WO2014115889A1 - Therapeutic or prophylactic agent for disease caused by activation of vascular endothelial cells - Google Patents

Therapeutic or prophylactic agent for disease caused by activation of vascular endothelial cells Download PDF

Info

Publication number
WO2014115889A1
WO2014115889A1 PCT/JP2014/051830 JP2014051830W WO2014115889A1 WO 2014115889 A1 WO2014115889 A1 WO 2014115889A1 JP 2014051830 W JP2014051830 W JP 2014051830W WO 2014115889 A1 WO2014115889 A1 WO 2014115889A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptip
activation
expression
vascular endothelial
endothelial cells
Prior art date
Application number
PCT/JP2014/051830
Other languages
French (fr)
Japanese (ja)
Inventor
敬 南
淳一 末弘
康晴 神吉
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2014115889A1 publication Critical patent/WO2014115889A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to the treatment of a disease caused by the activation of vascular endothelial cells, which comprises a substance that inhibits the expression or function of Pax2 transactivation domain-interacting protein (hereinafter referred to as “PTIP”). Or it relates to preventive agents.
  • PTIP Pax2 transactivation domain-interacting protein
  • Vascular diseases are fundamentally involved in metastatic cancer, cerebral infarction, and cardiovascular disorders, which are the three leading causes of death in Japan. Therefore, it is expected that a treatment method that directly approaches this vascular disease will be versatile with an effect on various diseases.
  • bevacizumab trade name “Avastin” (registered trademark)
  • VEGF vascular endothelial growth factor
  • vascular endothelial cells are used to treat cancer via tumor angiogenesis and metastatic microenvironment control, and to treat inflammation and arteriosclerosis via inhibition of endothelial chronic inflammation. It is considered possible.
  • the present invention finds a substance capable of suppressing the activation of vascular endothelial cells while maintaining endothelial homeostasis through epigenome analysis in the activation of vascular endothelial cells, and treatment or prevention of diseases caused by the activation of vascular endothelial cells. It is an object to provide an agent.
  • the present inventors conducted an epigenomic analysis on the variation of transcription factors associated with VEGF stimulation, which is one mode of activation of vascular endothelial cells.
  • the epigenome in the ES cells and iPS cells described above was analyzed. Unlike regulation, transcription factors involved in endothelial activation switching are maintained in a poised state by the bivalent mark (a state in which the silence mark H3K27me3 and the active mark H3K4me3 coexist), and when activated by VEGF activation, It was found that the transcriptional activity occurred transiently as the mark H3K4me3 increased (FIG. 10).
  • the enzyme complex that introduces the active mark (H3K4me3) upon VEGF activation is considered to be an epigenome switch of the endothelial activation response. If this enzyme activity is inhibited, the switch cannot be turned on and the activation of endothelial cells can be suppressed. I hypothesized that it might be. To demonstrate this hypothesis, we screened the siRNA library against the histone modified complex (Trithorax group) and observed the behavior of the gene induced by VEGF, and identified PTIP as a candidate enzyme for introducing the active mark. did.
  • Inhibiting PTIP expression with miRNA or the like significantly suppresses the expression of transcription factors important for VEGF induction, and as a result, also suppresses endothelial migration, tube formation, angiogenesis, and tumor growth in the presence of VEGF. It was confirmed.
  • VEGF such as VCAM-1 (vascular cell adhesion molecule-1) and E-selectin, which are activators in inflammation, is also suppressed, and monocyte adhesion does not occur and inflammation infiltration occurs. While being suppressed, it was confirmed that there was no influence on the survival of endothelial cells in normal culture, and the present invention was completed.
  • a therapeutic or prophylactic agent for diseases caused by activation of vascular endothelial cells comprising a substance that inhibits the expression or function of PTIP;
  • a substance that inhibits the expression or function of PTIP is selected from the group consisting of miRNA, siRNA, antisense RNA, ribozyme, precursors thereof, and nucleic acids encoding them against PTIP.
  • a substance that inhibits the expression or function of PTIP is selected from the following (i) to (iii): a disease caused by activation of vascular endothelial cells according to [1] or [2] Treatment or prevention agent: (i) miRNAs targeting the following sequences of the PTIP gene; AGTGCCCTGTGGGCCTTGGTT (SEQ ID NO: 1) (ii) a miRNA having a sequence identity of 80% or more with the base sequence of the miRNA of (i) and inhibiting the expression or function of PTIP; and (iii) a miRNA in which one or several bases are added, substituted or deleted in the base sequence of the miRNA of (i), and inhibit the expression or function of PTIP; [4] The invention according to [1] or [2] above, wherein the substance that inhibits the expression or function of PTIP is selected from the following (i) to (ii
  • a therapeutic or preventive agent for diseases caused by activation of endothelial cells are cancer, inflammation, retinopathy, age-related macular degeneration, rheumatoid arthritis, inflammation Selected from the group consisting of genital bowel disease, refractory ascites, psoriasis, sarcoidosis, arteriosclerosis, cerebral infarction, ischemic heart disease, thrombosis, thromboembolism, chronic obstructive pulmonary disease, and sepsis [ 1) to [5]
  • the therapeutic or preventive agent for a disease caused by the activation of vascular endothelial cells according to any one of [5], About.
  • the activation of the vascular endothelium is suppressed and the tumor angiogenesis is reduced, so that an anticancer effect and an antimetastatic effect can be obtained.
  • inflammation can be suppressed, a long-term preventive effect against diseases caused by inflammation such as arteriosclerosis is also expected.
  • the therapeutic or preventive agent of the present invention does not affect the homeostasis of the endothelium, the possibility of causing side effects is low.
  • FIG. 1 shows the results of knockdown of PTIP expression with siRNA in HUVEC cells and the expression of important transcription factors for VEGF induction measured by quantitative PCR.
  • FIG. 2 shows the result of knocking down the expression of PTIP with siRNA and measuring the cells with a hemocytometer in HUVEC cells.
  • FIG. 3 shows the results of migration assay in which the expression of PTIP was knocked down with siRNA in HUVEC cells, and the number of cells that migrated in the presence of VEGF was counted.
  • FIG. 4 shows the results of calculating the area of cells in the form of a tube in the presence of VEGF by knocking down PTIP expression with siRNA in HUVEC cells.
  • FIG. 1 shows the results of knockdown of PTIP expression with siRNA in HUVEC cells and the expression of important transcription factors for VEGF induction measured by quantitative PCR.
  • FIG. 2 shows the result of knocking down the expression of PTIP with siRNA and measuring the cells with a hemocytometer in H
  • FIG. 5 shows the results of administering miR-PTIP to a tumor-bearing model mouse transplanted with melanoma cells and measuring the size of the solid tumor.
  • FIG. 6 shows a solid tumor (left) that was administered miR-PTIP to a tumor-bearing model mouse transplanted with melanoma cells and excised 10 days later, and the result of measuring its weight (right).
  • FIG. 7 shows the results of administering miR-PTIP to a tumor-bearing model mouse transplanted with melanoma cells and quantifying the blood vessel density with a vascular endothelial cell marker. The left side of FIG.
  • FIG. 8 shows the results of observing monocyte inflammatory infiltration in the presence of VEGF by knocking down the expression of PTIP with siRNA in HUVEC cells.
  • the right side of FIG. 8 shows the result of knocking down the expression of PTIP with miRNA and staining the infiltration of activated leukocytes from around the cancer with CD11b in tumor xenograft.
  • FIG. 9 shows the results of suppressing PTIP expression with siRNA in the presence of VEGF and examining gene expression fluctuations in endothelial cells with microarray.
  • FIG. 10 outlines the present invention. When epigenome analysis was performed on the variation of transcription factors associated with VEGF stimulation, only the transcription factors important for endothelial activation were found to have a bivalent mark (top).
  • FIG. 11 shows the results of detecting the binding of PTIP to the transcriptionally regulated chromatin region by chromatin immunoprecipitation (ChIP) and qPCR.
  • FIG. 12 shows the results of detecting the binding of PTIP to the transcriptionally regulated chromatin region by chromatin immunoprecipitation (ChIP) and qPCR, as in FIG. In the Egr-3 region, PTIP strongly interacted with VEGF stimulation, but Evx1, a control not involved in angiogenesis, showed no significant binding.
  • FIG. 13 shows the results of epigenome analysis on the variation of transcription factors accompanying VEGF stimulation.
  • H3K4me3 modification is an early transcription factor group that requires Egr-3 for vascular activation, entering from 15 minutes of VEGF stimulation, and correspondingly transcription (indicated by Pol II) activation occurs, but H3K27me3 modification (Transfer suppression mark) was still on, and it was a temporary transfer.
  • FIG. 14 shows the results of epigenome analysis on the variation of transcription factors accompanying VEGF stimulation, as in FIG. As with Egr-3, NR4A2 and Egr2 were also transient transcripts.
  • GATA2 which is a constitutive transcription factor that regulates the endothelium, did not contain the H3K27me3 mark, and the H3K4me3 mark contained VEGF independent and was always transcribed.
  • the therapeutic or preventive agent for diseases caused by activation of vascular endothelial cells according to the present invention contains a substance that inhibits the expression or function of PTIP.
  • PTIP is a nucleoprotein that is widely expressed in various cells.
  • PTIP has six tandem BRCT (BRCA1 carboxyl terminal) domains.
  • BRCT domains are frequently found in proteins involved in the DNA damage response, and in vitro experiments suggested that PTIP is also involved in the DNA damage response.
  • MLL3 mixed-lineage leukemia 3
  • MLL3 mixed-lineage leukemia 3
  • PTIP in addition to a protein having an amino acid sequence identical to GenBank Accession No.:AAH33781.1 or NP _ 031,375, variants and analogs having activity similar to PTIP, non-human animal Including PTIP.
  • variants and analogs the amino acid sequence of GenBank Accession No.:AAH33781.1 or NP _ 031 375, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, Peptides having a sequence identity of 90% or more, 95% or more, or 98% or more and having PTIP activity can be mentioned.
  • the “peptide having PTIP activity” means a peptide that has binding activity to MLL3 and that suppresses the abnormal activation of vascular endothelial cells by inhibiting its expression. .
  • PTIP is highly expressed in cancer cells, but it is low in normal cells. Therefore, it is suggested that treatment targeting PTIP can specifically attack cancer cells.
  • inhibiting expression includes both inhibiting at the transcriptional level and inhibiting at the translational level.
  • inhibiting function means losing all or part of the original function of the protein.
  • the “substance that inhibits the expression or function of PTIP” is not particularly limited, and examples thereof include a low molecular compound, a high molecular compound, a nucleic acid, a peptide, a protein, a sugar, a lipid, or a complex thereof.
  • the low molecular weight compound include organic compounds having a molecular weight of 2000 or less, for example, a molecular weight of 50 to 1500.
  • the nucleic acid include oligonucleotides having 50 bases or less.
  • Nucleic acids may be single stranded or double stranded, may be double stranded with blunt ends or double stranded with overhangs and may be modified in various ways. It may be.
  • the peptide may be a natural amino acid, an amino acid analog or an artificial amino acid, or a peptide with various modifications.
  • a low molecular compound, a high molecular compound, a nucleic acid, a peptide, a protein, a sugar, a lipid, or a complex thereof can be prepared according to a method known to those skilled in the art.
  • substances that inhibit the expression of PTIP include miRNAs, siRNAs, antisense RNAs, ribozymes, dominant negative mutants of PTIP proteins, precursors thereof, and nucleic acids encoding them.
  • miRNA is a single-stranded RNA having a length of 20 to 25 bases, for example 21 to 22 bases, and is a molecule that specifically cleaves target mRNA or suppresses transcription in animal or plant cells. In mammalian cells, post-transcriptional gene silencing is performed through translational inhibition and mRNA degradation. When miRNA is synthesized in vivo, it is synthesized by the following method. First, the transcription product (pri-miRNA) of the gene is cleaved by the enzyme Drosha to become a miRNA precursor (pre-miRNA) having a loop structure of 60 to 70 bases.
  • pri-miRNA the transcription product of the gene is cleaved by the enzyme Drosha to become a miRNA precursor (pre-miRNA) having a loop structure of 60 to 70 bases.
  • the miRNA precursor is transported to the cytoplasm and further processed by Dicer to form a double stranded RNA containing a 20-25 base mismatch.
  • This double-stranded RNA consists of mature miRNA and RNA (miRNA *) of almost the same length.
  • miRNA * miRNA is incorporated into a ribonucleoprotein complex called RISC (RNA-induced silencing complex) and down-regulates the translation of the target mRNA. miRNA * is degraded. The mechanism of down-regulation by miRNA is thought to be due to hybridization to mRNA and degradation of RNAi-like mRNA.
  • the miRNA that inhibits translation of the target mRNA has a sequence complementary to a part of the target mRNA (in many cases, the 3 ′ untranslated region).
  • the sequence of the miRNA may not be completely complementary to the target sequence.
  • miRNA is highly safe because it has a high target specificity and uses a gene expression suppression mechanism that originally exists in vivo.
  • the miRNA or miRNA precursor that suppresses the expression of PTIP can be appropriately designed by those skilled in the art according to a known method based on the gene sequence of PTIP.
  • miRNA may form a complex with miRNA *.
  • miRNA examples include those that target the following sequences of the PTIP gene.
  • AGTGCCCTGTGGGCCTTGGTT SEQ ID NO: 1
  • miRNA targeting this sequence was effective for silencing the PTIP gene in humans and mice.
  • MiRNA can be designed with known software or the like based on the sequence of the target gene.
  • the miRNA that can be used to inhibit the expression of PTIP includes the base sequence of miRNA targeting the sequence of SEQ ID NO: 1, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more 1 or more in the base sequence of miRNA having the sequence identity of 90% or more, 95% or more, or 98% or more and having PTIP expression inhibitory effect, and the sequence of SEQ ID NO: 1 Examples thereof include those in which several bases are added, substituted or deleted and have an effect of suppressing the expression of PTIP. In the present specification, “several” means, for example, 2, 3, 4, or 5.
  • siRNA is usually a double-stranded RNA of about 19 to 30 bases, for example about 21 to 25 bases. Generally, one of them has a base sequence complementary to a part of the target mRNA, and the other is complementary to this. But may not be completely complementary to the target mRNA.
  • the expression inhibition method using siRNA that is, RNAi method is a sequence-specific gene expression suppression mechanism induced by double-stranded nucleic acid.
  • siRNA is also highly safe because it has high target specificity and uses a gene expression suppression mechanism that is originally present in vivo.
  • a typical structure of siRNA is a 21-base-pair double-stranded RNA, and the 3 ′ portion of each RNA strand is a 2-base overhang.
  • siRNA is produced by cutting out hairpin RNA (shRNA) or longer double-stranded RNA with Dicer.
  • shRNA and long double-stranded RNA before being cleaved by Dicer are included as a siRNA precursor in a substance that inhibits the expression or function of PTIP according to the present invention.
  • siRNA becomes a single strand by helicase, and then forms RISC (complex) with Argonaute protein having endonuclease activity for the target mRNA and destroys the target mRNA.
  • siRNA can be designed according to a known method based on the base sequence of the target mRNA.
  • the siRNA may be a double-stranded RNA or a DNA-RNA chimera-type double-stranded nucleic acid as long as it has an RNAi effect on the target mRNA, and has been subjected to artificial nucleic acid or various modifications. It may be a nucleic acid.
  • siRNA examples include those targeting any one of the following sequences of the PTIP gene. GGCTTGGCGACATTCTTCTGGGAAA (SEQ ID NO: 2) GACCTTCATTTATGCCGAGAATATT (SEQ ID NO: 3) GAACTCGAGTTTGTCGGAAATAATT (SEQ ID NO: 4) As shown in the examples described later, siRNA targeting these sequences was effective for silencing specific to the human PTIP gene. In addition, siRNA can be designed with well-known software etc. based on a target sequence.
  • the siRNA that can be used to inhibit the expression of PTIP includes the base sequence of siRNA targeting the sequence of SEQ ID NO: 2-4, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85 SiRNA bases having a sequence identity of at least 90%, 90%, 95%, 98% or more and having a PTIP expression inhibitory effect, and sequences of SEQ ID NOs: 2-4 Examples thereof include those in which one or several bases are added, substituted or deleted in the sequence and have an effect of suppressing the expression of PTIP.
  • Antisense RNA has a base sequence complementary to the target gene (basically mRNA that is a transcription product), generally 10 to 100 bases long, for example, 15 to 30 bases long. It is a strand nucleic acid. Gene expression is inhibited by introducing antisense RNA into cells and hybridizing to the target gene. The antisense RNA may not be completely complementary to the target gene as long as the effect of inhibiting the expression of the target gene is obtained. Antisense RNA against PTIP can be appropriately designed by those skilled in the art using known software or the like. Antisense RNA may be any of DNA, RNA, DNA-RNA chimera, and may be modified.
  • a ribozyme is a nucleic acid molecule that hydrolyzes a target RNA catalytically, and is composed of an antisense region having a sequence complementary to the target RNA and a catalytic center region responsible for a cleavage reaction.
  • a ribozyme against PTIP can be appropriately designed by those skilled in the art according to a known method. Ribozymes are generally RNA molecules, but DNA-RNA chimeric molecules can also be used.
  • miRNA, siRNA, antisense RNA, or a precursor of ribozyme is a molecule that undergoes some processing in the cell and becomes a miRNA, siRNA, antisense RNA, or ribozyme that exhibits PTIP expression suppression effect.
  • precursors of miRNA include pri-miRNA, pre-miRNA, miRNA / miRNA * complex
  • precursors of siRNA include, but are not limited to, shRNA and longer double-stranded RNA.
  • the nucleic acids encoding miRNA, siRNA, antisense RNA, ribozyme, and their precursors mean miRNA, siRNA, antisense RNA, ribozyme, and their precursor DNA when expressed in cells. To do.
  • a nucleic acid can be inserted into an expression vector and introduced into a cell by a known method.
  • the nucleic acid encoding miRNA, siRNA, antisense RNA, or ribozyme can be stably or transiently expressed in the cell. Can be expressed.
  • a dominant negative mutant of PTIP means a protein in which a mutation is introduced into PTIP to reduce or lose activity.
  • An example is a PTIP mutant that has lost the binding activity to MLL3.
  • Disease caused by activation of vascular endothelial cells means any disease caused by abnormal activation of vascular endothelial cells.
  • activation of vascular endothelial cells means that vascular endothelial cells are in a different state due to some stress, bacterial infection, cytokine signals from cancer cells, etc. That changes occur.
  • vascular endothelial cells are stimulated by VEGF and the like during inflammation due to bacterial infection or tumor, and chemotactic factor MCP-1 (monocyte chemotactic protein-1), adhesion molecule ICAM-1 (Intercellular adhesion molecule), VCAM-1, E-selectin, etc. are expressed to recruit inflammatory cells such as macrophages, granulocytes and lymphocytes, and the inflammation is maintained by infiltrating outside the blood vessels. Is mentioned.
  • hypoxia in cancer lesions and NF- ⁇ B-induced VEGF binds to the VEGF2-type receptor of vascular endothelial cells and promotes angiogenesis in vascular endothelial cells Also mentioned.
  • the therapeutic agent or prophylactic agent according to the present invention contributes to prevention or treatment of diseases caused by these phenomena through suppression of activation of vascular endothelial cells.
  • VEGF vascular endothelial growth factor
  • the VEGF family is a homodimeric secreted protein, and includes VEGF (also called VEGF-A), VEGF-B, VEGF-C, and VEGF-D.
  • VEGF is a central factor for promoting angiogenesis and promotes the differentiation, migration and proliferation of vascular endothelial cells and enhances vascular permeability.
  • VEGF mainly binds to the VEGF type 2 receptor of vascular endothelial cells and promotes angiogenesis and the like.
  • diseases caused by vascular endothelial cell activation include cancer (brain tumor, head and neck cancer, esophageal cancer, stomach cancer, colon cancer, anal cancer, rectal cancer, liver cancer, hepatocellular carcinoma, kidney cancer, renal cell carcinoma.
  • Lung cancer non-small cell lung cancer, osteosarcoma, gallbladder cancer, pancreatic cancer, breast cancer, endometrial cancer, cervical cancer, prostate cancer, testicular tumor, bladder cancer, skin cancer, etc.
  • various inflammations including diabetic retinopathy Retinopathy, age-related macular degeneration, rheumatoid arthritis, inflammatory bowel disease, refractory ascites, psoriasis, sarcoidosis, arteriosclerosis, cerebral infarction, ischemic heart disease (myocardial infarction, angina), thrombosis, Examples include, but are not limited to, thromboembolism, chronic obstructive pulmonary disease, and sepsis.
  • treatment is used in its broadest sense and includes causing at least one of cessation of a disease progression, delay, cure of the disease, and alleviation of at least one symptom.
  • the target disease is cancer
  • prevention is used in its broadest sense and includes stopping or delaying the onset of a disease.
  • the therapeutic or preventive agent for diseases caused by activation of vascular endothelial cells comprises a substance that inhibits the expression or function of PTIP as an active ingredient.
  • Substances that inhibit the expression or function of PTIP may be formulated in combination of two or more, or may be formulated in combination with other drugs used for the treatment or prevention of diseases caused by vascular endothelial cell activation. Good.
  • the therapeutic or prophylactic agent for diseases caused by the activation of vascular endothelial cells according to the present invention can be formulated by a usual method and administered orally or parenterally, systemically or locally.
  • intravenous injection including infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, enema, oral enteric solvent, etc. can be selected, and the administration method should be selected appropriately depending on the patient's age and symptoms Can do.
  • the above preparation is appropriately prepared using a pharmacologically and pharmaceutically acceptable carrier and optionally an additive.
  • a pharmacologically and pharmaceutically acceptable carrier and optionally an additive there are no particular limitations on the form of the preparation, and it is appropriately selected according to the purpose of treatment. Representative examples thereof include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, injections (solutions, suspensions, emulsions), ointments and the like. These preparations may be produced by a commonly used method.
  • pharmaceutically acceptable carriers and additives are not particularly limited, and examples thereof include water, saline, phosphate buffer, dextrose, glycerol, glycol, ethanol, olive oil, organic esters, collagen, and polyvinyl.
  • Alcohol polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diethylene glycol Glycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin, mannitol Sorbitol, lactose, glucose, ascorbic acid, surfactant, excipient, flavoring, preservative, stabilizer, buffer, suspending agent, tonicity agent, binder, disintegrant, lubricant, fluidity Examples include, but are not limited to, accelerators, flavoring agents, swelling agents, antioxidants, and the like.
  • the therapeutic or prophylactic agent of the present invention can be formulated by encapsulating an active ingredient in liposomes, polymer micelles, cationic carriers and the like.
  • Protamine, polylactide, polylactide-co-glycolide, polycaprolactone, polyanhydride, cellulose derivative, and other polymers may be added.
  • the affected area may be targeted by binding an antibody or the like to these carriers.
  • cholesterol, polymer, or the like may be bound to the nucleic acid.
  • the nucleic acid when the therapeutic or prophylactic agent according to the present invention contains a nucleic acid such as siRNA and is expressed in cells after administration, the nucleic acid is adenovirus, retrovirus, vaccinia virus, poxvirus, adeno-associated. It can be inserted into a viral vector such as a virus, herpes simplex virus or lentivirus, or a non-viral vector such as plasmid DNA or liposome and administered into the cell.
  • a viral vector such as a virus, herpes simplex virus or lentivirus
  • a non-viral vector such as plasmid DNA or liposome
  • the amount and administration period of the active ingredient contained in the therapeutic or prophylactic agent of the present invention can be appropriately selected by those skilled in the art according to the patient's weight, health condition, disease severity, and the like.
  • the therapeutic or prophylactic agent of the present invention may be administered at the same time as another pharmaceutical agent for treating or preventing a disease caused by activation of vascular endothelial cells. In this case, they may be administered simultaneously or alternately, and one of them may be administered for a certain period and the other may be administered.
  • the present invention also provides a method for treating or preventing a disease caused by activation of vascular endothelial cells by inhibiting the expression or function of PTIP. Inhibition of the expression or function of PTIP can be performed, for example, by administering to a patient a therapeutic or prophylactic agent for a disease caused by activation of vascular endothelial cells according to the present invention.
  • a therapeutic or prophylactic agent for a disease caused by activation of vascular endothelial cells according to the present invention.
  • miRNA MiRNAs against human PTIP were designed targeting the following sequences: AGTGCCCTGTGGGCCTTGGTT (SEQ ID NO: 1) MiRNA expressed in Adenovirus suppressed human and mouse PTIP gene expression. In subsequent experiments, this was used as miR-PTIP.
  • miR-PTIP is a double-stranded RNA containing the following complementary sequences. AACCAAGGCCCACAGGGCACU (SEQ ID NO: 5) 1-2.
  • siRNA SiRNA against PTIP was designed targeting either of the following sequences of the human PTIP gene.
  • siRNAs # 1 to # 3 are double-stranded RNAs containing the following complementary sequences, respectively.
  • siRNA # 1 UUUCCCAGAAGAAUGUCGCCAAGCC (SEQ ID NO: 6) GGCUUGGCGACAUUCUUCUGGGAAA (SEQ ID NO: 7) siRNA # 2 AAUAUUCUCGGCAUAAAUGAAGGUC (SEQ ID NO: 8) GACCUUCAUUUAUGCCGAGAAUAUU (SEQ ID NO: 9) siRNA # 3 AAUUAUUUCCGACAAACUCGAGUUC (SEQ ID NO: 10) GAACUCGAGUUUGUCGGAAAUAAUU (SEQ ID NO: 11)
  • VEGF-induced critical transcription factor by PTIP knockdown
  • Umbilical vein endothelial cells (HUVEC) were seeded at 2 ⁇ 10 5 on 6-well plates and cultured with EGM-2. 24 hours later, si-PTIP was transfected with lipofectamine RNAi max (lifetechnologies) at a concentration of 50 uM. 24 hours after the start of transfection, the cells were cultured in 0.5% FBS-containing EBM-2 for 18 hours, and 50 ng / mL VEGF was added dropwise. One hour after stimulation, RNA was collected and the target gene was analyzed by qPCR or microarray. The results are shown in FIG. When PITP was knocked down, the expression of important VEGF-induced transcription factors (EGR3, EGR2, NR4A2, NR4A3) was significantly reduced.
  • EGR3, EGR2, NR4A2, NR4A3 important VEGF-induced transcription factors
  • FIG. 5 shows changes in solid tumor size
  • FIG. 6 shows the excised tumor and its weight.
  • the size of the solid tumor at the time of excision in the miR-PTIP administration group was about one-third that in the control group, indicating that miR-PTIP has antitumor activity.
  • FIG. 7 shows the results of quantification of blood vessel density using a vascular endothelial cell marker. In the miR-PTIP administration group, activation of vascular endothelium was suppressed, and it was shown that the neovascular density in the tumor margin was greatly reduced.
  • FIG. 8 shows the results of observing monocyte-endothelial adhesion ability, which is the first stage in inflammatory infiltration.
  • FIG. 8 shows the results of inflammatory infiltration observed with CD11b staining under in vivo conditions.
  • MiR-control or miR-PTIP was introduced into B16-F10 melanoma ( ⁇ 0.2 cm 3 ) by administration of 1 ⁇ 10 10 pfu adenovirus, and after 7 days, the frozen section was immunostained with anti-CD11b (BD parmingen) antibody. It was shown that infiltration of CD11b positive (darkly colored part) inflammatory leukocytes was inhibited by PTIP suppression.
  • FIG. 9 shows the results (heat map) of PTIP expression suppression with siRNA # 2 in the presence of VEGF, and changes in gene expression in endothelial cells using microarray.
  • 40 nM si-control or si-PTIP was introduced into HUVEC by Lipofectamine RNAiMax (Invitrogen), and two days later, the medium was replaced with EBM-2 (Lonza) plus 0.5% FBS. 18 hours later, 50 ng / ml VEGF (Peprotech) was added, and 1 hour later, total RNA was recovered, and expression analysis was performed using U133plus 2.0 Affymetrix expression array.
  • VEGF Inhibition of expression by VEGF was inhibited mainly by factors related to endothelial activation (EGR3, NR4A2, HEY1, JUNB, ADMTS1, TISSUE FACTOR, COX2, IL-8, E-SELECTIN, DSCR-1, etc.) It was also confirmed from gene expression that the genes contributing to endothelial homeostasis remained maintained. These results indicate that inhibition of PTIP blocks only endothelial activation leading to vascular disease, and does not impair the basic functions involved in homeostasis.
  • the transcription factors Egr-3, hEVX1, and hFOXA13 were measured at 0 minutes, 15 minutes, and 60 minutes after the addition of Ctrl-Adeno and PTIP-Adeno VEGF.
  • the results are shown in FIGS. NR4A3 and Egr-3 are essential transcription factors for vascular elongation, but Flag-PTIP proteins introduced as detectors 15 and 60 minutes after VEGF stimulation interact with their transcriptional regulatory chromatin regions. It was confirmed.
  • Evx1 is a negative control transcription factor.
  • PTIP strongly interacted with VEGF stimulation in the Egr-3 region, but no significant binding was observed in control Evx1, which is not involved in angiogenesis.
  • H3K4me3 modification transcription activation mark
  • transcription activation mark is activated in 15 minutes from VEGF stimulation in the group of early transcription factors required for vascular activation, and transcription (indicated by Pol II) activation occurs in response, but H3K27me3 modification (transcription repression mark) Also remained, and it was a transient transcription (FIG. 14).
  • NR4A2 and Egr2 FIG. 15
  • GATA2 which is a constitutive transcription factor that regulates the endothelium, did not contain the H3K27me3 mark, and the H3K4me3 mark contained VEGF-independent and was always transcribed.
  • SEQ ID NO: 1 shows the target sequence of miRNA for PTIP gene.
  • SEQ ID NOs: 2-4 show the target sequence of siRNA for PTIP gene.
  • SEQ ID NO: 5 shows the sequence of miR-PTIP.
  • SEQ ID NOs: 6 and 7 show the sequence of siRNA- # 1.
  • SEQ ID NOs: 8 and 9 show the sequence of siRNA- # 2.
  • SEQ ID NOs: 10 and 11 show the sequence of siRNA- # 3.

Abstract

The present invention finds, by way of epigenome analysis of activation of vascular endothelial cells, a substance capable of inhibiting activation of vascular endothelial cells while maintaining endothelial homeostasis, and addresses the problem of providing a therapeutic or prophylactic agent for disease caused by activation of vascular endothelial cells. The present invention provides a therapeutic or prophylactic agent for disease caused by activation of vascular endothelial cells, said therapeutic or prophylactic agent including a substance which inhibits expression or function of PTIP.

Description

血管内皮細胞の活性化に起因する疾患の治療又は予防剤Therapeutic or preventive agent for diseases caused by activation of vascular endothelial cells
 本発明は、Pax2トランス活性化ドメイン相互作用たんぱく質(Pax transactivation domain-interacting protein;以下「PTIP」という。)の発現又は機能を阻害する物質を含む、血管内皮細胞の活性化に起因する疾患の治療又は予防剤等に関する。 The present invention relates to the treatment of a disease caused by the activation of vascular endothelial cells, which comprises a substance that inhibits the expression or function of Pax2 transactivation domain-interacting protein (hereinafter referred to as “PTIP”). Or it relates to preventive agents.
 日本人の3大死因である転移性がん、脳梗塞、心血管障害は、いずれも血管疾患が根本に関与している。したがって、この血管疾患に直接アプローチする治療法は様々な疾患に効果を有する汎用性のあるものとなることが期待される。
 実際、腫瘍血管新生を阻害する血管内皮細胞増殖因子(VEGF)中和抗体であるベバシズマブ(商品名「アバスチン」(登録商標))が抗がん剤として使用されており、研究レベルでは原発腫瘍を中期的に退縮させる。しかしながら、臨床の場では延命効果にとどまっており、逆に転移を促進させるとの報告もある(非特許文献1-3参照)。これは、ベバシズマブが、正常な内皮にも作用することによると考えられる。
 血管疾患を考慮する上では、内皮の恒常性を保ちつつ、その病的な活性化だけを防ぐことが望ましい。血管内皮細胞の活性化を選択的に抑制する物質は、腫瘍血管新生や転移性微小環境のコントロールを介したがんの治療や、内皮慢性炎症の抑制を介した炎症や動脈硬化の治療に用いることができると考えられる。
Vascular diseases are fundamentally involved in metastatic cancer, cerebral infarction, and cardiovascular disorders, which are the three leading causes of death in Japan. Therefore, it is expected that a treatment method that directly approaches this vascular disease will be versatile with an effect on various diseases.
In fact, bevacizumab (trade name “Avastin” (registered trademark)), which is a vascular endothelial growth factor (VEGF) neutralizing antibody that inhibits tumor angiogenesis, is used as an anticancer agent. Regress in the medium term. However, there is a report that it has only a life-prolonging effect in the clinical field, and conversely promotes metastasis (see Non-Patent Documents 1-3). This is thought to be due to the action of bevacizumab on normal endothelium.
In considering vascular disease, it is desirable to prevent only its pathological activation while maintaining endothelial homeostasis. Substances that selectively inhibit the activation of vascular endothelial cells are used to treat cancer via tumor angiogenesis and metastatic microenvironment control, and to treat inflammation and arteriosclerosis via inhibition of endothelial chronic inflammation. It is considered possible.
 ところで、近年、ゲノム上の修飾と遺伝子発現との関係を解明するエピゲノム解析が注目され、ヒストンのアセチル化やメチル化が遺伝子発現のオン/オフ制御に関与することがわかった。例えば、ES細胞やiPS細胞が分化するときの転写因子の変動は、その制御領域にアクティブマーク(H3K4me3)とサイレンスマーク(H3K27me3)が混在するbivalent状態から、サイレンスマークがはずれて迅速に発現がオンになるエピゲノム制御によることが知られている(非特許文献4)。 By the way, in recent years, epigenome analysis to elucidate the relationship between genome modification and gene expression has attracted attention, and it has been found that histone acetylation and methylation are involved in on / off control of gene expression. For example, when ES cells or iPS cells differentiate, the transcription factor changes from the bivalent state in which the active mark (H3K4me3) and silence mark (H3K27me3) are mixed in the control region, and the expression quickly turns on. It is known to be controlled by epigenome (Non-Patent Document 4).
 本発明は、血管内皮細胞の活性化におけるエピゲノム解析を通じて、内皮の恒常性を維持したまま血管内皮細胞の活性化を抑制できる物質を見出し、血管内皮細胞の活性化に起因する疾患の治療又は予防剤を提供することを課題とする。 The present invention finds a substance capable of suppressing the activation of vascular endothelial cells while maintaining endothelial homeostasis through epigenome analysis in the activation of vascular endothelial cells, and treatment or prevention of diseases caused by the activation of vascular endothelial cells. It is an object to provide an agent.
 本発明者らは、上記課題を解決するために、血管内皮細胞の活性化の一態様であるVEGF刺激に伴う転写因子の変動についてエピゲノム解析を行ったところ、上述のES細胞やiPS細胞におけるエピゲノム制御とは異なり、内皮活性化のスイッチングに関わる転写因子においては、bivalentマーク(サイレンスマークH3K27me3とアクティブマークH3K4me3が共存した状態)によってpoised状態が維持されており、VEGF活性化刺激が入ると、アクティブマークH3K4me3が増えて一過性に転写活性が生じることを見出した(図10)。
 そこで、VEGF活性化時にアクティブマーク(H3K4me3)を導入する酵素複合体が内皮活性化応答のエピゲノムスイッチであると考え、この酵素活性を阻害すればスイッチが入らなくなり、内皮細胞の活性化を抑制できるのではないかとの仮説を立てた。この仮説を示すために、ヒストン修飾コンプレックス(Trithorax group)に対するsiRNAライブラリーを用いたスクリーニングを行い、VEGFに誘導される遺伝子の挙動を観察したところ、アクティブマークを導入する酵素の候補としてPTIPを同定した。
 そして、PTIPの発現をmiRNA等で阻害すると、VEGF誘導に重要な転写因子の発現が大きく抑制され、その結果VEGF存在下での内皮遊走や管形成、血管新生、腫瘍の成長も抑制されることを確認した。また、PTIPの発現を抑制すると、炎症における活性化因子であるVCAM-1(vascular cell adhesion molecule-1)やE-selectinなどのVEGFによる誘導も抑制され、単球接着が生じなくなって炎症浸潤が抑制される一方、通常培養下の内皮細胞の生存にはまったく影響を及ぼさないことを確認し、本発明を完成するに至った。
 すなわち本発明は、
〔1〕PTIPの発現又は機能を阻害する物質を含む、血管内皮細胞の活性化に起因する疾患の治療又は予防剤;
〔2〕前記PTIPの発現又は機能を阻害する物質が、PTIPに対するmiRNA、siRNA、アンチセンスRNA、リボザイム、これらの前駆体、及びこれらをコードする核酸からなる群より選択される、上記〔1〕に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤;
〔3〕前記PTIPの発現又は機能を阻害する物質が、以下の(i)~(iii)から選択される上記〔1〕又は〔2〕に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤:
(i)  PTIP遺伝子の以下の配列を標的とするmiRNA;
   AGTGCCCTGTGGGCCTTGGTT(配列番号:1)
(ii) (i)のmiRNAの塩基配列と80%以上の配列同一性を有し、PTIPの発現又は機能を阻害するmiRNA;及び
(iii)  (i)のmiRNAの塩基配列において1又は数個の塩基が、付加、置換又は欠失したものであって、PTIPの発現又は機能を阻害するmiRNA;
〔4〕前記PTIPの発現又は機能を阻害する物質が、以下の(i)~(iii)から選択される上記〔1〕又は〔2〕に記載の発明:
(i)  PTIP遺伝子の以下のいずれかの配列を標的とするsiRNA;
   GGCTTGGCGACATTCTTCTGGGAAA(配列番号:2)
   GACCTTCATTTATGCCGAGAATATT(配列番号:3)
   GAACTCGAGTTTGTCGGAAATAATT(配列番号:4)
(ii) (i)のsiRNAの配列と80%以上の配列同一性を有し、PTIPの発現又は機能を阻害するsiRNA;及び
(iii)  (i)のsiRNAの配列において1又は数個の塩基が、付加、置換又は欠失したものであって、PTIPの発現又は機能を阻害するsiRNA;
〔5〕前記PTIPの発現又は機能を阻害する物質が、PTIPタンパク質のドミナントネガティブ変異体又はこれらをコードする核酸である、上記〔1〕に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤;
〔6〕前記血管内皮細胞の活性化に起因する疾患が、血管内皮細胞増殖因子(VEGF)の活性化を伴うものである、上記〔1〕から〔5〕のいずれか1項に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤;及び
〔7〕前記血管内皮細胞の活性化に起因する疾患が、癌、炎症、網膜症、加齢性黄斑変性症、関節リウマチ、炎症性腸疾患、難治性腹水症、乾癬、サルコイドーシス、動脈硬化症、脳梗塞、虚血性心疾患、血栓症、血栓塞栓症、慢性閉塞性肺疾患、及び敗血症からなる群より選択される、上記〔1〕から〔5〕のいずれか1項に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤、
に関する。
In order to solve the above-mentioned problems, the present inventors conducted an epigenomic analysis on the variation of transcription factors associated with VEGF stimulation, which is one mode of activation of vascular endothelial cells. The epigenome in the ES cells and iPS cells described above was analyzed. Unlike regulation, transcription factors involved in endothelial activation switching are maintained in a poised state by the bivalent mark (a state in which the silence mark H3K27me3 and the active mark H3K4me3 coexist), and when activated by VEGF activation, It was found that the transcriptional activity occurred transiently as the mark H3K4me3 increased (FIG. 10).
Therefore, the enzyme complex that introduces the active mark (H3K4me3) upon VEGF activation is considered to be an epigenome switch of the endothelial activation response. If this enzyme activity is inhibited, the switch cannot be turned on and the activation of endothelial cells can be suppressed. I hypothesized that it might be. To demonstrate this hypothesis, we screened the siRNA library against the histone modified complex (Trithorax group) and observed the behavior of the gene induced by VEGF, and identified PTIP as a candidate enzyme for introducing the active mark. did.
Inhibiting PTIP expression with miRNA or the like significantly suppresses the expression of transcription factors important for VEGF induction, and as a result, also suppresses endothelial migration, tube formation, angiogenesis, and tumor growth in the presence of VEGF. It was confirmed. In addition, when PTIP expression is suppressed, induction by VEGF such as VCAM-1 (vascular cell adhesion molecule-1) and E-selectin, which are activators in inflammation, is also suppressed, and monocyte adhesion does not occur and inflammation infiltration occurs. While being suppressed, it was confirmed that there was no influence on the survival of endothelial cells in normal culture, and the present invention was completed.
That is, the present invention
[1] A therapeutic or prophylactic agent for diseases caused by activation of vascular endothelial cells, comprising a substance that inhibits the expression or function of PTIP;
[2] The above-mentioned [1], wherein the substance that inhibits the expression or function of PTIP is selected from the group consisting of miRNA, siRNA, antisense RNA, ribozyme, precursors thereof, and nucleic acids encoding them against PTIP. A therapeutic or prophylactic agent for diseases caused by the activation of vascular endothelial cells according to claim 1;
[3] A substance that inhibits the expression or function of PTIP is selected from the following (i) to (iii): a disease caused by activation of vascular endothelial cells according to [1] or [2] Treatment or prevention agent:
(i) miRNAs targeting the following sequences of the PTIP gene;
AGTGCCCTGTGGGCCTTGGTT (SEQ ID NO: 1)
(ii) a miRNA having a sequence identity of 80% or more with the base sequence of the miRNA of (i) and inhibiting the expression or function of PTIP; and
(iii) a miRNA in which one or several bases are added, substituted or deleted in the base sequence of the miRNA of (i), and inhibit the expression or function of PTIP;
[4] The invention according to [1] or [2] above, wherein the substance that inhibits the expression or function of PTIP is selected from the following (i) to (iii):
(i) siRNA targeting any of the following sequences of the PTIP gene;
GGCTTGGCGACATTCTTCTGGGAAA (SEQ ID NO: 2)
GACCTTCATTTATGCCGAGAATATT (SEQ ID NO: 3)
GAACTCGAGTTTGTCGGAAATAATT (SEQ ID NO: 4)
(ii) an siRNA having 80% or more sequence identity with the sequence of the siRNA of (i) and inhibiting PTIP expression or function; and
(iii) siRNA in which one or several bases are added, substituted or deleted in the sequence of siRNA of (i), and inhibit the expression or function of PTIP;
[5] Treatment of diseases caused by activation of vascular endothelial cells according to [1] above, wherein the substance that inhibits the expression or function of PTIP is a dominant negative mutant of PTIP protein or a nucleic acid encoding them. Or prophylactic agent;
[6] The blood vessel according to any one of [1] to [5] above, wherein the disease caused by the activation of vascular endothelial cells is accompanied by activation of vascular endothelial growth factor (VEGF). A therapeutic or preventive agent for diseases caused by activation of endothelial cells; and [7] diseases caused by activation of vascular endothelial cells are cancer, inflammation, retinopathy, age-related macular degeneration, rheumatoid arthritis, inflammation Selected from the group consisting of genital bowel disease, refractory ascites, psoriasis, sarcoidosis, arteriosclerosis, cerebral infarction, ischemic heart disease, thrombosis, thromboembolism, chronic obstructive pulmonary disease, and sepsis [ 1) to [5] The therapeutic or preventive agent for a disease caused by the activation of vascular endothelial cells according to any one of [5],
About.
 本発明によれば、PTIPの発現又は機能を阻害することを通じて、血管内皮の活性化を抑制し、腫瘍血管新生を低下させるので、抗がん効果や抗転移効果を得ることが可能である。また、炎症も抑制できるので、動脈硬化など炎症に起因する疾患に対する長期的な予防効果も期待される。さらに、本発明の治療剤又は予防剤は、内皮の恒常性には影響を与えないので、副作用を生じる可能性が低い。 According to the present invention, by inhibiting the expression or function of PTIP, the activation of the vascular endothelium is suppressed and the tumor angiogenesis is reduced, so that an anticancer effect and an antimetastatic effect can be obtained. In addition, since inflammation can be suppressed, a long-term preventive effect against diseases caused by inflammation such as arteriosclerosis is also expected. Furthermore, since the therapeutic or preventive agent of the present invention does not affect the homeostasis of the endothelium, the possibility of causing side effects is low.
図1は、HUVEC細胞において、PTIPの発現をsiRNAでノックダウンし、VEGF誘導の重要な転写因子の発現を定量PCRで測定した結果を示す。FIG. 1 shows the results of knockdown of PTIP expression with siRNA in HUVEC cells and the expression of important transcription factors for VEGF induction measured by quantitative PCR. 図2は、HUVEC細胞において、PTIPの発現をsiRNAでノックダウンし、血球計算盤で細胞を測定した結果を示す。FIG. 2 shows the result of knocking down the expression of PTIP with siRNA and measuring the cells with a hemocytometer in HUVEC cells. 図3は、HUVEC細胞において、PTIPの発現をsiRNAでノックダウンし、VEGF存在下で、遊走した細胞数をカウントしたMigration assayの結果を示す。FIG. 3 shows the results of migration assay in which the expression of PTIP was knocked down with siRNA in HUVEC cells, and the number of cells that migrated in the presence of VEGF was counted. 図4は、HUVEC細胞において、PTIPの発現をsiRNAでノックダウンし、VEGF存在下で、チューブ状となった細胞の面積を算出した結果を示す。FIG. 4 shows the results of calculating the area of cells in the form of a tube in the presence of VEGF by knocking down PTIP expression with siRNA in HUVEC cells. 図5は、メラノーマ細胞を移植した担癌モデルマウスに、miR-PTIPを投与し、固形腫瘍のサイズを測定した結果を示す。FIG. 5 shows the results of administering miR-PTIP to a tumor-bearing model mouse transplanted with melanoma cells and measuring the size of the solid tumor. 図6は、メラノーマ細胞を移植した担癌モデルマウスに、miR-PTIPを投与し、10日後に摘出した固形腫瘍(左)と、その重量を測定した結果(右)を示す。FIG. 6 shows a solid tumor (left) that was administered miR-PTIP to a tumor-bearing model mouse transplanted with melanoma cells and excised 10 days later, and the result of measuring its weight (right). 図7は、メラノーマ細胞を移植した担癌モデルマウスに、miR-PTIPを投与し、血管内皮細胞マーカーで血管密度を定量した結果を示す。FIG. 7 shows the results of administering miR-PTIP to a tumor-bearing model mouse transplanted with melanoma cells and quantifying the blood vessel density with a vascular endothelial cell marker. 図8左は、HUVEC細胞において、PTIPの発現をsiRNAでノックダウンし、VEGF存在下で、単球炎症浸潤を観察した結果を示す。図8右は腫瘍 xenograft において、PTIP の発現を miRNA でノックダウンし、活性化白血球のがん周囲からの浸潤をCD11b にて染色した結果を示す。The left side of FIG. 8 shows the results of observing monocyte inflammatory infiltration in the presence of VEGF by knocking down the expression of PTIP with siRNA in HUVEC cells. The right side of FIG. 8 shows the result of knocking down the expression of PTIP with miRNA and staining the infiltration of activated leukocytes from around the cancer with CD11b in tumor xenograft. 図9は、VEGF存在下、siRNAでPTIP発現を抑制し、microarrayで内皮細胞における遺伝子の発現変動を調べた結果を示す。FIG. 9 shows the results of suppressing PTIP expression with siRNA in the presence of VEGF and examining gene expression fluctuations in endothelial cells with microarray. 図10は、本発明の概要を説明する。VEGF刺激に伴う転写因子の変動についてエピゲノム解析を行ったところ、内皮活性化に重要な転写因子にのみ、bivalentマークが見られた(上段)。PTIPは、内皮活性化に重要な転写因子で、これを抑制することにより内皮活性化のスイッチをOFFにできることが見出された。PTIPの抑制は、Egr-3などの内皮活性化重要因子のVEGFによる誘導を大きく抑制するが、内皮恒常性維持遺伝子や内皮に発現しない遺伝子ではそのような影響は認められず、内皮活性化を特異的に抑制した。FIG. 10 outlines the present invention. When epigenome analysis was performed on the variation of transcription factors associated with VEGF stimulation, only the transcription factors important for endothelial activation were found to have a bivalent mark (top). It was found that PTIP is a transcription factor important for endothelial activation, and that it can be switched off by suppressing it. Inhibition of PTIP greatly suppresses the induction of endothelial activation important factors such as Egr-3 by VEGF, but such an effect is not observed in genes that maintain endothelial homeostasis or genes that are not expressed in the endothelium, and thus inhibit endothelial activation. It was specifically suppressed. 図11は、クロマチン免疫沈降(ChIP)とqPCRにより、PTIPの転写制御クロマチン領域への結合を検出した結果を示す。VEGF応答性重要転写因子に限って、PTIPがその転写制御クロマチン領域に結合していることが確認された。FIG. 11 shows the results of detecting the binding of PTIP to the transcriptionally regulated chromatin region by chromatin immunoprecipitation (ChIP) and qPCR. It was confirmed that PTIP was bound to its transcriptional regulatory chromatin region only for VEGF-responsive critical transcription factors. 図12は、図11と同様に、クロマチン免疫沈降(ChIP)とqPCRにより、PTIPの転写制御クロマチン領域への結合を検出した結果を示す。Egr-3領域では、VEGF刺激に伴ってPTIPが強く相互作用するが、血管新生に関与しないコントロールであるEvx1では、有意な結合は見られなかった。FIG. 12 shows the results of detecting the binding of PTIP to the transcriptionally regulated chromatin region by chromatin immunoprecipitation (ChIP) and qPCR, as in FIG. In the Egr-3 region, PTIP strongly interacted with VEGF stimulation, but Evx1, a control not involved in angiogenesis, showed no significant binding. 図13は、VEGF刺激に伴う転写因子の変動についてエピゲノム解析を行った結果を示す。H3K4me3修飾(転写活性化マーク)が血管活性化にEgr-3の必要な早期転写因子群では、VEGF刺激15分から入り、それに呼応して転写(Pol IIで表示)活性化が生じるが、H3K27me3修飾(転写抑制マーク)も入ったままであり、一過性の転写となっていた。FIG. 13 shows the results of epigenome analysis on the variation of transcription factors accompanying VEGF stimulation. H3K4me3 modification (transcription activation mark) is an early transcription factor group that requires Egr-3 for vascular activation, entering from 15 minutes of VEGF stimulation, and correspondingly transcription (indicated by Pol II) activation occurs, but H3K27me3 modification (Transfer suppression mark) was still on, and it was a temporary transfer. 図14は、図13と同様に、VEGF刺激に伴う転写因子の変動についてエピゲノム解析を行った結果を示す。NR4A2やEgr2も、Egr-3と同様に一過性の転写となった。一方、内皮を規定している構成的転写因子であるGATA2ではH3K27me3マークが入っておらず、H3K4me3マークがVEGF非依存的に入っていて常に転写されていた。FIG. 14 shows the results of epigenome analysis on the variation of transcription factors accompanying VEGF stimulation, as in FIG. As with Egr-3, NR4A2 and Egr2 were also transient transcripts. On the other hand, GATA2, which is a constitutive transcription factor that regulates the endothelium, did not contain the H3K27me3 mark, and the H3K4me3 mark contained VEGF independent and was always transcribed.
 本発明に係る血管内皮細胞の活性化に起因する疾患の治療又は予防剤は、PTIPの発現又は機能を阻害する物質を含む。 The therapeutic or preventive agent for diseases caused by activation of vascular endothelial cells according to the present invention contains a substance that inhibits the expression or function of PTIP.
 PTIPは、広く様々な細胞で発現している核タンパク質である。PTIPは6つのタンデムなBRCT(BRCA1 carboxyl terminal)ドメインを有している。BRCTドメインは、DNA損傷応答に関与するタンパク質に多く見られるものであり、in vitroの実験では、PTIPもDNA損傷応答に関与することが示唆された。DNA損傷非存在下での内因性PTIPの機能は長く不明なままであったが、ヒストンH3K4をメチル化する酵素の複合体の構成要素であるMLL3(mixed-lineage leukemia 3)と結合し、当該複合体の一構成要素となることが報告された(Cho YW, et al. J Biol Chem. 2007 Jul 13;282(28):20395-406.)。 PTIP is a nucleoprotein that is widely expressed in various cells. PTIP has six tandem BRCT (BRCA1 carboxyl terminal) domains. BRCT domains are frequently found in proteins involved in the DNA damage response, and in vitro experiments suggested that PTIP is also involved in the DNA damage response. The function of endogenous PTIP in the absence of DNA damage has long remained unknown, but it binds to MLL3 (mixed-lineage leukemia 3), a component of the enzyme complex that methylates histone H3K4. It was reported to be a component of the complex (Cho YW, et al. J Biol Chem. 2007 Jul 13; 282 (28): 20395-406.).
 本明細書において「PTIP」という場合、GenBank Accession No.:AAH33781.1又はNP_031375と同一のアミノ酸配列を有するタンパク質に加え、PTIPと同様の活性を有する変異体や類似体、ヒト以外の動物のPTIPも含む。かかる変異体や類似体としては、GenBank Accession No.:AAH33781.1又はNP_031375のアミノ酸配列と、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、又は98%以上の配列同一性を有し、PTIP活性を有するペプチドが挙げられる。本明細書において、「PTIP活性を有するペプチド」とは、MLL3との結合活性を有するペプチドであって、その発現を阻害することにより血管内皮細胞の異常な活性化が抑制されるペプチドを意味する。
 なお、既存のデータベースで検索したところ、PTIPは癌細胞において多く発現しているが、正常細胞においては発現が低い。したがって、PTIPを標的とした治療は、癌細胞を特異的に攻撃できることが示唆される。
Referred to as "PTIP" herein, in addition to a protein having an amino acid sequence identical to GenBank Accession No.:AAH33781.1 or NP _ 031,375, variants and analogs having activity similar to PTIP, non-human animal Including PTIP. Such variants and analogs, the amino acid sequence of GenBank Accession No.:AAH33781.1 or NP _ 031 375, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, Peptides having a sequence identity of 90% or more, 95% or more, or 98% or more and having PTIP activity can be mentioned. In the present specification, the “peptide having PTIP activity” means a peptide that has binding activity to MLL3 and that suppresses the abnormal activation of vascular endothelial cells by inhibiting its expression. .
As a result of searching in an existing database, PTIP is highly expressed in cancer cells, but it is low in normal cells. Therefore, it is suggested that treatment targeting PTIP can specifically attack cancer cells.
 本明細書において「発現」は、DNAの配列に基づいてmRNAが合成される転写と、mRNAの配列に基づいてペプチドが合成される翻訳の双方を含む概念で用いられる。したがって、発現を阻害するという場合、転写レベルで阻害することも翻訳レベルで阻害することも含む。 In the present specification, “expression” is used in a concept including both transcription in which mRNA is synthesized based on DNA sequence and translation in which peptide is synthesized based on mRNA sequence. Thus, inhibiting expression includes both inhibiting at the transcriptional level and inhibiting at the translational level.
 本明細書において、機能を阻害するとは、そのタンパク質が持つ本来の機能の全部又は一部を失わせることをいう。 In this specification, inhibiting function means losing all or part of the original function of the protein.
(PTIPの発現又は機能を阻害する物質)
 本明細書において、「PTIPの発現又は機能を阻害する物質」は特に限定されず、例えば、低分子化合物、高分子化合物、核酸、ペプチド、タンパク質、糖、脂質、又はこれらの複合体が挙げられる。
 低分子化合物としては、例えば、分子量2000以下、例えば分子量50~1500の有機化合物が挙げられる。
 核酸としては、例えば50塩基以下のオリゴヌクレオチドが挙げられる。核酸は、一本鎖であっても二本鎖であってもよく、平滑末端を有する二本鎖であっても、オーバーハングを有する二本鎖であってもよく、各種の修飾が加えられていてもよい。
 ペプチドは、天然のアミノ酸からなるものでも、アミノ酸アナログや人工アミノ酸を含むものでも、各種の修飾が加えられたものでもよい。
 低分子化合物、高分子化合物、核酸、ペプチド、タンパク質、糖、脂質、又はこれらの複合体は、当業者が公知の方法にしたがって作ることができる。
(Substance that inhibits the expression or function of PTIP)
In the present specification, the “substance that inhibits the expression or function of PTIP” is not particularly limited, and examples thereof include a low molecular compound, a high molecular compound, a nucleic acid, a peptide, a protein, a sugar, a lipid, or a complex thereof. .
Examples of the low molecular weight compound include organic compounds having a molecular weight of 2000 or less, for example, a molecular weight of 50 to 1500.
Examples of the nucleic acid include oligonucleotides having 50 bases or less. Nucleic acids may be single stranded or double stranded, may be double stranded with blunt ends or double stranded with overhangs and may be modified in various ways. It may be.
The peptide may be a natural amino acid, an amino acid analog or an artificial amino acid, or a peptide with various modifications.
A low molecular compound, a high molecular compound, a nucleic acid, a peptide, a protein, a sugar, a lipid, or a complex thereof can be prepared according to a method known to those skilled in the art.
 PTIPの発現を阻害する物質の例としては、PTIPに対するmiRNA、siRNA、アンチセンスRNA、リボザイム、PTIPタンパク質のドミナントネガティブ変異体、これらの前駆体、これらをコードする核酸が挙げられる。 Examples of substances that inhibit the expression of PTIP include miRNAs, siRNAs, antisense RNAs, ribozymes, dominant negative mutants of PTIP proteins, precursors thereof, and nucleic acids encoding them.
 miRNAは、長さ20から25塩基、例えば21から22塩基の一本鎖RNAであり、動物や植物の細胞内で、配列特異的に標的mRNAの切断や転写の抑制をする分子である。哺乳動物の細胞内では、翻訳の阻害やmRNAの分解を介して転写後遺伝子サイレンシングを行う。
 miRNAは、生体内で合成される場合、次のような方法で合成される。まず、その遺伝子の転写産物(pri-miRNA)が酵素Droshaに切断され、60~70塩基のループ構造をとるmiRNA前駆体(pre-miRNA)となる。miRNA前駆体は、細胞質に輸送されDicerによるさらなるプロセシングを受け、20~25塩基のミスマッチを含む二本鎖RNAが形成される。この二本鎖RNAは、成熟miRNAと、ほぼ同じ長さのRNA(miRNA*)とからなる。
 miRNA/miRNA*のうち、miRNAは、RISC(RNA-induced silencing complex)と呼ばれるリボ核タンパク質複合体に取り込まれ、標的mRNAの翻訳をダウンレギュレートする。miRNA*は分解される。miRNAによるダウンレギュレートのメカニズムは、mRNAへのハイブリダイゼーションや、RNAi様のmRNAの分解によるものと考えられている。標的mRNAの翻訳を阻害するmiRNAは、標的mRNAの一部(多くの場合、3’側の非翻訳領域)に相補的な配列を有する。miRNAの配列は、標的配列と完全に相補的でなくてもよい。
 miRNAは、標的特異性が高く、生体内にもともと存在する遺伝子発現抑制メカニズムを利用する方法なので安全性が高い。
 PTIPの発現を抑制するmiRNA又はmiRNA前駆体は、PTIPの遺伝子配列に基づき、公知の方法に従って当業者が適宜設計することが可能である。
 本発明に係る治療又は予防剤において、miRNAは、miRNA*との複合体を形成していてもよい。
miRNA is a single-stranded RNA having a length of 20 to 25 bases, for example 21 to 22 bases, and is a molecule that specifically cleaves target mRNA or suppresses transcription in animal or plant cells. In mammalian cells, post-transcriptional gene silencing is performed through translational inhibition and mRNA degradation.
When miRNA is synthesized in vivo, it is synthesized by the following method. First, the transcription product (pri-miRNA) of the gene is cleaved by the enzyme Drosha to become a miRNA precursor (pre-miRNA) having a loop structure of 60 to 70 bases. The miRNA precursor is transported to the cytoplasm and further processed by Dicer to form a double stranded RNA containing a 20-25 base mismatch. This double-stranded RNA consists of mature miRNA and RNA (miRNA *) of almost the same length.
Among miRNA / miRNA *, miRNA is incorporated into a ribonucleoprotein complex called RISC (RNA-induced silencing complex) and down-regulates the translation of the target mRNA. miRNA * is degraded. The mechanism of down-regulation by miRNA is thought to be due to hybridization to mRNA and degradation of RNAi-like mRNA. The miRNA that inhibits translation of the target mRNA has a sequence complementary to a part of the target mRNA (in many cases, the 3 ′ untranslated region). The sequence of the miRNA may not be completely complementary to the target sequence.
miRNA is highly safe because it has a high target specificity and uses a gene expression suppression mechanism that originally exists in vivo.
The miRNA or miRNA precursor that suppresses the expression of PTIP can be appropriately designed by those skilled in the art according to a known method based on the gene sequence of PTIP.
In the therapeutic or prophylactic agent according to the present invention, miRNA may form a complex with miRNA *.
 PTIPの発現阻害に用いることができるmiRNAとしては、例えば、PTIP遺伝子の以下の配列を標的とするものが挙げられる。
   AGTGCCCTGTGGGCCTTGGTT(配列番号:1)
 後述する実施例に示されるとおり、この配列を標的とするmiRNAは、ヒト及びマウスにおいてPTIP遺伝子のサイレンシングに有効であった。
 なお、miRNAは、標的遺伝子の配列に基づいて、公知のソフトウエア等で設計することができる。
Examples of miRNA that can be used for PTIP expression inhibition include those that target the following sequences of the PTIP gene.
AGTGCCCTGTGGGCCTTGGTT (SEQ ID NO: 1)
As shown in the Examples described later, miRNA targeting this sequence was effective for silencing the PTIP gene in humans and mice.
MiRNA can be designed with known software or the like based on the sequence of the target gene.
 PTIPの発現阻害に用いることができるmiRNAとしては、配列番号1の配列を標的とするmiRNAの塩基配列と60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、又は98%以上の配列同一性を有するものであってPTIPの発現抑制効果を有するもの、及び、配列番号1の配列を標的とするmiRNAの塩基配列において1又は数個の塩基が付加、置換又は欠失したものであってPTIPの発現抑制効果を有するものが挙げられる。本明細書において、「数個」とは、例えば、2個、3個、4個、又は5個を意味する。 The miRNA that can be used to inhibit the expression of PTIP includes the base sequence of miRNA targeting the sequence of SEQ ID NO: 1, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more 1 or more in the base sequence of miRNA having the sequence identity of 90% or more, 95% or more, or 98% or more and having PTIP expression inhibitory effect, and the sequence of SEQ ID NO: 1 Examples thereof include those in which several bases are added, substituted or deleted and have an effect of suppressing the expression of PTIP. In the present specification, “several” means, for example, 2, 3, 4, or 5.
 siRNAは、通常19~30塩基程度、例えば21塩基~25塩基程度の二本鎖RNAであり、一般に、その一方が標的mRNAの一部と相補的な塩基配列を有し、他方がこれに相補的な配列を有するが、標的mRNAには完全に相補的でなくてもよい。
 siRNAを用いる発現阻害法、すなわちRNAi法は、二本鎖核酸によって誘導される配列特異的な遺伝子発現抑制機構である。siRNAも標的特異性が高く、生体内にもともと存在する遺伝子発現抑制メカニズムを利用する方法なので安全性が高い。
 siRNAの典型的な構造は、21塩基対の二本鎖RNAであり、各RNA鎖の3’部分が2塩基のオーバーハングとなっている。siRNAはヘアピン型RNA(shRNA)や、より長い二本鎖RNAからDicerによって切り出されて産生される。Dicerに切断される前のshRNAや長い二本鎖RNAは、siRNAの前駆体として、本発明に係るPTIPの発現又は機能を阻害する物質に含まれる。
 siRNAは、ヘリカーゼによって一本鎖となり、その後、標的mRNAに対するエンドヌクレアーゼ活性を有するアルゴノートタンパク質等とRISC(複合体)を形成し、標的mRNAを破壊する。
 siRNAは、標的mRNAの塩基配列に基づき、公知の方法に従って設計することができる。また、siRNAは、標的mRNAに対するRNAi効果を有する限り、二本鎖RNAであっても良いし、DNA-RNAキメラ型二本鎖核酸であってもよく、人工核酸や各種の修飾が施された核酸であってもよい。
siRNA is usually a double-stranded RNA of about 19 to 30 bases, for example about 21 to 25 bases. Generally, one of them has a base sequence complementary to a part of the target mRNA, and the other is complementary to this. But may not be completely complementary to the target mRNA.
The expression inhibition method using siRNA, that is, RNAi method is a sequence-specific gene expression suppression mechanism induced by double-stranded nucleic acid. siRNA is also highly safe because it has high target specificity and uses a gene expression suppression mechanism that is originally present in vivo.
A typical structure of siRNA is a 21-base-pair double-stranded RNA, and the 3 ′ portion of each RNA strand is a 2-base overhang. siRNA is produced by cutting out hairpin RNA (shRNA) or longer double-stranded RNA with Dicer. The shRNA and long double-stranded RNA before being cleaved by Dicer are included as a siRNA precursor in a substance that inhibits the expression or function of PTIP according to the present invention.
siRNA becomes a single strand by helicase, and then forms RISC (complex) with Argonaute protein having endonuclease activity for the target mRNA and destroys the target mRNA.
siRNA can be designed according to a known method based on the base sequence of the target mRNA. The siRNA may be a double-stranded RNA or a DNA-RNA chimera-type double-stranded nucleic acid as long as it has an RNAi effect on the target mRNA, and has been subjected to artificial nucleic acid or various modifications. It may be a nucleic acid.
 PTIPの発現阻害に用いることができるsiRNAとしては、例えば、PTIP遺伝子の以下のいずれかの配列を標的とするものが挙げられる。
   GGCTTGGCGACATTCTTCTGGGAAA(配列番号:2)
   GACCTTCATTTATGCCGAGAATATT(配列番号:3)
   GAACTCGAGTTTGTCGGAAATAATT(配列番号:4)
 後述する実施例に示されるとおり、これらの配列を標的とするsiRNAは、ヒトPTIP遺伝子特異的なサイレンシングに有効であった。
 なお、siRNAは、標的配列に基づいて、公知のソフトウエア等で設計することができる。
Examples of siRNA that can be used for inhibition of PTIP expression include those targeting any one of the following sequences of the PTIP gene.
GGCTTGGCGACATTCTTCTGGGAAA (SEQ ID NO: 2)
GACCTTCATTTATGCCGAGAATATT (SEQ ID NO: 3)
GAACTCGAGTTTGTCGGAAATAATT (SEQ ID NO: 4)
As shown in the examples described later, siRNA targeting these sequences was effective for silencing specific to the human PTIP gene.
In addition, siRNA can be designed with well-known software etc. based on a target sequence.
 PTIPの発現阻害に用いることができるsiRNAとしては、配列番号2-4の配列を標的とするsiRNAの塩基配列と60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、又は98%以上の配列同一性を有するものであってPTIPの発現抑制効果を有するもの、及び、配列番号2-4の配列を標的とするsiRNAの塩基配列において1又は数個の塩基が付加、置換又は欠失したものであってPTIPの発現抑制効果を有するものが挙げられる。 The siRNA that can be used to inhibit the expression of PTIP includes the base sequence of siRNA targeting the sequence of SEQ ID NO: 2-4, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85 SiRNA bases having a sequence identity of at least 90%, 90%, 95%, 98% or more and having a PTIP expression inhibitory effect, and sequences of SEQ ID NOs: 2-4 Examples thereof include those in which one or several bases are added, substituted or deleted in the sequence and have an effect of suppressing the expression of PTIP.
 アンチセンスRNAは、標的遺伝子(基本的には転写産物であるmRNA)に相補的な塩基配列を有する、一般的には10塩基長~100塩基長、例えば15塩基長~30塩基長の一本鎖核酸である。アンチセンスRNAを細胞内に導入し、標的遺伝子にハイブリダイズさせることによって遺伝子の発現が阻害される。アンチセンスRNAは、標的遺伝子の発現阻害効果が得られる限り、標的遺伝子と完全に相補的でなくてもよい。
 PTIPに対するアンチセンスRNAは、公知のソフトウエア等を用いて当業者が適宜設計することができる。アンチセンスRNAは、DNA、RNA、DNA-RNAキメラのいずれであっても良く、また修飾されていてもよい。
Antisense RNA has a base sequence complementary to the target gene (basically mRNA that is a transcription product), generally 10 to 100 bases long, for example, 15 to 30 bases long. It is a strand nucleic acid. Gene expression is inhibited by introducing antisense RNA into cells and hybridizing to the target gene. The antisense RNA may not be completely complementary to the target gene as long as the effect of inhibiting the expression of the target gene is obtained.
Antisense RNA against PTIP can be appropriately designed by those skilled in the art using known software or the like. Antisense RNA may be any of DNA, RNA, DNA-RNA chimera, and may be modified.
 リボザイムは、標的RNAを触媒的に加水分解する核酸分子であり、標的RNAと相補的な配列を有するアンチセンス領域と、切断反応を担う触媒中心領域から構成されている。
 PTIPに対するリボザイムは当業者が公知の方法に従って適宜設計することができる。リボザイムは一般的にはRNA分子であるが、DNA-RNAキメラ型分子を用いることもできる。
A ribozyme is a nucleic acid molecule that hydrolyzes a target RNA catalytically, and is composed of an antisense region having a sequence complementary to the target RNA and a catalytic center region responsible for a cleavage reaction.
A ribozyme against PTIP can be appropriately designed by those skilled in the art according to a known method. Ribozymes are generally RNA molecules, but DNA-RNA chimeric molecules can also be used.
 本明細書において、miRNA、siRNA、アンチセンスRNA、又はリボザイムの前駆体とは、細胞内で何らかのプロセシングを受けて、PTIPの発現抑制効果を示すmiRNA、siRNA、アンチセンスRNA、又はリボザイムになる分子を意味する。例えば、miRNAの前駆体として、pri-miRNA、pre-miRNA、miRNA/miRNA*複合体が挙げられ、siRNAの前駆体として、shRNA、より長い二本鎖RNAが挙げられるがこれらに限定されない。 In this specification, miRNA, siRNA, antisense RNA, or a precursor of ribozyme is a molecule that undergoes some processing in the cell and becomes a miRNA, siRNA, antisense RNA, or ribozyme that exhibits PTIP expression suppression effect. Means. For example, precursors of miRNA include pri-miRNA, pre-miRNA, miRNA / miRNA * complex, and precursors of siRNA include, but are not limited to, shRNA and longer double-stranded RNA.
 miRNA、siRNA、アンチセンスRNA、リボザイム、及びこれらの前駆体をコードする核酸とは、細胞内で発現させることにより、miRNA、siRNA、アンチセンスRNA、リボザイム、及びこれらの前駆体となるDNAを意味する。
 かかる核酸は、公知の方法で発現ベクターに挿入して細胞内に導入することができる。miRNA、siRNA、アンチセンスRNA、又はリボザイムをコードする核酸を挿入したベクターを用いることにより、miRNA、siRNA、アンチセンスRNA、又はリボザイムをコードする核酸を細胞内で安定的に、又は一過性に発現させることができる。
The nucleic acids encoding miRNA, siRNA, antisense RNA, ribozyme, and their precursors mean miRNA, siRNA, antisense RNA, ribozyme, and their precursor DNA when expressed in cells. To do.
Such a nucleic acid can be inserted into an expression vector and introduced into a cell by a known method. By using a vector into which a nucleic acid encoding miRNA, siRNA, antisense RNA, or ribozyme is inserted, the nucleic acid encoding miRNA, siRNA, antisense RNA, or ribozyme can be stably or transiently expressed in the cell. Can be expressed.
 PTIPのドミナントネガティブ変異体は、PTIPに変異を導入して活性を低下又は喪失させたタンパク質を意味する。例えば、MLL3への結合活性を失ったPTIPの変異体が挙げられる。
 PTIPのドミナントネガティブ変異体を細胞内で大量に発現させ、正常なPTIPタンパク質に対する比率を圧倒的に高くすることにより、細胞は、PTIPの機能が失われたのと同様の挙動を示す。
A dominant negative mutant of PTIP means a protein in which a mutation is introduced into PTIP to reduce or lose activity. An example is a PTIP mutant that has lost the binding activity to MLL3.
By expressing a large amount of dominant negative mutants of PTIP in the cell and by overwhelmingly increasing the ratio to normal PTIP protein, the cells behave similarly to the loss of PTIP function.
(血管内皮細胞の活性化に起因する疾患)
 本明細書において、「血管内皮細胞の活性化に起因する疾患」とは、血管内皮細胞の異常な活性化を原因とするあらゆる疾患を意味する。ここで、血管内皮細胞の活性化とは、何らかのストレス、細菌感染、癌細胞などからのサイトカインのシグナルにより、血管内皮細胞が通常とは異なる状態であることを察知して、細胞の挙動に様々な変化が生じることをいう。
 血管内皮細胞の活性化の一例として、血管内皮細胞が、細菌感染や腫瘍などによる炎症時にVEGF等によって刺激され、表面に走化因子MCP-1(monocyte chemotactic protein-1)、接着分子ICAM-1(intercellular adhesion molecule)、VCAM-1、E-selectin等を発現してマクロファージ、顆粒球、リンパ球などの炎症細胞をリクルートし、この炎症細胞が血管外に浸潤することによって炎症が維持される現象が挙げられる。
 また、血管内皮細胞の別の例として、癌の病巣の低酸素状態やNF-κBに誘導されたVEGFが血管内皮細胞のVEGF2型受容体に結合し、血管内皮細胞に血管新生を促進する現象も挙げられる。
 本発明に係る治療剤又は予防剤は、血管内皮細胞の活性化の抑制を通じて、これらの現象に起因する疾患を予防又は治療に寄与する。
(Disease caused by activation of vascular endothelial cells)
In the present specification, “disease caused by activation of vascular endothelial cells” means any disease caused by abnormal activation of vascular endothelial cells. Here, activation of vascular endothelial cells means that vascular endothelial cells are in a different state due to some stress, bacterial infection, cytokine signals from cancer cells, etc. That changes occur.
As an example of activation of vascular endothelial cells, vascular endothelial cells are stimulated by VEGF and the like during inflammation due to bacterial infection or tumor, and chemotactic factor MCP-1 (monocyte chemotactic protein-1), adhesion molecule ICAM-1 (Intercellular adhesion molecule), VCAM-1, E-selectin, etc. are expressed to recruit inflammatory cells such as macrophages, granulocytes and lymphocytes, and the inflammation is maintained by infiltrating outside the blood vessels. Is mentioned.
In addition, as another example of vascular endothelial cells, hypoxia in cancer lesions and NF-κB-induced VEGF binds to the VEGF2-type receptor of vascular endothelial cells and promotes angiogenesis in vascular endothelial cells Also mentioned.
The therapeutic agent or prophylactic agent according to the present invention contributes to prevention or treatment of diseases caused by these phenomena through suppression of activation of vascular endothelial cells.
 血管内皮細胞の活性化に起因する疾患には、VEGFの活性化を伴うものが含まれる。
 VEGFファミリーは、ホモ二量体の分泌タンパク質であり、VEGF(VEGF-Aとも呼ばれる)のほか、VEGF-B、VEGF-C、VEGF-Dなどがある。なかでもVEGFが血管新生促進の中心的な因子であり、血管内皮細胞の分化や遊走、増殖を促進し、血管透過性を亢進させる。VEGFは主に、血管内皮細胞のVEGF2型受容体に結合し、血管新生等を促進する。
Diseases resulting from activation of vascular endothelial cells include those associated with VEGF activation.
The VEGF family is a homodimeric secreted protein, and includes VEGF (also called VEGF-A), VEGF-B, VEGF-C, and VEGF-D. Among them, VEGF is a central factor for promoting angiogenesis and promotes the differentiation, migration and proliferation of vascular endothelial cells and enhances vascular permeability. VEGF mainly binds to the VEGF type 2 receptor of vascular endothelial cells and promotes angiogenesis and the like.
 血管内皮細胞の活性化に起因する疾患の具体例としては、癌(脳腫瘍、頭頚部癌、食道癌、胃癌、大腸癌、肛門癌、直腸癌、肝癌、肝細胞癌、腎臓癌、腎細胞癌、肺癌、非小細胞肺癌、骨肉種、胆嚢癌、膵臓癌、乳癌、子宮体癌、子宮頚癌、前立腺癌、精巣腫瘍、膀胱癌、皮膚癌等)、各種炎症、糖尿病性網膜症を含む網膜症、加齢性黄斑変性症、関節リウマチ、炎症性腸疾患、難治性腹水症、乾癬、サルコイドーシス、動脈硬化症、脳梗塞、虚血性心疾患(心筋梗塞、狭心症)、血栓症、血栓塞栓症、慢性閉塞性肺疾患、敗血症が挙げられるがこれらに限定されない。 Specific examples of diseases caused by vascular endothelial cell activation include cancer (brain tumor, head and neck cancer, esophageal cancer, stomach cancer, colon cancer, anal cancer, rectal cancer, liver cancer, hepatocellular carcinoma, kidney cancer, renal cell carcinoma. , Lung cancer, non-small cell lung cancer, osteosarcoma, gallbladder cancer, pancreatic cancer, breast cancer, endometrial cancer, cervical cancer, prostate cancer, testicular tumor, bladder cancer, skin cancer, etc.), various inflammations, including diabetic retinopathy Retinopathy, age-related macular degeneration, rheumatoid arthritis, inflammatory bowel disease, refractory ascites, psoriasis, sarcoidosis, arteriosclerosis, cerebral infarction, ischemic heart disease (myocardial infarction, angina), thrombosis, Examples include, but are not limited to, thromboembolism, chronic obstructive pulmonary disease, and sepsis.
 本明細書において「治療」は、その最も広い意味で用いられ、疾患の進行の停止、遅延、疾患の治癒、及び少なくとも一つの症状の緩和のうち少なくとも一つを生じさせることを含む。例えば、対象疾患が癌の場合、腫瘍サイズの低下、腫瘍の成長の遅延又は停止、腫瘍の転移の阻害、及び癌と関連する一つ又は複数の症状の緩和のうち少なくとも1つを生じさせることを含む。
 本明細書において「予防」は、その最も広い意味で用いられ、疾患の発症を停止することや遅らせることを含む。
As used herein, “treatment” is used in its broadest sense and includes causing at least one of cessation of a disease progression, delay, cure of the disease, and alleviation of at least one symptom. For example, when the target disease is cancer, causing at least one of tumor size reduction, tumor growth delay or arrest, tumor metastasis inhibition, and alleviation of one or more symptoms associated with cancer including.
As used herein, “prevention” is used in its broadest sense and includes stopping or delaying the onset of a disease.
(治療又は予防剤)
 本発明に係る血管内皮細胞の活性化に起因する疾患の治療又は予防剤は、PTIPの発現又は機能を阻害する物質を有効成分とする。PTIPの発現又は機能を阻害する物質は、2種以上を組み合わせて製剤化してもよく、血管内皮細胞の活性化に起因する疾患の治療又は予防に用いられる他の医薬と組み合わせて製剤化してもよい。
(Treatment or prevention agent)
The therapeutic or preventive agent for diseases caused by activation of vascular endothelial cells according to the present invention comprises a substance that inhibits the expression or function of PTIP as an active ingredient. Substances that inhibit the expression or function of PTIP may be formulated in combination of two or more, or may be formulated in combination with other drugs used for the treatment or prevention of diseases caused by vascular endothelial cell activation. Good.
 本発明に係る血管内皮細胞の活性化に起因する疾患の治療又は予防剤は、通常の方法で製剤化し、経口的又は非経口的に、全身にあるいは局所的に投与することができる。
 例えば、点滴を含む静脈内注射、筋肉内注射、腹腔内注射、皮下注射、坐薬、注腸、経口性腸溶剤などを選択することができ、患者の年齢、症状により適宜投与方法を選択することができる。本発明に係る治療又は予防剤の場合、特に、患部に直接注射投与することも好ましい。
The therapeutic or prophylactic agent for diseases caused by the activation of vascular endothelial cells according to the present invention can be formulated by a usual method and administered orally or parenterally, systemically or locally.
For example, intravenous injection including infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, enema, oral enteric solvent, etc. can be selected, and the administration method should be selected appropriately depending on the patient's age and symptoms Can do. In the case of the therapeutic or prophylactic agent according to the present invention, it is particularly preferable to administer directly to the affected area by injection.
 上記製剤は、薬理学的及び製剤学的に許容可能な担体と任意で添加剤を用いて適宜調製される。製剤の形態に特に限定はなく、治療目的に応じて適宜選択して使用される。その代表的なものとして錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤、坐剤、注射剤(液剤、懸濁剤、乳剤)、軟膏等が挙げられる。これら製剤は、通常用いられる方法により製造すればよい。 The above preparation is appropriately prepared using a pharmacologically and pharmaceutically acceptable carrier and optionally an additive. There are no particular limitations on the form of the preparation, and it is appropriately selected according to the purpose of treatment. Representative examples thereof include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, injections (solutions, suspensions, emulsions), ointments and the like. These preparations may be produced by a commonly used method.
 本明細書において、製剤上許容しうる担体及び添加剤は、特に制限されず、例えば、水、食塩水、リン酸緩衝液、デキストロース、グリセロール、グリコール、エタノール、オリーブオイル、有機エステル、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ぺクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、グルコース、アスコルビン酸、界面活性剤、賦形剤、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤、膨張剤、抗酸化剤、等が挙げられるがこれらに限定されない。 In the present specification, pharmaceutically acceptable carriers and additives are not particularly limited, and examples thereof include water, saline, phosphate buffer, dextrose, glycerol, glycol, ethanol, olive oil, organic esters, collagen, and polyvinyl. Alcohol, polyvinylpyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diethylene glycol Glycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin, mannitol Sorbitol, lactose, glucose, ascorbic acid, surfactant, excipient, flavoring, preservative, stabilizer, buffer, suspending agent, tonicity agent, binder, disintegrant, lubricant, fluidity Examples include, but are not limited to, accelerators, flavoring agents, swelling agents, antioxidants, and the like.
 また、本発明の治療又は予防剤は、リポソーム、高分子ミセル、カチオン性キャリア等に有効成分を封入して製剤化することができる。また、プロタミン、ポリラクチド、ポリラクチド-コ-グリコリド、ポリカプロラクトン、ポリアンヒドリド、セルロース誘導体、その他の高分子を加えてもよい。これらのキャリアに抗体等を結合させて、患部を標的化してもよい。血中滞留時間を延長するために核酸にコレステロールやポリマー等を結合させてもよい。
 また、本発明に係る治療又は予防剤がsiRNA等の核酸を含み、投与された後細胞内で発現させるものである場合、当該核酸を、アデノウイルス、レトロウイルス、ワクシニアウイルス、ポックスウイルス、アデノ随伴ウイルス、単純ヘルペスウイルス、レンチウイルスなどのウイルスベクターや、プラスミドDNA、リポソームなどの非ウイルスベクターに挿入し、細胞内に投与することもできる。
The therapeutic or prophylactic agent of the present invention can be formulated by encapsulating an active ingredient in liposomes, polymer micelles, cationic carriers and the like. Protamine, polylactide, polylactide-co-glycolide, polycaprolactone, polyanhydride, cellulose derivative, and other polymers may be added. The affected area may be targeted by binding an antibody or the like to these carriers. In order to prolong the residence time in blood, cholesterol, polymer, or the like may be bound to the nucleic acid.
In addition, when the therapeutic or prophylactic agent according to the present invention contains a nucleic acid such as siRNA and is expressed in cells after administration, the nucleic acid is adenovirus, retrovirus, vaccinia virus, poxvirus, adeno-associated. It can be inserted into a viral vector such as a virus, herpes simplex virus or lentivirus, or a non-viral vector such as plasmid DNA or liposome and administered into the cell.
 本発明の治療又は予防剤に含まれる有効成分の量や投与期間は、当業者が、患者の体重、健康状態、疾患の重篤度等にあわせて適宜選択することが可能である。
 本発明の治療又は予防剤は、血管内皮細胞の活性化に起因する疾患の治療又は予防のための他の医薬と同時期に投与してもよい。この場合、同時に投与してもよいし、交互に投与してもよく、いずれか一方を一定期間投与した後にもう一方を投与してもよい。
The amount and administration period of the active ingredient contained in the therapeutic or prophylactic agent of the present invention can be appropriately selected by those skilled in the art according to the patient's weight, health condition, disease severity, and the like.
The therapeutic or prophylactic agent of the present invention may be administered at the same time as another pharmaceutical agent for treating or preventing a disease caused by activation of vascular endothelial cells. In this case, they may be administered simultaneously or alternately, and one of them may be administered for a certain period and the other may be administered.
 また、本発明は、PTIPの発現又は機能を阻害することによって、血管内皮細胞の活性化に起因する疾患を治療又は予防する方法も提供する。PTIPの発現又は機能の阻害は、たとえば、本発明に係る血管内皮細胞の活性化に起因する疾患の治療又は予防剤を患者に投与することによって行うことができる。
 本明細書において引用されるすべての特許文献及び非特許文献の開示は、全体として本明細書に参照により組み込まれる。
The present invention also provides a method for treating or preventing a disease caused by activation of vascular endothelial cells by inhibiting the expression or function of PTIP. Inhibition of the expression or function of PTIP can be performed, for example, by administering to a patient a therapeutic or prophylactic agent for a disease caused by activation of vascular endothelial cells according to the present invention.
The disclosures of all patent and non-patent documents cited herein are hereby incorporated by reference in their entirety.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は何らこれに限定されるものではない。当業者は、本発明の意義を逸脱することなく様々な態様に本発明を変更することができ、かかる変更も本発明の範囲に含まれる。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto. Those skilled in the art can change the present invention into various modes without departing from the meaning of the present invention, and such changes are also included in the scope of the present invention.
1.PTIPに対するsiRNA及びmiRNAの設計
1-1.miRNA
 ヒトPTIPに対する miRNAは、以下の配列を標的として設計した。
   AGTGCCCTGTGGGCCTTGGTT(配列番号:1)
Adenovirus にて発現させた miRNAは、ヒト及びマウス PTIP遺伝子発現を抑制した。以降の実験には、これをmiR-PTIPとして用いた。
 miR-PTIPは以下の相補的な配列を含む二本鎖RNAである。
   AACCAAGGCCCACAGGGCACU(配列番号:5)
1-2.siRNA
 PTIPに対するsiRNAは、ヒトPTIP遺伝子の以下のいずれかの配列を標的として設計した。
   GGCTTGGCGACATTCTTCTGGGAAA(配列番号:2)
   GACCTTCATTTATGCCGAGAATATT(配列番号:3)
   GAACTCGAGTTTGTCGGAAATAATT(配列番号:4)
 以降の実験には、これらを順に、PTIP siRNA #1~#3として用いた。
 siRNA #1~#3は、以下のそれぞれ相補的な配列を含む二本鎖RNAである。
   siRNA #1
   UUUCCCAGAAGAAUGUCGCCAAGCC(配列番号:6)
   GGCUUGGCGACAUUCUUCUGGGAAA(配列番号:7)
   siRNA #2
   AAUAUUCUCGGCAUAAAUGAAGGUC(配列番号:8)
   GACCUUCAUUUAUGCCGAGAAUAUU(配列番号:9)
   siRNA #3
   AAUUAUUUCCGACAAACUCGAGUUC(配列番号:10)
   GAACUCGAGUUUGUCGGAAAUAAUU(配列番号:11)
1. 1. Design of siRNA and miRNA against PTIP 1-1. miRNA
MiRNAs against human PTIP were designed targeting the following sequences:
AGTGCCCTGTGGGCCTTGGTT (SEQ ID NO: 1)
MiRNA expressed in Adenovirus suppressed human and mouse PTIP gene expression. In subsequent experiments, this was used as miR-PTIP.
miR-PTIP is a double-stranded RNA containing the following complementary sequences.
AACCAAGGCCCACAGGGCACU (SEQ ID NO: 5)
1-2. siRNA
SiRNA against PTIP was designed targeting either of the following sequences of the human PTIP gene.
GGCTTGGCGACATTCTTCTGGGAAA (SEQ ID NO: 2)
GACCTTCATTTATGCCGAGAATATT (SEQ ID NO: 3)
GAACTCGAGTTTGTCGGAAATAATT (SEQ ID NO: 4)
In subsequent experiments, these were used as PTIP siRNA # 1 to # 3 in order.
siRNAs # 1 to # 3 are double-stranded RNAs containing the following complementary sequences, respectively.
siRNA # 1
UUUCCCAGAAGAAUGUCGCCAAGCC (SEQ ID NO: 6)
GGCUUGGCGACAUUCUUCUGGGAAA (SEQ ID NO: 7)
siRNA # 2
AAUAUUCUCGGCAUAAAUGAAGGUC (SEQ ID NO: 8)
GACCUUCAUUUAUGCCGAGAAUAUU (SEQ ID NO: 9)
siRNA # 3
AAUUAUUUCCGACAAACUCGAGUUC (SEQ ID NO: 10)
GAACUCGAGUUUGUCGGAAAUAAUU (SEQ ID NO: 11)
2.PTIPノックダウンによるVEGF誘導重要転写因子の発現変化
 6ウェルプレート上に2x105にて臍帯静脈内皮細胞(HUVEC)を播種し、EGM-2培養した。24時間後、50uM濃度にてsi-PTIPをlipofectamine RNAi max(lifetechnologies)にてトランスフェクションした。トランスフェクション開始24時間後、0.5%FBS含有EBM-2にて18時間培養し、50ng/mL VEGFを滴下した。刺激後1時間で、RNAを回収し、qPCRまたはマイクロアレイにて標的遺伝子の解析を行った。
 結果を図1に示す。PITPをノックダウンすると、VEGF誘導の重要な転写因子(EGR3、EGR2、NR4A2、NR4A3)の発現がいずれも著しく低下した。
2. Expression change of VEGF-induced critical transcription factor by PTIP knockdown Umbilical vein endothelial cells (HUVEC) were seeded at 2 × 10 5 on 6-well plates and cultured with EGM-2. 24 hours later, si-PTIP was transfected with lipofectamine RNAi max (lifetechnologies) at a concentration of 50 uM. 24 hours after the start of transfection, the cells were cultured in 0.5% FBS-containing EBM-2 for 18 hours, and 50 ng / mL VEGF was added dropwise. One hour after stimulation, RNA was collected and the target gene was analyzed by qPCR or microarray.
The results are shown in FIG. When PITP was knocked down, the expression of important VEGF-induced transcription factors (EGR3, EGR2, NR4A2, NR4A3) was significantly reduced.
3.PTIPノックダウンによる内皮細胞の生存への影響
 2.と同様に、siRNAトランスフェクションを行い、48時間後に細胞を剥離し、血球計算盤にて細胞カウントを行った。
 結果を図2に示す。PTIPをノックダウンしても、細胞の生存には全く影響しなかった。
3. Effect of PTIP knockdown on endothelial cell survival In the same manner as above, siRNA transfection was performed, cells were detached 48 hours later, and the cells were counted with a hemocytometer.
The results are shown in FIG. Knocking down PTIP had no effect on cell survival.
4.PTIPノックダウンによる内皮活性化への影響
 2.と同様に、siRNAトランスフェクションを行い、24時間後に0.5%FBS含有EBM-2にて18時間培養し、ブルーチップにて細胞を部分的に剥離してから、50ng/mL VEGFを滴下した。24時間後に剥離部分に遊走した細胞数をカウントした(Migration assay)。
 結果を図3に示す。PTIPのノックダウンにより、VEGF誘導性の内皮遊走の活性化が抑制された。
 また、2.と同様に、siRNAトランスフェクションを行い、コラーゲンゲル上へ細胞を再播種した。24時間後に0.5%FBS含有EBM-2に置換し、18時間培養したのち、コラーゲンゲルを重層してから50ng/mL VEGFを滴下した。24時間後にチューブ状となった細胞の面積を画像解析から算出した(Tube formation assay)。
 結果を図4に示す。PTIPのノックダウンにより、VEGF誘導性の管腔形成が抑制された。
 Migration AssayとTube formation assayの結果から、PTIPのノックダウンにより、VEGF誘導性の血管内皮活性化を抑制できることが確認された。
4). Effect of PTIP knockdown on endothelial activation In the same manner as above, siRNA transfection was performed. After 24 hours, the cells were cultured in 0.5% FBS-containing EBM-2 for 18 hours, and the cells were partially detached with a blue chip, and then 50 ng / mL VEGF was added dropwise. After 24 hours, the number of cells that migrated to the detached part was counted (Migration assay).
The results are shown in FIG. PTIP knockdown suppressed activation of VEGF-induced endothelial migration.
In addition, 2. Similarly, siRNA transfection was performed, and cells were replated on a collagen gel. After replacing with EBM-2 containing 0.5% FBS after 24 hours and culturing for 18 hours, collagen gel was overlaid and 50 ng / mL VEGF was added dropwise. The area of cells that became tube-shaped after 24 hours was calculated from image analysis (Tube formation assay).
The results are shown in FIG. PTIP knockdown suppressed VEGF-induced lumen formation.
From the results of Migration Assay and Tube formation assay, it was confirmed that PTIP knockdown can suppress VEGF-induced vascular endothelial activation.
5.miR-PTIPによる抗血管新生効果、抗腫瘍活性
 1x106個のB16メラノーマ細胞をC57BLマウスの皮下へ注入し、固形腫瘍を作成した。メラノーマ細胞導入1週間程度、固形腫瘍が確認できるようになってから、1x1010pfuのコントロール、及びmiR-PTIP発現アデノウイルスを固形腫瘍へ注入した。4日後にさらにもう一度同濃度のアデノウイルスを注入した。ウイルス注入10日程度まで固形腫瘍サイズを測定した。マウスを安楽死させたのちに摘出した固形腫瘍にて凍結切片を作製し、血管内皮細胞マーカーであるCD31(PECAM1)抗体にて、血管密度を定量した。また、各種リンパ球マーカーにて炎症浸潤を観察した。
 図5に、固形腫瘍サイズの変化を、図6に、摘出した腫瘍とその重量を示す。miR-PTIP投与群の摘出時の固形腫瘍のサイズは、対照群に比較して約3分の1であり、miR-PTIPが抗腫瘍活性を有することが示された。
 図7に、血管内皮細胞マーカーを用いた血管密度の定量の結果を示す。miR-PTIP投与群では、血管内皮の活性化が抑制され、腫瘍辺縁部における新生血管密度が大きく低下していることが示された。またVEGF依存性の内皮活性化において必須の転写因子Egr3(Suehiro and Minami, Blood, 2520-32, 2010, Comments in Blood, 2336-7, 2010)の発現を矢印で示すが、PTIP抑制によってEgr-3発現が消失していることが示された。
5. Anti-angiogenic effect and antitumor activity by miR-PTIP 1x10 6 B16 melanoma cells were injected subcutaneously into C57BL mice to create solid tumors. About 1 week after introduction of melanoma cells, solid tumors could be confirmed, and 1 × 10 10 pfu of control and miR-PTIP-expressing adenovirus were injected into the solid tumors. Four days later, the same concentration of adenovirus was injected again. Solid tumor size was measured up to about 10 days after virus injection. A frozen section was prepared from a solid tumor extracted after euthanizing the mouse, and the blood vessel density was quantified with a CD31 (PECAM1) antibody which is a vascular endothelial cell marker. In addition, inflammatory infiltration was observed with various lymphocyte markers.
FIG. 5 shows changes in solid tumor size, and FIG. 6 shows the excised tumor and its weight. The size of the solid tumor at the time of excision in the miR-PTIP administration group was about one-third that in the control group, indicating that miR-PTIP has antitumor activity.
FIG. 7 shows the results of quantification of blood vessel density using a vascular endothelial cell marker. In the miR-PTIP administration group, activation of vascular endothelium was suppressed, and it was shown that the neovascular density in the tumor margin was greatly reduced. The expression of the transcription factor Egr3 (Suehiro and Minami, Blood, 2520-32, 2010, Comments in Blood, 2336-7, 2010), which is essential for VEGF-dependent endothelial activation, is indicated by an arrow. 3 It was shown that expression was lost.
6.miR-PTIPによる炎症浸潤の抑制
 図8左に、炎症浸潤において第一段階となる単球-内皮接着能を観察した結果を示す。 HUVEC に40nM si-control あるいは、si-PTIP をトランスフェクション後、24 well dish に confluent に培養し、培地を EBM-2 (Lonza) plus 0.5% FBS にかえて (VEGF 非存在下に馴化させて)から 18時間後、50ng/ml VEGF (Peprotech) を加えて、6時間後、 PKH-26 (Sigma) で蛍光標識した単球細胞 (U937) を 3x10cells/24 well dish になるように加え、90分後、 HBSS (Invitrogen) で余剰の非接着細胞を除去し、蛍光顕微鏡下観察した。si-PTIP投与群では、活性化因子VCAM-1やE-selectinの誘導がなくなるため(図9も参照)、HUVEC細胞上で単球接着が生じなくなり、VEGF誘導性の炎症浸潤が完全に抑制された。さらに、図8右に、in vivo 条件下、炎症浸潤をCD11b染色で観察した結果を示す。B16-F10 メラノーマ (~0.2 cm3) に miR-control あるいは miR-PTIP を 1x1010 pfu の adenovirus 投与によって導入し、7日後、取り出し、凍結切片を 抗CD11b (BD parmingen) 抗体によって免疫染色した。CD11b陽性(濃く着色された部分)の炎症性白血球の浸潤がPTIP抑制によって阻害されていることが示された。
6). Inhibition of inflammatory infiltration by miR-PTIP The left side of FIG. 8 shows the results of observing monocyte-endothelial adhesion ability, which is the first stage in inflammatory infiltration. After transfection with 40 nM si-control or si-PTIP in HUVEC, culture confluent in a 24-well dish and replace the medium with EBM-2 (Lonza) plus 0.5% FBS (acclimate in the absence of VEGF) 18 hours later, 50 ng / ml VEGF (Peprotech) was added, and 6 hours later, PKH-26 (Sigma) -labeled monocyte cells (U937) were added to a 3 × 10 5 cells / 24 well dish. After 90 minutes, excess non-adherent cells were removed with HBSS (Invitrogen) and observed under a fluorescence microscope. In the si-PTIP administration group, the induction of activators VCAM-1 and E-selectin is lost (see also Fig. 9), so monocyte adhesion does not occur on HUVEC cells, and VEGF-induced inflammatory infiltration is completely suppressed. It was done. Furthermore, the right side of FIG. 8 shows the results of inflammatory infiltration observed with CD11b staining under in vivo conditions. MiR-control or miR-PTIP was introduced into B16-F10 melanoma (~ 0.2 cm 3 ) by administration of 1 × 10 10 pfu adenovirus, and after 7 days, the frozen section was immunostained with anti-CD11b (BD parmingen) antibody. It was shown that infiltration of CD11b positive (darkly colored part) inflammatory leukocytes was inhibited by PTIP suppression.
7.PTIP抑制時の内皮細胞での遺伝子の発現変動
 図9に、VEGF存在下、siRNA #2でPTIP発現を抑制し、microarrayにて内皮細胞における遺伝子の発現変動を調べた結果 (heat map) を示す。 HUVEC に  40nM si-control あるいは si-PTIP を Lipofectamine RNAiMax (Invitrogen) によって導入し、2日後、培地を EBM-2 (Lonza) plus 0.5% FBS に置換した。 18時間後、50ng/ml VEGF (Peprotech) を加え、1時間後 total RNA を回収し、U133plus 2.0 Affymetrix expression array を用いて、発現解析を行った。PTIP抑制によって、VEGFによる発現誘導が阻害されたのは、主として内皮活性化に関する因子(EGR3、NR4A2、HEY1、JUNB、ADMTS1、TISSUE FACTOR、COX2、IL-8、E-SELECTIN、DSCR-1等)であり、内皮恒常性に寄与する遺伝子は発現維持されたままであることが遺伝子発現からも確認された。
 これらの結果から、PTIPの抑制は、血管疾患につながる内皮活性化のみをブロックし、恒常性維持に関わる基本機能は損なわないことがわかった。
7). Changes in gene expression in endothelial cells during PTIP suppression Figure 9 shows the results (heat map) of PTIP expression suppression with siRNA # 2 in the presence of VEGF, and changes in gene expression in endothelial cells using microarray. . 40 nM si-control or si-PTIP was introduced into HUVEC by Lipofectamine RNAiMax (Invitrogen), and two days later, the medium was replaced with EBM-2 (Lonza) plus 0.5% FBS. 18 hours later, 50 ng / ml VEGF (Peprotech) was added, and 1 hour later, total RNA was recovered, and expression analysis was performed using U133plus 2.0 Affymetrix expression array. Inhibition of expression by VEGF was inhibited mainly by factors related to endothelial activation (EGR3, NR4A2, HEY1, JUNB, ADMTS1, TISSUE FACTOR, COX2, IL-8, E-SELECTIN, DSCR-1, etc.) It was also confirmed from gene expression that the genes contributing to endothelial homeostasis remained maintained.
These results indicate that inhibition of PTIP blocks only endothelial activation leading to vascular disease, and does not impair the basic functions involved in homeostasis.
8.クロマチン免疫沈降による、PTIPの転写制御クロマチン領域への結合の検出
 HUVEC細胞を直径10cmの培養皿に、MOI=5となるように培養し、抗体として、抗-FLAG M2抗体(SIGMA社)を用いて、クロマチン免疫沈降(ChIP)をいった。1回目は、NR4A3、Egr-3、EVX1の各転写因子について、Ctrl-Adeno、PTIP-Adeno VEGF刺激後、0分、15分、及び60分のときに測定した。2回目は、Egr-3、hEVX1、hFOXA13の各転写因子について、Ctrl-Adeno、PTIP-Adeno VEGF添加後、0分、15分、及び60分のときに測定した。
 結果を、図11及び12に示す。NR4A3やEgr-3は血管伸張に必須の転写因子であるが、VEGF刺激に伴って、15分、60分後でディテクターとして導入したFlag-PTIPタンパクがその転写調節クロマチン領域に相互作用していることが確認された。Evx1はnegative control 転写因子である。2回目のデータでも、Egr-3領域ではVEGF刺激に伴ってPTIPが強く相互作用したが、血管新生に関与がないコントロールEvx1では有意な結合は見られなかった。
8). Detection of binding of PTIP to the transcriptionally regulated chromatin region by chromatin immunoprecipitation. HUVEC cells are cultured in a culture dish with a diameter of 10 cm so that MOI = 5, and anti-FLAG M2 antibody (SIGMA) is used as an antibody. Chromatin immunoprecipitation (ChIP). In the first round, the transcription factors of NR4A3, Egr-3, and EVX1 were measured at 0 minutes, 15 minutes, and 60 minutes after Ctrl-Adeno and PTIP-Adeno VEGF stimulation. In the second round, the transcription factors Egr-3, hEVX1, and hFOXA13 were measured at 0 minutes, 15 minutes, and 60 minutes after the addition of Ctrl-Adeno and PTIP-Adeno VEGF.
The results are shown in FIGS. NR4A3 and Egr-3 are essential transcription factors for vascular elongation, but Flag-PTIP proteins introduced as detectors 15 and 60 minutes after VEGF stimulation interact with their transcriptional regulatory chromatin regions. It was confirmed. Evx1 is a negative control transcription factor. In the second data, PTIP strongly interacted with VEGF stimulation in the Egr-3 region, but no significant binding was observed in control Evx1, which is not involved in angiogenesis.
9.VEGF刺激に伴う転写因子の変動に関するエピゲノム解析
 VEGF刺激に伴う転写因子の変動についてエピゲノム解析を行った。
 H3K4me3修飾(転写活性化マーク)が血管活性化に必要な早期転写因子群ではVEGF刺激15分から入り、それに呼応して転写(Pol IIで表示)活性化が生じるが、H3K27me3修飾(転写抑制マーク)も入ったままであり、一過性の転写となっていた(図14)。NR4A2やEgr2も同様であった(図15)。一方、内皮を規定している構成的転写因子であるGATA2などはH3K27me3マークが入っておらず、H3K4me3マークがVEGF非依存的に入っていて常に転写されていた。
9. Epigenome analysis of transcription factor changes associated with VEGF stimulation Epigenome analysis of transcription factor changes associated with VEGF stimulation was performed.
H3K4me3 modification (transcription activation mark) is activated in 15 minutes from VEGF stimulation in the group of early transcription factors required for vascular activation, and transcription (indicated by Pol II) activation occurs in response, but H3K27me3 modification (transcription repression mark) Also remained, and it was a transient transcription (FIG. 14). The same was true for NR4A2 and Egr2 (FIG. 15). On the other hand, GATA2, which is a constitutive transcription factor that regulates the endothelium, did not contain the H3K27me3 mark, and the H3K4me3 mark contained VEGF-independent and was always transcribed.
 配列番号1は、PTIP遺伝子に対するmiRNAの標的配列を示す。
 配列番号2-4は、PTIP遺伝子に対するsiRNAの標的配列を示す。
 配列番号5は、miR-PTIPの配列を示す。
 配列番号6及び7は、siRNA-#1の配列を示す。
 配列番号8及び9は、siRNA-#2の配列を示す。
 配列番号10及び11は、siRNA-#3の配列を示す。
SEQ ID NO: 1 shows the target sequence of miRNA for PTIP gene.
SEQ ID NOs: 2-4 show the target sequence of siRNA for PTIP gene.
SEQ ID NO: 5 shows the sequence of miR-PTIP.
SEQ ID NOs: 6 and 7 show the sequence of siRNA- # 1.
SEQ ID NOs: 8 and 9 show the sequence of siRNA- # 2.
SEQ ID NOs: 10 and 11 show the sequence of siRNA- # 3.

Claims (7)

  1.  PTIPの発現又は機能を阻害する物質を含む、血管内皮細胞の活性化に起因する疾患の治療又は予防剤。 An agent for the treatment or prevention of diseases caused by the activation of vascular endothelial cells, comprising a substance that inhibits the expression or function of PTIP.
  2.  前記PTIPの発現又は機能を阻害する物質が、PTIPに対するmiRNA、siRNA、アンチセンスRNA、リボザイム、これらの前駆体、及びこれらをコードする核酸からなる群より選択される、請求項1に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤。 The blood vessel according to claim 1, wherein the substance that inhibits the expression or function of PTIP is selected from the group consisting of miRNA against PTIP, siRNA, antisense RNA, ribozyme, precursors thereof, and nucleic acids encoding them. A therapeutic or prophylactic agent for diseases caused by activation of endothelial cells.
  3.  前記PTIPの発現又は機能を阻害する物質が、以下の(i)~(iii)から選択される請求項1又は2に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤:
    (i)  PTIP遺伝子の以下の配列を標的とするmiRNA;
       AGTGCCCTGTGGGCCTTGGTT(配列番号:1)
    (ii) (i)のmiRNAの塩基配列と80%以上の配列同一性を有し、PTIPの発現又は機能を阻害するmiRNA;及び
    (iii)  (i)のmiRNAの塩基配列において1又は数個の塩基が、付加、置換又は欠失したものであって、PTIPの発現又は機能を阻害するmiRNA。
    The agent for treating or preventing a disease caused by activation of vascular endothelial cells according to claim 1 or 2, wherein the substance that inhibits the expression or function of PTIP is selected from the following (i) to (iii):
    (i) miRNAs targeting the following sequences of the PTIP gene;
    AGTGCCCTGTGGGCCTTGGTT (SEQ ID NO: 1)
    (ii) a miRNA having a sequence identity of 80% or more with the base sequence of the miRNA of (i) and inhibiting the expression or function of PTIP; and
    (iii) A miRNA in which one or several bases are added, substituted or deleted in the base sequence of the miRNA of (i), and inhibits the expression or function of PTIP.
  4.  前記PTIPの発現又は機能を阻害する物質が、以下の(i)~(iii)から選択される請求項1又は2に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤:
    (i)  PTIP遺伝子の以下のいずれかの配列を標的とするsiRNA;
       GGCTTGGCGACATTCTTCTGGGAAA(配列番号:2)
       GACCTTCATTTATGCCGAGAATATT(配列番号:3)
       GAACTCGAGTTTGTCGGAAATAATT(配列番号:4)
    (ii) (i)のsiRNAの配列と80%以上の配列同一性を有し、PTIPの発現又は機能を阻害するsiRNA;及び
    (iii)  (i)のsiRNAの配列において1又は数個の塩基が、付加、置換又は欠失したものであって、PTIPの発現又は機能を阻害するsiRNA。
    The agent for treating or preventing a disease caused by activation of vascular endothelial cells according to claim 1 or 2, wherein the substance that inhibits the expression or function of PTIP is selected from the following (i) to (iii):
    (i) siRNA targeting any of the following sequences of the PTIP gene;
    GGCTTGGCGACATTCTTCTGGGAAA (SEQ ID NO: 2)
    GACCTTCATTTATGCCGAGAATATT (SEQ ID NO: 3)
    GAACTCGAGTTTGTCGGAAATAATT (SEQ ID NO: 4)
    (ii) an siRNA having 80% or more sequence identity with the sequence of the siRNA of (i) and inhibiting PTIP expression or function; and
    (iii) An siRNA in which one or several bases are added, substituted or deleted in the siRNA sequence of (i), and inhibits the expression or function of PTIP.
  5.  前記PTIPの発現又は機能を阻害する物質が、PTIPタンパク質のドミナントネガティブ変異体又はこれらをコードする核酸である、請求項1に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤。 The therapeutic or preventive agent for diseases caused by activation of vascular endothelial cells according to claim 1, wherein the substance that inhibits the expression or function of PTIP is a dominant negative mutant of PTIP protein or a nucleic acid encoding them.
  6.  前記血管内皮細胞の活性化に起因する疾患が、血管内皮細胞増殖因子(VEGF)の活性化を伴うものである、請求項1から5のいずれか1項に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤。 6. The activation of vascular endothelial cells according to any one of claims 1 to 5, wherein the disease caused by the activation of vascular endothelial cells is accompanied by activation of vascular endothelial growth factor (VEGF). An agent for treating or preventing a disease caused by the disease.
  7.  前記血管内皮細胞の活性化に起因する疾患が、癌、炎症、網膜症、加齢性黄斑変性症、関節リウマチ、炎症性腸疾患、難治性腹水症、乾癬、サルコイドーシス、動脈硬化症、脳梗塞、虚血性心疾患、血栓症、血栓塞栓症、慢性閉塞性肺疾患、及び敗血症からなる群より選択される、請求項1から5のいずれか1項に記載の血管内皮細胞の活性化に起因する疾患の治療又は予防剤。 Diseases resulting from the activation of vascular endothelial cells are cancer, inflammation, retinopathy, age-related macular degeneration, rheumatoid arthritis, inflammatory bowel disease, refractory ascites, psoriasis, sarcoidosis, arteriosclerosis, cerebral infarction Resulting from activation of vascular endothelial cells according to any one of claims 1 to 5, selected from the group consisting of: ischemic heart disease, thrombosis, thromboembolism, chronic obstructive pulmonary disease, and sepsis A therapeutic or prophylactic agent for diseases.
PCT/JP2014/051830 2013-01-28 2014-01-28 Therapeutic or prophylactic agent for disease caused by activation of vascular endothelial cells WO2014115889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013013530 2013-01-28
JP2013-013530 2013-01-28

Publications (1)

Publication Number Publication Date
WO2014115889A1 true WO2014115889A1 (en) 2014-07-31

Family

ID=51227677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051830 WO2014115889A1 (en) 2013-01-28 2014-01-28 Therapeutic or prophylactic agent for disease caused by activation of vascular endothelial cells

Country Status (1)

Country Link
WO (1) WO2014115889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458088A (en) * 2020-11-06 2021-03-09 深圳市人民医院 Biomolecule participating in endothelial cell function regulation and control mechanism thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077165A1 (en) * 2006-12-22 2008-07-03 Austrian Research Centers Gmbh - Arc Set of tumor markers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077165A1 (en) * 2006-12-22 2008-07-03 Austrian Research Centers Gmbh - Arc Set of tumor markers

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHO, YW. ET AL.: "Histone methylation regulator PTIP is required for PPARgamma and C/EBPalpha expression and adipogenesis", CELL . METAB., vol. 10, no. 1, 2009, pages 27 - 39 *
DANIEL, JA. ET AL.: "PTIP Promotes Chromatin Changes Critical for Immunoglobulin Class Switch Recombination", SCIENCE, vol. 329, no. 5994, 2010, pages 917 - 923 *
HIRONORI WAKI ET AL.: "Kasshoku Shibo Saibo to Hakushoku Shibo Saibo [Kisohen], Epigenetics of white adipocytes", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 242, no. 12, 22 September 2012 (2012-09-22), pages 918 - 923 *
ISSAEVA, I. ET AL.: "Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth", MOL. CELL . BIOL., vol. 27, no. 5, 2007, pages 1889 - 1903 *
PATEL, SR. ET AL.: "The BRCT-Domain Containing Protein PTIP Links Pax2 to a Histone H3, Lysine 4 Methyltransferase Complex", DEV. CELL ., vol. 13, no. 4, 2007, pages 580 - 592 *
STEIN, AB. ET AL.: "Loss of H3K4 methylatioi destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes", J. CLIN. INVEST., vol. 121, no. 7, 2011, pages 2641 - 2650 *
TAKASHI MINAMI: "Dai 3 Sho Kekkanbyo to shite no Kakushu Shikkanbetsu Kekkan Shinsei no Tokusei / Tayosei 1. Kekkan Shinsei Sokushin Inshi no Genome Wide na System Kaiseki", EXPERIMENTAL MEDICINE, vol. 28, no. 17, 2010, pages 119 - 128 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458088A (en) * 2020-11-06 2021-03-09 深圳市人民医院 Biomolecule participating in endothelial cell function regulation and control mechanism thereof

Similar Documents

Publication Publication Date Title
Liang et al. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d
JP6621409B2 (en) C / EBPα small molecule activated RNA composition
He et al. Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit
JP5241718B2 (en) Pharmaceutical containing HIF-1α and HIF-2α expression inhibitor
JP5845493B2 (en) New hiPSC production method by miRNA introduction
WO2014096418A2 (en) Micrornas as therapeutics and biomarkers for epilepsy
Song et al. circPTPN12/miR-21–5 p/∆ Np63α pathway contributes to human endometrial fibrosis
US20180193374A1 (en) Micro-rna for the treatment of malignant solid tumors and metastasis
Zhu et al. miR-340-5p mediates cardiomyocyte oxidative stress in diabetes-induced cardiac dysfunction by targeting Mcl-1
JP5933010B2 (en) Cancer treatment
Yang et al. Circle the cardiac remodeling with circRNAs
WO2018092137A1 (en) Modulators of human kai1 metastasis suppressor gene, methods and uses thereof
WO2014115889A1 (en) Therapeutic or prophylactic agent for disease caused by activation of vascular endothelial cells
US20160220599A1 (en) Novel lincrna and interfering nucleic acid molecules, compositions and methods and uses thereof for regulating angiogenesis and related conditions
Qi et al. Post-transcriptional control of tropoelastin in aortic smooth muscle cells affects aortic dissection onset
WO2013023361A1 (en) Uses of human zfx gene and related drugs thereof
CN112662780A (en) Application of reagent for detecting HNRNPM expression in preparation of liver cancer diagnosis and/or prognosis and pharmaceutical composition
US9567583B2 (en) Method for treating glioma using Tarbp2 expression inhibitor
KR102097794B1 (en) Novel miRNA smR-167 and use thereof for treating and preventing lung cancer
WO2020241816A1 (en) Novel therapeutic agent for digestive organ cancer, and screening method for same
Li et al. Time dependent distribution of MicroRNA 144 after intravenous delivery
KR101436684B1 (en) Composition for preventing or treating of neonatal hypoxia-ischemia
JP2023015297A (en) C/EBPα SMALL MOLECULE ACTIVATING RNA COMPOSITION
WO2017159739A1 (en) Anticancer agent
US20120270922A1 (en) Antiangiogenic Agent and Method for Inhibition of Angiogenesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP