WO2014115989A1 - 무선통신 시스템에서 측정을 설정하는 정보를 송수신하는 방법 및 장치 - Google Patents

무선통신 시스템에서 측정을 설정하는 정보를 송수신하는 방법 및 장치 Download PDF

Info

Publication number
WO2014115989A1
WO2014115989A1 PCT/KR2014/000303 KR2014000303W WO2014115989A1 WO 2014115989 A1 WO2014115989 A1 WO 2014115989A1 KR 2014000303 W KR2014000303 W KR 2014000303W WO 2014115989 A1 WO2014115989 A1 WO 2014115989A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
nct
information
setting
base station
Prior art date
Application number
PCT/KR2014/000303
Other languages
English (en)
French (fr)
Inventor
안재현
권기범
허강석
정명철
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Priority claimed from KR1020140003190A external-priority patent/KR102204048B1/ko
Publication of WO2014115989A1 publication Critical patent/WO2014115989A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving information for setting a measurement performed by a terminal.
  • Wireless communication systems use bandwidth for transmission.
  • the second generation wireless communication system uses a bandwidth of 200KHz ⁇ 1.25MHz
  • the third generation wireless communication system uses a bandwidth of 5MHz ⁇ 10MHz.
  • the bandwidth continues to expand to 20 MHz or more.
  • it is necessary to increase the bandwidth.
  • supporting a large bandwidth can cause a large power consumption.
  • the multi-carrier system refers to a wireless communication system capable of supporting carrier aggregation.
  • Carrier aggregation is a technique for efficiently using fragmented small bands, and can have the same effect as using logically large bands by combining a plurality of physically non-continuous bands in the frequency domain. For example, if one carrier corresponds to a bandwidth of 5 MHz, it is possible to support a bandwidth of up to 20 MHz by using four carriers.
  • a method for solving a power imbalance considering characteristics of serving cells supported by a terminal For example, for a power imbalance generated when the terminal supports a plurality of carriers, a specific power imbalance solution that requires characteristics of a specific subcarrier among a main carrier and / or a plurality of subcarriers is needed.
  • NCT New Carrier Type
  • Examples of operational efficiency improvement include control signaling overhead reduction, network and MS power saving, and interference reduction.
  • NCT In order to improve the operation efficiency, NCT expects a change in a reference signal (RS), a broadcasting signal, etc. from a legacy carrier type (LCT), and various restrictions will occur in operating with the LCT.
  • RS reference signal
  • LCT legacy carrier type
  • NCT associated with LCT is called non-standalone NCT.
  • Non-standalone NCT cannot be used as the main serving cell. That is, only the LCT carrier is used as the main serving cell, and a non-standalone NCT carrier may be used as the secondary serving cell.
  • the legacy UE and the legacy network do not know the existence of the NCT carrier, if the NCT carrier is not removed from the measurement, unnecessary measurement triggering or unnecessary measurement report is performed in the legacy UE. Can be passed to. A method for preventing such malfunctions is proposed at the network side and the terminal side.
  • An object of the present invention is to provide a method and apparatus for transmitting and receiving measurement setting information.
  • Another technical problem of the present invention is to provide a method and apparatus for performing a measurement in consideration of an NCT cell.
  • Another technical problem of the present invention is a method and apparatus for ignoring reporting of NCT cell related results from measurement results.
  • Another technical problem of the present invention is to provide a method and apparatus for generating measurement setting information considering an NCT cell.
  • a method for transmitting measurement configuration information by a base station includes: receiving measurement configuration related information determined based on NCT (New Carrier Type) cell related information configured from an NCT carrier from a network, NCT related measurement And transmitting, to the terminal, an RRC connection reset including measurement setting information for setting the measurement report, and receiving a measurement report including a result of the measurement performed by the terminal from the terminal.
  • NCT New Carrier Type
  • a method for performing measurement by a terminal includes receiving from the base station an RRC connection reset including measurement setting information for setting NCT related measurement based on NCT cell information, based on the measurement setting information And performing a measurement in consideration of NCT, and transmitting a measurement report including a result of performing the measurement to the base station.
  • a base station for transmitting measurement configuration information includes a receiver for receiving measurement configuration related information determined based on NCT (New Carrier Type) cell related information configured from an NCT carrier from a network, and measurement related to NCT. And a transmitter for transmitting an RRC connection reset including measurement setting information to be set to the terminal, wherein the receiver receives a measurement report including a result of the measurement performed by the terminal from the terminal.
  • NCT New Carrier Type
  • the terminal for performing the measurement receiving unit for receiving the RRC connection reset from the base station including the measurement setting information for setting the NCT-related measurement based on the NCT cell information, based on the measurement setting information It includes a measurement unit for performing the measurement in consideration of the NCT and a transmission unit for transmitting a measurement report including the result of the measurement to the base station.
  • the legacy terminal can perform the measurement without malfunction, thereby preventing errors in the process of mobility (mobility), mobility robustness optimization (MRO).
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG 5 shows a connection configuration between a downlink component carrier and an uplink component carrier in a multi-carrier system.
  • FIG. 6 shows an example of a CRS and TRS transmission region to which the present invention is applied.
  • 7 to 9 illustrate an example of an environment in which a legacy terminal performs measurement.
  • FIG. 10 shows an example of measuring an NCT carrier in a legacy terminal to which the present invention is applied.
  • 11 is a flowchart illustrating an example of transmitting and receiving measurement setting information according to the present invention.
  • FIG. 12 is a flowchart illustrating another example of transmitting and receiving measurement setting information according to the present invention.
  • FIG. 13 is a flowchart illustrating still another example of transmitting and receiving measurement setting information according to the present invention.
  • FIG. 14 is a flowchart illustrating an example of an operation of a base station for transmitting and receiving measurement setting information according to the present invention.
  • 15 is a flowchart illustrating an example of an operation of a terminal receiving measurement setting information according to the present invention.
  • 16 is a block diagram showing an apparatus for transmitting and receiving measurement setting information according to the present invention.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station 11 (evolved-NodeB, eNB). Each base station 11 provides a communication service for specific cells 15a, 15b, and 15c. One base station may be responsible for multiple cells.
  • the base station 11 refers to a transceiver that performs sharing of information and control information with a terminal for cellular communication, and includes a base station (BS), a base transceiver system (BTS), an access point, and a femto. ) May be referred to in other terms such as a base station, a home nodeB, a relay, and the like.
  • a cell is meant to encompass all of the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell, and the like.
  • the UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. It may be called a personal digital assistant, a wireless modem, a handheld device, or other terminology such as a terminal device or a wireless device.
  • Downlink refers to a transmission link from the base station 11 toward the terminal 12, and uplink refers to a transmission link from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme transmitted using different times or a frequency division duplex (FDD) scheme transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • Layers of a radio interface protocol between the terminal 12 and the base station 11 are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in communication systems.
  • the layer L1 may be divided into a second layer L2 and a third layer L3.
  • the physical layer belonging to the first layer may provide an information transfer service using a physical channel.
  • a physical downlink control channel (hereinafter referred to as PDCCH) carries a resource allocation and transmission format of a downlink shared channel (DL-SCH) and an uplink shared channel (UL-SCH).
  • Resource allocation information of a higher layer control message such as a random access response transmitted on a physical downlink shared channel (PDSCH), and control of transmission power for individual terminals in an arbitrary UE group.
  • TPC transmission power control
  • Carrier aggregation is a technology that supports a plurality of component carriers, also referred to as spectrum aggregation or bandwidth aggregation.
  • Individual unit carriers bound by carrier aggregation are called component carriers (CCs), and each CC may be defined as a bandwidth and a center frequency.
  • Carrier aggregation is introduced to support increased throughput, to prevent cost increase due to the introduction of wideband radio frequency (RF) devices, and to ensure compatibility with existing systems. For example, if five CCs are allocated as granularity in a carrier unit having a 5 MHz bandwidth, a bandwidth of up to 25 MHz may be supported.
  • RF radio frequency
  • the CC may be divided into a primary CC (hereinafter referred to as PCC) or a secondary (hereinafter referred to as SCC) according to activation.
  • PCC is always active carrier
  • SCC is a carrier that is activated or deactivated according to a specific condition.
  • activation means that transmission or reception of the traffic data is performed or in a standby state.
  • deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission / reception of minimum information is possible.
  • the terminal may use only one PCC, or may use one or more SCCs together with the PCC.
  • the terminal may be assigned a PCC and / or SCC from the base station.
  • FIG. 2 to 4 show examples of carrier aggregation to which the present invention is applied.
  • 2 is an example of intra-band contiguous CA
  • FIG. 3 is an example of intra-band non-contiguous CA
  • FIG. 4 is an inter-band carrier aggregation -band CA).
  • in-band adjacent carrier aggregation is achieved between adjacent (or consecutive) CCs in the same band.
  • the aggregated CCs CC # 1, CC # 2, CC # 3, ..., CC #N are all adjacent.
  • in-band non-adjacent carrier aggregation is achieved between discrete CCs.
  • the aggregated CCs CC # 1 and CC # 2 may exist apart from each other by a specific frequency.
  • CC # 1 which are aggregated CCs, may be present in band # 1
  • CC # 2 may exist in band # 2
  • CC #N may exist in band #K.
  • the number of carriers aggregated between the downlink and the uplink may be set differently.
  • the case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the size (ie bandwidth) of the CCs may be different. For example, assuming that 5 CCs are used for a 70 MHz band configuration, 5 MHz CC (carrier # 0) + 20 MHz CC (carrier # 1) + 20 MHz CC (carrier # 2) + 20 MHz CC (carrier # 3) It may be configured as + 5MHz CC (carrier # 4).
  • a multiple carrier system refers to a system supporting carrier aggregation.
  • Adjacent carrier aggregation and / or non-adjacent carrier aggregation may be used in a multi-carrier system, and either symmetric aggregation or asymmetric aggregation may be used.
  • FIG 5 shows linkage between a downlink component carrier and an uplink component carrier in a multi-carrier system.
  • Di is an index of DL CC
  • At least one DL CC is a PCC and the rest is an SCC.
  • at least one UL CC is a PCC and the rest are SCCs.
  • D1 and U1 are PCCs
  • D2, U2, D3, and U3 are SCCs.
  • the DL CC and the UL CC are configured to be connected 1: 1, D1 is connected to U1, D2 is set to U2, and D3 is set to 1: 1 to U3.
  • the UE establishes a connection between the DL CCs and the UL CCs through system information transmitted by a logical channel BCCH (Broadcast Control Channel) or a dedicated RRC message transmitted by a dedicated control channel (DCCH).
  • BCCH Broadcast Control Channel
  • DCCH dedicated control channel
  • the index of the component carrier does not correspond to the order of the component carrier or the position of the frequency band of the component carrier.
  • New Carrier Type: NCT New Carrier Type
  • a new type of carrier NCT may be used to increase the operation efficiency of a carrier.
  • the purpose of the NCT is to reduce overhead, reduce network and terminal power, and reduce interference.
  • this may be to reduce interference between base stations by turning on / off RF of a carrier when there is no active service according to the nature of data serviced by the carrier of this type, and to obtain power saving effect.
  • it may be to support a MIMO system having a different horizontal / vertical direction such as 3D MIMO (or FD-MIMO or massive MIMO).
  • Non-NCT carriers e.g., carriers used in rel-8 or rel-10, hereinafter referred to as legacy carrier type (LCT)
  • LCT legacy carrier type
  • NCT refers to a reference signal (RS) or a broadcasting signal (BS). There may be differences in the transmission.
  • RS reference signal
  • BS broadcasting signal
  • NCT carriers and LCT carriers are not necessarily different frequency bands on one network.
  • An NCT carrier and an LCT carrier may be configured and used for transmission through the same frequency band on one network.
  • the NCT is an NCT that operates independently of the LCT and is called an 'independent NCT' (also called a 'standalone NCT') and an LCT-associated NCT ('NCT associated with LCT' or 'non-standalone NCT'), or It is called 'associated NCT'.
  • 'independent NCT' also called a 'standalone NCT'
  • 'NCT associated with LCT' or 'non-standalone NCT' LCT-associated NCT
  • 'NCT associated with LCT' means that RRC (Radio Resource Control) setting in the corresponding NCT is performed through LCT. That is, an NCT connected to an RRC through LCT is called a non-standalone NCT. The NCT does not allow access of the terminal independently without the associated LCT.
  • RRC Radio Resource Control
  • An NCT cell refers to a cell composed of NCT carriers.
  • the LCT cell means a macro cell, and the NCT cell may include a small cell connected to the macro cell.
  • 'NCT associated with LCT' may be defined as 'NCT associated with Macro cell'.
  • the NCT cell may be a macro cell in a carrier aggregation situation. That is, the NCT cell is not a concept dependent on the size of the cell.
  • a legacy UE refers to a UE that does not know the existence of an NCT carrier
  • a legacy eNB refers to a base station that does not know the existence of an NCT carrier
  • a legacy network refers to an NCT.
  • the base station does not know the existence of the carrier.
  • the NCT terminal knows the existence of the NCT carrier and refers to a terminal capable of managing (implement) or manage (NCT carrier)
  • the NCT base station knows the existence of the NCT carrier and can handle or manage the NCT carrier
  • the base station refers to a network that knows the existence of an NCT carrier and can handle or manage the NCT carrier.
  • Standalone NCT may be used as a primary serving cell (PCell), but non-standalone NCT may not be used as a main serving cell. Both independent NCT and linked NCT can be used as secondary serving cell. For example, the network may use independent NCT in the primary serving cell and use the linked NCT in the secondary serving cell.
  • PCell primary serving cell
  • non-standalone NCT may not be used as a main serving cell.
  • Both independent NCT and linked NCT can be used as secondary serving cell.
  • the network may use independent NCT in the primary serving cell and use the linked NCT in the secondary serving cell.
  • a reference signal may be simplified and used.
  • the RS may also be referred to as a reduced CRS or a tracking reference signal (TRS).
  • TRS tracking reference signal
  • the TRS may be used for measurement or for tracking a synchronized signal.
  • the TRS may not be transmitted every subframe, and may not be used for channel estimation if it is determined that the accuracy is low.
  • Cell-specific RS may be used for channel estimation, or may be used for RRM measurement (eg, to determine channel quality through an average value).
  • MIMO systems eg, 8 * 8 antennas
  • CSI-RS Channel State Information RS
  • NCT New Carrier Type
  • the NCT may have a different restriction from the case of transmitting a legacy carrier type (LCT) instead of the NCT.
  • RS reference signal
  • LCT legacy carrier type
  • FIG. 6 illustrates an example of a CRS or TRS transmission region to which the present invention is applied and is a diagram illustrating various forms of the aforementioned NCT.
  • resource elements may be mapped using CRS antenna ports (eg, antenna port 0) (600).
  • a DM-RS (DeModulation-Reference Signal) may be used to demodulate data received by a UE through a carrier.
  • the DM-RS refers to an RS that is classified and transmitted for a specific terminal only for an area where data is transmitted. The DM-RS is not transmitted in the region where the terminal does not receive data from the base station.
  • the CRS may be designed to cover the entire system bandwidth in all subframes (610).
  • the TRS or the reduced CRS may use a subset of the CRS.
  • the configuration of the TRS or a subset of the reduced CRS may be in time, in frequency, or simultaneously in time and frequency.
  • a TRS or a reduced CRS may be transmitted in a specific subframe.
  • the configuration of a subset of TRS or reduced CRS may be designed to be transmitted once every 5 ms (620).
  • the TRS or the reduced CRS may be transmitted in some bands of the system band in terms of frequency (630).
  • TRS or reduced CRS may be transmitted in some bands of the system band in a specific subframe in terms of time and frequency.
  • the configuration of the subset of TRS or reduced CRS may be transmitted once every 5 ms and transmitted in some bands of the system band (640).
  • 7 to 9 illustrate an example of an environment in which a legacy terminal performs measurement.
  • FIG. 7 illustrates a situation in which a legacy terminal is connected to an NCT base station located near an NCT cell.
  • a legacy terminal is given a measurement setting by an NCT base station, and is in an environment in which an NCT cell may exist in a vicinity.
  • FIG. 8 illustrates a situation in which a legacy terminal is connected to a legacy base station located near an NCT cell, and a legacy base station is managed by an NCT network.
  • a legacy terminal is given a measurement configuration by a legacy base station, and is in an environment in which an NCT cell may exist in the vicinity.
  • FIG 9 illustrates a legacy terminal connected to a legacy base station located near an NCT cell, and the legacy base station is managed in a legacy network.
  • a legacy terminal is given a measurement configuration by a legacy base station and is in an environment in which an NCT cell may exist in a vicinity.
  • both the legacy base station and the NCT base station may be managed by the NCT network, or the legacy base station may be managed in the legacy network and the NCT base station may be managed in the NCT network.
  • Signals can be transmitted and received between the legacy network and the NCT network.
  • FIG. 10 shows an example of measuring an NCT carrier in a legacy terminal to which the present invention is applied.
  • a measurement sample is determined by an internal algorithm (eg, an algorithm inside a terminal) when there is no special pattern restriction.
  • an internal algorithm eg, an algorithm inside a terminal
  • a large difference may occur in comparison with the case where the measurement values coincide with each other (1020) when the position of the TRS and the measurement sample do not coincide on a time frame (1010, 1030).
  • the measurement value or the measurement sample is described using the case of RSRP (Reference Signal Received Power) as an example, but may be a reference signal received quality (RSRQ), it is similarly applied to the case of RSRQ.
  • RSRP Reference Signal Received Power
  • RSRQ reference signal received quality
  • the NCT will be described using 'non-standalone NCT' or a linked NCT that cannot be set as the main serving cell as an example.
  • the present invention can be applied even when the NCT is a standalone NCT.
  • the UE is operating in the RRC connected mode.
  • the network refers to the components of the core network (core network) excluding the base station and the operation and management (OAM), for example, Mobile Mobility Entity (MME), Packet data network GateWay (PGW), Serving GateWay (SGW) ) And the like.
  • MME Mobile Mobility Entity
  • PGW Packet data network GateWay
  • SGW Serving GateWay
  • the legacy terminal is connected to an NCT base station located near an NCT cell, and a legacy terminal configured from an NCT base station measures an NCT carrier.
  • Measurement setting related information is transmitted from the OAM to the network (S1100).
  • the measurement setting-related information is NCT cell information (NCT cell information), information on the measurement restriction (measurement restriction) of the NCT carrier or the MDT area scope (MDT area scope, for example, TA) through the NCT network. (Tracking Area)) information.
  • the NCT cell information may include information of a frequency carrier including an NCT cell.
  • the frequency carrier including the NCT cell may be indicated by an E-UTRA Absolute Radio Frequency Channel Number (EARFCN) value.
  • E-UTRA Absolute Radio Frequency Channel Number E-UTRA Absolute Radio Frequency Channel Number
  • the NCT cell information may include an NCT cell list composed of NCT cells.
  • the NCT cell list may be configured as a list of physical cell IDs (PCIs) or an EC-ERAN cell global identifier (ECGI) list.
  • PCI refers to an ID value transmitted from a base station through a PSS / SSS (Primary Synchronized Signal / Secondary Synchronized Signal).
  • the ECGI may globally identify a cell and may include a PLMN ID (Public Land Mobile Network ID) and a cell ID.
  • the cell ID may include a base station ID.
  • Information regarding the measurement limitation of the NCT carrier may be information indicating a location where measurement is possible or a location where measurement is limited.
  • the information related to the measurement limitation may be configured in the form of a bitmap pattern in which subframe can be measured.
  • the bitmap pattern may be one bitmap pattern or may be a plurality of bitmap patterns. It may also be configured in a form that includes different bitmap patterns for each cell.
  • the NCT network transmits measurement setting related information to the NCT base station (S1105).
  • the measurement setting related information refers to the measurement NCT cell information, measurement limitation related information of the NCT carrier, or MDT region range (for example, TA) information described above.
  • the measurement limit information may be determined by the network and transmitted to the base station.
  • the network is configured to properly measure the TRS.
  • the measurement limit information may include a bitmap pattern or a measurement period and an offset value.
  • the MDT region range information may include information for setting the measurement on the NCT cell not to be performed. That is, when the network sets the MDT area range, the network may be set to exclude the NCT cell from the MDT area.
  • the NCT network may configure and signal cells except for the NCT cell.
  • the NCT network may set and signal a black cell list together with the MDT region. That is, the cell may be additionally set to be excluded from the logged MDT like the NCT cell.
  • the NCT cell may be signaled without being excluded in the MDT region.
  • the NCT network may signal only relevant information so that the NCT base station performs the task of removing the NCT cell from the MDT region. In this manner, when the operation of removing the NCT cell from the MDT region is performed by the NCT base station, the legacy base station may remove the NCT cell.
  • the following table shows an example of MDT configuration parameters included in MDT Initial Context Setup information (or message) transmitted from the MME to the base station. That is, the MDT initial context setup information may include at least one of the parameters in the following table.
  • the MDT configuration parameters may be included in a message in the initial context setup.
  • Table 1 parameter Area scope (TA, Cell) Trace reference Trace Recording Session Reference List of measurements Reporting Trigger Report Amount Report Interval Event thresholds Logging Interval Logging Duration IP address of Trace Collection Entity Measurement period for M4 Measurement period for M5 Positioning method
  • the NCT base station performs an RRC connection reconfiguration on the terminal (S1110). For example, the base station transmits an RRC connection reconfiguration message to the terminal.
  • RRC connection reset (or also referred to as RRC reset or RRC setup) includes measurement setup or measurement setup.
  • the base station sets a release configuraton or blacklist for a legacy terminal by referring to measurement configuration related information received from the network (for example, NCT cell information, NCT carrier measurement limit information, and MDT region range). do.
  • measurement configuration related information for example, NCT cell information, NCT carrier measurement limit information, and MDT region range.
  • the base station performs the measurement release setting for the corresponding terminal.
  • the base station refers to a frequency carrier for which the terminal should perform measurement by measurement objects to perform measurement configuration.
  • 'measurement release setting' means that the measurement object for the corresponding frequency is not set to the terminal, and the terminal does not perform the measurement at the corresponding frequency.
  • 'measurement black cell list' refers to an operation of adding a black cell list to a measurement object and not performing measurement on the corresponding cell when the corresponding cell is detected at the corresponding frequency.
  • Another example of a measurement release setting is a measurement restriction.
  • the measurement limit is a technique for limiting the legacy UE to perform measurement only in the region where the TRS exists when the NCT carrier overlaps with the neighbor cell (or neighbor cell). For example, a subframe measuring RSRP, RSRQ, CSI, etc. Refers to the technique of limiting. For example, it is a technique used for enhancement Inter-Cell Interference Cancellation (eICIC) operation.
  • eICIC Enhancement Inter-Cell Interference Cancellation
  • a bitmap pattern may be transmitted for the measurement limitation.
  • the bitmap pattern may be determined based on a TRS and a frame configuration.
  • a bitmap pattern (eg, MeasSubframePatternConfigNeigh) used by the terminal or the base station for the eICIC operation may be used, and the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • the bitmap pattern used for the eICIC operation refers to a bitmap pattern used for measuring only in a specific subframe to avoid interference. That is, the measurement is not performed in the terminal in an area not allowed by the corresponding bitmap.
  • signaling of the cell list to which the bitmap pattern and the bitmap pattern are applied may be performed a plurality of times. In this case, for a plurality of signaling, the legacy terminal has the ability to recognize the plurality of signaling structures.
  • the base station may generate a new bitmap pattern (eg, MeasSubframePatternConfigNeighForNCT) and signal it to the terminal.
  • a new bitmap pattern eg, MeasSubframePatternConfigNeighForNCT
  • the legacy terminal has the ability to know about the structure of the signaling of the new bitmap pattern.
  • the base station may generate a measurement period and an offset value and signal it to the terminal.
  • the terminal performs measurement (S1115).
  • the terminal performs the measurement based on the measurement setting received from the base station.
  • the terminal may perform the measurement considering the NCT.
  • the terminal performs the measurement based on the measurement setting received from the base station, but when the measurement sample tendency having an abnormal indication is detected (or detected or measured) Perform the ignore or denial of the measurement sample.
  • 'measurement sample trends with abnormal symptoms' means that the measurement result value suddenly changes after filtering (e.g., L1 filtering) or the measurement result value is too low (e.g., lower than a predetermined threshold value). It includes.
  • the degree of 'abrupt change' or 'overly low value' may be determined based on the measurement setting of the base station. That is, it means that the reference is set from the base station to the terminal through the signaling.
  • the criterion of the "sudden change" or the "too low value” may be set to a predetermined value within the terminal. That is, in all the base stations and all the terminals, it is recognized in the implementation step that the measurement sample tendency having an abnormal indication based on the predetermined specific value is recognized.
  • the degree of 'abrupt change' can be determined in dB units (e.g., 30 dB or more), or in 'extremely low' dBm units (e.g., -40 dBm or less).
  • Example 2 if 'a measurement sample tendency with an abnormal symptom' is captured, a measurement triggering event may not be performed, and a cell with 'measurement sample tendency with an abnormal symptom' is captured in the triggered cell list. You may not add it. That is, the measurement report does not include the measurement result regarding the 'measurement sample trend with abnormal symptoms'.
  • the UE transmits a measurement report to the base station (S1120). That is, the terminal reports a measurement result to the base station.
  • the measurement report may be performed based on periodic triggering or event triggering.
  • the base station may ignore the measurement result in which strange signs are captured.
  • FIG. 12 is a flowchart illustrating another example of transmitting and receiving measurement setting information according to the present invention.
  • a legacy terminal is connected to a legacy base station located near an NCT cell, and a legacy terminal configured from a legacy base station managed by an NCT network measures an NCT carrier.
  • measurement setting related information is transmitted from an OAM to a network (S1200).
  • the measurement setting related information includes NCT cell information, NCT carrier measurement limit related information, or MDT region range (eg, TA) information in the NCT network.
  • the NCT cell information may include information of a frequency carrier including an NCT cell.
  • the frequency carrier including the NCT cell may be indicated by an EARFCN value.
  • the NCT cell information may include an NCT cell list composed of NCT cells.
  • the NCT cell list may consist of a list of physical cell IDs or an ECGI list.
  • the ECGI may include a PLMN ID and a cell ID.
  • the cell ID may include a base station ID.
  • the NCT network transmits measurement setting related information to the legacy base station (S1205).
  • the measurement setting related information may include the aforementioned measurement NCT cell information, NCT carrier measurement limitation information, or MDT region range (for example, TA) information.
  • the legacy base station does not know the NCT cell, so the legacy base station may understand the information.
  • Information eg, black cell list
  • a form that can be transmitted may be transmitted.
  • the measurement limit information is set up so that the network can properly measure the TRS.
  • the NCT network may be set to exclude the NCT cell from the MDT area.
  • the NCT network may configure and signal cells except for the NCT cell.
  • the NCT network may set and signal a black cell list together with the MDT region. That is, the cell may be additionally set to be excluded from the logged MDT, such as an NCT cell.
  • the NCT cell may be signaled without being excluded in the MDT region.
  • the operation of removing the NCT cell from the MDT region may signal only relevant information to be performed by the NCT base station. In this way, when the operation of removing the NCT cell in the MDT region is performed by the NCT base station, the legacy base station does not need to transmit signaling for removing the NCT cell to the terminal.
  • the MME including at least one of the MDT configuration parameters of Table 1 may be included in the MDT initial context setup information (or message) transmitted to the base station.
  • the MDT configuration parameters may be included in a message in the initial context setup.
  • the NCT base station performs RRC connection reconfiguration for the terminal (S1210).
  • the base station transmits an RRC connection reconfiguration message to the terminal.
  • RRC connection reset (or also referred to as RRC reset or RRC setup) includes measurement setup or measurement setup.
  • the base station sets the measurement release setting or the black list for the legacy terminal with reference to the measurement setting related information (eg, NCT cell information, measurement limitation information of the NCT carrier, MDT region range) received from the network.
  • the measurement setting related information eg, NCT cell information, measurement limitation information of the NCT carrier, MDT region range
  • the base station performs the measurement release setting for the corresponding terminal.
  • the base station refers to a frequency carrier that the terminal should perform measurement by measurement objects to perform measurement setup.
  • Another example of a measurement off setting is measurement limitation.
  • a bitmap pattern may be transmitted for the measurement limitation, and the bitmap pattern may be determined based on a TRS and a frame setting.
  • a bitmap pattern (eg, MeasSubframePatternConfigNeigh) used by the terminal or the base station for the eICIC operation may be used, and the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • signaling of the cell list to which the bitmap pattern and the bitmap pattern are applied may be performed a plurality of times. In this case, for a plurality of signaling, the legacy terminal has the ability to recognize the plurality of signaling structures.
  • the base station may generate a new bitmap pattern (eg, MeasSubframePatternConfigNeighForNCT) and signal it to the terminal.
  • a new bitmap pattern eg, MeasSubframePatternConfigNeighForNCT
  • the legacy terminal has the ability to know about the structure of the signaling of the new bitmap pattern.
  • the terminal performs measurement (S1215).
  • the terminal performs measurement based on the measurement setting received from the base station.
  • the UE performs the measurement based on the measurement setting received from the base station, but ignores the measurement sample when a trend of a measurement sample having an abnormal indication is detected (or detected, or measured). To perform the operation.
  • the degree of 'abrupt change' or 'overly low value' may be determined based on the measurement setting of the base station.
  • the criterion of the "sudden change" or the "too low value” may be set to a predetermined value within the terminal. That is, in all the base stations and all the terminals, it is recognized in the implementation stage that the measurement sample tendency having an abnormal indication is detected based on the predetermined specific value.
  • the degree of 'abrupt change' can be determined in dB units (e.g., 30 dB or more), or in 'extremely low' dBm units (e.g., -40 dBm or less).
  • a measurement triggering event may not be performed, and a cell with a measurement sample trend with unusual signs may not be added to the list of triggered cells. Can be. That is, the measurement report does not include the measurement result regarding the 'measurement sample trend with abnormal symptoms'.
  • step S1215 the terminal transmits a measurement report to the base station (S1220). That is, the terminal reports the measurement result to the base station.
  • the measurement report may be performed based on periodic triggering or event triggering.
  • the base station may ignore the measurement result in which strange signs are captured.
  • FIG. 13 is a flowchart illustrating still another example of transmitting and receiving measurement setting information according to the present invention.
  • 9 is a case where a legacy terminal is connected to a legacy base station located near an NCT cell, and a legacy terminal configured from a legacy base station managed by a legacy network measures an NCT carrier.
  • the NCT network delivers NCT cell information to the OAM (S1300).
  • the measurement setting related information includes NCT cell information, NCT carrier measurement limit related information, or MDT region range (eg, TA) information in the NCT network.
  • the NCT cell information may include information of a frequency carrier including an NCT cell.
  • the frequency carrier including the NCT cell may be indicated by an EARFCN value.
  • the OAM transmits measurement setting related information based on the NCT cell information received through the legacy network (S1305).
  • the OAM transmits information that the legacy terminal should perform or should not measure based on the NCT cell information received from the NCT network.
  • the measurement setting related information includes a black cell list, measurement release setting information, measurement limit information, or MDT region information (eg, TA, cell).
  • the measurement release setting information refers to a setting for releasing a previously set measurement band. For example, when the NCT cell is deployed for a certain band of the set measurement bands, the legacy network no longer allows the terminal that has previously measured the predetermined band based on the measurement release setting information. It is possible to set the measurement not to be performed in a certain band, and to accomplish this, a series of processes for excluding the band can be performed.
  • the NCT network may set and signal the black cell list together with the MDT region. That is, it may be additionally set for the cell to be excluded from the measurement target of the logged MDT like the NCT cell.
  • the legacy network transmits measurement setting related information (black cell list, measurement release setting information, measurement limit information, or MDT region information (eg, TA, cell)) to the legacy base station (S1310).
  • measurement setting related information black cell list, measurement release setting information, measurement limit information, or MDT region information (eg, TA, cell)
  • the black cell list is delivered to the legacy base station.
  • the de-measurement setting information is transferred to the legacy base station.
  • measurement limit information is transmitted to the legacy base station, and configuration information for measuring the TRS is transferred in consideration of the TRS.
  • signaling excluding the NCT cell is delivered.
  • a setting for excluding an NCT cell when signaling a cell in the MDT region range is signaled.
  • a black cell list is conveyed with an MDT region range. That is, cells to be excluded from the logged MDT, such as an NCT cell, are set.
  • the operation of removing the NCT cell in the MDT region range may be performed by the NCT base station.
  • the legacy base station performs RRC connection reconfiguration for the legacy terminal (S1315).
  • the base station transmits an RRC connection reconfiguration message to the terminal.
  • RRC connection reset (or also referred to as RRC reset or RRC setup) includes measurement setup or measurement setup.
  • the base station sets the deconfiguraton or the black list for the legacy terminal with reference to the measurement setting related information (eg, NCT cell information, measurement limitation information of the NCT carrier, MDT region range) received from the network.
  • the measurement setting related information eg, NCT cell information, measurement limitation information of the NCT carrier, MDT region range
  • the base station performs the measurement release setting for the corresponding terminal.
  • the base station refers to a frequency carrier that the terminal should perform measurement by measurement objects to perform measurement setup.
  • Another example of a measurement off setting is measurement limitation.
  • a bitmap pattern may be delivered for measurement limitation, and the bitmap pattern may be determined based on a TRS and a frame setting.
  • a bitmap pattern (eg, MeasSubframePatternConfigNeigh) used by the terminal or the base station for the eICIC operation may be used, and the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • signaling of the cell list to which the bitmap pattern and the bitmap pattern are applied may be performed a plurality of times. In this case, for a plurality of signaling, the legacy terminal has the ability to recognize the plurality of signaling structures.
  • the base station may generate a new bitmap pattern (eg, MeasSubframePatternConfigNeighForNCT) and signal it to the terminal.
  • a new bitmap pattern eg, MeasSubframePatternConfigNeighForNCT
  • the legacy terminal has the ability to know about the structure of the signaling of the new bitmap pattern.
  • the base station may generate a measurement period and an offset value and signal it to the terminal.
  • the terminal may perform the measurement (S1320).
  • the terminal performs the measurement based on the measurement setting received from the base station.
  • the terminal may perform the measurement considering the NCT.
  • the terminal performs measurement based on the measurement setting received from the base station, but ignores the measurement sample when a trend of a measurement sample having an abnormal indication is detected (or detected, or measured). To perform the operation.
  • the degree of 'abrupt change' or 'overly low value' may be determined based on the measurement setting of the base station. That is, it means that the reference is set from the base station to the terminal through the signaling.
  • the criterion of the "sudden change" or the "too low value” may be set to a predetermined value within the terminal. That is, in all the base stations and all the terminals, it is recognized in the implementation stage that the measurement sample tendency having an abnormal indication is detected based on the predetermined specific value.
  • the degree of 'abrupt change' can be determined in dB units (e.g., 30 dB or more), or in 'extremely low' dBm units (e.g., -40 dBm or less).
  • Example 2 if 'a measurement sample tendency with an abnormal symptom' is captured, a measurement triggering event may not be performed, and a cell with 'measurement sample tendency with an abnormal symptom' is captured in the triggered cell list. You may not add it. That is, the measurement report does not include the measurement result regarding the 'measurement sample trend with abnormal symptoms'.
  • step S1320 the terminal transmits a measurement report to the base station (S1325). That is, the terminal reports the measurement result to the base station.
  • the measurement report may be performed based on periodic triggering or event triggering.
  • the base station may ignore the measurement result in which strange signs are captured.
  • the base station may be a legacy base station or an NCT base station, and may be located near a NCT cell.
  • the base station may receive NCT related information from an NCT network or a legacy network.
  • the base station receives measurement setting related information from the network (S1400).
  • the measurement setting related information may include measurement NCT cell information, information on measurement limitation of an NCT carrier, or MDT region range (eg, TA) information.
  • the measurement setting related information may include a range of MDT regions excluding a black cell list, measurement release setting information, measurement limit information, or an NCT carrier.
  • the NCT cell information may include information of a frequency carrier including an NCT cell.
  • the frequency carrier including the NCT cell may be indicated by an EARFCN value.
  • the NCT cell information may include an NCT cell list composed of NCT cells.
  • the NCT cell list may consist of a list of physical cell IDs or an ECGI list.
  • the ECGI may include a PLMN ID and a cell ID.
  • the cell ID may include a base station ID.
  • the measurement limit information may be determined by the network and transmitted to the base station, it may be information that can be appropriately measured TRS.
  • the measurement limit information may include a bitmap pattern or a measurement period and an offset value.
  • the MDT region range information may include information for setting the measurement on the NCT cell not to be performed. That is, when the network sets the MDT area range, the network may be set to exclude the NCT cell from the MDT area.
  • cells except for the NCT cell may be configured and signaled.
  • the black cell list may be configured and signaled together with the MDT region. That is, it may be additionally set for a cell to be excluded from the logged MDT, such as an NCT cell.
  • the NCT cell may be signaled without being excluded in the MDT region.
  • the operation of removing the NCT cell from the MDT region may be signaled only relevant information for the NCT base station to perform. In this manner, when the operation of removing the NCT cell from the MDT region is performed by the NCT base station, the legacy base station may remove the NCT cell.
  • the base station may receive at least one of the MDT configuration parameters as shown in Table 1 from the MME through MDT initial context setup information (or message).
  • the MDT configuration parameter may be included in a message in the initial context setup.
  • the base station performs RRC connection reconfiguration for the terminal (S1405).
  • the base station transmits an RRC connection reconfiguration message to the terminal.
  • RRC connection reset (or also referred to as RRC reset or RRC setup) includes measurement setup or measurement setup.
  • the base station sets a release configuration or deconfiguration or blacklist for the legacy terminal with reference to measurement configuration related information received from the network (for example, NCT cell information, NCT carrier measurement limit information, and MDT region range). Can be.
  • measurement configuration related information for example, NCT cell information, NCT carrier measurement limit information, and MDT region range.
  • the base station may perform the measurement release setting for the corresponding terminal.
  • the base station refers to a frequency carrier that the terminal should perform measurement by measurement objects to perform measurement setup.
  • Another example of a measurement off setting is measurement limitation.
  • a bitmap pattern may be delivered for measurement limitation, and the bitmap pattern may be determined based on a TRS and a frame setting.
  • a bitmap pattern (eg, MeasSubframePatternConfigNeigh) used by the terminal or the base station for the eICIC operation may be used, and the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • signaling of the cell list to which the bitmap pattern and the bitmap pattern are applied may be performed a plurality of times. In this case, for a plurality of signaling, the legacy terminal has the ability to recognize the plurality of signaling structures.
  • the base station may generate a new bitmap pattern (eg, MeasSubframePatternConfigNeighForNCT) and signal it to the terminal.
  • a new bitmap pattern eg, MeasSubframePatternConfigNeighForNCT
  • the legacy terminal has the ability to know about the structure of the signaling of the new bitmap pattern.
  • the base station may generate a measurement period and an offset value and signal it to the terminal.
  • the base station may receive a measurement report from the terminal (S1410).
  • the measurement result included in the measurement report may be a result performed by the terminal based on the measurement setting transmitted from the base station. That is, the terminal may be the result of the measurement performed in consideration of the NCT.
  • the measurement result may be a result of disregarding the measurement sample when a measurement sample tendency having abnormal signs is detected (or detected or included in the measurement) during measurement.
  • the degree of 'abrupt change' or 'overly low value' may be determined based on the measurement setting of the base station.
  • the criterion of the "sudden change" or the "too low value” may be set to a predetermined value within the terminal. That is, in all the base stations and all the terminals, it is recognized in the implementation stage that the measurement sample tendency having an abnormal indication is detected based on the predetermined specific value.
  • the degree of 'abrupt change' can be determined in dB units (e.g., 30 dB or more), or in 'extremely low' dBm units (e.g., -40 dBm or less).
  • the measurement result is a result triggered to report only when the terminal is not detected (or detected, or measured) when a measurement sample tendency with abnormal signs is detected during the measurement. Can be.
  • the measurement result may be a result of not including a cell in which the measurement sample tendency with abnormal signs is captured in the cell list.
  • the measurement report may be performed based on periodic triggering or event triggering.
  • the base station may ignore the measurement result in which strange signs are captured even if the measurement result is reported.
  • the terminal may be a legacy terminal or may be located near the NCT cell.
  • the base station may be a legacy base station or an NCT base station.
  • the terminal receives an RRC connection reconfiguration from the base station (S1500).
  • RRC connection reset includes measurement setup or measurement setup.
  • the measurement setting information for setting the measurement includes a black cell list, measurement release setting or measurement limit information.
  • the measurement limit information may be determined by the network and transmitted to the base station, and may be information for properly measuring the TRS.
  • the measurement limit information may include a bitmap pattern or a measurement period and an offset value.
  • the base station sets a release configuration or deconfiguration or blacklist for the legacy terminal with reference to measurement configuration related information received from the network (for example, NCT cell information, NCT carrier measurement limit information, and MDT region range). Can be.
  • measurement configuration related information for example, NCT cell information, NCT carrier measurement limit information, and MDT region range.
  • the base station may perform the measurement release setting for the corresponding terminal.
  • the base station refers to a frequency carrier that the terminal should perform measurement by measurement objects to perform measurement setup.
  • Another example of a measurement off setting is measurement limitation.
  • a bitmap pattern may be delivered for measurement limitation, and the bitmap pattern may be determined based on a TRS and a frame setting.
  • a bitmap pattern (eg, MeasSubframePatternConfigNeigh) used by the terminal or the base station for the eICIC operation may be used, and the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • the base station may signal the cell list to which the bitmap pattern and the bitmap pattern are applied to the terminal.
  • signaling of the cell list to which the bitmap pattern and the bitmap pattern are applied may be performed a plurality of times. In this case, for a plurality of signaling, the legacy terminal has the ability to recognize the plurality of signaling structures.
  • the base station may generate a new bitmap pattern (eg, MeasSubframePatternConfigNeighForNCT) and signal it to the terminal.
  • a new bitmap pattern eg, MeasSubframePatternConfigNeighForNCT
  • the legacy terminal has the ability to know about the structure of the signaling of the new bitmap pattern.
  • the base station may generate a measurement period and an offset value and signal it to the terminal.
  • the terminal may perform the measurement based on the measurement setting information (S1505).
  • the terminal performs the measurement based on the measurement setting received from the base station.
  • the terminal may perform the measurement considering the NCT.
  • the terminal performs measurement based on the measurement setting received from the base station, but ignores the measurement sample when a trend of a measurement sample having an abnormal indication is detected (or detected, or measured). To perform the operation.
  • the degree of 'abrupt change' or 'overly low value' may be determined based on the measurement setting of the base station.
  • the criterion of the "sudden change" or the "too low value” may be set to a predetermined value within the terminal. That is, in all the base stations and all the terminals, it is recognized in the implementation stage that the measurement sample tendency having an abnormal indication is detected based on the predetermined specific value.
  • the degree of 'abrupt change' can be determined in dB units (e.g., 30 dB or more), or in 'extremely low' dBm units (e.g., -40 dBm or less).
  • a measurement triggering event may not be performed, and a cell with 'measured sample trends with strange symptoms' may not be added to the triggered cell list. have. That is, the measurement report does not include the measurement result regarding the 'measurement sample trend with abnormal symptoms'.
  • the terminal may transmit a measurement report to the base station (S1510). That is, the terminal reports the measurement result to the base station.
  • the measurement report may be performed based on periodic triggering or event triggering.
  • the base station may be a legacy base station or an NCT base station, and may be located near a NCT cell.
  • the base station may receive NCT related information from an NCT network or a legacy network.
  • the terminal may be a legacy terminal or may be located near the NCT cell.
  • 16 is a block diagram illustrating an example of an apparatus for transmitting and receiving measurement setting information according to the present invention.
  • the terminal 1600 may include a receiver 1605, a controller 1610, and a transmitter 1620, and the controller 1610 may further include a measurer 1615.
  • the controller 1610 may further include a measurer 1615.
  • what is described to be performed by the operation of the measuring unit 1615 may be performed by the controller 1610 itself rather than the measuring unit 1615.
  • the receiver 1605 receives an RRC connection reset from the base station 1650.
  • RRC connection reset includes measurement setup or measurement setup.
  • the measurement setting information for setting the measurement includes a black cell list, measurement release setting or measurement limit information.
  • the measurement limit information may be determined by the network and transmitted to the base station 1650, or may be information for properly measuring the TRS.
  • the measurement limit information may include a bitmap pattern or a measurement period and an offset value.
  • the receiving unit 1605 is the measurement setting information generated based on the measurement setting related information (eg, NCT cell information, NCT carrier measurement limitation information, MDT region range) received from the base station 1650 from the network. Can be received.
  • the measurement setting related information eg, NCT cell information, NCT carrier measurement limitation information, MDT region range
  • the receiver 1605 may receive information for canceling setting of the corresponding frequency.
  • Another example of a measurement off setting is measurement limitation.
  • the receiver 1605 may receive a bitmap pattern for limiting measurement.
  • the bitmap pattern may be determined based on a TRS and a frame setting.
  • a bitmap pattern (eg, MeasSubframePatternConfigNeigh) used by the terminal 1600 or the base station 1650 for eICIC operation may be used, and the receiver 1605 may be a cell to which the bitmap pattern and the bitmap pattern are applied.
  • a list can be received.
  • a plurality of bitmap patterns (eg, MeasSubframePatternConfigNeigh) received by the receiver 1605 may be provided, and a plurality of cell lists to which the batmap patterns are applied may also be provided.
  • the receiver 1605 may receive a bitmap pattern and a cell list to which the bitmap pattern is applied a plurality of times. In this case, for the plurality of signaling, the terminal 1600 has a capability to recognize the plurality of signaling structures.
  • the receiver 1605 may receive a new bitmap pattern (eg, MeasSubframePatternConfigNeighForNCT) generated by the base station 1650.
  • a new bitmap pattern eg, MeasSubframePatternConfigNeighForNCT
  • the terminal 1600 has the ability to know about the structure of the signaling of the new bitmap pattern.
  • the receiver 1605 may receive a measurement period and an offset value generated by the base station 1650.
  • the measurement unit 1615 performs the measurement based on the measurement setting information.
  • the measuring unit 1615 may perform the measurement in consideration of the NCT.
  • the measurement unit 1615 performs the measurement based on the measurement setting received from the base station 1650, and includes a case where a measurement sample tendency having an abnormal indication is detected (or detected or measured). ) To ignore the measurement sample.
  • the degree of 'sudden change' or 'overly low value' may be determined based on the measurement setting of the base station 1650.
  • the degree of 'abrupt change' or the 'overly low value' criterion may be set to a predetermined specific value in the terminal 1600. That is, in all the base stations and all the terminals, it is recognized in the implementation stage that the measurement sample tendency having an abnormal indication is detected based on the predetermined specific value.
  • the degree of 'abrupt change' can be determined in dB units (e.g., 30 dB or more), or in 'extremely low' dBm units (e.g., -40 dBm or less).
  • the measurement unit 1615 may not perform the measurement triggering event, and the measurement sample trend having the abnormal indication is captured in the triggered cell list. You can not add cells. That is, the measurement report does not include the measurement result regarding the 'measurement sample trend with abnormal symptoms'.
  • the transmitter 1610 transmits the measurement report to the base station 1650. That is, the transmitter 1610 reports the measurement result to the base station 1650.
  • the measurement report may be performed based on periodic triggering or event triggering.
  • the base station 1650 may include a transmitter 1655, a receiver 1660, and a controller 1665, and the controller 1665 may further include a measurement setting information generator 1670.
  • the description of the control unit 1665 is also applied to the measurement setting information generation unit 1670, and the description of the measurement setting information generation unit 1670 is also applied to the control unit 1665.
  • the base station 1650 may be a legacy base station or an NCT base station, and may be located near a NCT cell.
  • the base station 1650 may receive NCT related information from an NCT network or a legacy network.
  • the receiver 1660 receives measurement setting related information from a network.
  • the reception unit 1660 may provide measurement setting related information including measurement NCT cell information, measurement restriction related information of an NCT carrier, or MDT region range (eg, TA) information. Can be received.
  • measurement NCT cell information measurement restriction related information of an NCT carrier
  • MDT region range eg, TA
  • the receiver 1660 may receive measurement setting related information including a black cell list, measurement release setting information, measurement limit information, or an MDT region range excluding an NCT carrier. .
  • the measurement release setting information refers to a setting for releasing a previously set measurement band.
  • the legacy network may determine that the terminal 1600 previously measuring the predetermined band based on the measurement release setting information. It may be set to no longer perform the measurement in the predetermined band, and for this purpose, a series of processes for excluding the corresponding band may be performed.
  • the NCT cell information may include information of a frequency carrier including an NCT cell.
  • the frequency carrier including the NCT cell may be indicated by an EARFCN value.
  • the NCT cell information may include an NCT cell list composed of NCT cells.
  • the NCT cell list may consist of a list of physical cell IDs or an ECGI list.
  • the ECGI may include a PLMN ID and a cell ID.
  • the cell ID may include a base station ID.
  • the measurement limit information may be information determined by the network and transmitted to the base station 1650, and may be information for properly measuring the TRS.
  • the measurement limit information may include a bitmap pattern or a measurement period and an offset value.
  • the MDT region range information may include information for setting the measurement on the NCT cell not to be performed. That is, when the network sets the MDT area range, the network may be set to exclude the NCT cell from the MDT area.
  • cells except for the NCT cell may be configured and signaled.
  • the black cell list may be configured and signaled together with the MDT region. That is, it may be additionally set for a cell to be excluded from the logged MDT, such as an NCT cell.
  • the NCT cell may be signaled without being excluded in the MDT region.
  • the operation of removing the NCT cell from the MDT region may be signaled only relevant information for the NCT base station to perform. In this manner, when the operation of removing the NCT cell from the MDT region is performed by the NCT base station, the legacy base station may remove the NCT cell.
  • the base station 1650 may receive at least one of the MDT configuration parameters as shown in Table 1 from the MME through MDT initial context setup information (or message). For example, when activating MDT to the base station 1650 in the MME, the MDT configuration parameter may be included in a message in the initial context setup.
  • the base station 1650 performs RRC connection reconfiguration for the terminal 1600.
  • the transmitter 1655 transmits an RRC connection reconfiguration message to the terminal 1600.
  • RRC connection reset (or also referred to as RRC reset or RRC setup) includes measurement setup or measurement setup.
  • the measurement configuration information generation unit 1670 refers to measurement configuration related information (for example, NCT cell information, NCT carrier measurement limit information, and MDT region range) received from the network, and releases a measurement configuration for a legacy terminal. information for setting a deconfiguration or a black list may be generated, and the transmission unit 1655 may transmit the information.
  • measurement configuration related information for example, NCT cell information, NCT carrier measurement limit information, and MDT region range
  • the measurement setting information generation unit 1670 may generate information for setting and canceling measurement of the corresponding frequency for the corresponding terminal 1600, and transmitting unit ( 1655 may send it.
  • the base station 1650 refers to a frequency carrier on which the terminal 1600 should perform measurement by measurement objects to perform measurement setup.
  • Another example of a measurement off setting is measurement limitation.
  • a bitmap pattern may be delivered for measurement limitation, and the bitmap pattern may be determined based on a TRS and a frame setting.
  • a bitmap pattern (eg, MeasSubframePatternConfigNeigh) used by the terminal 1600 or the base station 1650 for eICIC operation may be used, and the transmitter 1655 may be configured to apply the bitmap pattern and the bitmap pattern.
  • the cell list may be signaled to the terminal 1600.
  • signaling of the cell list to which the bitmap pattern and the bitmap pattern are applied may be performed a plurality of times. At this time, for a plurality of signaling, the legacy terminal 1600 has the ability to recognize the plurality of signaling structures.
  • the measurement configuration information generation unit 1670 may generate a new bitmap pattern (eg, MeasSubframePatternConfigNeighForNCT), and the transmission unit 1655 may signal this to the terminal 1600.
  • a new bitmap pattern eg, MeasSubframePatternConfigNeighForNCT
  • the legacy terminal 1600 is capable of knowing about the structure of the signaling of the new bitmap pattern.
  • the measurement setting information generation unit 1670 may generate a measurement period and an offset value, and the transmission unit 1655 may signal this to the terminal 1600.
  • the receiver 1660 receives a measurement report from the terminal 1600 (S1410).
  • the measurement result included in the measurement report may be a result performed by the terminal 1600 based on the measurement setting transmitted from the base station 1650. That is, the terminal 1600 may be a result of the measurement performed in consideration of the NCT.
  • the measurement result may be a result of disregarding the measurement sample when the terminal 1600 detects (or includes, or detects) a trend of a measurement sample having an abnormal symptom during the measurement.
  • the degree of 'sudden change' or 'overly low value' may be determined based on the measurement setting of the base station 1650.
  • the degree of 'abrupt change' or the 'overly low value' criterion may be set to a predetermined specific value in the terminal 1600. That is, in all the base stations and all the terminals, it is recognized in the implementation stage that the measurement sample tendency having an abnormal indication is detected based on the predetermined specific value.
  • the degree of 'abrupt change' can be determined in dB units (e.g., 30 dB or more), or in 'extremely low' dBm units (e.g., -40 dBm or less).
  • the measurement result may be a result triggered to report only when the terminal 1600 is not detected when the measurement sample tendency having an abnormal indication during the measurement (or when detected, or including the measured).
  • the measurement result may be a result of not including a cell in which the measurement sample tendency with abnormal signs is captured in the cell list.
  • the controller 1665 may ignore the measurement result in which the abnormal symptom is captured even if the measurement result is reported.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

측정 설정 정보를 송수신하는 방법 및 장치가 제공된다. 본 발명은 NCT 반송파로 구성된 NCT(New Carrier Type) 셀 관련 정보를 기초로 결정되는 측정 설정 관련 정보를 네트워크로부터 수신함, NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC 연결 재설정을 단말로 전송함 및 상기 단말이 측정을 수행한 결과를 포함하는 측정 보고를 상기 단말로부터 수신함을 포함한다.

Description

무선통신 시스템에서 측정을 설정하는 정보를 송수신하는 방법 및 장치
본 발명은 무선통신 시스템에 관한 것으로서, 보다 상세하게는 단말이 수행하는 측정을 설정하는 정보를 송수신하는 방법 및 장치에 관한 것이다.
무선통신 시스템은 송신을 위해 대역폭을 이용한다. 예를 들어, 2세대 무선통신 시스템은 200KHz ~ 1.25MHz의 대역폭을 사용하고, 3세대 무선통신 시스템은 5MHz ~ 10 MHz의 대역폭을 사용한다. 증가하는 송신 용량을 지원하기 위해, 20MHz 또는 그 이상까지 계속 그 대역폭을 확장하고 있다. 송신 용량을 높이기 위해서 대역폭을 늘리는 것은 필수적이라 할 수 있지만, 요구되는 서비스의 수준이 낮은 경우에도 큰 대역폭을 지원하는 것은 커다란 전력 소모를 야기할 수 있다.
하나의 대역폭과 중심 주파수를 갖는 반송파를 정의하고, 복수의 반송파를 통해 광대역으로 데이터를 송신 및/또는 수신할 수 있도록 하는 다중 요소반송파(Multiple Component Carrier) 시스템이 있다. 다중 반송파 시스템은 반송파 집성(carrier aggregation)을 지원할 수 있는 무선통신 시스템을 의미한다. 반송파 집성이란 조각난 작은 대역을 효율적으로 사용하기 위한 기술이며, 주파수 영역에서 물리적으로 비연속적인(non-continuous) 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 낼 수 있다. 예를 들어, 하나의 반송파가 5MHz의 대역폭에 대응된다면, 4개의 반송파를 사용함으로써 최대 20MHz의 대역폭을 지원할 수 있다.
상기 반송파 집성과 관련하여, 단말이 지원하는 서빙셀들의 특성을 고려한 전력 불균형을 해결하기 위한 방안이 필요한 실정이다. 일 예로, 단말이 다수의 반송파들을 지원함에 따라 발생되는 전력 불균형에 대하여, 주반송파 및 또는 다수의 부반송파들 중 특정 부반송파의 특성을 고려한 구체적인 전력 불균형 해결 기법이 필요하다.
반송파의 운용 효율을 높이기 위해 NCT(New Carrier Type)이 제안된다. 운용 효율 향상의 예로, 제어 신호 오버헤드 감쇠(control signaling overhead reduction), 네트워크 및 단말 전력 절약(network and MS power saving) 및 간섭 감쇠(interference reduction)등이 있다.
운용 효율을 높이기 위해서 NCT에서는 LCT(Legacy Carrier Type)에서 기준 신호(Reference Signal : RS), 방송 신호(Broadcasting signal) 등에 변화를 기대하고, LCT와 같이 운용하는데 있어서 여러 제약이 발생할 것이다.
LCT와 독립적으로 NCT를 동작시키는 개념, 즉, standalone NCT에 대해서도 고려되지만, 일단 LCT와 연계된 NCT(NCT associated with LCT)가 기본 개념으로서 제시된다. 여기서, LCT와 연계된 NCT를 non-standalone NCT라고 부른다. Non-standalone NCT는 주서빙셀로서 사용될 수는 없다. 즉, 주서빙셀로서는 LCT 반송파 만을 사용되며, 부서빙셀로서 non-standalone NCT 반송파가 사용될 수 있다.
이때, 레거시 단말(Legacy UE)와 기존 네트워크(Legacy network)는 NCT 반송파에 대한 존재를 모르기 때문에, NCT 반송파가 측정(measurement) 상에서 제거되지 않으면 레거시 단말에서의 불필요한 측정 트리거링가 수행되거나 불필요한 측정보고가 네트워크에게 전달될 수 있다. 이러한, 오동작들을 방지하기 위한 방법이 네트워크 측면과 단말 측면에서 제안된다.
본 발명의 기술적 과제는 측정 설정 정보를 송수신하는 방법 및 장치를 제공함에 있다.
본 발명의 다른 기술적 과제는 NCT 셀을 고려한 측정을 수행하는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 측정 결과로부터 NCT 셀 관련 결과의 보고를 무시하는 방법 및 장치에 있다.
본 발명의 또 다른 기술적 과제는 NCT 셀을 고려한 측정 설정 정보를 생성하는 방법 및 장치를 제공함에 있다.
본 발명의 일 양태에 따르면, 기지국이 측정 설정 정보를 전송하는 방법은 NCT 반송파로 구성된 NCT(New Carrier Type) 셀 관련 정보를 기초로 결정되는 측정 설정 관련 정보를 네트워크로부터 수신하는 단계, NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC 연결 재설정을 단말로 전송하는 단계 및 상기 단말이 측정을 수행한 결과를 포함하는 측정 보고를 상기 단말로부터 수신하는 단계를 포함한다.
본 발명의 다른 양태에 따르면, 단말이 측정을 수행하는 방법은 NCT 셀 정보를 기초로 NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC 연결 재설정을 기지국으로부터 수신하는 단계, 상기 측정 설정 정보를 기초로 NCT를 고려한 측정을 수행하는 단계 및 상기 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 단계를 포함한다.
본 발명의 또 다른 양태에 따르면, 측정 설정 정보를 전송하는 기지국은 NCT 반송파로 구성된 NCT(New Carrier Type) 셀 관련 정보를 기초로 결정되는 측정 설정 관련 정보를 네트워크로부터 수신하는 수신부, NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC 연결 재설정을 단말로 전송하는 전송부를 포함하며, 상기 수신부는 상기 단말이 측정을 수행한 결과를 포함하는 측정 보고를 상기 단말로부터 수신한다.
본 발명의 또 다른 양태에 따르면, 측정을 수행하는 단말은 NCT 셀 정보를 기초로 NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC 연결 재설정을 기지국으로부터 수신하는 수신부, 상기 측정 설정 정보를 기초로 NCT를 고려한 측정을 수행하는 측정부 및 상기 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 전송부를 포함한다.
본 발명에 따르면, LCT와 NCT 반송파가 공존하더라도 레거시 단말이 측정을 오작동없이 수행할 수 있으며, 이를 통해 모빌리티(mobility), MRO(mobility robustness optimization) 등의 과정에서의 오류를 방지할 수가 있다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 2 내지 도 4는 본 발명이 적용되는 반송파 집성의 예를 나타낸다.
도 5는 다중 반송파 시스템에서 하향링크 요소 반송파와 상향링크 요소 반송파간의 연결설정을 나타낸다.
도 6은 본 발명이 적용되는 CRS 및 TRS 전송 영역의 일 예를 나타낸다.
도 7 내지 도 9는 레거시 단말이 측정을 수행하는 환경의 일 예를 나타낸다.
도 10은 본 발명이 적용되는 레거시 단말에서 NCT 반송파를 측정하는 것의 일 예를 나타낸다.
도 11은 본 발명에 따라서 측정 설정 정보를 송수신함의 일 예를 나타내는 흐름도이다.
도 12는 본 발명에 따라서 측정 설정 정보를 송수신함의 다른 예를 나타내는 흐름도이다.
도 13은 본 발명에 따라서 측정 설정 정보를 송수신함의 또 다른 예를 나타내는 흐름도이다.
도 14는 본 발명에 따라서 측정 설정 정보를 송수신하는 기지국의 동작의 일 예를 나타내는 순서도이다.
도 15는 본 발명에 따라서 측정 설정 정보를 수신하는 단말의 동작의 일 예를 나타내는 순서도이다.
도 16은 본 발명에 따라서 측정 설정 정보를 송수신하는 장치를 나타내는 블록도이다.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.
도 1을 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)은 적어도 하나의 기지국(11; evolved-NodeB, eNB)을 포함한다. 각 기지국(11)은 특정 셀(cell)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 하나의 기지국은 다수의 셀을 담당할 수 있다. 기지국(11)은 셀룰러 통신을 위해 단말과의 정보 및 제어 정보 공유 등을 수행하게 되는 송수신단을 의미하며 BS(Base Station), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토(femto) 기지국, 가내 기지국(Home nodeB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 셀은 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
단말(12; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 또는 단말 장치나 무선 장치 등 다른 용어로 불릴 수 있다.
하향링크(downlink)는 기지국(11)에서 단말(12) 방향의 전송링크(transmission link)를 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11) 방향으로의 전송링크를 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용되거나 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
단말(12)과 기지국(11) 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 모델의 하위 3개 계층을 바탕으로 제1 계층(L1), 제2 계층(L2), 제3 계층(L3)으로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공할 수 있다.
물리계층에서 물리채널들이 사용된다. 물리하향링크 제어 채널(physical downlink control channel: 이하 PDCCH)은 하향링크 공용채널(Downlink Shared Channel: DL-SCH)의 자원 할당 및 전송 포맷을 나르고, 상향링크 공용채널(Uplink Shared Channel: UL-SCH)의 자원 할당 정보를 나르고, 물리하향링크 공용채널(physical downlink shared channel: PDSCH)상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 단말 그룹내 개별 단말들에 대한 전송 전력 제어(transmission power control: TPC) 명령(command)의 집합 등을 나를 수 있다.
반송파 집성(carrier aggregation; CA)은 복수의 요소 반송파를 지원하는 기술이며, 스펙트럼 집성 또는 대역폭 집성(bandwidth aggregation)이라고도 한다. 반송파 집성에 의해 묶이는 개별적인 단위 반송파를 요소 반송파(component carrier : CC)라고 하며, 각 CC는 대역폭과 중심 주파수로 정의될 수 있다. 반송파 집성은 증가되는 수율(throughput)을 지원하고, 광대역 RF(radio frequency) 소자의 도입으로 인한 비용 증가를 방지하고, 기존 시스템과의 호환성을 보장하기 위해 도입되는 것이다. 예를 들어, 5MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 25Mhz의 대역폭을 지원할 수 있는 것이다.
CC는 활성화 여부에 따라 1차(primary) CC(이하 PCC) 또는 2차(secondary) CC(이하 SCC)로 나뉠 수 있다. PCC는 항상 활성화되어 있는 반송파이고, SCC는 특정 조건에 따라 활성화 또는 비활성화되는 반송파이다. 여기서, 활성화는 트래픽 데이터의 송신 또는 수신이 행해지거나 준비 상태(standby state)에 있는 것을 말한다. 또한, 비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. 단말은 하나의 PCC만을 사용하거나, PCC와 더불어 하나 또는 그 이상의 SCC를 사용할 수 있다. 단말은 PCC 및/또는 SCC를 기지국으로부터 할당받을 수 있다.
도 2 내지 도 4는 본 발명이 적용되는 반송파 집성의 예를 나타낸다. 도 2는 밴드내 인접 반송파 집성(intra-band contiguous CA)의 예이고, 도 3은 밴드내 비인접 반송파 집성(intra-band non-contiguous CA)의 예이고, 도 4는 밴드간 반송파 집성(inter-band CA)의 예이다.
도 2를 참조하면, 밴드내 인접 반송파 집성은 동일 밴드내에서 인접한(또는 연속적인) CC들 사이에서 이루어진다. 예를 들어, 집성되는 CC들인 CC#1, CC#2, CC#3, ... , CC #N이 모두 인접하다.
도 3을 참조하면, 밴드내 비인접 반송파 집성은 불연속적인 CC들 사이에 이루어진다. 예를 들어, 집성되는 CC들인 CC#1, CC#2는 서로 특정 주파수만큼 이격되어 존재할 수 있다.
도 4를 참조하면, 밴드간 반송파 집성은 다수의 CC들이 존재할 때, 그 중 하나 이상의 CC가 다른 주파수 대역상에서 집성되어 이루어진다. 예를 들어, 집성되는 CC들인 CC #1은 밴드(band) #1에 존재하고, CC #2는 밴드 #2에 존재하고, CC #N은 밴드 #K에 존재할 수 있다.
하향링크와 상향링크 간에 집성되는 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.
또한, CC들의 크기(즉 대역폭)는 서로 다를 수 있다. 예를 들어, 70MHz 대역의 구성을 위해 5개의 CC들이 사용된다고 할 때, 5MHz CC(carrier #0) + 20MHz CC(carrier #1) + 20MHz CC(carrier #2) + 20MHz CC(carrier #3) + 5MHz CC(carrier #4)과 같이 구성될 수도 있다.
이하에서, 다중 반송파(multiple carrier) 시스템이라 함은 반송파 집성을 지원하는 시스템을 말한다. 다중 반송파 시스템에서 인접 반송파 집성 및/또는 비인접 반송파 집성이 사용될 수 있으며, 또한 대칭적 집성 또는 비대칭적 집성 어느 것이나 사용될 수 있다.
도 5는 다중 반송파 시스템에서 하향링크 요소 반송파와 상향링크 요소 반송파간의 연결설정(linkage)을 나타낸다.
도 5를 참조하면, 하향링크에서 하향링크 요소 반송파(Downlink CC : DL CC)인 D1, D2, D3이 집성되고, 상향링크에서 상향링크 요소 반송파(Uplink CC : UL CC) U1, U2, U3이 집성되어 있다. 여기서 Di는 DL CC의 인덱스이고, Ui는 UL CC의 인덱스이다(i=1, 2, 3). 적어도 하나의 DL CC는 PCC이고, 나머지는 SCC이다. 마찬가지로, 적어도 하나의 UL CC는 PCC이고, 나머지는 SCC이다. 예를 들어, D1, U1이 PCC이고, D2, U2, D3, U3은 SCC이다.
FDD 시스템에서 DL CC와 UL CC는 1:1로 연결 설정되며, D1은 U1과, D2는 U2와, D3은 U3과 각각 1:1로 연결 설정된다. 단말은 논리채널 BCCH(Broadcast Control Channel)가 전송하는 시스템정보 또는 DCCH(Dedicated Control Channel)가 전송하는 단말전용 RRC메시지를 통해, 상기 DL CC들과 UL CC들간의 연결설정을 한다. 각 연결설정은 셀 특정하게(cell specific) 설정할 수도 있으며, 단말 특정하게(UE specific) 설정할 수도 있다.
도 5는 DL CC와 UL CC간의 1:1 연결설정만을 예시로 들었으나, 1:n 또는 n:1의 연결설정도 성립할 수 있음은 물론이다. 또한, 요소 반송파의 인덱스는 요소 반송파의 순서 또는 해당 요소 반송파의 주파수 대역의 위치에 일치하는 것은 아니다.
한편, 본 발명에 적용되는 새로운 타입의 반송파(New Carrier Type : NCT)을 설명한다.
무선 통신 시스템(예, LTE 통신 시스템)에서는 반송파의 운용 효율을 높이기 위해 새로운 타입의 반송파 NCT가 사용될 수 있다. NCT의 사용 목적은 오버헤드(overhead)의 감소, 네트워크와 단말의 전력 절감 및 간섭의 감쇠 등이다. 또는 해당 타입의 반송파가 서비스하고 있는 데이터의 성질에 따라 활성화된 서비스가 없을 때에 반송파의 RF를 on/off하여 기지국 간의 간섭을 줄이고, 전력 절감의 효과를 얻기 위함일 수도 있다. 또는 3D MIMO(or FD-MIMO or massive MIMO)와 같이 기존과는 다른 수평/수직 (horizontal/vertical) 방향의 차원 (dimension)을 갖는 MIMO 시스템을 지원하기 위함일 수도 있다.
NCT가 아닌 반송파(예, rel-8 또는 rel-10에서 사용되는 반송파, 이하 LCT(legacy carrier type)라한다)와 NCT는 기준 신호(reference signal : RS) 또는 방송 신호(Broadcasting signal : BS)를 전송함에 있어서 차이점이 있을 수 있다.
NCT 반송파와 LCT 반송파가 하나의 네트워크 상에서 반드시 서로 다른 주파수 대역인 것은 아니다. 하나의 네트워크 상에서 동일한 주파수 대역을 통해서 NCT 반송파와 LCT 반송파가 구성되어 전송에 쓰일 수도 있다.
NCT는 LCT와 독립적으로 동작되는 NCT인 '독립 NCT'('standalone NCT'이라고도 한다)와 LCT와 연계된 NCT인 'LCT 연계 NCT'('NCT associated with LCT' 또는 'non-standalone NCT', 또는 '연계 NCT'라 한다)가 있다.
본 발명에서, 'LCT와 연계된 NCT'라 함은 해당 NCT에서의 RRC(Radio Resource Control) 설정을 LCT를 통해서 수행하게 됨을 의미한다. 즉, LCT를 통해 RRC 연결 설정된 NCT를 non-standalone NCT라 칭한다. 해당 NCT 는 연계된 LCT가 없이 독립적으로 단말의 접근(access)을 허용하지 못한다.
NCT 셀은 NCT 반송파로 구성된(consist of) 셀을 말한다. 이종간 네트워크 시스템 (HetNet network system)에서 LCT 셀은 매크로 셀(Macro cell)을 의미하고, NCT 셀은 매크로 셀에 연결되는 소형 셀(small cell)을 의미할 수 있음을 포함한다. 다시 설명하면, 'NCT associated with LCT'는 'NCT associated with Macro cell'라 정의될 수 있다. 또는, NCT 셀은 반송파 집성 상황에서는 매크로 셀(macro cell)일 수도 있다. 즉, NCT 셀이라 함은 셀의 크기에 종속되어있는 개념은 아니다.
레거시 단말(legacy UE)는 NCT 반송파의 존재를 알지 못하는(not know the existence) 단말을 말하며, 레거시 기지국(legacy eNB)는 NCT 반송파의 존재를 알지 못하는 기지국을 말하며, 레거시 네트워크(legacy network)는 NCT 반송파의 존재를 알지 못하는 기지국을 말한다. 또한, NCT 단말은 NCT 반송파의 존재를 알고 있으며 NCT 반송파를 다루거나(implement) 관리(manage)할 수 있는 단말을 말하며, NCT 기지국은 NCT 반송파의 존재를 알고 있으며 NCT 반송파를 다루거나 관리할 수 있는 기지국을 말하며, NCT 네트워크는 NCT 반송파의 존재를 알고 있으며 NCT 반송파를 다루거나 관리할 수 있는 네트워크를 말한다.
독립 NCT(standalone NCT)는 주서빙셀(Primary serving cell : PCell)로서 사용될 수 있지만, 연계 NCT(non-standalone NCT)는 주서빙셀로서 사용될 수 없다. 독립 NCT 및 연계 NCT 모두 부서빙셀로서 사용될 수 있다. 일 예로, 네트워크는 독립 NCT를 주서빙셀에서 사용하고, 연계 NCT를 부서빙셀에서 사용할 수 있다.
NCT에서 기준 신호(Reference Signal : RS)가 간소화되어 사용될 수 있으며, 이러한 RS를 '감소된 CRS(reduced CRS)' 또는 'TRS(Tracking Reference Signal)'라고도 부른다.
TRS는 측정을 위하여 사용되거나, 동기 신호(synchronized signal)을 추적(tracking)하는 용도로 사용될 수 있다. TRS는 매 서브프레임마다 전송되지 않을 수 있으며, 정확도가 떨어진다고 판단되면 채널 추정을 위하여 사용되지 않을 수 있다.
셀특정 RS(Cell-specific RS : CRS)는 채널 추정(channel estimation)을 위해서 사용되거나, RRM 측정을 위하여(예, 평균값을 통해서 채널 품질(channel quality)를 판단하기 위하여) 사용될 수 있다. MIMO 시스템(예, 8*8 안테나)은 CSI-RS(Channel State Information RS)를 측정에 사용할 수 있다.
또한, 반송파의 운용 효율을 높이기 위해 새로운 타입의 반송파(New Carrier Type : NCT)가 사용될 수 있다. NCT를 이용하면 제어 신호의 전송으로 인한 오버헤드(overhead)가 감소하고, 네트워크와 단말의 전력을 절감하고, 간섭이 감쇠되는 효과가 있다.
NCT는 기준 신호(reference signal : RS) 또는 방송 신호(Broadcasting signal)를 전송하는 경우는 NCT가 아닌 레거시 반송파(legacy carrier type:LCT)를 전송하는 경우와는 다른 제약이 있을 수 있다.
도 6은 본 발명이 적용되는 CRS 또는 TRS 전송 영역의 일 예를 나타낸 것으로, 상기 언급한 NCT의 다양한 형태를 도시한 도면이다.
도 6을 참조하면, CRS 안테나 포트(예, 안테나 포트 0)을 이용하여 자원 요소를 맵핑할 수 있다(600). 단말이 반송파를 통해서 수신하는 데이터를 복조(demodulation) 하기 위해서 DM-RS(DeModulation-Reference Signal)가 사용될 수 있다. 여기서, DM-RS는 데이터가 전송되는 영역에 대해서만 특정 단말에 대해서 구분되어 전송되는 RS를 말한다. 단말이 기지국으로부터 데이터를 수신하지 않는 영역에 대해서는 DM-RS가 전송되지 않는다.
한편, 일 예로 CRS는 모든 서브프레임에 전 시스템 대역(System Bandwidth)에 걸쳐서 디자인될 수 있다(610).
반면, TRS 또는 감소된 CRS는 CRS의 서브셋(subset)이 사용될 수 있다. 예를 들어, TRS 또는 감소된 CRS의 서브셋의 구성은 시간 상에서 이루어지거나, 주파수 상에서 이루어지거나, 시간 및 주파수 상에서 동시에 이루어질 수도 있다.
일 예로, 시간 측면에서 특정 서브프레임에서 TRS 또는 감소된 CRS가 전송될 수 있다. 예를 들어, TRS 또는 감소된 CRS의 서브셋의 구성은 5ms마다 한번씩 전송되도록 디자인 될 수 있다(620).
다른 예로, 주파수 측면에서 시스템 대역의 일부 대역에서 TRS 또는 감소된 CRS가 전송될 수 있다(630).
또 다른 예로, 시간 및 주파수 측면에서 특정 서브프레임에 시스템 대역의 일부 대역에서 TRS 또는 감소된 CRS가 전송될 수 있다. 예를 들어, TRS 또는 감소된 CRS의 서브셋의 구성은 5ms마다 한번씩 전송되며 시스템 대역의 일부 대역에서 전송될 수 있다(640).
도 7 내지 도 9는 레거시 단말이 측정을 수행하는 환경의 일 예를 나타낸다.
도 7은 레거시 단말이 NCT 셀 근처에 위치(locate)하는 NCT 기지국에 연결되는 상황을 나타낸다.
도 7을 참조하면, 레거시 단말은 NCT 기지국에 의해서 측정 설정이 주어지며, 주변에 NCT 셀이 존재할 수 있는 환경에 있다.
도 8은 레거시 단말이 NCT 셀 근처에 위치하는 레거시 기지국에 연결되며, 레거시 기지국이 NCT 네트워크에 의해서 관리되는 상황을 나타낸다.
도 8을 참조하면, 레거시 단말은 레거시 기지국에 의해서 측정 설정이 주어지며, 주변에 NCT 셀이 존재할 수 있는 환경에 있다.
도 9는 레거시 단말이 NCT 셀 근처에 위치하는 레거시 기지국에 연결되며, 레거시 기지국은 레거시 네트워크에서 관리된다.
도 9를 참조하면, 레거시 단말은 레거시 기지국에 의해서 측정 설정이 주어지고, 주변에 NCT 셀이 존재할 수 있는 환경에 있다. 이때, 레거시 기지국 및 NCT 기지국 모두 NCT 네트워크에 의해서 관리되거나, 레거시 기지국은 레거시 네트워크에서 관리되고 NCT 기지국은 NCT 네트워크에서 관리될 수 있다. 레거시 네트워크 및 NCT 네트워크 사이에 신호가 송수신될 수 있다.
도 10은 본 발명이 적용되는 레거시 단말에서 NCT 반송파를 측정하는 것의 일 예를 나타낸다.
도 10을 참조하면, 측정 샘플(measurement sample)은 특별한 패턴 제약(pattern restriction)이 없을 때 내부 알고리즘(예, 단말 내부의 알고리즘)에 의해서 결정된다.
따라서, 레거시 단말의 경우 TRS의 위치와 측정 샘플간에 시간 프레임(time frame) 상에서 일치하지 않을 경우(1010, 1030)에 측정값이 일치하는 경우(1020)와 비교하여 큰 차이가 발생할 가능성이 있다.
여기서, 측정 값 또는 측정 샘플은 RSRP(Reference Signal Received Power)인 경우를 예로 들어 설명되지만, RSRQ(Reference Signal Received Quality)일 수 있으며, RSRQ인경우에도 유사하게 적용된다.
이와 같이 TRS의 위치와 측정 샘플간에 시간 프레임 상에서 일치하지 않을 경우 생기는 문제를 방지할 수 있는 네트워크에서 측정 설정 방안 또는 단말의 측정 방안이 요구된다.
이제, 본 발명에 따른 측정 설정 정보 전송 방법 및 장치를 설명한다. 이하에서, NCT는 주서빙셀로 설정될 수 없는 'non-standalone NCT' 또는 연계 NCT를 예로 들어 설명한다. 단 NCT가 standalone NCT인 경우에도 본 발명이 적용될 수 있다.
또한, 단말은 RRC 연결 모드에서 동작하고 있는 상황이다.
또한, 네트워크라 함은 기지국과 OAM(Operation And Management)을 제외한 코어 네트워크(core network)의 구성 요소들을 말하며, 일 예로, MME(Mobile Mobility Entity), PGW(Packet data network GateWay), SGW(Serving GateWay) 등으로 구성되어 있다.
도 11은 본 발명에 따라서 측정 설정 정보를 송수신함의 일 예를 나타내는 흐름도이다. 상기 도 7과 같이 레거시 단말이 NCT 셀 근처에 위치하는 NCT 기지국에 연결되는 경우이며, NCT 기지국으로부터 설정되는 레거시 단말이 NCT 반송파를 측정하는 경우이다.
OAM으로부터 측정 설정 관련 정보가 네트워크로 전송된다(S1100). 여기서, 측정 설정 관련 정보는 NCT 네트워크로 NCT 셀 정보(NCT cell information), NCT 반송파의 측정 제한(measurement restriction) 관련 정보 또는 MDT(Minimization of Drive Test) 영역 범위(MDT area scope, 예를 들어, TA(Tracking Area)) 정보를 포함한다.
일 예로, NCT 셀 정보는 NCT 셀을 포함하는 주파수 반송파의 정보를 포함할 수 있다. 이때, NCT 셀을 포함하는 주파수 반송파는 EARFCN(E-UTRA Absolute Radio Frequency Channel Number) 값으로 지시 될 수 있다.
다른 예로, NCT 셀 정보는 NCT 셀로 구성된 NCT 셀 리스트를 포함할 수 있다. 여기서 NCT 셀 리스트는 물리적 셀 ID(physical cell ID : PCI)의 리스트로 구성되거나, ECGI(E-UTRAN Cell Global Identifier) 리스트로 구성될 수 있다. PCI는 기지국에서 PSS/SSS(Primary Synchronized Signal/Secondary Synchronized Signal)를 통해 전송하는 ID 값을 말한다. ECGI는 글로벌하게(globally) 셀을 구분하는 ID로서 PLMN ID(Public Land Mobile Network ID), 셀 ID를 포함할 수 있다. 셀 ID는 기지국 ID를 포함할 수 있다.
NCT 반송파의 측정 제한 관련 정보는 측정이 가능한 위치 또는 측정이 제한되는 위치를 알려주는 정보일 수 있다. 일 예로, 측정 제한에 관련된 정보는 어떠한 서브프레임에서 측정이 가능한지를 비트맵 패턴(Bitmap pattern)의 형태로 구성될 수 있다. 해당 비트맵 패턴은 하나의 비트맵 패턴일 수도 있고, 여러 개의 비트맵 패턴일 수도 있다. 또한 셀 별로 다른 비트맵 패턴을 포함한 형태로 구성될 수도 있다.
단계 S1100에 이어서, NCT 네트워크는 측정 설정 관련 정보를 NCT 기지국으로 전달한다(S1105). 측정 설정 관련 정보는 앞서 설명한 측정 NCT 셀 정보, NCT 반송파의 측정 제한 관련 정보 또는 MDT 영역 범위(예를 들어, TA) 정보를 말한다.
측정 제한 정보를 네트워크에서 결정해서 기지국으로 전달할 수 있는데, 네트워크는 TRS를 적절히 측정할 수 있도록 설정한다. 이때, 측정 제한 정보는 비트맵 패턴을 포함하거나 측정 주기 및 오프셋 값을 포함할 수 있다.
MDT 영역 범위 정보(또는 MDT 영역 정보라고도 한다)는 NCT 셀에 관한 측정이 수행되지 않도록 설정하는 정보를 포함할 수 있다. 즉, 네트워크가 MDT 영역 범위를 설정할 때, MDT 영역에서 NCT 셀을 제외하도록 설정할 수 있다.
일 예로, NCT 네트워크는 MDT 영역에서 셀을 정의를 할 때, NCT 셀을 제외한 셀들을 설정하여 시그널링 할 수 있다.
다른 예로, NCT 네트워크는 MDT 영역과 함께 블랙 셀 리스트(Black cell list)를 설정하여 시그널링할 수 있다. 즉, NCT 셀과 같이 로그된 MDT(logged MDT)에서 제외할 셀에 대해서 추가적으로 설정할 수 있다.
또 다른 예로, MDT 영역에서 NCT 셀이 제외되지 않은 채 시그널링 될 수 있다. 이때, NCT 네트워크는 MDT 영역에서 NCT 셀을 제거하는 작업은 NCT 기지국이 수행하도록 관련 정보만 시그널링할 수 있다. 이와 같은 방법으로 MDT 영역에서 NCT 셀을 제거하는 작업이 NCT 기지국에서 수행되는 경우, 레거시 기지국에서는 NCT 셀을 제거할 수 있다.
다음 표는 MME 에서 기지국으로 전송되는 MDT 초기 콘텍스트 셋업(Initial Context Setup) 정보(또는 메시지)에 포함되는 MDT 설정 파라미터(MDT configuration parameter)의 일 예를 나타낸다. 즉, MDT 초기 콘텍스트 셋업 정보는 다음 표의 파라미터들 중 적어도 하나를 포함할 수 있다.
MME에서 기지국에게 MDT를 활성화할 때, MDT 설정 파라미터는 초기 콘텍스트 셋업 내 메시지에 포함될 수 있다.
표 1
파라미터
Area scope (TA, Cell)
Trace Reference
Trace Recording Session Reference
List of measurements
Reporting Trigger
Report Amount
Report Interval
Event Threshold
Logging Interval
Logging Duration
IP address of Trace Collection Entity
Measurement period for M4
Measurement period for M5
Positioning method
NCT기지국은 단말에 대하여 RRC 연결 재설정(RRC connection reconfiguration)을 수행한다(S1110). 일 예로, 기지국이 단말로 RRC 연결 재설정 메시지를 전송한다. RRC 연결 재설정(또는 RRC 재설정 또는 RRC 설정이라고도한다)은 측정 설정 또는 측정 해제설정을 포함한다.
기지국은 네트워크로부터 수신한 측정 설정 관련 정보(예, NCT 셀 정보, NCT 반송파의 측정 제한 정보, MDT 영역 범위)를 참조하여, 레거시 단말에 대해서 측정 해제설정(release configuraton 또는 deconfiguration) 혹은 블랙 리스트를 설정한다.
일 예로, NCT 셀 정보에 특정 주파수 반송파가 모두 NCT로만 구성된다면, 기지국은 해당 주파수를 해당 단말에 대해서 측정 해제설정을 수행한다.
기지국은 측정 설정을 수행할 측정 오브젝트(measurement object)들에 의해서 단말이 측정을 수행해야 하는 주파수 반송파를 지칭한다.
여기서, '측정 해제설정'이라 함은 해당 주파수에 대한 측정 오브젝트를 단말에게 설정해주지 않는 것을 말하며, 단말은 해당 주파수에서 측정을 수행하지 않는다. 또한, '측정 블랙 셀 리스트화'이라 함은 측정 오브젝트 내에 블랙 셀 리스트를 추가하여 해당 주파수에서 해당 셀이 감지(detect)되었을 때에는 해당 셀에 대해서는 측정을 수행하지 않는 동작을 의미한다.
측정 해제 설정의 다른 예로, 측정 제한(Measurement restriction)이 있다.
측정 제한이란 NCT 반송파가 주변 셀(또는 이웃셀)에 겹쳐 있을 때, TRS가 존재하는 영역에서만 레거시 단말이 측정을 수행하도록 제한하는 기법이며, 일 예로, RSRP, RSRQ, CSI 등을 측정하는 서브프레임을 제한하는 기법을 말한다. 예를 들어, eICIC(enhance Inter-Cell Interference Cancellation) 동작을 위해서 사용되는 기법이다.
측정 제한을 위해서 비트맵 패턴이 전달될 수 있는데, 상기 비트맵 패턴은 TRS와 프레임 설정(Frame configuration)등을 기초로 결정될 수 있다.
일 예로, 단말 또는 기지국이 eICIC 동작을 위해서 사용되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)을 이용될 수 있으며, 기지국은 상기 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트를 단말로 시그널링할 수 있다. eICIC 동작을 위해서 사용되는 비트맵 패턴이라 함은 간섭을 피하기 위해 특정 서브프레임에서만의 측정을 위해 쓰이는 비트맵 패턴을 의미한다. 즉, 해당 비트맵에서 허용하지 않는 영역에서는 단말에서 측정이 수행되지 않는다. 또 다른 예로, 시그널링 되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)이 복수개일 수 있고, 배트맵 패턴이 적용되는 셀 리스트도 복수개일 수 있다. 또는, 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트의 시그널링이 복수회 수행될 수 있다. 이때, 복수개의 시그널링을 위하여, 레거시 단말은 이러한 복수개의 시그널링 구조에 대해서 인지할 능력이 있다.
다른 예로, 기지국은 새로운 비트맵 패턴(예, MeasSubframePatternConfigNeighForNCT)을 생성하여 단말로 시그널링 할 수 있다. 새로운 비트맵 패턴을 사용하기 위해서, 레거시 단말은 새로운 비트맵 패턴의 시그널링의 구조에 대해서 인지할 능력이 있다.
또 다른 예로, 기지국은 측정 주기 및 오프셋 값을 생성하여 단말로 시그널링할 수 있다.
S1110에 이어서, 단말은 측정을 수행한다(S1115).
단말은 기지국으로부터 수신한 측정 설정을 기초로 측정을 수행한다. 이때 단말은 NCT를 고려한 측정을 수행할 수 있다.
일 예로(실시예 1), 단말은 기지국으로부터 수신한 측정 설정을 기초로 측정을 수행하되, 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)에 해당 측정 샘플을 무시하는 동작(ignore or denial)을 수행한다.
여기서, '이상한 징후를 가지는 측정 샘플 경향'이란 필터링(예, L1 필터링) 이후 측정 결과 값이 갑작스러운 변화하거나, 측정 결과 값이 지나치게 낮은 값(예, 소정의 임계값 보다 낮은 값)을 갖는 경우를 포함한다.
이때, 일 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 기지국의 측정 설정을 기준으로 결정될 수 있다. 즉, 기지국에서 단말로 해당 기준을 시그널링을 통하여 설정하는 것을 의미한다. 다른 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 단말 내에서 소정의 특정값으로 정해질 수도 있다. 즉, 모든 기지국과 모든 단말에서, 상기 소정의 특정값을 기준으로 이상한 징후를 가지는 측정 샘플 경향을 포착함이 구현(implementation) 단계에서 인지됨을 말한다. 또 다른 예로, '갑작스러운 변화'의 정도는 dB 단위로 정해질 수 있고(예, 30dB이상의 변화), '지나치게 낮은 값'의 dBm 단위로 정해질 수 있다(예, -40dBm이하의 값).
다른 예로(실시예2), '이상한 징후를 가지는 측정 샘플 경향'이 포착된 경우, 측정 트리거링 이벤트가 수행되지 않을 수 있으며, 트리거링된 셀 리스트에 '이상한 징후를 가지는 측정 샘플 경향'이 포착된 셀을 추가하지 않을 수 있다. 즉, 측정 보고는 '이상한 징후를 가지는 측정 샘플 경향'에 관한 측정 결과가 포함되지 않는다.
S1115에 이어서, 단말은 측정 보고(measurement report)를 기지국으로 전송한다(S1120). 즉, 단말은 측정 결과(measurement result)를 기지국으로 보고한다. 측정 보고는 주기적 트리거링 또는 이벤트 트리거링를 기초로 수행될 수 있다.
일 예로, 기지국은 측정 결과가 보고되더라도 이상한 징후가 포착된 측정 결과는 무시할 수 있다.
도 12는 본 발명에 따라서 측정 설정 정보를 송수신함의 다른 예를 나타내는 흐름도이다. 상기 도 8과 같이 레거시 단말이 NCT 셀 근처에 위치하는 레거시 기지국에 연결되는 경우이며, NCT 네트워크에 의해서 관리되는 레거시 기지국으로부터 설정되는 레거시 단말이 NCT 반송파를 측정하는 경우이다.
도 12를 참조하면, OAM으로부터 측정 설정 관련 정보가 네트워크로 전송된다(S1200). 여기서, 측정 설정 관련 정보는 NCT 네트워크로 NCT 셀 정보, NCT 반송파의 측정 제한 관련 정보 또는 MDT 영역 범위(예, TA) 정보를 포함한다.
일 예로, NCT 셀 정보는 NCT 셀을 포함하는 주파수 반송파의 정보를 포함할 수 있다. 이때, NCT 셀을 포함하는 주파수 반송파는 EARFCN 값으로 지시 될 수 있다.
다른 예로, NCT 셀 정보는 NCT 셀로 구성된 NCT 셀 리스트를 포함할 수 있다. 여기서 NCT 셀 리스트는 물리적 셀 ID의 리스트로 구성되거나, ECGI 리스트로 구성될 수 있다. ECGI는 PLMN ID, 셀 ID를 포함할 수 있다. 셀 ID는 기지국 ID를 포함할 수 있다.
단계 S1200에 이어서, NCT 네트워크는 측정 설정 관련 정보를 레거시 기지국으로 전송한다(S1205).
측정 설정 관련 정보는 앞서 설명한 측정 NCT 셀 정보, NCT 반송파의 측정 제한 관련 정보 또는 MDT 영역 범위(예를 들어, TA) 정보를 포함할 수 있는데, 레거시 기지국은 NCT 셀을 알지 못하므로 레거시 기지국이 이해할 수 있는 형태의 정보(예, 블랙 셀 리스트)가 전송될 수 있다.
측정 제한 관련 정보를 네트워크는 TRS를 적절히 측정할 수 있도록 설정한다.
NCT 네트워크가 MDT 영역 범위를 설정할 때, MDT 영역에서 NCT 셀을 제외하도록 설정할 수 있다.
일 예로, NCT 네트워크는 MDT 영역에서 셀을 정의를 할 때, NCT 셀을 제외한 셀들을 설정하여 시그널링 할 수 있다.
다른 예로, NCT 네트워크는 MDT 영역과 함께 블랙 셀 리스트를 설정하여 시그널링할 수 있다. 즉, NCT 셀과 같이 로그된 MDT에서 제외할 셀에 대해서 추가적으로 설정할 수 있다.
또 다른 예로, MDT 영역에서 NCT 셀이 제외되지 않은 채 시그널링 될 수 있다. 이때, MDT 영역에서 NCT 셀을 제거하는 작업은 NCT 기지국이 수행하도록 관련 정보만 시그널링할 수 있다. 이와 같은 방법으로 MDT 영역에서 NCT 셀을 제거하는 작업이 NCT 기지국에서 수행되는 경우, 레거시 기지국에서는 NCT 셀을 제거하는 시그널링을 단말에게 전달할 필요가 없다.
이때, 상기 표 1의 MDT 설정 파라미터 들 중 적어도 하나를 포함하는 MME 에서 기지국으로 전송되는 MDT 초기 콘텍스트 셋업 정보(또는 메시지)에 포함되어 전송될 수 있다. MME에서 기지국에게 MDT를 활성화할 때, MDT 설정 파라미터는 초기 콘텍스트 셋업 내 메시지에 포함될 수 있다.
단계 S1205에 이어서, NCT기지국은 단말에 대하여 RRC 연결 재설정을 수행한다(S1210). 일 예로, 기지국이 단말로 RRC 연결 재설정 메시지를 전송한다. RRC 연결 재설정(또는 RRC 재설정 또는 RRC 설정이라고도한다)은 측정 설정 또는 측정 해제설정을 포함한다.
기지국은 네트워크로부터 수신한 측정 설정 관련 정보(예, NCT 셀 정보, NCT 반송파의 측정 제한 정보, MDT 영역 범위)를 참조하여, 레거시 단말에 대해서 측정 해제설정 혹은 블랙 리스트를 설정한다.
일 예로, NCT 셀 정보에 특정 주파수 반송파가 모두 NCT로만 구성된다면, 기지국은 해당 주파수를 해당 단말에 대해서 측정 해제설정을 수행한다.
기지국은 측정 설정을 수행할 측정 오브젝트들에 의해서 단말이 측정을 수행해야 하는 주파수 반송파를 지칭한다.
측정 해제 설정의 다른 예로, 측정 제한이 있다.
측정 제한을 위해서 비트맵 패턴이 전달될 수 있는데, 상기 비트맵 패턴은 TRS와 프레임 설정등을 기초로 결정될 수 있다.
일 예로, 단말 또는 기지국이 eICIC 동작을 위해서 사용되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)을 이용될 수 있으며, 기지국은 상기 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트를 단말로 시그널링할 수 있다. 또 다른 예로, 시그널링 되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)이 복수개일 수 있고, 배트맵 패턴이 적용되는 셀 리스트도 복수개일 수 있다. 또는, 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트의 시그널링이 복수회 수행될 수 있다. 이때, 복수개의 시그널링을 위하여, 레거시 단말은 이러한 복수개의 시그널링 구조에 대해서 인지할 능력이 있다.
다른 예로, 기지국은 새로운 비트맵 패턴(예, MeasSubframePatternConfigNeighForNCT)을 생성하여 단말로 시그널링 할 수 있다. 새로운 비트맵 패턴을 사용하기 위해서, 레거시 단말은 새로운 비트맵 패턴의 시그널링의 구조에 대해서 인지할 능력이 있다.
S1210에 이어서, 단말은 측정을 수행한다(S1215).
일 예로, 단말은 기지국으로부터 수신한 측정 설정을 기초로 측정을 수행한다.
다른 예로, 단말은 기지국으로부터 수신한 측정 설정을 기초로 측정을 수행하되, 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)에 해당 측정 샘플을 무시하는 동작을 수행한다.
이때, 일 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 기지국의 측정 설정을 기준으로 결정될 수 있다. 다른 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 단말 내에서 소정의 특정값으로 정해질 수도 있다. 즉, 모든 기지국과 모든 단말에서, 상기 소정의 특정값을 기준으로 이상한 징후를 가지는 측정 샘플 경향을 포착함이 구현 단계에서 인지됨을 말한다. 또 다른 예로, '갑작스러운 변화'의 정도는 dB 단위로 정해질 수 있고(예, 30dB이상의 변화), '지나치게 낮은 값'의 dBm 단위로 정해질 수 있다(예, -40dBm이하의 값).
또 다른 예로, '이상한 징후를 가지는 측정 샘플 경향'이 포착된 경우, 측정 트리거링 이벤트가 수행되지 않을 수 있으며, 트리거링된 셀 리스트에 '이상한 징후를 가지는 측정 샘플 경향'이 포착된 셀을 추가하지 않을 수 있다. 즉, 측정 보고는 '이상한 징후를 가지는 측정 샘플 경향'에 관한 측정 결과가 포함되지 않는다.
S1215에 이어서, 단말은 측정 보고를 기지국으로 전송한다(S1220). 즉, 단말은 측정 결과를 기지국으로 보고한다. 측정 보고는 주기적 트리거링 또는 이벤트 트리거링를 기초로 수행될 수 있다.
일 예로, 기지국은 측정 결과가 보고되더라도 이상한 징후가 포착된 측정 결과는 무시할 수 있다.
도 13은 본 발명에 따라서 측정 설정 정보를 송수신함의 또 다른 예를 나타내는 흐름도이다. 상기 도 9와 같이 레거시 단말이 NCT 셀 근처에 위치하는 레거시 기지국에 연결되는 경우이며, 레거시 네트워크에 의해서 관리되는 레거시 기지국으로부터 설정되는 레거시 단말이 NCT 반송파를 측정하는 경우이다.
도 13을 참조하면, NCT 네트워크는 OAM으로 NCT 셀 정보를 전달한다(S1300).
여기서, 측정 설정 관련 정보는 NCT 네트워크로 NCT 셀 정보, NCT 반송파의 측정 제한 관련 정보 또는 MDT 영역 범위(예, TA) 정보를 포함한다.
일 예로, NCT 셀 정보는 NCT 셀을 포함하는 주파수 반송파의 정보를 포함할 수 있다. 이때, NCT 셀을 포함하는 주파수 반송파는 EARFCN 값으로 지시 될 수 있다.
S1300에 이어서, OAM은 레거시 네트워크로 수신한 NCT 셀 정보를 기초로 측정 설정 관련 정보를 전달한다(S1305).
레거시 네트워크는 NCT 셀에 관한 존재를 알지 못하므로, OAM은 NCT 네트워크로부터 수신한 NCT 셀 정보를 기초로 레거시 단말이 측정을 수행하거나 수행하지 않아야 할 정보를 전달한다.
일 예로, 측정 설정 관련 정보는 블랙 셀 리스트, 측정 해제설정 정보, 측정 제한 정보 또는 MDT 영역 정보(예, TA, 셀)를 포함한다. 여기서 측정 해제설정 정보라 함은 기존에 설정되어 있던 측정 대역 등을 해제시키는 설정을 의미한다. 예를 들면, 설정되어 있던 측정 대역 중의 일정 대역에 대해서 NCT 셀이 설비(deployment)가 될 경우, 레가시 네트워크는 상기 측정 해제설정 정보를 기반으로 기존에 상기 일정 대역을 측정하고 있던 단말이 더 이상 상기 일정 대역에서 측정을 수행하지 않도록 설정할 수 있으며, 이를 위해 해당 대역을 제외시키는 일련의 과정을 수행할 수 있다.
이때, NCT 네트워크는 MDT 영역과 함께 블랙 셀 리스트를 설정하여 시그널링할 수 있다. 즉, NCT 셀과 같이 로그된 MDT의 측정 대상에서 제외할 셀에 대해서 추가적으로 설정할 수 있다.
S1305에 이어서, 레거시 네트워크는 레거시 기지국으로 측정 설정 관련 정보(블랙 셀 리스트, 측정 해제설정 정보, 측정 제한 정보, 또는 MDT 영역 정보(예, TA, 셀))를 전달한다(S1310).
일 예로, 블랙 셀 리스트가 레거시 기지국으로 전달된다.
다른 예로, 측정 해제설정 정보가 레거시 기지국으로 전달된다.
또 다른 예로, 측정 제한 정보가 레거시 기지국으로 전달되며, TRS를 고려하여 TRS를 측정할 수 있는 설정정보가 전달된다.
또 다른 예로, MDT 영역 범위 설정시, NCT 셀을 제외하는 시그널링이 전달된다. 일 예로, MDT 영역 범위에서 셀로 정의할 때 NCT 셀을 제외하도록 하는 설정이 시그널링된다. 다른 예로, MDT 영역 범위와 함께 블랙 셀 리스트가 전달된다. 즉, NCT 셀과 같이 로그된 MDT에서 제외할 셀들을 설정한다.
한편, NCT 셀을 제외하는 시그널링이 별도로 전송되지 않아도, MDT 영역 범위에서 NCT 셀을 제거하는 동작을 NCT 기지국에서 수행할 수도 있다.
S1310에 이어서, 레거시 기지국은 레거시 단말에 대하여 RRC 연결 재설정을 수행한다(S1315). 일 예로, 기지국이 단말로 RRC 연결 재설정 메시지를 전송한다. RRC 연결 재설정(또는 RRC 재설정 또는 RRC 설정이라고도한다)은 측정 설정 또는 측정 해제설정을 포함한다.
기지국은 네트워크로부터 수신한 측정 설정 관련 정보(예, NCT 셀 정보, NCT 반송파의 측정 제한 정보, MDT 영역 범위)를 참조하여, 레거시 단말에 대해서 측정 해제설정(deconfiguraton) 혹은 블랙 리스트를 설정한다.
일 예로, NCT 셀 정보에 특정 주파수 반송파가 모두 NCT로만 구성된다면, 기지국은 해당 주파수를 해당 단말에 대해서 측정 해제설정을 수행한다.
기지국은 측정 설정을 수행할 측정 오브젝트들에 의해서 단말이 측정을 수행해야 하는 주파수 반송파를 지칭한다.
측정 해제 설정의 다른 예로, 측정 제한이 있다.
측정 제한을 위해서 비트맵 패턴이 전달될 수 있는데, 상기 비트맵 패턴은 TRS와 프레임 설정 등을 기초로 결정될 수 있다.
일 예로, 단말 또는 기지국이 eICIC 동작을 위해서 사용되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)을 이용될 수 있으며, 기지국은 상기 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트를 단말로 시그널링할 수 있다. 또 다른 예로, 시그널링 되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)이 복수개일 수 있고, 배트맵 패턴이 적용되는 셀 리스트도 복수개일 수 있다. 또는, 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트의 시그널링이 복수회 수행될 수 있다. 이때, 복수개의 시그널링을 위하여, 레거시 단말은 이러한 복수개의 시그널링 구조에 대해서 인지할 능력이 있다.
다른 예로, 기지국은 새로운 비트맵 패턴(예, MeasSubframePatternConfigNeighForNCT)을 생성하여 단말로 시그널링 할 수 있다. 새로운 비트맵 패턴을 사용하기 위해서, 레거시 단말은 새로운 비트맵 패턴의 시그널링의 구조에 대해서 인지할 능력이 있다.
또 다른 예로, 기지국은 측정 주기 및 오프셋 값을 생성하여 단말로 시그널링할 수 있다.
단말은 측정을 수행할 수 있다(S1320).
단말은 기지국으로부터 수신한 측정 설정을 기초로 측정을 수행한다. 이때 단말은 NCT를 고려한 측정을 수행할 수 있다.
일 예로, 단말은 기지국으로부터 수신한 측정 설정을 기초로 측정을 수행하되, 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)에 해당 측정 샘플을 무시하는 동작을 수행한다.
이때, 일 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 기지국의 측정 설정을 기준으로 결정될 수 있다. 즉, 기지국에서 단말로 해당 기준을 시그널링을 통하여 설정하는 것을 의미한다. 다른 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 단말 내에서 소정의 특정값으로 정해질 수도 있다. 즉, 모든 기지국과 모든 단말에서, 상기 소정의 특정값을 기준으로 이상한 징후를 가지는 측정 샘플 경향을 포착함이 구현 단계에서 인지됨을 말한다. 또 다른 예로, '갑작스러운 변화'의 정도는 dB 단위로 정해질 수 있고(예, 30dB이상의 변화), '지나치게 낮은 값'의 dBm 단위로 정해질 수 있다(예, -40dBm이하의 값).
다른 예로(실시예2), '이상한 징후를 가지는 측정 샘플 경향'이 포착된 경우, 측정 트리거링 이벤트가 수행되지 않을 수 있으며, 트리거링된 셀 리스트에 '이상한 징후를 가지는 측정 샘플 경향'이 포착된 셀을 추가하지 않을 수 있다. 즉, 측정 보고는 '이상한 징후를 가지는 측정 샘플 경향'에 관한 측정 결과가 포함되지 않는다.
S1320에 이어서, 단말은 측정 보고를 기지국으로 전송한다(S1325). 즉, 단말은 측정 결과를 기지국으로 보고한다. 측정 보고는 주기적 트리거링 또는 이벤트 트리거링를 기초로 수행될 수 있다.
일 예로, 기지국은 측정 결과가 보고되더라도 이상한 징후가 포착된 측정 결과는 무시할 수 있다.
도 14는 본 발명에 따라서 측정 설정 정보를 송수신하는 기지국의 동작의 일 예를 나타내는 순서도이다. 기지국은 레거시 기지국이거나 NCT 기지국일 수 있으며, NCT 셀 근처에 위치하는 경우일 수 있다. 기지국은 NCT 네트워크 또는 레거시 네트워크로부터 NCT 관련 정보를 수신할 수 있다.
도 14를 참조하면, 기지국은 네트워크로부터 측정 설정 관련 정보를 수신한다(S1400).
일 예로, 기지국이 NCT 기지국인 경우 측정 설정 관련 정보는 측정 NCT 셀 정보, NCT 반송파의 측정 제한 관련 정보 또는 MDT 영역 범위(예를 들어, TA) 정보를 포함할 수 있다.
기지국이 레거시 기지국인 경우 측정 설정 관련 정보는 블랙 셀 리스트, 측정 해제 설정 정보, 측정 제한 정보 또는 NCT 반송파를 제외한 MDT 영역 범위를 포함할 수 있다.
일 예로, NCT 셀 정보는 NCT 셀을 포함하는 주파수 반송파의 정보를 포함할 수 있다. 이때, NCT 셀을 포함하는 주파수 반송파는 EARFCN 값으로 지시 될 수 있다.
다른 예로, NCT 셀 정보는 NCT 셀로 구성된 NCT 셀 리스트를 포함할 수 있다. 여기서 NCT 셀 리스트는 물리적 셀 ID의 리스트로 구성되거나, ECGI 리스트로 구성될 수 있다. ECGI는 PLMN ID, 셀 ID를 포함할 수 있다. 셀 ID는 기지국 ID를 포함할 수 있다.
또한, 측정 제한 정보를 네트워크에서 결정해서 기지국으로 전달된 정보일 수 있으며, TRS를 적절히 측정할 수 있도록 하는 정보일 수 있다. 이때, 측정 제한 정보는 비트맵 패턴을 포함하거나 측정 주기 및 오프셋 값을 포함할 수 있다.
MDT 영역 범위 정보(또는 MDT 영역 정보라고도 한다)는 NCT 셀에 관한 측정이 수행되지 않도록 설정하는 정보를 포함할 수 있다. 즉, 네트워크가 MDT 영역 범위를 설정할 때, MDT 영역에서 NCT 셀을 제외하도록 설정할 수 있다.
일 예로, MDT 영역에서 셀을 정의를 할 때, NCT 셀을 제외한 셀들이 설정되어 시그널링 될 수 있다. 다른 예로, MDT 영역과 함께 블랙 셀 리스트가 설정되어 시그널링 될 수 있다. 즉, NCT 셀과 같이 로그된 MDT에서 제외할 셀에 대해서 추가적으로 설정될 수 있다. 또 다른 예로, MDT 영역에서 NCT 셀이 제외되지 않은 채 시그널링 될 수 있다. 이때, MDT 영역에서 NCT 셀을 제거하는 작업은 NCT 기지국이 수행하도록 관련 정보만 시그널링 될 수 있다. 이와 같은 방법으로 MDT 영역에서 NCT 셀을 제거하는 작업이 NCT 기지국에서 수행되는 경우, 레거시 기지국에서는 NCT 셀을 제거할 수 있다.
기지국은 상기 표 1과 같은 MDT 설정 파라미터 들 중 적어도 하나를 MME로부터 MDT 초기 콘텍스트 셋업(Initial Context Setup) 정보(또는 메시지)를 통해 수신할 수 있다. 일 예로, MME에서 기지국에게 MDT를 활성화할 때, MDT 설정 파라미터는 초기 콘텍스트 셋업 내 메시지에 포함될 수 있다.
단계 S1400에 이어서, 기지국은 단말에 대하여 RRC 연결 재설정을 수행한다(S1405). 일 예로, 기지국이 단말로 RRC 연결 재설정 메시지를 전송한다. RRC 연결 재설정(또는 RRC 재설정 또는 RRC 설정이라고도한다)은 측정 설정 또는 측정 해제설정을 포함한다.
기지국은 네트워크로부터 수신한 측정 설정 관련 정보(예, NCT 셀 정보, NCT 반송파의 측정 제한 정보, MDT 영역 범위)를 참조하여, 레거시 단말에 대해서 측정 해제설정(release configuration 또는 deconfiguration) 혹은 블랙 리스트를 설정할 수 있다.
일 예로, NCT 셀 정보에 특정 주파수 반송파가 모두 NCT로만 구성된다면, 기지국은 해당 주파수를 해당 단말에 대해서 측정 해제설정을 수행할 수 있다.
기지국은 측정 설정을 수행할 측정 오브젝트들에 의해서 단말이 측정을 수행해야 하는 주파수 반송파를 지칭한다.
측정 해제 설정의 다른 예로, 측정 제한이 있다.
측정 제한을 위해서 비트맵 패턴이 전달될 수 있는데, 상기 비트맵 패턴은 TRS와 프레임 설정 등을 기초로 결정될 수 있다.
일 예로, 단말 또는 기지국이 eICIC 동작을 위해서 사용되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)을 이용될 수 있으며, 기지국은 상기 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트를 단말로 시그널링할 수 있다. 또 다른 예로, 시그널링 되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)이 복수개일 수 있고, 배트맵 패턴이 적용되는 셀 리스트도 복수개일 수 있다. 또는, 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트의 시그널링이 복수회 수행될 수 있다. 이때, 복수개의 시그널링을 위하여, 레거시 단말은 이러한 복수개의 시그널링 구조에 대해서 인지할 능력이 있다.
다른 예로, 기지국은 새로운 비트맵 패턴(예, MeasSubframePatternConfigNeighForNCT)을 생성하여 단말로 시그널링 할 수 있다. 새로운 비트맵 패턴을 사용하기 위해서, 레거시 단말은 새로운 비트맵 패턴의 시그널링의 구조에 대해서 인지할 능력이 있다.
또 다른 예로, 기지국은 측정 주기 및 오프셋 값을 생성하여 단말로 시그널링할 수 있다.
기지국은 단말로부터 측정 보고를 수신할 수 있다(S1410).
측정 보고에 포함되는 측정 결과는 단말이 기지국에서 전송된 측정 설정을 기초로 수행된 결과일 수 있다. 즉, 단말이 NCT를 고려하여 수행한 측정의 결과일 수 있다.
일 예로(실시예 1), 측정 결과는 단말이 측정 도중 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)에 해당 측정 샘플을 무시한 결과일 수 있다. 이때, 일 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 기지국의 측정 설정을 기준으로 결정될 수 있다. 다른 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 단말 내에서 소정의 특정값으로 정해질 수도 있다. 즉, 모든 기지국과 모든 단말에서, 상기 소정의 특정값을 기준으로 이상한 징후를 가지는 측정 샘플 경향을 포착함이 구현 단계에서 인지됨을 말한다. 또 다른 예로, '갑작스러운 변화'의 정도는 dB 단위로 정해질 수 있고(예, 30dB이상의 변화), '지나치게 낮은 값'의 dBm 단위로 정해질 수 있다(예, -40dBm이하의 값).
다른 예로(실시예 1), 측정 결과는 단말이 측정 도중 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)가 아닐때에만 보고하도록 트리거링된 결과일 수 있다. 또는, 측정 결과는 셀 리스트에 '이상한 징후를 가지는 측정 샘플 경향'이 포착된 셀이 포함되지 않은 결과 일 수 있다.
상기 측정 보고는 주기적 트리거링 또는 이벤트 트리거링를 기초로 수행될 수 있다.
이때, 일 예로, 기지국은 측정 결과가 보고되더라도 이상한 징후가 포착된 측정 결과는 무시할 수 있다.
도 15는 본 발명에 따라서 측정 설정 정보를 수신하는 단말의 동작의 일 예를 나타내는 순서도이다. 단말은 레거시 단말일 수 있으며, NCT 셀 근처에 위치하는 경우일 수 있다. 기지국은 레거시 기지국 또는 NCT 기지국일 수 있다.
도 15를 참조하면, 단말은 RRC 연결 재설정을 기지국으로부터 수신한다(S1500). RRC 연결 재설정은 측정 설정 또는 측정 해제설정을 포함한다. 측정을 설정하는 측정 설정 정보는 블랙 셀 리스트, 측정 해제설정 또는 측정 제한 정보를 포함한다. 이때, 측정 제한 정보를 네트워크에서 결정해서 기지국으로 전달된 정보일 수 있으며, TRS를 적절히 측정할 수 있도록 하는 정보일 수 있다. 이때, 측정 제한 정보는 비트맵 패턴을 포함하거나 측정 주기 및 오프셋 값을 포함할 수 있다.
기지국은 네트워크로부터 수신한 측정 설정 관련 정보(예, NCT 셀 정보, NCT 반송파의 측정 제한 정보, MDT 영역 범위)를 참조하여, 레거시 단말에 대해서 측정 해제설정(release configuration 또는 deconfiguration) 혹은 블랙 리스트를 설정할 수 있다.
일 예로, NCT 셀 정보에 특정 주파수 반송파가 모두 NCT로만 구성된다면, 기지국은 해당 주파수를 해당 단말에 대해서 측정 해제설정을 수행할 수 있다.
기지국은 측정 설정을 수행할 측정 오브젝트들에 의해서 단말이 측정을 수행해야 하는 주파수 반송파를 지칭한다.
측정 해제 설정의 다른 예로, 측정 제한이 있다.
측정 제한을 위해서 비트맵 패턴이 전달될 수 있는데, 상기 비트맵 패턴은 TRS와 프레임 설정 등을 기초로 결정될 수 있다.
일 예로, 단말 또는 기지국이 eICIC 동작을 위해서 사용되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)을 이용될 수 있으며, 기지국은 상기 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트를 단말로 시그널링할 수 있다. 또 다른 예로, 시그널링 되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)이 복수개일 수 있고, 배트맵 패턴이 적용되는 셀 리스트도 복수개일 수 있다. 또는, 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트의 시그널링이 복수회 수행될 수 있다. 이때, 복수개의 시그널링을 위하여, 레거시 단말은 이러한 복수개의 시그널링 구조에 대해서 인지할 능력이 있다.
다른 예로, 기지국은 새로운 비트맵 패턴(예, MeasSubframePatternConfigNeighForNCT)을 생성하여 단말로 시그널링 할 수 있다. 새로운 비트맵 패턴을 사용하기 위해서, 레거시 단말은 새로운 비트맵 패턴의 시그널링의 구조에 대해서 인지할 능력이 있다.
또 다른 예로, 기지국은 측정 주기 및 오프셋 값을 생성하여 단말로 시그널링할 수 있다.
단말은 측정 설정 정보를 기초로 측정을 수행할 수 있다(S1505)
단말은 기지국으로부터 수신한 측정 설정을 기초로 측정을 수행한다. 이때 단말은 NCT를 고려한 측정을 수행할 수 있다.
일 예로, 단말은 기지국으로부터 수신한 측정 설정을 기초로 측정을 수행하되, 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)에 해당 측정 샘플을 무시하는 동작을 수행한다.
이때, 일 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 기지국의 측정 설정을 기준으로 결정될 수 있다. 다른 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 단말 내에서 소정의 특정값으로 정해질 수도 있다. 즉, 모든 기지국과 모든 단말에서, 상기 소정의 특정값을 기준으로 이상한 징후를 가지는 측정 샘플 경향을 포착함이 구현 단계에서 인지됨을 말한다. 또 다른 예로, '갑작스러운 변화'의 정도는 dB 단위로 정해질 수 있고(예, 30dB이상의 변화), '지나치게 낮은 값'의 dBm 단위로 정해질 수 있다(예, -40dBm이하의 값).
다른 예로, '이상한 징후를 가지는 측정 샘플 경향'이 포착된 경우, 측정 트리거링 이벤트가 수행되지 않을 수 있으며, 트리거링된 셀 리스트에 '이상한 징후를 가지는 측정 샘플 경향'이 포착된 셀을 추가하지 않을 수 있다. 즉, 측정 보고는 '이상한 징후를 가지는 측정 샘플 경향'에 관한 측정 결과가 포함되지 않는다.
단말은 측정 보고를 기지국으로 전송할 수 있다(S1510). 즉, 단말은 측정 결과를 기지국으로 보고한다. 측정 보고는 주기적 트리거링 또는 이벤트 트리거링를 기초로 수행될 수 있다.
도 16은 본 발명에 따라서 측정 설정 정보를 송수신하는 장치를 나타내는 블록도이다. 기지국은 레거시 기지국이거나 NCT 기지국일 수 있으며, NCT 셀 근처에 위치하는 경우일 수 있다. 기지국은 NCT 네트워크 또는 레거시 네트워크로부터 NCT 관련 정보를 수신할 수 있다. 단말은 레거시 단말일 수 있으며, NCT 셀 근처에 위치하는 경우일 수 있다.
도 16은 본 발명에 따라서 측정 설정 정보를 송수신하는 장치의 일 예를 나타내는 블록도이다.
도 16을 참조하면, 단말(1600)은 수신부(1605), 제어부(1610), 전송부(1620)을 포함할 수 있으며, 제어부(1610)는 측정부(1615)를 더 포함할 수 있다. 이하, 측정부(1615)의 동작으로 수행되도록 설명되는 것은 측정부(1615)가 아닌 제어부(1610) 자체에서 수행될 수도 있다.
수신부(1605)는 RRC 연결 재설정을 기지국(1650)으로부터 수신한다. RRC 연결 재설정은 측정 설정 또는 측정 해제설정을 포함한다. 측정을 설정하는 측정 설정 정보는 블랙 셀 리스트, 측정 해제설정 또는 측정 제한 정보를 포함한다. 이때, 측정 제한 정보를 네트워크에서 결정해서 기지국(1650)으로 전달된 정보일 수 있으며, TRS를 적절히 측정할 수 있도록 하는 정보일 수 있다. 이때, 측정 제한 정보는 비트맵 패턴을 포함하거나 측정 주기 및 오프셋 값을 포함할 수 있다.
RRC 연결 재설정을 통해, 수신부(1605)는 기지국(1650)이 네트워크로부터 수신한 측정 설정 관련 정보(예, NCT 셀 정보, NCT 반송파의 측정 제한 정보, MDT 영역 범위)를 기초로 생성된 측정 설정 정보를 수신할 수 있다.
일 예로, NCT 셀 정보에 특정 주파수 반송파가 모두 NCT로만 구성된다면, 수신부(1605)는 해당 주파수를 측정 해제설정하는 정보를 수신할 수 있다.
측정 해제 설정의 다른 예로, 측정 제한이 있다.
수신부(1605)는 측정 제한을 위한 비트맵 패턴을 수신할 수 있는데, 상기 비트맵 패턴은 TRS와 프레임 설정 등을 기초로 결정될 수 있다.
일 예로, 단말(1600) 또는 기지국(1650)이 eICIC 동작을 위해서 사용되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)을 이용될 수 있으며, 수신부(1605)는 상기 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트를 수신할 수 있다.
또 다른 예로, 수신부(1605)가 수신하는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)이 복수개일 수 있고, 배트맵 패턴이 적용되는 셀 리스트도 복수개일 수 있다. 또는, 수신부(1605)는 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트를 복수회 수신할 수 있다. 이때, 복수개의 시그널링을 위하여, 단말(1600)은 이러한 복수개의 시그널링 구조에 대해서 인지할 능력이 있다.
다른 예로, 수신부(1605)는 기지국(1650)이 생성한 새로운 비트맵 패턴(예, MeasSubframePatternConfigNeighForNCT)을 수신할 수 있다. 새로운 비트맵 패턴을 사용하기 위해서, 단말(1600)은 새로운 비트맵 패턴의 시그널링의 구조에 대해서 인지할 능력이 있다.
또 다른 예로, 수신부(1605)는 기지국(1650)이 생성한 측정 주기 및 오프셋 값을 수신할 수 있다.
측정부(1615)는 측정 설정 정보를 기초로 측정을 수행한다.
측정부(1615)는 NCT를 고려한 측정을 수행할 수 있다.
일 예로, 측정부(1615)는 기지국(1650)으로부터 수신한 측정 설정을 기초로 측정을 수행하되, 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)에 해당 측정 샘플을 무시하는 동작을 수행한다.
이때, 일 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 기지국(1650)의 측정 설정을 기준으로 결정될 수 있다. 다른 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 단말(1600) 내에서 소정의 특정값으로 정해질 수도 있다. 즉, 모든 기지국과 모든 단말에서, 상기 소정의 특정값을 기준으로 이상한 징후를 가지는 측정 샘플 경향을 포착함이 구현 단계에서 인지됨을 말한다. 또 다른 예로, '갑작스러운 변화'의 정도는 dB 단위로 정해질 수 있고(예, 30dB이상의 변화), '지나치게 낮은 값'의 dBm 단위로 정해질 수 있다(예, -40dBm이하의 값).
다른 예로, '이상한 징후를 가지는 측정 샘플 경향'이 포착된 경우, 측정부(1615)는 측정 트리거링 이벤트를 수행하지 않을 수 있으며, 트리거링된 셀 리스트에 '이상한 징후를 가지는 측정 샘플 경향'이 포착된 셀을 추가하지 않을 수 있다. 즉, 측정 보고는 '이상한 징후를 가지는 측정 샘플 경향'에 관한 측정 결과가 포함되지 않는다.
전송부(1610)는 측정 보고를 기지국(1650)으로 전송한다. 즉, 전송부(1610)는 측정 결과를 기지국(1650)으로 보고한다. 측정 보고는 주기적 트리거링 또는 이벤트 트리거링를 기초로 수행될 수 있다.
한편, 기지국(1650)은 전송부(1655), 수신부(1660), 제어부(1665)를 포함할 수 있으며, 제어부(1665)는 측정 설정 정보 생성부(1670)를 더 포함할 수 있다. 이하에서 제어부(1665)에 관한 설명은 측정 설정 정보 생성부(1670)에 대해서도 적용되며, 측정 설정 정보 생성부(1670)에 대한 설명은 제어부(1665)에 대해서도 적용된다.
기지국(1650)은 레거시 기지국이거나 NCT 기지국일 수 있으며, NCT 셀 근처에 위치하는 경우일 수 있다. 기지국(1650)은 NCT 네트워크 또는 레거시 네트워크로부터 NCT 관련 정보를 수신할 수 있다.
수신부(1660)는 네트워크로부터 측정 설정 관련 정보를 수신한다.
일 예로, 기지국(1650)이 NCT 기지국인 경우, 수신부(1660)는 측정 NCT 셀 정보, NCT 반송파의 측정 제한 관련 정보 또는 MDT 영역 범위(예를 들어, TA) 정보를 포함하는 측정 설정 관련 정보를 수신할 수 있다.
다른 예로, 기지국(1650)이 레거시 기지국인 경우, 수신부(1660)는 블랙 셀 리스트, 측정 해제 설정 정보, 측정 제한 정보 또는 NCT 반송파를 제외한 MDT 영역 범위를 포함하는 측정 설정 관련 정보를 수신할 수 있다.
여기서 측정 해제설정 정보라 함은 기존에 설정되어 있던 측정 대역 등을 해제시키는 설정을 의미한다. 예를 들면, 설정되어 있던 측정 대역 중의 일정 대역에 대해서 NCT 셀이 설비(deployment)가 될 경우, 레가시 네트워크는 상기 측정 해제설정 정보를 기반으로 기존에 상기 일정 대역을 측정하고 있던 단말(1600)이 더 이상 상기 일정 대역에서 측정을 수행하지 않도록 설정할 수 있으며, 이를 위해 해당 대역을 제외시키는 일련의 과정을 수행할 수 있다.
일 예로, NCT 셀 정보는 NCT 셀을 포함하는 주파수 반송파의 정보를 포함할 수 있다. 이때, NCT 셀을 포함하는 주파수 반송파는 EARFCN 값으로 지시 될 수 있다.
다른 예로, NCT 셀 정보는 NCT 셀로 구성된 NCT 셀 리스트를 포함할 수 있다. 여기서 NCT 셀 리스트는 물리적 셀 ID의 리스트로 구성되거나, ECGI 리스트로 구성될 수 있다. ECGI는 PLMN ID, 셀 ID를 포함할 수 있다. 셀 ID는 기지국 ID를 포함할 수 있다.
또한, 측정 제한 정보는 네트워크에서 결정되어 기지국(1650)으로 전달된 정보일 수 있으며, TRS를 적절히 측정할 수 있도록 하는 정보일 수 있다. 이때, 측정 제한 정보는 비트맵 패턴을 포함하거나 측정 주기 및 오프셋 값을 포함할 수 있다.
MDT 영역 범위 정보(또는 MDT 영역 정보라고도 한다)는 NCT 셀에 관한 측정이 수행되지 않도록 설정하는 정보를 포함할 수 있다. 즉, 네트워크가 MDT 영역 범위를 설정할 때, MDT 영역에서 NCT 셀을 제외하도록 설정할 수 있다.
일 예로, MDT 영역에서 셀을 정의를 할 때, NCT 셀을 제외한 셀들이 설정되어 시그널링 될 수 있다. 다른 예로, MDT 영역과 함께 블랙 셀 리스트가 설정되어 시그널링 될 수 있다. 즉, NCT 셀과 같이 로그된 MDT에서 제외할 셀에 대해서 추가적으로 설정될 수 있다. 또 다른 예로, MDT 영역에서 NCT 셀이 제외되지 않은 채 시그널링 될 수 있다. 이때, MDT 영역에서 NCT 셀을 제거하는 작업은 NCT 기지국이 수행하도록 관련 정보만 시그널링 될 수 있다. 이와 같은 방법으로 MDT 영역에서 NCT 셀을 제거하는 작업이 NCT 기지국에서 수행되는 경우, 레거시 기지국에서는 NCT 셀을 제거할 수 있다.
기지국(1650)은 상기 표 1과 같은 MDT 설정 파라미터들 중 적어도 하나를 MME로부터 MDT 초기 콘텍스트 셋업(Initial Context Setup) 정보(또는 메시지)를 통해 수신할 수 있다. 일 예로, MME에서 기지국(1650)에게 MDT를 활성화할 때, MDT 설정 파라미터는 초기 콘텍스트 셋업 내 메시지에 포함될 수 있다.
기지국(1650)은 단말(1600)에 대하여 RRC 연결 재설정을 수행한다. 일 예로, 전송부(1655)는 단말(1600)로 RRC 연결 재설정 메시지를 전송한다. RRC 연결 재설정(또는 RRC 재설정 또는 RRC 설정이라고도한다)은 측정 설정 또는 측정 해제설정을 포함한다.
측정 설정 정보 생성부(1670)는 네트워크로부터 수신한 측정 설정 관련 정보(예, NCT 셀 정보, NCT 반송파의 측정 제한 정보, MDT 영역 범위)를 참조하여, 레거시 단말에 대해서 측정 해제설정(release configuration 또는 deconfiguration) 혹은 블랙 리스트를 설정하는 정보를 생성할 수 있고, 전송부(1655)가 이를 전송할 수 있다.
일 예로, NCT 셀 정보에 특정 주파수 반송파가 모두 NCT로만 구성된다면, 측정 설정 정보 생성부(1670)는 해당 주파수를 해당 단말(1600)에 대해서 측정 해제설정하는 정보를 생성할 수 있고, 전송부(1655)가 이를 전송할 수 있다.
기지국(1650)은 측정 설정을 수행할 측정 오브젝트들에 의해서 단말(1600)이 측정을 수행해야 하는 주파수 반송파를 지칭한다.
측정 해제 설정의 다른 예로, 측정 제한이 있다.
측정 제한을 위해서 비트맵 패턴이 전달될 수 있는데, 상기 비트맵 패턴은 TRS와 프레임 설정 등을 기초로 결정될 수 있다.
일 예로, 단말(1600) 또는 기지국(1650)이 eICIC 동작을 위해서 사용되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)을 이용될 수 있으며, 전송부(1655)는 상기 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트를 단말(1600)로 시그널링할 수 있다. 또 다른 예로, 시그널링 되는 비트맵 패턴(예, MeasSubframePatternConfigNeigh)이 복수개일 수 있고, 배트맵 패턴이 적용되는 셀 리스트도 복수개일 수 있다. 또는, 비트맵 패턴 및 비트맵 패턴이 적용되는 셀 리스트의 시그널링이 복수회 수행될 수 있다. 이때, 복수개의 시그널링을 위하여, 레거시 단말(1600)은 이러한 복수개의 시그널링 구조에 대해서 인지할 능력이 있다.
다른 예로, 측정 설정 정보 생성부(1670)는 새로운 비트맵 패턴(예, MeasSubframePatternConfigNeighForNCT)을 생성하며, 전송부(1655)는 이를 단말(1600)로 시그널링 할 수 있다. 새로운 비트맵 패턴을 사용하기 위해서, 레거시 단말(1600)은 새로운 비트맵 패턴의 시그널링의 구조에 대해서 인지할 능력이 있다.
또 다른 예로, 측정 설정 정보 생성부(1670)는 측정 주기 및 오프셋 값을 생성하며, 전송부(1655)가 이를 단말(1600)로 시그널링할 수 있다.
수신부(1660)는 단말(1600)로부터 측정 보고를 수신한다(S1410).
측정 보고에 포함되는 측정 결과는 단말(1600)이 기지국(1650)에서 전송된 측정 설정을 기초로 수행된 결과일 수 있다. 즉, 단말(1600)이 NCT를 고려하여 수행한 측정의 결과일 수 있다.
일 예로, 측정 결과는 단말(1600)이 측정 도중 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)에 해당 측정 샘플을 무시한 결과일 수 있다. 이때, 일 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 기지국(1650)의 측정 설정을 기준으로 결정될 수 있다. 다른 예로, '갑작스러운 변화'의 정도 또는 '지나치게 낮은 값'의 기준은 단말(1600) 내에서 소정의 특정값으로 정해질 수도 있다. 즉, 모든 기지국과 모든 단말에서, 상기 소정의 특정값을 기준으로 이상한 징후를 가지는 측정 샘플 경향을 포착함이 구현 단계에서 인지됨을 말한다. 또 다른 예로, '갑작스러운 변화'의 정도는 dB 단위로 정해질 수 있고(예, 30dB이상의 변화), '지나치게 낮은 값'의 dBm 단위로 정해질 수 있다(예, -40dBm이하의 값).
다른 예로, 측정 결과는 단말(1600)이 측정 도중 이상한 징후를 가지는 측정 샘플 경향이 검출될 경우(또는 감지되는 경우, 또는 측정 되는 경우를 포함한다)가 아닐때에만 보고하도록 트리거링된 결과일 수 있다. 또는, 측정 결과는 셀 리스트에 '이상한 징후를 가지는 측정 샘플 경향'이 포착된 셀이 포함되지 않은 결과 일 수 있다.
이때, 일 예로, 제어부(1665)는 측정 결과가 보고되더라도 이상한 징후가 포착된 측정 결과는 무시할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 기지국이 측정 설정 정보를 전송하는 방법에 있어서,
    NCT(New Carrier Type) 반송파로 구성된 NCT 셀 관련 정보를 기초로 결정되는 측정 설정 관련 정보를 네트워크로부터 수신하는 단계;
    NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC(radio resource control) 연결 재설정을 단말로 전송하는 단계; 및
    상기 단말이 측정을 수행한 결과를 포함하는 측정 보고를 상기 단말로부터 수신하는 단계를 포함하는 방법.
  2. 제 1 항에 있어서, 상기 측정 설정 관련 정보는,
    상기 NCT 셀들에 대해서 블랙 셀 리스트화 또는 측정 해제설정 또는 측정 제한 또는 MDT(Minimization of Drive Test) 미수행을 설정하는 정보를 포함하는 것을 특징으로 하는 방법
  3. 제 1 항에 있어서, 상기 측정 설정 관련 정보는,
    측정 해제설정 정보 또는 측정 블랙 셀 리스트 또는 상기 NCT 셀이 존재하지 않는 MDT 영역 범위를 포함하며,
    상기 측정 설정 정보는 상기 측정 설정 관련 정보인 것을 특징으로 하는 방법
  4. 제 1 항에 있어서,
    상기 측정 결과 값이 갑작스러운 변화하거나, 상기 측정 결과 값이 소정의 임계값보다 낮은 경우, 상기 측정 결과 값을 무시하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  5. 단말이 측정을 수행하는 방법에 있어서,
    NCT(New Carrier Type) 셀 정보를 기초로 NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC(radio resource control) 연결 재설정을 기지국으로부터 수신하는 단계;
    상기 측정 설정 정보를 기초로 NCT를 고려한 측정을 수행하는 단계; 및
    상기 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 단계를 포함하는 방법.
  6. 제 5 항에 있어서,
    상기 측정 설정 정보는 상기 NCT 셀들에 대해서 블랙 셀 리스트화 또는 측정 해제설정 또는 측정 제한 또는 MDT(Minimization of Drive Test) 미수행을 설정하는 정보를 포함하는 것을 특징으로 하는 방법
  7. 제 5 항에 있어서,
    상기 측정을 수행할 때, 측정 샘플이 갑작스럽게 변화하거나, 상기 측정 샘플이 소정의 임계값보다 낮은 값을 가지는 경우, 상기 측정 샘플을 무시하는 동작(ignore or denial)을 수행하는 단계를 더 포함하는 방법.
  8. 제 5 항에 있어서,
    상기 측정을 수행할 때, 측정 샘플이 갑작스럽게 변화하거나, 상기 측정 샘플이 소정의 임계값보다 낮은 값을 가지는 경우, 상기 측정 샘플 관련 측정 트리거링 이벤트가 수행되지 않으며, 트리거링된 셀 리스트에 상기 측정 샘플이 포착된 셀을 추가하지 않는 것을 특징으로 하는 방법.
  9. 측정 설정 정보를 전송하는 기지국에 있어서,
    NCT(New Carrier Type) 반송파로 구성된 NCT 셀 관련 정보를 기초로 결정되는 측정 설정 관련 정보를 네트워크로부터 수신하는 수신부; 및
    NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC 연결 재설정을 단말로 전송하는 전송부를 포함하며,
    상기 수신부는 상기 단말이 측정을 수행한 결과를 포함하는 측정 보고를 상기 단말로부터 수신하는 기지국.
  10. 제 9 항에 있어서, 상기 측정 설정 관련 정보는,
    상기 NCT 셀들에 대해서 블랙 셀 리스트화 또는 측정 해제설정 또는 측정 제한 또는 MDT(Minimization of Drive Test) 미수행을 설정하는 정보를 포함하는 기지국.
  11. 제 9 항에 있어서, 상기 측정 설정 관련 정보는,
    측정 해제설정 정보 또는 측정 블랙 셀 리스트 또는 NCT 셀이 존재하지 않는 MDT 영역 범위를 포함하며,
    상기 측정 설정 정보는 상기 측정 설정 관련 정보인 기지국.
  12. 제 9 항에 있어서,
    상기 측정 결과 값이 갑작스러운 변화하거나, 상기 측정 결과 값이 소정의 임계값보다 낮은 경우, 상기 측정 결과 값을 무시하는 동작을 수행하는 제어보를 포함하는 기지국.
  13. 측정을 수행하는 단말에 있어서,
    NCT(New Carrier Type) 셀 정보를 기초로 NCT 관련 측정을 설정하는 측정 설정 정보를 포함하는 RRC(radio resource control) 연결 재설정을 기지국으로부터 수신하는 수신부;
    상기 측정 설정 정보를 기초로 NCT를 고려한 측정을 수행하는 측정부; 및
    상기 측정을 수행한 결과를 포함하는 측정 보고를 상기 기지국으로 전송하는 전송부를 포함하는 단말.
  14. 제 13 항에 있어서,
    상기 측정 설정 정보는 상기 NCT 셀들에 대해서 블랙 셀 리스트화 또는 측정 해제설정 또는 측정 제한 또는 MDT(Minimization of Drive Test) 미수행을 설정하는 정보를 포함하는 단말.
  15. 제 13 항에 있어서,
    상기 측정을 수행할 때, 측정 샘플이 갑작스럽게 변화하거나, 상기 측정 샘플이 소정의 임계값보다 낮은 값을 가지는 경우, 상기 측정부는 상기 측정 샘플을 무시하는 동작(ignore or denial)을 수행하는 단말.
  16. 제 13 항에 있어서,
    상기 측정을 수행할 때, 측정 샘플이 갑작스럽게 변화하거나, 상기 측정 샘플이 소정의 임계값보다 낮은 값을 가지는 경우, 상기 측정 샘플 관련 측정 트리거링 이벤트를 수행하지 않으며, 트리거링된 셀 리스트에 상기 측정 샘플이 포착된 셀을 추가하지 않는 단말.
PCT/KR2014/000303 2013-01-25 2014-01-10 무선통신 시스템에서 측정을 설정하는 정보를 송수신하는 방법 및 장치 WO2014115989A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130008906 2013-01-25
KR10-2013-0008906 2013-01-25
KR10-2014-0003190 2014-01-10
KR1020140003190A KR102204048B1 (ko) 2013-01-25 2014-01-10 무선통신 시스템에서 측정을 설정하는 정보를 송수신하는 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2014115989A1 true WO2014115989A1 (ko) 2014-07-31

Family

ID=51227748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000303 WO2014115989A1 (ko) 2013-01-25 2014-01-10 무선통신 시스템에서 측정을 설정하는 정보를 송수신하는 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2014115989A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060089A1 (ko) * 2018-09-21 2020-03-26 엘지전자 주식회사 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2020067760A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 무선 링크 모니터링을 수행하는 방법 및 이를 위한 장치
WO2021109475A1 (en) * 2020-05-19 2021-06-10 Zte Corporation Methods and systems for multicast and broadcast service establishment in wireless communication networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046596A1 (en) * 2007-08-14 2009-02-19 Lutz Ewe Apparatus and method for handling mobile terminal capability information
US20110256855A1 (en) * 2008-12-16 2011-10-20 Zte Corporation Method for base station to obtain radio capability information of user equipment in long term evolution system
WO2012081923A2 (ko) * 2010-12-16 2012-06-21 주식회사 팬택 다중 요소 반송파 시스템에서 무선연결 재설정 수행장치 및 방법
KR20120123914A (ko) * 2011-05-02 2012-11-12 주식회사 팬택 Mbms 서비스의 연속성을 위한 제어정보의 전송장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090046596A1 (en) * 2007-08-14 2009-02-19 Lutz Ewe Apparatus and method for handling mobile terminal capability information
US20110256855A1 (en) * 2008-12-16 2011-10-20 Zte Corporation Method for base station to obtain radio capability information of user equipment in long term evolution system
WO2012081923A2 (ko) * 2010-12-16 2012-06-21 주식회사 팬택 다중 요소 반송파 시스템에서 무선연결 재설정 수행장치 및 방법
KR20120123914A (ko) * 2011-05-02 2012-11-12 주식회사 팬택 Mbms 서비스의 연속성을 위한 제어정보의 전송장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Time and frequency tracking on new carrier type", R1-120163, 3GPP TSG RAN WG1 MEETING #68, 6 February 2012 (2012-02-06), DRESDEN, GERMANY, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wg1_r11/TSGR1_68/Docs/R1-120163.zip> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020060089A1 (ko) * 2018-09-21 2020-03-26 엘지전자 주식회사 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2020067760A1 (ko) * 2018-09-28 2020-04-02 엘지전자 주식회사 무선 링크 모니터링을 수행하는 방법 및 이를 위한 장치
US11646911B2 (en) 2018-09-28 2023-05-09 Lg Electronics Inc. Method for performing radio link monitoring and apparatus therefor
WO2021109475A1 (en) * 2020-05-19 2021-06-10 Zte Corporation Methods and systems for multicast and broadcast service establishment in wireless communication networks

Similar Documents

Publication Publication Date Title
WO2021182854A1 (en) Method and apparatus for csi-rs in rrc_idle/inactive state
WO2019160266A1 (en) Method for measuring frame timing difference and user equipment performing the method
WO2019194490A1 (ko) 측정을 수행하는 방법, 사용자 장치 및 기지국
WO2014123387A1 (ko) 단말의 간섭 제거를 위한 지원 정보 전송 방법 및 서빙셀 기지국
WO2019098525A1 (ko) En-dc 상황에서 측정을 수행하는 방법 및 사용자 장치
WO2011152651A2 (en) Apparatus and method for allocating channel state information-reference signal in wireless communication system
WO2016052911A1 (ko) 탐색 신호에 기반한 소규모 셀 측정 방법 및 사용자 장치
WO2012148195A2 (en) Apparatus and method for reporting radio link failure
WO2019139254A1 (ko) 복수의 수신 빔을 사용하여 측정을 수행하는 방법 및 사용자 장치
WO2013018990A1 (ko) 셀 측정 방법 및 그를 위한 정보 전송 방법
WO2018030875A1 (ko) 무선 통신 시스템에서 아날로그 빔 관련 정보를 전송하는 방법 및 상기 방법을 이용하는 개체
WO2014010892A1 (ko) 셀 대한 측정을 수행하는 방법 및 단말
WO2013112010A1 (en) Apparatus and method for controlling indevice coexistence interference in wireless communication system
WO2014112716A1 (ko) 간섭 제거를 통한 측정 수행 방법 및 단말
WO2016072765A2 (ko) 소규모 셀 측정 방법 및 사용자 장치
WO2014010850A1 (ko) 매크로셀과 소규모셀이 공존하는 환경에서 단말이 소규모셀을 검출하는 방법
WO2012111937A2 (ko) 무선통신 시스템에서의 참조신호 할당방법과 할당장치, 및 그를 이용한 참조신호 수신방법과 장치
WO2014119918A1 (ko) 간섭 제거 수신 방법 및 단말
WO2017052332A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 로깅 방법 및 상기 방법을 이용하는 단말
WO2014077489A1 (ko) 매크로셀과 소규모셀이 공존할 때 소규모셀의 커버리지 확장 지역에서 측정을 수행하는 방법 및 단말
WO2015030473A1 (ko) 무선 통신 시스템에서 매크로 셀과 스몰 셀 간 스위칭을 위한 자원 할당 장치 및 방법
WO2014185676A1 (ko) 측정 수행 방법 및 단말
WO2016171471A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2014112749A1 (ko) 간섭 제거 수신 방법 및 단말
WO2014021563A1 (ko) 매크로셀과 소규모셀이 공존하는 환경에서 단말이 소규모셀로의 핸드오버를 위한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743940

Country of ref document: EP

Kind code of ref document: A1