 g / L CuCl 2 0.3 containing 2H 2 0 and 0.31 g / LH 3 B0 3 ml microelement solution (Jung et al., 2012).
  • sugar such as sucrose, glucose fructose, sucrose or sugar cane molasses
  • sugar cane molasses were added to the culture medium as the only carbon source.
  • Glucose, fructose, sucrose and other media components were purchased from Sigma (USA).
  • the sugarcane molasses used in the present invention is native to Brazil and was used by Samyang Genex Bio.
  • Sugar composition of sugarcane molasses was determined to be 87 g / L fructose, 81 g / L glucose and 387 g / L sucrose.
  • Sugar cane molasses is very low (pH 4.94).
  • the initial pH of the medium containing sugarcane molasses was adjusted to pH 6.14 by the addition of 5 M NaOH.
  • the flask was sealed with a si li stopper and incubated at 250 rpm and 37 ° C. for 12 hours in a 250 ml flask containing 50 id medium in a microaerobic environment.
  • the sucrose catabolism gene cluster of Krebssiella pneumoniae is inhibited by ScrR, a sucrose regulator of the Lacl family (Reid & Abratt, 2005).
  • ScrR a sucrose regulator of the Lacl family
  • deletion of the sc / vP gene can improve sucrose utilization.
  • the scrR gene was searched by the Blast (Basic Local Alignment Search Tool; BLAST) sequence of ScrR protein (GenBank Accession No. ⁇ _004593287) of crab forla pneumoniae in Enterobacter aerogenes KCTC 2190 genome (Shin et al., 2012 and Mortlock, 1982).
  • the sequence of the protein found in Enterobacter aerogenes (GenBank accession number YP 304593287) is 92% homologous to the sequence of the ScrR protein of Krebsiella pneumoniae. As can be seen in Table 1, primers were designed to delete sc /? Genes from genome DNA.
  • EMY-68 showed almost the same phenotype as EMY-01 in culture under glucose or fructose. this is. This means that there is no effect of scrR deletion on this carbon source.
  • cell growth of EMY-01 and production of 2,3-butanediol did not increase significantly in the presence of sucrose or sugarcane molasses, whereas EMY-68 was significantly higher compared to wild type and EMY-01.
  • Cross consumption and 2, 3-butanedi showed production capacity (FIG. 2).
  • EMY-68 consumed 57.65 g / L sucrose for 12 hours and produced 18.05 g / L of 2,3-butanediol.
  • Sucrose is a dimer of glucose and fructose, but the scrR deletion only affected sucrose metabolism, not fructose.
  • Enterobacter aerogenes saw extracellular fructose through the mult i component phosphotransferase system (PTS) to convert intracellular fructose-1-phosphate to use fructose (Ferenci & Kornberg, 1973; Kelker et al. , 1970).
  • Fructose -1-phosphate is phosphorylated to fructose-1,6-2 phosphate and is consumed by glycolysis.
  • some of the fructose of sucrose is hydrolyzed by fructokinase and converted to fructose-6-phosphate (Fig. La).
  • Crab forla pneumoniae strains have genes that can use sucrose, and these genes are operon (ScrA, EI I transport protein for sucrose; ScrB, sucrose ⁇ 6 ⁇ phosphate hydrolase! ScrK, f ructokinase; ScrY, outer membrane sucrose porin). It also has a scrR gene that controls the expression of this operon. Therefore, scrR was deleted through the lambda red recombination method in order to increase the sucrose and molasses utilization in the crab forla pneumoniae strain. In addition, the lactate dehydrogenase was removed in the same way to enjoy lactate production, a major by-product, and to prevent acidification of the medium.
  • Klebsiella pneumoniae strain belongs to two classes of pathogens, there are limitations in utilizing industrialization. Because pathogenicity is known to be caused by extracellular capsules, the wabG gene involved in the formation of external capsules was removed in the same way. Therefore, a total of three mutant strains were developed from the Crab forla pneumoniae strains, and Kb 01 for the Klebsiella pneumoniae ( ⁇ wabG) and Kepsiella pneumoniae (AwabG A.ldhA) Monia (AwabGAldhAAscrR) was named KMK-08 and comparative experiments were conducted on the production of 2,3-butanedie using sucrose and molasses. Culture medium and culture conditions
  • the culture of the Krebsiella pneumoniae mutant strain of the present invention was applied in the same manner as in the culture medium and culture conditions, ⁇ conditions of Example 1. result
  • KMK-08 showed a 10% decrease in 2,3-butanediol production when glucose or fructose was used as the only carbon source compared to the parent strain.
  • sucrose was used as the carbon source, it produced almost the same 2,3-butanediol as the parent strain, and when molasses was the carbon source, it showed an ability to produce 2,3-butanedial which was increased by about 32% compared to the parent strain. All.
  • the sugar cane molasses was used as a carbon source by culturing Enterobacter aerogenes KCTC2190 and Krebsciella pneumoniae metabolized to produce 2,3-butanediol.
  • IdhA and scrR-deleted Enterobacter aerogenes were fermented with sugarcane molasses as a carbon source, they produced 72.89 g / L of 2,3-butanediol at 36 hours and showed an efficiency per 0.36 g product / g.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a recombinant strain for producing 2,3-butanediol, comprising (a) an inactivated lactate dehydrogenase and (b) an inactivated sucrose regulator. According to the present invention, it is possible to economically produce 2,3-butanediol using a cheap carbon source, and the efficiency and productivity of 2,3-butanediol is remarkable compared with a wild type.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
(a) 불활성화 락테이트 디하이드로제나제 및 (b) 불활성화 수크로즈 조절자를 포함하는 2,3-부탄다이올 생성용 재조합 균주  Recombinant strain for producing 2,3-butanediol comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose modulator
【기술 분야】 [Technical field]
본 발명은 대한민국 지식경제부의 지원 하에서 과제번호 10035578에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국산업기술평가관리원, 연구사업명은 "산업기술개발사업" , 연구과제명은 "2, 3-부탄다이올 생산용 균주 발굴 및 대사회로 최적화 기술 개발" , 주관기관은 서강대학교 산학협력단, 연구기간은 2010. 04. 01 ~ 2015. 03. 31 이다.  The present invention was made by the task number 10035578 under the support of the Ministry of Knowledge Economy of Korea, the research management specialized organization of the task is the Korea Industrial Technology Evaluation and Management Institute, the research project name is "industrial technology development project", the research title is "2, 3-butane Development of technology for discovering strains for diol production and optimization of metabolic circuits ", The lead organization is Sogang University Industry-Academic Cooperation Group, and the research period is 2010. 04. 01 ~ 2015. 03. 31.
본 특허출원은 2013년 07월 16일에 대한민국 특허청에 제출된 대한민국 특허출원 제 10-2013-0083817 호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.  This patent application claims priority to Korean Patent Application No. 10-2013-0083817 filed with the Korean Intellectual Property Office on July 16, 2013, the disclosure of which is incorporated herein by reference.
본 발명은 (a) 불활성화 락테이트 디하이드로제나제 및 (b) 불활성화 수크로즈 조절자를 포함하는 2, 3-부탄다이올 생성용 재조합 균주에 관한 것이다. 【배경 기술】  The present invention relates to a recombinant strain for the production of 2,3-butanediol comprising (a) an inactivated lactate dehydrogenase and (b) an inactivated sucrose modulator. [Background technology]
바이오리파이너리 개발은 석유 자원에 대한 의존성을 감소시킬 수 있는 몇몇 화합물을 친환경적으로 생산할 수 있다. 예컨대, 플랫품 화합물인 2, 3-부탄다이을의 미생물을 이용한 생산은 최근 산업의 적용 가능성이 높아져 주목받고 있다 (Ji et al. , 2011). 그러므로, 크렙시엘라 뉴모니아 (Ma et al. , 2009) , 세라티아 마르센세스 (Zhang et al . ( 2010) 및 엔테로박터 에어로진스 (Jung et al., 2012)와 같은 몇몇 박테리아는 2,3- 부탄다이을 생산을 위한 산업용 균주로 개발되고 있다. Biorefinery development can produce environmentally friendly compounds that can reduce dependence on petroleum resources. For example, the production of microorganisms of 2, 3-butanediol, which is a flat compound, has recently attracted attention due to the high applicability of the industry (Ji et al., 2011). Therefore, some bacteria, such as Krebsiella pneumoniae (Ma et al., 2009), Serratia Marcenses ( 2010) and Enterobacter aerogenes (Jung et al., 2012), 3-butanedai is being developed as an industrial strain for production.
미생물을 이용한 2,3-부탄다이올의 생산 비용 중 가장 큰 부분을 차지하는 것이 탄소원의 비용이다. 그러므로, 보다 경제적인 탄소원을 찾고자 하는 많은 노력이 있어왔다. Sun et al.(2009)은 크렙시엘라 뉴모니아를 이용하여 유가면속 당화 및 발효 과정 (Simultaneous Saccharification and Fermentation; SSF)을 통해 전처리한 예루살렘 아티초크 (artichoke)의 덩이줄기로부터 91.63 g/L 2, 3-부탄다이을을 생산하였다. Wang et al.(2010)은 2, 3-부탄다이올을 생산하는데 옥수숫대 당밀을 사용하였다. 61 시간의 유가 발효를 통해 크템시엘라 뉴모니아로부터 78.9 g/L 2,3-부탄다이올을 생산하였다. Jiang et al.(2012)은 자트로파 겉껍질의 산 가수분해물로부터 2ᅳ 3-부탄다이올을 생산하고자 하였다. 2 단계 가수분해를 통해 효율적으로 자트로파 걸껍질을 가수분해하여 크랩시엘라 옥시토카를 이용하여 31.41 g/L 2,3- 부탄다이올을 생산하였다. The biggest source of the cost of producing 2,3-butanediol using microorganisms is the cost of the carbon source. Therefore, much effort has been made to find a more economical carbon source. Sun et al. (2009) describe the process of glycosylated glycosylation and fermentation using Krebssiella pneumoniae. Saccharification and Fermentation; 91.63 g / L 2, 3-butanedi was produced from tubers of Jerusalem artichoke pretreated via SSF). Wang et al. (2010) used corncob molasses to produce 2,3-butanediol. 61 hours of fed-batch fermentation yielded 78.9 g / L 2,3-butanediol from Ctemciela pneumoniae. Jiang et al. (2012) attempted to produce 2 ′ 3-butanediol from the acid hydrolyzate of the jatropha husk. The jatropha shell was hydrolyzed efficiently through two-stage hydrolysis to produce 31.41 g / L 2,3-butanediol using Crabciella oxytoca.
2008 년 USDA 는 사탕수수 당밀의 가격을 $0.50/kg이라고 보고하였다 (Chan et al., 2012) . 사탕수수 당밀은 대부분 수크로즈이고 글루코즈 및 프럭토즈가 유사량 있으며 약간의 흔합당으로 구성된다 (Akaraonye et al., 2012). 그러므로 사탕수수 당밀의 사용을 증가시키기 위해서는 수크로즈의 효율적인 활용이 주된 쟁점이다. 수크로즈 활용 경로는 장 박테리아에서 연구되었다. 도 la 에서 볼 수 있듯이, 수크로즈의 수송 및 대사는 PTS(Phosphotransf erase System) 및 비 -PTS 의 2 가지 경로로 분류된다 (Reid & Abratt, 2005). FTS-의존 수송은 크랩시엘라 뉴모니아 scr 오페론에서 규명된 EIIscr에 의한 인산화로 수크로즈를 들여온다 (Sprenger & Lengeler, 1988). 한편, 대장균 csc 오페론에서 발견된 비 -PTS 투과효소는 화학적인 모디피케이션 없이 수크로즈를 세포 안으로 전송한다 (Bockmann et al., 1992). 크렙시엘라 뉴모니아에서, 오페론은 프럭토키나제 (ScrK), 수크로즈 특이적 외막 포린 (ScrY)ᅳ PTS ΕΠ 전송 단백질 (ScrA), 수크로즈 -6-인산 가수분해효소 (ScrB) 및 수트로즈 의존 조절자 (ScrR)의 50RF로 구성된다 (도 lb). scr 오페론의 전사는 ScrR 에 의해 억제된다. 그러나, ScrR 돌연변이의 2, 3-부탄다이올을 생산하기 위한 사탕수수 당밀의 활용에 대한 연구는 보고된 적이 없다. 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. In 2008, the USDA reported the price of sugarcane molasses to $ 0.50 / kg (Chan et al., 2012). Sugar cane molasses is mostly sucrose, with similar amounts of glucose and fructose and consists of a few compatible sugars (Akaraonye et al., 2012). Therefore, the efficient use of sucrose is a major issue to increase the use of sugar cane molasses. Sucrose utilization pathways have been studied in intestinal bacteria. As can be seen in Figure la, the transport and metabolism of sucrose is classified into two pathways: Phosphotransf erase system (PTS) and non-PTS (Reid & Abratt, 2005). FTS-dependent transport introduces sucrose by phosphorylation by EII scr identified in the crab ciella pneumoniae scr operon (Sprenger & Lengeler, 1988). On the other hand, the non-PTS permease found in E. coli csc operon transfers sucrose into cells without chemical modulation (Bockmann et al., 1992). In Krebssiella pneumoniae, operons are fructokinase (ScrK), sucrose-specific envelope membrane (ScrY) ᅳ PTS ΕΠ transport protein (ScrA), sucrose-6-phosphate hydrolase (ScrB) and sucrose It consists of 50RF of dependent regulators (ScrR) (Fig. Lb). Transcription of the scr operon is inhibited by ScrR. However, no studies have been reported on the use of sugarcane molasses to produce 2,3-butanediol of the ScrR mutant. Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are The level of the technical field to which the present invention pertains and the content of the present invention are more clearly described by reference to the present specification as a whole.
【발명의 내용】 [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명자들은 2, 3-부탄다이을의 생산비용을 절감할 수 있는 균주 및 탄소원을 개발하고자 노력하였다. 그 결과, 불활성화 (inactivated) 락테이트 디하이드로제나제 (lactate dehydrogenase) 및 불활성화 수크로즈 조절자 (sucrose regulator)를 포함하는 재조합 균주를 개발하여 당밀을 탄소원으로 하는 배양배지에서 배양하는 경우에 우수한 2, 3-부탄다이올 생성 효율을 나타내는 것을 확인함으로써, 본 발명을 완성하였다ᅳ  The present inventors have tried to develop a strain and a carbon source that can reduce the production cost of 2, 3-butanedi. As a result, a recombinant strain comprising an inactivated lactate dehydrogenase and an inactivated sucrose regulator was developed and cultured in a culture medium containing molasses as a carbon source. This invention was completed by confirming showing 2, 3- butanediol production efficiency.
따라서, 본 발명의 목적은 2,3—부탄다이을 생성용 재조합 균주를 제공하는 데 있다.  Accordingly, it is an object of the present invention to provide a recombinant strain for producing 2,3-butanedai.
본 발명의 다른 목적은 2,3-부탄다이올 제조 방법을 제공하는 데 있다.  Another object of the present invention is to provide a method for producing 2,3-butanediol.
본 발명의 또 다른 목적은 2,3-부탄다이을을 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.  Another object of the present invention is to provide 2,3-butanedi. Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings.
【과제의 해결 수단】 [Measures of problem]
본 발명의 일 양태에 따르면, 본 발명은 (a) 불활성화 (inactivated) 락테이트 디하이드로제나제 (lactate dehydrogenase) 및 (b) 불활성화 (inactivated) 수크로즈 조절자 (sucrose regulator)를 포함하는 2, 3-부탄다이을 생성용 재조합 균주를 제공한다. 본 발명자들은 2,3-부탄다이올의 생산비용을 절감할 수 있는 균주 및 탄소원을 개발하고자 노력하였다. 그 결과, 불활성화 (inactivated) 락테이트 디하이드로제나제 (lactate dehydrogenase) 및 불활성화 수크로즈 조절자 (sucrose regulator)를 포함하는 재조합 균주를 개발하여 당밀을 탄소원으로 하는 배양배지에서 배양하는 경우에 우수한 2,3-부탄다이을 생성 효율을 나타내는 것을 확인하였다. According to one aspect of the invention, the invention comprises ( a ) an inactivated lactate dehydrogenase and (b) an inactivated sucrose regulator. , To provide a recombinant strain for producing 3-butanedi. The present inventors have tried to develop a strain and a carbon source that can reduce the production cost of 2,3-butanediol. As a result, a recombinant strain comprising an inactivated lactate dehydrogenase and an inactivated sucrose regulator was developed to produce molasses. When culturing in a culture medium containing a carbon source, it was confirmed that excellent production of 2,3-butanedi produced.
본 발명의 기본적인 전략은 2,3-부탄다이을 제조 균주에서 발견되는 락테이트 디하이드로제나제 및 수크로즈 조절자를 불활성화하는 것이다. 상기 락테이트 디하이드로제나제는 트리오즈 포스페이트 아이소머레이즈 (triosephosphate isomerase)로서, 해당과정에서 피루브산을 NADH (Nicotinamide adenine dinucleot ide)를 환원하여 락테이트로 전환하는 반웅을 촉매하는 효소이다. 상기 수크로즈 조절자는 LacI-GalR 패밀리의 하나로, 수크로즈 하이드롤라제 (sucrose hydrolase)를 코딩하는 ScrB 의 발현을 억제하는 전사 억제자이며, 수크로즈 오페론 억제자 (sucrose operon repressor) 및 Lac I 패밀리 전사 조절자 (Lacl family transcriptional regulator)와 동일한 의미이다.  The basic strategy of the present invention is to inactivate the lactate dehydrogenase and sucrose modulators found in strains for producing 2,3-butanedi. The lactate dehydrogenase is a triose phosphate isomerase, and is an enzyme that catalyzes the reaction of converting pyruvic acid into lactate by reducing NADH (Nicotinamide adenine dinucleotide) in glycolysis. The sucrose modulator is one of the LacI-GalR family, a transcriptional inhibitor that suppresses the expression of ScrB encoding sucrose hydrolase, and a sucrose operon repressor and Lac I family transcription. It is synonymous with Lacl family transcriptional regulator.
불활성화 대상이 되는 락테이트 디하이드로제나제 및 수크로즈 조절자는 다양한 균주에서 발견되고 동정되었다. 하기의 실시예에서는 서열목록 제 1 서열의 엔테로박터 에어로진스의 락테이트 디하이드로제나제 및 서열목록 제 2 서열의 엔테로박터 에어로진스의 수크로즈 조절자가 예시되어 있으나, 이외에도 다양한 락테이트 디하이드로제나제 및 수크로즈 조절자가 본 발명에 포함된다. 예를 들어 , 락테이트 디하이드로제나제는 GenBank 접근번호 CP_002824( / Z ^e aerogenes) , 접근번호 K_015663( En terobacter aerogenes) , 접근번호 NC_018522(/i7e/«/e// pneumonia) , 접근번호 NC_011283 7eZ?s/e//s pneumoniae) , 접근번호 NC_017540( /e/?5/e//3 pneumoniae) , 접근번호 NC_012731(/i7eZ«/e//s pneumoniae) , 접근번호 NC_016612(A7≤ /e// oxytoca) 및 접근번호 i8106( Iebs/ella oxytoca)^} 개시된 락테이트 디히드로제나제가 본 발명의 불활성화 대상이 될 수 있으며, 수크로즈 조절자는 GenBank 접근번호 CP_002824 ¾ eOtoc: er aerogenes) , 접근번호 Lactate dehydrogenase and sucrose modulators to be inactivated have been found and identified in various strains. In the following examples, lactate dehydrogenase of Enterobacter aerogenes of SEQ ID NO: 1 and sucrose modulators of Enterobacter aerogenes of SEQ ID NO: 2 are illustrated, but various lactate dehydrogenases And sucrose adjusters are included in the present invention. For example, lactate dehydrogenase is GenBank accession number CP_002824 (/ Z ^ e aerogenes), accession number K_015663 (En terobacter aerogenes), accession number NC_018522 (/ i7e / «/ e // pneumonia), accession number NC_011283 7eZ? S / e // s pneumoniae), accession number NC_017540 (/ e /? 5 / e // 3 pneumoniae), accession number NC_012731 (/ i7eZ «/ e // s pneumoniae), accession number NC_016612 (A7≤ / e // oxytoca) and accession number i8106 (Iebs / ella oxytoca) ^} The disclosed lactate dehydrogenases may be subject to inactivation of the invention, and the sucrose modulator is GenBank accession number CP_002824 ¾ eOtoc: er aerogenes), Access number
HC_015663( En terobacter aerogenes) , 접근번호 NC_01852( /ebs/e// pneumoniae) , 접근번호 NC_011283(/i7efe/e/ 3 pneumoniae) , 접근번호 j \2{Klebsiella oxytoca) 및 접근번호 NC OlSlOe VeZ^/e/ oxytoca)^] 개시된 수크로즈 조절자가 본 발명에서 불활성화 대상이 될 수 있다. W 201 HC_015663 (En terobacter aerogenes), accession number NC_01852 (/ ebs / e // pneumoniae), accession number NC_011283 (/ i7efe / e / 3 pneumoniae), accession number j \ 2 (Klebsiella oxytoca) and accession number NC OlSlOe VeZ ^ / e / oxytoca) ^] The disclosed sucrose modulators may be subject to inactivation in the present invention. W 201
본 명세서에서 락테이트 디하이드로제나제 및 수크로즈 조절자를 언급하면서 사용되는 용어, "불활성화" 는 락테이트 디하이드로제나제 및 수크로즈 조절자의 기능을 상실케 하는 모든 변이 (예컨대 , 결실, 치환 또는 부가 변이)를 포함하는 의미를 갖는다. 예를 들어, 락테이트 디하이드로제나제 유전자 및 수크로즈 조절자 유전자의 결실은 락테이트 디하이드로제나제 또는 수크로즈 조절자 코딩 서열의 부분,결실 또는 전체 결실을 모두 포함한다. As used herein, the term "inactivation", referring to lactate dehydrogenase and sucrose modulators, refers to any variation (eg, deletion, substitution, or loss of function of lactate dehydrogenase and sucrose modulators). Additional variation). For example, the deletion of the lactate dehydrogenase gene and the sucrose modulator gene include all, partial or complete deletions of the lactate dehydrogenase or sucrose modulator coding sequences.
본 발명의 일 구현예에 따르면, 상기 불활성화 락테이트 디하이드로제나제는 락테이트 디하이드로제나제를 코딩하는 뉴클레오타이드 서열에서 결실, 치환 또는 부가 변이가 발생된 것이다ᅳ  According to one embodiment of the invention, the inactivated lactate dehydrogenase is a deletion, substitution or addition mutation in the nucleotide sequence encoding the lactate dehydrogenase.
본 발명의 일 구현예에 따르면, 상기 불활성화 수크로즈 조절자는 수크로즈 조절자를 코딩하는 뉴클레오타이드 서열에서 결실 , 치환 또는 부가 변이가 발생된 것이다.  According to one embodiment of the invention, the inactivated sucrose modulator is a deletion, substitution or addition mutation occurred in the nucleotide sequence encoding the sucrose modulator.
이러한 락테이트 디하이드로제나제 또는 수크로즈 조절자 코딩 서열의 변이는 당업계에 공지된 다양한 변이유발 (mutagenesis) 방법을 통하여 실시할 수 있다. 예를 들어, PCR 돌연변이 유발법, 카세트 돌연변이 유발법 (Sambrook, J. et al . , Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(200D) , λ Red 재조합 방법 (Jung et al. , 2012; Datsenko and Wanner , Proc. Natl . Acad. Sci . USA, 97: 6640-6645, 2000), Rac phage RecE/RecT system (Zhang et al. , Nature Biotechnol. , 18:1314-1317, 2000), FLP-FRT 재조합 방법 (Zhu XD, Sadowski PD (1995) "CI eavage-dependent Ligation by the FLP Recombinase" . Journal of Biological Chemistry 270 (39): 23044-54), 부위—특이 재조합 방법 (Sauer, Brian; Henderson, Nancy (1988). "Site- Specific DNA Recombination in Mamma 1 i an Cells by the Cre Recombinase of Bacteriophage PI" . Proceedings of the National Academy of Sciences of the United States of America 85 (14): 5166-70), Cre-Lox 재조합 방법 (Turan, S.; Galla, M.; Ernst , E.; Qiao, J.; Voelkel, C.; Schiedlmeier , B.; Zehe , - C .; Bode, J. (2011) . "Recombinaseᅳ mediated cassette exchange (RMCE): traditional concepts and current challenges". J. Mol. Biol. 407 (2): 193-221), 염색체 교차법 (Creighton H, McClintock B (1931) . "A Correlation of Cytological and Genet ical Crossing-Over in Zea Mays". Proc Nat 1 Acad Sci USA 17 (8): 492-7) 및 트랜스포존 (US 20090305369)을 통하여, 락테이트 디하이드로제나제 및 수크로즈 조절자를 불활성화 시키는 변이를 유발시킬 수 있다. Such mutation of the lactate dehydrogenase or sucrose regulator coding sequence can be carried out through various mutagenesis methods known in the art. For example, PCR mutagenesis, cassette mutagenesis (Sambrook, J. et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (200D), λ Red recombination method (Jung et al., 2012, Datsenko and Wanner, Proc. Natl. Acad. Sci. USA, 97: 6640-6645, 2000), Rac phage RecE / RecT system (Zhang et al., Nature Biotechnol., 18: 1314-1317, 2000), FLP-FRT recombination methods (Zhu XD, Sadowski PD (1995) "CI eavage-dependent Ligation by the FLP Recombinase". Journal of Biological Chemistry 270 (39): 23044-54), site-specific recombination methods (Sauer, Brian; Henderson, Nancy (1988). "Site-Specific DNA Recombination in Mamma 1 i an Cells by the Cre Recombinase of Bacteriophage PI" .Proceedings of the National Academy of Sciences of the United States of America 85 (14): 5166-70) , Cre-Lox recombination method (Turan, S .; Galla, M .; Ernst, E .; Qiao, J .; Voelkel, C .; Schiedlmeier, B .; Zehe,-C .; Bode, J. (2011) "Recombinase ᅳ m ediated cassette exchange (RMCE): traditional concepts and current challenges ". J. Mol. Biol. 407 (2): 193-221), chromosome crossing (Creighton H, McClintock) B (1931). "A Correlation of Cytological and Genetic Crossing-Over in Zea Mays". Proc Nat 1 Acad Sci USA 17 (8): 492-7) and transposons (US 20090305369) can cause mutations to inactivate lactate dehydrogenase and sucrose modulators.
본 발명의 다른 구현예에 따르면, 상기 불활성화 락테이트 디하이드로제나제는 락테이트 디하이드로제나제를 코딩하는 뉴클레오타이드 서열에서 결실 변이가 발생된 것이다.  According to another embodiment of the invention, the inactivated lactate dehydrogenase is one in which a deletion mutation occurs in the nucleotide sequence encoding the lactate dehydrogenase.
본 발명의 다른 구현예에 따르면, 상기 불활성화 수크로즈 조절자는 수크로즈 조절자를 코딩하는 뉴클레오타이드 서열에서 결실 변이가 발생된 것이다.  According to another embodiment of the present invention, the inactivated sucrose modulator is a deletion mutation occurred in the nucleotide sequence encoding the sucrose modulator.
본 발명의 특정 구현예에 따르면, 상기 결실 변이는 레드 람다 (lambda) 재조합 방법을 통해 결실 변이를 발생한다.  According to certain embodiments of the invention, said deletion mutations result in deletion mutations via a red lambda recombination method.
본 발명의 (a) 불활성화 (inactivated) 락테이트 디하이드로제나제 (lactate dehydrogenase) 및 (b) 불활성화 (inactivated) 수크로즈 조절자 (sucrose regulator)를 포함하는 2ᅳ 3-부탄다이올 생성용 재조합 균주는 병원성을 갖는 균주에 적용되는 경우에, 병원성을 제거하기 위해 추가적으로 유전자 조작을 실시할 수 있다.  For the production of 2 ′ 3-butanediol comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator of the invention. When the recombinant strain is applied to a pathogenic strain, further genetic manipulation may be performed to remove the pathogenicity.
본 발명의 일 구현예에 따르면, 2,3-부탄다이올 생성용 재조합 균주는 wabG 를 코딩하는 뉴클레오타이드 서열에서 결실, 치환 또는 부가 변이가 추가적으로 발생된다. 본 발명의 다른 구현예에 따르면, 상기 wabG 를 코딩하는 뉴클레오타이드 서열에서 결실 변이가 발생된다.  According to one embodiment of the invention, the recombinant strain for producing 2,3-butanediol additionally generates a deletion, substitution or additional mutation in the nucleotide sequence encoding wabG. According to another embodiment of the present invention, a deletion mutation occurs in the nucleotide sequence encoding wabG.
본 발명의 (a) 불활성화 (inactivated) 락테이트 디하이드로제나제 (lactate dehydrogenase) 및 (b) 불활성화 (inactivated) 수크로즈 조절자 (sucrose regulator)를 포함하는 2,3-부탄다이을 생성용 재조합 균주는 2, 3-부탄다이을을 생성하는 다양한 균주에 적용될 수 있다. 본 발명의 일 구현예에 따르면, 상기 균주는 애로모나스 C4er ^/?as) 속, 바실러스 속, 브레비바실러스 (^e /Z c///i/s) 속 코리네박테리움 ( Corynebacteriu ) 속 , 엔테로박터 ieOto^er) 속 크렙시엘라 7e /e// ) 속, 락토바실러스 a C ofec///"s) 속 락토코커스 (^3 0C0" S) 속 류코노스톡 (^g /CiMCiS C) 속 오에노코커스 속 페다오코커스 (/¾//£a?:c/s) 속 라오울텔라 0 / e//3) 속, 세라티아 (5err /3) 속, 스트렙토코커스 ( Yre o ?cci/s) 속 또는 라이조박테리엄 ( / o«c^er/ ) 속이고, 본 발명의 다른 구현예에 따르면, 상기 균주는 엔테로박터 속 또는 크렙시엘라 속이며, 본 발명의 특정 구현예에 따르면, 엔테로박터 애어로진스 (쑈 e/OZ c aerogenes) 또는 크랩시엘라 뉴모니아 /e// pneumoniae)이다 . Recombinant for producing 2,3-butanedi comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator of the present invention The strain can be applied to various strains that produce 2, 3-butanedi. According to one embodiment of the invention, the strain is genus Aeromonas C4er ^ /? As, Bacillus genus, Brevibacillus (^ e / Z c /// i / s) genus Corynebacterium (Coynebacteriu) genus , Enterobacter ieOto ^ er) in Klebsiella 7e / e //), Lactobacillus a C ofec /// "s) in Lactococcus (^ 3 0C0" S) in Leukonostock (^ g / CiMCiS C ) In Oenocaucus in Pedao Caucus (/ ¾ // £ a?: C / s) in Lao Ultella 0 / e // 3), Serratia (5err / 3), Streptococcus (Yre o? Cci / s) or Lyzobacterium (/ o «c ^ er /) According to another embodiment, the strain is of the genus Enterobacter or of the genus Klebsiella, and according to certain embodiments of the present invention, enterobacter aerogenes (쑈 e / OZ c aerogenes) or crab ciella pneumoniae / e / / pneumoniae).
본 발명의 2,3-부탄다이올 생성용 균주는 탄소원으로 사탕수수 당밀을 이용한다.  The strain for producing 2,3-butanediol of the present invention uses sugarcane molasses as a carbon source.
본 발명의 특정 구현예에 따르면, 본 발명의 2, 3-부탄다이을 생성용 균주를 탄소원으로 사탕수수 당밀을 포함하는 배양배지에서 배양하는 경우 글루코즈, 다른 탄소원 (예컨대, 프럭토즈 또는 수크로즈)을 포함하는 배양배지에서 배양하는 경우와 비교하여 우수한 2,3-부탄다이올 효율 및 생산성을 나타낸다. 본 발명의 다른 양태에 따르면, 본 발명의 균주를 배양 배지에서 배양하는 단계를 포함하는 2,3-부탄다이올 제조 방법을 제공한다.  According to a specific embodiment of the present invention, when culturing in a culture medium containing sugarcane molasses as a carbon source of the strain for producing 2, 3-butanedi of the present invention, glucose, other carbon sources (eg, fructose or sucrose) The 2,3-butanediol efficiency and productivity are excellent compared to the case of culturing in a culture medium containing. According to another aspect of the present invention, it provides a method for producing 2,3-butanediol comprising culturing the strain of the present invention in a culture medium.
본 발명의 2,3-부탄아이올 제조방법의 상기 배양하는 단계에서의 배지는 엔테로박터 균주의 배양에 이용되는 어떠한 배지도 포함하며, 기본적으로 탄소원, 질소원 및 에너지원을 포함한다.  The medium in the culturing step of the method for producing 2,3-butane iol of the present invention includes any medium used for culturing Enterobacter strains, and basically includes a carbon source, a nitrogen source, and an energy source.
본 발명의 방법에서 이용되는 탄소원은 다양한 탄수화물이 이용될 수 있으며, 본 발명의 일 구현예에 따르면, 당밀, 글루코스, 수크로스 또는 프럭토스이며, 본 발명의 다른 구현예에 따르면, 당밀이다. 본 발명의 방법에서 이용되는 질소원은 유기 질소원이 이용되며, 본 발명의 일 구현예에 따르면, 효모 추출물 및 펩톤이며, 본 발명의 다른 구현예에 따르면., 효모 추출물이다. 본 발명의 방법에서 이용되는 에너지원은 탄소원 및 질소원과 동시에 이용된다.  The carbon source used in the method of the present invention may be a variety of carbohydrates, according to one embodiment of the present invention, molasses, glucose, sucrose or fructose, according to another embodiment of the present invention, molasses. Nitrogen source used in the method of the present invention is an organic nitrogen source is used, according to one embodiment of the present invention, yeast extract and peptone, according to another embodiment of the present invention, yeast extract. The energy source used in the process of the invention is used simultaneously with a carbon source and a nitrogen source.
상기 배양 배지는 탄소원, 질소원 및 에너지원 이외에 추가적으로 미량원소 공급원 및 필수아미노산 공급원을 포함할 수 있다. 본 발명의 일 구현예에 따르면, 상기 미량원소 공급원으로 KCl, (NH4)S04, Na2S04, MgS04 - 7H20, ZnCl2, FeCl3 · 6H20, MnCl2 · 4H20, CuCl2 · 2H20 및 ¾B03 을 포함하고, 상기 필수아미노산 공급원으로 카사미노산 (casamino acid)을 포함한다. The culture medium may further include a trace element source and an essential amino acid source in addition to a carbon source, a nitrogen source and an energy source. According to one embodiment of the present invention, as the trace element source KCl, (NH 4) S0 4 , Na 2 S0 4, MgS0 4 - 7H 2 0, ZnCl 2, FeCl 3 · 6H 2 0, MnCl 2 · 4H 2 0, CuCl 2 · 2H 2 0 and ¾B0 3 And include casamino acid as the essential amino acid source.
본 발명에서 탄소원으로 이용하는 사탕수수 당밀의 pH 는 pH 4.94 로 매우 낮으므로, 정상적인 균주의 생장을 위해 배양 과정 동안 pH 를 조절하여야 한다. 본 발명의 일 구현예에 따르면, 배양 배지는 pH 5.5 내지 pH 7.0의 최적 pH를 갖는다.  Since the pH of the sugarcane molasses used as a carbon source in the present invention is very low at pH 4.94, the pH should be adjusted during the culturing process for normal strain growth. According to one embodiment of the invention, the culture medium has an optimal pH of pH 5.5 to pH 7.0.
본 발명의 배양 단계에서 배양 온도는 30°C 내지 40°C이고, 본 발명의 일 구현예에 따르면, 상기 배양 온도는 33°C 내지 39°C이고, 본 발명의 다른 구현예에 따르면, ;상기 배양 온도는 35°C 내지 38°C이다. In the culture step of the present invention, the culture temperature is 30 ° C to 40 ° C, according to one embodiment of the present invention, the culture temperature is 33 ° C to 39 ° C, according to another embodiment of the present invention ; The incubation temperature is 35 ° C to 38 ° C.
본 발명의 2, 3-부탄다이을 제조방법은 본 발명의 재조합 균주를 배양하는 다양한 방법을 통해 실시한다 .  Method for producing 2, 3-butanedi of the present invention is carried out through various methods of culturing the recombinant strain of the present invention.
본 발명의 일 구현예에 따르면, 상기 배양은 회분 발효 (Batch ferment at ion) 또는 유가 발효 (Fed一 batch fermentat ion)이다.  According to one embodiment of the invention, the culture is batch fermentation (Batch ferment at ion) or fed-batch fermentation (Fed one batch fermentat ion).
본 명세서에서, 용어 '회분 발효' 는 발효 동안 배지를 추가하거나 제거하는 처리 없이 최초의 배지만으로 진행되는 발효를 의미하고, '유가 발효' 는 발효 동안 배지를 추가 및 제거하며 진행되는 발효를 의미한다. 본 발명의 특정 구현예에 따르면, 본 발명의 2, 3-부탄다이올 제조방법을 회분 발효로 실시하는 경우에 야생형 균주의 배양과 비교하여 10 % 이상 향상된 0.329 g/g 당의 2,3—부탄다이올 효율 및 6 이상 향상된 2.14 g/1/h 2,3-부탄다이을 생산성을 나타내고, 유가 발효로 실시하는 경우에는 0.359 g/g 당의 2, 3-부탄다이올 효율 및 2.02 g/1/h 2,3- 부탄다이올 생산성을 나타낸다. 본 발명의 또 다른 양태에 따르면 본 발명은 본 발명의 제조 방법에 의해 제조된 2,3-부탄다이을을 제공한다.  As used herein, the term 'batch fermentation' refers to a fermentation that proceeds to the first medium only without treatment to add or remove the medium during fermentation, and 'feed fermentation' means fermentation that proceeds with addition and removal of medium during fermentation. . According to a particular embodiment of the invention, 2,3-butanes per 0.329 g / g improved by at least 10% compared to the cultivation of wild-type strains when the 2, 3-butanediol preparation of the present invention is carried out by batch fermentation. Productivity of 2.14 g / 1 / h 2,3-butanedi improved by diol efficiency and 6 or more, and 2,3-butanediol efficiency per 0.359 g / g and 2.02 g / 1 / h when subjected to oily fermentation 2,3-butanediol productivity is shown. According to another aspect of the present invention, the present invention provides 2,3-butanedi produced by the production method of the present invention.
본 명세서에서 용어 '2,3-부탄다이을 효율' 은 탄소원으로 배지 내에 첨가되는 당의 g 당 2,3-부탄다이올 생산량을 의미하고, '2,3- 부탄다이올 생산성' 은 1 시간 동안 1 L 에서 생산되는 2,3-부탄다이을을 의미한다. 본 발명의 2,3-부탄다이을은 상기 제조 방법에 의해 제조된 2,3- 부탄다이올이므로, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다. 【효과】 As used herein, the term 'efficiency of 2,3-butanedi' refers to the yield of 2,3-butanediol per gram of sugar added to the medium as a carbon source, and '2,3-butanediol productivity' refers to 1 hour It means 2,3-butanedi produced in L. Since 2,3-butanediol of the present invention is 2,3-butanediol prepared by the above production method, the common content between the two is omitted in order to avoid excessive complexity of the present specification. 【effect】
본 발명의 특징 및 이점을 요약하면 다음과 같다:  The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 2, 3-부탄다이올 생성용 균주를 제공한다.  (a) The present invention provides a strain for producing 2,3-butanediol.
(b) 본 발명은 저렴한 탄소원을 이용하여 경제적으로 2,3- 부탄아이올을 생산할 수 있다.  (b) The present invention can economically produce 2,3-butaneiol using an inexpensive carbon source.
(c) 본 발명은 야생형과 비교하여 우수한 2, 3-부탄다이올 효율 및 생산성을 나타낸다.  (c) The present invention shows superior 2, 3-butanediol efficiency and productivity compared to wild type.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 la 는 박테리아의 PTS 및 비 -PTS 당 트랜스포터 수크로즈 이화작용 경로를 나타낸다.  La shows the PTS and non-PTS sugar transporter sucrose catabolic pathways of bacteria.
도 lb 는 3 종류의 장내 박테리아 지놈의 유전자 배열을 나타낸다. ScrA 는 ΕΠ 수크로즈 전송 단백질, CscB 는 수크로즈-특이적 투과효소, CscA 는 수크로즈 -6-인산 가수분해효소, ScrK 및 CscK 는 프럭토키나제, Pgm 은 포스포글루코뮤타제, ScrY 는 외막 수크로즈 포린, ScrR 및 CscR 은 수크로즈 대사 억제자의 유전자를 나타낸다.  Lb shows the gene sequence of three types of intestinal bacterial genomes. ScrA is an ΕΠ sucrose transfer protein, CscB is a sucrose-specific permease, CscA is a sucrose-6-phosphate hydrolase, ScrK and CscK are fructokinase, Pgm is phosphoglucomutase, and ScrY is outer membrane number Crossporin, ScrR and CscR represent genes of sucrose metabolism inhibitors.
도 2 는 야생형 (닫힌 사각형), EMY-0K열린 원) 및 EMY-68(십자)의 (a) 글루코즈, (b) 프럭토즈, (c) 수크로즈 또는 (d) 사탕수수 당밀을 탄소원으로 배양한 2,3-부탄다이올 생산을 나타낸다. 오류막대는 3 회 실험에 대한 표준편차이다.  FIG. 2 shows cultures of (a) glucose, (b) fructose, (c) sucrose, or (d) sugarcane molasses of wild type (closed rectangle), EMY-0K open circle) and EMY-68 (cross). One 2,3-butanediol production is shown. Error bars are the standard deviation for three experiments.
도 3은 (a) 야생형, (b) EMY-01 및 (c) EMY-68의 글루코즈 (닫힌 원), 수크로즈 (십자), 프럭토즈 (열린 삼각형) 및 총 당 (닫힌 사각형)에 대한 당 소비의 회분발효 결과를 나타낸다.  Figure 3 shows sugars for (a) wild type, (b) glucose (closed circle), sucrose (cross), fructose (open triangle) and total sugar (closed rectangle) of EMY-01 and (c) EMY-68. The result of the batch fermentation of consumption is shown.
도 4 는 ρΗ (더하기), 2, 3-부탄다이을 (열린 원), 에탄올 (열린 다이아몬드), 아세토인 (열린 사각형) 및 총 당 (닫힌 사각형)의 농도에 대한 사탕수수 당밀을 이용한 유가발효 결과를 나타낸다. 도 5a 내지 도 5d 는 KMK-01(닫힌 사각형), KM -02 (열린 원) 및 KMK-08(x표)의 2, 3-부탄다이을 생산량을 나타내는 결과로, 도 5a 는 글루코즈, 도 5b 는 프럭토즈, 도 5c 는 수크로즈 및 도 5d 는 당밀을 유일 탄소원으로 사용하여 플라스크 배양한 결과이다. Figure 4 shows the fermentation results of sugar cane molasses for concentrations of ρΗ (plus), 2, 3-butanedi (open circle), ethanol (open diamond), acetoin (open square) and total sugar (closed square). Indicates. 5A to 5D show the yields of 2 and 3-butanedies of KMK-01 (closed square), KM-02 (open circle) and KMK-08 (x table), FIG. 5A is glucose, and FIG. 5B is Fructose, FIG. 5C is a result of flask culture using sucrose and FIG. 5D with molasses as the only carbon source.
도 6a 내지 도 6c 는 플라스크 배양에서 MK-0K도 6a), KMK-02 도 6A-6C show MK-0K in flask culture 6A), KMK-02
6b) 및 KMK-08(도 6c)의 글루코즈 (닫힌 원), 수크로즈 (x표), 프럭토즈 (열린 삼각형) 및 총 탄소원 (닫힌 사각형)에 대한 탄소원 소비경향 결과를 보여준다. 【발명을 실시하기 위한 구체적인 내용】 6b) and carbon source consumption trend results for glucose (closed circle), sucrose (x table), fructose (open triangle) and total carbon source (closed rectangle) of KMK-08 (FIG. 6c). [Specific contents to carry out invention]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예 1: 엔테로박터 에어로진스를 이용한 2,3-부탄다이을 생산  Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. . Example 1 Production of 2,3-Butanedie Using Enterobacter Aerogenes
실험 재료 및 실험 방법 Experimental Materials and Experimental Methods
균주 개발 Strain development
엔테로박터 에어로진스 균주는 야생형 균주로부터 유래하였다 (KCTC 2190). 이전 연구에서, λ 레드 재조합 방법을 이용하여 엔테로박터 에어로진스 KCTC2190의 락테이트 디하이드로제나제 (lactate dehydrogenase; LdhA)를 결실하여 EMY-01 을 제조하였다 (Jung et al. , 2012). 본 발명에서는 EMY-01 의 지놈에서 Lacl 패밀리의 수크로즈 조절자를 코딩하는 유전자인 ScrR 을 유사한 방법으로 결실하여 EMY-68 라고 명명하였다. ScrR 을 결실하기위해 scrR_F F_fw 및 scrR_F F_rv 프라이머를 사용하였고 scrR_con_A 및 scrRᅳ conᅳ B 프라이머로 콜로니 PCR(Polymerase Chain React ion)하여 확인하였다. 본 발명에 사용된 균주, 플라스미드 및 프라이머를 표 1 에 나타내었다. 밑줄이 그어진 서열은 엔테로박터 에어로진스의 scrR 서열과 일치한다.  Enterobacter aerogenes strains were derived from wild type strains (KCTC 2190). In previous studies, EMY-01 was prepared by deleting the lactate dehydrogenase (LdhA) of Enterobacter aerogenes KCTC2190 using the λ red recombination method (Jung et al., 2012). In the present invention, SCRR, a gene encoding the sucrose regulator of the Lacl family in the genome of EMY-01, was deleted by a similar method and named EMY-68. The scrR_F F_fw and scrR_F F_rv primers were used to delete ScrR and confirmed by colony PCR (Polymerase Chain React ion) with scrR_con_A and scrR ᅳ con ᅳ B primers. The strains, plasmids and primers used in the present invention are shown in Table 1. The underlined sequence matches the scrR sequence of Enterobacter aerogenes.
엔테로박터 에어로진스의 scrR 유전자를 제거하기 위해 레드 람다 (Red lambda) 재조합 방법을 사용했다. 우선 세포 내부로 유입된 선형 유전자의 분해를 방지하고 상동재조합 (homologous recombinat ion)의 효을을 높이기 위한 효소 엑소, 감마, 베타의 발현 백터를 컴피턴트 세포로 준비된 엔테로박터 에어로진스에 형질전환 시켰다. tac 프로모터를 가지고 앰피실린 저항성이 있는 pKM208 백터를 본 발명에 사용하였고, 형질전환을 확인하였다. 다음으로 상동재조합을 위한 선형 유전자를 제작하였다, FRT-카나마이신 -FRT 카세트를 가진 pKD4 백터를 주형으로 사용하였다. 상동재조합이 발생하는 위치인 엔테로박터 에어로진스의 sc ?유전자 양 옆의 상동한 50 개의 염기쌍과 주형으로 쓰는 pKD4 의 FRT- 카나마이신 -FRT 카세트를 중합하기 위한 20 개의 염기쌍, 총 70 개의 염기쌍을 프라이머로 제작하였고 중합효소 연쇄 반웅 (Polymerase Chain React ion)을 이용하여 scrR 유전자를 제거하기 위한 선형 유전자를 제작하였다. 카나마이신은 상동재조합이 성공적으로 이루어졌는지 확인하기 위한 항 의약 (anti drug)이고, FRT 부위는 목표 유전자가 제거 된 후 다른 유전자의 제거를 위해 항 의약을 제거해 주는 역할을 한다. Red lambda recombination was used to remove the scrR gene from Enterobacter aerogenes. First, inside the cell Expression vectors of the enzymes exo, gamma and beta were transformed into enterobacter aerogenes prepared with competent cells to prevent degradation of linear genes and enhance the effect of homologous recombinat ion. An ampicillin resistant pKM208 vector with a tac promoter was used in the present invention and transformation was confirmed. Next, a linear gene for homologous recombination was constructed, and a pKD4 vector with an FRT-kanamycin-FRT cassette was used as a template. 50 base pairs homologous to each side of the Enterobacter aerogenes sc gene, the site of homologous recombination, and 20 base pairs to polymerize the FRT-kanamycin-FRT cassette of pKD4 as a template, with a total of 70 base pairs as primers Using the polymerase chain reaction (Polymerase Chain React ion) to prepare a linear gene for removing the scrR gene. Kanamycin is an anti drug to confirm successful homologous recombination, and the FRT site removes the anti drug to remove other genes after the target gene is removed.
다음 단계로 pKM208 백터가 형질전환 된 것이 확인된 엔테로박터 에어로진스를 30°C에서 배양하였다. pKM208 백터는 온도에 민감한 백터로써 37°C이상이 되면 그 활성을 잃기 때문에 30°C에서 배양하였다. 또한 배양 1 시간 후 OD600 이 0.1 정도 되었을 때 1 mM 의 IPTG(Isopropylthio-p-galactoside)로 pKM208 의 레드 람다 재조합 효소 발현 유도를 시켜주었다. .1 시간 더 배양시켜 0D600 이 0.6 정도가 되었을 때 전기천공법을 위한 컴피턴트 세포로 만든 후 제작한 선형유전자를 형질전환 하였다. LB 배지에 37°C에서 1 시간 배양 후 카나마이신이 12.5 wg/mi 첨가된 LB 고체배지에 스프레딩하고 12 시간 배양시켰다. 상동재조합의 성공 여부를 확인하기 위해 2 가지의 프라이머가 제작되었다. 락테이트 디하이드로겐에이즈 양옆의 상동한 2으24 개의 염기쌍을 scrR_con_A 와 _B 로 명칭하였다. 이 2 가지 프라이머를 사용하여 콜로니 PCR 을 수행하였을 때 PCR 생산물의 길이를 통해 상동재조합의 여부를 확인하였다. In the next step, enterobacter aerobics was confirmed that the transformed pKM208 vector was incubated at 30 ° C. The pKM208 vector was a temperature sensitive vector and was incubated at 30 ° C because its activity was lost above 37 ° C. In addition, when OD600 was about 0.1 hours after incubation, 1 mM of IPTG (Isopropylthio-p-galactoside) induced red lambda recombinase expression of pKM208. . When cultured for another 1 hour and 0D600 was about 0.6, the produced linear genes were transformed into competent cells for electroporation. After incubating for 1 hour at 37 ° C in LB medium, kanamycin was spread on LB solid medium to which 12.5 wg / mi was added and incubated for 12 hours. Two primers were prepared to confirm the success of homologous recombination. Two to 24 base pairs homologous to both sides of lactate dehydrogenase were named scrR_con_A and _B. When colony PCR was performed using these two primers, homologous recombination was confirmed through the length of the PCR product.
【표 1】 균주, 유전자형 , 관련 특징 또는 서열 참조 플라스미드 또는 TABLE 1 Strains, Genotypes, Related Features or Sequence References Plasmid or
프라이머 균주  Primer strains
E. aerogenes  E. aerogenes
야생형 생명자원센터 KCTC 2190  Wildlife Resource Center KCTC 2190
(Jung et al . , Jung et al.,
EMY 01 E. aerogenes KCTC 2190 - Λ/ A EMY 01 E. aerogenes KCTC 2190-Λ / A
2012) 2012)
EMY 68 E. aerogenes KCTC 2190 AldhA ᅀ scrR 보 발명 플라스미드 EMY 68 E. aerogenes KCTC 2190 AldhA ᅀ scrR invention plasmid
lad, λ Red+Gam-생산 백터, tac_프로모터, pKM208 Addgene f 1— ori , Am^  lad, λ Red + Gam-production vector, tac_ promoter, pKM208 Addgene f 1— ori, Am ^
FLP 재조합효소 생산 백터 , pSClOl ori , cI857, (Datsenko & pCP20  FLP recombinase production vector, pSClOl ori, cI857, (Datsenko & pCP20
Awj} , Cnf Wanner, 2000)  Awj}, Cnf Wanner, 2000)
(Datsenko & pKD4 FRT 인접 내성 카세트 관련 백터, oriRy, Knf  (Datsenko & pKD4 FRT Proximity Resistant Cassette Related Vector, oriRy, Knf
Wanner, 2000) 프라이머  Wanner, 2000 Primer
C(XiCCATGCATGGTAG T GCGTTTTGCTTTCAGGC scrR_FKF_fw* 보ᄂ_ ¾ a τ 0 C (XiCCATGCATGGTAG T GCGTTTTGCTTTCAGGC scrR_FKF_fw * b_ ¾ a τ 0
GCCTGTCTCGTGGTGTAGGCTGGAGCTGOTC GCCTGTCTCGTGGTGTAGGCTGGAGCTGOTC
GACAATTAACCGTTAACAGTACGGGCCTGAACCACGATCC GACAATTAACCGTTAACAGTACGGGCCTGAACCACGATCC
scrR_FKF_rv* 보 밤  scrR_FKF_rv * show night
AGGCCCGTTATCCTCCTTAG CCTATTCC  AGGCCCGTTATCCTCCTTAG CCTATTCC
scrR_con_A CCGCTTCTTTGCGGATTAT 보 ¾ scrR_con_B GCGCTCATTCATGAAAAATTC 보 밤 배양 배지 및 배양조건  scrR_con_A CCGCTTCTTTGCGGATTAT beam ¾ scrR_con_B GCGCTCATTCATGAAAAATTC beam balm culture medium and culture conditions
본 발명의 발효 배지는 3 g H2P04) 6.8 g Na2HP04 , 0.75 g KCl, 5.35 g (NH4)S04> 0.28 g Na2S04, 0.26 g MgS04 · 7H20, 0.42 g 시트르산, 5 g 효모추출물, 10 g 카사미노산, 및 34.2 g/L ZnCl2, 2.7 g/L FeCl3 · 6H20, 10 g/L MnCl2.4H20, 0.85 g/L CuCl2 · 2H20 및 0.31 g/L H3B03 을 포함하는 0.3 ml 미량원소 용액을 포함한다 (Jung et al ., 2012). 플라스크 배양에서 , 60 g/L 의 당, 예컨대 수크로즈, 글루코즈 프럭토즈, 수크로즈 또는 사탕수수 당밀를 유일한 탄소원으로서 배양배지에 첨가하였다. 글루코즈, 프릭토즈, 수크로즈 및 다른 배지 구성 성분은 시그마사 (미국)로부터 구매하였다. 본 발명에서 사용한 사탕수수 당밀은 브라질이 원산지이며, 삼양 제넥스 bio 에서 제공받아 사용하였다. 사탕수수 당밀의 구성은 표Fermentation medium of the present invention is 3 g H 2 P0 4) 6.8 g Na 2 HP0 4 , 0.75 g KCl, 5.35 g (NH 4 ) S0 4> 0.28 g Na 2 S0 4 , 0.26 g MgS0 4 · 7H 2 0, 0.42 g citric acid, 5 g yeast extract, 10 g casamino acid, and 34.2 g / L ZnCl 2 , 2.7 g / L FeCl 3 · 6H 2 0, 10 g / L MnCl 2 .4H 2 0, 0.85 g / L CuCl 2 0.3 containing 2H 2 0 and 0.31 g / LH 3 B0 3 ml microelement solution (Jung et al., 2012). In flask culture, 60 g / L of sugar such as sucrose, glucose fructose, sucrose or sugar cane molasses were added to the culture medium as the only carbon source. Glucose, fructose, sucrose and other media components were purchased from Sigma (USA). The sugarcane molasses used in the present invention is native to Brazil and was used by Samyang Genex Bio. The composition of sugar cane molasses
2에 나타내었다 . 2 is shown.
【표 2】  Table 2
구성 백분율  Composition percentage
총 당 57.02 %  57.02% per total
비발효성 당 4% 미만  Less than 4% per non-fermentation
N 0.5-1.5%  N 0.5-1.5%
P205 0.1-0.4% P 2 0 5 0.1-0.4%
재 15% 미만 Less than 15%
H 4.94  H 4.94
슬러지 0.71% 미만  Sludge less than 0.71%
원산지 브라질  Country of origin brazil
사탕수수 당밀의 당 구성은 87 g/L 프럭토즈, 81 g/L 글루코즈 및 387 g/L 수크로즈로 측정되었다. 사탕수수 당밀의 pH 는 매우 낮다 (pH 4.94). 사탕수수 당밀을 포함하는 배지의 초기 pH 를 5 M NaOH 의 첨가하여 pH 6.14 로 조절하였다. 플라스크를 실리스토퍼 (si li stopper)로 밀폐하여 미세ᅳ호기성 환경에서 50 id 배지를 포함하는 250 ml 플라스크로 250 rpm 및 37°C 조건에서 12시간 배양하였다. Sugar composition of sugarcane molasses was determined to be 87 g / L fructose, 81 g / L glucose and 387 g / L sucrose. Sugar cane molasses is very low (pH 4.94). The initial pH of the medium containing sugarcane molasses was adjusted to pH 6.14 by the addition of 5 M NaOH. The flask was sealed with a si li stopper and incubated at 250 rpm and 37 ° C. for 12 hours in a 250 ml flask containing 50 id medium in a microaerobic environment.
5%(v/v) 접종물을 포함하는 3 L 의 발효 배지를 5 L 교반 생물반웅장치 (Bio Control and System, 대한민국)에서 회분 (batch) 및 무가 (fed-batch) 발효를 실시하였다. 작동 은도, 교반 속도 및 기류를 37 °C, 280 rpm 및 1.5 wm 으로 각각 유지하였다. 모든 발효 과정은 pH 6.8 에서 개시하였고, 5 M NaOH 를 자동적으로 첨가하여 pH 6.0 으로 유지하였다. 필요시 안티폼 204(시그마, 미국)를 사용하였다. 80 g/L 사탕수수 당밀로 회분 발효를 실시하였다. 멸균된 사탕수수 당밀을 첨가하여 유가발효의 총 당 농도는 60 g/L 이하로 유지하였다. 분석 방법 3 L fermentation medium containing 5% (v / v) inoculum was subjected to batch and fed-batch fermentation in a 5 L stirred bioreactor (Bio Control and System, South Korea). The operating silver, stirring speed and air flow were maintained at 37 ° C., 280 rpm and 1.5 wm, respectively. All fermentation processes were started at pH 6.8 and maintained at pH 6.0 by the addition of 5 M NaOH automatically. Antifoam 204 (Sigma, USA) was used if necessary. 80 g / L Ash fermentation was performed with sugarcane molasses. Sterilized sugar cane molasses was added to maintain the total sugar concentration of the fermentation fermentation below 60 g / L. Analytical Method
플라스크 및 발효 배양을 통해 수득한 대사산물은 RI 검출기가 장착된 HPLC(High— Performance丄 i quid Chromatogr phy, Waters HPLC 시리즈 미국)로 분석하였다. 유기산, 2, 3-부탄다이올, 아세토인 및 에탄올은 슈가 SH1011 컬럼 (Shodex, 일본)을 이용하여 75°C에서 측정하였고, 이동상으로 10 mM 유황산을 이용하였다. HPCC(High Performance Carbohydrate Column, Waters, 미국)을 이용하여 35°C에서 프력토즈, 글루코즈 및 수크로즈를 측정하였고, 이동상으로 80% 아세토니트릴 (acetonitrile)을 사용하였다. 양 이동상의 유속은 0.5 /분이다. 결과 및 토론 Metabolites obtained through flasks and fermentation cultures were analyzed by HPLC equipped with a RI detector (High-Performance Chromatogr phy, Waters HPLC series USA). Organic acids, 2, 3-butanediol, acetoin and ethanol were measured at 75 ° C. using a Sugar SH1011 column (Shodex, Japan) and 10 mM sulfuric acid was used as the mobile phase. Protopose, glucose and sucrose were measured at 35 ° C using HPCC (High Performance Carbohydrate Column, Waters, USA), and 80% acetonitrile (acetonitrile) was used as the mobile phase. The flow rate of both mobile phases is 0.5 / min. Results and discussion
플라스크 배양의 엔테로박터 에어로진스 돌연변이에 대한 탄소원의 영향 Effects of Carbon Sources on Enterobacter Aerogenes Mutations in Flask Cultures
크렙시엘라 뉴모니아의 수크로즈 이화작용의 유전자 클러스터는 Lacl 패밀리의 수크로즈 조절자인 ScrR 에 의해 억제된다 (Reid & Abratt, 2005) . 따라서, sc/vP유전자의 결실은 수크로즈 이용을 개선시킬 수 있다. scrR 유전자는 엔테로박터 에어로진스 KCTC 2190 지놈에서 크랩시엘라 뉴모니아의 ScrR 단백질 (GenBank 접근번호 ΥΡ_004593287)의 서열을 블라스트 (Basic Local Alignment Search Tool; BLAST)하여 검색하였다 (Shin et al. , 2012 및 Mortlock, 1982). 엔테로박터 에어로진스에서 발견된 단백질의 서열 (GenBank 접근번호 YP 304593287)은 크렙시엘라 뉴모니아의 ScrR 단백질의 서열과 92%상동성을 갖는다. 표 1 에서 확인할 수 있듯이, 프라이머를 디자인하여 지놈 DNA에서 sc/?유전자를 결실하였다.  The sucrose catabolism gene cluster of Krebssiella pneumoniae is inhibited by ScrR, a sucrose regulator of the Lacl family (Reid & Abratt, 2005). Thus, deletion of the sc / vP gene can improve sucrose utilization. The scrR gene was searched by the Blast (Basic Local Alignment Search Tool; BLAST) sequence of ScrR protein (GenBank Accession No. ΥΡ_004593287) of crab ciella pneumoniae in Enterobacter aerogenes KCTC 2190 genome (Shin et al., 2012 and Mortlock, 1982). The sequence of the protein found in Enterobacter aerogenes (GenBank accession number YP 304593287) is 92% homologous to the sequence of the ScrR protein of Krebsiella pneumoniae. As can be seen in Table 1, primers were designed to delete sc /? Genes from genome DNA.
scrR 결실의 영향을 확인하기 위해, 야생형 KCTC 2190, EMY-01 및 EMY-68 의 플라스크 배양을 글루코즈, 수크로즈 및 사탕수수 당밀과 같은 다양한 탄소원 60 g/L 로 12 시간동안 실시하였다. 이전의 연구에서, 락테이트 디하이드로제나제가 결실된 돌연변이인 EMY-01 는 본래 균주와 비교하여 몇몇의 탄소원에서 개선된 탄소원 이용을 나타내었다 (Jung et al. , 2012). 이전의 연구와 유사하게, EMY-01 의 탄소원의 소모, 세포 성장ᅳ 2,3-부탄다이올의 생산, 효율 및 생산성은 야생형 균주와 비교하여 상당히 증가하였다 (표 3 및 표 4). 도 2a 및 도 2b 에서 확인할 수 있듯이, EMY- 68 은 글루코즈 또는 프럭토즈 하의 배양에서 EMY-01 과 거의 동일한 표현형을 나타내었다. 이는. 이러한 탄소원을 소모하는데 scrR 결실의 영향이 없음을 의미한다. 그러나, EMY-01 의 세포 성장 및 2,3- 부탄다이을의 생산은 수크로즈 또는 사탕수수 당밀의 존재 하에 눈에 띄게 증가하지 않은 반면, EMY-68 은 야생형 및 EMY-01 과 비교하여 상당히 높은 수크로즈 소모능 및 2, 3-부탄다이을 생산능을 보여주었다 (도 2). EMY- 68 은 12 시간동안 57.65 g/L 수크로즈를 소모하고 18.05 g/L 의 2,3- 부탄다이올을 생산하였다. 이는 EMY-01 과 비교하여 각각 59.6%, 41.9% 증가한 수피이다. 당밀을 탄소원으로 첨가한 경우에 EMY— 68 의 2,3- 부탄다이올 생산 및 탄소원의 소모는 EMY-01 과 비교하여 각각 69.9¾> 및 44.6%증가하였다 (도 2d). To confirm the effect of the scrR deletion, flask cultures of wild-type KCTC 2190, EMY-01 and EMY-68 were conducted for 12 hours with 60 g / L of various carbon sources such as glucose, sucrose and sugar cane molasses. In previous studies, EMY-01, a mutant lacking lactate dehydrogenase, showed improved carbon source utilization at several carbon sources compared to the original strain (Jung et al., 2012). Similar to previous studies, the consumption of carbon sources of EMY-01, cell growth ᅳ 2,3-butanediol production, efficiency and productivity increased significantly compared to wild type strains (Table 3 and Table 4). As can be seen in FIGS. 2A and 2B, EMY-68 showed almost the same phenotype as EMY-01 in culture under glucose or fructose. this is. This means that there is no effect of scrR deletion on this carbon source. However, cell growth of EMY-01 and production of 2,3-butanediol did not increase significantly in the presence of sucrose or sugarcane molasses, whereas EMY-68 was significantly higher compared to wild type and EMY-01. Cross consumption and 2, 3-butanedi showed production capacity (FIG. 2). EMY-68 consumed 57.65 g / L sucrose for 12 hours and produced 18.05 g / L of 2,3-butanediol. This is 59.6% and 41.9% more bark, respectively, compared to EMY-01. When molasses was added as a carbon source, the production of 2,3-butanediol and consumption of carbon source of EMY-68 increased by 69.9¾> and 44.6%, respectively, compared to EMY-01 (FIG. 2D).
【표 3】  Table 3
Figure imgf000017_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000018_0001
수크로즈는 글루코즈 및 프럭토즈의 이합체이지만, scrR 결실은 프럭토즈가 아닌 수크로즈 대사에만 영향을 주었다. 엔테로박터 에어로진스는 프릭토즈를 이용하기 위해 세포외 프릭토즈를 PTS(mult i component phosphotransferase system)을 통해 톱수하여 세포내 프럭토즈 -1-인산으로 전환한다 (Ferenci & Kornberg, 1973; Kelker et al. , 1970) . 프릭토즈 -1—인산은 프럭토즈 -1,6-2 인산으로 인산화되고 해당과정에 의해 소모된다. 한편, 수크로즈의 프럭토즈 일부는 프럭토키나제에 의해 가수분해되어 프럭토즈 -6-인산으로 전환된다 (도 la). ScrR 은 세포내 프럭토즈에 결합하고 scr 오페론을 억제하는 것으로 알려져 있으므로 scrR 결실은 프럭토즈 대사에 영향을 주지 않는 것이다 (Jahreis and Lengeler, 1993) . 수크로즈 대사에 있어, 수크로즈 조절자의 결실에 의한 영향은 대장균에서의 보고와 본질적으로 일치하고 엔테로박터 에어로진스의 수크로즈 수송에 약간의 차이를 갖는다. scrR 결실의 영향은 탄소원으로 수크로즈가 주요 당인 당밀을 사용한 경우 분명하게 관찰되었다. Sucrose is a dimer of glucose and fructose, but the scrR deletion only affected sucrose metabolism, not fructose. Enterobacter aerogenes saw extracellular fructose through the mult i component phosphotransferase system (PTS) to convert intracellular fructose-1-phosphate to use fructose (Ferenci & Kornberg, 1973; Kelker et al. , 1970). Fructose -1-phosphate is phosphorylated to fructose-1,6-2 phosphate and is consumed by glycolysis. On the other hand, some of the fructose of sucrose is hydrolyzed by fructokinase and converted to fructose-6-phosphate (Fig. La). Since ScrR is known to bind to intracellular fructose and inhibit scr operon, scrR deletion does not affect fructose metabolism (Jahreis and Lengeler, 1993). In sucrose metabolism, the effect of the deletion of the sucrose modulator is essentially consistent with the report in Escherichia coli and enterobacter There are some differences in the transport of sucrose to aerogenes. The effect of the scrR deletion was clearly observed when sucrose was used as molasses, the main sugar.
경제적인 탄소원인 사탕수수 당밀을 이용한 플라스크 배양에서, ldhA 및 scrR 이중 돌연변이의 2ᅳ 3-부탄다이을 농도, 효율 및 생산성은 야생형 균주와 비교하여 각각 124,7%, 27.6% 및 121.4% 증가하였다 (표 3 및 표 4). 이러한 결과는 바이오리파이너리에 당밀과 같은 산업적 공급 원료을 이용할 수 있는 유전자조작의 이점을 설명한다. 사탕수수 당밀올 이용한회분 발효  In flask cultures with sugarcane molasses, an economical carbon source, the concentration, efficiency and productivity of ldhA and scrR double mutants increased by 124, 7%, 27.6% and 121.4%, respectively, compared to wild-type strains. Table 3 and Table 4). These results illustrate the benefits of genetic engineering, which can use industrial feedstock such as molasses in biorefineries. Ash fermentation using sugar cane molasses
야생형 KCTC2190, EMY-01 및 EMY-68 의 회분 발효를 80 g/L 초기 사탕수수 당밀 농도에서 10 시간 동안 5 L 발효기에서 실시하였다. JdhA 및 sc/V?결실의 영향은 당밀을 이용한 플라스크 배양과 유사하였다. EMY- 68 은 25.65 g/L 2, 3-부탄다이올을 생산하고, 78.07 g/L 탄소원을 소모하였고 (표 5), 야생형 및 EMY-01보다 상당히 증가하였다. 실험을 통해, 탄소원 활용에 대한 scrR 결실의 영향을 조사하였다 (표 3 및 표 4). 세 균주가 가장 선호하는 탄소원은 글루코즈였다. 글루코즈가 결핍되면 야생형 및 EMY-01 은 프럭토즈 및 수트로즈를 유사한 속도로 이용하였다 (도 3a 및 도 3b). 사탕수수 당밀 내 프럭토즈보다 수크로즈 농도가 높기 때문에, 수크로즈보다 우선적으로 프럭토즈가 결핍되었다. 그동안, EMY-68 은 야생형보다 빠르게 수크로즈를 소모하였고 수크로즈가 결핍된 후에 프럭토즈를 이용하였다.  Batch fermentation of wild type KCTC2190, EMY-01 and EMY-68 was carried out in a 5 L fermenter for 10 hours at 80 g / L initial sugarcane molasses. The effect of JdhA and sc / V? Deletion was similar to flask culture with molasses. EMY-68 produced 25.65 g / L 2, 3-butanediol, consumed 78.07 g / L carbon source (Table 5), and significantly increased than wild type and EMY-01. Through experiments, the effects of scrR deletion on carbon source utilization were investigated (Tables 3 and 4). The most preferred carbon source for the three strains was glucose. Wild type and EMY-01 used fructose and sutrose at similar rates when glucose was deficient (FIGS. 3A and 3B). Because of the higher sucrose concentration than fructose in sugarcane molasses, fructose was preferred over sucrose. Meanwhile, EMY-68 consumed sucrose faster than wild type and used fructose after sucrose deficiency.
【표 5】  Table 5
야생형 CTC  Wild CTC
균주 EMY-01 EMY-68  Strain EMY-01 EMY-68
2190  2190
초기 당농도 (g/1) 79.84 85.46 86.43  Initial sugar concentration (g / 1) 79.84 85.46 86.43
당소모량 (g/1) 53.80 58.06 78.07  Sugar Consumption (g / 1) 53.80 58.06 78.07
2,3-부탄다이올 (g/1) 16.05 18.92 25.68  2,3-butanediol (g / 1) 16.05 18.92 25.68
2,3-부탄다이올 생산 (g/1/h) 1.33 1.58 2.14  2,3-butanediol production (g / 1 / h) 1.33 1.58 2.14
2,3-부탄다이올 효율 0.298 0.326 0.329 (g/g 당) 2,3-butanediol efficiency 0.298 0.326 0.329 (per g / g)
아세토인 (g/1) 1.21 1.53 0.57 락테이트 (g/L) 1.73 0.01 0.02 에탄올 (g/1) 4.41 5.22 7.15 숙신산 (g/1) 1.06 1.46 1.39 사탕수수 당밀을 이용한 EMY-68의 유가 발효  Acetoin (g / 1) 1.21 1.53 0.57 Lactate (g / L) 1.73 0.01 0.02 Ethanol (g / 1) 4.41 5.22 7.15 Succinic Acid (g / 1) 1.06 1.46 1.39 Fermentation of EMY-68 with Sugar Cane Molasses
EMY-68 에 의한 사탕수수 당밀로부터 2, 3-부탄다이올의생산을 증가시키기 위해 , 유가를 피딩 (feeding)하여 유가 발효를 실시하였다. 도 4에서 확인할 수 있듯이, 36시간 배양한 경우 사탕수수 당밀 202.89 g/L을 소모하고 2,3-부탄다이올을 72.89 g/L 생산하였다. 2,3-부탄다이을 효율 및 생산성은 각각 0.359 g/g 및 2.02 g/1/h이다. 주요 부산물 중, 숙신산은 HPLC에서 미지물질과 체류 시간이 겹쳐 정량적으로 검출하기 어려웠다. 락테이트 디하이드로제나아제의 결실로 인해 락테이트는 량 생산되었다. 한편 , 16시간 배양에서 최대 7.89 g/L 에탄을이 생산되었고, 주요 대사산물인 에탄올은 대수성장기 동안 생산되었고 고은 (37°C)에서 증발되었다. 실시예 2: 크랩시엘라 뉴모니아를 이용한 2,3—부탄다이을 생산 In order to increase the production of 2,3-butanediol from sugarcane molasses by EMY-68, oil price fermentation was carried out by feeding the oil price. As can be seen in Figure 4, when incubated for 36 hours consumed 202.89 g / L of sugar cane molasses and produced 2,3-butanediol 72.89 g / L. The efficiency and productivity of 2,3-butanedi are 0.359 g / g and 2.02 g / 1 / h, respectively. Among the major by-products, succinic acid was difficult to detect quantitatively due to the overlap of unknowns and residence time in HPLC. Lactate was produced in large quantities due to the deletion of lactate dehydrogenase. On the other hand, up to 7.89 g / L ethane was produced in 16 hours of incubation, and the main metabolite, ethanol, was produced during logarithmic growth and evaporated at high (37 ° C). Example 2: Production of 2,3-butanedai using crab ciella pneumoniae
균주개발 Strain Development
' 엔테로박터 에어로진스 (^ferobacier aerogenes) CTC2190 균주에서 락테이트 디하이드로제나제 (lactate dehydrogenase; LdhA) 및 수크로즈 조절자 (sucrose regulator; ScrR) 제거를 통한 수크로즈 및 당밀 의 활용 증가와 이에 따른 2,3-부탄다이올 생산 증가에 대한 결과를 크랩시엘라 뉴모니아 7e/?s/e//s pneumoniae) KCTC2242 균주에 적용하였다. 크랩시엘라 뉴모니아 균주는 엔테로박터 에어로진스 균주와 더불어 자연계에 존재하는 대표적인 2,3-부탄다이올 생산 균주이다. 크랩시엘라 뉴모니아 균주는 수크로즈를 이용할 수 있는 유전자를 가지고 있으며, 이 유전자들은 오페론 (ScrA, EI I transport protein for sucrose; ScrB, sucroseᅳ 6ᅳ phosphate hydrolase! ScrK, f ructokinase; ScrY, outer membrane sucrose porin)으로 구성되어 있다. 또한 이 오페론의 발현을 제어하는 scrR 유전자를 지니고 있다. 따라서 크랩시엘라 뉴모니아 균주에서 수크로즈 및 당밀 이용률의 증가를 위해 scrR을 람다 레드 재조합 방법을 통해 결실하였다. 또한 주요 부산물인 락테이트 생산량을 즐이고, 배지의 산성화를 막기 위해 락테이트 디하이드로제나제 를 같은 방법으로 제거하였다. 마지막으로 크렙시엘라 뉴모니아 균주는 2 클래스에 속하는 병원균이므로 산업화 활용에 제한점이 있다. 병원성은 세포 외부 캡슐에 의해 발병된다고 알려져 있기 때문에 외부 캡슐 형성에 관련하는 wabG 유전자를 같은 방법으로 제거하였다. 따라서 크랩시엘라 뉴모니아 균주에서 총 3 가지 돌연변이 균주를 개발하였고, 크렙시엘라 뉴모니아 (ᅀ wabG)를 K -01, 크렙시엘라 뉴모니아 (AwabG A.ldhA)를 크렙시엘라 뉴모니아 (AwabGAldhAAscrR)를 KMK-08 로 명명하고 수크로즈 및 당밀의 이용, 2,3-부탄다이을 생성에 관한 비교 실험을 진행하였다. 배양 배지 및 배양조건 '' Increased utilization of sucrose and molasses through the removal of lactate dehydrogenase (LdhA) and sucrose regulator (ScrR) from ^ ferobacier aerogenes CTC2190 strains The results for the increase in 3-butanediol production were applied to the Crab ciella pneumoniae 7e /? S / e // s pneumoniae) KCTC2242 strain. Crab ciella pneumoniae strains are representative 2,3-butanediol producing strains present in nature along with Enterobacter aerogenes strains. Crab ciella pneumoniae strains have genes that can use sucrose, and these genes are operon (ScrA, EI I transport protein for sucrose; ScrB, sucrose ᅳ 6 ᅳ phosphate hydrolase! ScrK, f ructokinase; ScrY, outer membrane sucrose porin). It also has a scrR gene that controls the expression of this operon. Therefore, scrR was deleted through the lambda red recombination method in order to increase the sucrose and molasses utilization in the crab ciella pneumoniae strain. In addition, the lactate dehydrogenase was removed in the same way to enjoy lactate production, a major by-product, and to prevent acidification of the medium. Lastly, since the Klebsiella pneumoniae strain belongs to two classes of pathogens, there are limitations in utilizing industrialization. Because pathogenicity is known to be caused by extracellular capsules, the wabG gene involved in the formation of external capsules was removed in the same way. Therefore, a total of three mutant strains were developed from the Crab ciella pneumoniae strains, and Kb 01 for the Klebsiella pneumoniae (ᅀ wabG) and Kepsiella pneumoniae (AwabG A.ldhA) Monia (AwabGAldhAAscrR) was named KMK-08 and comparative experiments were conducted on the production of 2,3-butanedie using sucrose and molasses. Culture medium and culture conditions
본 발명의 크렙시엘라 뉴모니아 돌연변이 균주의 배양은 상기 실시예 1의 '배양 배지 및 배양조건、^ 조건과 동일하게 적용되었다. 결과  The culture of the Krebsiella pneumoniae mutant strain of the present invention was applied in the same manner as in the culture medium and culture conditions, ^ conditions of Example 1. result
본 발명의 腿, scrR및 wabG 가 제거된 크렙시엘라 뉴모니아 균주, Creepsiella pneumoniae strain from which the murine, scrR and wabG of the present invention has been removed,
KMK-08 은 부모 균주에 비해 글루코즈 또는 프럭토즈를 유일 탄소원으로 사용하였을 때 2, 3-부탄다이올 생산량이 약 10% 감소하는 경향을 보였다. 하지만 수크로즈를 탄소원으로 주었을 때 부모 균주과 거의 동일한 2,3- 부탄다이올을 생산하였고, 당밀이 탄소원인 경우에, 부모 균주에 비해 약 32% 증가된 2, 3-부탄다이을을 생산능을 나타내어다. KMK-08 showed a 10% decrease in 2,3-butanediol production when glucose or fructose was used as the only carbon source compared to the parent strain. However, when sucrose was used as the carbon source, it produced almost the same 2,3-butanediol as the parent strain, and when molasses was the carbon source, it showed an ability to produce 2,3-butanedial which was increased by about 32% compared to the parent strain. All.
모든 크렙시엘라 뉴모니아 균주 (KMK-01, KMK-02 및 KMK-08)는 세 가지 탄소원을 동시에 소비한다. MK-01 및 KMK-02 균주에서 글루코즈의 소비율이 가장 높으며, 수크로즈와 프럭토즈의 소비률은 거의 비슷하였다. 하지만 KMK-08 균주에서는 수크로즈의 소비률이 프럭토즈에 비해 크게 증가하였음을 확인할 수 있다. 결론 All Krebssiella pneumoniae strains (KMK-01, KMK-02 and KMK-08) consume three carbon sources simultaneously. Glucose consumption was the highest in MK-01 and KMK-02 strains, and sucrose and fructose consumption were almost the same. However, in the KMK-08 strain, the consumption rate of sucrose was significantly increased compared to fructose. conclusion
2,3-부탄다이올을 생산하기 위해 대사적으로 조작한 엔테로박터 에어로진스 KCTC2190 및 크렙시엘라 뉴모니아를 배양하여 탄소원으로 사탕수수 당밀을 사용하였다. IdhA 및 scrR 결실 엔테로박터 에어로진스를 사탕수수 당밀올 탄소원으로 하여 유가발효한 경우에, 36시간에 2, 3-부탄다이올을 72.89 g/L 생산하여 0.36 g산물 /g 당의 효율을 나타내었고, IdhA, scrR 및 wabG 결실 크렙시엘라 뉴모니아를 사탕수수 당밀을 탄소원으로 하여 발효한 경우, 결실하지 않은 크렙시엘라 뉴모니아 또는 Δ/ο 4Δ»^ί?)와 비교하여 2, 3-부탄다이올 생산이 30% 이상 증가한 것을 확인하였다. 따라서, 수크로즈 이용 오페론의 전사 억제자를 제거함으로써 수크로즈 및 사탕수수 당밀을 더 효율적으로 2,3- 부탄다이을로 전환할 수 있었다. 이러한 결과는 대사 조작된 균주가 경제적인 탄소원을 이용한 2,3-부탄다이을 생산 균주가 될 수 있음을 의미한다. 참고문헌  The sugar cane molasses was used as a carbon source by culturing Enterobacter aerogenes KCTC2190 and Krebsciella pneumoniae metabolized to produce 2,3-butanediol. When IdhA and scrR-deleted Enterobacter aerogenes were fermented with sugarcane molasses as a carbon source, they produced 72.89 g / L of 2,3-butanediol at 36 hours and showed an efficiency per 0.36 g product / g. When IdhA, scrR and wabG-deleted Krebsiella pneumoniae were fermented with sugarcane molasses as the carbon source, compared to undeleted Krebsiella pneumoniae or Δ / ο 4Δ »^ ί?) 2, 3- It was confirmed that butanediol production increased by more than 30%. Therefore, sucrose and sugar cane molasses could be more efficiently converted to 2,3-butanedi by removing the transcription inhibitor of sucrose-operated operon. These results indicate that the metabolized strain can be a strain producing 2,3-butanedi using an economical carbon source. references
Akaraonye, E. , Moreno, C., Knowles , J .C. , Keshavarz, T. , Roy, I. 2012. Poly(3ᅳ hydroxybutyrate) product ion by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J, 7(2), 293- 303.  Akaraonye, E., Moreno, C., Knowles, J.C. , Keshavarz, T., Roy, I. 2012. Poly (3 ᅳ hydroxybutyrate) product ion by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J, 7 (2), 293-303.
Ar i f in, Y. , Sabr i , S. , Sugiarto, H. , Kromer , J .0. , Vickers, C.E. Nielsen, L.K. 2011. Deletion of cscR in Escherichia col improves growth and poly-3-hydroxybutyrate (PHB) product ion from sucrose in fed batch culture. J Biotechnol , 156(4), 275-278.  Ar i f in, Y., Sabr i, S., Sugiarto, H., Kromer, J.0. , Vickers, C.E. Nielsen, L.K. 2011.Deletion of cscR in Escherichia col improves growth and poly-3-hydroxybutyrate (PHB) product ion from sucrose in fed batch culture. J Biotechnol, 156 (4), 275-278.
Bockmann , J. , Heuel , H. , Lengeler , J . W. 1992. Character izat ion of a chromosomal ly encoded , non-PTS metabolic pathway for sucrose utilization in Escherichia col i Ec3132. Mol Gen Genet , 235(1), 22-32.  Bockmann, J., Heuel, H., Lengeler, J. W. 1992. Character izat ion of a chromosomal ly encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia col i Ec3132. Mol Gen Genet, 235 (1), 22-32.
Bruckner , R., Titgemeyer , F. 2002. Carbon catabolite repression in bacteria: choice of the- carbon source and autoregiilatory limitation of sugar utilization. FEMS Microbiol Lett, 209(2), 141-148. Chan, S. , Ranchanatawee, S. , Jantama, K. 2012. Product ion of succinic acid from sucrose and sugarcane molasses by metabol ical ly engineered Escherichia col i . Bioresource Techno 1 , 103(1), 329-336. Bruckner, R., Titgemeyer, F. 2002. Carbon catabolite repression in bacteria: choice of the- carbon source and autoregiilatory limitation of sugar utilization. FEMS Microbiol Lett, 209 (2), 141-148. Chan, S., Ranchanatawee, S., Jantama, K. 2012. Product ion of succinic acid from sucrose and sugarcane molasses by metabol ical ly engineered Escherichia col i. Bioresource Techno 1, 103 (1), 329-336.
Datsenko, K.A. , Wanner , B.L. 2000. One- step inact ivat ion of chromosomal genes in Escherichia col i -12 using PCR products. Proc Natl Acad Sci USA, 97(12), 6640-6645.  Datsenko, K.A. , Wanner, B.L. 2000. One- step inact ivat ion of chromosomal genes in Escherichia col i-12 using PCR products. Proc Natl Acad Sci USA, 97 (12), 6640-6645.
Ferenci , T. , Romberg, H.L. 1973. Utilization of fructose by Escherichia col/- Properties of a mutant defective in fructoseᅳ 1一 phosphate-kinase-act ivity. Biochem J, 132(2) , 341-347.  Ferenci, T., Romberg, H.L. 1973. Utilization of fructose by Escherichia col /-Properties of a mutant defective in fructose ᅳ 1 一 phosphate-kinase-act ivity. Biochem J, 132 (2), 341-347.
Goerke , B. , Stulke, J. 2008. Carbon catabol ite repression in bacteria: many ways to make the most out of nutrients . Nat Rev Microbiol , 6(8), 613-624.  Goerke, B., Stulke, J. 2008.Carbon catabol ite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol, 6 (8), 613-624.
Grai 1 le, M., Zhou, C.Z. , Receveur一 Brechot, V. , Col 1 inet , B., Declerck, N. , van Tilbeurgh, H. 2005. Activation of the LicT transcriptional ant i terminator involves a domain swing/ lock mechanism provoking massive structural changes . J Biol Chem, 280(15) , 14780- 14789.  Grai 1 le, M., Zhou, C.Z. , Receveur 一 Brechot, V., Col 1 inet, B., Declerck, N., van Tilbeurgh, H. 2005. Activation of the LicT transcriptional ant i terminator involves a domain swing / lock mechanism provoking massive structural changes. J Biol Chem, 280 (15), 14780-14789.
Jahreis, K. , Lengeler , J.W. 1993. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D- fructose specific regulons from enteric bacteria. Mol Microbiol , 9(1), 195-209  Jahreis, K., Lengeler, J.W. 1993. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D- fructose specific regulons from enteric bacteria. Mol Microbiol, 9 (1), 195-209
Ji , X.J. , Huang, H. , Ouyang, P.K. 2011. Microbial 2,3-butanediol product ion: A state-of-the-art review. Biotechnol Adv, 29(3) , 351-364.  Ji, X.J. , Huang, H., Ouyang, P.K. 2011. Microbial 2,3-butanediol product ion: A state-of-the-art review. Biotechnol Adv, 29 (3), 351-364.
Jiang, L.Q. , Fang, Z. , Guo, F. , Yang, L.B. 2012. Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca. Bioresource Techno 1 , 107, 405-410.  Jiang, L.Q. , Fang, Z., Guo, F., Yang, L.B. 2012. Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca. Bioresource Techno 1, 107, 405-410.
Jung, M.Y. , Ng, C.Y. , Song, H. , Lee, J. , Oh, M.K. 2012. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3- butanediol production. Ap l Microbiol Biotechnol , 95(2) , 461-469.  Jung, M.Y. , Ng, C.Y. , Song, H., Lee, J., Oh, M.K. 2012. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Ap l Microbiol Biotechnol, 95 (2), 461-469.
Kelker, N.E., Hanson, T.E. , Anderson, R丄. 1970. Alternate pathways of 으 fructose metabolism in Aerobacter aerogenes-^ specific ppp,,)(.oteco 88ncbkhnl 8572ba^LSOna. Micr))l Bi^^^s^nJi Al Kiil l1Kelker, NE, Hanson, TE, Anderson, R 丄. 1970. Alternate pathways of E. fructose metabolism in Aerobacter aerogenes- ^ specific ppp ,, ) ( .o t eco 88ncbkhn l 85 7 2ba ^ L SOna.M i cr )) l B i ^^^ s ^ n J i A l K i i ll 1
y p,sub bsa mtcre tb이o J2ulholixctoutadrmlTr iniuin of3ri f02 3l-.yp, sub bsa cre m t t a b o J2u l ho li xc t ou t adrm lT r i n i u i no f 3r if 02 3l-.
g:,:, ,,,ocbau0· Miria J.i Z.L.09l.a. DiY X Sun LH Wn X.D 2 g:,:,, ,, ocbau0 · M i r i a J. i ZL09 l .a. D i YX Sun LH Wn XD 2
p,,)(.0ca,ζ Oin Micobiol 1951 bateri^r 222—. p,,) (.0ca, ζ O i M i n o l i cob 1951 ba t er i ^ r 222-.
f:, , c^resssatbotreil in.lire stus J Hl.99ll ilron W 19-- f:,, c ^ resssa t bo t re il i n. li re s t us JH l .99 ll il ron W 19--
Figure imgf000024_0001
Figure imgf000024_0001
f¾,,/zetabtso. molicahw bactera.oilQ56w bil B 1228-If¾ ,, / ze t ab t so. mo li cahw bac t era.o il Q56w b il B 1 228-I
wTf,O aost of MIuockututatosnd tro dre^re 19.^woI minhln82l- pp,p,()eselaeuoaotco 5 Klbilnmne ^.obo Behnl957·iWL Al Micrili 8421- j¾, p,,,..as ba HZ ¾J.a2butdkoucto Ti00;ci3rlrdin9nhn 2l 2>-lwT f, O aos t o f M I uock u t u t a t osnd t ro dre ^ re 19. ^ wo I m i nh l n 8 2 l -pp, p, () ese l aeuoao t co 5 K l bi l nmne ^ .obo Behn l 957 · iW L A l M i cr ili 8421- j¾, p ,,,. as ba HZ ¾J.a2bu t dkoucto T i 00 ; c i 3r l rd i n9nhn 2 l 2 > -l
g,,gQ::, ,:,: Q,:a M C..an. J. A. Ja TY W ALin.Y Li Lxi XLin g,, gQ ::,,: ,: Q,: a M C..an. JA Ja TY W AL i n Y L i Lx i XL i n
,,() Cemoh Bil58060 &.242- Poctlt fudnarttssa.이rsid iTOworebos o suoe JIf1t il in trlimfcsl rr-. van Ti lbeurgh, H. , Declerck, N. 2001. Structural insights into the regulation of bacterial signalling proteins containing PRDs . Curr Opin St rue Biol, 11(6), 685-693. ,, () Cemoh B il 58060 & .242- Poc tlt f udnart t ssa.irs i d i TOworebos o suoe J If 1t il i n trli m f cs l rr-. van Ti lbeurgh, H., Declerck, N. 2001. Structural insights into the regulation of bacterial signaling proteins containing PRDs. Curr Opin St rue Biol, 11 (6), 685-693.
Vertes, A. A. 2010. Biomass to biofuels : strategies for global industries. Wiley, Hoboken , N.J..  Vertes, A. A. 2010. Biomass to biofuels: strategies for global industries. Wiley, Hoboken, N.J ..
Wang, A丄., Wang, Y. , Jiang, T.Y. , Li, L.X. , Ma, C.Q. , Xu, P. 2010. Product ion of 2,3-butanediol from corncob molasses , a waste byproduct in xylitol production. Appl Microbiol Biotechnol , 87(3), 965ᅳ 970.  Wang, A., Wang, Y., Jiang, T.Y. , Li, L. X. , Ma, C.Q. , Xu, P. 2010. Product ion of 2,3-butanediol from corncob molasses, a waste byproduct in xylitol production. Appl Microbiol Biotechnol, 87 (3), 965 970 970.
Zhang, L.Y. , Sun, J. A. , Hao, Y.L. , Zhu, J.W. , Chu, J. , Wei, D.Z. Zhang, L.Y. , Sun, J. A., Hao, Y.L. , Zhu, J.W. , Chu, J., Wei, D.Z.
Shen, Y.L. 2010. Microbial product ion of 2,3-butanediol by a surfactant (serrawett in)-def icient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol, 37(8), 857-862. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. Shen, Y.L. 2010. Microbial product ion of 2,3-butanediol by a surfactant (serrawett in) -def icient mutant of Serratia marcescens H30. J Ind Microbiol Biotechnol, 37 (8), 857-862. The specific parts of the present invention have been described in detail, and it is apparent to those skilled in the art that these specific technologies are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
(a) 불활성화 (inactivated) 락테이트 디하이드로제나제 (lactate dehydrogenase) 및 (b) 불활성화 (inactivated) 수크로즈 조절자 (sucrose regulator)를 포함하는 2,3-부탄다이올 생성용 재조합 균주.  A recombinant strain for producing 2,3-butanediol, comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator.
【청구항 2] [Claim 2]
제 1 항에 있어서, 상기 불활성화 락테이트 디하이드로제나제는 락테이트 디하이드로제나제를 코딩하는 뉴클레오타이드 서열에서 결실, 치환 또는 부가 변이가 발생된 것을 특징으로 하는 2,3-부탄다이올 생성용 재조합 균주.  The method of claim 1, wherein the inactivated lactate dehydrogenase is used for producing 2,3-butanediol, characterized in that a deletion, substitution or addition mutation occurs in the nucleotide sequence encoding the lactate dehydrogenase. Recombinant strains.
【청구항 3】 [Claim 3]
제 1 항에 있어서, 상기 불활성화 수크로즈 조절자는 수크로즈 조절자를 코딩하는 뉴클레오타이드 서열에서 결실, 치환 또는 부가 변이가 발생된 것을 특징으로 하는 2ᅳ 3—부탄다이올 생성용 재조합 균주.  The recombinant strain according to claim 1, wherein the inactivated sucrose modulator has a deletion, substitution, or additional mutation in a nucleotide sequence encoding a sucrose modulator.
【청구항 4】 [Claim 4]
제 1 항에 있어서, 상기 2,3-부탄다이을 생성용 재조합 균주는 wabG 를 코딩하는 뉴클레오타이드 서열에서 결실, 치환 또는 부가 변이가 추가적으로 발생된 것을 특징으로 하는 2,3-부탄다이올 생성용 재조합 균주.  The recombinant strain for producing 2,3-butanediol according to claim 1, wherein the recombinant strain for producing 2,3-butanedi is additionally generated by deletion, substitution or additional mutation in a nucleotide sequence encoding wabG. .
【청구항 5】 [Claim 5]
제 1 항에 있어서, 상기 균주는 애로모나스 (^e/ W ss) 속, 바실러스 속, 브레비바실러스 (^ew'Z?ac///i/s) . 속, 코리네박테 ^^{Corynebacterhim) 속, 엔테로박터 ( Enterobacter) 속, 크랩시엘라 7ebs/e// ) 속, 락토바실러스 aac obsc/y/ws) 속, 락토코커스 속, 류코노스특 (^e ccvjas oc) 속, 오에노코커스 ( Oenococcus) 속 , 페디오코커스 ( Pediococcus) 속, 라오울텔라 속, 세라티아 (5er/" / ) 속, 스트램토코커스 ( Streptococcus) 속 , 패니바실러스 (/¾e/?/Z«c/// s) 속 또는 라이조박테리엄 (^/ oZ c er/ 7) 속 인 것을 특징으로 하는 2,3—부탄다이올 생성용 균주. The method of claim 1, wherein the strain is genus Aeromonas (^ e / W ss), Bacillus genus, Brevibacillus (^ ew ' Z? Ac / / / i / s) . Genus, Corynebacter genus ^ ({Corynebacterhim) Genus, Enterobacter genus, Crab ciella 7ebs / e //) genus, Lactobacillus aac obsc / y / ws) genus, Lactococcus genus, Leukonus specific (^ e ccvjas oc, Genus Oenococcus, Pediococcus, Lao Ultella, Serratia (5er / "/), Streptococcus,, Fanibacillus (/ ¾e /? / Z «c /// s) genus or Strain for producing 2,3—butanediol, characterized by belonging to the genus Lyzobacterium (^ / oZ c er / 7).
【청구항 6] [Claim 6]
제 5 항에 있어서, 상기 균주는 엔테로박터 속 또는 크랩시엘라 속인 것을 특징으로 하는 2, 3-부탄다이올 생성용 균주.  The method of claim 5, wherein the strain is genus Enterobacter or crab ciella genus 2, 3-butanediol production strain, characterized in that.
【청구항 7】 [Claim 7]
제 1 항에 있어서, 상기 균주는 탄소원으로 당밀을 이용하는 것을 특징으로 하는 2, 3-부탄다이올 생성용 균주.  According to claim 1, wherein the strain is a strain for producing 2, 3-butanediol, characterized in that using molasses as a carbon source.
【청구항 8】 [Claim 8]
상기 제 1 항 및 제 7 항 중 어느 한 항의 균주를 배양 배지에서 배양하는 단계를 포함하는 2,3-부탄다이을 제조 방법 .  Method for producing 2,3-butanedi comprising the step of culturing the strain of any one of claims 1 and 7 in the culture medium.
【청구항 9] [Claim 9]
제 8 항에 있어서, 상기 배양 배지는 탄소원으로 당밀을 포함하는 것을 특징으로 하는 2,3-부탄다이올 제조 방법 .  The method of claim 8, wherein the culture medium comprises molasses as a carbon source.
【청구항 10】 [Claim 10]
거 1 8 항에 있어세 상기 배양 배지는 pH 5.5 내지 pH 7.0 의 최적 pH를 갖는 것을 특징으로 하는 2,3-부탄다이올 제조 방법 .  The method of claim 1, wherein the culture medium has an optimal pH of pH 5.5 to pH 7.0.
【청구항 11】 [Claim 11]
제 8 항에 있어서, 상기 배양은 회분 발효 또는 유가 발효인 것을 특징으로 하는 2, 3-부탄다이을 제조 방법.  9. The method of claim 8, wherein the culturing is batch fermentation or fed-batch fermentation.
【청구항 12] [Claim 12]
상기 제 8 항의 2,3-부탄다이올 제조 방법에 의해 제조된 2,3- 부탄다이올.  2,3-butanediol prepared by the method for producing 2,3-butanediol of claim 8.
PCT/KR2014/000677 2013-01-25 2014-01-23 Recombinant strain for producing 2,3-butanediol, comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator WO2014116042A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/785,607 US9994875B2 (en) 2013-01-25 2014-01-23 Recombinant strain for producing 2,3-butanediol, comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0008816 2013-01-25
KR20130008816 2013-01-25
KR10-2013-0083817 2013-07-16
KR1020130083817A KR101542879B1 (en) 2013-01-25 2013-07-16 Recombinant Strain for Manufacturing 2,3-Butanediol comprising Inactivated Lactate Dehydrogenase and Inactivated Sucrose Regulator

Publications (1)

Publication Number Publication Date
WO2014116042A1 true WO2014116042A1 (en) 2014-07-31

Family

ID=51227782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000677 WO2014116042A1 (en) 2013-01-25 2014-01-23 Recombinant strain for producing 2,3-butanediol, comprising (a) inactivated lactate dehydrogenase and (b) inactivated sucrose regulator

Country Status (1)

Country Link
WO (1) WO2014116042A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112655A1 (en) * 2008-09-29 2010-05-06 Butamax(Tm) Advanced Biofuels Llc Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
KR20120104765A (en) * 2011-03-14 2012-09-24 서강대학교산학협력단 Lactate dehydrogenase deleted mutant of enterobacter aerogenes for enhanced 2,3-butanediol production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112655A1 (en) * 2008-09-29 2010-05-06 Butamax(Tm) Advanced Biofuels Llc Enhanced pyruvate to 2,3-butanediol conversion in lactic acid bacteria
KR20120104765A (en) * 2011-03-14 2012-09-24 서강대학교산학협력단 Lactate dehydrogenase deleted mutant of enterobacter aerogenes for enhanced 2,3-butanediol production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNG, S.-G. ET AL.: "Removal of pathogenic factors from 2,3-butanediol- producing Klebsiella species by inactivating virulence-related wabG gene .", APPL. MICROBIOL. BIOTECHNOL., vol. 97, 26 July 2012 (2012-07-26), pages 1997 - 2007 *
REID, S. J. ET AL.: "Sucrose utilization in bacteria: genetic organisation and regulation.", APPL. MICROBIOL. BIOTECHNOL., vol. 67, 2005, pages 312 - 321 *

Similar Documents

Publication Publication Date Title
Zhao et al. Biochemical routes for uptake and conversion of xylose by microorganisms
He et al. Zymomonas mobilis: a novel platform for future biorefineries
Jojima et al. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook
Mazumdar et al. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol
Yang et al. Metabolic engineering of Zymomonas mobilis for 2, 3-butanediol production from lignocellulosic biomass sugars
Jung et al. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2, 3-butanediol production
Li et al. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)-2, 3-butanediol from lignocellulose-derived sugars
Maervoet et al. Enhancing the microbial conversion of glycerol to 1, 3-propanediol using metabolic engineering
Bao et al. Recent advances in n-butanol and butyrate production using engineered Clostridium tyrobutyricum
Sasaki et al. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation
Ji et al. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2, 3-butanediol production from glucose–xylose mixtures
Bao et al. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases
Valdehuesa et al. Everyone loves an underdog: metabolic engineering of the xylose oxidative pathway in recombinant microorganisms
Tang et al. Recruiting alternative glucose utilization pathways for improving succinate production
US20130078673A1 (en) Recombinant microorganism having an ability of using sucrose as a carbon source
Nan et al. 2, 3-Butanediol production from cellobiose by engineered S accharomyces cerevisiae
Yang et al. Insights into acetate toxicity in Zymomonas mobilis 8b using different substrates
Vinuselvi et al. Engineering Escherichia coli for efficient cellobiose utilization
Munjal et al. Modulation of endogenous pathways enhances bioethanol yield and productivity in Escherichia coli
JP2016073285A (en) Zymomonas with improved arabinose utilization
US9284582B2 (en) Method for preparing mutant Escherichia coli capable of simultaneously utilizing glucose and xylose
CA2809942C (en) Novel succinic acid-producing mutant microorganism that utilizes sucrose and glycerol simultaneously and method for producing succinic acid using the same
Oh et al. Gene amplification on demand accelerates cellobiose utilization in engineered Saccharomyces cerevisiae
WO2014025747A1 (en) Glucose and xylose co-utilization in e. coli
WO2012159571A1 (en) Method for improving sugar utilization rate of clostridium acetobutylicum in mixed sugar fermentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14785607

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14743424

Country of ref document: EP

Kind code of ref document: A1