WO2014115511A1 - Fuel injection device of internal combustion engine - Google Patents

Fuel injection device of internal combustion engine Download PDF

Info

Publication number
WO2014115511A1
WO2014115511A1 PCT/JP2014/000173 JP2014000173W WO2014115511A1 WO 2014115511 A1 WO2014115511 A1 WO 2014115511A1 JP 2014000173 W JP2014000173 W JP 2014000173W WO 2014115511 A1 WO2014115511 A1 WO 2014115511A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas
injection
pressure
internal combustion
Prior art date
Application number
PCT/JP2014/000173
Other languages
French (fr)
Japanese (ja)
Inventor
幸敏 信田
優一 竹村
溝渕 剛史
和田 実
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014115511A1 publication Critical patent/WO2014115511A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to a fuel injection device for an internal combustion engine.
  • the fuel hose is used for connection.
  • the gas fuel in the fuel hose is pushed out toward the intake portion, and as a result, is injected from the gas injection valve.
  • a fuel amount approximately equal to the amount of fuel supplied is supplied to the intake section.
  • the mounting position of the gas injection valve can be arbitrarily set, and the degree of freedom regarding the shape of the intake portion Advantages such as high is obtained.
  • the bi-fuel internal combustion engine as described above, it is possible to mount gas fuel injection devices while minimizing the scale of modification based on the liquid fuel internal combustion engine.
  • An object of the present disclosure is to provide a fuel injection device for an internal combustion engine that can stabilize the amount of gas fuel supplied to the intake portion.
  • a fuel injection device for an internal combustion engine is a fuel injection device for an internal combustion engine that injects gas fuel compressed to a predetermined high pressure state into an intake portion of the internal combustion engine, and the operation of the internal combustion engine
  • a gas injection valve that is driven according to a state and injects the gas fuel by the driving; a first end connected to the gas injection valve; and a second end connected to the intake portion;
  • a fuel conduit that discharges the gas fuel injected from the gas injection valve to the intake portion, and includes a regulation portion that restricts the inflow of air from the intake portion side to the fuel conduit.
  • the gas fuel When gas fuel is injected from the gas injection valve, the gas fuel is discharged to the intake portion via the fuel conduit.
  • the restriction portion restricts the inflow of air from the intake portion side to the fuel conduit. Thereby, it can suppress that the supply amount of the gaseous fuel with respect to an intake part becomes unstable in fuel injection. As a result, it is possible to stabilize the amount of gas fuel supplied to the intake section, and thus to achieve proper control of the air-fuel ratio.
  • FIG. 5 is a diagram showing another configuration of a fuel conduit; When there is no inflow restricting portion, it is a time chart for explaining the pressure change of the intake portion and the fuel conduit, When there is an inflow restricting portion, it is a time chart for explaining the pressure change of the intake portion and the fuel conduit, It is the schematic which shows the structure of the fuel-injection system of the engine in a 2nd Example, When there is no inflow restricting portion, it is a diagram showing the configuration of a fuel conduit and a distributor, When there is an inflow regulating portion, it is a diagram showing one configuration of a fuel conduit and a distributor, When there is an inflow control part, it is a figure showing another composition of a fuel conduit and a distributor, It is one time chart for demonstrating the fuel-injection control in a 3rd Example, It is one flowchart which shows the procedure of the fuel-injection control in a 3rd Example, It is another time chart for demonstrating the fuel-injection control in a 3rd Example, It
  • the present embodiment is embodied as a fuel injection system applied to an in-vehicle gas engine that is an internal combustion engine that uses compressed natural gas (CNG) that is a gas fuel as a fuel for combustion.
  • CNG compressed natural gas
  • An engine 10 corresponding to the internal combustion engine shown in FIG. 1 is an in-line three-cylinder spark ignition gas engine, and an intake system 11 and an exhaust system 12 are connected to an intake port and an exhaust port, respectively.
  • the intake system 11 corresponding to the intake section includes an intake manifold 13 and an intake pipe 14.
  • the intake manifold 13 has a plurality of first branch pipe portions 13 a connected to the intake port of the engine 10 and a first main pipe portion 13 b connected to the intake pipe 14 on the upstream side.
  • the number of the first branch pipe portions 13a is the number of cylinders of the engine 10.
  • a first branch pipe portion 13 a corresponding to the intake passage is provided in the intake system 11 for each cylinder of the engine 10.
  • the intake pipe 14 is provided with a throttle valve 15 as an air amount adjusting unit.
  • the throttle valve 15 is configured as an electronically controlled throttle valve whose opening is adjusted by a throttle actuator 15a such as a DC motor, and the opening of the throttle valve 15 is detected by a throttle opening sensor 15b built in the throttle actuator 15a. Is done.
  • the opening degree of the throttle valve 15 is the throttle opening degree.
  • the exhaust system 12 has an exhaust manifold 16 and an exhaust pipe 17.
  • the exhaust manifold 16 has a plurality of second branch pipe portions 16 a connected to the exhaust port of the engine 10 and a second main pipe portion 16 b connected to the exhaust pipe 17 on the downstream side thereof.
  • the number of the second branch pipe portions 16a is the number of cylinders of the engine 10.
  • the exhaust pipe 17 is provided with an exhaust sensor 18 for detecting exhaust components and a catalyst 19 for purifying exhaust.
  • the exhaust sensor 18 may be an air-fuel ratio sensor that detects the air-fuel ratio from the oxygen concentration in the exhaust gas.
  • a spark plug 20 is provided in each cylinder of the engine 10.
  • a high voltage is applied to the ignition plug 20 at a desired ignition timing through an ignition device 20a including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 20, and the fuel introduced into the cylinder or the combustion chamber is ignited and burned.
  • the fuel injection system has gas injection valves 21 corresponding to the number of cylinders that inject gas fuel as a fuel injection unit that injects and supplies fuel to the engine 10.
  • the gas injection valve 21 injects gas fuel into the first branch pipe portion 13a of the intake manifold 13 in the intake system 11, and the gas fuel is supplied to the intake port of each cylinder by the injection of the gas injection valve 21.
  • the gas injection valve 21 is an open / close type control valve in which a valve body is lifted from a closed position to an open position by electrically driving an electromagnetic drive unit, and a valve opening drive signal input from the control unit 40 is used. It is driven to open the valve.
  • the gas injection valve 21 opens when energized and closes when energized. Then, an amount of gas fuel corresponding to the energization time is injected.
  • a fuel conduit 22 is connected to the tip of the gas injection valve 21.
  • the fuel conduit 22 has a first end connected to the gas injection valve 21 and a second end connected to the first branch pipe portion 13a, and the gas fuel injected from the gas injection valve 21 is the fuel conduit 22.
  • the fuel conduits 22 are respectively provided in the first branch pipe portions 13a.
  • the fuel conduit 22 is made of a pipe member made of metal or synthetic resin, and has a length of about 10 cm to 100 cm, for example.
  • a gas tank 32 is connected to the gas injection valve 21 via a gas pipe 31, and the pressure of the gas fuel supplied to the gas injection valve 21 is reduced and adjusted in the gas pipe 31.
  • a regulator 33 having a pressure adjusting function is provided. Specifically, the regulator 33 applies gas fuel in a predetermined high pressure state (for example, a maximum of 20 MPa) stored in the gas tank 32 to a predetermined set pressure (for example, 0.2 to 1.. 0 MPa), and the gas fuel after the pressure reduction is supplied to the gas injection valve 21 through the gas pipe 31.
  • the upstream side of the regulator 33 is a high-pressure piping portion 31a that forms a high-pressure passage
  • the downstream side is a low-pressure piping portion 31b that forms a low-pressure passage.
  • each of the tank main stop valve 34 and the shutoff valve 35 is an electromagnetic on-off valve, and is a normally closed type in which the flow of gas fuel is shut off when not energized and the gas fuel is allowed to flow when energized. Yes.
  • a high pressure pipe portion 31a is provided with a first pressure sensor 36 for detecting fuel pressure and a first temperature sensor 37 for detecting fuel temperature
  • a low pressure pipe portion 31b is provided with a first pressure sensor 36 for detecting fuel pressure.
  • a two-pressure sensor 38 and a second temperature sensor 39 for detecting the fuel temperature are provided.
  • the shut-off valve 35 and the first pressure sensor 36 can be provided integrally with the regulator 33.
  • a configuration in which the shut-off valve 35 and the first pressure sensor 36 are provided integrally with the regulator 33 is adopted. is doing.
  • the control unit 40 includes a CPU 41, a ROM 42, a RAM 43, a backup (BK RAM) RAM 44, an interface (I / F) 45, and a bidirectional bus 46.
  • the CPU 41, ROM 42, RAM 43, backup RAM 44, and interface 45 are connected to each other by a bidirectional bus 46.
  • the CPU 41 executes a routine (program) for controlling the operation of each part in the fuel injection system.
  • the ROM 42 stores in advance various data such as a routine executed by the CPU 41 and maps, parameters, and the like referred to when the routine is executed. In this case, the map includes a table, a relational expression, and the like.
  • the RAM 43 temporarily stores data as necessary when the CPU 41 executes a routine.
  • the backup RAM 44 appropriately stores data under the control of the CPU 41 in a state where the power is turned on, and retains the stored data even after the power is shut off.
  • the interface 45 is electrically connected to sensors provided in the fuel injection system, including the throttle opening sensor 15b, the exhaust sensor 18, the pressure sensors 36 and 38, and the temperature sensors 37 and 39 described above.
  • these sensors include a crank angle sensor, an air flow meter, a coolant temperature sensor, a vehicle speed sensor, and the like.
  • An output corresponding to detection signals from these sensors is transmitted to the CPU 41.
  • the interface 45 is electrically connected to driving units such as the throttle actuator 15a, the ignition device 20a, the gas injection valve 21, the tank main stop valve 34, the shutoff valve 35, and the like, in order to drive these driving units.
  • the drive signal sent from the CPU 41 is output toward the drive unit.
  • control unit 40 acquires the operating state based on the output signal of the above-described sensor and controls the above-described driving unit based on this operating state.
  • control unit 40 calculates the required injection amount of fuel injection by the gas injection valve 21 based on the engine operating state, generates an injection pulse based on the required injection amount, and uses the injection pulse to generate the gas injection valve. 21 is driven to perform fuel injection.
  • the fuel conduit 22 is provided with a restricting portion that restricts the backflow that is the inflow of the gas fuel from the intake portion side to the gas injection valve side.
  • the restricting portion the passage area in the fuel conduit 22 is provided.
  • the inflow restricting portion that restricts the inflow of air by locally reducing or closing the passage is provided.
  • the fuel conduit 22 is connected to the first branch pipe portion 13a, and a throttle portion 51 as an inflow restricting portion is provided at the second end thereof.
  • the throttle 51 suppresses the backflow of air from the first branch pipe 13a to the fuel conduit 22.
  • the throttle 51 may be provided at an intermediate portion near the second end in addition to being provided at the second end of the fuel conduit 22.
  • FIGS. 4 and 5 show the valve opening operation of the intake valve in the engine 10, the drive pulse (injection pulse) of the gas injection valve 21, and the pressure change in the intake section and the fuel conduit 22.
  • FIG. 4 shows the pressure change of the intake part and the fuel conduit 22 when the throttle part 51 of the conventional configuration is not provided
  • FIG. 5 shows the throttle part 51 of the configuration of this embodiment. The pressure change when it has is shown.
  • the intake valve is opened in accordance with the intake stroke of each cylinder, and fuel injection by the gas injection valve 21 is performed in the intake stroke.
  • the internal pressure of the fuel conduit corresponding to the pressure in the fuel conduit 22 increases and then decreases.
  • the increase and decrease in the fuel conduit internal pressure occur relatively steeply, and after the fuel injection, the fuel conduit internal pressure decreases to near the intake pressure corresponding to the pressure in the first branch pipe portion 13a. Further, at the beginning of the intake stroke, which is the time when the intake valve is opened, the intake pressure pulsates due to the valve opening operation.
  • the pressure change of the fuel conduit 22 is moderated by the throttle 51 provided in the fuel conduit 22. Therefore, even if the intake pressure pulsates when the intake valve is opened, the fuel conduit internal pressure does not become lower than the intake pressure, and air does not flow into the fuel conduit 22 from the first branch pipe portion 13a. Thereby, it can suppress that the supply amount of the gaseous fuel with respect to the 1st branch pipe part 13a becomes unstable in fuel injection. As a result, it is possible to stabilize the supply amount of the gas fuel to the first branch pipe portion 13a, and to realize appropriate control of the air-fuel ratio and the like.
  • the structure shown in FIG. 3 may be sufficient as an inflow control part.
  • a check valve 52 as an inflow restricting portion is provided at the second end of the fuel conduit 22.
  • the check valve 52 has a valve plate 54 rotatably provided by a support shaft portion 53, and the valve plate 54 opens and closes according to the balance between the intake pressure and the fuel conduit internal pressure.
  • the support shaft portion 53 is provided with a spring which is a biasing portion (not shown) that biases the valve plate 54 in the valve closing direction.
  • the check valve 52 is opened when the internal pressure of the fuel conduit becomes larger than the resultant force of the intake pressure and the spring force, and the check valve 52 is maintained in the closed state otherwise. Thereby, the inflow of the air from the 1st branch pipe part 13a to the fuel conduit
  • the inflow of air from the intake portion side to the fuel conduit 22 is regulated by the throttle portion 51 or the check valve 52 provided in the fuel conduit 22.
  • the throttle part 51 or the check valve 52 provided in the fuel conduit 22 regulates the inflow of air by locally reducing the passage area in the fuel conduit 22 or closing the passage. After fuel injection by the valve 21, the inflow of air and the outflow of gas fuel in the fuel conduit 22 are suppressed.
  • the gas fuel is discharged to the first branch pipe portion 13 a by extrusion with new injected fuel, and the gas fuel for each fuel injection for one combustion can be suitably supplied to each cylinder.
  • FIG. 6 shows a fuel injection system configuration in the present embodiment.
  • the configuration of the fuel injection unit is different from the configuration of FIG. 1, and one gas injection valve 21 is connected to the gas pipe 31, and a cylinder is provided at the tip of the injection port of the gas injection valve 21.
  • a distributor 61 having a distribution port for several minutes is connected. That is, the number of gas injection valves 21 is smaller than the number of cylinders.
  • the distributor 61 corresponds to the main pipe part.
  • the distributor 61 has, for example, a cylindrical chamber portion 62, and fuel chambers 22 for the number of cylinders are connected to the chamber portion 62.
  • the gas fuel injected from the gas injection valve 21 is distributed to each fuel conduit 22 via the distributor 61 and is released to the intake portion of each cylinder via each fuel conduit 22.
  • the fuel conduits 22 of the respective cylinders communicate with each other via the distributor 61. Therefore, as shown in FIG. 7, when any cylinder of the engine 10 is in the intake stroke, the gas fuel in the fuel conduit 22 of the cylinder in the intake stroke is sucked into the first branch pipe portion 13a. Then, inflow of air occurs in the fuel conduits 22 of the other cylinders. As a result, the amount of fuel smaller than the amount of fuel injected from the gas injection valve 21 at the time of the next fuel injection is supplied to the first branch pipe portion 13a, resulting in an air-fuel ratio shift.
  • a throttle portion 65 as an inflow restricting portion is provided at the second end of each fuel conduit 22.
  • this throttle portion 65 the inflow of air from the first branch pipe portion 13a to the fuel conduit 22 is suppressed. That is, even if one of the cylinders becomes the intake stroke, and the gas fuel in the fuel conduit 22 of the cylinder that becomes the intake stroke is sucked into the first branch pipe portion 13a, the fuel conduit 22 of the other cylinders Inflow of air is suppressed.
  • the throttle portion 65 may be provided at an intermediate portion near the second end in addition to being provided at the second end of the fuel conduit 22. Further, from the viewpoint of suppressing the movement of the gas fuel between the fuel conduits 22 via the distributor 61, a configuration in which the throttle portion 65 is provided at the first end of the fuel conduit 22 may be employed.
  • a check valve 66 as an inflow restricting portion may be provided at the second end of each fuel conduit 22.
  • the check valve 66 may have the same configuration as the check valve 52 described in FIG. Also in this configuration, the inflow of air from the first branch pipe portion 13a is also suppressed in each fuel conduit 22.
  • the restrictor 65 or the check valve serving as the inflow restricting portion in each fuel conduit 22. 66 was provided. Thereby, the gas fuel can be prevented from entering and exiting between the fuel conduits 22 through the distributor 61, and the inflow of air from the intake portion side to the fuel conduit 22 can be restricted.
  • the fuel injection by the gas injection valve 21 is controlled to suppress the inflow of air into the fuel conduit 22.
  • the fuel injection control sets the pressure in the fuel conduit 22 to be higher than the intake pressure, thereby suppressing the inflow of air into the fuel conduit 22.
  • the fuel injection system configuration shown in FIG. 6 is applied.
  • the fuel injection control to make the pressure in the fuel conduit 22 higher than the intake pressure is specifically as follows.
  • the fuel injection timing is controlled so that the fuel injection by the gas injection valve 21 is performed at least at the beginning of the intake stroke, that is, when the pulsation of the intake pressure occurs.
  • the fuel injection period is controlled so as to prolong the fuel injection period in a state where the injection pressure is lowered and the injection pressure is reduced.
  • the injection pressure of the gas fuel corresponds to the adjustment pressure by the regulator 33.
  • FIG. 10 is a time chart showing the specific control contents of the above (1).
  • fuel injection by the gas injection valve 21 is performed in a period including a period in which pulsation of the intake pressure occurs at the beginning of the intake stroke.
  • the fuel injection timing is determined based on the injection end timing. That is, the predetermined timing in the first half of the intake stroke or the timing of the predetermined crank angle position is determined as the injection end timing, and the injection start timing ahead of the injection end timing is determined based on the required injection amount at each time.
  • the control unit 40 corresponding to the regulating unit performs the fuel injection control process as follows. As shown in FIG. 11, in the fuel injection control process performed at a predetermined cycle, the control unit 40 determines whether or not an execution condition for increasing the pressure in the fuel conduit 22 is satisfied in S11. If the execution condition is not satisfied, the control unit 40 performs normal injection timing control in S12. If the execution condition is satisfied, the control unit 40 executes the high pressure injection timing control in S13.
  • the implementation condition of the high pressure is, for example, (A) The engine 10 is in a high load state with a large intake pulsation, (B) The deviation of the air-fuel ratio is large from the detection result of the air-fuel ratio, One of these.
  • the injection timing is controlled so that fuel injection is started and ended within an intake stroke.
  • the injection timing control for increasing the pressure the fuel injection is started earlier than the normal injection timing.
  • the injection timing is controlled so that the fuel injection is started in the exhaust stroke and the fuel injection is ended in the intake stroke. .
  • the fuel injection for one combustion may be divided into a plurality of parts and divided injection may be performed.
  • the injection frequency may be increased.
  • the control unit 40 performs the divided injection by the gas injection valve 21 in a period including a period in which the pulsation of the intake pressure occurs at the beginning of the intake stroke. This also makes it possible to increase the pressure in the fuel conduit 22 over a long period of time.
  • the regulator 33 as the pressure adjusting unit is configured to variably adjust the supply gas pressure corresponding to the injection pressure for the gas injection valve 21.
  • the opening degree of the valve body is adjusted by an electromagnetic solenoid portion provided on the valve body, so that the injection pressure can be adjusted.
  • the injection pressure may be detected and feedback control may be performed.
  • FIG. 12 is a time chart showing the specific control content of (2) above.
  • the injection pressure is held at the second pressure P2 out of the first pressure P1 and the second pressure P2 lower than that.
  • the time width of fuel injection which is a pulse width performed to satisfy the required injection amount of gas fuel, becomes long, and the gas fuel is injected over a relatively long period.
  • the control unit 40 performs the fuel injection control process as follows. As shown in FIG. 13, in the fuel injection control process performed at a predetermined cycle, the control unit 40 determines whether or not an execution condition for increasing the pressure in the fuel conduit 22 is satisfied in S21. If the execution condition is not satisfied, the control unit 40 performs normal injection pressure control in S22. If the execution condition is satisfied, the control unit 40 performs the low pressure control for reducing the injection pressure in S23.
  • the implementation condition of the high pressure is, for example, as in S11 of FIG. (B) The deviation of the air-fuel ratio is large from the detection result of the air-fuel ratio, One of these.
  • the fuel injection period is prolonged by reducing the injection pressure, and the required injection amount cannot be injected when the engine 10 is in a high load state. Therefore, when the fuel injection time is insufficient due to the lowering of the injection pressure, for example, in the case of a predetermined high load state, the above implementation condition may not be established.
  • the injection pressure is set at a first pressure of about 0.5 MPa, for example.
  • the injection pressure is set lower than the first pressure, for example, a second pressure of about 0.3 MPa.
  • the control unit 40 controls the regulator 33 so that the injection pressure becomes the set pressure.
  • the control unit 40 corresponds to a gas pressure control unit.
  • control unit 40 calculates the time width of fuel injection by the gas injection valve 21 based on the required injection amount of gas fuel to the engine 10 and the injection pressure adjusted by the regulator 33. And the control part 40 drives the gas injection valve 21 with the time width.
  • control unit 40 corresponds to an injection valve control unit.
  • the fuel injection timing is controlled so that fuel injection is performed in a period including a period in which a predetermined intake pulsation occurs at the beginning of the intake stroke of the engine 10.
  • low pressure control is performed to reduce the adjustment pressure corresponding to the injection pressure.
  • the time width of the fuel injection performed to satisfy the required injection amount of the gas fuel becomes long, and the gas injection valve 21 injects the gas fuel over a relatively long period.
  • the non-injection period during which fuel injection by the gas injection valve 21 is not performed is shortened.
  • the distributor 61 is provided with a heating device 71 that uses engine cooling water as a heat source.
  • the heating device 71 corresponds to a restricting portion.
  • the heating device 71 is provided in the cooling water passage 72 through which the engine cooling water flows, and the distributor 61 is heated by the engine cooling water, and the gas fuel inside the distributor 61 and the fuel conduit 22 is heated. By this heating, the volume of the gas fuel expands, and the pressure in the fuel conduit 22 is increased.
  • FIG. 15 shows changes in pressure in the intake section and the fuel conduit 22.
  • the distributor 61 when the distributor 61 is heated, the fuel pipe internal pressure is higher than when the distributor 61 is not heated. In this case, a state where the intake pressure is smaller than the internal pressure of the fuel pipe is maintained, and air does not flow into the fuel conduit 22 from the first branch pipe portion 13a.
  • the heating device 71 may be configured to use an electric heater as a heat source in addition to using engine coolant as a heat source. Further, the heating device 71 may heat the fuel conduit 22 in addition to heating the distributor 61. Further, the heating device 71 may heat the fuel conduit 22 instead of heating the distributor 61. In the configuration shown in FIG. 1, the fuel conduit 22 may be heated by engine cooling water or the like.
  • the gas fuel accumulated in them can be warmed. Thereby, the pressure in the fuel conduit 22 is increased, and the inflow of air from the intake portion side into the fuel conduit 22 can be suppressed.
  • the check valve 52 is mechanically opened and closed in accordance with the balance between the intake pressure and the fuel conduit internal pressure.
  • the check valve 52 is electrically opened and closed. Also good.
  • the check valve 52 in the opened state is closed at the timing when the fuel corresponding to the current injection has been released to the first branch pipe portion 13a. The valve is operated, and thereafter, the control for opening the check valve 52 in the closed state is performed at the start timing of the fuel injection by the gas injection valve 21.
  • the present disclosure is applied to a gas engine using only gas fuel.
  • the present disclosure is embodied in a bi-fuel engine using gas fuel and liquid fuel as combustion fuel.
  • the liquid fuel may be gasoline or light oil.
  • the CNG fuel is used as the gas fuel, but other gas fuels that are gases in the standard state can also be used.
  • gas fuels that are gases in the standard state
  • methane, ethane, propane, butane, hydrogen, DME, etc. are the main components.
  • the fuel may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

An engine (10) has gas injection valves (21) as fuel injection parts, and fuel conduits (22) are connected to the tips of the gas injection valves (21). The fuel conduits (22) have first ends connected to the gas injection valves (21) and second ends connected to first branched tubes (13a), and gas fuel injected from the gas injection valves (21) is discharged to the first branched tubes (13a) via the fuel conduits (22). The fuel conduits (22) are provided with inflow regulation parts for regulating the flow of air into the fuel conduits (22) from an air intake side by locally reducing the passage surface area in the fuel conduits (22) or by closing the passages.

Description

内燃機関の燃料噴射装置Fuel injection device for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年1月25日に出願された日本出願番号2013-012086号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Application No. 2013-012086 filed on January 25, 2013, the contents of which are incorporated herein by reference.
 本開示は、内燃機関の燃料噴射装置に関する。 The present disclosure relates to a fuel injection device for an internal combustion engine.
 従来から、圧縮天然ガス(CNG)等のガス燃料を燃焼させるようにした内燃機関が実用化されている。こうした内燃機関において、ガス燃料用の燃料噴射弁(ガス噴射弁)の搭載に関する構成として種々の技術が検討されており、その一つとして、ガス噴射弁の噴孔部の先に相当する先端部に燃料導管を接続し、ガス噴射弁から噴射されたガス燃料を燃料導管を介して吸気部に放出するようにした技術が知られている。例えば特許文献1では、ガス燃料と液体燃料とを用いるバイフューエル内燃機関において、ガス噴射弁をシリンダヘッドカバーの最高位置を越えた上側に設置するとともに、そのガス噴射弁と内燃機関の吸気部とを燃料ホースを用いて接続するようにしている。この場合、燃料ホース内にガス燃料が滞留している状態でガス噴射弁からガス燃料が噴射されると、燃料ホース内のガス燃料が吸気部側に押し出され、結果としてガス噴射弁から噴射された燃料とほぼ等しい燃料量が吸気部に供給される。 Conventionally, an internal combustion engine in which gas fuel such as compressed natural gas (CNG) is combusted has been put into practical use. In such an internal combustion engine, various techniques have been studied as a configuration relating to the mounting of a fuel injection valve (gas injection valve) for gas fuel, and one of them is a tip portion corresponding to the tip of the injection hole portion of the gas injection valve. There is known a technique in which a fuel conduit is connected to the gas outlet and gas fuel injected from a gas injection valve is discharged to the intake portion via the fuel conduit. For example, in Patent Document 1, in a bi-fuel internal combustion engine using gas fuel and liquid fuel, the gas injection valve is installed above the highest position of the cylinder head cover, and the gas injection valve and the intake portion of the internal combustion engine are provided. The fuel hose is used for connection. In this case, when the gas fuel is injected from the gas injection valve in a state where the gas fuel is retained in the fuel hose, the gas fuel in the fuel hose is pushed out toward the intake portion, and as a result, is injected from the gas injection valve. A fuel amount approximately equal to the amount of fuel supplied is supplied to the intake section.
 ここで、ガス噴射弁から噴射されたガス燃料を燃料導管を介して吸気部に放出する構成では、ガス噴射弁の搭載位置を任意に設定することが可能となり、吸気部の形状についての自由度が高くなる等のメリットが得られる。また、上記のようなバイフューエル内燃機関では、液体燃料用の内燃機関を基に、改造規模を極力少なくしつつガス燃料用の噴射装置類を搭載することが可能となる。 Here, in the configuration in which the gas fuel injected from the gas injection valve is discharged to the intake portion via the fuel conduit, the mounting position of the gas injection valve can be arbitrarily set, and the degree of freedom regarding the shape of the intake portion Advantages such as high is obtained. In addition, in the bi-fuel internal combustion engine as described above, it is possible to mount gas fuel injection devices while minimizing the scale of modification based on the liquid fuel internal combustion engine.
 しかしながら、上記のとおりガス噴射弁の先端部に燃料導管が接続されている構成では、例えば燃料導管からガス燃料を放出していない期間中に、燃料導管内に吸気部側から空気が流入することが考えられる。そして、その空気の流入に起因して、次回の燃料噴射時においてガス噴射弁から噴射された燃料量より少ない量の燃料が吸気部に供給されることになり、ひいては空燃比のずれが発生する。 However, in the configuration in which the fuel conduit is connected to the tip of the gas injection valve as described above, air flows into the fuel conduit from the intake portion side, for example, during a period in which the gas fuel is not discharged from the fuel conduit. Can be considered. Due to the inflow of the air, an amount of fuel smaller than the amount of fuel injected from the gas injection valve is supplied to the intake portion at the next fuel injection, and as a result, an air-fuel ratio shift occurs. .
特開2010-242559号公報JP 2010-242559 A
 本開示は、吸気部に対するガス燃料の供給量を安定化させることができる内燃機関の燃料噴射装置を提供することを目的とする。 An object of the present disclosure is to provide a fuel injection device for an internal combustion engine that can stabilize the amount of gas fuel supplied to the intake portion.
 本開示の第一の様態による内燃機関の燃料噴射装置は、所定の高圧状態に圧縮されたガス燃料を内燃機関の吸気部に噴射する内燃機関の燃料噴射装置であって、前記内燃機関の運転状態に応じて駆動され、該駆動により前記ガス燃料を噴射するガス噴射弁と、前記ガス噴射弁に接続された第一端と、前記吸気部に接続された第二端とを有し、前記ガス噴射弁から噴射されたガス燃料を前記吸気部に放出する燃料導管と、を有し、前記吸気部側から前記燃料導管への空気の流入を規制する規制部(を備えている。 A fuel injection device for an internal combustion engine according to a first aspect of the present disclosure is a fuel injection device for an internal combustion engine that injects gas fuel compressed to a predetermined high pressure state into an intake portion of the internal combustion engine, and the operation of the internal combustion engine A gas injection valve that is driven according to a state and injects the gas fuel by the driving; a first end connected to the gas injection valve; and a second end connected to the intake portion; And a fuel conduit that discharges the gas fuel injected from the gas injection valve to the intake portion, and includes a regulation portion that restricts the inflow of air from the intake portion side to the fuel conduit.
 ガス噴射弁からガス燃料が噴射されると、そのガス燃料は燃料導管を介して吸気部に放出される。この場合、例えば燃料噴射が休止された状態になると、吸気部側から燃料導管内に空気が流入し、それに起因して次回の燃料噴射に際し、吸気部に対するガス燃料の供給量が安定せず、空燃比のずれ等が生じる。この点、上記構成では、規制部によって、吸気部側から燃料導管への空気の流入が規制される。これにより、燃料噴射に際して、吸気部に対するガス燃料の供給量が不安定になることを抑制できる。その結果、吸気部に対するガス燃料の供給量を安定化させ、ひいては空燃比の適正な制御等を実現することが可能となる。 When gas fuel is injected from the gas injection valve, the gas fuel is discharged to the intake portion via the fuel conduit. In this case, for example, when the fuel injection is stopped, air flows into the fuel conduit from the intake portion side, and as a result, at the next fuel injection, the amount of gas fuel supplied to the intake portion is not stable, An air-fuel ratio shift or the like occurs. In this regard, in the above configuration, the restriction portion restricts the inflow of air from the intake portion side to the fuel conduit. Thereby, it can suppress that the supply amount of the gaseous fuel with respect to an intake part becomes unstable in fuel injection. As a result, it is possible to stabilize the amount of gas fuel supplied to the intake section, and thus to achieve proper control of the air-fuel ratio.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1の実施例におけるエンジンの燃料噴射システムの構成を示す概略図であり、 燃料導管の一つの構成を示す図であり、 燃料導管のもう一つの構成を示す図であり、 流入規制部がない場合、吸気部及び燃料導管の圧力変化を説明するためのタイムチャートであり、 流入規制部がある場合、吸気部及び燃料導管の圧力変化を説明するためのタイムチャートであり、 第2の実施例におけるエンジンの燃料噴射システムの構成を示す概略図であり、 流入規制部がない場合、燃料導管及び分配器の構成を示す図であり、 流入規制部がある場合、燃料導管及び分配器の一つの構成を示す図であり、 流入規制部がある場合、燃料導管及び分配器のもう一つの構成を示す図であり、 第3の実施例における燃料噴射制御を説明するための一つのタイムチャートであり、 第3の実施例における燃料噴射制御の手順を示す一つのフローチャートであり、 第3の実施例における燃料噴射制御を説明するためのもう一つのタイムチャートであり、 第3の実施例における燃料噴射制御の手順を示すもう一つのフローチャートであり、 第4の実施例における燃料導管及び分配器の構成を示す概略図であり、 吸気部及び燃料導管の圧力変化を説明するためのタイムチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
It is the schematic which shows the structure of the fuel-injection system of the engine in a 1st Example, It is a figure which shows one structure of a fuel conduit | pipe, FIG. 5 is a diagram showing another configuration of a fuel conduit; When there is no inflow restricting portion, it is a time chart for explaining the pressure change of the intake portion and the fuel conduit, When there is an inflow restricting portion, it is a time chart for explaining the pressure change of the intake portion and the fuel conduit, It is the schematic which shows the structure of the fuel-injection system of the engine in a 2nd Example, When there is no inflow restricting portion, it is a diagram showing the configuration of a fuel conduit and a distributor, When there is an inflow regulating portion, it is a diagram showing one configuration of a fuel conduit and a distributor, When there is an inflow control part, it is a figure showing another composition of a fuel conduit and a distributor, It is one time chart for demonstrating the fuel-injection control in a 3rd Example, It is one flowchart which shows the procedure of the fuel-injection control in a 3rd Example, It is another time chart for demonstrating the fuel-injection control in a 3rd Example, It is another flowchart which shows the procedure of the fuel-injection control in a 3rd Example, It is the schematic which shows the structure of the fuel conduit | pipe and divider | distributor in a 4th Example, It is a time chart for demonstrating the pressure change of an intake part and a fuel conduit | pipe.
 以下、本開示の実施例について図に基づいて説明する。なお、以下の各実施例相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1の実施例)
 以下、本開示を具体化した実施例を図面を参照しつつ説明する。本実施例は、ガス燃料である圧縮天然ガス(CNG)を燃焼用の燃料として使用する内燃機関である車載ガスエンジンに適用される燃料噴射システムとして具体化するものとしている。燃料噴射システムの全体概略図を図1に示す。
(First embodiment)
Hereinafter, an embodiment embodying the present disclosure will be described with reference to the drawings. The present embodiment is embodied as a fuel injection system applied to an in-vehicle gas engine that is an internal combustion engine that uses compressed natural gas (CNG) that is a gas fuel as a fuel for combustion. An overall schematic diagram of the fuel injection system is shown in FIG.
 図1に示す内燃機関に相当するエンジン10は直列3気筒の火花点火式ガスエンジンよりなり、その吸気ポート及び排気ポートには吸気系統11、排気系統12がそれぞれ接続されている。吸気部に相当する吸気系統11は、吸気マニホールド13と吸気管14とを有している。吸気マニホールド13は、エンジン10の吸気ポートに接続される複数の第一分岐管部13aと、その上流側であって吸気管14に接続される第一メイン管部13bとを有している。この場合、第一分岐管部13aの数はエンジン10の気筒数分である。吸気通路に相当する第一分岐管部13aがエンジン10の気筒ごとに吸気系統11において設けられている。吸気管14には空気量調整部としてのスロットル弁15が設けられている。スロットル弁15は、DCモータ等のスロットルアクチュエータ15aにより開度調節される電子制御式のスロットル弁として構成され、スロットル弁15の開度は、スロットルアクチュエータ15aに内蔵されたスロットル開度センサ15bにより検出される。この場合、スロットル弁15の開度はスロットル開度である。 An engine 10 corresponding to the internal combustion engine shown in FIG. 1 is an in-line three-cylinder spark ignition gas engine, and an intake system 11 and an exhaust system 12 are connected to an intake port and an exhaust port, respectively. The intake system 11 corresponding to the intake section includes an intake manifold 13 and an intake pipe 14. The intake manifold 13 has a plurality of first branch pipe portions 13 a connected to the intake port of the engine 10 and a first main pipe portion 13 b connected to the intake pipe 14 on the upstream side. In this case, the number of the first branch pipe portions 13a is the number of cylinders of the engine 10. A first branch pipe portion 13 a corresponding to the intake passage is provided in the intake system 11 for each cylinder of the engine 10. The intake pipe 14 is provided with a throttle valve 15 as an air amount adjusting unit. The throttle valve 15 is configured as an electronically controlled throttle valve whose opening is adjusted by a throttle actuator 15a such as a DC motor, and the opening of the throttle valve 15 is detected by a throttle opening sensor 15b built in the throttle actuator 15a. Is done. In this case, the opening degree of the throttle valve 15 is the throttle opening degree.
 また、排気系統12は、排気マニホールド16と排気管17とを有している。排気マニホールド16は、エンジン10の排気ポートに接続される複数の第二分岐管部16aと、その下流側であって排気管17に接続される第二メイン管部16bとを有している。この場合、第二分岐管部16aの数はエンジン10の気筒数分である。排気管17には、排気の成分を検出する排気センサ18と、排気を浄化する触媒19とが設けられている。排気センサ18として具体的には、排気中の酸素濃度から空燃比を検出する空燃比センサでも良い。 Further, the exhaust system 12 has an exhaust manifold 16 and an exhaust pipe 17. The exhaust manifold 16 has a plurality of second branch pipe portions 16 a connected to the exhaust port of the engine 10 and a second main pipe portion 16 b connected to the exhaust pipe 17 on the downstream side thereof. In this case, the number of the second branch pipe portions 16a is the number of cylinders of the engine 10. The exhaust pipe 17 is provided with an exhaust sensor 18 for detecting exhaust components and a catalyst 19 for purifying exhaust. Specifically, the exhaust sensor 18 may be an air-fuel ratio sensor that detects the air-fuel ratio from the oxygen concentration in the exhaust gas.
 エンジン10の各気筒には点火プラグ20が設けられている。点火プラグ20には、点火コイル等よりなる点火装置20aを通じて、所望とする点火時期に高電圧が印加される。この高電圧の印加により、各点火プラグ20の対向電極間に火花放電が発生し、気筒内或いは燃焼室内に導入した燃料が着火され燃焼する。 A spark plug 20 is provided in each cylinder of the engine 10. A high voltage is applied to the ignition plug 20 at a desired ignition timing through an ignition device 20a including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 20, and the fuel introduced into the cylinder or the combustion chamber is ignited and burned.
 また、燃料噴射システムは、エンジン10に対して燃料を噴射供給する燃料噴射部として、ガス燃料を噴射する気筒数分のガス噴射弁21を有している。このガス噴射弁21は、吸気系統11において吸気マニホールド13の第一分岐管部13aにそれぞれガス燃料を噴射するものであり、ガス噴射弁21の噴射によりガス燃料が各気筒の吸気ポートに供給される。 Further, the fuel injection system has gas injection valves 21 corresponding to the number of cylinders that inject gas fuel as a fuel injection unit that injects and supplies fuel to the engine 10. The gas injection valve 21 injects gas fuel into the first branch pipe portion 13a of the intake manifold 13 in the intake system 11, and the gas fuel is supplied to the intake port of each cylinder by the injection of the gas injection valve 21. The
 ガス噴射弁21は、電磁駆動部が電気的に駆動されることで弁体が閉位置から開位置にリフトされる開閉タイプの制御弁であり、制御部40から入力される開弁駆動信号により開弁駆動される。ガス噴射弁21は、通電により開弁し、通電遮断により閉弁する。そして、通電時間に応じた量のガス燃料が噴射される。 The gas injection valve 21 is an open / close type control valve in which a valve body is lifted from a closed position to an open position by electrically driving an electromagnetic drive unit, and a valve opening drive signal input from the control unit 40 is used. It is driven to open the valve. The gas injection valve 21 opens when energized and closes when energized. Then, an amount of gas fuel corresponding to the energization time is injected.
 本実施例では特に、ガス噴射弁21の先端部に燃料導管22が接続されている。燃料導管22は、ガス噴射弁21に接続された第一端と、第一分岐管部13aに接続された第二端とを有し、ガス噴射弁21から噴射されたガス燃料は燃料導管22を介して第一分岐管部13aに放出される。具体的に、燃料導管22が第一分岐管部13aにそれぞれ設けられている。燃料導管22は、金属製又は合成樹脂製の配管部材よりなり、例えば10cm~100cm程度の長さを有している。 In this embodiment, in particular, a fuel conduit 22 is connected to the tip of the gas injection valve 21. The fuel conduit 22 has a first end connected to the gas injection valve 21 and a second end connected to the first branch pipe portion 13a, and the gas fuel injected from the gas injection valve 21 is the fuel conduit 22. Through the first branch pipe portion 13a. Specifically, the fuel conduits 22 are respectively provided in the first branch pipe portions 13a. The fuel conduit 22 is made of a pipe member made of metal or synthetic resin, and has a length of about 10 cm to 100 cm, for example.
 次に、ガス噴射弁21に対してガス燃料を供給するガス燃料供給部30の構成を説明する。 Next, the configuration of the gas fuel supply unit 30 that supplies gas fuel to the gas injection valve 21 will be described.
 ガス燃料供給部30において、ガス噴射弁21にはガス配管31を介してガスタンク32が接続されており、そのガス配管31には、ガス噴射弁21に供給されるガス燃料の圧力を減圧調整する圧力調整機能を有するレギュレータ33が設けられている。具体的に、レギュレータ33は、ガスタンク32内に貯蔵された所定の高圧状態(例えば最大20MPa)のガス燃料を、ガス噴射弁21の噴射圧である所定の設定圧(例えば0.2~1.0MPa)に減圧調整するものであり、減圧調整後のガス燃料がガス配管31を通ってガス噴射弁21に供給される。なお、ガス配管31において、レギュレータ33よりも上流側が高圧通路を形成する高圧配管部31a、下流側が低圧通路を形成する低圧配管部31bとなっている。 In the gas fuel supply unit 30, a gas tank 32 is connected to the gas injection valve 21 via a gas pipe 31, and the pressure of the gas fuel supplied to the gas injection valve 21 is reduced and adjusted in the gas pipe 31. A regulator 33 having a pressure adjusting function is provided. Specifically, the regulator 33 applies gas fuel in a predetermined high pressure state (for example, a maximum of 20 MPa) stored in the gas tank 32 to a predetermined set pressure (for example, 0.2 to 1.. 0 MPa), and the gas fuel after the pressure reduction is supplied to the gas injection valve 21 through the gas pipe 31. In the gas piping 31, the upstream side of the regulator 33 is a high-pressure piping portion 31a that forms a high-pressure passage, and the downstream side is a low-pressure piping portion 31b that forms a low-pressure passage.
 また、ガス配管31等により形成されるガス燃料通路には更に、ガスタンク32の燃料出口の付近に配置されたタンク主止弁34と、そのタンク主止弁34よりも下流側であってレギュレータ33の燃料入口の付近に配置された遮断弁35とが設けられており、これら各弁34,35によって、ガス配管31におけるガス燃料の流通が許容及び遮断される。例えば、タンク主止弁34及び遮断弁35はいずれも電磁式の開閉弁であり、非通電時においてガス燃料の流通が遮断され、通電時においてガス燃料の流通が許容される常閉式となっている。 Further, in the gas fuel passage formed by the gas pipe 31 and the like, a tank main stop valve 34 disposed near the fuel outlet of the gas tank 32 and a regulator 33 downstream of the tank main stop valve 34. And a shutoff valve 35 disposed in the vicinity of the fuel inlet of the fuel gas. The valves 34 and 35 allow and shut off the flow of gas fuel in the gas pipe 31. For example, each of the tank main stop valve 34 and the shutoff valve 35 is an electromagnetic on-off valve, and is a normally closed type in which the flow of gas fuel is shut off when not energized and the gas fuel is allowed to flow when energized. Yes.
 ガス配管31において、高圧配管部31aには燃料圧力を検出する第一圧力センサ36と、燃料温度を検出する第一温度センサ37とが設けられ、低圧配管部31bには燃料圧力を検出する第二圧力センサ38と、燃料温度を検出する第二温度センサ39とが設けられている。 In the gas pipe 31, a high pressure pipe portion 31a is provided with a first pressure sensor 36 for detecting fuel pressure and a first temperature sensor 37 for detecting fuel temperature, and a low pressure pipe portion 31b is provided with a first pressure sensor 36 for detecting fuel pressure. A two-pressure sensor 38 and a second temperature sensor 39 for detecting the fuel temperature are provided.
 なお、遮断弁35と第一圧力センサ36とはレギュレータ33に一体に設けることが可能であり、本実施例では、レギュレータ33に一体に遮断弁35と第一圧力センサ36とを設ける構成を採用している。 The shut-off valve 35 and the first pressure sensor 36 can be provided integrally with the regulator 33. In this embodiment, a configuration in which the shut-off valve 35 and the first pressure sensor 36 are provided integrally with the regulator 33 is adopted. is doing.
 制御部40は、CPU41と、ROM42と、RAM43と、バックアップ(BK RAM)RAM44と、インターフェース(I/F)45と、双方向バス46とを備えている。CPU41、ROM42、RAM43、バックアップRAM44、及びインターフェース45は、双方向バス46によって互いに接続されている。 The control unit 40 includes a CPU 41, a ROM 42, a RAM 43, a backup (BK RAM) RAM 44, an interface (I / F) 45, and a bidirectional bus 46. The CPU 41, ROM 42, RAM 43, backup RAM 44, and interface 45 are connected to each other by a bidirectional bus 46.
 CPU41は、燃料噴射システムにおける各部の動作を制御するためのルーチン(プログラム)を実行する。ROM42には、CPU41が実行するルーチン、及びこのルーチン実行の際に参照されるマップ、パラメータ、等の各種データが予め格納されている。この場合、マップはテーブルや関係式等も含む。RAM43は、CPU41がルーチンを実行する際に、必要に応じてデータを一時的に格納する。バックアップRAM44は、電源が投入された状態でCPU41の制御下でデータを適宜格納するとともに、この格納されたデータを電源遮断後も保持する。 The CPU 41 executes a routine (program) for controlling the operation of each part in the fuel injection system. The ROM 42 stores in advance various data such as a routine executed by the CPU 41 and maps, parameters, and the like referred to when the routine is executed. In this case, the map includes a table, a relational expression, and the like. The RAM 43 temporarily stores data as necessary when the CPU 41 executes a routine. The backup RAM 44 appropriately stores data under the control of the CPU 41 in a state where the power is turned on, and retains the stored data even after the power is shut off.
 インターフェース45は、上述したスロットル開度センサ15b、排気センサ18、圧力センサ36,38、温度センサ37,39を含む、燃料噴射システムに設けられたセンサと電気的に接続されている。この場合、これらのセンサにはクランク角センサ、エアフロメータ、冷却水温センサ、車速センサ等も含む。これらのセンサからの検出信号に相当する出力をCPU41に伝達する。また、インターフェース45は、スロットルアクチュエータ15a、点火装置20a、ガス噴射弁21、タンク主止弁34、遮断弁35等の駆動部と電気的に接続されていて、これらの駆動部を駆動させるためにCPU41から送出された駆動信号を当該駆動部に向けて出力する。すなわち、制御部40は、上述のセンサの出力信号等に基づいて運転状態を取得し、この運転状態に基づいて上述の駆動部を制御する。燃料噴射制御において、制御部40は、エンジン運転状態に基づいてガス噴射弁21による燃料噴射の要求噴射量を算出するとともに、その要求噴射量により噴射パルスを生成し、その噴射パルスによりガス噴射弁21を駆動させて燃料噴射を実施する。 The interface 45 is electrically connected to sensors provided in the fuel injection system, including the throttle opening sensor 15b, the exhaust sensor 18, the pressure sensors 36 and 38, and the temperature sensors 37 and 39 described above. In this case, these sensors include a crank angle sensor, an air flow meter, a coolant temperature sensor, a vehicle speed sensor, and the like. An output corresponding to detection signals from these sensors is transmitted to the CPU 41. The interface 45 is electrically connected to driving units such as the throttle actuator 15a, the ignition device 20a, the gas injection valve 21, the tank main stop valve 34, the shutoff valve 35, and the like, in order to drive these driving units. The drive signal sent from the CPU 41 is output toward the drive unit. That is, the control unit 40 acquires the operating state based on the output signal of the above-described sensor and controls the above-described driving unit based on this operating state. In the fuel injection control, the control unit 40 calculates the required injection amount of fuel injection by the gas injection valve 21 based on the engine operating state, generates an injection pulse based on the required injection amount, and uses the injection pulse to generate the gas injection valve. 21 is driven to perform fuel injection.
 ところで、図1に示すように、ガス噴射弁21から噴射されたガス燃料を燃料導管22を介して吸気マニホールド13の第一分岐管部13aに放出する構成では、燃料導管22からガス燃料を放出していない期間中に、燃料導管22内に第二端から空気が流入することが考えられる。そして、その空気の流入に起因して、次回の燃料噴射時においてガス噴射弁21から噴射された燃料量より少ない量の燃料が第一分岐管部13aに供給されることになり、ひいては空燃比のずれが発生する。例えば燃料噴射を一時的に休止している燃料カット時にはこうした不都合が生じやすくなっている。 Incidentally, as shown in FIG. 1, in the configuration in which the gas fuel injected from the gas injection valve 21 is discharged to the first branch pipe portion 13 a of the intake manifold 13 through the fuel conduit 22, the gas fuel is discharged from the fuel conduit 22. It is conceivable that air flows into the fuel conduit 22 from the second end during the period when it is not. Then, due to the inflow of the air, an amount of fuel smaller than the amount of fuel injected from the gas injection valve 21 at the next fuel injection is supplied to the first branch pipe portion 13a, and consequently the air-fuel ratio. Deviation occurs. For example, such inconvenience is likely to occur at the time of fuel cut when fuel injection is temporarily stopped.
 そこで本実施例では、燃料導管22に、吸気部側からガス噴射弁側へのガス燃料の流入である逆流を規制する規制部を設けることとし、特に規制部として、燃料導管22内の通路面積を局所的に縮小する又は該通路を閉鎖することで空気の流入を規制する流入規制部を設ける構成としている。具体的には、図2に示すように、燃料導管22は第一分岐管部13aに接続されており、その第二端には流入規制部としての絞り部51が設けられている。この絞り部51によって、第一分岐管部13aから燃料導管22への空気の逆流が抑制される。なお、絞り部51は、燃料導管22の第二端に設けられる以外に、第二端付近の中間部に設けられる構成であってもよい。 Therefore, in this embodiment, the fuel conduit 22 is provided with a restricting portion that restricts the backflow that is the inflow of the gas fuel from the intake portion side to the gas injection valve side. In particular, as the restricting portion, the passage area in the fuel conduit 22 is provided. The inflow restricting portion that restricts the inflow of air by locally reducing or closing the passage is provided. Specifically, as shown in FIG. 2, the fuel conduit 22 is connected to the first branch pipe portion 13a, and a throttle portion 51 as an inflow restricting portion is provided at the second end thereof. The throttle 51 suppresses the backflow of air from the first branch pipe 13a to the fuel conduit 22. The throttle 51 may be provided at an intermediate portion near the second end in addition to being provided at the second end of the fuel conduit 22.
 吸気部における圧力変化について図4及び図5のタイムチャートを用いて説明する。図4及び図5には、エンジン10における吸気弁の開弁動作と、ガス噴射弁21の駆動パルス(噴射パルス)と、吸気部及び燃料導管22の圧力変化とを示している。ここで、図4には、従来構成である絞り部51を有していない場合の吸気部及び燃料導管22の圧力変化を示し、図5には、本実施例の構成である絞り部51を有している場合の圧力変化を示している。 The pressure change in the intake section will be described with reference to the time charts of FIGS. 4 and 5 show the valve opening operation of the intake valve in the engine 10, the drive pulse (injection pulse) of the gas injection valve 21, and the pressure change in the intake section and the fuel conduit 22. FIG. Here, FIG. 4 shows the pressure change of the intake part and the fuel conduit 22 when the throttle part 51 of the conventional configuration is not provided, and FIG. 5 shows the throttle part 51 of the configuration of this embodiment. The pressure change when it has is shown.
 図4において、吸気弁は各気筒の吸気行程に合わせて開弁し、吸気行程においてガス噴射弁21による燃料噴射が実施される。この燃料噴射によって、燃料導管22内の圧力に相当する燃料導管内圧が上昇し、その後低下する。燃料導管内圧の上昇及び低下は比較的急峻に生じ、燃料噴射の後は、燃料導管内圧は第一分岐管部13a内の圧力に相当する吸気圧力の近くまで低下する。また、吸気弁の開弁時である吸気行程当初にはその開弁動作により吸気圧力の脈動が生じる。この場合、吸気圧力の脈動によって燃料導管内圧が吸気圧力より小さくなる事態が生じ、それに起因して第一分岐管部13aから燃料導管22へ空気が流入する。つまり、逆流が発生する。 In FIG. 4, the intake valve is opened in accordance with the intake stroke of each cylinder, and fuel injection by the gas injection valve 21 is performed in the intake stroke. By this fuel injection, the internal pressure of the fuel conduit corresponding to the pressure in the fuel conduit 22 increases and then decreases. The increase and decrease in the fuel conduit internal pressure occur relatively steeply, and after the fuel injection, the fuel conduit internal pressure decreases to near the intake pressure corresponding to the pressure in the first branch pipe portion 13a. Further, at the beginning of the intake stroke, which is the time when the intake valve is opened, the intake pressure pulsates due to the valve opening operation. In this case, a situation occurs in which the internal pressure of the fuel conduit becomes smaller than the intake pressure due to the pulsation of the intake pressure, and as a result, air flows into the fuel conduit 22 from the first branch pipe portion 13a. That is, backflow occurs.
 これに対し、図5では、燃料導管22に設けられた絞り部51によって、燃料導管22の圧力変化が緩やかになっている。そのため、吸気弁の開弁時に吸気圧力の脈動が生じても、燃料導管内圧が吸気圧力より小さくなることはなく、第一分岐管部13aから燃料導管22への空気の流入は生じない。これにより、燃料噴射に際して、第一分岐管部13aに対するガス燃料の供給量が不安定になることを抑制できる。その結果、第一分岐管部13aに対するガス燃料の供給量を安定化させ、ひいては空燃比の適正な制御等を実現することが可能となる。 On the other hand, in FIG. 5, the pressure change of the fuel conduit 22 is moderated by the throttle 51 provided in the fuel conduit 22. Therefore, even if the intake pressure pulsates when the intake valve is opened, the fuel conduit internal pressure does not become lower than the intake pressure, and air does not flow into the fuel conduit 22 from the first branch pipe portion 13a. Thereby, it can suppress that the supply amount of the gaseous fuel with respect to the 1st branch pipe part 13a becomes unstable in fuel injection. As a result, it is possible to stabilize the supply amount of the gas fuel to the first branch pipe portion 13a, and to realize appropriate control of the air-fuel ratio and the like.
 流入規制部は、図3に示す構成であってもよい。図3のように、燃料導管22の第二端に、流入規制部としての逆止弁52が設けられている。逆止弁52は、支軸部53により回動可能に設けられた弁板54を有しており、その弁板54は吸気圧力と燃料導管内圧とのバランスに応じて開閉する。支軸部53には弁板54を閉弁方向に付勢する図示しない付勢部であるバネが設けられている。この場合、逆止弁52は、燃料導管内圧が吸気圧力とバネ力の合力よりも大きくなった場合に開弁し、それ以外は閉弁状態で維持される。これにより、第一分岐管部13aから燃料導管22への空気の流入が抑制される。 The structure shown in FIG. 3 may be sufficient as an inflow control part. As shown in FIG. 3, a check valve 52 as an inflow restricting portion is provided at the second end of the fuel conduit 22. The check valve 52 has a valve plate 54 rotatably provided by a support shaft portion 53, and the valve plate 54 opens and closes according to the balance between the intake pressure and the fuel conduit internal pressure. The support shaft portion 53 is provided with a spring which is a biasing portion (not shown) that biases the valve plate 54 in the valve closing direction. In this case, the check valve 52 is opened when the internal pressure of the fuel conduit becomes larger than the resultant force of the intake pressure and the spring force, and the check valve 52 is maintained in the closed state otherwise. Thereby, the inflow of the air from the 1st branch pipe part 13a to the fuel conduit | pipe 22 is suppressed.
 以上詳述した本実施例によれば、以下の優れた効果が得られる。 According to the embodiment described in detail above, the following excellent effects can be obtained.
 上記構成では、燃料導管22に設けられた絞り部51又は逆止弁52によって、吸気部側から燃料導管22への空気の流入が規制される。これにより、燃料噴射に際して、吸気部に対するガス燃料の供給量が不安定になることを抑制できる。その結果、吸気部に対するガス燃料の供給量を安定化させ、ひいては空燃比の適正な制御等を実現することが可能となる。 In the above configuration, the inflow of air from the intake portion side to the fuel conduit 22 is regulated by the throttle portion 51 or the check valve 52 provided in the fuel conduit 22. Thereby, it can suppress that the supply amount of the gaseous fuel with respect to an intake part becomes unstable in fuel injection. As a result, it is possible to stabilize the amount of gas fuel supplied to the intake section, and thus to achieve proper control of the air-fuel ratio.
 燃料導管22に設けられた絞り部51又は逆止弁52は、燃料導管22内の通路面積を局所的に縮小する又は該通路を閉鎖することで空気の流入を規制するものであり、ガス噴射弁21による燃料噴射後には、燃料導管22における空気の流入とガス燃料の流出が抑制される。この場合、燃料導管22では新たな噴射燃料による押し出しによりガス燃料が第一分岐管部13aに放出され、1燃焼分の燃料噴射ずつのガス燃料を好適に各気筒に供給できる。 The throttle part 51 or the check valve 52 provided in the fuel conduit 22 regulates the inflow of air by locally reducing the passage area in the fuel conduit 22 or closing the passage. After fuel injection by the valve 21, the inflow of air and the outflow of gas fuel in the fuel conduit 22 are suppressed. In this case, in the fuel conduit 22, the gas fuel is discharged to the first branch pipe portion 13 a by extrusion with new injected fuel, and the gas fuel for each fuel injection for one combustion can be suitably supplied to each cylinder.
 流入規制部としての絞り部51又は逆止弁52を燃料導管22の第二端に設けたため、燃料導管22内への空気の流入を抑制する上でより好適な構成を実現できる。これにより、各気筒に対するガス燃料の安定供給を実現できる。 Since the throttle part 51 or the check valve 52 as the inflow restricting part is provided at the second end of the fuel conduit 22, a more preferable configuration can be realized in suppressing the inflow of air into the fuel conduit 22. Thereby, stable supply of gas fuel to each cylinder is realizable.
 (第2の実施例)
 第2実施例では、第1実施例と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
(Second embodiment)
In the second embodiment, the same reference numerals as those in the first embodiment indicate the same configuration, and the preceding description is referred to.
 図6に本実施例における燃料噴射システム構成を示す。具体的に、燃料噴射部の構成が図1の構成と相違しており、ガス配管31には1つのガス噴射弁21が接続されるとともに、そのガス噴射弁21の噴射口の先には気筒数分の分配口を有する分配器61が接続されている。つまり、気筒数よりも少ない数のガス噴射弁21を有する構成となっている。分配器61がメイン管部に相当する。分配器61は、例えば筒状をなすチャンバ部62を有しており、そのチャンバ部62には気筒数分の燃料導管22が接続されている。この場合、ガス噴射弁21から噴射されたガス燃料は、分配器61を経由して各燃料導管22に分配され、各燃料導管22を介して気筒ごとの吸気部に対して放出される。 FIG. 6 shows a fuel injection system configuration in the present embodiment. Specifically, the configuration of the fuel injection unit is different from the configuration of FIG. 1, and one gas injection valve 21 is connected to the gas pipe 31, and a cylinder is provided at the tip of the injection port of the gas injection valve 21. A distributor 61 having a distribution port for several minutes is connected. That is, the number of gas injection valves 21 is smaller than the number of cylinders. The distributor 61 corresponds to the main pipe part. The distributor 61 has, for example, a cylindrical chamber portion 62, and fuel chambers 22 for the number of cylinders are connected to the chamber portion 62. In this case, the gas fuel injected from the gas injection valve 21 is distributed to each fuel conduit 22 via the distributor 61 and is released to the intake portion of each cylinder via each fuel conduit 22.
 上記のとおり分配器61を有する構成では、各気筒の燃料導管22は分配器61を介して互いに連通している。そのため、図7に示すように、エンジン10のいずれかの気筒が吸気行程となる場合に、その吸気行程となる気筒の燃料導管22内のガス燃料が第一分岐管部13a内に吸引されると、それ以外の気筒の燃料導管22において空気の流入が生じる。これにより、やはり次回の燃料噴射時においてガス噴射弁21から噴射された燃料量より少ない量の燃料が第一分岐管部13aに供給されることになり、ひいては空燃比のずれが発生する。 In the configuration having the distributor 61 as described above, the fuel conduits 22 of the respective cylinders communicate with each other via the distributor 61. Therefore, as shown in FIG. 7, when any cylinder of the engine 10 is in the intake stroke, the gas fuel in the fuel conduit 22 of the cylinder in the intake stroke is sucked into the first branch pipe portion 13a. Then, inflow of air occurs in the fuel conduits 22 of the other cylinders. As a result, the amount of fuel smaller than the amount of fuel injected from the gas injection valve 21 at the time of the next fuel injection is supplied to the first branch pipe portion 13a, resulting in an air-fuel ratio shift.
 そこで本実施例では、図8に示すように、各燃料導管22の第二端にそれぞれ流入規制部としての絞り部65を設けている。この絞り部65によって、第一分岐管部13aから燃料導管22への空気の流入が抑制される。つまり、いずれかの気筒が吸気行程となって、その吸気行程となる気筒の燃料導管22内のガス燃料が第一分岐管部13a内に吸引されても、それ以外の気筒の燃料導管22において空気の流入が生じることが抑制される。 Therefore, in this embodiment, as shown in FIG. 8, a throttle portion 65 as an inflow restricting portion is provided at the second end of each fuel conduit 22. By this throttle portion 65, the inflow of air from the first branch pipe portion 13a to the fuel conduit 22 is suppressed. That is, even if one of the cylinders becomes the intake stroke, and the gas fuel in the fuel conduit 22 of the cylinder that becomes the intake stroke is sucked into the first branch pipe portion 13a, the fuel conduit 22 of the other cylinders Inflow of air is suppressed.
 なお、絞り部65は、燃料導管22の第二端に設けられる以外に、第二端付近の中間部に設けられる構成であってもよい。また、分配器61を介して燃料導管22同士でガス燃料の移動が生じることを抑制することの観点からすれば、燃料導管22において第一端に絞り部65を設ける構成であってもよい。 It should be noted that the throttle portion 65 may be provided at an intermediate portion near the second end in addition to being provided at the second end of the fuel conduit 22. Further, from the viewpoint of suppressing the movement of the gas fuel between the fuel conduits 22 via the distributor 61, a configuration in which the throttle portion 65 is provided at the first end of the fuel conduit 22 may be employed.
 又は、図9に示すように、各燃料導管22の第二端に、流入規制部としての逆止弁66を設ける構成であってもよい。逆止弁66は、図3で説明した逆止弁52と同様の構成であればよい。本構成においても、やはり各燃料導管22において第一分岐管部13aからの空気の流入が抑制される。 Alternatively, as shown in FIG. 9, a check valve 66 as an inflow restricting portion may be provided at the second end of each fuel conduit 22. The check valve 66 may have the same configuration as the check valve 52 described in FIG. Also in this configuration, the inflow of air from the first branch pipe portion 13a is also suppressed in each fuel conduit 22.
 以上の本実施例によれば、ガス噴射弁21の噴射先となる部位に気筒分配用の分配器61を有する構成において、各燃料導管22にそれぞれ流入規制部としての絞り部65又は逆止弁66を設けた。これにより、分配器61を通じて燃料導管22同士でガス燃料の出入りが生じることを抑制でき、吸気部側から燃料導管22への空気の流入を規制することができる。 According to the present embodiment described above, in the configuration in which the distributor 61 for distributing cylinders is provided at the injection destination of the gas injection valve 21, the restrictor 65 or the check valve serving as the inflow restricting portion in each fuel conduit 22. 66 was provided. Thereby, the gas fuel can be prevented from entering and exiting between the fuel conduits 22 through the distributor 61, and the inflow of air from the intake portion side to the fuel conduit 22 can be restricted.
 (第3の実施例)
 第3実施例では、第1実施例、第2実施例と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
(Third embodiment)
In the third embodiment, the same reference numerals as those in the first embodiment and the second embodiment indicate the same configuration, and the preceding description is referred to.
 本実施例では、燃料導管22に流入規制部を設けることに代えて、ガス噴射弁21による燃料噴射を制御することで、燃料導管22に対する空気の流入を抑制することとしている。具体的に、燃料噴射制御によって、燃料導管22内の圧力を吸気圧力に対して高圧とし、それにより燃料導管22に対する空気の流入を抑制することとしている。なお、燃料噴射システム構成は、例えば図6のものが適用される。 In this embodiment, instead of providing the fuel conduit 22 with an inflow restricting portion, the fuel injection by the gas injection valve 21 is controlled to suppress the inflow of air into the fuel conduit 22. Specifically, the fuel injection control sets the pressure in the fuel conduit 22 to be higher than the intake pressure, thereby suppressing the inflow of air into the fuel conduit 22. For example, the fuel injection system configuration shown in FIG. 6 is applied.
 燃料導管22内の圧力を吸気圧力に対して高圧とするための燃料噴射制御としては、具体的に、次のようになります。 The fuel injection control to make the pressure in the fuel conduit 22 higher than the intake pressure is specifically as follows.
 (1)少なくとも吸気行程当初、すなわち吸気圧力の脈動が生じる時にガス噴射弁21による燃料噴射が実施されるように燃料噴射時期を制御する。 (1) The fuel injection timing is controlled so that the fuel injection by the gas injection valve 21 is performed at least at the beginning of the intake stroke, that is, when the pulsation of the intake pressure occurs.
 (2)ガス燃料の噴射圧を可変に調整可能な構成において、その噴射圧を低くし、その噴射圧の低圧化の状態で、燃料噴射の期間を長引かせるようにして燃料噴射期間を制御する。この場合、ガス燃料の噴射圧はレギュレータ33による調整圧に相当する。 (2) In the configuration in which the injection pressure of the gas fuel can be variably adjusted, the fuel injection period is controlled so as to prolong the fuel injection period in a state where the injection pressure is lowered and the injection pressure is reduced. . In this case, the injection pressure of the gas fuel corresponds to the adjustment pressure by the regulator 33.
 まず上記(1)について説明する。図10は、上記(1)の具体的な制御内容を示すタイムチャートである。図10では、吸気行程当初において吸気圧力の脈動が生じる期間を含む期間にて、ガス噴射弁21による燃料噴射が実施される。この場合、燃料噴射時期は、噴射終了タイミングを基準として定められる。すなわち、吸気行程前半の所定タイミング或いは所定のクランク角度位置のタイミングが噴射終了タイミングとして定められており、都度の要求噴射量に基づいて、噴射終了タイミングよりも先の噴射開始タイミングが決定される。 First, the above (1) will be described. FIG. 10 is a time chart showing the specific control contents of the above (1). In FIG. 10, fuel injection by the gas injection valve 21 is performed in a period including a period in which pulsation of the intake pressure occurs at the beginning of the intake stroke. In this case, the fuel injection timing is determined based on the injection end timing. That is, the predetermined timing in the first half of the intake stroke or the timing of the predetermined crank angle position is determined as the injection end timing, and the injection start timing ahead of the injection end timing is determined based on the required injection amount at each time.
 規制部に相当する制御部40は、以下のように燃料噴射制御処理を実施する。図11のように、所定周期で実施される燃料噴射制御処理において、制御部40がS11にて燃料導管22内の高圧化を実施する実施条件が成立しているか否かを判定する。その実施条件が成立していなければ、制御部40がS12にて通常の噴射時期制御を実施する。実施条件が成立していれば、制御部40がS13にて高圧化の噴射時期制御を実施する。ここで、高圧化の実施条件は、例えば、
(a)エンジン10において吸気脈動が大きい高負荷状態であるとのこと、
(b)空燃比の検出結果から空燃比のずれが大きいとのこと、
のいずれかを含む。通常の噴射時期制御では、例えば吸気行程内で燃料噴射が開始及び終了されるように噴射時期が制御される。高圧化の噴射時期制御では、通常の噴射時期よりも早期に燃料噴射が開始され、例えば排気行程で燃料噴射が開始され、かつ吸気行程で燃料噴射が終了されるように噴射時期が制御される。
The control unit 40 corresponding to the regulating unit performs the fuel injection control process as follows. As shown in FIG. 11, in the fuel injection control process performed at a predetermined cycle, the control unit 40 determines whether or not an execution condition for increasing the pressure in the fuel conduit 22 is satisfied in S11. If the execution condition is not satisfied, the control unit 40 performs normal injection timing control in S12. If the execution condition is satisfied, the control unit 40 executes the high pressure injection timing control in S13. Here, the implementation condition of the high pressure is, for example,
(A) The engine 10 is in a high load state with a large intake pulsation,
(B) The deviation of the air-fuel ratio is large from the detection result of the air-fuel ratio,
One of these. In normal injection timing control, for example, the injection timing is controlled so that fuel injection is started and ended within an intake stroke. In the injection timing control for increasing the pressure, the fuel injection is started earlier than the normal injection timing. For example, the injection timing is controlled so that the fuel injection is started in the exhaust stroke and the fuel injection is ended in the intake stroke. .
 なお、気筒ごとの1燃焼分の燃料噴射の期間を長期化させるべく、1燃焼分の燃料噴射を複数に分割して分割噴射を実施するようにしてもよい。言い換えると、噴射頻度を多くようにしてもよい。この場合、制御部40は、吸気行程当初において吸気圧力の脈動が生じる期間を含む期間にて、ガス噴射弁21による分割噴射を実施する。これによっても、燃料導管22内を長期間にわたって高圧化させることができる。 In addition, in order to lengthen the period of fuel injection for one combustion for each cylinder, the fuel injection for one combustion may be divided into a plurality of parts and divided injection may be performed. In other words, the injection frequency may be increased. In this case, the control unit 40 performs the divided injection by the gas injection valve 21 in a period including a period in which the pulsation of the intake pressure occurs at the beginning of the intake stroke. This also makes it possible to increase the pressure in the fuel conduit 22 over a long period of time.
 次に、上記(2)について説明する。本実施例を実施する場合には、圧力調整部としてのレギュレータ33が、ガス噴射弁21に対する噴射圧に相当する供給ガス圧を可変に調整できる構成となっている。具体的には、レギュレータ33において弁体に設けられた電磁ソレノイド部により弁体の開度が調整されて噴射圧の調整が可能となっている。噴射圧が検出されてフィードバック制御が実施されてもよい。 Next, the above (2) will be described. In the case of carrying out the present embodiment, the regulator 33 as the pressure adjusting unit is configured to variably adjust the supply gas pressure corresponding to the injection pressure for the gas injection valve 21. Specifically, in the regulator 33, the opening degree of the valve body is adjusted by an electromagnetic solenoid portion provided on the valve body, so that the injection pressure can be adjusted. The injection pressure may be detected and feedback control may be performed.
 図12は、上記(2)の具体的な制御内容を示すタイムチャートである。図12では、噴射圧が、第1圧力P1と、それよりも低圧の第2圧力P2とのうち、第2圧力P2で保持されている。この場合、噴射圧が低圧化されていることから、ガス燃料の要求噴射量を満たすために実施されるパルス幅である燃料噴射の時間幅が長くなり、比較的長い期間にわたってガス燃料が噴射される。なお、低圧化した状態では、噴射パルスをオン状態のままにして噴き放しの状態にすることも可能である。 FIG. 12 is a time chart showing the specific control content of (2) above. In FIG. 12, the injection pressure is held at the second pressure P2 out of the first pressure P1 and the second pressure P2 lower than that. In this case, since the injection pressure is reduced, the time width of fuel injection, which is a pulse width performed to satisfy the required injection amount of gas fuel, becomes long, and the gas fuel is injected over a relatively long period. The In a state where the pressure is reduced, it is also possible to leave the injection pulse in the on state and to make it blow off.
 制御部40は、以下のように燃料噴射制御処理を実施する。図13のように、所定周期で実施される燃料噴射制御処理において、制御部40がS21にて燃料導管22内の高圧化を実施する実施条件が成立しているか否かを判定する。その実施条件が成立していなければ、制御部40がS22にて通常の噴射圧制御を実施する。実施条件が成立していれば、制御部40がS23にて噴射圧を低圧化する低圧化制御を実施する。ここで、高圧化の実施条件は、例えば図11のS11と同様に、(a)エンジン10において吸気脈動が大きい高負荷状態であるとのこと、
(b)空燃比の検出結果から空燃比のずれが大きいとのこと、
のいずれかを含む。また、噴射圧の低圧化を実施することで燃料噴射の期間が長引き、エンジン10の高負荷状態では要求噴射量が噴ききれないことが考えられる。よって、噴射圧の低圧化により燃料噴射の時間が不足する場合、例えば所定の高負荷状態である場合に、上記実施条件が成立しないように構成してもよい。
The control unit 40 performs the fuel injection control process as follows. As shown in FIG. 13, in the fuel injection control process performed at a predetermined cycle, the control unit 40 determines whether or not an execution condition for increasing the pressure in the fuel conduit 22 is satisfied in S21. If the execution condition is not satisfied, the control unit 40 performs normal injection pressure control in S22. If the execution condition is satisfied, the control unit 40 performs the low pressure control for reducing the injection pressure in S23. Here, the implementation condition of the high pressure is, for example, as in S11 of FIG.
(B) The deviation of the air-fuel ratio is large from the detection result of the air-fuel ratio,
One of these. Further, it is conceivable that the fuel injection period is prolonged by reducing the injection pressure, and the required injection amount cannot be injected when the engine 10 is in a high load state. Therefore, when the fuel injection time is insufficient due to the lowering of the injection pressure, for example, in the case of a predetermined high load state, the above implementation condition may not be established.
 通常の噴射圧制御では、噴射圧を例えば0.5MPa程度の第1圧力で設定する。低圧化制御では、噴射圧を第1圧力よりも低くし、例えば0.3MPa程度の第2圧力で設定する。そして、制御部40が噴射圧が設定圧力になるようレギュレータ33を制御する。この場合、制御部40はガス圧力制御部に相当する。 In normal injection pressure control, the injection pressure is set at a first pressure of about 0.5 MPa, for example. In the low pressure control, the injection pressure is set lower than the first pressure, for example, a second pressure of about 0.3 MPa. Then, the control unit 40 controls the regulator 33 so that the injection pressure becomes the set pressure. In this case, the control unit 40 corresponds to a gas pressure control unit.
 その後、制御部40はS24にて、エンジン10に対するガス燃料の要求噴射量と、レギュレータ33により調整された噴射圧とに基づいてガス噴射弁21による燃料噴射の時間幅を算出する。そして、制御部40がその時間幅によりガス噴射弁21を駆動させる。この場合、制御部40は噴射弁制御部に相当する。 Thereafter, in S24, the control unit 40 calculates the time width of fuel injection by the gas injection valve 21 based on the required injection amount of gas fuel to the engine 10 and the injection pressure adjusted by the regulator 33. And the control part 40 drives the gas injection valve 21 with the time width. In this case, the control unit 40 corresponds to an injection valve control unit.
 ただし、図8、図9に示す燃料導管22に流入規制部を設けた構成において、上述した燃料噴射制御による燃料導管22内の高圧化を実施することも可能である。また、図1に示す燃料噴射システム構成において、上述した燃料噴射制御を実施することも可能である。 However, in the configuration in which the inflow restricting portion is provided in the fuel conduit 22 shown in FIGS. 8 and 9, it is possible to increase the pressure in the fuel conduit 22 by the fuel injection control described above. Further, in the fuel injection system configuration shown in FIG. 1, the above-described fuel injection control can be performed.
 以上の本実施例によれば、エンジン10の吸気行程当初において所定の吸気脈動が生じる期間を含む期間で燃料噴射が実施されるよう燃料噴射時期を制御するようにした。これにより、吸気脈動が生じる期間にはガス燃料の噴射により燃料導管22内が比較的高圧の状態で保たれることになり、吸気部側から燃料導管22内への空気の流入を抑制できる。 According to the present embodiment described above, the fuel injection timing is controlled so that fuel injection is performed in a period including a period in which a predetermined intake pulsation occurs at the beginning of the intake stroke of the engine 10. Thereby, in the period when the intake pulsation occurs, the inside of the fuel conduit 22 is maintained at a relatively high pressure state by the injection of the gas fuel, and the inflow of air from the intake portion side into the fuel conduit 22 can be suppressed.
 又は、燃料導管内圧を高圧化すべく、噴射圧に相当する調整圧を低くする低圧化制御を実施するようにした。この場合、ガス燃料の要求噴射量を満たすために実施される燃料噴射の時間幅が長くなり、ガス噴射弁21は、比較的長い期間にわたってガス燃料を噴射する。換言すれば、ガス噴射弁21による燃料噴射が行われない非噴射期間が短縮される。噴射期間が長期化されることにより、燃料導管22内が長期にわたって比較的高圧の状態で保たれることになり、吸気部側から燃料導管22内への空気の流入を抑制できる。 Or, in order to increase the internal pressure of the fuel conduit, low pressure control is performed to reduce the adjustment pressure corresponding to the injection pressure. In this case, the time width of the fuel injection performed to satisfy the required injection amount of the gas fuel becomes long, and the gas injection valve 21 injects the gas fuel over a relatively long period. In other words, the non-injection period during which fuel injection by the gas injection valve 21 is not performed is shortened. By extending the injection period, the inside of the fuel conduit 22 is maintained at a relatively high pressure for a long period of time, and the inflow of air from the intake portion side into the fuel conduit 22 can be suppressed.
 (第4実施例)
 第4実施例では、第1~3実施例と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
(Fourth embodiment)
In the fourth embodiment, the same reference numerals as those in the first to third embodiments indicate the same configuration, and the preceding description is referred to.
 本実施例では、分配器61及び各燃料導管22の少なくともいずれかを加熱部により加熱することで、燃料導管22内の圧力を上昇させ、それにより燃料導管22に対する空気の流入を抑制するものである。具体的には、図14に示すように、分配器61には、エンジン冷却水を熱源とする加熱装置71が設けられている。本実施例では、加熱装置71は規制部に相当する。加熱装置71は、エンジン冷却水を流通させる冷却水通路72に設けられており、エンジン冷却水により分配器61が加熱され、ひいては分配器61及び燃料導管22の内部のガス燃料が加熱される。この加熱により、ガス燃料の体積が膨張し、燃料導管22内が高圧化される。 In this embodiment, at least one of the distributor 61 and each fuel conduit 22 is heated by the heating unit, thereby increasing the pressure in the fuel conduit 22, thereby suppressing the inflow of air into the fuel conduit 22. is there. Specifically, as shown in FIG. 14, the distributor 61 is provided with a heating device 71 that uses engine cooling water as a heat source. In the present embodiment, the heating device 71 corresponds to a restricting portion. The heating device 71 is provided in the cooling water passage 72 through which the engine cooling water flows, and the distributor 61 is heated by the engine cooling water, and the gas fuel inside the distributor 61 and the fuel conduit 22 is heated. By this heating, the volume of the gas fuel expands, and the pressure in the fuel conduit 22 is increased.
 図15には吸気部及び燃料導管22の圧力変化を示している。図15に示すように、分配器61を加熱する場合には分配器61を加熱しない場合に比べて燃料配管内圧が高圧になっている。この場合、吸気圧力が燃料配管内圧より小さい状態が維持され、第一分岐管部13aから燃料導管22への空気の流入が生じない。 FIG. 15 shows changes in pressure in the intake section and the fuel conduit 22. As shown in FIG. 15, when the distributor 61 is heated, the fuel pipe internal pressure is higher than when the distributor 61 is not heated. In this case, a state where the intake pressure is smaller than the internal pressure of the fuel pipe is maintained, and air does not flow into the fuel conduit 22 from the first branch pipe portion 13a.
 加熱装置71は、エンジン冷却水を熱源とする以外に、電気ヒータを熱源とする構成であってもよい。また、加熱装置71は、分配器61を加熱することに加えて、燃料導管22を加熱するものであってもよい。また、加熱装置71は、分配器61を加熱することに代えて、燃料導管22を加熱するものであってもよい。図1の構成において、燃料導管22をエンジン冷却水等により加熱する構成とすることも可能である。 The heating device 71 may be configured to use an electric heater as a heat source in addition to using engine coolant as a heat source. Further, the heating device 71 may heat the fuel conduit 22 in addition to heating the distributor 61. Further, the heating device 71 may heat the fuel conduit 22 instead of heating the distributor 61. In the configuration shown in FIG. 1, the fuel conduit 22 may be heated by engine cooling water or the like.
 以上の本実施例によれば、分配器61又は燃料導管22を加熱することで、それらの内部に溜まっているガス燃料を暖めることができる。これにより、燃料導管22内の圧力が高くなり、吸気部側から燃料導管22内への空気の流入を抑制できる。 According to the present embodiment described above, by heating the distributor 61 or the fuel conduit 22, the gas fuel accumulated in them can be warmed. Thereby, the pressure in the fuel conduit 22 is increased, and the inflow of air from the intake portion side into the fuel conduit 22 can be suppressed.
 (他の実施例)
 上記実施例を例えば次のように変更してもよい。
(Other examples)
For example, the above embodiment may be modified as follows.
 (i)図3に示す構成では、逆止弁52を吸気圧力と燃料導管内圧とのバランスに応じて機械的に開閉させるようにしたが、逆止弁52を電気的に開閉させるようにしてもよい。例えば、制御部40において、ガス噴射弁21による燃料噴射の終了後、今回の噴射相当分の燃料が第一分岐管部13aに放出され終わったタイミングで、開弁状態の逆止弁52を閉弁操作し、その後、ガス噴射弁21による燃料噴射の開始タイミングで、閉弁状態の逆止弁52を開弁操作する制御を実施する。 (I) In the configuration shown in FIG. 3, the check valve 52 is mechanically opened and closed in accordance with the balance between the intake pressure and the fuel conduit internal pressure. However, the check valve 52 is electrically opened and closed. Also good. For example, in the control unit 40, after the fuel injection by the gas injection valve 21 is completed, the check valve 52 in the opened state is closed at the timing when the fuel corresponding to the current injection has been released to the first branch pipe portion 13a. The valve is operated, and thereafter, the control for opening the check valve 52 in the closed state is performed at the start timing of the fuel injection by the gas injection valve 21.
 (ii)上記実施例では、ガス燃料のみを用いるガスエンジンにて本開示を適用したが、ガス燃料と液体燃料とを燃焼用の燃料として使用するバイフューエルエンジンにて本開示を具体化することも可能である。この場合、例えば、液体燃料はガソリン又は軽油であってもよい。 (Ii) In the above embodiment, the present disclosure is applied to a gas engine using only gas fuel. However, the present disclosure is embodied in a bi-fuel engine using gas fuel and liquid fuel as combustion fuel. Is also possible. In this case, for example, the liquid fuel may be gasoline or light oil.
 (iii)上記実施例では、ガス燃料としてCNG燃料を用いたが、標準状態で気体となるその他のガス燃料を用いることもでき、例えばメタン、エタン、プロパン、ブタン、水素、DMEなどを主成分とする燃料を用いる構成としてもよい。 (Iii) In the above embodiment, the CNG fuel is used as the gas fuel, but other gas fuels that are gases in the standard state can also be used. For example, methane, ethane, propane, butane, hydrogen, DME, etc. are the main components. The fuel may be used.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  所定の高圧状態に圧縮されたガス燃料を噴射し内燃機関(10)の吸気部(11)に供給する内燃機関の燃料噴射装置であって、
     前記内燃機関の運転状態に応じて駆動され、該駆動により前記ガス燃料を噴射するガス噴射弁(21)と、
     前記ガス噴射弁に接続された第一端と、前記吸気部に接続された第二端とを有し、前記ガス噴射弁から噴射されたガス燃料を前記吸気部に放出する燃料導管(22)と、
    を有し、
     前記吸気部側から前記燃料導管への空気の流入を規制する規制部(40,51,52,65,66,71)を備えている内燃機関の燃料噴射装置。
    A fuel injection device for an internal combustion engine that injects gas fuel compressed to a predetermined high pressure state and supplies the gas fuel to an intake portion (11) of the internal combustion engine (10),
    A gas injection valve (21) that is driven according to the operating state of the internal combustion engine and injects the gas fuel by the driving;
    A fuel conduit (22) having a first end connected to the gas injection valve and a second end connected to the intake portion, and discharging gas fuel injected from the gas injection valve to the intake portion When,
    Have
    A fuel injection device for an internal combustion engine, comprising a restricting portion (40, 51, 52, 65, 66, 71) for restricting inflow of air from the intake portion side to the fuel conduit.
  2.  前記燃料導管には、前記規制部として、前記燃料導管内の通路面積を局所的に縮小する又は該通路を閉鎖することで前記空気の流入を規制する流入規制部(51,52,65,66)が設けられている請求項1に記載の内燃機関の燃料噴射装置。 In the fuel conduit, as the restricting portion, an inflow restricting portion (51, 52, 65, 66 for restricting the inflow of air by locally reducing the passage area in the fuel conduit or closing the passage. The fuel injection device for an internal combustion engine according to claim 1.
  3.  前記流入規制部は、前記燃料導管の第二端に設けられている請求項2に記載の内燃機関の燃料噴射装置。 3. The fuel injection device for an internal combustion engine according to claim 2, wherein the inflow restricting portion is provided at a second end of the fuel conduit.
  4.  複数の気筒を有し、内燃機関の気筒ごとに前記吸気部において気筒別吸気通路(13a)が設けられている多気筒内燃機関に適用され、
     前記燃料導管は前記気筒別吸気通路にそれぞれ設けられ、それら各燃料導管のガス噴射弁側の端部は集合部(61)にて集合しており、その集合部に前記ガス噴射弁からガス燃料が噴射される構成を有し、
     前記各燃料導管にそれぞれ前記流入規制部が設けられている請求項2又は3に記載の内燃機関の燃料噴射装置。
    The present invention is applied to a multi-cylinder internal combustion engine having a plurality of cylinders and having a cylinder-specific intake passage (13a) in the intake section for each cylinder of the internal combustion engine,
    The fuel conduits are respectively provided in the cylinder-by-cylinder intake passages, and the end portions of the fuel conduits on the gas injection valve side are gathered at a collecting portion (61). Is configured to be injected,
    The fuel injection device for an internal combustion engine according to claim 2 or 3, wherein the inflow restricting portion is provided in each fuel conduit.
  5.  前記規制部として、前記ガス噴射弁による燃料噴射の要求噴射量を算出し、その要求噴射量により燃料噴射を制御する燃料噴射制御部(40)を備え、
     前記燃料噴射制御部は、前記内燃機関の吸気行程当初において所定の吸気脈動が生じる期間を含む期間で燃料噴射が実施されるよう燃料噴射時期を制御する部を備えている請求項1乃至4のいずれか一項に記載の内燃機関の燃料噴射装置。
    A fuel injection control unit (40) that calculates a required injection amount of fuel injection by the gas injection valve and controls fuel injection by the required injection amount as the restricting unit,
    The fuel injection control unit includes a unit that controls fuel injection timing so that fuel injection is performed in a period including a period in which a predetermined intake pulsation occurs at the beginning of the intake stroke of the internal combustion engine. A fuel injection device for an internal combustion engine according to any one of the preceding claims.
  6.  前記ガス噴射弁に対して供給されるガス燃料の圧力である供給ガス圧を可変に調整する圧力調整部(33)と、
     前記内燃機関に対するガス燃料の要求噴射量と、前記圧力調整部により調整された前記供給ガス圧とに基づいて前記ガス噴射弁による燃料噴射の時間幅を算出し、その時間幅により前記ガス噴射弁を駆動させる噴射弁制御部(40,S24)と、
     前記圧力調整部により調整される供給ガス圧を、第1圧力と、それよりも低い第2圧力とのいずれかにするよう当該圧力調整部を制御するガス圧力制御部(40,S21,S22,S23)と、
    を備え、
     前記ガス圧力制御部は、前記規制部として、前記圧力調整部により調整される供給ガス圧が前記第2圧力になるよう当該圧力調整部を制御する請求項1乃至5のいずれか一項に記載の内燃機関の燃料噴射装置。
    A pressure adjusting unit (33) that variably adjusts a supply gas pressure that is a pressure of gas fuel supplied to the gas injection valve;
    A time width of fuel injection by the gas injection valve is calculated based on a required injection amount of gas fuel to the internal combustion engine and the supply gas pressure adjusted by the pressure adjusting unit, and the gas injection valve is calculated based on the time width. An injection valve controller (40, S24) for driving
    Gas pressure control units (40, S21, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22, S22) S23)
    With
    The said gas pressure control part controls the said pressure adjustment part as the said control part so that the supply gas pressure adjusted by the said pressure adjustment part may turn into the said 2nd pressure. Fuel injection device for internal combustion engine.
  7.  前記規制部として、前記燃料導管内のガス燃料を加熱する加熱部(71)を備えている請求項1乃至6のいずれか一項に記載の内燃機関の燃料噴射装置。 The fuel injection device for an internal combustion engine according to any one of claims 1 to 6, further comprising a heating section (71) for heating the gas fuel in the fuel conduit as the regulating section.
PCT/JP2014/000173 2013-01-25 2014-01-16 Fuel injection device of internal combustion engine WO2014115511A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013012086A JP2014141950A (en) 2013-01-25 2013-01-25 Internal combustion engine fuel injection device
JP2013-012086 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115511A1 true WO2014115511A1 (en) 2014-07-31

Family

ID=51227307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000173 WO2014115511A1 (en) 2013-01-25 2014-01-16 Fuel injection device of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2014141950A (en)
WO (1) WO2014115511A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109275A (en) * 1986-10-24 1988-05-13 Yanmar Diesel Engine Co Ltd Safety device of auxiliary chamber type large scale gas engine
JP2001050115A (en) * 1999-08-05 2001-02-23 Suzuki Motor Corp Shape of injector port in gaseous fuel engine
JP2003193944A (en) * 2001-10-18 2003-07-09 Toyota Motor Corp Fuel feeder of internal combustion engine
JP2011102547A (en) * 2009-11-10 2011-05-26 Aisan Industry Co Ltd Intake manifold
JP2012237249A (en) * 2011-05-12 2012-12-06 Toyota Industries Corp Sub-chamber type gas engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109275A (en) * 1986-10-24 1988-05-13 Yanmar Diesel Engine Co Ltd Safety device of auxiliary chamber type large scale gas engine
JP2001050115A (en) * 1999-08-05 2001-02-23 Suzuki Motor Corp Shape of injector port in gaseous fuel engine
JP2003193944A (en) * 2001-10-18 2003-07-09 Toyota Motor Corp Fuel feeder of internal combustion engine
JP2011102547A (en) * 2009-11-10 2011-05-26 Aisan Industry Co Ltd Intake manifold
JP2012237249A (en) * 2011-05-12 2012-12-06 Toyota Industries Corp Sub-chamber type gas engine

Also Published As

Publication number Publication date
JP2014141950A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP5338997B2 (en) Multi-fuel internal combustion engine and control method thereof
EP2917546A1 (en) Combined fueling strategy for gaseous fuel
JP2015521251A (en) Method and apparatus for sequentially controlling the intake elements of a gas fuel compression ignition engine
WO2014108969A1 (en) Fuel injection control device for internal combustion engine
JP5862552B2 (en) Fuel injection control device for internal combustion engine
US20160252030A1 (en) Auxiliary-chamber-type gas engine
JP5557094B2 (en) Fuel supply device for internal combustion engine
JP2015137579A (en) Control device of internal combustion engine
JP5874622B2 (en) Fuel injection control device for internal combustion engine
JP2015129491A (en) Internal combustion engine fuel supply controller
WO2013150739A1 (en) Engine control device
WO2014115511A1 (en) Fuel injection device of internal combustion engine
WO2014091680A1 (en) Fuel injection control device for internal combustion engine, and vehicle fuel injection system
WO2015104772A1 (en) Control device for internal combustion engine
JP2013160138A (en) Fuel supply control device
JP2015224583A (en) Internal combustion engine control unit
WO2014091722A1 (en) Fuel injection control device for internal combustion engine
WO2016132708A1 (en) Fuel injection control device
WO2014091723A1 (en) Fuel injection control device for internal combustion engine
WO2014115510A1 (en) Fuel injection device for internal combustion engine
WO2014208009A1 (en) Injection control apparatus for internal combustion engine
JP2016061163A (en) Fuel injection device of internal combustion engine
JP2010024853A (en) Control device for internal combustion engine
WO2014087582A1 (en) Fuel supply device
WO2014087596A1 (en) Fuel supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743984

Country of ref document: EP

Kind code of ref document: A1