WO2014114164A1 - 无线通信***中的装置和方法 - Google Patents

无线通信***中的装置和方法 Download PDF

Info

Publication number
WO2014114164A1
WO2014114164A1 PCT/CN2013/090514 CN2013090514W WO2014114164A1 WO 2014114164 A1 WO2014114164 A1 WO 2014114164A1 CN 2013090514 W CN2013090514 W CN 2013090514W WO 2014114164 A1 WO2014114164 A1 WO 2014114164A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
small cell
location information
inter
mobile
Prior art date
Application number
PCT/CN2013/090514
Other languages
English (en)
French (fr)
Inventor
许晓东
洪亚腾
刘雅
罗成金
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020157021088A priority Critical patent/KR20150110568A/ko
Priority to ES13872980T priority patent/ES2755090T3/es
Priority to BR112015017167-2A priority patent/BR112015017167B1/pt
Priority to MX2015009103A priority patent/MX351049B/es
Priority to EP13872980.1A priority patent/EP2950582B1/en
Priority to JP2015554027A priority patent/JP6332282B2/ja
Application filed by 索尼公司 filed Critical 索尼公司
Priority to US14/760,648 priority patent/US9913202B2/en
Priority to CA2898544A priority patent/CA2898544A1/en
Priority to RU2015135506A priority patent/RU2653714C2/ru
Priority to AU2013375529A priority patent/AU2013375529B2/en
Publication of WO2014114164A1 publication Critical patent/WO2014114164A1/zh
Priority to ZA2015/06130A priority patent/ZA201506130B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements

Definitions

  • the present invention generally relates to the field of wireless communications, and more particularly to a universal mobile communication system
  • UMTS Long Term Evolution
  • LTE-A Long Term Evolution-A
  • Mobility enhancement under heterogeneous networks is one of the work items in this field, designed to provide users with seamless and stable coverage while increasing the capacity of the network.
  • Mobility enhancement under heterogeneous networks discusses a number of issues, where / Small Cell Detection is one of the hot topics discussed in 3GPP's Work Item heterogeneous network mobility enhancement.
  • a heterogeneous network includes a large number of small cells, such as a micro base station, a pico base station, a home base station, and a radio remote unit, which are mainly distributed in homes, offices, shopping centers, and the like. By switching the user to the small cell, the burden on the macro base station is reduced, and the capacity of the network is also increased.
  • the current neighbor cell discovery mechanism is to ensure the mobility of the mobile terminal (UE) without considering the new deployment environment under the heterogeneous network.
  • the neighbor cell discovery mechanism is based on s-measurement (s-Measure) and reference signal received power (RSRP) and/or reference signal received quality (RSRQ); due to cell distribution under heterogeneous networks
  • s-Measure s-measurement
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • small cell discovery strategies often require the use of measurement gaps. For mobile terminals, frequent configuration of measurement gaps not only consumes power, but also greatly consumes available resources.
  • the measurement period is increased to reduce unnecessary measurements, and the high speed mobile terminal is not allowed to access small cells within the hotspot.
  • This scheme reduces the power consumption of the mobile terminal side and the interference to the user plane of the serving cell, but the scheme has poor accuracy and there is a discovery delay.
  • the inter-frequency cell measurement may be triggered based on Proximity Indication, which may be classified as a macro base station based, small cell based, Or based on mobile terminals.
  • the macro base station based scheme and the small cell based scheme do not make any changes on the user plane, but how to improve accuracy is the biggest problem.
  • the small cell based solution needs to modify the X2 interface.
  • mobile terminal-based solutions are more accurate and more feasible, but add complexity to the mobile terminal side.
  • the small cell base station transmits a cell discovery signal (composed of a primary synchronization signal PSS, a secondary synchronization signal SSS, and system information) on a working frequency band of the macro cell.
  • a cell discovery signal composed of a primary synchronization signal PSS, a secondary synchronization signal SSS, and system information
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • system information system information
  • an apparatus in a wireless communication system including: a location information acquiring unit, configured to acquire location information of a mobile terminal; a mobile state evaluating unit, configured to: according to the mobile terminal at different times The location information to evaluate a mobile state of the mobile terminal; and an execution unit configured to perform a corresponding to the small cell discovery according to the location information of the mobile terminal and the change of the mobile state action.
  • the location information acquiring unit locates the mobile terminal according to a round-trip time and an angle of arrival obtained by measuring the mobile terminal, to obtain the location information of the mobile terminal, where The round trip time is obtained by the location information acquiring unit using the timing advance information of the mobile terminal to measure the mobile terminal.
  • the location information acquiring unit performs measurement on the mobile terminal a plurality of times according to a predetermined sampling period in a predetermined sampling time window to obtain a plurality of the round trip times and the plurality of Arrival angle.
  • the position information acquisition unit calculates an error correction factor using the result of the GNSS auxiliary measurement as a reference value, and corrects the positioning using the error correction factor.
  • the action related to the small cell discovery performed by the execution unit includes one or more of the following actions: determining the distance according to the distance between the mobile terminal and the small cell Whether the mobile terminal is approaching the small cell, or determining whether the initial condition discovered by the mobile terminal for the small cell is satisfied.
  • the moving state evaluation unit is further configured to calculate a moving speed and/or a moving direction of the mobile terminal according to the plurality of pieces of position information of the mobile terminal at different times.
  • the plurality of location information of the mobile terminal at different times are obtained according to a predetermined acquisition period
  • the executing unit is further configured to: update the mobile terminal according to the current moving speed of the mobile terminal. Get the period.
  • the movement state evaluation unit is further configured to divide the moving speed of the mobile terminal into different speed levels, and the execution unit is further configured to adopt an area different from the set.
  • the mobile state evaluation unit is further configured to determine a boundary range corresponding to the small cell according to a size of the moving speed of the mobile terminal, and the execution unit is further configured to The distance between the mobile terminal and the small cell is compared with the boundary range to determine whether the mobile terminal is approaching the small cell.
  • the mobile state evaluation unit is further configured to divide the small cells adjacent to each other into the same cluster, and obtain a boundary set corresponding to each small cell in the same cluster as a The boundary range corresponding to the same cluster.
  • the execution unit is further configured to: if the mobile terminal is outside the boundary range Then, a longer acquisition period is set; if the mobile terminal is within the boundary range, a shorter acquisition period is set.
  • the execution unit is further configured to determine, if the mobile terminal is located within the boundary range, whether the initial condition discovered by the mobile terminal for the small cell is satisfied, the initial The condition is one or more of the following: The mobile terminal is in a non-high speed mobile state, the small cell has a good load condition and there are remaining resources for access by the mobile terminal.
  • the mobile state evaluation unit is further configured to calculate a dwell time required by the mobile terminal to pass the small cell according to location information, a moving speed, and a moving direction of the mobile terminal, and calculate the The dwell time is compared to a predetermined dwell time threshold to assess whether the mobile terminal is in a non-high speed mobile state.
  • the method further includes: an inter-frequency neighbor cell measurement determining unit, configured to determine whether to trigger inter-frequency neighbor cell measurement of the mobile terminal.
  • the mobile state evaluation unit is further configured to calculate a reaction time of the mobile terminal to reach a coverage of the small cell according to location information, a moving speed, and a moving direction of the mobile terminal, and
  • the inter-frequency neighbor cell measurement determining unit is further configured to compare the calculated reaction time with a predetermined reaction time threshold to determine whether to trigger inter-frequency neighbor cell measurement of the mobile terminal.
  • the mobile state evaluation unit is further configured to divide the boundary range into a plurality of sub-regions, each sub-region corresponding to a predetermined trigger probability, and further configured to determine, according to location information of the mobile terminal, a sub-area in which the mobile terminal is located and a corresponding triggering probability thereof; and the inter-frequency inter-cell neighboring cell measurement determining unit is further configured to perform measurement with the neighboring cell according to the determined.
  • the method further includes: an inter-frequency neighbor cell access judging unit, configured to report the data according to the measurement of the mobile terminal before the inter-frequency inter-cell measurement of the mobile terminal has been triggered And determining location information of the mobile terminal to trigger inter-frequency cell handover and/or carrier loading of the mobile terminal.
  • a method for use in a wireless communication system including: a location information acquisition step of acquiring location information of a mobile terminal; and a mobile state evaluation step, Evaluating a mobile state of the mobile terminal according to the location information of the mobile terminal at different times; and performing steps to perform small and small according to the location information of the mobile terminal and the change of the mobile state
  • the cell finds the corresponding action.
  • the mobile terminal in the location information obtaining step, is located according to a round trip time and an angle of arrival obtained by measuring the mobile terminal to obtain the location of the mobile terminal.
  • Information, wherein the round trip time is obtained by measuring the mobile terminal by using timing advance information of the mobile terminal.
  • the mobile terminal in the location information obtaining step, is measured a plurality of times according to a predetermined sampling period in a predetermined sampling time window to obtain a plurality of the round trip times and more The angle of arrival.
  • the error correction factor is calculated using the result of the GNSS auxiliary measurement as a reference value, and the positioning is corrected using the error correction factor whil
  • the action related to the small cell discovery performed in the performing step includes one or more of the following actions: determining the location according to the distance between the mobile terminal and the small cell Whether the mobile terminal is approaching the small cell, or determining whether the initial condition discovered by the mobile terminal for the small cell is satisfied.
  • the moving speed and/or the moving direction of the mobile terminal are also calculated based on the plurality of location information of the mobile terminal at different times.
  • the plurality of location information of the mobile terminal at different times are obtained according to a predetermined acquisition period, and in the performing step, updating the acquisition of the mobile terminal according to the current moving speed of the mobile terminal. cycle.
  • the moving speed of the mobile terminal is further divided into different speed levels in the moving state evaluation step, and an area different from the set is also adopted in the performing step .
  • a boundary range corresponding to the small cell is further determined according to a size of the moving speed of the mobile terminal, and in the performing step, It is also determined whether the mobile terminal is approaching the small cell by comparing a distance between the mobile terminal and the small cell with the boundary range.
  • the plurality of location information of the mobile terminal at different times are obtained according to a predetermined acquisition period, and in the performing step, if the mobile terminal is outside the boundary range, Then, a longer acquisition period is set; if the mobile terminal is within the boundary range, a shorter acquisition period is set.
  • the performing step if the mobile terminal is located within the boundary range, it is determined whether the initial condition discovered by the mobile terminal for the small cell is satisfied,
  • the initial ⁇ is one or more of the following:
  • the multi-terminal is in a non-high-speed mobile state, the small cell has a good load condition and there are remaining resources for access by the mobile terminal.
  • the staying time required by the mobile terminal to pass the small cell is further calculated according to the location information, the moving speed, and the moving direction of the mobile terminal, and The calculated dwell time is compared to a predetermined dwell time threshold to assess whether the mobile terminal is in a non-high speed mobile state.
  • the method further includes: an inter-frequency neighbor cell measurement and determining step, determining whether to trigger the inter-frequency inter-cell measurement of the mobile terminal.
  • the reaction time of the mobile terminal to reach the coverage of the small cell is further calculated according to the location information, the moving speed, and the moving direction of the mobile terminal, And in the inter-frequency inter-cell neighboring cell measurement determining step, comparing the calculated reaction time with a predetermined reaction time threshold to determine whether to trigger inter-frequency neighbor cell measurement of the mobile terminal.
  • the boundary range is further divided into a plurality of sub-regions, each sub-region corresponding to a predetermined trigger probability, and further used for determining location information according to the mobile terminal Determining a sub-area in which the mobile terminal is located and a corresponding triggering probability thereof; and in the inter-inter-frequency neighbor cell measurement determining step, further measuring according to the determined inter-frequency neighboring cell.
  • the method further includes: an inter-frequency neighbor cell access judging step, in the case that the inter-frequency inter-cell measurement of the mobile terminal has been triggered, according to the measurement report and the mobile terminal of the mobile terminal.
  • the location information of the terminal is used to determine whether to trigger the inter-frequency cell handover and/or the loading of the mobile terminal.
  • an apparatus in a wireless communication system comprising: an angle of arrival measuring unit for measuring an angle of arrival of a signal transmitted from a mobile terminal to a base station; and a round trip time measuring unit, And a positioning unit configured to perform positioning on the mobile terminal according to the angle of arrival and the round trip time, where The round trip time measuring unit measures the round trip time by using the timing advance of the mobile terminal to measure the round trip time.
  • the method further includes: a receiving unit, configured to receive global navigation satellite system positioning information reported by the mobile terminal; and a correcting unit, configured to calculate an error correction factor by using the global navigation satellite system positioning information as a reference value, And correcting the positioning using the error correction factor.
  • a method for use in a wireless communication system comprising: an angle of arrival measurement step of measuring an angle of arrival of a signal transmitted from a mobile terminal to a base station; a round trip time measuring step, measuring the a round trip time required for a signal to travel back and forth between the mobile terminal and the base station; and a positioning step of locating the mobile terminal according to the angle of arrival and the round trip time, wherein the round trip time is measured
  • the mobile terminal is measured by the timing advance of the mobile terminal to obtain the round trip time.
  • the method further includes: a receiving step of receiving global navigation satellite system positioning information reported by the mobile terminal; and a correcting step of calculating an error correction factor by using the global navigation satellite system positioning information as a reference value, and using the The error correction factor corrects the positioning.
  • ⁇ ⁇ computer instructions for causing a computer to perform: a location information acquisition step, obtaining location information of the mobile terminal; a mobile state evaluation step, evaluating the mobile terminal's mobile state based on the location information of the mobile terminal at different times And performing steps to perform a corresponding action related to the small cell discovery according to the location information of the mobile terminal and the change of the mobile state.
  • computer instructions for causing a computer to perform: an angle of arrival measurement step, measuring an angle of arrival of a signal transmitted from the mobile terminal to the base station; a round trip time measuring step of measuring the signal between the mobile terminal and the base station a required round trip time; and a positioning step of locating the mobile terminal according to the angle of arrival and the round trip time, wherein in the round trip time measuring step, the timing advance amount of the mobile terminal is utilized
  • the mobile terminal performs measurement to obtain the round trip time.
  • FIG. 1 is a block diagram showing a configuration of an apparatus in a wireless communication system according to an embodiment of the present invention
  • Figure 2 is a diagram showing the type 1 for measuring the round trip time and the manner for measuring the round trip time according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a coverage area of a divided base station according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing evaluation of a movement state of a mobile terminal according to an embodiment of the present invention
  • FIG. A block diagram of another configuration of a device in a wireless communication system
  • FIG. 6 is a block diagram showing still another configuration of an apparatus in a wireless communication system according to an embodiment of the present invention.
  • FIG. 7 is a flow chart showing a method for use in a wireless communication system according to an embodiment of the present invention.
  • FIG. 8 is a flow chart showing a method for use in a wireless communication system in accordance with another embodiment of the present invention.
  • FIG. 9 is a flow chart showing a method for use in a wireless communication system in accordance with another embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration of an apparatus in a wireless communication system according to another embodiment of the present invention.
  • FIG. 11 is a flow chart showing a method for use in a wireless communication system according to another embodiment of the present invention.
  • FIG. 12 is a schematic block diagram showing an information processing apparatus that can be used as an implementation according to an embodiment of the present invention. detailed description
  • FIG. 1 is a block diagram showing the configuration of an apparatus in a wireless communication system according to an embodiment of the present invention.
  • the device 100 in the wireless communication system may include a location information acquisition unit 102, a mobility state evaluation unit 104, and an execution unit 106.
  • the location information acquisition unit 102 can acquire location information of the mobile terminal.
  • the location information of the mobile terminal is one of important information provided to the network side. According to the location information of the mobile terminal, the network side can perform the process of small cell discovery more accurately.
  • the location information acquiring unit 102 can acquire location information of the mobile terminal in various manners.
  • the location information acquisition unit 102 can obtain location information of the mobile terminal by locating the mobile terminal.
  • the location information acquiring unit 102 may acquire location information of the mobile terminal by receiving Global Navigation Satellite System (GNSS) measurement results reported by the mobile terminal, where the Global Navigation Satellite System (GNSS) may be, for example, a global positioning system ( GPS).
  • GNSS Global Navigation Satellite System
  • GPS global positioning system
  • the location information acquiring unit 102 may locate the mobile terminal according to the round-trip time and the angle of arrival obtained by measuring the mobile terminal, to obtain location information of the mobile terminal, where the round-trip time is obtained by the location information.
  • the unit 102 obtains the measurement of the mobile terminal by using the timing advance information of the mobile terminal.
  • a variety of methods for locating mobile terminals are defined in 3GPP 36.305, such as network side assisted GNSS (A-GNSS), downlink positioning, E-CID (Enhanced Cell ID Positioning), and uplink positioning.
  • A-GNSS network side assisted GNSS
  • E-CID Enhanced Cell ID Positioning
  • uplink positioning may have different implementation manners, as shown in Table 1. Table 1 - Different methods for locating mobile terminals
  • the E-CID uses the geographic knowledge of the serving cell of the mobile terminal.
  • measurements made by the mobile terminal and/or the eNodeB may additionally be employed.
  • the mobile terminal can be located according to the round trip time (RTT, Round Trip Time) and the angle of arrival (AoA, Angle of Arrival) measured on the mobile terminal.
  • RTT Round Trip Time
  • AoA Angle of Arrival
  • the present invention uses the E-CID to measure the round trip time and the angle of arrival implementation to locate the mobile terminal.
  • the round trip time and the angle of arrival are measured at the base station side.
  • the distance between the mobile terminal and the base station can be determined.
  • the angle of arrival the direction between the mobile terminal and the base station can be determined.
  • the relative position between the mobile terminal and the base station can be obtained. Since the round-trip time and the angle of arrival are measured at the base station side, the process of locating the mobile terminal can be simplified, and compatibility with existing standards can be achieved without adding an additional burden to the mobile terminal.
  • the angle of arrival can be measured in a variety of ways.
  • the antenna array on the base station side can track the uplink signal sent by the mobile terminal, and measure the arrival angle of the uplink signal, thereby determining the direction between the mobile terminal and the base station.
  • the uplink signal sent by the mobile terminal may be an SRS signal or a DM-RS signal or the like.
  • the round trip time can be determined based on the time at which the mobile terminal or base station measures the transmission/reception of the nth subframe.
  • Two ways to measure round trip time namely Type 1 and Type 2, are defined in 3GPP 36.305. Table 2 below compares Type 1 and Type 2 used to measure the round trip time. Table 2 - Comparison of Type 1 and Type 2 for measuring round trip time
  • Type 2 for measuring round trip time the base station acquires a round trip time by triggering a dedicated random access procedure to measure the arrival time of a pilot signal transmitted by the mobile terminal.
  • the time at which the mobile terminal transmits the pilot signal is based on the time at which the mobile terminal receives the downlink signal without transmitting in advance. Therefore, the time at which the pilot signal transmitted by the mobile terminal arrives at the base station is twice the one-way transmission delay. It can be seen that the implementation of Type 2 for measuring the round trip time is simpler, and the base station can independently measure and locate the mobile terminal, but needs to use the PRACH channel.
  • FIG. Fig. 2 is a schematic diagram showing the type 1 for measuring the round trip time and the manner for measuring the round trip time according to an embodiment of the present invention.
  • the horizontal axis represents time T.
  • the time t1 indicates the time when the mobile terminal transmits the nth subframe
  • the time t2 indicates the time when the base station transmits the nth subframe
  • the time t3 indicates the time when the base station receives the nth subframe
  • the time t4 indicates the time when the mobile terminal receives the nth subframe.
  • the round-trip time RTT is equal to the time difference (13 -12) between the time t3 at which the base station receives the n-th subframe and the time t2 at which the base station transmits the n-th subframe, or the mobile terminal receives the n-th child
  • the time difference (t4-tl) between the time t4 of the frame and the time t1 at which the mobile terminal transmits the nth subframe, that is, RTT ((t3-t2) + (t4-tl))/2.
  • the round-trip time RTT obtained by the method for measuring the round-trip time according to the embodiment of the present invention is equal to the time difference between the time t3 at which the base station receives the n-th subframe and the time t2 at which the base station transmits the n-th subframe (t3 - t2) ) plus timing advance TA. Therefore, according to the method for measuring the round-trip time according to the embodiment of the present invention, the base station can separately perform the measurement of the round-trip time using the timing advance TA information of the mobile terminal without the assistance of the mobile terminal.
  • the manner for measuring the round trip time according to the embodiment of the present invention is not limited to the pilot signal used in the PRACH channel, and thus is more widely applicable than the type 2 for measuring the round trip time.
  • the location information acquisition unit 102 may measure the mobile terminal a plurality of times to obtain a plurality of back times and a plurality of angles of arrival in a predetermined sampling time window according to a predetermined sampling period.
  • a period of time can be set in advance as the sampling time window.
  • the mobile terminal is measured a plurality of times in accordance with a predetermined sampling period to obtain a plurality of round trip times and a plurality of angles of arrival.
  • the base station needs to acquire location information of the mobile terminal.
  • the base station configures a sampling time window at time t, the duration of the sampling time window being ⁇ ⁇ .
  • the base station measures the mobile terminal multiple times with T s as the sampling period to obtain multiple round trip times and multiple arrival angles.
  • ⁇ ⁇ is small enough, the distance that the mobile terminal moves within the sampling time window is not large.
  • the signals arriving with the least time are often subjected to fewer reflections, more likely to be direct paths, or near direct paths.
  • the location of the mobile terminal at time t can be determined by removing the bad value points from the measured multiple round trip times and the multiple arrival angles to obtain n times after removing the bad value points.
  • the minimum value in n ⁇ is taken as the final round trip time RTT F , ie RTTp ⁇ miniRTT!, RTT 2 , RTT n ⁇ ;
  • the average of the n arrival angles ⁇ ⁇ l ⁇ 2 , ..., ⁇ ⁇ ⁇ is calculated as the final arrival Angle AoA F , ie ..., ⁇ ⁇ ⁇ ;
  • the position of the mobile terminal at time t can be determined.
  • the above sampling time window can be set according to the following principle: the length of the set sampling time window should be appropriate, because: If the length of the sampling time window is set too long, the base station resources will be occupied excessively. Moreover, the measurement is not accurate; in addition, if the length of the sampling time window is set too short, the purpose of improving the accuracy of the positioning cannot be achieved.
  • the position information acquisition unit 102 calculates an error correction factor using the result of the global navigation satellite system auxiliary measurement as a reference value, and corrects the positioning using the error correction factor.
  • the GNSS positioning method has the characteristics of high accuracy.
  • more and more mobile terminals have the functions of global navigation satellite systems. Therefore, according to an embodiment of the present invention, the positioning error of the round trip time can be corrected by using the measurement result of the global navigation satellite system, thereby further improving the accuracy of positioning the mobile terminal.
  • the error correction factor P RTT can be calculated using the measurement result of the global navigation satellite system as a standard value, and the positioning performed using the round trip time is corrected using the calculated error correction factor P RTT .
  • the scenario of using a global navigation satellite system is not limited to this.
  • the location information acquiring unit 102 can acquire the location information of the mobile terminal by receiving the Global Navigation Satellite System (GNSS) measurement result reported by the mobile terminal, wherein the global navigation satellite system (GNSS) can be, for example, a Global Positioning System (GPS).
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the base station may also request the mobile terminal to immediately report the measurement result of the global navigation satellite system.
  • the base station when the mobile terminal is located at the base station by using the angle of arrival and the round trip time, the base station sends a positioning request, and the base station end independently completes the measurement of the angle of arrival and the round trip time, thereby implementing the mobile terminal. Positioning. Therefore, according to the positioning method of the embodiment of the present invention, the process of positioning the mobile terminal can be simplified, and the network signaling resource is reduced. The source is occupied, and the corresponding delay is not generated, thereby improving the efficiency of positioning the mobile terminal.
  • the above manner of positioning the mobile terminal is merely exemplary, and other methods for positioning the mobile terminal may also be adopted.
  • the above method of positioning the mobile terminal can be applied to other occasions.
  • the foregoing method for positioning a mobile terminal can also be applied to the following situations: for providing emergency ambulance, positioning of a mobile terminal in an emergency call scenario; for providing location-based information services, such as navigation information and tour guide services, etc. Services for location triggering, such as location-based management and billing; for tracking and property management, vehicle scheduling/tracking, logistics monitoring, elderly/child care services, etc.
  • the mobile state evaluation unit 104 in the device 100 can evaluate the mobile state of the mobile terminal based on the location information of the mobile terminal at different times.
  • the mobile state evaluation unit 104 may obtain a plurality of location information of the mobile terminal at different times according to the foregoing method for acquiring location information of the mobile terminal. For example, the mobility state evaluation unit 104 may acquire, respectively, the position information of Pl mobile terminal at the time, at time t the position information p 2 2, ... at time ⁇ location Pl at time tj location ft at a time t position n Information p n , where i, j and n are natural numbers, and l ⁇ i ⁇ n, l ⁇ j ⁇ n.
  • the time period ( t r tj ) between the two times can be obtained according to the time ⁇ and the time tj, and the distance ( P- Pj ) of the mobile terminal moving within the time period ( t r tj ) is obtained according to the position information P1 and the position information.
  • the mobile terminal's mobile state can be evaluated, for example, the mobile terminal is Whether to move at high speed, medium speed or low speed, or whether the mobile terminal is moving toward a small cell or leaving a small cell, and the like.
  • the mobile state evaluation unit 104 is further configured to calculate a moving speed and/or a moving direction of the mobile terminal according to the plurality of location information of the mobile terminal at different times.
  • the mobile terminal can obtain the time period (t r tj) The speed of movement inside.
  • a curve fitting or prediction method may be used to estimate the movement trajectory of the mobile terminal, thereby estimating the moving direction of the mobile terminal.
  • the mobile terminal can also use the positioning information of the global navigation satellite system to calculate the total distance that the mobile terminal moves within a given time interval, and by giving the mobile terminal a given The total distance moved within the time interval divided by the given time interval can also be used to obtain the moving speed of the mobile terminal during the given time interval.
  • the execution unit 106 in the device 100 can perform a corresponding action related to small cell discovery based on the location information of the mobile terminal and the change in the mobile state.
  • whether to perform small cell discovery is related to the distance of the mobile terminal from the small cell. If the mobile terminal is far from the small cell, the probability that the mobile terminal may be a small cell is small, so only a rough evaluation of the mobile state of the mobile terminal is required. If the mobile terminal is closer to the small cell, the probability that the mobile terminal may enter the small cell is greater, so a more accurate assessment of the mobile terminal's mobile state may be required to initiate the process of small cell discovery when appropriate.
  • the action related to small cell discovery performed by the execution unit 106 includes one or more of the following actions: determining whether the mobile terminal is based on a distance between the mobile terminal and the small cell The small cell is approaching, or it is determined whether the initial condition discovered by the mobile terminal for the small cell is satisfied.
  • the process of small cell discovery needs to be started at an appropriate time.
  • the distance between the mobile terminal and the small cell may be calculated according to the location information of the mobile terminal, and the mobile terminal is determined according to the calculated distance between the mobile terminal and the small cell. Whether it is approaching a small cell. When the mobile terminal properly approaches the small cell, it can be considered that the process of starting the small cell discovery at this time is appropriate.
  • the process of small cell discovery when the process of small cell discovery is started, it may be judged whether the initial condition discovered by the mobile terminal for the small cell is satisfied.
  • the initial condition for small cell discovery is one or more of the following: the mobile terminal is in a non-high speed mobile state, the load condition of the small cell is good and there are remaining resources for access by the mobile terminal.
  • the plurality of location information of the mobile terminal at different times are obtained according to a predetermined acquisition period
  • the execution unit 106 is further configured to: update the acquisition period of the mobile terminal according to the current moving speed of the mobile terminal.
  • the base station may acquire multiple location information of the mobile terminal according to a predetermined acquisition period. For example, the base station may acquire the location information of the mobile terminal once every 500 ms.
  • the length of the foregoing acquisition period is adjustable. For example, the length of the acquisition period may be adjusted according to the current moving speed of the mobile terminal. For example, if the moving speed of the mobile terminal is larger, the location information of the mobile terminal changes faster, so the acquisition period can be set shorter; if the mobile terminal moves The smaller the moving speed is, the slower the position information of the mobile terminal changes, so the longer the acquisition period can be set.
  • the length of the acquisition period can also be adjusted according to other factors.
  • FIG. 3 is a schematic diagram showing a coverage area of a divided base station according to an embodiment of the present invention.
  • the mobile state evaluation unit 104 is further configured to determine a boundary range corresponding to the small cell according to the size of the mobile terminal, and the execution unit 106 is further configured to use the mobile terminal and the small cell. The distance is compared with the boundary range to determine whether the mobile terminal is approaching the small cell.
  • the mobile state evaluation unit 104 can calculate the moving speed of the mobile terminal based on the plurality of location information of the mobile terminal at different times. After calculating the moving speed of the mobile terminal, the mobile state evaluating unit 104 can determine the boundary range corresponding to the small cell according to the magnitude of the moving speed of the mobile terminal.
  • the boundary range corresponding to the small cell is used to measure the proximity of the mobile terminal to the small cell, and the mobile terminal cannot successfully receive the signal of the small cell within the boundary, but it is likely to be close to the small cell, respectively For mobile terminals with different moving speeds, the same small cell has different boundary ranges.
  • the movement state evaluation unit 104 may divide the moving speed of the mobile terminal into different levels such as high speed, medium speed, and low speed, and the different speeds of the respective levels correspond to different boundary ranges, respectively.
  • the moving speed of the mobile terminal is at a high speed level, its corresponding boundary range is large; if the moving speed of the mobile terminal is at a low speed level, its corresponding boundary range is small; if the moving speed of the mobile terminal is in the middle The speed level, the corresponding boundary range is between the larger boundary range and the smaller boundary range.
  • the mobile state evaluation unit 104 may perform more detailed monitoring of the mobile terminal within the boundary to evaluate its mobile state and calculate the handover reaction time of the mobile terminal. Therefore, if the boundary range is determined to be larger, the mobile terminal close to the small cell can be finely monitored earlier, and thus the accuracy of the mobile state evaluation is correspondingly improved, but the mobile state evaluation unit 104 The processing load will also increase accordingly, so the boundary range needs to be determined to be an appropriate size to achieve a compromise between the accuracy of the mobile terminal evaluation and the processing load. In addition, the boundary range is still > mm
  • the current location of the mobile terminal is A (x a y a ), and the moving direction of the mobile terminal (ie, the angle between the arrow indicating the forward direction of the mobile terminal and the horizontal line in FIG. 4) is ⁇ , the mobile terminal
  • the moving speed at position A (x a , y a ) is v.
  • the deployment location of the small cell ie, the deployment location of the access point of the small cell
  • O the radius of the coverage of the small cell
  • the handover reaction time t react of the mobile terminal is equal to the coverage range of the mobile terminal from the current location A (x a , y a ) to the small cell according to the current moving speed V and the moving direction ⁇ (ie, in FIG. 4 Point B) time, and the mobile terminal is at the boundary
  • the minimum handover response time of the mobile terminal is ⁇ . "'. "It can be determined experimentally.
  • the boundary range corresponding to the small cell is a circle centered on the access point of the small cell.
  • the effect of the boundary range may not be a standard circle.
  • the use of a circle to approximate the boundary range corresponding to the small cell is only for the purpose of simplifying the modeling, and of course other The shape is to approximate the boundary range corresponding to the small cell.
  • the mobile terminal After determining the boundary range corresponding to the small cell, it can be judged whether the mobile terminal is approaching the small cell by comparing the distance between the mobile terminal and the small cell (small cell access point) with the boundary range. For example, if the distance between the mobile terminal and the small cell is less than or equal to the boundary range, the mobile terminal is located within the boundary, which means that the mobile terminal is approaching the small cell. In addition, if the distance between the mobile terminal and the small cell is greater than the boundary range, the mobile terminal is outside the boundary range, which means that the mobile terminal is far from the small cell and is not approaching the small cell.
  • the mobile state evaluation unit 104 is further configured to divide the small cells adjacent to each other into the same cluster, and combine the boundary ranges corresponding to the respective small cells in the same cluster as the same The boundary range corresponding to the cluster.
  • the mobile state evaluation unit 104 may divide the small cells that are closer to each other into the same cluster. For each small cell in the cluster, the boundary range corresponding thereto is determined respectively. Then, the determined boundary ranges are summed as the boundary range corresponding to the same cluster. In this case, the resulting boundary range corresponding to the same cluster is no longer circular.
  • the mobile state evaluation unit 104 may also determine the coverage of the small cell according to the signal quality of the small cell.
  • the coverage of a small cell generally refers to an area in which a mobile terminal can normally receive signals of a small cell and obtain a normal quality of service.
  • the mobile terminal evaluation unit 104 can determine the received signal strength and/or carrier interference noise ratio of the small cell.
  • the coverage of the small cell Specifically, a value of the signal quality may be defined as a threshold of the coverage of the small cell, and the threshold may be a value of the signal quality of the small cell when the mobile terminal triggers the measurement of the handover.
  • the coverage of the small cell is determined.
  • the signal quality distribution of the small cell can be measured either in advance during actual deployment or from the measurement report of the mobile terminal.
  • the coverage of the small cell is also related to the transmission power of the small cell.
  • the coverage of a small cell is also a circle centered on an access point of a small cell.
  • the coverage of the small cell is concentric with the above-mentioned boundary range, and the radius of the coverage is smaller than the radius of the boundary range.
  • the coverage of the small cell may not be a standard circle, and the radius of the coverage of the small cell may also be different from the reference value given in the standard.
  • the use of a circle to approximate the coverage of a small cell is merely for the purpose of simplifying modeling, although other shapes may be employed to approximate the coverage of the small cell.
  • the mobile state evaluation unit 104 is further configured to divide the moving speed of the mobile terminal into different speed levels
  • the executing unit 106 is further configured to adopt the zoning standard corresponding to the speed level of the mobile terminal to move The location where the terminal is located is classified into different areas.
  • the location where the mobile terminal is located may be classified into different areas by using the area division standard corresponding to the speed level of the mobile terminal.
  • the mobile state evaluation unit 104 may divide the moving speed of the mobile terminal into three levels such as high speed, medium speed, and low speed, and the execution unit 106 may adopt the area dividing standard corresponding to the high speed level, the medium speed level, and the low speed level, respectively.
  • the location where the mobile terminal is located is classified into different areas.
  • the coverage area of the base station may be divided into the outer area a1, the middle area bl, and the inner area cl according to the distance from the small cell, that is, the mobile terminal
  • the area division standard corresponding to the high-speed level is the outer area a1, the intermediate area b1, and the inner area cl; if the moving speed of the mobile terminal belongs to the medium-speed level, the coverage area of the base station can be from far to near according to the distance from the small cell.
  • the ground is divided into an outer area a2, an intermediate area b2, and an inner area c2, that is, an area division standard corresponding to a medium speed level of the mobile terminal is an outer area a2, an intermediate area b2, and an inner area c2; and if the moving speed of the mobile terminal belongs to a low speed level, Then, the coverage area of the base station can be divided into the outer area a3, the middle area b3, and the inner area c3 according to the distance from the small cell, that is, the area division standard corresponding to the low speed level of the mobile terminal is the outer area a3, the middle a region b3 and an inner region c3, wherein the outer regions a1, a2, and a3 are located outside a boundary range corresponding to the small cell (outer range shown in FIG. 3), and the intermediate regions b1, b2, and b3 are located corresponding to the small cell
  • the boundary range is between the coverage of the small cell, and the internal areas cl, c2, and c3 are
  • the coverage of the small cell is the same, that is, for the different levels of the moving speed of the mobile terminal being high speed, medium speed, and the divided internal area.
  • the radii of cl, c2 and c3 can be the same.
  • the boundary range corresponding to the mobile terminal whose moving speed is at the high speed level is large, the mobile terminal whose moving speed is at the low speed level corresponds to a smaller boundary range, and the mobile terminal whose moving speed is at the medium speed level is The corresponding boundary range is between the larger boundary range and the smaller boundary range, so the intermediate areas bl, b2 and b3 are divided for different levels of high speed, medium speed and low speed of the mobile terminal.
  • the mobile state evaluation unit 104 can evaluate the mobile state of the terminal, and can calculate the moving speed and/or the moving direction of the mobile terminal based on the plurality of location information of the mobile terminal at different times. After calculating the moving speed of the mobile terminal, it may be determined which of the different speed levels the calculated moving speed of the mobile terminal belongs to, thereby determining to adopt the area dividing criterion corresponding to the speed level of the mobile terminal.
  • the mobile terminal's mobile state changes, for example, the mobile terminal's moving speed changes to belong to a different speed level
  • the corresponding zoning criteria may be changed accordingly.
  • the mobile terminal can be classified into different regions according to the distance between the mobile terminal and the access point of the small cell. And set different location update strategies for different areas. For example, if the moving speed of the mobile terminal is a high speed level, it may be determined that the area dividing standard corresponding to the high speed level of the mobile terminal is the outer area a1, the intermediate area b1, and the inner area cl.
  • the distance D between the mobile terminal and the small cell can be compared with the radius 1 ⁇ of the intermediate region bl and the radius R cl of the internal region, respectively, and the location where the mobile terminal is located is classified according to the result of the comparison.
  • Area Specifically, if ER cl , the location where the mobile terminal is located is classified as an internal region; if R cl ⁇ D ⁇ ; R bl , the location where the mobile terminal is located is classified as an intermediate region; and if al > D > R Bl , the position where the mobile terminal is located is classified as the outer area (the outer range shown in Fig. 3).
  • the moving speed of the mobile terminal is similar in principle, and details thereof will not be described again.
  • the base station When the mobile terminal is located in the outer area, for example, the mobile terminals at times t1, t2, t3, and t4 as shown in FIG. 3, since the mobile terminal is far away from the small cell, the base station only needs to update the mobile at intervals.
  • the location information of the terminal may be calculated according to the plurality of location information of the mobile terminal.
  • the mobile terminal When the mobile terminal is located in the middle area, for example, the mobile terminal at time t5 as shown in FIG. 3, the terminal is located within the boundary of the small cell, but has not entered the coverage of the small cell, which means that the mobile terminal At this time, the small cell is already approached, and it is very likely that the internal area (ie, the coverage of the small cell) is continued.
  • the base station needs to obtain the location information of the mobile terminal and the change of the mobile state more accurately to determine whether the coverage of the small cell is to be In order to trigger the inter-frequency neighbor cell measurement process of the mobile terminal when the mobile terminal is found to be close to the internal area (ie, the coverage of the small cell).
  • the inter-frequency inter-cell measurement process of the mobile terminal may have been triggered, so the base station will only refer to the mobile terminal.
  • the advertisement status of the obituary and the mobile terminal is measured, and the inter-frequency cell handover process and/or the carrier loading process of the mobile terminal are triggered at an appropriate timing.
  • the plurality of location information of the mobile terminal at different times are obtained according to a predetermined acquisition period
  • the execution unit 106 is further configured to: if the mobile terminal is outside the boundary range, set a longer Acquisition period; if the mobile terminal is within the boundary, set a shorter acquisition period.
  • the base station may acquire multiple location information of the mobile terminal according to a predetermined acquisition period. For example, the base station may acquire the location information of the mobile terminal once every 500 ms.
  • the length of the foregoing acquisition period is adjustable. For example, the length of the acquisition period may be adjusted according to the actual location where the mobile terminal is located. Specifically, as shown in FIG. 3, when the mobile terminal is located outside the boundary range, that is, when the mobile terminal is located in the outer range, since the mobile terminal is far away from the small cell, The base station only needs to obtain the rough location information of the mobile terminal, so the acquisition period can be set longer.
  • FIG. 3 when the mobile terminal is located outside the boundary range, that is, when the mobile terminal is located in the outer range, since the mobile terminal is far away from the small cell.
  • the base station needs to obtain the position information of the mobile terminal and the change of the mobile state more accurately to determine. Whether a small cell is found, so the acquisition period can be set to be shorter.
  • the length of the acquisition cycle may be adjusted according to the moving speed of the mobile terminal. For example, if the moving speed of the mobile terminal is larger, the location information of the mobile terminal changes faster, so the acquisition period can be set shorter; if the moving speed of the mobile terminal is smaller, the position information of the mobile terminal changes more slowly. , so the longer the acquisition cycle can be set.
  • the length of the acquisition period can also be adjusted according to other factors.
  • the executing unit 106 is further configured to determine whether the initial condition of the mobile terminal for small cell discovery is satisfied if the mobile terminal is located within a boundary range, where the initial condition is one or more of the following The mobile terminal is in a non-high-speed mobile state, and the load of the small cell is good and there are remaining resources for access by the mobile terminal.
  • the initial condition found by the small cell may be one or more of the above.
  • small cells are mainly deployed in densely populated areas, such as supermarkets, shopping malls, offices, etc.
  • the main purpose is to share the services of the base station. Therefore, if high-speed mobile terminals appear in the above-mentioned densely populated areas, they often do not stay, but only pass. Therefore, if the mobile terminal is in a high speed mobile state, small cell discovery should not be performed on it and switched to the small cell. That is to say, the small cell discovery process can be performed with the mobile terminal in a non-high speed moving state.
  • the small cell discovery process can be performed in the case where the load condition of the small cell is good and the remaining resources are used for access by the mobile terminal.
  • FIG. 4 is a diagram showing evaluation of a moving state of a mobile terminal according to an embodiment of the present invention.
  • the mobile state evaluation unit 104 is further configured to The location information, the moving speed and the moving direction are used to calculate the dt time t stay required by the mobile terminal to pass through the small cell, and the calculated dwell time t stay is compared with a predetermined dwell time threshold to evaluate whether the mobile terminal is in a non-high speed Move status.
  • the current position of the mobile terminal is A (x a , y a ), and the moving direction of the mobile terminal (ie, the angle between the arrow indicating the forward direction of the mobile terminal and the horizontal line in FIG. 4) is a, moving.
  • the moving speed of the terminal at position A (x a , y a ) is v.
  • the deployment location of the small cell ie, the deployment location of the access point of the small cell
  • O the radius of the coverage of the small cell
  • the calculated dwell time t stay may be compared to a predetermined dwell time threshold T stay to assess whether the mobile terminal is in a non-high speed moving state. For example, if t stay ⁇ T stay , the mobile terminal can be considered to be in a high-speed moving state, so Switching a mobile terminal to a small cell only degrades the experience of the user holding the mobile terminal. In addition, if t stay > T stay , the mobile terminal can be considered to be in a non-high speed mobile state, and thus the small cell discovery process of the mobile terminal can be triggered.
  • FIG. 5 is a block diagram showing another configuration of an apparatus in a wireless communication system according to an embodiment of the present invention.
  • the apparatus 500 in the wireless communication system includes a location information acquisition unit 502, a mobility state evaluation unit 504, an execution unit 506, and an inter-frequency neighbor cell measurement determination unit 508.
  • the configurations of the location information acquiring unit 502, the mobile state evaluating unit 504, and the executing unit 506 are the same as the configurations of the location information acquiring unit 102, the mobile state evaluating unit 104, and the executing unit 106 in the device 100 shown in FIG. 1, respectively. Therefore, the specific details thereof will not be described herein.
  • the inter-frequency neighbor cell measurement judging unit 508 in the device 500 will be described in detail.
  • the inter-frequency neighbor cell measurement determining unit 508 can determine whether to trigger inter-frequency neighbor cell measurement of the mobile terminal.
  • the mobile terminal satisfies the initial condition of small cell discovery, it indicates that the mobile terminal is close to the coverage of the small cell and will soon have the coverage of the small cell.
  • the measurement of the signal quality of the neighboring cell by the mobile terminal is triggered at the appropriate time, and the measured signal quality of the neighboring cell is reported to the base station.
  • the initial condition of the small cell discovery is one or more of the following: The mobile terminal is in a non-high speed mobile state, the load condition of the small cell is good and the remaining resources are used for access by the mobile terminal.
  • the configuration of the cell measurement reference can be made to Section 10.1.3 in 3GPP TS 36.300 and Section 5.5.4 in 3GPP TS 36.331.
  • the above measurement is not a big problem.
  • inter-frequency that is, the case of inter-frequency measurement
  • the above measurement is not suitable.
  • the mobile terminal since the mobile terminal has only one signal, only one band of information can be received at the same time. Therefore, in order to achieve cell measurement between different frequencies, it is necessary to introduce the concept of "measurement gap".
  • the measurement gap is defined as follows in 3GPP TS 36.311 section 8 ⁇ 2.1: Within the measurement gap, the mobile terminal will not transmit any data and will not tune the receiver of the mobile terminal to the frequency band of the E-UTRAN serving cell . In the uplink subframe immediately after the measurement gap, E-UTRAN Frequency Division Multiplexing (FDD) mobile terminals do not transmit any data, and if the subframe before the measurement gap is a downlink subframe, the E-UTRAN Time Division Multiplexing (TDD) mobile terminal does not transmit any data.
  • FDD Frequency Division Multiplexing
  • TDD Time Division Multiplexing
  • the RRC_Connection_Reconfiguration message can be used to configure the MeasGapConfig IE, and the base station notifies the mobile terminal of the measurement gap, such as the starting point of the measurement gap, the length of the measurement gap, the number of measurement gaps, and the like.
  • the base station notifies the mobile terminal of the measurement gap, such as the starting point of the measurement gap, the length of the measurement gap, the number of measurement gaps, and the like.
  • two measurement gap modes that the mobile terminal can support are also provided in the 3GPP TS 36.133. For details, refer to 3GPP TS 36.133, and details are not described herein again. Therefore, the above question about how to trigger the measurement of the signal quality of the neighboring cell by the mobile terminal at an appropriate time is actually a question about when the measurement gap is configured.
  • the mobile state evaluation unit 504 is further configured to calculate, according to the location information, the moving speed, and the moving direction of the mobile terminal, a response time of the mobile terminal to reach the coverage of the small cell, and the inter-frequency neighbor cell measurement and determination.
  • the unit 508 is further configured to compare the calculated reaction time with a predetermined reaction time threshold to determine whether to trigger inter-frequency neighbor cell measurement of the mobile terminal.
  • the reaction time t react ⁇ of the mobile terminal indicates the time when the mobile terminal reaches the coverage of the small cell from the current location according to the current motion state (for example, the current moving speed and the moving direction of the mobile terminal).
  • the reaction time of how the mobile terminal reaches the coverage of the small cell has been described above in connection with FIG.
  • the current position of the mobile terminal is A (x a , y a ), and the moving direction of the mobile terminal (ie, the angle between the arrow indicating the forward direction of the mobile terminal and the horizontal line in FIG. 4) is ⁇
  • moving The moving speed of the terminal at position A ( x a , y a ) is v.
  • the deployment location of the small cell ie, the deployment location of the access point of the small cell
  • the radius of the coverage of the small cell is R b .
  • the reaction time t reactl of the mobile terminal. n is equal to the time when the mobile terminal reaches the coverage of the small cell (ie, point B in FIG. 4) from the current position A (x a , y a ) according to the current moving speed V and the moving direction ⁇ .
  • the reaction time may be calculated t reactl. n with a predetermined reaction time threshold T reactl . n compare to determine whether to trigger the inter-frequency neighbor cell measurement of the mobile terminal. For example, if t reactl n ⁇ T reactl . n , then the mobile terminal can be considered to be closer to the small cell, and the inter-frequency cell measurement of the mobile terminal should be triggered.
  • the predetermined reaction time threshold T react can be determined based on the test.
  • the coverage of the small cell is not circular. Therefore, after the measurement gap is configured, the following situations may occur: a) The small cell is discovered very quickly (for example, before the next positioning of the mobile terminal), and the small cell handover is successfully completed; b) soon found Small cell, no small cell handover; c) small cell discovery soon, but small cell handover failure occurs; d) small cell is discovered after a period of time (for example, after the next time the mobile terminal is located); or e) There was no small cell found for a long time.
  • cell handover between different frequencies is often based on event triggering, such as A3 events.
  • the entry condition of the A3 event is that the signal quality of the neighboring cell (e.g., based on the RSRP value or the RSRQ value) is higher than the offset with respect to the serving cell.
  • the mobile terminal may be configured to periodically perform measurement caps. Therefore, if a measurement report of the mobile terminal with respect to the small cell is detected, it can be considered that the small cell has been found so far.
  • the detection time t detect can be used to indicate the time from triggering the inter-frequency cell measurement to satisfying the A3 event trigger condition.
  • the predetermined maximum detection time threshold can be determined based on the test. In addition, you can pass
  • RRC Connectionion—Reconfiguration message to close the measurement gap.
  • case c) this means that the inter-frequency inter-cell measurement is triggered later, resulting in insufficient response time and a handover failure.
  • the present invention when determining whether to trigger inter-frequency neighbor cell measurement of the mobile terminal, receiving global navigation satellite system positioning information reported by the mobile terminal, and calculating according to the reported global navigation satellite system positioning information The moving speed and/or moving direction of the mobile terminal, and the like.
  • the base station when the base station needs to obtain accurate positioning information, for example, when triggering the inter-frequency inter-cell measurement of the mobile terminal, the mobile terminal may be requested to report the global navigation satellite system positioning information to the base station. Based on the reported global navigation satellite system positioning information, the base station can calculate the moving speed and/or moving direction of the mobile terminal.
  • the mobile state evaluation unit 504 is further configured to divide the boundary range into a plurality of sub-regions, each sub-region corresponding to a predetermined trigger probability, and further configured to determine, according to location information of the mobile terminal, where the mobile terminal is located The sub-area and its corresponding trigger probability; and the inter-frequency neighbor cell measurement determining unit 508 is further configured to trigger the inter-frequency inter-cell measurement of the mobile terminal according to the determined trigger probability corresponding to the sub-area in which the mobile terminal is located.
  • the coverage of the small cell in the actual scenario is very irregular
  • the angle of simplified modeling uses a circle to approximate the coverage of a small cell, thereby facilitating the evaluation of the mobile state.
  • the coverage of the actual small cell needs to be considered.
  • the boundary range may be divided into a plurality of sub-areas according to an angle and/or a distance with respect to the small cell, each sub-area corresponding to a predetermined trigger probability.
  • the base station determines, according to the location information of the mobile terminal, the sub-area in which the mobile terminal is located and its corresponding trigger probability, and according to the determined sub-area to which the mobile terminal is located.
  • the corresponding trigger probability triggers the inter-frequency neighbor cell measurement of the mobile terminal.
  • the trigger probability can be related to factors such as whether the mobile terminal uses GNSS assistance and the success rate of previous small cell discovery.
  • FIG. Fig. 6 is a block diagram showing another configuration of an apparatus in a wireless communication system according to an embodiment of the present invention.
  • the apparatus 600 in the wireless communication system includes a location information acquisition unit 602, a mobility state evaluation unit 604, an execution unit 606, an inter-frequency neighbor cell measurement determination unit 608, and an inter-frequency neighbor cell access determination unit 610.
  • the configurations of the location information obtaining unit 602, the mobile state evaluating unit 604, the executing unit 606, and the inter-frequency neighbor cell measurement determining unit 608 are respectively compared with the location information acquiring unit 502 in the apparatus 500 shown in FIG. 5, and the mobile state evaluation.
  • the configuration of the unit 504, the executing unit 506, and the inter-frequency neighbor cell measurement determining unit 508 are the same, and thus detailed details thereof are not described herein again.
  • the inter-frequency neighbor cell access judging unit 610 in the device 600 will be described in detail.
  • the inter-frequency neighbor cell access judging unit 610 may, according to the inter-inter-frequency neighbor cell measurement of the mobile terminal, according to the measurement information of the mobile terminal and the location information of the mobile terminal, It is determined whether to trigger inter-frequency cell handover and/or carrier loading of the mobile terminal.
  • the entry condition of the A3 event is that the signal quality of the neighboring cell (e.g., based on the RSRP value or the RSRQ value) is higher than the offset with respect to the serving cell.
  • the mobile terminal may be configured to periodically perform measurement reporting. Therefore, in the case that the mobile terminal has triggered inter-frequency neighbor cell measurement, the base station may trigger the inter-frequency inter-cell handover of the mobile terminal or the mobile terminal according to the measurement information of the mobile terminal and the location information of the mobile terminal. Carrier loading process.
  • FIG. 7 is a flow chart showing a method for use in a wireless communication system in accordance with an embodiment of the present invention. As shown in FIG. 7, the method begins in step 700. After step 700, the method proceeds to step 702.
  • Step 702 is a location information acquisition step. At step 702, the location information of the mobile terminal is obtained. After step 702, the method proceeds to step 704.
  • Step 704 is a mobile state evaluation step.
  • the mobile terminal's mobile status is evaluated based on the location information of the mobile terminal at different times.
  • step 704 the method proceeds to step 706.
  • Step 706 is a step of performing. At step 706, a corresponding action related to the small cell discovery is performed based on the location information of the mobile terminal and the change in the mobile state.
  • Fig. 7 The method shown in Fig. 7 is a method corresponding to the apparatus described in Fig. 1, and the specific details thereof will not be described again.
  • FIG. Figure 8 is a diagram showing a method for use in a wireless communication system in accordance with another embodiment of the present invention.
  • step 800 the method begins in step 800. After step 800, the method proceeds to step 802.
  • Step 802 is a location information acquisition step. At step 802, location information of the mobile terminal is obtained.
  • step 802 the method proceeds to step 804.
  • Step 804 is a mobile state evaluation step.
  • the mobile terminal's mobile status is evaluated based on the location information of the mobile terminal at different times.
  • step 804 the method proceeds to step 806.
  • Step 806 is a step of performing. At step 806, a corresponding action related to small cell discovery is performed based on the location information of the mobile terminal and the change in the mobile state.
  • step 806 the method proceeds to step 808.
  • Step 808 is a measurement and determination step of the inter-frequency inter-cell neighboring cell. At step 808, it may be determined whether the inter-frequency neighbor cell measurement of the mobile terminal is triggered.
  • FIG. 8 is a method corresponding to the apparatus described in FIG. 5, and specific details thereof will not be described herein.
  • a method for use in a wireless communication system according to another embodiment of the present invention will now be described with reference to FIG. 9 is a diagram showing a method for use in a wireless communication system in accordance with another embodiment of the present invention.
  • step 900 the method begins in step 900. After step 900, the method proceeds to step 902.
  • Step 902 is a location information acquisition step. At step 902, location information of the mobile terminal is obtained.
  • step 902 the method proceeds to step 904.
  • Step 904 is a mobile state evaluation step.
  • the mobile terminal's mobile status is evaluated based on the location information of the mobile terminal at different times.
  • step 904 the method proceeds to step 906.
  • Step 906 is the step of performing. At step 906, a corresponding action related to the small cell discovery is performed based on the location information of the mobile terminal and the change in the mobile state.
  • step 906 the method proceeds to step 908.
  • Step 908 is a measurement step of the inter-inter-frequency neighbor cell measurement. In step 908, it may be determined whether the inter-frequency neighbor cell measurement of the mobile terminal is triggered if the mobile terminal satisfies the initial condition of the small cell discovery.
  • step 908 the method proceeds to step 910.
  • Step 910 is an inter-frequency neighbor cell access determination step.
  • the inter-frequency inter-cell measurement of the mobile terminal may be determined according to the measurement information of the mobile terminal and the location information of the mobile terminal, whether to trigger the inter-frequency inter-cell handover of the mobile terminal. / or carry.
  • Fig. 9 The method shown in Fig. 9 is a method corresponding to the apparatus described in Fig. 6, and the specific details thereof will not be described again.
  • the mobile terminal initially appears in the outer area and moves to the small area at a low speed.
  • the process of discovering a small cell according to the present embodiment will be described in detail below.
  • the mobile terminal initially appears in the outer area and is connected to the base station.
  • the base station is The mobile terminal configures a default acquisition period, and acquires location information of the mobile terminal according to a default acquisition period, thereby periodically updating the location information of the mobile terminal.
  • the base station may calculate a moving speed of the mobile terminal according to the obtained two or more pieces of position information, and determine a boundary corresponding to the small cell according to the calculated moving speed. range.
  • the coverage of the base station may be divided into an inner area, an intermediate area, and an outer area according to the boundary range and the coverage of the small cell.
  • the acquisition period of the mobile terminal can be further updated according to the current moving speed of the mobile terminal. For example, the faster the mobile terminal moves, the shorter the acquisition cycle of the mobile terminal; the slower the mobile terminal moves, the longer the acquisition cycle of the mobile terminal.
  • the initial default acquisition period is shorter.
  • the boundary range of the cluster is no longer circular.
  • the base station updates the location information of the mobile terminal with the acquisition period timing, and calculates the moving speed of the mobile terminal according to the location information of the mobile terminal until the mobile terminal leaves the coverage of the base station or enters another area. If the moving speed of the mobile terminal changes, the boundary range of the corresponding small cell also changes accordingly.
  • the mobile terminal moves within the coverage of the base station. Once the base station finds that the mobile terminal is located within the boundary range corresponding to the small cell, it performs a corresponding decision process to determine whether the initial condition of the mobile terminal for the small cell is satisfied.
  • the initial conditions are as follows. One or more of the items: The mobile terminal is in a non-high speed mobile state, the load condition of the small cell is good and there are remaining resources for access by the mobile terminal.
  • the base station can shorten the acquisition period of the mobile terminal accordingly.
  • the GNSS-assisted method can be utilized to improve the accuracy of measurement positioning of mobile terminals.
  • the global navigation satellite system may be used. As the main positioning method.
  • the base station acquires the location information of the mobile terminal in a corresponding acquisition period, and calculates the moving speed and the moving direction of the mobile terminal according to the measured multiple location information of the mobile terminal. Then, according to the above results, calculate the mobile terminal according to Reaction time of the previous moving speed and moving direction from the current position to the coverage of the small cell
  • reaction if the calculated reaction time ⁇ reaction J, at a predetermined reaction time threshold ⁇ reaction ', triggers the inter-frequency inter-frequency neighbor discovery process of the mobile terminal with the trigger probability corresponding to the current location of the mobile terminal.
  • the base station may trigger the inter-frequency inter-frequency cell handover and/or carrier loading process of the mobile terminal according to the measurement information of the mobile terminal and the location information of the mobile terminal. If the mobile terminal does not trigger the inter-frequency neighbor cell discovery process, the base station may continue to acquire the location information of the mobile terminal in the corresponding acquisition period, and calculate the mobile terminal's moving speed according to the measured multiple location information of the mobile terminal. Move direction, and calculate reaction time ⁇ reaction and calculate the calculated reaction time ⁇ reaction with the predetermined reaction time threshold T reactl . n for comparison.
  • the mobile terminal completes inter-frequency cell handover and/or carrier loading, and the base station performs corresponding work, thereby implementing a location-based small cell discovery process.
  • the second embodiment is basically the same as the first embodiment, and the main difference is that in the second embodiment, the moving speed of the mobile terminal is constantly changing.
  • the differences between the second embodiment and the implementation of the first embodiment will be described in detail below.
  • the base station calculates the moving speed of the mobile terminal based on the obtained plurality of location information of the mobile terminal, and updates the acquisition period of the mobile terminal according to the calculated moving speed.
  • the base station may calculate an average value of the plurality of moving speeds of the mobile terminal in the past predetermined time period, and determine according to the calculated average value of the multiple moving speeds. Whether the initial condition discovered by the mobile terminal for the small cell is satisfied. If the initial condition of the mobile terminal for small cell discovery is not satisfied, the small cell discovery process is terminated until the initial condition for the small cell discovery by the mobile terminal is satisfied.
  • the third embodiment is basically the same as the first embodiment, and the main difference is that:
  • the location where the mobile terminal initially appears is within the boundary corresponding to the small cell.
  • the differences between the third embodiment and the implementation of the first embodiment will be described in detail below.
  • the boundary range corresponding to the small cell is set to a default value, which corresponds to a higher moving speed of the moving speed of the mobile terminal.
  • the base station obtains the location information of the mobile terminal in a corresponding cycle, and calculates the moving speed and/or the moving direction of the mobile terminal based on the obtained plurality of location information of the mobile terminal.
  • the base station finds that the mobile terminal leaves the boundary area corresponding to the small cell and enters the outer area, the base station accordingly performs low-accuracy positioning on the mobile terminal.
  • the base station finds that the mobile terminal is close to the coverage of the small cell, the inter-frequency inter-cell measurement of the mobile terminal is triggered according to the method described above.
  • FIG. Figure 10 is a block diagram showing the configuration of an apparatus in a wireless communication system according to an embodiment of the present invention.
  • the apparatus 1000 in the wireless communication system may include an arrival angle measuring unit 1002, a round trip time measuring unit 1004, and a positioning unit 1006.
  • the arrival angle measurement unit 1002 can measure the angle of arrival of the signal transmitted from the mobile terminal to the base station; the round trip time measurement unit 1004 can measure the round trip time required for the signal to travel back and forth between the mobile terminal and the base station; The unit 1006 can locate the mobile terminal according to the arrival angle and the round trip time, wherein the round trip time measuring unit 1004 measures the mobile terminal by using the timing advance of the mobile terminal to obtain the round trip. time.
  • the apparatus may further include a receiving unit and a correcting unit, wherein the receiving unit may receive global navigation satellite system positioning information reported by the mobile terminal, and the correcting unit may be the global navigation satellite system
  • the positioning information is a reference value to calculate an error correction factor, and the positioning is corrected using the error correction factor.
  • FIG. 11 is a flow chart showing a method used in a wireless communication system according to an embodiment of the present invention.
  • step 1100 the method begins in step 1100. After step 1100, the method proceeds to step 1102 or step 1104.
  • Step 1102 is to achieve an angle measurement step.
  • the measurement is sent from the mobile terminal The angle of arrival of the signal to the base station.
  • Step 1104 is a round trip time measurement step.
  • step 1104 measuring a round trip time required for the signal to reciprocate between the mobile terminal and the base station, wherein in the round trip time measuring step, using the timing advance of the mobile terminal The mobile terminal performs measurements to obtain the round trip time.
  • step 1102 After step 1102 or step 1104, the method proceeds to step 1106.
  • Step 1106 is a positioning step.
  • the mobile terminal is located according to the angle of arrival and the round trip time.
  • the method may further include a receiving step and a correcting step, wherein, in the receiving step, receiving global navigation satellite system positioning information reported by the mobile terminal; in the correcting step, The global navigation satellite system positioning information is a reference value to calculate an error correction factor, and the positioning is corrected using the error correction factor.
  • Fig. 11 The method shown in Fig. 11 is a method corresponding to the apparatus described in Fig. 10, and specific details thereof will not be described again.
  • embodiments of the present application also propose a program product that carries instructions executed by a machine, when the instructions are executed on the information processing device, the method.
  • embodiments of the present application also provide a storage medium including machine readable program code, when the program code is executed on an information processing device, the program code causes the information processing device A method for use in a wireless communication system as in accordance with an embodiment of the present invention described above is performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory, and the like.
  • the apparatus and its components in the wireless communication system may be configured by means of software, firmware, hardware, or a combination thereof.
  • the specific means or manner in which the configuration can be used is well known to those skilled in the art and will not be described herein.
  • a program constituting the software is installed from a storage medium or a network to an information processing device (for example, the information processing device 1200 shown in FIG. 12) having a dedicated hardware structure, and the computer is installed in various kinds. When the program is executed, various functions and the like can be performed.
  • FIG. 12 is a schematic block diagram showing an information processing apparatus that can be used as an implementation according to an embodiment of the present invention.
  • a central processing unit (CPU) 1201 executes various processes in accordance with a program stored in a read only memory (ROM) 1202 or a program loaded from a storage portion 1208 to a random access memory (RAM) 1203.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1201 executes various processes and the like is also stored as needed.
  • the CPU 1201, the ROM 1202, and the RAM 1203 are connected to each other via a bus 1204.
  • Input/output interface 1205 is also coupled to bus 1204.
  • the following components are connected to the input/output interface 1205: an input portion 1206 (including a keyboard, a mouse, etc.), an output portion 1207 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.)
  • the storage portion 1208 (including a hard disk or the like), the communication portion 1209 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 1209 performs communication processing via a network such as the Internet.
  • the driver 1210 can also be connected to the input/output interface 1205 as needed.
  • a removable medium 1211 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 1210 as needed, so that the computer program read therefrom is installed into the storage portion 1208 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1211.
  • a storage medium is not limited to the removable medium 1211 shown in Fig. 12 in which a program is stored and distributed separately from the device to provide a program to the user.
  • the detachable medium 1211 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM), and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be a ROM 1202, a hard disk included in the storage portion 1208, or the like, in which programs are stored, and distributed to the user together with the device containing them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种无线通信***中的装置和方法。该装置包括:位置信息获取单元(102),用于获取移动终端的位置信息;移动状态评估单元(104),用于根据移动终端在不同时刻的位置信息来评估移动终端的移动状态;以及执行单元(106),用于根据移动终端的位置信息和移动状态的变化来执行与小小区发现有关的相应的动作。

Description

无线通信***中的装置和方法
技术领域
本发明一般涉及无线通信领域, 更具体地涉及通用移动通信***
( UMTS )长期演进(LTE )及其后续演进(LTE-A ) 中的装置和方法。
背景技术
最早在 3GPP Rel-10中提出了异构网络 ( Heterog eneous Networks ) 的概念,其4艮快成为业界关注的热点。异构网络下的移动性增强是该领域 中的工作项目之一, 旨在为用户提供无缝且稳定的覆盖的同时,提高网络 的容量。
异构网络下的移动性增强讨论了诸多问题,其中 /,小小区发现( Small Cell Detection )是 3GPP的工作项目 ( Work Item )异构网络移动性增强 中讨论的热点之一。 异构网络下包含了大量的小小区, 例如微基站、微微 基站、 家庭基站、 射频拉远单元等, 它们主要分布在家庭、 办公室、 购物 中心等地。 通过将用户切换到小小区, 既减轻了宏基站的负担, 也提升了 网络的容量。
然而, 异构网络概念的引入也带来了很多问题。 例如, 目前的邻小区 发现机制是为了保证移动终端 ( UE ) 的移动性, 而没有考虑到异构网络 下新的部署环境。 又例如, 在目前标准中, 邻小区发现机制是基于 s测量 ( s-Measure ) 以及参考信号接收功率( RSRP )和 /或参考信号接收质量 ( RSRQ )的测量; 由于异构网络下小区分布的不均匀性, 宏小区服务盾 量好,但可能很靠近小小区,所以移动终端可能发现不了宏小区内的小小 区。再例如,小小区发现策略往往需要使用测量间隙( measurement gaps ), 对于移动终端来说, 频繁的配置测量间隙, 不仅耗电, 而且极大地占用可 用资源。
注意到, 在异构网络部署中, 热点地区的覆盖场景非常常见。在该场 景下, 宏小区主要提供大区域的覆盖, 而小小区, 例如微微小区 (pico cells ), 则在另外一个频率上提供业务负载。 因此, 既可以提高热点地区 用户的服务质量(QoS )指标, 也可以提高整个网络的吞吐量。 但是, 由 于小小区的异频部署以及覆盖范围的不均匀性,需要设计相应的机制保证 用户可以有效的切换到小小区中。 在 3GPP TR 36.839中, 异频间的小小 区发现 ( Small Cell Detection )有以下几种常见的类型:
a )宽松的测量配置 ( Relaxed measurement configuration )
根据小小区的类型(作为热点或提供覆盖)以及移动终端的速度, 提 高测量周期来减少不必要的测量,不允许高速移动终端接入热点内的小小 区。该方案减少了移动终端侧的功耗以及对服务小区用户平面的干扰,但 是该方案精度较差并且存在发现时延。
b )基于接近的小小区 4旨示 ( Proximity based small cell indication ) 异频间的小区测量可以基于接近指示( Proximity Indication )而触发, 这些方案可以被归为基于宏基站的、 基于小小区的、 或基于移动终端的。 基于宏基站的方案和基于小小区的方案在用户平面上没有做任何改动,但 是如何提高精度是最大的问题。 另外, 基于小小区的方案需要修改 X2接 口。 然而, 基于移动终端的方案更加精确, 可行性更高, 但是会给移动终 端侧增加复杂度。
c )宏层中的小小区发现信号 ( Small cell discovery signal in macro layer )
小小区基站在宏小区的工作频段上发送小区发现信号(由主同步信号 PSS、 辅同步信号 SSS以及***信息组成)。 这样, 移动终端将会认为这 是一个普通的同频小区, 并且进行正常的测量上报等过程。 然后, 基站既 可以立即触发移动终端的切换, 也可以让移动终端执行异频间的小区测 量。该方案较为简单,但是存在的问题是小小区发现信号会与宏小区信号 之间产生干扰, 并且切换的执行也会产生一定的延迟,此外也无法保证前 向兼容性, 传统用户将无法接受并执行与之相关的信令。
因此,期望提供一种无线通信***中的装置和方法, 以提高小小区发 现的效率, 从而为用户提供无^ JL稳定的网络覆盖。
发明内容
根据本发明的一个实施例,提供了一种无线通信***中的装置,包括: 位置信息获取单元, 用于获取移动终端的位置信息; 移动状态评估单元, 用于根据所述移动终端在不同时刻的所述位置信息来评估所述移动终端 的移动状态; 以及执行单元,用于才艮据所述移动终端的所述位置信息和所 述移动状态的变化来执行与小小区发现有关的相应的动作。 才艮据上述装置,其中,所述位置信息获取单元根据对所述移动终端进 行测量得到的往返时间和到达角度对所述移动终端进行定位,以获取所述 移动终端的所述位置信息,其中, 所述往返时间是由所述位置信息获取单 元利用所述移动终端的定时提前量信息对所述移动终端进行测量而得到 的。
才艮据上述装置,其中,所述位置信息获取单元在预定的采样时间窗内, 按照预定的采样周期,多次对所述移动终端进行测量以得到多个所述往返 时间和多个所述到达角度。
才艮据上述装置,其中,所述位置信息获取单元以全球导航卫星***辅 助测量的结果为参考值来计算误差校正因子,并且使用所述误差校正因子 对所述定位进行校正。
才艮据上述装置,其中, 由所述执行单元执行的与小小区发现有关的动 作包括以下动作中的一个或更多个:才艮据所述移动终端与小小区之间的距 离判断所述移动终端是否正在接近小小区,或者判断所述移动终端对所述 小小区发现的初始条件是否满足。
根据上述装置,其中,所述移动状态评估单元还用于根据所述移动终 端在不同时刻的多个位置信息来计算所述移动终端的移动速度和 /或移动 方向。
才艮据上述装置,其中,所述移动终端在不同时刻的多个位置信息是按 照预定的获取周期得到的, 以及所述执行单元还用于:根据移动终端的当 前的移动速度更新移动终端的获取周期。
根据上述装置,其中,所述移动状态评估单元还用于将所述移动终端 的所述移动速度划分为不同的速度级别,以及所述执行单元还用于采用与 置归为不同的区域。
根据上述装置,其中,所述移动状态评估单元还用于根据所述移动终 端的所述移动速度的大小来确定与所述小小区对应的边界范围,以及所述 执行单元还用于通过将所述移动终端与所述小小区之间的距离与所述边 界范围进行比较来判断所述移动终端是否正在接近所述小小区。
根据上述装置,其中,所述移动状态评估单元还用于将彼此邻近的所 述小小区分为同一簇,并且对与所述同一簇内的各个小小区对应的边界范 围求并集, 作为与所述同一簇对应的边界范围。 才艮据上述装置,其中,所述移动终端在不同时刻的多个位置信息是按 照预定的获取周期得到的, 以及所述执行单元还用于: 如果所述移动终端 位于所述边界范围之外, 则设定更长的获取周期; 如果所述移动终端位于 所述边界范围之内, 则设定更短的获取周期。
才艮据上述装置,其中,所述执行单元还用于在所述移动终端位于所述 边界范围之内的情况下判断所述移动终端对所述小小区发现的初始条件 是否满足,所述初始条件为以下各项中的一个或更多个: 所述移动终端处 于非高速移动状态,所述小小区的负载状况良好且有剩余的资源用于所述 移动终端的接入。
根据上述装置,其中,所述移动状态评估单元还用于根据所述移动终 端的位置信息、移动速度和移动方向来计算所述移动终端经过所述小小区 所需要的停留时间,并且将所计算的停留时间与预定的停留时间阈值进行 比较以评估所述移动终端是否处于非高速移动状态。
根据上述装置, 还包括: 异频间邻小区测量判断单元, 用于判断是否 触发所述移动终端的异频间邻小区测量。
根据上述装置,其中,所述移动状态评估单元还用于根据所述移动终 端的位置信息、移动速度和移动方向来计算所述移动终端到达所述小小区 的覆盖范围的反应时间,以及所述异频间邻小区测量判断单元还用于将所 计算的所述反应时间与预定的反应时间阈值进行比较以判断是否触发所 述移动终端的异频间邻小区测量。
根据上述装置,其中,所述移动状态评估单元还用于将所述边界范围 划分为多个子区域,每个子区域对应预定的触发概率, 以及还用于根据所 述移动终端的位置信息判断所述移动终端所位于的子区域及其对应的触 发概率;以及所述异频间邻小区测量判断单元还用于按照所确定的与所述 邻小区测量。
根据上述装置, 还包括: 异频间邻小区接入判断单元, 用于在已触发 了所述移动终端的异频间邻小区测量的情况下,才艮据所述移动终端的测量 才艮告和所述移动终端的位置信息,来判断是否触发所述移动终端的异频间 小区切换和 /或载波加载。
根据本发明的另一实施例, 提供了一种用在无线通信***中的方法, 包括:位置信息获取步骤,获取移动终端的位置信息;移动状态评估步骤, 根据所述移动终端在不同时刻的所述位置信息来评估所述移动终端的移 动状态; 以及执行步骤,才艮据所述移动终端的所述位置信息和所述移动状 态的变化来执行与小小区发现有关的相应的动作。
才艮据上述方法, 其中, 在所述位置信息获取步骤中, 根据对所述移动 终端进行测量得到的往返时间和到达角度对所述移动终端进行定位,以获 取所述移动终端的所述位置信息,其中, 所述往返时间是利用所述移动终 端的定时提前量信息对所述移动终端进行测量而得到的。
才艮据上述方法, 其中, 在所述位置信息获取步骤中, 在预定的采样时 间窗内,按照预定的采样周期, 多次对所述移动终端进行测量以得到多个 所述往返时间和多个所述到达角度。
才艮据上述方法, 其中, 在所述位置信息获取步骤中, 以全球导航卫星 ***辅助测量的结果为参考值来计算误差校正因子,并且使用所述误差校 正因子对所述定位进行校正„
才艮据上述方法,其中,在所述执行步骤中执行的与小小区发现有关的 动作包括以下动作中的一个或更多个:才艮据所述移动终端与小小区之间的 距离判断所述移动终端是否正在接近小小区,或者判断所述移动终端对所 述小小区发现的初始条件是否满足。
才艮据上述方法, 其中, 在所述移动状态评估步骤中, 还根据所述移动 终端在不同时刻的多个位置信息来计算所述移动终端的移动速度和 /或移 动方向。
才艮据上述方法,其中,所述移动终端在不同时刻的多个位置信息是按 照预定的获取周期得到的,以及在所述执行步骤中还根据移动终端的当前 的移动速度更新移动终端的获取周期。
才艮据上述方法,其中,在所述移动状态评估步骤中还将所述移动终端 的所述移动速度划分为不同的速度级别,以及在所述执行步骤中还采用与 置归为不同的区域。
才艮据上述方法, 其中, 在所述移动状态评估步骤中, 还根据所述移动 终端的所述移动速度的大小来确定与所述小小区对应的边界范围,以及在 所述执行步骤中,还通过将所述移动终端与所述小小区之间的距离与所述 边界范围进行比较来判断所述移动终端是否正在接近所述小小区。
才艮据上述方法, 其中, 在所述移动状态评估步骤中, 还将彼此邻近的 所述小小区分为同一簇,并 与所述同一簇内的各个小小区对应的边界 范围求并集, 作为与所述同一簇对应的边界范围。
才艮据上述方法,其中,所述移动终端在不同时刻的多个位置信息是按 照预定的获取周期得到的, 以及在所述执行步骤中,如果所述移动终端位 于所述边界范围之外,则设定更长的获取周期; 如果所述移动终端位于所 述边界范围之内, 则设定更短的获取周期。
才艮据上述方法, 其中, 在所述执行步骤中, 还在所述移动终端位于所 述边界范围之内的情况下判断所述移动终端对所述小小区发现的初始条 件是否满足,所述初始 ^为以下各项中的一个或更多个: 所 ^多动终端 处于非高速移动状态,所述小小区的负载状况良好且有剩余的资源用于所 述移动终端的接入。
才艮据上述方法, 其中, 在所述移动状态评估步骤中, 还根据所述移动 终端的位置信息、移动速度和移动方向来计算所述移动终端经过所述小小 区所需要的停留时间,并且将所计算的停留时间与预定的停留时间阈值进 行比较以评估所述移动终端是否处于非高速移动状态。
才艮据上述方法, 还包括: 异频间邻小区测量判断步骤, 判断是否触发 所述移动终端的异频间邻小区测量。
才艮据上述方法, 其中, 在所述移动状态评估步骤中, 还根据所述移动 终端的位置信息、移动速度和移动方向来计算所述移动终端到达所述小小 区的覆盖范围的反应时间, 以及在所述异频间邻小区测量判断步骤中,还 将所计算的所述反应时间与预定的反应时间阈值进行比较以判断是否触 发所述移动终端的异频间邻小区测量。
才艮据上述方法, 其中, 在所述移动状态评估步骤中, 还将所述边界范 围划分为多个子区域,每个子区域对应预定的触发概率, 以及还用于根据 所述移动终端的位置信息判断所述移动终端所位于的子区域及其对应的 触发概率; 以及在所述异频间邻小区测量判断步骤中,还按照所确定的与 频间邻小区测量。
才艮据上述方法, 还包括: 异频间邻小区接入判断步骤, 在已触发了所 述移动终端的异频间邻小区测量的情况下,根据所述移动终端的测量报告 和所述移动终端的位置信息,来判断是否触发所述移动终端的异频间小区 切换和 /或载^ 载。 才艮据本发明的又一个实施例,提供了一种无线通信***中的装置, 包 括: 到达角度测量单元,用于测量从移动终端发送到基站的信号的达到角 度;往返时间测量单元,用于测量所述信号在所述移动终端与所述基站之 间往返一次所需的往返时间; 以及定位单元,用于根据所述到达角度和所 述往返时间对所述移动终端进行定位,其中, 所述往返时间测量单元利用 所述移动终端的定时提前量对所述移动终端进行测量得到所述往返时间。
根据上述装置, 还包括: 接收单元, 用于接收所述移动终端上报的全 球导航卫星***定位信息; 以及校正单元,用于以所述全球导航卫星*** 定位信息为参考值来计算误差校正因子,并且使用所述误差校正因子对所 述定位进行校正。
根据本发明的又一个实施例, 提供了一种用在无线通信***中的方 法, 包括: 到达角度测量步骤, 测量从移动终端发送到基站的信号的达到 角度;往返时间测量步骤,测量所述信号在所述移动终端与所述基站之间 往返一次所需的往返时间; 以及定位步骤,根据所述到达角度和所述往返 时间对所述移动终端进行定位, 其中, 在所述往返时间测量步骤中, 利用 所述移动终端的定时提前量对所述移动终端进行测量得到所述往返时间。
根据上述方法, 还包括: 接收步骤,接收所述移动终端上报的全球导 航卫星***定位信息; 以及校正步骤, 以所述全球导航卫星***定位信息 为参考值来计算误差校正因子,并且使用所述误差校正因子对所述定位进 行校正。
根据本发明的又一个实施例,提供了一种包括计算机可读指令的计算
^储介盾, 计算机指令用于使计算机执行: 位置信息获取步骤, 获取移 动终端的位置信息;移动状态评估步骤,根据所述移动终端在不同时刻的 所述位置信息来评估所述移动终端的移动状态; 以及执行步骤,根据所述 移动终端的所述位置信息和所述移动状态的变化来执行与小小区发现有 关的相应的动作。
根据本发明的又一个实施例,提供了一种包括计算机可读指令的计算
^储介盾, 计算机指令用于使计算机执行: 到达角度测量步骤, 测量从 移动终端发送到基站的信号的达到角度;往返时间测量步骤, 测量所述信 号在所述移动终端与所述基站之间往返一次所需的往返时间;以及定位步 骤, 根据所述到达角度和所述往返时间对所述移动终端进行定位, 其中, 在所述往返时间测量步骤中,利用所述移动终端的定时提前量对所述移动 终端进行测量得到所述往返时间。 采用本发明,可以根据移动终端的位置信息和移动状态的变化,执行 与小小区发现有关的相应的动作,从而提高小小区发现的效率,进而为用 户提供无缝且稳定的网络覆盖。
附图说明
参照下面结合附图对本发明实施例的说明,会更加容易地理解本发明 的以上和其它目的、特点和优点。 在附图中, 相同的或对应的技术特征或 部件将采用相同或对应的附图标记来表示。
图 1 是示出根据本发明实施例的无线通信***中的装置的配置的框 图;
图 2是示出用于测量往返时间的类型 1和才艮据本发明实施例的用于测 量往返时间的方式的示意图;
图 3是示出根据本发明实施例的划分基站的覆盖区域的示意图; 图 4是示出根据本发明实施例的评估移动终端的移动状态的示意图; 图 5 是示出根据本发明实施例的无线通信***中的装置的另一配置 的框图;
图 6是示出根据本发明实施例的无线通信***中的装置的又一配置 的框图;
图 7是示出根据本发明实施例的用在无线通信***中的方法的流程 图;
图 8是示出根据本发明另一实施例的用在无线通信***中的方法的 流程图;
图 9是示出根据本发明另一实施例的用在无线通信***中的方法的 流程图;
图 10是示出根据本发明另一实施例的无线通信***中的装置的配置 的框图;
图 11是示出才艮据本发明另一实施例的用在无线通信***中的方法的 流程图; 以及
图 12是示出可用于作为实施根据本发明的实施例的信息处理设备的 示意性框图。 具体实施方式
下面参照附图来说明本发明的实施例。 应当注意, 为了清楚的目的, 附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和 处理的表示和描述。
下面结合图 1 来描述根据本发明实施例的无线通信***中的装置的 配置。图 1是示出根据本发明实施例的无线通信***中的装置的配置的框 图。
如图 1所示, 无线通信***中的装置 100可包括位置信息获取单元 102、 移动状态评估单元 104和执行单元 106。
位置信息获取单元 102可以获取移动终端的位置信息。
移动终端的位置信息是提供给网络侧的重要信息之一。根据移动终端 的位置信息, 网络侧可以更准确地执行小小区发现的过程。
具体地,位置信息获取单元 102可以通过多种方式来获取移动终端的 位置信息。例如,位置信息获取单元 102可以通过对移动终端进行定位来 获取移动终端的位置信息。 另外, 例如, 位置信息获取单元 102可以通过 接收移动终端所上报的全球导航卫星***(GNSS )测量结果来获取移动 终端的位置信息, 其中, 全球导航卫星***(GNSS )例如可以为全球定 位***(GPS )。
根据本发明的一个实施例,位置信息获取单元 102可以根据对移动终 端进行测量得到的往返时间和到达角度对移动终端进行定位,以获取移动 终端的位置信息,其中,往返时间是由位置信息获取单元 102利用移动终 端的定时提前量信息对移动终端进行测量而得到的。
在 3GPP 36.305中定义了多种对移动终端进行定位的方法,例如网络 侧协助的 GNSS ( A-GNSS )、 下行定位、 E-CID (增强型小区 ID定位) 和上行定位等。上述各种对移动终端进行定位的方法可具有不同的实现方 式, 具体如表 1所示。 表 1-不同的对移动终端进行定位的方法
Figure imgf000012_0001
E-CID使用移动终端的服务小区的地理知识。另外,为了提高准确度, 还可以附加地采用由移动终端和 /或 eNodeB进行的测量。 作为 E-CID的 具体实现方式,例如可以根据对移动终端进行测量得到的往返时间( RTT, Round Trip Time )和到达角度 ( AoA, Angle of Arrival )对移动终端进 行定位。
为了保证整体方案的筒单有效, 本发明采用 E-CID中的测量往返时 间和到达角度的实现方式来对移动终端进行定位。具体地,在基站侧测量 往返时间和到达角度。通过测量往返时间,可以确定移动终端与基站之间 的距离。另外,通过测量到达角度,可以确定移动终端与基站之间的方向。 根据所确定移动终端与基站的距离和方向,就可以获得移动终端与基站之 间的相对位置。 由于在基站侧进行往返时间和到达角度的测量,所以可以 简化对移动终端进行定位的流程, 并且实现了与现有标准的兼容,也不会 给移动终端增加额外的负担。
可以采用各种方式来测量到达角度。例如,基站侧的天线阵列可以跟 踪移动终端发送的上行信号,并测量上行信号的到达角度,从而确定移动 终端与基站之间的方向。作为示例,移动终端发送的上行信号可以为 SRS 信号或 DM-RS信号等。
另外, 可以采用各种方式来测量往返时间。 例如, 可以根据由移动终 端或基站测量其发送 /接收第 n个子帧的时间来确定往返时间。 在 3GPP 36.305中定义了两种用于测量往返时间的方式, 即类型 1和类型 2。 下表 2对用于测量往返时间的类型 1和类型 2进行了比较。 表 2-用于测量往返时间的类型 1和类型 2的比较
Figure imgf000013_0001
在用于测量往返时间的类型 2中,基站通过触发专用随机接入过程测 量移动终端发送的导频(preamble)信号的到达时间来获取往返时间。 在 长期演进***中,移动终端发送导频信号的时间是基于移动终端接收到下 行信号的时间, 而不进行提前发送。 因此, 移动终端所发送的导频信号到 达基站的时间为单向传输时延的两倍。 由此可见,用于测量往返时间的类 型 2的实现方案更简单,基站可以独立实现移动终端的测量和定位,但是 需要使用 PRACH信道。
下面结合图 2来描述用于测量往返时间的类型 1和才艮据本发明实施例 的用于测量往返时间的方式的示意图。图 2是示出用于测量往返时间的类 型 1和根据本发明实施例的用于测量往返时间的方式的示意图。
如图 2所示, 横轴表示时间 T。 时间 tl表示移动终端发送第 n个子 帧的时间, 时间 t2表示基站发送第 n个子帧的时间, 时间 t3表示基站接 收第 n个子帧的时间, 而时间 t4表示移动终端接收第 n个子帧的时间。 另外, 如图 2所示, 定时提前量 TA表示移动终端发送第 n个子帧的时间 tl比基站发送第 n个子帧的时间 t2提前的时间, 即 TA = t2- tl。
根据用于测量往返时间的类型 1, 往返时间 RTT等于基站接收第 n 个子帧的时间 t3与基站发送第 n个子帧的时间 t2之间的时间差( 13 -12), 或者移动终端接收第 n个子帧的时间 t4与移动终端发送第 n个子帧的时 间 tl之间的时间差(t4-tl), 即 RTT= ((t3-t2) + (t4-tl)) /2。 关 于用于测量往返时间的类型 1的更多细节, 可参考 3GPP 36.305中的第 8.3.1节以及 "LTE-The UMTS Long Term Evolution: From Theory to Practice (Second Edition)" 中的第 19.4.2节。
根据本发明实施例的用于测量往返时间的方式, 往返时间 RTT等于 基站接收第 n个子帧的时间 t3与移动终端发送第 n个子帧的时间 tl之间 的时间差, 即 RTT = t3 - tl。 如上所述, 由于定时提前量 TA = t2 - tl, 所以 tl = t2 - TA。将 tl = t2 - TA代入 RTT = t3 - tl中,可以得到 RTT = t3 - ( t2 - TA ) = t3 - 12 + TA。 由此可见, 根据本发明实施例的用于测量 往返时间的方式得到的往返时间 RTT等于基站接收第 n个子帧的时间 t3 与基站发送第 n个子帧的时间 t2之间的时间差(t3 - t2 )加上定时提前量 TA。 因此, 根据本发明实施例的用于测量往返时间的方式, 基站可以利 用移动终端的定时提前量 TA信息单独完成往返时间的测量, 而不需要移 动终端的协助。 另外, 与用于测量往返时间的类型 2相比, 根据本发明实 施例的用于测量往返时间的方式不局限于 PRACH信道中使用的导频信 号, 因此适用范围更为广泛。
在测量出往返时间 RTT之后, 基站与移动终端之间的距离 L可以表 示为: L = C x RTT/2, 其中, c为无线电波在空气中的传播速度。
根据本发明的一个实施例,位置信息获取单元 102可以在预定的采样 时间窗内,按照预定的采样周期, 多次对移动终端进行测量以得到多个往 返时间和多个到达角度。
在实际通信环境中测量到达角度和往返时间时, 由于多径效应的影 响,测量得到的到达角度和往返时间经常存在误差。为了减少由多径效应 导致的测量误差,可以预先设定一段时间作为采样时间窗。在该采样时间 窗内,按照预定的采样周期, 多次对移动终端进行测量以得到多个往返时 间和多个到达角度。
例如, 在时间 t, 基站需要获取移动终端的位置信息。 于是, 基站在 时间 t配置一个采样时间窗, 该采样时间窗的持续时间为 Δ Τ。 在时间 t 至时间 t+Δ Τ的采样时间窗内, 基站以 Ts为采样周期, 多次对移动终端 进行测量以得到多个往返时间和多个到达角度。 当 Δ Τ足够小时, 移动终 端在该采样时间窗内移动的距离不大。 因此,在采样时间窗内测量得到的 多个往返时间和多个到达角度中,用最少时间到达的信号所经历的反射次 数常常更少, 更有可能是直射路径、 或接近直射路径。 所以, 作为示例, 可以通过下面的方式来确定移动终端在时间 t的位置:从测量得到的多个 往返时间和多个到达角度中去除坏值点,以得到去除坏值点之后的 n个往 返时间 {RTT^RTT^, ..., 1丁1\1}和11个到达角度{ 6 1, 6 2, ..., θ η};计算 η个 往返时间 {RTTi, RTT2, RTTn}中的最小值作为最终往返时间 RTTF,即 RTTp ^ miniRTT!, RTT2, RTTn}; 计算 n个到达角度 { Θ l θ 2, ..., θ η} 的平均值作为最终到达角度 AoAF, 即
Figure imgf000015_0001
..., θ η}; 根 据计算得到的最终往返时间 1^1^和最终到达角度 AoAF, 可以确定移动 终端在时间 t的位置。
上述采样时间窗的设定可遵循以下原则:所设定的采样时间窗的长度 应当适当, 这是因为: 如果将采样时间窗的长度设定得过长, 则会过多地 占用基站的资源, 而且测量也不会准确; 另外, 如果将采样时间窗的长度 设定得过短, 则达不到提高定位的准确度的目的。
根据本发明的一个实施例,位置信息获取单元 102以全球导航卫星系 统辅助测量的结果为参考值来计算误差校正因子,并且使用误差校正因子 对定位进行校正。
全球导航卫星***定位方法具有准确度高的特点。另外, 随着智能移 动终端的普及,越来越多的移动终端具备了全球导航卫星***的功能。 因 此,根据本发明的一个实施例,可以利用全球导航卫星***的测量结果对 往返时间的定位误差进行校正,从而进一步提高对移动终端进行定位的准 确度。 具体地, 可以以全球导航卫星***的测量结果作为标准值, 计算出 误差校正因子 P RTT, 并且使用所计算的误差校正因子 P RTT对采用往返时 间执行的定位进行校正。
当然, 使用全球导航卫星***的场景不限于此。 例如, 如果到达角度 和往返时间的测量结果与全球导航卫星***的测量结果之间的误差过大, 或者由于小区的范围很小以致到达角度和往返时间的定位精度无法满足 预定要求, 则可以单独使用全球导航卫星***进行定位, 即如上所述, 位 置信息获取单元 102可以通过接收移动终端所上报的全球导航卫星*** ( GNSS )测量结果来获取移动终端的位置信息, 其中, 全球导航卫星系 统(GNSS )例如可以为全球定位***(GPS )。 另外, 当基站需要较为准 确的定位信息时,例如在触发异频间相邻小区测量时,基站也可以要求移 动终端立即上报全球导航卫星***的测量结果。
根据本发明的实施例,当在基站端采用到达角度和往返时间对移动终 端进行定位时, 由基站端发起定位请求, 并且由基站端独立完成到达角度 和往返时间的测量, 从而实现对移动终端的定位。 因此, 根据本发明实施 例的定位方法,可以简化对移动终端进行定位的流程,减少对网络信令资 源的占用, 而且也不会产生相应的时延,从而提高了对移动终端进行定位 的效率。
本领域技术人员应当理解,上述对移动终端进行定位的方式仅为示例 性的, 还可以采用其它的对移动终端进行定位的方法。 另外, 上述对移动 终端进行定位的方法还可以应用于其它场合。例如,上述对移动终端进行 定位的方法还可以应用于下面的场合: 用于提供紧急救护、 紧急呼叫场景 下的移动终端的定位; 用于提供基于位置的信息服务,例如导航信息和导 游服务等; 用于位置触发的服务, 例如基于位置的管理和计费等; 用于跟 踪和财产管理、 车辆调度 /跟踪、 物流监控、 老人 /儿童监护服务等等。
返回参考图 1, 装置 100中的移动状态评估单元 104可以根据所述移 动终端在不同时刻的位置信息来评估所述移动终端的移动状态。
移动状态评估单元 104 可以根据上述获取移动终端的位置信息的方 法, 获取移动终端在不同时刻的多个位置信息。 例如, 移动状态评估单元 104可以分别获取移动终端在时刻 的位置信息 Pl、在时刻 t2的位置信息 p2、 …在时刻^的位置信息 Pl 在时刻 tj的位置信息 ft 在时刻 tn的位置信息 pn, 其中, i, j和 n为自然数, 并且 l < i < n, l <j < n。 可 以根据时刻 ^和时刻 tj得到两个时刻之间的时间段( tr tj ),并且根据位置 信息 Pl和位置信息 得到移动终端在时间段( tr tj )内移动的距离( P- Pj )„ 根据得到的多个时间段(tr tj )和移动终端在相应的时间段 ( tr tj ) 内移 动的相应的距离 (pi- pj ), 可以评估移动终端的移动状态, 例如移动终端 是以高速、 中速还是低速在移动,或者移动终端正在朝向小小区还是离开 小小区而移动等等。
根据本发明的一个实施例,移动状态评估单元 104还用于根据移动终 端在不同时刻的多个位置信息来计算移动终端的移动速度和 /或移动方 向。
接着上面的示例,通过将移动终端在时间段( tr tj )内移动的距离( p广 Pj )除以该时间段( tr tj ), 可以得到移动终端在该时间段 ( tr tj ) 内的移 动速度。 另外, 根据移动终端在不同时刻的多个位置信息, 例如可以采用 曲线拟合或预测的方法对移动终端的移动轨迹进行估计,从而估计出移动 终端的移动方向。
另外,移动终端也可以利用全球导航卫星***的定位信息,计算移动 终端在一个给定的时间间隔内移动的总距离,并且通过将移动终端在给定 的时间间隔内移动的总距离除以该给定的时间间隔,也可以得到移动终端 在该给定的时间间隔内的移动速度。
返回参考图 1, 装置 100中的执行单元 106可以根据移动终端的位置 信息和移动状态的变化来执行与小小区发现有关的相应的动作。
一般,是否执行小小区发现与移动终端离小小区的距离相关。如果移 动终端离小小区较远,则移动终端可能^小小区的概率较小, 因此仅需 要对移动终端的移动状态进行粗略的评估。 如果移动终端离小小区较近, 则移动终端可能进入小小区的概率较大,因此可能需要对移动终端的移动 状态进行更准确的评估, 以便在适当的时候开始小小区发现的过程。
根据本发明的一个实施例,由执行单元 106执行的与小小区发现有关 的动作包括以下动作中的一个或更多个:根据所述移动终端与小小区之间 的距离判断所述移动终端是否正在接近小小区,或者判断所述移动终端对 所述小小区发现的初始条件是否满足。
例如,如果较早地开始小小区发现的过程,则可能进行了不必要的操 作, 从而浪费了***资源。 另外, 如果较晚地开始小小区发现的过程, 则 可能导致后续操作的时间不够, 从而导致后续操作的失败。 因此, 需要在 适当的时候开始小小区发现的过程。为了能够在适当的时候开始小小区发 现的过程,例如可以根据移动终端的位置信息来计算移动终端与小小区之 间的距离,并且根据所计算的移动终端与小小区之间的距离判断移动终端 是否正在接近小小区。 当移动终端适当地接近小小区时,可以认为此时开 始小小区发现的过程是适当的。 另外, 当开始小小区发现的过程时, 可以 判断移动终端对小小区发现的初始条件是否满足。例如, 小小区发现的初 始条件为以下各项中的一个或更多个:移动终端处于非高速移动状态, 小 小区的负载状况良好且有剩余的资源用于移动终端的接入。
根据本发明的一个实施例,移动终端在不同时刻的多个位置信息是按 照预定的获取周期得到的, 以及执行单元 106还用于:根据移动终端的当 前的移动速度更新移动终端的获取周期。
基站可以按照预定的获取周期来获取移动终端的多个位置信息,例如 基站可以每隔 500ms获取一次移动终端的位置信息。 另外, 上述获取周 期的长短是可调整的,例如可以根据移动终端的当前的移动速度来调整上 述获取周期的长短。 例如, 如果移动终端的移动速度越大, 则移动终端的 位置信息变化越快, 因此可以将获取周期设定得越短; 如果移动终端的移 动速度越小,则移动终端的位置信息变化越慢, 因此可以将获取周期设定 得越长。本领域技术人员应当理解,还可以根据其它因素来调整获取周期 的长短。
下面结合图 3来描述用于划分基站的覆盖区域的过程。图 3是示出根 据本发明实施例的划分基站的覆盖区域的示意图。
根据本发明的一个实施例,移动状态评估单元 104还用于根据移动终 端的移动速度的大小来确定与小小区对应的边界范围, 以及执行单元 106 还用于通过将移动终端与小小区之间的距离与该边界范围进行比较来判 断移动终端是否正在接近小小区。
如上所述,移动状态评估单元 104可以根据移动终端在不同时刻的多 个位置信息来计算移动终端的移动速度。在计算得到移动终端的移动速度 后,移动状态评估单元 104可以根据移动终端的移动速度的大小来确定与 小小区对应的边界范围。在本发明中与小小区对应的边界范围用于衡量移 动终端与小小区的接近程度,在该边界范围内移动终端还无法成功接收小 小区的信号,但是很可能将接近小小区,分别对于具有不同移动速度的移 动终端, 同一小小区相应具有不同的边界范围。 例如, 移动终端的移动速 度越大, 可能越快地接近小小区, 则所确定的边界范围也越大; 移动终端 的移动速度越小, 可能越慢地接近小小区, 则所确定的边界范围也越小。 又例如,移动状态评估单元 104可以将移动终端的移动速度划分为诸如高 速、 中速和低速的不同级别,并且不同级别的移动速度分别对应不同的边 界范围。 例如, 如果移动终端的移动速度处于高速的级别, 则其对应的边 界范围较大; 如果移动终端的移动速度处于低速的级别,则其对应的边界 范围较小; 如果移动终端的移动速度处于中速的级别,则其对应的边界范 围介于较大的边界范围与较小的边界范围之间。
因为在边界范围内的移动终端可能会接近小小区,所以移动状态评估 单元 104可以对在边界范围内的移动终端进行更加细致的监测,以评估其 移动状态并且计算移动终端的切换反应时间。所以,如果将边界范围确定 得越大, 则对于接近小小区的移动终端来说就可以更早的受到细致的监 测, 因此移动状态评估的准确度也会相应地提高,但是移动状态评估单元 104的处理负荷也会相应地增大, 因此需要将边界范围确定为合适的大小 以在移动终端评估的准确度与处理负荷之间取得折衷。 另外, 边界范围还 > mm
需要满足移动终端的最小切换反应时间 的要求 下面结合图 4 来描述如何计算移动终端到达小小区的覆盖范围的切 换反应时间。 如图 4所示, 移动终端的当前位置为 A (xa ya), 移动终端 的移动方向 (即图 4 中的表示移动终端的前进方向的箭头与水平线的夹 角)为 α, 移动终端在位置 A (xa, ya)处的移动速度为 v。 另外, 小小 区的部署位置(即小小区的接入点的部署位置)为 O (x y。), 小小区 的覆盖范围的半径为 Rc。 如图 4所示, 移动终端的切换反应时间 treact 等于移动终端按照当前的移动速度 V和移动方向 α从当前位置 A ( xa, ya ) 到达小小区的覆盖范围(即图 4中的点 B)的时间, 并且移动终端在边界
. min
范围内的切^^应时间 ^reaction应该满足如下条件: ^ react ion o 如图 4 所示, AB = AC - BC。 另外, 根据勾股定理可知, BC
I tan « · _ y I
=
Figure imgf000019_0001
,由于才艮据上述描述可知 OB = Rc并且 OC = (tan«)2+1 2 (tmia»x0 -y0)2
所以 BC C (tan") +1 。 另外, 根据勾股定理可知, AC = loA2 - oc2 , 其 中 , OA = yl(xo - 2 + (yo - ya 2 并且 oc =
。 将计算
Figure imgf000019_0002
得到 AC和 BC的值代入上述公式 AB = AC - BC,可以得到: AB = AC
- BC
Figure imgf000019_0003
。 由于移动 终端在位置 A (xa ya)处的移动速度为 v, 因此 treact = AB/v。 另外, 由于移动终端在边界范围内的切换反应时间 应该满足如下条件:
.min . min .min
treaction > reaction f 所以 AB/v > reaction } 即 AB > V X 由此可见, 边 界范围的大小与移动终端的移动速度正相关,并且至少应大于或等于 ν χ
. mm . min
Reaction。本领域技术人员应当理解,移动终端的最小切换反应时间 ^。"'。《可 以根据实验来确定。 在本发明的一个例子中,与小小区对应的边界范围是以小小区的接入 点为中心的圆形。 但是, 在实际环境中, 由于各种因素的影响, 边界范围 可能不是一个标准的圆形。 另夕卜, 本领域技术人员应当理解, 使用圆形来 逼近与小小区对应的边界范围仅仅是为了简化建模的目的,当然还可以采 用其它的形状来逼近与小小区对应的边界范围。
在确定了与小小区对应的边界范围之后,可以通过将移动终端与小小 区(小小区接入点)之间的距离与该边界范围进行比较来判断移动终端是 否正在接近小小区。例如,如果移动终端与小小区之间的距离小于或等于 该边界范围,则该移动终端位于该边界范围之内,这意味着移动终端正在 接近小小区。 另外, 如果移动终端与小小区之间的距离大于该边界范围, 则该移动终端位于该边界范围之外,这意味着移动终端离小小区较远而没 有正接近小小区。
另外,根据本发明的一个实施例,移动状态评估单元 104还用于将彼 此邻近的小小区分为同一簇,并且对与同一簇内的各个小小区对应的边界 范围求并集, 作为与同一簇对应的边界范围。
关于小小区分布较为密集的区域, 由于小小区之间的距离较近,所以 可能需要依次判断移动终端是否接近每个小小区,从而导致***的处理效 率低下。 因此, 针对小小区分布较为密集的区域, 移动状态评估单元 104 可以将彼此距离较近的小小区分为同一簇。对于簇内的各个小小区,分别 确定与之对应的边界范围。 然后, 对所确定的这些边界范围求并集, 作为 与同一簇对应的边界范围。在这种情况下, 所得到的与同一簇对应的边界 范围也不再是圆形。通过将彼此距离较近的小小区分为同一簇,可以不必 依次判断移动终端是否接近每个小小区,而是可以直接判断该移动终端是 否接近这个簇即可, 从而减少了判断的次数, 提高了***的处理效率。
另外,移动状态评估单元 104还可以根据小小区的信号质量来确定小 小区的覆盖范围。在本发明中, 小小区的覆盖范围一般指的是移动终端可 以正常接收小小区的信号并且获得正常服务质量的区域。例如,移动终端 评估单元 104可以根据小小区的接收信号强度和 /或载波干扰噪声比来确 定小小区的覆盖范围。具体地,可以定义一个信号质量的值作为小小区的 覆盖范围的阈值,该阈值可以是在移动终端触发切换的测量上 4艮时的小小 区的信号质量的值。 然后, 通过获得小小区周边的信号质量分布情况, 并 且与小小区的覆盖范围的阈值进行比较, 以确定小小区的覆盖范围。 小小 区的信号质量的分布既可以在实际部署时事先测量,也可以从移动终端的 测量报告中获知。 另外, 小小区的覆盖范围也与小小区的发射功率有关, 通过大尺度衰落的公式,可以大致推算出在小小区的发射功率变化时小小 区的覆盖范围的相应变化。
一般,小小区的覆盖范围也是以小小区的接入点为中心的圆形。另外, 如图 3所示, 小小区的覆盖范围与上述边界范围为同心圆,并且覆盖范围 的半径比边界范围的半径小。但是,在实际环境中,由于各种因素的影响, 小小区的覆盖范围可能也不是一个标准的圆形,而且小小区的覆盖范围的 半径大小可能也与标准中给出的参考值不同。 另外,本领域技术人员应当 理解,使用圆形来逼近小小区的覆盖范围仅仅是为了简化建模的目的, 当 然还可以采用其它的形状来逼近小小区的覆盖范围。
根据本发明的一个实施例,移动状态评估单元 104还用于将移动终端 的移动速度划分为不同的速度级别,以及执行单元 106还用于采用与移动 终端的速度级别对应的区域划分标准将移动终端所处的位置归为不同的 区域。
如图 3所示, 由于基站的位置是固定的,所以基站的覆盖区域可以被 确定。为了提高对移动终端进行定位的准确度,并且减轻移动终端当前所 连接的基站的负荷,可以采用与移动终端的速度级别对应的区域划分标准 将移动终端所处的位置归为不同的区域。 例如, 移动状态评估单元 104 可以将移动终端的移动速度划分为诸如高速、 中速和低速三个级别, 以及 执行单元 106可以分别采用与高速级别、中速级别和低速级别对应的区域 划分标准将移动终端所处的位置归为不同的区域。具体地,如果移动终端 的移动速度属于高速级别,则可以将基站的覆盖区域按照与小小区的距离 从远到近地划分为外侧区域 al、 中间区域 bl和内部区域 cl, 即与移动终 端的高速级别对应的区域划分标准为外侧区域 a 1、 中间区域 b 1和内部区 域 cl; 如果移动终端的移动速度属于中速级别, 则可以将基站的覆盖区 域按照与小小区的距离从远到近地划分为外侧区域 a2、 中间区域 b2和内 部区域 c2,即与移动终端的中速级别对应的区域划分标准为外侧区域 a2、 中间区域 b2和内部区域 c2;以及如果移动终端的移动速度属于低速级别, 则可以将基站的覆盖区域按照与小小区的距离从远到近地划分为外侧区 域 a3、 中间区域 b3和内部区域 c3, 即与移动终端的低速级别对应的区域 划分标准为外侧区域 a3、 中间区域 b3和内部区域 c3, 其中, 外侧区域 al、a2和 a3位于对应于小小区的边界范围之外(图 3中所示的外侧范围), 中间区域 b l、 b2和 b3位于对应于小小区的边界范围与小小区的覆盖范 围之间, 以及内部区域 cl、 c2和 c3被小小区的覆盖范围包围。
如上所述,在小小区的信号质量确定的情况下,可以确定小小区的覆 盖范围是相同的, 即对于移动终端的移动速度为高速、 中速和 的不同 级别来说, 所划分的内部区域 cl、 c2和 c3的半径可以是相同的。 另外, 如上所述, 由于移动速度处于高速级别的移动终端所对应的边界范围较 大,移动速度处于低速级别的移动终端所对应的边界范围较小, 而移动速 度处于中速级别的移动终端所对应的边界范围介于较大的边界范围与较 小的边界范围之间,所以对于移动终端的移动速度为高速、 中速和低速的 不同级别来说, 所划分的中间区域 bl、 b2和 b3的半径之间可以存在如 下关系: bl>b2>b3; 相应地, 所划分的外侧区域 al、 a2和 a3的半径之 间可以存在如下关系: al<a2<a3。
如上所述, 移动状态评估单元 104可以对终端的移动状态进行评估, 并且可以根据移动终端在不同时刻的多个位置信息来计算移动终端的移 动速度和 /或移动方向。 在计算出移动终端的移动速度之后, 可以确定所 计算出的移动终端的移动速度属于上述不同速度级别中的哪个,从而确定 采用与移动终端的速度级别对应的区域划分标准。例如,可以确定所计算 出的移动终端的移动速度属于高速级别、 中速级别和低速级别中的哪个, 从而确定是采用与移动终端的高速级别对应的区域划分标准 "外侧区域 al、 中间区域 b l和内部区域 cl", 还是采用与移动终端的中速级别对应 的区域划分标准 "外侧区域 a2、 中间区域 b2和内部区域 c2", 还是采用 与移动终端的低速级别对应的区域划分标准 "外侧区域 a3、 中间区域 b3 和内部区域 c3"。 因此, 如果移动终端的移动状态发生改变, 例如移动终 端的移动速度改变为属于不同的速度级别,则只要相应的更改其对应的区 域划分标准即可。 域划分标准之后,;可以采用与移动终端^速度级:别对应的区域划分 ^准, 按照移动终端与小小区的接入点之间的距离,将移动终端所处的位置归为 不同的区域, 并且为不同的区域设定不同的位置更新策略。 例如,如果移动终端的移动速度为高速级别,则可以确定与移动终端 的高速级别对应的区域划分标准为外侧区域 a 1、 中间区域 b 1和内部区域 cl。 因此, 可以将移动终端与小小区之间的距离 D分别与上述中间区域 bl的半径 1^和上述内部区域的半径 Rcl进行比较,并且根据比较的结果 将移动终端所处的位置归为不同的区域。 具体地, 如果 E Rcl, 则将移 动终端所处的位置归为内部区域; 如果 Rcl < D <; Rbl, 则将移动终端所处 的位置归为中间区域; 以及如果 al > D > Rbl, 则将移动终端所处的位置 归为外侧区域(图 3中所示的外侧范围)。 另外, 移动终端的移动速度为 理方式类似, 其细节不再赘述。
当移动终端位于外侧区域中时, 例如, 如图 3所示的在时刻 tl、 t2、 t3和 t4的移动终端, 由于移动终端与小小区相距甚远, 所以基站只需要 每隔一段时间更新移动终端的位置信息并且根据移动终端的多个位置信 息计算移动终端的移动速度即可。 当移动终端位于中间区域时, 例如, 如 图 3所示的在时刻 t5的移动终端,此时终端位于小小区的边界范围之内, 但是还没有进入小小区的覆盖范围,这意味着移动终端此时已经接近了小 小区, 很有可能继续 内部区域(即小小区的覆盖范围), 因此基站需 要更加准确地获取移动终端的位置信息和移动状态的变化以判断是否将 ^小小区的覆盖范围, 以便在发现移动终端离内部区域(即小小区的覆 盖范围)很近时, 考虑触发移动终端的异频间邻小区测量过程。 当移动终 端位于内部区域中时, 例如, 如图 3所示的在时刻 t6的移动终端, 移动 终端的异频间邻小区测量过程可能已经被触发过了,因此基站将才艮据移动 终端的测量艮告和移动终端的移动状态,在适当的时机触发移动终端的异 频间小区切换过程和 /或载波加载过程。
根据本发明的一个实施例,移动终端在不同时刻的多个位置信息是按 照预定的获取周期得到的, 以及执行单元 106还用于: 如果移动终端位于 边界范围之外,则设定更长的获取周期;如果移动终端位于边界范围之内, 则设定更短的获取周期。
基站可以按照预定的获取周期来获取移动终端的多个位置信息,例如 基站可以每隔 500ms获取一次移动终端的位置信息。 另外, 上述获取周 期的长短是可调整的,例如可以根据移动终端所处的实际位置来調整上述 获取周期的长短。具体地,如图 3所示, 当移动终端位于边界范围之外时, 即当移动终端位于外侧范围中时, 由于移动终端与小小区相距甚远, 所以 基站只需要获取移动终端的粗略的位置信息即可,因此可以将获取周期设 定得更长。 另外, 如图 3所示, 当移动终端位于边界范围内时, 由于移动 终端很有可能继续进入小小区的覆盖范围,所以基站需要更加准确地获取 移动终端的位置信息和移动状态的变化以判断是否发现小小区,因此可以 将获取周期设定得更短。 另夕卜,也可以根据移动终端的移动速度来调整上 述获取周期的长度。 例如, 如果移动终端的移动速度越大, 则移动终端的 位置信息变化越快, 因此可以将获取周期设定得越短; 如果移动终端的移 动速度越小,则移动终端的位置信息变化越慢, 因此可以将获取周期设定 得越长。本领域技术人员应当理解,还可以根据其它因素来调整获取周期 的长短。
根据本发明的一个实施例,执行单元 106还用于在移动终端位于边界 范围之内的情况下判断移动终端对小小区发现的初始 是否满足,上述 初始条件为以下各项中的一个或更多个: 移动终端处于非高速移动状态, 小小区的负载状况良好且有剩余的资源用于移动终端的接入。
如图 3所示, 当移动终端位于边界范围之外时, 即当移动终端位于外 侧范围中时, 由于移动终端与小小区相距甚远,所以此时不必判断移动终 端对小小区发现的初始 frf 是否满足。 而当移动终端位于边界范围内时, 由于移动终端很有可能继续进入小小区的覆盖范围,因此在移动终端位于 边界范围之内的情况下才判断移动终端对小小区发现的初始条件是否满 足。这样,可以根据移动终端所处的实际位置来确定何时开始小小区的发 现过程, 从而可以节省资源, 提高小小区发现的效率。
根据实际情况,小小区发现的初始条件可以是以上各项中的一个或更 多个。在异构网络下, 小小区主要部署在人口稠密地区,例如超市、商场、 办公室等, 主要目的是为了分担基站的业务。 因此, 如果高速移动终端在 上述人口稠密地区出现, 往往不会停留, 而仅仅是经过。 因此, 如果移动 终端处于高速移动状态,则不应该对其执行小小区发现并将其切换到小小 区。也就是说, 可以在移动终端处于非高速移动状态的情况下, 执行小小 区发现过程。 另外, 考虑到负载均衡问题, 可以在小小区的负载状况良好 且有剩余的资源用于移动终端的接入的情况下,执行小小区发现过程。本 领域技术人员应当理解, 上述初始条件仅是例示性的、 而非限制性的。
下面结合图 4来描述评估移动终端的移动状态的过程。图 4是示出根 据本发明实施例的评估移动终端的移动状态的示意图。
才艮据发明的一个实施例,移动状态评估单元 104还用于根据移动终端 的位置信息、移动速度和移动方向来计算移动终端经过小小区所需要的停 留时间 tstay, 并且将所计算的停留时间 tstay与预定的停留时间阈值丁 进 行比较以评估移动终端是否处于非高速移动状态。
如图 4所示, 移动终端的当前位置为 A (xa, ya), 移动终端的移动 方向(即图 4中的表示移动终端的前进方向的箭头与水平线的夹角)为 a, 移动终端在位置 A (xa, ya)处的移动速度为 v。 另外, 小小区的部署位 置(即小小区的接入点的部署位置)为 O (x。, y。), 小小区的覆盖范围 的半径为 Rc
才艮据移动终端的当前位置 A (xa, ya)和移动终端的移动方向 α, 可 以预测移动终端的移动轨迹为: y=tana · (x-xa)+ya
可以将上述移动轨迹 y=tanoc · (x-xa)+ya表示为如下的直线形式: tan α · χ+ (-1 · y) + (-tanoc · xa + ya) = 0, 因此该条直线的系数 E、 F和 G 分别为: E = tanoc, F = -l, G = -tan oc · xa + ya。 可以根据点到直线的 距离的计算公式来计算小小区的部署位置 O ( x。, y。 )到上述直线 y的距 离 OC
Figure imgf000025_0001
将系数 E = tan oc和 F = -1代入上述公式可以得到
I tan « · 。 _ y。 I
OC = >/(tana)2+1 。 接着, 根据勾股定理可知, BD = 2 · BC
I tan · 。― y。 I
= 2 OB2-OC2 , 将 OB = RbOC = (tan«)2+1 上述公式可以
(tma*x0-y0)
得到 BD= V C (tan") +1 。 因此,根据移动终端在小小区内的停留 距离 BD和移动终端的速度 v, 可以计算移动终端经过小小区所需要的停
Figure imgf000025_0002
留时间 tstay = BD/v= v 。 在计算得到停留时间 tstay之后, 可以将所计算的停留时间 tstay与预定 的停留时间阈值 Tstay进行比较以评估移动终端是否处于非高速移动状态。 例如, 如果 tstay<Tstay, 则可以认为移动终端处于高速移动状态, 因此若 将移动终端切换到小小区只会使持有移动终端的用户的体验变差。 另外, 如果 tstay > Tstay, 则可以认为移动终端处于非高速移动状态, 因此可以触 发移动终端的小小区发现过程。本领域技术人员应当理解,预定的停留时 间阈值 Tstay可以根据试验来确定。 下面参考图 5 来描述根据本发明实施例的无线通信***中的装置的 另一配置。图 5是示出根据本发明实施例的无线通信***中的装置的另一 配置的框图。
如图 5所示,无线通信***中的装置 500包括位置信息获取单元 502、 移动状态评估单元 504、执行单元 506和异频间邻小区测量判断单元 508。 其中, 位置信息获取单元 502、 移动状态评估单元 504和执行单元 506的 配置分别与图 1中所示的装置 100中的位置信息获取单元 102、移动状态 评估单元 104和执行单元 106的配置相同,因此其具体细节在此不再赘述。 下面, 详细描述装置 500中的异频间邻小区测量判断单元 508。
如图 5所示,异频间邻小区测量判断单元 508可以判断是否触发移动 终端的异频间邻小区测量。
例如,如果移动终端满足小小区发现的初始条件,则表示移动终端离 小小区的覆盖范围很近并且很快就将 小小区的覆盖范围。此时, 需要 在适当的时候触发移动终端对邻小区的信号质量的测量,并且将测量到的 邻小区的信号质量上报给基站。如上所述, 小小区发现的初始条件为以下 各项中的一个或更多个: 移动终端处于非高速移动状态, 小小区的负载状 况良好且有剩余的资源用于移动终端的接入。另外,关于小区测量的配置, 可以参考 3GPP TS 36.300中的第 10.1.3节和 3GPP TS 36.331中的第 5.5.4 节。
如果移动终端所在的服务小区和邻小区在相同频段上,也就是频内测 量 ( intra-frequency measurement )的情况, 上述测量没有太大问题。 但 是, 对于异频的情况, 也就是频间测量 ( inter-frequency measurement ) 的情况, 上述测量就不适合了。对于异频的情况, 由于移动终端只有一个 信机, 因此同一时刻只能接收一个频段上的信息。 所以, 为了实现异 频间的小区测量, 需要引入 "测量间隙" 的概念。
在 3GPP TS 36.311第 8丄 2.1节中对测量间隙做出如下定义: 在测量 间隙内,移动终端将不发送任何数据,并且不会将移动终端的接收机调谐 到 E-UTRAN服务小区的频段上。 在紧随测量间隙之后的上行子帧中, E-UTRAN频分复用 (FDD )的移动终端不会传输任何数据, 而且如果在 测量间隙之前的子帧为下行子帧, 则 E-UTRAN 时分复用 (TDD )的移 动终端不会传输任何数据。
在配置测量间隙时, 可以使用 RRC— Connection— Reconfiguration消 息来配置 MeasGapConfig IE , 并且基站通知移动终端与测量间隙有关的 例如测量间隙的起始点、 测量间隙的长度和测量间隙的数目等等。 另外, 在 3GPP TS 36.133中也给出了移动终端可以支持的两种测量间隙 模式, 具体可参见 3GPP TS 36.133 , 其细节在此不再赘述。 因此, 上述 关于如何在适当的时候触发移动终端对邻小区的信号质量的测量的问题, 实际上就是关于在什么时候配置测量间隙的问题。
根据本发明的一个实施例,移动状态评估单元 504还用于根据移动终 端的位置信息、移动速度和移动方向来计算移动终端到达小小区的覆盖范 围的反应时间,以及异频间邻小区测量判断单元 508还用于将所计算的反 应时间与预定的反应时间阈值进行比较以判断是否触发移动终端的异频 间邻小区测量。
随着移动终端的移动速度的增大,留给移动终端进行相应操作的反应 时间也在不断减小, 这也是移动终端的 HOF (切换失败)随着速度增大 而增大的重要原因之一。为了确保能够及时地触发移动终端的异频间邻小 区测量, 应当为移动终端留有足够的反应时间。 在本实施例中, 移动终端 的反应时间 treact ωη表示移动终端按照当前的运动状态(例如, 移动终端的 当前的移动速度和移动方向)从当前位置到达小小区的覆盖范围的时间。
以上已结合图 4描述了如何计算移动终端到达小小区的覆盖范围的 反应时间。 如图 4所示, 移动终端的当前位置为 A ( xa, ya ), 移动终端的 移动方向 (即图 4中的表示移动终端的前进方向的箭头与水平线的夹角) 为 α, 移动终端在位置 A ( xa, ya )处的移动速度为 v。 另外, 小小区的 部署位置(即小小区的接入点的部署位置)为 O ( x。, y。), 小小区的覆 盖范围的半径为 Rb。 如图 4所示, 移动终端的反应时间 treactln等于移动 终端按照当前的移动速度 V和移动方向 α从当前位置 A ( xa , ya )到达小 小区的覆盖范围 (即图 4中的点 B )的时间。
如图 4 所示, AB = AC - BC。 另外, 根据勾股定理可知, BC
I tan « · 。 _ y。 I
= ^OB2 - ,由于才艮据上述描述可知 OB = Rb并且 OC = 2 + 1 , 所以 BC
Figure imgf000028_0001
。 另外, 根据勾股定理可知, AC = ΙΟΑ2 - oc2 , 其 中 , OA = VU + (n )2 并且 oc =
。 将计算
Figure imgf000028_0002
得到的 AC和 BC的值代入上述公式 AB = AC - BC,可以得到: AB = AC
Jt ,2 2 (tan a»x0-y0)2 L2 (tana*xo - yo)2
― (tana) +1 (tana) +1 。由于移动 终端在位置 A (xa ya)处的移动速度为 v, 因此 treact =AB/v 在计算得到移动终端的反应时间 treaet 之后,可以将所计算的反应时 间 treactln与预定的反应时间阈值 Treactln进行比较以判断是否触发移动终 端的异频间邻小区测量。 例如, 如果 treactl n<Treactln, 则可以认为移动终 端离小小区较近,应该开始触发移动终端的异频间小区测量。本领域技术 人员应当理解, 预定的反应时间阈值 Treact 可以根据试验来确定。
然而, 由于实际中无线信道的变化十分复杂, 小小区的覆盖范围并不 ^则的圆形。因此,在配置了测量间隙之后,可能会出现以下几种情况: a)很快(例如在下一次对移动终端进行定位之前)发现小小区, 并且成 功地完成了小小区切换; b)很快发现小小区, 没有进行小小区切换; c) 很快发现小小区,但是发生了小小区切换失败; d )经过一段时间之后 (例 如在下一次对移动终端进行定位之后 )发现小小区; 或者 e)经过 ί艮长时 间都没有发现小小区。
注意, 由于异频间的小区切换往往是基于事件触发的, 例如 A3事件 等。 A3事件的进入条件是邻小区的信号质量(例如基于 RSRP值或 RSRQ 值)比相对于服务小区的偏移量要高。 在触发 A3事件之后, 移动终端可 能被配置为周期地进行测量上艮。 因此,如果检测到移动终端关于小小区 的测量报告, 则可以认为当前已发现了小小区。
另外, 可以用检测时间 tdetect表示从触发异频间小区测量到满足 A3 事件触发条件的时间。 可以将检测时间 tdetect与预定的最小检测时间阈值 min max min
和预定的最大检测时间阈值 etert进行比较, 如果 tdetect< ^, 则 r max
认为当前很快发现了小小区; 如果 tdetect >
Figure imgf000029_0001
, 则认为很长时间都没有
发现小小区。本领域技术人员应当理解 ,预定的最小检测时间阈值 和
预定的最大检测时间阈值 可以根据试验来确定。 另外, 可以通过
RRC— Connection— Reconfiguration消息来关闭测量间隙。 接下来, 对上述各种情况分别进行分析。 对于情况 a ), 这意味着此 时触发异频间邻小区测量是最恰当的,移动终端尽可能地减少了不必要的 异频间邻小区测量的次数, 并且成功地完成了异频间的邻小区切换。对于 情况 b ), 这意味着此时触发异频间的邻小区测量仍然是恰当的, 但是移 动终端改变了其移动状态,例如移动终端改变了其移动方向, 因此不再需 要进行切换。 对于情况 c ), 这意味着较晚地触发了异频间邻小区测量, 从而导致反应时间不够, 发生了切换失败。 对于情况 d ), 这意味着较早 地触发了异频间邻小区测量, 从而导致了过多的异频间邻小区测量的次 数。 对于情况 e ), 这意味着没有发现小小区, 因此异频间邻小区发现是 失败的。
另外,根据本发明的一个实施例,在判断是否触发移动终端的异频间 邻小区测量时,接收由移动终端上报的全球导航卫星***定位信息, 并且 根据上报的全球导航卫星***定位信息来计算移动终端的移动速度和 /或 移动方向等。
由于全球导航卫星***的定位信息比较准确,因此在基站需要比较准 确的定位信息时,例如在触发移动终端的异频间邻小区测量时,可以请求 移动终端向基站上报全球导航卫星***定位信息。根据所上报的全球导航 卫星***定位信息,基站可以计算移动终端的移动速度和 /或移动方向等。
根据本发明的一个实施例,移动状态评估单元 504还用于将边界范围 划分为多个子区域,每个子区域对应预定的触发概率, 以及还用于根据移 动终端的位置信息判断移动终端所位于的子区域及其对应的触发概率;以 及异频间邻小区测量判断单元 508还用于按照所确定的与移动终端所位 于的子区域对应的触发概率来触发移动终端的异频间邻小区测量。
如上所述,在实际场景中小小区的覆盖范围是十分不规则的, 以上从 简化建模的角度使用圆形来逼近小小区的覆盖范围,从而便于移动状态的 评估。但是, 在异频间邻小区测量的触发中, 需要考虑到实际的小小区的 覆盖范围。 例如, 可以按照相对于小小区的角度和 /或距离将边界范围划 分为多个子区域,每个子区域对应预定的触发概率。对于满足触发异频间 邻小区测量的移动终端,基站根据移动终端所处的位置信息判断移动终端 所位于的子区域及其对应的触发概率,并且按照所确定的与移动终端所位 于的子区域对应的触发概率来触发移动终端的异频间邻小区测量。 注意, 触发概率可以与移动终端是否使用全球导航卫星***辅助以及以往的小 小区发现的成功率等因素有关。
下面参考图 6 来描述根据本发明实施例的无线通信***中的装置的 另一配置。图 6是示出根据本发明实施例的无线通信***中的装置的另一 配置的框图。
如图 6所示,无线通信***中的装置 600包括位置信息获取单元 602、 移动状态评估单元 604、 执行单元 606、 异频间邻小区测量判断单元 608 和异频间邻小区接入判断单元 610。 其中, 位置信息获取单元 602、 移动 状态评估单元 604、执行单元 606和异频间邻小区测量判断单元 608的配 置分别与图 5中所示的装置 500中的位置信息获取单元 502、移动状态评 估单元 504、执行单元 506和异频间邻小区测量判断单元 508的配置相同, 因此其具体细节在此不再赘述。下面,详细描述装置 600中的异频间邻小 区接入判断单元 610。
如图 6所示,异频间邻小区接入判断单元 610可以在已触发了移动终 端的异频间邻小区测量的情况下,根据移动终端的测量 4艮告和移动终端的 位置信息, 来判断是否触发移动终端的异频间小区切换和 /或载波加载。
如上所述, 由于异频间的小区切换往往是基于事件触发的, 例如 A3 事件等。 A3事件的进入条件是邻小区的信号质量(例如基于 RSRP值或 RSRQ值)比相对于服务小区的偏移量要高。 在触发 A3事件之后, 移动 终端可能被配置为周期地进行测量上报。 因此,在移动终端已触发了异频 间邻小区测量的情况下,基站可以根据移动终端的测量 4艮告和移动终端的 位置信息,在适当的时候触发移动终端的异频间邻小区切换或载波加载过 程。
下面参考图 7 来描述根据本发明实施例的用在无线通信***中的方 法。 图 7是示出根据本发明实施例的用在无线通信***中的方法的流程 图。 如图 7所示, 该方法开始于步骤 700。 在步骤 700之后, 该方法前进 到步骤 702。
步骤 702为位置信息获取步骤。 在步骤 702, 获取移动终端的位置信 ir 在步骤 702之后, 该方法前进到步骤 704。
步骤 704为移动状态评估步骤。 在步骤 704, 根据移动终端在不同时 刻的位置信息来评估移动终端的移动状态。
在步骤 704之后, 该方法前进到步骤 706。
步骤 706为执行步骤。 在步骤 706, 根据移动终端的位置信息和移动 状态的变化来执行与小小区发现有关的相应的动作。
图 7所示的方法是与图 1所述的装置相对应的方法,其具体细节在此 不再赘述。
下面参考图 8 来描述根据本发明另一实施例的用在无线通信***中 的方法。图 8是示出根据本发明另一实施例的用在无线通信***中的方法 的¾½图。
如图 8所示, 该方法开始于步骤 800。 在步骤 800之后, 该方法前进 到步骤 802。
步骤 802为位置信息获取步骤。 在步骤 802, 获取移动终端的位置信 息。
在步骤 802之后, 该方法前进到步骤 804。
步骤 804为移动状态评估步骤。 在步骤 804, 根据移动终端在不同时 刻的位置信息来评估移动终端的移动状态。
在步骤 804之后, 该方法前进到步骤 806。
步骤 806为执行步骤。 在步骤 806, 根据移动终端的位置信息和移动 状态的变化来执行与小小区发现有关的相应的动作。
在步骤 806之后, 该方法前进到步骤 808。
步骤 808为异频间邻小区测量判断步骤。 在步骤 808, 可以判断是否 触发移动终端的异频间邻小区测量。
图 8所示的方法是与图 5所述的装置相对应的方法,其具体细节在此 不再赘述。 下面参考图 9 来描述根据本发明另一实施例的用在无线通信***中 的方法。图 9是示出根据本发明另一实施例的用在无线通信***中的方法 的¾½图。
如图 9所示, 该方法开始于步骤 900。 在步骤 900之后, 该方法前进 到步骤 902。
步骤 902为位置信息获取步骤。 在步骤 902, 获取移动终端的位置信 息。
在步骤 902之后, 该方法前进到步骤 904。
步骤 904为移动状态评估步骤。 在步骤 904, 根据移动终端在不同时 刻的位置信息来评估移动终端的移动状态。
在步骤 904之后, 该方法前进到步骤 906。
步骤 906为执行步骤。 在步骤 906, 根据移动终端的位置信息和移动 状态的变化来执行与小小区发现有关的相应的动作。
在步骤 906之后, 该方法前进到步骤 908。
步骤 908为异频间邻小区测量判断步骤。 在步骤 908, 可以在移动终 端满足小小区发现的初始条件的情况下判断是否触发移动终端的异频间 邻小区测量。
在步骤 908之后, 该方法前进到步骤 910。
步骤 910为异频间邻小区接入判断步骤。 在步骤 910, 可以在已触发 了移动终端的异频间邻小区测量的情况下,根据移动终端的测量 4艮告和移 动终端的位置信息, 来判断是否触发移动终端的异频间小区切换和 /或载 载。
图 9所示的方法是与图 6所述的装置相对应的方法,其具体细节在此 不再赘述。
下面根据移动终端出现的位置来描述执行小小区发现过程的具体实 施例。 下面的实施例仅是例示性的, 而非限制性的。
实施例一
在本实施例中,移动终端最初出现在外侧区域中,并且以低速向小小 区移动。 下面详细描述根据本实施例的发现小小区的过程。
移动终端最初出现在外侧区域中, 并且与基站相连接。 此时, 基站为 移动终端配置默认的获取周期,并且按照默认的获取周期获取移动终端的 位置信息, 从而定时第更新移动终端的位置信息。
当获得移动终端的两个或更多个位置信息之后,基站可以根据获得的 两个或更多个位置信息计算移动终端的移动速度,并且根据计算出的移动 速度来确定与小小区对应的边界范围。
在根据计算出的移动速度确定了与小小区对应的边界范围之后,可以 根据边界范围和小小区的覆盖范围将基站的覆盖范围划分为内部区域、中 间区域和外侧区域。另外,还可以根据移动终端的当前的移动速度进一步 更新移动终端的获取周期。 例如, 移动终端的移动速度越快, 则移动终端 的获取周期越短;移动终端的移动速度越慢,则移动终端的获取周期越长。 另外, 需要注意的是, 初始默认的获取周期以较短的为准。对于小小区部 署较为密集的情况,将相距比较近的几个小小区作为一个簇,分别确定该 簇内每个小小区的边界范围,并且将该簇内每个小小区的边界范围的并集 作为该簇的边界范围, 此时该簇的边界范围不再是圆形。
基站以获取周期定时更新移动终端的位置信息,并且根据移动终端的 位置信息计算移动终端的移动速度,直至移动终端离开基站的覆盖范围或 者进入其它区域。如果移动终端的移动速度发生改变,则所对应的小小区 的边界范围也相应地发生改变。
移动终端在基站的覆盖范围内移动,一旦基站发现移动终端位于与小 小区对应的边界范围内, 则执行相应的判决过程,判断移动终端对小小区 发现的初始条件是否满足,初始条件为以下各项中的一个或更多个: 移动 终端处于非高速移动状态,小小区的负载状况良好且有剩余的资源用于所 述移动终端的接入。
如果满足移动终端对小小区发现的初始条件,则基站可以相应地缩短 移动终端的获取周期。 另外, 还可以利用全球导航卫星***辅助的方法, 提高对移动终端的测量定位的准确度。另夕卜,如果小小区的覆盖范围很小, 或者利用到达角度和往返时间得到的测量定位的精度与全球导航卫星系 统的测量结^ 1=目比相差过大,则可以以全球导航卫星***作为主要的定位 方法。
如果移动终端继续向小小区移动,则基站以相应的获取周期获取移动 终端的位置信息,并且根据测量到的移动终端的多个位置信息来计算移动 终端的移动速度和移动方向。 然后, 才艮据上述结果, 计算移动终端按照当 前的移动速度和移动方向从当前位置到达小小区的覆盖范围的反应时间
^reaction, 如果计算出的反应时间 ^reaction J、于预定的反应时间阈值 τ reaction ' 则以移动终端的当前位置所对应的触发概率触发移动终端的异频间邻小 区发现过程。
如果移动终端触发了异频间邻小区发现过程,则基站可以根据移动终 端的测量 4艮告和移动终端的位置信息,在适当的时候触发移动终端的异频 间小区切换和 /或载波加载过程; 如果移动终端没有触发异频间邻小区发 现过程, 则基站可以继续以相应的获取周期获取移动终端的位置信息, 并 且根据测量到的移动终端的多个位置信息来计算移动终端的移动速度和 移动方向,以及计算反应时间 ^reaction并且将计算出的反应时间 ^reaction与预 定的反应时间阈值 Treactln进行比较。
然后, 移动终端完成异频间小区切换和 /或载波加载, 基站完成相应 的工作, 从而实现了基于位置的小小区发现过程。
实施例二
实施例二与实施例一基本相同, 其主要区别在于: 在实施例二中, 移 动终端的移动速度在不断改变。下面详细描述实施例二与实施例一的实现 方式的不同之处。
当移动终端最初出现在外侧区域中时,基站根据获得的移动终端的多 个位置信息来计算移动终端的移动速度,并且根据计算的移动速度来更新 移动终端的获取周期。
当基站发现移动终端位于与小小区对应的边界范围内时,基站可以计 算移动终端在过去预定时间段内的多个移动速度的平均值,并且根据计算 出的多个移动速度的平均值来判断移动终端对小小区发现的初始条件是 否满足。如果不满足移动终端对小小区发现的初始条件,则终止小小区发 现过程, 直至满足移动终端对小小区发现的初始条件为止。
实施例二的其它处理方式与实施例一的处理方式相同,其具体细节在 此不再赘述。
实施例三
实施例三与实施例一基本相同, 其主要区别在于: 在实施例三中, 移 动终端最初出现的位置在与小小区对应的边界范围内。下面详细描述实施 例三与实施例一的实现方式的不同之处。 将与小小区对应的边界范围设定为默认值,该默认值与移动终端的移 动速度中较高的移动速度相对应。
基站以相应的周期获得移动终端的位置信息,并且根据获得的移动终 端的多个位置信息来计算移动终端的移动速度和 /或移动方向。
当基站发现移动终端离开与小小区对应的边界范围而进入外侧区域 中时, 基站相应地对移动终端进行准确度较低的定位。 另外, 当基站发现 移动终端接近小小区的覆盖范围时,则根据以上描述的方法来触发移动终 端的异频间邻小区测量。
实施例三的其它处理方式与实施例一的处理方式相同,其具体细节在 此不再赘述。
下面结合图 10来描述根据本发明实施例的无线通信***中的装置的 配置。 图 10是示出根据本发明实施例的无线通信***中的装置的配置的 框图。
如图 10所示,无线通信***中的装置 1000可包括到达角度测量单元 1002、 往返时间测量单元 1004和定位单元 1006。
到达角度测量单元 1002可以测量从移动终端发送到基站的信号的达 到角度; 往返时间测量单元 1004可以测量所述信号在所述移动终端与所 述基站之间往返一次所需的往返时间; 而定位单元 1006可以根据所述到 达角度和所述往返时间对所述移动终端进行定位,其中,所述往返时间测 量单元 1004利用所述移动终端的定时提前量对所述移动终端进行测量得 到所述往返时间。
根据本发明的另一个实施例,上述装置还可以包括接收单元和校正单 元,其中,接收单元可以接收所述移动终端上报的全球导航卫星***定位 信息,而校正单元可以以所述全球导航卫星***定位信息为参考值来计算 误差校正因子, 并且使用所述误差校正因子对所述定位进行校正。
下面参考图 11来描述根据本发明实施例的用在无线通信***中的方 法。 图 11是示出根据本发明实施例的用在无线通信***中的方法的流程 图。
如图 11所示, 该方法开始于步骤 1100。在步骤 1100之后, 该方法前 进到步骤 1102或步骤 1104。
步骤 1102为达到角度测量步骤。 在步骤 1102, 测量从移动终端发送 到基站的信号的达到角度。
步骤 1104为往返时间测量步骤。 在步骤 1104, 测量所述信号在所述 移动终端与所述基站之间往返一次所需的往返时间,其中,在所述往返时 间测量步骤中,利用所述移动终端的定时提前量对所述移动终端进行测量 得到所述往返时间。
在步骤 1102或步骤 1104之后, 该方法前进到步骤 1106。
步骤 1106为定位步骤。 在步骤 1106, 根据所述到达角度和所述往返 时间对所述移动终端进行定位。
另外,根据本发明的又一实施例,上述方法还可以包括接收步骤和校 正步骤, 其中, 在接收步骤中,接收所述移动终端上报的全球导航卫星系 统定位信息;在校正步骤中, 以所述全球导航卫星***定位信息为参考值 来计算误差校正因子, 并且使用所述误差校正因子对所述定位进行校正。
图 11所示的方法是与图 10所述的装置相对应的方法,其具体细节在 此不再赘述。
此外,本申请的实施例还提出了一种程序产品,该程序产品承载机器 执行的指令, 当在信息处理设备上执行 述指令时,所,指^吏,所述 方法。
此外,本申请的实施例还提出了一种存储介盾,该存储介质包括机器 可读的程序代码, 当在信息处理设备上执行所述程序代码时, 所述程序代 码使得所述信息处理设备执行如根据上述本发明的实施例的用在无线通 信***中的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存 储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、 磁光盘、 存储卡、 存 等等。
根据本发明的实施例的无线通信***中的装置及其组成部件可通过 软件、 固件、硬件或其组合的方式进行配置。 配置可使用的具体手段或方 式为本领域技术人员所熟知,在此不再赘述。在通过软件或固件实现的情 况下, 从存储介质或网络向具有专用硬件结构的信息处理设备(例如图 12所示的信息处理设备 1200 )安装构成该软件的程序, 该计算机在安装 有各种程序时, 能够执行各种功能等。 图 12是示出可用于作为实施根据本发明的实施例的信息处理设备的 示意性框图。
在图 12中, 中央处理单元(CPU ) 1201根据只读存储器(ROM ) 1202中存储的程序或从存储部分 1208加载到随机存取存储器(RAM ) 1203的程序执行各种处理。在 RAM 1203中,也根据需要存储当 CPU 1201 执行各种处理等等时所需的数据。 CPU 1201、 ROM 1202和 RAM 1203 经由总线 1204彼此连接。 输入 /输出接口 1205也连接到总线 1204。
下述部件连接到输入 /输出接口 1205: 输入部分 1206 (包括键盘、 鼠 标等等)、 输出部分 1207 (包括显示器, 比如阴极射线管 (CRT)、 液晶显 示器(LCD )等, 和扬声器等) 、 存储部分 1208 (包括硬盘等) 、 通信 部分 1209(包括网络接口卡比如 LAN卡、调制解调器等)。通信部分 1209 经由网络比如因特网执行通信处理。 根据需要, 驱动器 1210也可连接到 输入 /输出接口 1205。 可拆卸介质 1211比如磁盘、 光盘、 磁光盘、 半导体 存储器等等根据需要被安装在驱动器 1210上, 使得从中读出的计算机程 序根据需要被安装到存储部分 1208中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介 质比如可拆卸介质 1211安装构成软件的程序。
本领域的技术人员应当理解, 这种存储介盾不局限于图 12所示的其 中存储有程序、 与设备相分离地分发以向用户提供程序的可拆卸介质 1211。 可拆卸介质 1211的例子包含磁盘 (包含软盘 (注册商标) )、 光盘 (包含光盘只读存储器(CD-ROM )和数字通用盘(DVD ) ) 、 磁光盘 (包含迷你盘(MD ) (注册商标) )和半导体存储器。 或者, 存储介质 可以是 ROM 1202、 存储部分 1208中包含的硬盘等等, 其中存有程序, 并且与包含它们的设备一起被分发给用户。
所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的 用在无线通信***中的方法。
对于所属技术领域的普通技术人员来说,在不偏离本发明范围和精神 的情况下, 显然可以做出许多修改和变型。对实施例的选择和说明, 是为 了最好地解释本发明的原理和实际应用,使所属技术领域的普通技术人员 能够明了,本发明可以有适合所要的特定用途的具有各种改变的各种实施 方式。

Claims

权利 要求 书
1. 一种无线通信***中的装置, 包括:
位置信息获取单元, 用于获取移动终端的位置信息;
移动状态评估单元,用于根据所述移动终端在不同时刻的所述位置信 息来评估所述移动终端的移动状态; 以及
执行单元,用于根据所述移动终端的所述位置信息和所述移动状态的 变化来执行与小小区发现有关的相应的动作。
2.根据权利要求 1 所述的装置, 其中, 所述位置信息获取单元根据 对所述移动终端进行测量得到的往返时间和到达角度对所述移动终端进 行定位, 以获取所述移动终端的所述位置信息, 其中, 所述往返时间是由 所述位置信息获取单元利用所述移动终端的定时提前量信息对所述移动 终端进行测量而得到的。
3.根据权利要求 2所述的装置, 其中, 所述位置信息获取单元在预 定的采样时间窗内,按照预定的采样周期, 多次对所述移动终端进行测量 以得到多个所述往返时间和多个所述到达角度。
4.根据权利要求 2所述的装置, 其中, 所述位置信息获取单元以全 球导航卫星***辅助测量的结果为参考值来计算误差校正因子,并且使用 所述误差校正因子对所述定位进行校正。
5.根据权利要求 1 所述的装置, 其中, 由所述执行单元执行的与小 小区发现有关的动作包括以下动作中的一个或更多个:才艮据所述移动终端 与小小区之间的距离判断所述移动终端是否正在接近小小区,或者判断所 述移动终端对所述小小区发现的初始条件是否满足。
6.根据权利要求 1 所述的装置, 其中, 所述移动状态评估单元还用 于根据所述移动终端在不同时刻的多个位置信息来计算所述移动终端的 移动速度和 /或移动方向。
7.根据权利要求 6所述的装置, 其中, 所述移动终端在不同时刻的 多个位置信息是按照预定的获取周期得到的, 以及所述执行单元还用于: 根据移动终端的当前的移动速度更新移动终端的获取周期。
8.根据权利要求 6所述的装置, 其中, 所述移动状态评估单元还用 于将所述移动终端的所述移动速度划分为不同的速度级别,以及所述执行 移动终端所处的位置归为不同的区域。
9.根据权利要求 6所述的装置, 其中, 所述移动状态评估单元还用 于根据所述移动终端的所述移动速度的大小来确定与所述小小区对应的 边界范围,以及所述执行单元还用于通过将所述移动终端与所述小小区之 间的距离与所述边界范围进行比较来判断所述移动终端是否正在接近所 述小小区。
10.根据权利要求 9所述的装置, 其中, 所 多动状态评估单元还用 于将彼此邻近的所述小小区分为同一簇,并且对与所述同一簇内的各个小 小区对应的边界范围求并集, 作为与所述同一簇对应的边界范围。
11.根据权利要求 9所述的装置, 其中, 所 ^多动终端在不同时刻的 多个位置信息是按照预定的获取周期得到的, 以及所述执行单元还用于: 如果所述移动终端位于所述边界范围之外, 则设定更长的获取周期; 如果 所述移动终端位于所述边界范围之内, 则设定更短的获取周期。
12.根据权利要求 9所述的装置, 其中, 所述执行单元还用于在所述 移动终端位于所述边界范围之内的情况下判断所述移动终端对所述小小 区发现的初始条件是否满足, 所述初始条件为以下各项中的一个或更多 个: 所述移动终端处于非高速移动状态, 所述小小区的负载状况良好且有 剩余的资源用于所述移动终端的接入。
13.根据权利要求 12所述的装置, 其中, 所述移动状态评估单元还 用于根据所述移动终端的位置信息、移动速度和移动方向来计算所述移动 终端经过所述小小区所需要的停留时间,并且将所计算的停留时间与预定 的停留时间阈值进行比较以评估所述移动终端是否处于非高速移动状态。
14.根据权利要求 6、 9或 12所述的装置, 还包括: 异频间邻小区测 量判断单元, 用于判断是否触发所述移动终端的异频间邻小区测量。
15.根据权利要求 14所述的装置, 其中,
所述移动状态评估单元还用于根据所述移动终端的位置信息、移动速 度和移动方向来计算所述移动终端到达所述小小区的覆盖范围的反应时 间, 以及
所述异频间邻小区测量判断单元还用于将所计算的所述反应时间与 预定的反应时间阈值进行比较以判断是否触发所述移动终端的异频间邻 小区测量。
16.根据权利要求 14所述的装置, 其中,
所述移动状态评估单元还用于将所述边界范围划分为多个子区域,每 个子区域对应预定的触发概率,以及还用于根据所述移动终端的位置信息 判断所述移动终端所位于的子区域及其对应的触发概率; 以及
所述异频间邻小区测量判断单元还用于按照所确定的与所述移动终 端所位于的子区域对应的触发概率来触发所述移动终端的异频间邻小区 测量。
17.根据权利要求 14所述的装置, 还包括: 异频间邻小区接入判断单 元,用于在已触发了所述移动终端的异频间邻小区测量的情况下,根据所 述移动终端的测量报告和所述移动终端的位置信息,来判断是否触发所述 移动终端的异频间小区切换和 /或载波加载。
18. 一种用在无线通信***中的方法, 包括:
位置信息获取步骤, 获取移动终端的位置信息;
移动状态评估步骤,根据所述移动终端在不同时刻的所述位置信息来 评估所述移动终端的移动状态; 以及
执行步骤,根据所述移动终端的所述位置信息和所述移动状态的变化 来执行与小小区发现有关的相应的动作。
19.根据权利要求 18所述的方法, 其中, 在所述位置信息获取步骤 中,根据对所述移动终端进行测量得到的往返时间和到达角度对所述移动 终端进行定位, 以获取所述移动终端的所述位置信息, 其中, 所述往返时 间是利用所述移动终端的定时提前量信息对所述移动终端进行测量而得 到的。
20.根据权利要求 19所述的方法, 其中, 在所述位置信息获取步骤 中, 在预定的采样时间窗内, 按照预定的采样周期, 多次对所述移动终端 进行测量以得到多个所述往返时间和多个所述到达角度。
21.根据权利要求 19所述的方法, 其中, 在所述位置信息获取步骤 中, 以全球导航卫星***辅助测量的结果为参考值来计算误差校正因子, 并且使用所述误差校正因子对所述定位进行校正。
22.根据权利要求 18所述的方法, 其中, 在所述执行步骤中执行的 与小小区发现有关的动作包括以下动作中的一个或更多个:根据所述移动 终端与小小区之间的距离判断所述移动终端是否正在接近小小区,或者判 断所述移动终端对所述小小区发现的初始条件是否满足。
23.根据权利要求 22所述的方法, 其中, 在所述移动状态评估步骤 中,还根据所述移动终端在不同时刻的多个位置信息来计算所述移动终端 的移动速度和 /或移动方向。
24.根据权利要求 23所述的方法, 其中, 所述移动终端在不同时刻 的多个位置信息是按照预定的获取周期得到的,以及在所述执行步骤中还 根据移动终端的当前的移动速度更新移动终端的获取周期。
25.根据权利要求 23所述的方法, 其中, 在所述移动状态评估步骤 中还将所述移动终端的所述移动速度划分为不同的速度级别,以及在所述 述移动终端所处的位置归为不同的区域。
26.根据权利要求 23所述的方法, 其中, 在所述移动状态评估步骤 中,还根据所述移动终端的所述移动速度的大小来确定与所述小小区对应 的边界范围, 以及在所述执行步骤中,还通过将所述移动终端与所述小小 区之间的距离与所述边界范围进行比较来判断所述移动终端是否正在接 近所述小小区。
27.根据权利要求 26所述的方法, 其中, 在所述移动状态评估步骤 中,还将彼此邻近的所述小小区分为同一簇,并且对与所述同一簇内的各 个小小区对应的边界范围求并集, 作为与所述同一簇对应的边界范围。
28.根据权利要求 26所述的方法, 其中, 所述移动终端在不同时刻 的多个位置信息是按照预定的获取周期得到的, 以及在所述执行步骤中, 如果所述移动终端位于所述边界范围之外, 则设定更长的获取周期; 如果 所述移动终端位于所述边界范围之内, 则设定更短的获取周期。
29.根据权利要求 26所述的方法, 其中, 在所述执行步骤中, 还在 所述移动终端位于所述边界范围之内的情况下判断所述移动终端对所述 小小区发现的初始条件是否满足,所述初始条件为以下各项中的一个或更 多个: 所述移动终端处于非高速移动状态, 所述小小区的负载状况良好且 有剩余的资源用于所述移动终端的接入。
30.根据权利要求 29所述的方法, 其中, 在所述移动状态评估步骤 中,还根据所述移动终端的位置信息、移动速度和移动方向来计算所述移 动终端经过所述小小区所需要的停留时间,并且将所计算的停留时间与预 定的停留时间阈值进行比较以评估所述移动终端是否处于非高速移动状 态
31.根据权利要求 23、 26或 29所述的方法, 还包括: 异频间邻小区 测量判断步骤, 判断是否触发所述移动终端的异频间邻小区测量。
32.根据权利要求 31所述的方法, 其中,
在所述移动状态评估步骤中,还根据所述移动终端的位置信息、移动 速度和移动方向来计算所述移动终端到达所述小小区的覆盖范围的反应 时间, 以及
在所述异频间邻小区测量判断步骤中,还将所计算的所述反应时间与 预定的反应时间阈值进行比较以判断是否触发所述移动终端的异频间邻 小区测量。
33.根据权利要求 31所述的方法, 其中,
在所述移动状态评估步骤中, 还将所述边界范围划分为多个子区域, 每个子区域对应预定的触发概率,以及还用于根据所述移动终端的位置信 息判断所述移动终端所位于的子区域及其对应的触发概率; 以及
在所述异频间邻小区测量判断步骤中,还按照所确定的与所述移动终 端所位于的子区域对应的触发概率来触发所述移动终端的异频间邻小区 测量。
34.根据权利要求 31 所述的方法, 还包括: 异频间邻小区接入判断 步骤,在已触发了所述移动终端的异频间邻小区测量的情况下,根据所述 移动终端的测量报告和所述移动终端的位置信息,来判断是否触发所述移 动终端的异频间小区切换和 /或载波加载。
35. 一种包括计算机可读指令的计算机存储介质, 所述计算机指令用 于使计算机执行如权利要求 18至 34中任一项所述的方法。
36.—种无线通信***中的装置, 包括存储器与处理器, 其中, 所述 存储器储存计算机指令,所述处理器用于执行存储于所述存储器中的该计 算机指令以执行如权利要求 18至 34中任一项所述的方法。
PCT/CN2013/090514 2013-01-25 2013-12-26 无线通信***中的装置和方法 WO2014114164A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES13872980T ES2755090T3 (es) 2013-01-25 2013-12-26 Dispositivo y procedimiento en sistema de comunicación por radio
BR112015017167-2A BR112015017167B1 (pt) 2013-01-25 2013-12-26 Dispositivo em um sistema de comunicação sem fio, método para uso em um sistema de comunicação sem fio, e, mídia de armazenamento em computador
MX2015009103A MX351049B (es) 2013-01-25 2013-12-26 Dispositivo y método en sistema de comunicación por radio.
EP13872980.1A EP2950582B1 (en) 2013-01-25 2013-12-26 Device and method in radio communication system
JP2015554027A JP6332282B2 (ja) 2013-01-25 2013-12-26 無線通信システムにおける装置及び方法
KR1020157021088A KR20150110568A (ko) 2013-01-25 2013-12-26 무선 통신 시스템에서의 장치 및 방법
US14/760,648 US9913202B2 (en) 2013-01-25 2013-12-26 Device and method for proximity based small cell discovery
CA2898544A CA2898544A1 (en) 2013-01-25 2013-12-26 Device and method in radio communication system
RU2015135506A RU2653714C2 (ru) 2013-01-25 2013-12-26 Устройство и способ в системе беспроводной передачи данных
AU2013375529A AU2013375529B2 (en) 2013-01-25 2013-12-26 Device and method in radio communication system
ZA2015/06130A ZA201506130B (en) 2013-01-25 2015-08-24 Device and method in radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310030313.7A CN103974275B (zh) 2013-01-25 2013-01-25 无线通信***中的装置和方法
CN201310030313.7 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014114164A1 true WO2014114164A1 (zh) 2014-07-31

Family

ID=51226904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090514 WO2014114164A1 (zh) 2013-01-25 2013-12-26 无线通信***中的装置和方法

Country Status (13)

Country Link
US (1) US9913202B2 (zh)
EP (1) EP2950582B1 (zh)
JP (1) JP6332282B2 (zh)
KR (1) KR20150110568A (zh)
CN (1) CN103974275B (zh)
AU (1) AU2013375529B2 (zh)
BR (1) BR112015017167B1 (zh)
CA (1) CA2898544A1 (zh)
ES (1) ES2755090T3 (zh)
MX (1) MX351049B (zh)
RU (1) RU2653714C2 (zh)
WO (1) WO2014114164A1 (zh)
ZA (1) ZA201506130B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220642A (ja) * 2015-06-01 2016-12-28 富士通株式会社 センサ装置、送信制御方法及び送信制御プログラム
CN106454970A (zh) * 2016-12-06 2017-02-22 北京小米移动软件有限公司 小区切换控制方法和装置
WO2022269716A1 (ja) * 2021-06-21 2022-12-29 株式会社Nttドコモ 端末、無線通信方法及び基地局

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878210B1 (ko) * 2013-11-29 2018-07-13 삼성전자주식회사 무선 통신 시스템에서 소형 셀을 발견하기 위한 장치 및 방법
WO2016003424A1 (en) * 2014-06-30 2016-01-07 Hewlett-Packard Development Company, L.P. Channel scan based on mobility state
CN105792158B (zh) * 2014-12-22 2019-06-11 杭州华为数字技术有限公司 一种小区中的信息传输的方法及装置
CN105791496B (zh) * 2014-12-24 2019-07-05 高德软件有限公司 一种移动终端状态检测方法及装置
CN105992238B (zh) 2015-01-30 2021-02-26 索尼公司 无线通信***中的装置和方法
US20190059029A1 (en) * 2016-01-21 2019-02-21 Nokia Solutions And Networks Oy Hybrid Solution for Network Controlled Handover and UE Autonomous Handover
EP3501209B1 (en) * 2016-08-22 2021-04-14 Telefonaktiebolaget LM Ericsson (publ) A processing unit and a method therein for initiating cell activation
CN106455052B (zh) * 2016-09-29 2020-06-23 京信通信***(中国)有限公司 一种定位方法及装置
CN107918691B (zh) * 2016-10-07 2023-09-29 福特全球技术公司 用于评估信号的方法和装置
US11096103B2 (en) * 2017-08-11 2021-08-17 Lg Electronics Inc. Method for reporting measurement result and device supporting the same
TWI650037B (zh) * 2017-12-05 2019-02-01 財團法人工業技術研究院 一種集中式無線存取網路控制方法
CN109714707B (zh) * 2019-01-04 2021-12-14 广州中石科技有限公司 定位***及方法
US10992364B2 (en) * 2019-01-18 2021-04-27 Verizon Patent And Licensing Inc. Systems and methods for adaptive beamforming management
CN111836313B (zh) * 2019-04-17 2022-08-09 华为技术有限公司 一种小区切换测量的指示方法、网络设备及终端
WO2020211066A1 (zh) * 2019-04-19 2020-10-22 Oppo广东移动通信有限公司 用于切换网络设备的方法、终端设备和网络设备
CN112243198A (zh) * 2019-07-16 2021-01-19 大唐移动通信设备有限公司 一种终端位置信息上报方法、装置、终端及网络侧设备
US11356884B2 (en) * 2019-10-02 2022-06-07 Lg Electronics Inc. Method and apparatus for reporting relaxed measurement in a wireless communication system
CN114514769B (zh) * 2019-10-02 2024-04-12 三星电子株式会社 用于在无线通信***中执行无线电资源管理(rrm)测量的方法和装置
AU2020437974A1 (en) * 2020-03-27 2022-10-20 Honda Motor Co., Ltd. Operation management device, operation management program and operation management method
CN113676953A (zh) * 2020-05-15 2021-11-19 上海诺基亚贝尔股份有限公司 为ran网络的移动负载均衡进行ue选择的方法和基站
US11877201B2 (en) * 2020-06-12 2024-01-16 Cable Television Laboratories, Inc. Handovers for a user equipment using a mobility status
EP4192040A4 (en) * 2020-07-28 2024-04-24 Beijing Xiaomi Mobile Software Co., Ltd. POSITION DETERMINATION METHOD AND APPARATUS, AND COMMUNICATION DEVICE AND RECORDING MEDIUM
WO2022082673A1 (zh) * 2020-10-22 2022-04-28 北京小米移动软件有限公司 终端获取测量信息的方法、装置、通信设备及存储介质
US11856545B1 (en) * 2021-02-03 2023-12-26 Espan Systems High precision distance computations for FTM estimates
WO2022225120A1 (ko) * 2021-04-19 2022-10-27 서울대학교산학협력단 위치 정보 수집 방법, 위치 정보 제공 방법 및 이를 실행하는 장치
KR102527982B1 (ko) * 2021-04-19 2023-05-02 서울대학교산학협력단 위치 정보 수집 방법, 위치 정보 제공 방법 및 이를 실행하는 장치
CN117837199A (zh) * 2021-06-21 2024-04-05 株式会社Ntt都科摩 终端、无线通信方法以及基站
CN117837198A (zh) * 2021-06-21 2024-04-05 株式会社Ntt都科摩 终端、无线通信方法以及基站
CN118266252A (zh) * 2021-10-05 2024-06-28 株式会社Ntt都科摩 终端、无线通信方法以及基站
JPWO2023067813A1 (zh) * 2021-10-22 2023-04-27

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110627A (zh) * 2006-07-21 2008-01-23 普天信息技术研究院 一种获取用户设备位置信息的方法
CN102763437A (zh) * 2010-02-17 2012-10-31 株式会社Ntt都科摩 测位时间间隔控制装置以及测位时间间隔控制方法
CN102869053A (zh) * 2011-07-07 2013-01-09 上海贝尔股份有限公司 在异构型通信网络中用于发现小小区的方法和装置
CN103179609A (zh) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 一种邻区选择的方法及***

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681099B1 (en) * 2000-05-15 2004-01-20 Nokia Networks Oy Method to calculate true round trip propagation delay and user equipment location in WCDMA/UTRAN
JP2002027519A (ja) * 2000-06-30 2002-01-25 Toshiba Corp 移動通信端末とその接続先基地局選択方法及び接続先基地局選択制御プログラムを記憶した記憶媒体
US7493131B2 (en) * 2002-03-12 2009-02-17 Qualcomm Incorporated Velocity responsive power control
US7379739B2 (en) * 2002-11-14 2008-05-27 Samsung Electronics Co., Ltd. Apparatus and method for selecting a handoff base station in a wireless network
JP4835499B2 (ja) * 2007-04-18 2011-12-14 株式会社日立製作所 異システム間ハンドオフ方法および無線通信端末
JP2010107347A (ja) * 2008-10-30 2010-05-13 Panasonic Corp 携帯端末装置及び携帯端末装置の測位方法
US8498267B2 (en) * 2009-05-01 2013-07-30 At&T Mobility Ii Llc Access control for macrocell to femtocell handover
JP5319490B2 (ja) * 2009-10-22 2013-10-16 株式会社東芝 基地局システム、基地局制御装置、及び端末位置算出方法
EP2705690A4 (en) * 2011-05-02 2015-05-27 Ericsson Telefon Ab L M METHOD FOR A RADIO NETWORK NODE FOR CONTROLLING THE TRANSFER DECISION OF A USER DEVICE
CN103650594B (zh) * 2011-05-06 2017-09-12 瑞典爱立信有限公司 支持小区改变的方法和节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110627A (zh) * 2006-07-21 2008-01-23 普天信息技术研究院 一种获取用户设备位置信息的方法
CN102763437A (zh) * 2010-02-17 2012-10-31 株式会社Ntt都科摩 测位时间间隔控制装置以及测位时间间隔控制方法
CN102869053A (zh) * 2011-07-07 2013-01-09 上海贝尔股份有限公司 在异构型通信网络中用于发现小小区的方法和装置
CN103179609A (zh) * 2011-12-20 2013-06-26 中兴通讯股份有限公司 一种邻区选择的方法及***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA SIEMENS NETWORKS ET AL.: "Enhancements for Small Cell Detection.", 3GPP TSG-RAN WGS MEETING #77. R2-120523, 10 February 2012 (2012-02-10), DRESDEN, GERMANY, XP050565426 *
See also references of EP2950582A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220642A (ja) * 2015-06-01 2016-12-28 富士通株式会社 センサ装置、送信制御方法及び送信制御プログラム
CN106454970A (zh) * 2016-12-06 2017-02-22 北京小米移动软件有限公司 小区切换控制方法和装置
CN106454970B (zh) * 2016-12-06 2020-02-07 北京小米移动软件有限公司 小区切换控制方法和装置
WO2022269716A1 (ja) * 2021-06-21 2022-12-29 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
EP2950582B1 (en) 2019-10-23
CN103974275B (zh) 2018-09-25
AU2013375529A1 (en) 2015-07-23
MX2015009103A (es) 2015-10-05
RU2653714C2 (ru) 2018-05-15
BR112015017167B1 (pt) 2022-09-13
ZA201506130B (en) 2016-05-25
EP2950582A4 (en) 2016-09-07
CA2898544A1 (en) 2014-07-31
US9913202B2 (en) 2018-03-06
EP2950582A1 (en) 2015-12-02
RU2015135506A (ru) 2017-03-10
MX351049B (es) 2017-09-29
BR112015017167A2 (pt) 2017-07-11
CN103974275A (zh) 2014-08-06
JP2016504887A (ja) 2016-02-12
US20150358890A1 (en) 2015-12-10
JP6332282B2 (ja) 2018-05-30
AU2013375529B2 (en) 2017-04-20
ES2755090T3 (es) 2020-04-21
KR20150110568A (ko) 2015-10-02

Similar Documents

Publication Publication Date Title
WO2014114164A1 (zh) 无线通信***中的装置和方法
US9055474B2 (en) Apparatus for improved mobility in a wireless heterogeneous network
US9674740B2 (en) Method and arrangement for mobility procedures supporting user equipment groups
US20220104082A1 (en) Ue procedures for reducing rsrp/rsrq measurement in rrc idle mode and inactive state
US9913179B2 (en) Method and system to trigger UE handover in a radio communication network
EP3949579B1 (en) Indication of downlink clear channel assessment failures
US9942810B2 (en) Connection setup for heterogeneous cellular communication networks
US20140213267A1 (en) Radio connection re-establishment method, user equipment and base station
US20240049092A1 (en) Cell reselection using expected cell serving time
US12010569B2 (en) Providing beam information
CN104396318B (zh) 接入控制方法和设备
JP7019294B2 (ja) 無線端末
US20240129780A1 (en) Event-triggered early measurement report reporting
US20240196325A1 (en) Method for Switching Off Network Cells based on the Capability of Wireless Devices in the Network
RU2776679C1 (ru) Пользовательское устройство
KR20220031531A (ko) 단말의 위치 측정을 위한 통신 방식 및 주파수 대역을 결정하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554027

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760648

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/009103

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2898544

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2013375529

Country of ref document: AU

Date of ref document: 20131226

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013872980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015017167

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20157021088

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201504992

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2015135506

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015017167

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150717