WO2014112850A1 - Method and apparatus for effectively providing tdd configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting tdd - Google Patents

Method and apparatus for effectively providing tdd configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting tdd Download PDF

Info

Publication number
WO2014112850A1
WO2014112850A1 PCT/KR2014/000594 KR2014000594W WO2014112850A1 WO 2014112850 A1 WO2014112850 A1 WO 2014112850A1 KR 2014000594 W KR2014000594 W KR 2014000594W WO 2014112850 A1 WO2014112850 A1 WO 2014112850A1
Authority
WO
WIPO (PCT)
Prior art keywords
tdd
terminal
setting
tdd configuration
dynamic
Prior art date
Application number
PCT/KR2014/000594
Other languages
French (fr)
Korean (ko)
Inventor
김상범
김성훈
정경인
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP21168110.1A priority Critical patent/EP3905548A1/en
Priority to CN201480014205.3A priority patent/CN105075148B/en
Priority to EP14740380.2A priority patent/EP2947791B1/en
Priority to EP18200771.6A priority patent/EP3447937B1/en
Priority to US14/762,398 priority patent/US9591665B2/en
Priority to CN201910703578.6A priority patent/CN110380840B/en
Publication of WO2014112850A1 publication Critical patent/WO2014112850A1/en
Priority to US15/451,395 priority patent/US9949254B2/en
Priority to US15/954,261 priority patent/US10652873B2/en
Priority to US16/835,048 priority patent/US11452084B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0037Delay of clock signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0041Delay of data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0337Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present invention relates to a method and apparatus for effectively providing TDD configuration information to a terminal and determining uplink transmission timing in a mobile communication system supporting TDD.
  • a mobile communication system has been developed for the purpose of providing communication while securing user mobility.
  • Such a mobile communication system has reached a stage capable of providing high-speed data communication service as well as voice communication due to the rapid development of technology.
  • LTE-A Long Term Evolution Advanced
  • 3GPP is working on specifications for Long Term Evolution Advanced (LTE-A).
  • LTE-A is a technology that implements high-speed packet-based communication with a transmission rate of up to 100 Mbps, which is higher than currently provided data rate, aiming for commercialization in 2012.
  • various methods are discussed. For example, a method of simplifying a network structure to reduce the number of nodes located on a communication path or a method of bringing wireless protocols as close to the wireless channel as possible is discussed.
  • the data service unlike the voice service, is determined according to the amount of data to be transmitted and the channel conditions and resources that can be allocated. Therefore, in a wireless communication system such as a mobile communication system, management such as allocating transmission resources is performed in consideration of the amount of resources to be transmitted by the scheduler, the situation of the channel, and the amount of data. This is the same in LTE, one of the next generation mobile communication systems, and a scheduler located in a base station manages and allocates radio transmission resources.
  • Interference Mitigation and Traffic adaptation (IMTA) technology is one of several technologies under study in LTE-A.
  • IMTA technology is a technology applied to TDD, and has a short cycle for the purpose of controlling the amount of traffic generated in the uplink and the downlink, and the amount of interference, and changes the ratio of the resource amount allocated to the uplink and the downlink.
  • LTE-A system has to be improved in many ways.
  • the present invention has been proposed to solve the above-mentioned problems.
  • a wireless communication system supporting time division duplex (TDD) a base station and a terminal for variably setting a TDD in a terminal and a method of operating the base station and the terminal
  • TDD time division duplex
  • a time division duplex (TDD) configuration method of a terminal includes: receiving a first TDD configuration from a base station; Receiving a message including dynamic TDD configuration related information from the base station; Receiving a second TDD setting according to the received dynamic TDD setting related information; Receiving an uplink grant from the base station; And determining to apply the first TDD setting or the second TDD setting based on how the reverse grant was received.
  • TDD time division duplex
  • a terminal configuring a time division duplex sets a first TDD configuration from a base station and receives a message including dynamic TDD configuration related information from the base station.
  • a transceiver configured to receive a second TDD configuration according to the received dynamic TDD configuration information and to receive an uplink grant from the base station and the first TDD configuration based on a method in which the reverse grant is received; And a controller for determining to apply the second TDD setting.
  • a method of setting a time division duplex (TDD) of a base station includes: transmitting a first TDD setting to a terminal; Receiving a message including whether TDD can be set from the terminal; Determining whether to set a dynamic TDD operation based on the received message; Transmitting a message including dynamic TDD configuration information to the terminal according to the determination result; Transmitting a second TDD configuration according to the transmitted dynamic TDD configuration information; And transmitting a reverse grant according to the first TDD setting or the second TDD setting, wherein the terminal applies the first TDD setting or the second TDD setting based on a method in which the reverse grant is received. Characterized in that.
  • a base station for setting a time division duplex (TDD) of a terminal transmits a first TDD setting to the terminal and includes a message indicating whether TDD can be set from the terminal.
  • Transmitting and receiving unit for receiving;
  • a controller configured to determine whether to set a dynamic TDD operation based on the received message, wherein the transceiver transmits a second TDD configuration according to the transmitted dynamic TDD configuration information, and transmits the first TDD configuration or the first TDD configuration. It is characterized in that for transmitting the reverse grant according to the 2 TDD configuration, the terminal is characterized by applying the first TDD configuration or the second TDD configuration based on how the reverse grant is received.
  • the present invention it is possible to set a shorter period when TDD is set in a terminal supporting TDD in a wireless communication system, and it is possible to set TDD in a terminal more quickly according to a communication situation.
  • FIG. 1 is a diagram showing the structure of an LTE system to which the present invention is applied;
  • FIG. 2 is a diagram showing a radio protocol structure in an LTE system to which the present invention is applied;
  • 3 is a view for explaining a modification period in a general SIB delivery method
  • FIG. 7 is a block diagram of a terminal operation according to the first embodiment
  • FIG. 8 is a block diagram of a base station operation according to the first embodiment
  • FIG. 10 is a block diagram of a terminal operation according to the second embodiment
  • FIG. 11 is a block diagram of a base station operation according to the second embodiment.
  • FIG. 12 is a block diagram illustrating a terminal operation for explaining the present invention.
  • FIG. 13 is a block diagram of a base station for explaining the present invention.
  • 15 is a diagram for explaining PagingCycle-dynamic-TDD and i_s-dynamic-TDD information
  • 16 is a flowchart illustrating an operation of a terminal for determining a subframe to perform reverse transmission by selectively applying a first TDD configuration and a second TDD configuration;
  • 17 is a flowchart illustrating an example of an operation of a terminal for determining a subframe to perform reverse transmission by selectively applying a first TDD configuration and a second TDD configuration;
  • 18 is a flowchart illustrating an operation of a terminal for determining an operation to be performed in subframe n by selectively applying a first TDD configuration and a second TDD configuration;
  • 19 is a flowchart illustrating a UE operation of determining a subframe to receive a PHICH by selectively applying a first TDD setting and a second TDD setting;
  • 20 is a flowchart illustrating another operation of determining a subframe to receive a PHICH by selectively applying a first TDD setting and a second TDD setting;
  • 21 is a flowchart illustrating an example of an operation of determining a subframe to receive a PHICH by selectively applying a first TDD setting and a second TDD setting;
  • FIG. 22 is a flowchart illustrating an operation of a terminal for selecting a subframe for performing reverse transmission by a terminal that temporarily fails to acquire a second TDD configuration
  • FIG. 23 is a flowchart illustrating an operation of a terminal for selecting a subframe to receive a PHICH by a terminal that temporarily fails to acquire a second TDD setting.
  • An embodiment of the present invention relates to a method and apparatus for effectively providing TDD configuration information to a user equipment and determining uplink transmission timing in a mobile communication system supporting TDD.
  • the first and second embodiments relate to a method of effectively delivering a changed TDD configuration information to a terminal with a short cycle
  • the third embodiment relates to a method of determining uplink transmission timing in such a situation.
  • the TDD configuration information In order to change the ratio of the resource amount allocated to the uplink and the downlink with a short cycle in the IMTA technology, the TDD configuration information must be changed quickly. To this end, the TDD configuration information applied to the terminal must be delivered quickly.
  • the present invention proposes a method for effectively delivering a fast-changing TDD configuration information to the terminal.
  • an LTE system to which the present invention is applied TDD configuration information, and a TDD frame structure will be described.
  • FIG. 1 is a diagram illustrating a structure of an LTE system to which the present invention is applied.
  • a radio access network of an LTE system includes a next-generation base station (Evolved Node B, ENB, Node B, or base station) 105, 110, 115, and 120 and an MME 125. And S-GW 130 (Serving-Gateway).
  • the user equipment (hereinafter referred to as UE or terminal) 135 accesses an external network through the ENBs 105 to 120 and the S-GW 130.
  • the ENBs 105 to 120 correspond to existing Node Bs of the UMTS system.
  • the ENB is connected to the UE 135 by a radio channel and performs a more complicated role than the existing Node B.
  • all user traffic including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, so information on the status of buffers, available transmit power, and channel status of UEs is available. It is necessary to have a device for scheduling the collection of this, ENB (105 ⁇ 120) is in charge.
  • One ENB typically controls multiple cells.
  • the LTE system uses orthogonal frequency division multiplexing (hereinafter, referred to as OFDM) in a 20 MHz bandwidth as a radio access technology.
  • OFDM orthogonal frequency division multiplexing
  • AMC adaptive modulation & coding
  • the S-GW 130 is a device that provides a data bearer, and generates or removes a data bearer under the control of the MME 125.
  • the MME is a device that is in charge of various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations.
  • FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system to which the present invention is applied.
  • a wireless protocol of an LTE system includes packet data convergence protocols 205 and 240 (PDCP), radio link control 210 and 235 (RMC), and medium access control 215 and 230 (MAC) in a terminal and an ENB, respectively.
  • the PDCP Packet Data Convergence Protocol
  • RLC Radio Link control
  • the MACs 215 and 230 are connected to several RLC layer devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs and demultiplex RLC PDUs from MAC PDUs.
  • the physical layers 220 and 225 channel-code and modulate higher layer data, make an OFDM symbol, and transmit it to a wireless channel, or demodulate, channel decode, and transmit the received OFDM symbol through a wireless channel to a higher layer.
  • the physical layer uses HARQ (Hybrid ARQ) for additional error correction, and the receiving end transmits the reception of the packet transmitted by the transmitting end as 1 bit. This is called HARQ ACK / NACK information.
  • Downlink HARQ ACK / NACK information for uplink transmission is transmitted through PHICH (Physical Hybrid-ARQ Indicator Channel) physical channel, and uplink HARQ ACK / NACK information for downlink transmission is PUCCH (Physical Uplink Control Channel) or PUSCH. (Physical Uplink Shared Channel) It may be transmitted through a physical channel.
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the LTE standard supports two types of duplexes: frequency division duplex (FDD) and time division duplex (TDD).
  • FDD has different frequency bands for uplink and downlink
  • TDD uses the same frequency band for uplink and downlink. Accordingly, in TDD, frequency bands should be used alternately as uplinks during a specific subframe and as downlinks during another subframe.
  • the UE must know exactly the subframes for which downlink is used in each phase, and the base station provides such subframe information to the UE in advance.
  • Subframe information used for downlink is referred to as a TDD configuration. As shown in Table 1, the base station may provide one of a total of seven TDD configurations.
  • each subframe is divided into an uplink subframe, a downlink subframe, and a special subframe.
  • a downlink subframe denoted as 'D' is used to transmit downlink data
  • an uplink subframe denoted as 'U' is allocated to transmit uplink data.
  • the special subframe corresponds to a subframe between the downlink subframe and the uplink subframe. The reason for placing the special subframe is that the timing at which each terminal completely receives a downlink subframe and the timing at which each terminal transmits uplink data differ depending on the position of the terminal. For example, a terminal far from the base station may receive data from the base station later.
  • FIG. 14 is a diagram for explaining a frame structure in TDD.
  • One radio frame 1400 having a length of 10 ms consists of 10 subframes. Each subframe is 1 ms and consists of two slots.
  • FIG. 14 illustrates one of TDD configurations 0, 1, 2, and 6 when a subframe 1405 and a subframe 1415 are downlink subframes, and the subframe 1410 and the subframe 1435 are uplink subframes. Therefore, the subframe therebetween becomes a special subframe.
  • the special subframe is divided into three sections indicated by DwPTS (Downlink Pilot Timeslot, 1420), GP (Guard Period, 1425), and UpPTS (Uplink pilot Timeslot, 1430).
  • DwPTS is a time interval for downlink reception
  • UpPTS is a time interval for uplink transmission.
  • GP does not transmit or receive any data.
  • Optimal DwPTS and UpPTS values may vary depending on the propagation environment. Therefore, the base station informs the terminal of the appropriate DwPTS and UpPTS values in advance, as shown in Table 2.
  • the TDD configuration in Table 1 and the DwPTS and UpPTS values in Table 2 are included in IE Tdd-Config of SystemInformationBlockType1 (SIB1) broadcast from the base station and delivered to the terminal.
  • SIB1 SystemInformationBlockType1
  • FIG. 14 is a diagram for explaining a frame structure in TDD.
  • One radio frame 1400 having a length of 10 ms consists of 10 subframes. Each subframe is 1 ms and consists of two slots.
  • FIG. 14 illustrates one of TDD configurations 0, 1, 2, and 6 when a subframe 1405 and a subframe 1415 are downlink subframes, and the subframe 1410 and the subframe 1435 are uplink subframes. Therefore, the subframe therebetween becomes a special subframe.
  • the special subframe is divided into three sections indicated by DwPTS (Downlink Pilot Timeslot, 1420), GP (Guard Period, 1425), and UpPTS (Uplink pilot Timeslot, 1430).
  • DwPTS is a time interval for downlink reception
  • UpPTS is a time interval for uplink transmission.
  • GP does not transmit or receive any data.
  • Optimal DwPTS and UpPTS values may vary depending on the propagation environment. Therefore, the base station informs the terminal of the appropriate DwPTS and UpPTS values in advance, as shown in Table 2.
  • the TDD configuration in Table 1 and the DwPTS and UpPTS values in Table 2 are included in IE Tdd-Config of SystemInformationBlockType1 (SIB1) broadcast from the base station and delivered to the terminal.
  • SIB1 SystemInformationBlockType1
  • the LTE standard has a frequency band concept as shown in Table 3.
  • the LTE carrier belongs to one frequency band, and parameter values applied when calculating the terminal transmission power and the like vary according to the frequency band.
  • carrier aggregation technology carriers belonging to the same band or different bands may be used together.
  • the terminal implementation may have a plurality of RF (Radio Frequency) modules. If carriers used by the UE belong to bands adjacent to each other in frequency, they may be used in the same RF module, but if they belong to bands far apart in frequency, another RF module will have to be used. This is because the performance characteristics of the RF module vary greatly depending on the frequency band applied.
  • the same TDD configuration information should be used. This is because carriers belonging to one RF module cannot be separated to apply different TDD settings. In contrast, if carriers to be used by the UE belong to bands far apart in frequency and use a plurality of RF modules, different TDD settings may be applied to each carrier. Therefore, when the UE informs the base station whether the IMTA technology is supported, it is necessary to inform the classification by frequency band. Table 3 below shows E-UTRA operating bands.
  • Embodiment 1 dynamic TDD configuration information is transmitted using SIB1, which is one of common information broadcast from a base station.
  • SIB1 is one of common information broadcast from a base station.
  • 3 is a diagram illustrating a modification period in a general SIB delivery method.
  • the general SIB delivery method applies a concept of a modification period 310. That is, before the SI update, it informs that the SI 300 is updated through a paging message during the modification period. If the systemInfoModification IE is present in the paging message, it means that the updated SI 305 is transmitted from the next modification period. If only one of several SI messages changes, the paging message indicates this. The exceptions are SIB10 and SIN11, which carry ETWS, which are updated regardless of the boundary of the modification period. If the paging message indicates that ETWS together with etws-Indication IE, the terminal immediately attempts to receive SIB10,11. The length of the modification period is known as SIB2, with a maximum of 10.24 seconds.
  • 4 is an operation flowchart for explaining a general SIB delivery method.
  • the base station determines to update SIB information in step 400.
  • the base station includes the SystemInfoModification IE in the paging message and delivers it to the terminal.
  • the paging message indicates that newly updated SIB information is transmitted from the next modification period.
  • the UE receives the corresponding paging message and recognizes whether the SIB information is changed in the next modification period.
  • the UE first attempts SIB1 decoding in step 425. This is because SIB1 has scheduling information of another SIB.
  • the terminal receives the newly updated SIB information. The terminal applies the changed SIB information in step 435.
  • 5 is a diagram illustrating a general SIB scheduling method.
  • MIB MasterInformationBlock
  • SIB1 to SIB13, and SIB14 and the like are discussed to support new technologies.
  • MIB contains the most essential information such as SFN (System Frame Number), frequency bandwidth.
  • SFN System Frame Number
  • the MIB is included in the first subframe of every radio frame 535 and transmitted. Since the MIB with the same information is transmitted in 4 radio frames, the period is 40 ms.
  • SIB1 550 includes cell access and SIB scheduling information.
  • SIB2 is included in the fifth subframe of every even radio frame and transmitted. The remaining SIB2 to SIB13 are included in one of the plurality of SI messages 555, 560, and 565 and transmitted.
  • SI-WindowLength is known to the UE as SIB1 and is a value commonly applied to all SI messages.
  • a plurality of SIB information included in one SI message is transmitted in one subframe in the SI window in order according to scheduling information of SIB1.
  • SIB transmission is limited in the MBSFN subframe, the uplink subframe in the case of TDD, and the subframe in which SIB1 is transmitted (the fifth subframe of the even-numbered radio frame).
  • the SIB information to be transmitted first of the first SI message is fixed to the SIB2 (530).
  • the first SI message 555 is repeatedly transmitted with a certain period 505. That is, if the first SI message 555 is transmitted in the first SI window 515, it is retransmitted after a certain period 505.
  • the second SI message 560 is transmitted in the second SI window 520 and then repeatedly transmitted with another period 510.
  • the period information for each SI message is known to the terminal as SIB1.
  • SIB1 is most suitable among the above-described SIBs to inform the UE of dynamic TDD configuration information that is changed within tens of ms or hundreds of ms.
  • the MIB contains only the most essential information and does not have a lot of free bits.
  • SIB1 is longer than MIB but has a relatively long period, but shorter than that of other SIBs.
  • other SIB information should obtain scheduling information from the SIB.
  • SIB1 the biggest problem is the SIB delivery process based on the modification period.
  • the SIB1 includes the dynamic TDD configuration
  • the SIB in order to deliver the updated dynamic TDD configuration to the UE, the SIB should be informed in advance that the SIB will be changed to paging in the previous modification period at the time of transmitting the changed SIB1.
  • the base station After the modification period, the base station will transmit the modified SIB1.
  • the updated dynamic TDD configuration cannot be informed to the UE in time in consideration of the change period of the dynamic TDD configuration.
  • the dynamic TDD configuration information is included in the SIB1, but the terminal continuously receives and decodes the SIB1 without following the conventional modification period, and the base station immediately includes the updated dynamic TDD configuration information to transmit the SIB1. Suggest a solution.
  • FIG. 6 is a flowchart illustrating the operation of the first embodiment.
  • the UE performs RRC connection establishment to a base station supporting TDD.
  • the UE provides the base station with capability bits indicating that dynamic TDD configuration can be performed for each frequency band. The reason why capability bits are required for each frequency band is described in detail at the beginning.
  • the base station determines whether to perform dynamic TDD configuration for a specific carrier belonging to a specific band to the terminal.
  • the base station triggers a dynamic TDD to the terminal using an RRCConnectionReconfiguration message.
  • the UE receives and decodes SIB1 information periodically transmitted in step 620.
  • dynamic TDD configuration information is received from SIB1.
  • step 635 the UE performs dynamic TDD by applying the most recently received dynamic TDD configuration until receiving the updated dynamic TDD configuration information in the next SIB1.
  • step 640 the UE receives the updated dynamic TDD configuration information. The terminal repeats the above operation until the end of the dynamic TDD operation.
  • FIG. 7 is a block diagram of a terminal operation in the first embodiment.
  • the UE includes a capability indicator indicating whether a dynamic TDD operation can be supported for each frequency band in a UE capability information message.
  • the terminal transmits a UE capability information message to the base station.
  • the UE receives an RRCConnectionReconfiguration message from the base station.
  • the UE determines whether to configure the dynamic TDD operation in the message. If the dynamic TDD operation is performed, the UE acquires dynamic TDD configuration information from SIB1 periodically transmitted in step 720. In step 725, the UE applies the latest dynamic TDD configuration information to perform a dynamic TDD operation. If the dynamic TDD operation is not performed, the conventional TDD operation is performed in step 730.
  • FIG. 8 is a block diagram of a base station operation according to the first embodiment.
  • a base station receives a UE capability information message including a capability indicator indicating whether a dynamic TDD operation can be supported for each frequency band from a specific terminal.
  • step 805 the base station determines whether to configure the dynamic TDD operation in the message. If the dynamic TDD operation is configured, in step 810, the base station configures the dynamic TDD operation using an RRCConnectionReconfiguration message. In step 820, the base station transmits an RRCConnectionReconfiguration message to the terminal. In step 825, the base station includes the latest dynamic TDD configuration in SIB1 and transmits it.
  • Embodiment 2 dynamic TDD configuration information is delivered using paging. Before describing the specific method, a general paging delivery method will be described.
  • the paging message is not transmitted at any time, but is transmitted in a subframe of a predetermined radio frame for each terminal. Since the transmission time point is known to the base station and the terminal in advance, the terminal needs to perform a paging message reception operation only at the transmission time point.
  • a radio frame to which a paging message is transmitted is called a paging frame (PF), and a subframe in which the paging message is actually transmitted is called a paging occsion (PO).
  • PF and PO are derived by the following two equations.
  • T is the DRX cycle.
  • nB has one of ⁇ 4T, 2T, T, T / 2, T / 4, T / 8, T / 16, T / 32 ⁇ .
  • N is the min (T, nB) value.
  • Ns is the max (1, nB / T) value.
  • UE_ID is defined as IMSI mod 1024, and IMSI is a terminal ID.
  • i_s is derived with the table below. Table 4 below is a table showing the TDD configuration (all UL / DL configurations).
  • a paging message for dynamic TDD configuration may be transmitted using a fixed PF or PO.
  • the paging message for the dynamic TDD configuration does not need to be received by all terminals, and only the terminals capable of performing the dynamic TDD operation among the terminals in the connected mode.
  • the base station transmits PagingCycle-dynamic-TDD and i_s-dynamic-TDD information to a terminal to perform dynamic TDD configuration using a dedicated RRC message.
  • PagingCycle-dynamic-TDD indicates a radio frame (PF) period in which a paging message including the dynamic TDD configuration information is transmitted.
  • i_s-dynamic-TDD represents PO.
  • i_s-dynamic-TDD can be defined as shown in Table 4.
  • FIG. 15 is a diagram for describing PagingCycle-dynamic-TDD and i_s-dynamic-TDD information.
  • the PagingCycle-dynamic-TDD 1500 is a transmission period of a paging message including the dynamic TDD configuration.
  • the PF 1505 indicates a radio frame in which a paging message including the dynamic TDD configuration information is transmitted.
  • the PO 1510 is a subframe in which a paging message indicated by i_s-dynamic-TDD is transmitted.
  • the dynamic TDD configuration information received from the paging is applied until the next paging is received (1515).
  • FIG. 9 is a flowchart illustrating the operation of the second embodiment.
  • the UE performs RRC connection establishment to a base station supporting TDD.
  • the UE provides the BS with capability bits indicating that dynamic TDD configuration can be performed for each frequency band. The reason why capability bits are required for each frequency band is described in detail at the beginning.
  • the base station determines whether to perform dynamic TDD configuration for a specific carrier belonging to a specific band to the terminal.
  • the base station transmits PagingCycle-dynamic-TDD and i_s-dynamic-TDD information to the UE using an RRCConnectionReconfiguration message.
  • the terminal Upon receiving the message, the terminal receives and decodes paging information periodically transmitted in step 920.
  • step 930 dynamic TDD configuration information is received from paging.
  • step 935 the UE performs dynamic TDD by applying the most recently received dynamic TDD configuration until receiving the updated dynamic TDD configuration information at the next paging.
  • step 940 the UE receives the updated dynamic TDD configuration information. The terminal repeats the above operation until the end of the dynamic TDD operation.
  • FIG. 10 is a block diagram of a terminal operation in the second embodiment.
  • the UE includes a capability indicator indicating whether a dynamic TDD operation can be supported for each frequency band in a UE capability information message.
  • the UE transmits a UE capability information message to the base station.
  • the UE receives an RRCConnectionReconfiguration message from the base station.
  • the UE configures a dynamic TDD operation in the message and determines whether PagingCycle-dynamic-TDD and i_s-dynamic-TDD information is included. If the dynamic TDD operation is performed, in step 1020, the UE obtains dynamic TDD configuration information from periodically transmitted paging. In step 1025, the UE performs the dynamic TDD operation by applying the latest dynamic TDD configuration information. If the dynamic TDD operation is not performed, the conventional TDD operation is performed in step 1030.
  • Fig. 11 is a block diagram of a base station operation according to the second embodiment.
  • a base station receives a UE capability information message including a capability indicator indicating whether a dynamic TDD operation can be supported for each frequency band from a specific terminal.
  • the base station determines whether to configure the dynamic TDD operation in the message. If the dynamic TDD operation is configured, in step 1110, the base station transmits an RRCConnectionReconfiguration message including PagingCycle-dynamic-TDD and i_s-dynamic-TDD information. In step 1120, the base station transmits an RRCConnectionReconfiguration message to the terminal. In step 1125, the base station includes the latest dynamic TDD configuration in the paging and transmits it.
  • the terminal When the terminal receives the reverse grant in any subframe n, the terminal performs the reverse transmission in a subframe (n + k) after a predetermined time elapses.
  • K is related to the time required for the terminal to generate the MAC PDU and perform the preprocessing of the physical layer for reverse transmission, and the terminal and the base station should use the same value.
  • Embodiment 3 of the present invention provides a method and apparatus for differently selecting a reverse subframe to perform reverse transmission according to whether the terminal receives the reverse grant through the forward control channel or the RAR when the terminal receives the reverse grant. .
  • k is determined by applying the second TDD configuration to the reverse grant received through the PDCCH, and k is applied by applying the first TDD configuration to the reverse grant received through the RAR.
  • the TDD configuration information is an integer between 0 and 6 indicating the configuration of a forward subframe and a reverse subframe special subframe for one radio frame.
  • the first TDD configuration information is information that can be understood by all terminals including a terminal that does not support dynamic TDD operation and is transmitted through system information so that all terminals of the cell can be recognized.
  • the system information may be, for example, System Information Block 1.
  • the SIB1 is repeatedly transmitted with a predetermined period.
  • the SIB1 stores information essential for determining whether the UE camps on the cell, for example, information on a carrier of the cell.
  • the first TDD configuration information is stored in a field that all terminals including the terminal of the initial release can understand, that is, a legacy field.
  • the second TDD configuration information corresponds only to terminals supporting dynamic TDD operation and can be delivered to the terminal in various ways.
  • the second TDD configuration information may be repeatedly transmitted at regular intervals and may be dynamically changed.
  • the base station determines the most suitable TDD configuration at a predetermined time point in consideration of the current cell load situation or the ratio of the forward traffic and the reverse traffic, and delivers the second TDD configuration information to the terminals configured with the dynamic TDD operation in a predetermined manner. do.
  • the UE acquires first TDD configuration information.
  • the terminal receives predetermined system information and recognizes first TDD configuration information stored in the legacy field of the system information.
  • the first TDD configuration information has an attribute that is not frequently changed, and when changed, a system information changing procedure is applied.
  • a dynamic TDD operation is set for the UE.
  • the setting of the dynamic TDD operation means that the terminal receives a control message containing control information indicating to start the dynamic TDD operation.
  • the dynamic TDD operation means an operation of dynamically changing the TDD configuration of the terminal according to the load situation of the cell. Dynamic TDD operation can be classified into the following two types.
  • the TDD configuration may be changed at a predetermined cycle, and the base station informs the terminal to the TDD configuration to be periodically applied at the present time or in the near future by using a predetermined method, for example, predetermined control information.
  • the TDD setting information relates to the configuration of a predetermined reverse subframe, a forward subframe, and a special subframe indicated by an integer between 0 and 6, as in the conventional TDD setting information.
  • Dynamic TDD operation 2 The ten subframes constituting one radio frame are divided into a fixed subframe and a changeable subframe.
  • the fixed subframe is fixed as a forward subframe, a reverse subframe or a special subframe, and the changeable subframe may be a forward subframe or a reverse subframe depending on circumstances. For example, it may be defined as shown in Table 5 below.
  • the embodiment of the present invention is applicable to both dynamic TDD operation 1 and dynamic TDD operation 2. However, some operations may be applied to only one of the dynamic TDD operations in terms of a specific UE operation.
  • step 1615 the UE acquires second TDD configuration information.
  • the second TDD configuration information is transmitted to the terminal through a predetermined control message.
  • the predetermined control message may be a system information, an RRC control message, a MAC control message, or transmitted through a PDCCH.
  • Step 1615 applies only to dynamic TDD operation 1.
  • step 1620 the UE receives a valid reverse grant in subframe n.
  • step 1625 the UE checks whether the valid reverse grant has been received through the RAR or the PDCCH. If it is received through RAR (Random Access Response, RAR), it proceeds to step 1630, and if it is received through PDCCH, step 1645. Receiving a valid reverse grant through RAR has the following meanings.
  • the RAR is a base station transmits a response message to the preamble transmitted by the terminal and consists of a header and a payload.
  • the header contains information called a random access preamble ID (RAPID), and the payload includes various information including a reverse grant. It is stored.
  • RAPID random access preamble ID
  • the RAR monitors whether or not the RAR is received for a predetermined period, and when the RAR is received, if the RAPID stored in the RAR is about a preamble transmitted by the UE, the RAR is a valid RAR and the UE is stored in the RAR The reverse grant is considered valid.
  • Receiving a valid reverse grant through the PDCCH means receiving a reverse grant masked with an identifier (C-RNTI) of the UE through the PDCCH.
  • C-RNTI an identifier
  • the UE checks whether the preamble causing the RAR transmission was a dedicated preamble or a random preamble.
  • the random access process generally consists of a process in which a terminal transmits a preamble, a base station transmits a RAR, and a terminal performs reverse transmission according to a reverse grant of the RAR (this is called message 3).
  • the UE In initiating the random access procedure, the UE directly selects a preamble or instructs the base station to use a specific preamble. The former is called using a random preamble and the latter is called using a dedicated preamble.
  • the base station cannot know which terminal is performing the random access procedure until the message 3 is successfully received.
  • the base station can know who the terminal is by simply receiving the preamble. For example, the base station may know whether dynamic TDD is set in the terminal when receiving the preamble in the case of the dedicated preamble after receiving the message 3 in the case of the random preamble. If the terminal receives the RAR after transmitting the random preamble, it means that the base station has allocated a reverse grant to the terminal without knowing whether the terminal applies the dynamic TDD operation, the terminal proceeds to step 1635. If the RAR is received after transmitting the dedicated preamble, it means that the base station has allocated a reverse grant to the terminal while the terminal knows that the terminal applies the dynamic TDD operation, and the terminal proceeds to step 1640.
  • step 1635 the UE determines a subframe to perform backward transmission by applying the TDD configuration indicated by the first TDD configuration information. Proceeding to step 1635, the UE configured with the dynamic TDD operation transmits a random preamble and receives a response message. Even if a dynamic TDD operation is applied to a cell, since there are terminals that do not support the dynamic TDD operation in the cell, all terminals are performed like a random access operation and the base station can identify the terminal until a certain point. If it is not possible, even if the dynamic TDD operation is configured for the terminal, the reverse subframe is applied by applying the same rules as other terminals not configured for the dynamic TDD operation, not the reverse subframe determined by the dynamic TDD operation. It is desirable to decide.
  • the UE determines a subframe to perform reverse transmission by applying the TDD configuration indicated by the first TDD configuration information. This specifically means the following operation.
  • the UE performs backward transmission in the (n + k1) th subframe with respect to the reverse grant received in the subframe n.
  • K1 is an integer greater than or equal to 6, and is a value corresponding to the first reverse subframe after (n + 6). Whether an arbitrary subframe is a reverse subframe may vary according to the TDD configuration.
  • the UE determines which subframe is the first reverse subframe after (n + 6) by applying the first TDD configuration. And perform reverse transmission based on the information.
  • the terminal may perform the subframe. It is determined that the frame is a reverse subframe and performs an operation.
  • the reverse grant of the RAR includes information on uplink transmission resources, information on a modulation scheme and coding rate to be applied during uplink transmission, information on the size of data to be transmitted, and 1-bit information indicating whether there is a backward transmission delay (hereinafter, referred to as backward transmission delay information). Is housed. If the reverse transmission delay information is set to 0, the terminal performs reverse transmission in a reverse subframe corresponding to k1.
  • the UE performs backward transmission in the first reverse subframe after the reverse subframe corresponding to k1.
  • the terminal is based on the TDD configuration indicated by the first TDD configuration information.
  • the reverse transmission delay is for some kind of load balancing.
  • step 1640 the UE determines a subframe to perform reverse transmission by applying the second TDD configuration. Proceeding to step 1640, the UE configured with the dynamic TDD operation transmits a dedicated preamble and receives a response message.
  • the base station has provided a reverse grant in the state that the dynamic TDD is configured for the terminal and the terminal applies the second TDD configuration information. More specifically, the UE performs backward transmission in a (n + k1) subframe, and k1 is an integer corresponding to the first reverse subframe that is greater than or equal to 6 based on the TDD configuration indicated by the second TDD configuration information. .
  • the UE selects k1 based on the second TDD setting and performs backward transmission in the subframe n + k1.
  • the backward transmission is performed in the first reverse subframe after the subframe corresponding to k1 selected as a setting criterion.
  • the UE applies a second TDD configuration.
  • Step 1645 means that the base station, which is aware of the fact, has allocated the reverse grant to the terminal having the dynamic TDD operation.
  • the terminal determines a subframe to perform reverse transmission by applying the second TDD configuration.
  • the time relationship between the uplink grant received through the PDCCH and the corresponding uplink transmission is defined for each TDD configuration in Table 8-2 (Table 6) of Specification 36.213.
  • the terminal receiving the PDCCH reverse grant in subframe n determines k by applying TDD configuration 2 of TDD configuration 1 and TDD configuration 2 and determines a subframe to perform reverse transmission according to the determined k.
  • Table 6 shows Table 8-2 of Specification 36.213.
  • k is 4 if the TDD configuration is 0 and k is 7 if the TDD configuration is 6.
  • the first TDD setting is set to 0 (1705) and the second TDD setting is set to 3 (1710).
  • the terminal receives a reverse grant in subframe 0 (1715). If the reverse grant is received through the RAR and the UE uses a random preamble, the UE determines k1 by applying the first TDD configuration. That is, when the TDD setting 0 is applied among the subframes after at least 6 subframes, the first reverse subframe corresponds to k1 and is 7 in the example. If the backward transmission delay information is 0, the terminal performs backward transmission in subframe 7 (1720). If the backward transmission delay information is set to 1, the terminal determines the subframe indicated by k1 by applying the first TDD configuration, and then determines the first reverse subframe 1725 after applying the first TDD configuration. do. In the subframe, backward transmission is performed.
  • the UE determines k1 by applying the second TDD configuration. That is, when the TDD configuration 3 is applied among at least six subframes or more, the first reverse subframe is k1 and becomes 12 in the example. If the backward transmission delay information is set to 0, the terminal performs backward transmission in subframe 2 (1730). If the backward transmission delay information is set to 1, the terminal determines the subframe indicated by k1 using the second TDD configuration information, and again applies the second TDD configuration to determine the first reverse subframe 1735 thereafter. do. In the subframe, backward transmission is performed.
  • the terminal determines k by applying a second TDD configuration. Referring to Table 8-2, k is 4 when the TDD configuration is 3 and a reverse grant is received in subframe 0. Accordingly, the terminal performs reverse transmission in subframe 4 (1740).
  • the example above relates to the case of using dynamic TDD operation 1.
  • the difference in the terminal operation will be described below.
  • Steps 1605 and 1610 are also the same when using dynamic TDD operation 2.
  • step 1615 is not necessary.
  • Steps 1620 through 1635 are also the same when using dynamic TDD operation 2.
  • step 1640 the UE performs backward transmission in the first subframe of the reverse subframe after the 6th subframe and the changeable subframe in the subframe in which the reverse grant is received. That is, k1 is an integer greater than 6 and corresponding to a first subframe among the first reverse subframe and the first changeable subframe. In the example of FIG. 17, the UE performs backward transmission in subframe 7 (1720, if backward transmission delay information is set to 0) or in subframe 8 (1725, if backward transmission delay information is set to 1).
  • step 1645 the UE performs backward transmission in the first subframe of the reverse subframe after the 4th subframe and the changeable subframe in the subframe in which the reverse grant is received. That is, k is an integer that is larger than 4 and corresponds to the first subframe among the first reverse subframe and the first changeable subframe. In the example of FIG. 17, the UE performs backward transmission in subframe 4 1740.
  • the terminal determines what operation to perform in subframe n before any subframe n starts.
  • the operation is, for example, whether to monitor the PDCCH, transmit reverse feedback, receive forward feedback, or perform PUSCH transmission in the corresponding subframe.
  • the UE monitors the PDCCH in the forward subframe to determine whether to schedule or whether data is transmitted to the UE. If a dynamic TDD operation is configured in the terminal, the terminal determines which operation to perform by selectively applying the first TDD configuration and the second TDD configuration. The terminal for which the dynamic TDD operation is not configured always determines what operation is performed by applying the first TDD configuration.
  • 18 is a terminal operation of determining an operation to be performed in subframe n by selectively applying a first TDD setting and a second TDD setting.
  • step 1805 the UE determines whether to perform an operation related to a forward subframe or an operation related to a reverse subframe in an arbitrary subframe.
  • step 1810 the UE determines whether to set a dynamic TDD operation. If the dynamic TDD operation is not configured, the operation proceeds to step 1815 and, if so, the operation proceeds to step 1820.
  • step 1815 the terminal operates as follows.
  • the terminal determines whether the PUSCH has been transmitted in the previous predetermined subframe to receive HARQ feedback in the subframe based on the first TDD configuration.
  • the UE transmits a preamble in subframe x, and the corresponding subframe is a subframe between (x + m) and (x + m + k), and the corresponding subframe is a forward subframe or a special based on the first TDD configuration.
  • the UE monitors whether the RAR masked by the RA-RNTI is received through the PDCCH in the corresponding subframe.
  • M and k are parameters for a random access response window that defines when and when a terminal attempts to receive a RAR after transmitting a preamble.
  • m is a fixed value and k is the length of the system information. If the terminal does not receive a valid RAR until the random access response window is terminated, the terminal enters a procedure for retransmitting the preamble.
  • the UE transmits the PUSCH in the corresponding subframe.
  • K1 is determined based on the first TDD setting.
  • step 1820 the terminal operates as follows.
  • the UE applies the first TDD configuration for message 3 transmission and the RAR reception, but applies the second TDD configuration in the other cases.
  • the second TDD configuration is applied, if the corresponding subframe is a forward subframe or a special subframe, the UE monitors whether a scheduling message masked with C-RNTI is received through the PDCCH in the subframe.
  • Whether to receive HARQ feedback in a corresponding subframe by applying a second TDD configuration Whether to receive HARQ feedback in a corresponding subframe by applying a second TDD configuration.
  • the time relationship between PUSCH transmission and HARQ feedback reception is defined for each TDD configuration in 36.213. If the corresponding subframe is a forward subframe based on the second TDD configuration, the terminal determines whether to receive HARQ feedback in the subframe based on the second TDD configuration.
  • the UE transmits the PUSCH in the corresponding subframe.
  • K is determined based on the second TDD setting.
  • the UE determines whether to transmit reverse HARQ feedback in a corresponding subframe by applying a second TDD configuration. If the corresponding subframe is a reverse subframe based on the second TDD configuration, and the PDSCH is received before a predetermined period defined for each TDD configuration, the UE transmits reverse HARQ feedback.
  • the UE transmits a preamble in subframe x, and the corresponding subframe is a subframe between (x + n + m) and (x + m + k), and the corresponding subframe is a forward subframe based on the first TDD configuration.
  • the UE monitors whether the RAR masked by the RA-RNTI is received through the PDCCH in the corresponding subframe.
  • M and k are parameters for a random access response window that defines when and when a terminal attempts to receive a RAR after transmitting a preamble.
  • m is a fixed value and k is the length of the system information. If the terminal does not receive a valid RAR until the random access response window is terminated, the terminal enters a procedure for retransmitting the preamble.
  • the UE transmits the PUSCH in the corresponding subframe.
  • K1 is determined based on the first TDD setting.
  • the random access process includes a process in which a terminal transmits a preamble, a base station transmits a random access response, and a terminal transmits reverse data. In this case, the terminal transmits reverse data and then receives HARQ feedback thereto. If a dynamic TDD operation is configured for the terminal, the terminal should selectively apply the first TDD configuration or the second TDD configuration in determining a time point for receiving the HARQ feedback.
  • the UE acquires first TDD configuration information.
  • the terminal receives predetermined system information and recognizes first TDD configuration information stored in the legacy field of the system information.
  • the first TDD configuration information has an attribute that is not frequently changed, and when changed, a system information changing procedure is applied.
  • a dynamic TDD operation is set for the UE.
  • the setting of the dynamic TDD operation means that the terminal receives a control message containing control information indicating to start the dynamic TDD operation.
  • the dynamic TDD operation means an operation of dynamically changing the TDD configuration of the terminal according to the load situation of the terminal.
  • step 1915 the UE acquires second TDD configuration information.
  • the second TDD configuration information is transmitted to the terminal through a predetermined control message.
  • the predetermined control message may be a system information, an RRC control message, a MAC control message, or transmitted through a PDCCH.
  • Step 1915 applies only to dynamic TDD operation 1.
  • step 1920 the UE receives the forward HARQ feedback in any subframe i. Since the forward HARQ feedback is transmitted and received through PHICH (Physical Harq Indicator Channel), receiving the forward HARQ feedback has the same meaning as receiving the PHICH.
  • the UE proceeds to step 1925 to determine whether the PHICH is HARQ ACK / NACK information for the PUSCH transmitted in which reverse subframe.
  • step 1925 the UE checks whether the uplink grant causing the PUSCH transmission corresponding to the received PHICH is transmitted through RAR or PDCCH. If it is delivered through the RAR, the process proceeds to step 1930, and if it is delivered through the PDCCH, it proceeds to step 1940.
  • step 1930 the UE checks whether the preamble causing the RAR transmission (or a preamble corresponding to the RAPID stored in the RAR) was a dedicated preamble or a random preamble. If the terminal receives the RAR after transmitting the random preamble, it means that the base station has transmitted a reverse grant to the terminal without knowing whether the terminal applies the dynamic TDD operation, the terminal proceeds to step 1935. If the RAR is received after transmitting the dedicated preamble, it means that the base station has transmitted a reverse grant to the terminal while the terminal knows that the terminal applies the dynamic TDD operation, and the terminal proceeds to step 1940.
  • the UE applies the TDD configuration indicated in the first TDD configuration information to determine in which uplink subframe the PHICH is transmitted.
  • PHICH is for a PUSCH transmitted in a subframe (i-k)
  • k is determined based on the TDD configuration indicated in the first TDD configuration information.
  • the relationship between the TDD setting and k is defined in Table 8.3-1 shown in Table 7 of Specification 36.213. For example, if the UE receives the PHICH in subframe 0 and the TDD configuration at that time is set to 0, k is 7 and the PHICH is HARQ feedback for the PUSCH transmitted in (i-7).
  • Table 7 shows Table 8. 3-1 of Specification 36.213.
  • the above table may indicate a k value in TDD settings 0-6.
  • the UE determines whether the PHICH relates to the PUSCH transmitted in which subframe by applying the TDD configuration indicated by the second TDD configuration information.
  • PHICH is for a PUSCH transmitted in a subframe (i-k), and k is determined based on the TDD configuration indicated in the second TDD configuration information.
  • the relationship between the TDD setting and k is defined in Table 8.3-1 of Specification 36.213.
  • 2005 ⁇ 2015 is the same as 1905 ⁇ 1915.
  • step 2020 the UE performs PUSCH transmission in subframe n.
  • the UE proceeds to step 2025 to determine a subframe to receive the feedback for the PUSCH transmission.
  • step 2025 the UE checks whether the uplink grant causing the PUSCH transmission is transmitted through RAR or PDCCH. If it is received through the RAR, the process proceeds to step 2030, and if it is received through the PDCCH, the process proceeds to step 2040.
  • step 2030 the UE checks whether the preamble associated with the RAR is a dedicated preamble or a random preamble. If the terminal receives the RAR after transmitting the random preamble, it means that the base station has transmitted a reverse grant to the terminal without knowing whether the terminal applies the dynamic TDD operation, the terminal proceeds to step 2035. If the RAR is received after transmitting the dedicated preamble, it means that the base station has transmitted a reverse grant to the terminal while the terminal knows that the terminal applies the dynamic TDD operation, and the terminal proceeds to step 2040.
  • the UE determines which subframe to receive the PHICH by applying the first TDD configuration.
  • the terminal receives the PHICH in the subframe (n + k).
  • K is determined based on the TDD configuration indicated by the first TDD configuration information.
  • the relationship between the TDD setting and k can be determined from Table 8.3-1 of Specification 36.213. For example, if the UE transmits the PUSCH in subframe 2 and the TDD configuration 1, the PHICH is received in subframe 6.
  • step 2040 the UE determines which subframe to receive the PHICH by applying the second TDD configuration. In short, the terminal receives the PHICH in the subframe (n + k).
  • a first TDD setting is setting 0 (2105) and a second TDD setting is setting 3 (2110).
  • the UE transmits the PUSCH in subframe 3 (2115). If the reverse grant associated with the PUSCH transmission is received through the RAR, and the UE uses the random preamble, the UE determines k by applying the first TDD configuration. Referring to Table 8.3-1, when the PUSCH is transmitted in subframe 3 and the TDD configuration is 0, k of subframe 0 matches 7, and the distance between subframe 0 and subframe 3 matches 7, so k is 7 And the UE receives the PHICH in subframe 0 2120.
  • the UE determines k using the second TDD configuration information. Referring to Table 8.3-1, when the PUSCH is transmitted in subframe 3 and the TDD configuration is 3, k of subframe 9 is 6 and the distance between subframe 9 and subframe 3 is also equal to 6 subframes. Is selected as 6 and a PHICH is received in subframe 9 2125.
  • the example above relates to the case of using dynamic TDD operation 1.
  • the difference in the terminal operation will be described below.
  • a terminal operation when the dynamic TDD operation 1 is applied and a terminal operation to which the dynamic TDD operation 2 is applied are the same. If you use dynamic TDD operation 2, 2015 operation is not necessary.
  • step 2040 the UE determines a subframe to receive the PHICH based on the following criteria.
  • the first subframe of the forward fixed subframe, the special fixed subframe, and the changeable subframe after at least 4 subframes after the PUSCH is transmitted.
  • a UE when a UE transmits a PUSCH in subframe 3, the UE receives a PHICH in subframe 8 2130 that satisfies the condition.
  • a terminal in which a dynamic TDD operation is configured may not temporarily recognize the second TDD configuration.
  • the UE may perform a discontinuous reception operation in a subframe in which the second TDD configuration is transmitted, or a forward signal may not be received in the subframe in order to perform measurement on another frequency.
  • FIG. 22 illustrates an operation performed when a terminal that has not temporarily recognized the second TDD setting receives a reverse grant.
  • steps 2205 and 2210 are the same as steps 1605 and 1610.
  • step 2215 the reverse grant is received.
  • a subframe in which the reverse subframe is received is called a subframe n.
  • the UE checks whether it has the second TDD configuration information to be applied at that time.
  • the second TDD configuration information is transmitted with a certain period.
  • the second TDD configuration information to be applied to the m th time period is transmitted in a predetermined subframe of an arbitrary (m-1) th time period, and when the terminal receives the reverse grant in any subframe of the m th time period, the m th time is transmitted. It is to check whether there is the second TDD configuration information to be applied to the time period. If yes, the terminal proceeds to step 2225. If no, go to Step 2230.
  • the UE determines a subframe to perform PUSCH transmission by applying the first TDD configuration or the second TDD configuration in consideration of whether the reverse grant is received through the RAR or the PDCCH.
  • step 2230 the UE checks whether the reverse grant is received through the RAR or the PDCCH. If it is received through the PDCCH, the process proceeds to step 2240, and if it is received through the RAR, it proceeds to step 2235.
  • Step 2240 means that the terminal cannot determine k even though the terminal should determine k by applying the second TDD configuration. Accordingly, the terminal does not perform retransmission even if the reverse grant instructs the first transmission but does not perform the initial transmission.
  • CURRENT_NB_TX which records the number of transfers, or CURRENT_IRV associated with the redundancy version to be used for the next transfer, normally increases.
  • step 2235 the UE checks whether the preamble causing the RAR reception was a dedicated preamble or a random preamble. If it is a random preamble, the process proceeds to step 2245.
  • Step 2245 means that the uplink transmission of the uplink grant of the RAR must be performed in the random access process using the random preamble.
  • the terminal determines the k1 by applying the first TDD configuration and in the subframe (n + k1) (if the reverse delay is set to 0) or the first backward after the subframe (n + k1). In the subframe (if the reverse delay is set to 1), the PUSCH is transmitted using the allocated uplink transmission resource.
  • Step 2250 means that the uplink transmission of the uplink grant of the RAR must be performed in the random access process using the dedicated preamble. Therefore, the terminal should determine k1 by applying the second TDD configuration, but cannot determine k1 because the terminal does not know the second TDD configuration to be applied in the corresponding time period.
  • the UE ignores the reverse grant, that is, does not perform the PUSCH transmission using the uplink transmission resources allocated in the reverse grant, and initiates a preamble retransmission procedure. That is, the preamble is retransmitted in the reverse subframe satisfying the predetermined condition.
  • the predetermined condition is a reverse subframe in which a preamble transmission resource is present, which exists after at least 4 subframes when the first TDD configuration is applied.
  • FIG. 23 illustrates an operation related to PHICH reception of a UE that does not temporarily recognize the second TDD setting.
  • steps 2305 and 2310 are the same as steps 1605 and 1610.
  • step 2315 the UE performs PUSCH transmission.
  • the subframe in which the PUSCH transmission is performed is called a subframe n.
  • the UE checks whether it has the second TDD configuration information to be applied at that time.
  • the second TDD configuration information is transmitted with a certain period.
  • the second TDD configuration information to be applied to the m th time period is transmitted in a predetermined subframe of an arbitrary (m-1) th time period, and when the terminal receives the reverse grant in any subframe of the m th time period, the m th time is transmitted. It is to check whether there is the second TDD configuration information to be applied to the time period. If yes, the terminal proceeds to step 2325. If no, go to Step 2330.
  • the UE determines the subframe to receive the PHICH by applying the first TDD configuration or the second TDD configuration in consideration of whether the reverse grant causing the PUSCH transmission is received through the RAR or the PDCCH.
  • step 2330 the UE checks whether a reverse grant that causes PUSCH transmission is received through RAR or PDCCH. If it is received through the PDCCH, the process proceeds to step 2340, and if it is received through the RAR, proceeds to step 2335.
  • Step 2340 means that the UE should determine the subframe to receive the PHICH by applying the second TDD configuration, but cannot determine the subframe since the second TDD configuration is not known. Therefore, the terminal stops attempting to receive the PHICH.
  • HARQ_FEEDBACK is set to ACK so that non-adaptive retransmission for the PUSCH does not occur. Alternatively, the buffer of the HARQ process associated with the PUSCH transmission is flushed.
  • HARQ_FEEDBACK is a variable that manages the most recent HARQ feedback information for each HARQ process.If it is set to NACK, it performs non-adaptive retransmission. If it is set to ACK, it does not perform transmission until a separate retransmission command is received.
  • HARQ_FEEDBACK should be set according to the actually received HARQ feedback, but in the present invention, if the PHICH is not received because the second TDD setting is not known, HARQ_FEEDBACK is set to ACK even if the HARQ feedback is not received.
  • step 2335 the UE checks whether the preamble causing the RAR reception was a dedicated preamble or a random preamble. If it is a random preamble, the process proceeds to step 2345.
  • Step 2345 means that the reverse grant was received through the RAR in the random access process using the random preamble and accordingly, the PUSCH transmission was performed. Therefore, even though the UE does not know the second TDD configuration, the UE determines k by applying the first TDD configuration and receives the PHICH (or HARQ feedback) in the subframe n + k. 12 is a block diagram illustrating an internal structure of a terminal to which the present invention is applied.
  • the terminal transmits and receives data with the upper layer 1210 and transmits and receives control messages through the control message processor 1215.
  • the terminal transmits data through the transmitter 1200 after multiplexing through the multiplexing device 1205 under the control of the controller 1220.
  • the terminal upon reception, receives the physical signal to the receiver 1200 under the control of the controller 1220, and then demultiplexes the received signal by the demultiplexing apparatus 1205, each of the higher layer 1210 according to the message information Or the control message processor 1215.
  • FIG. 13 is a block diagram showing the configuration of a base station according to the present invention.
  • the illustrated base station apparatus includes a transceiver 1305, a controller 1310, a multiplexing and demultiplexing unit 1320, a control message processor 1335, various upper layer processors 1325 and 930, and a scheduler. (1315).
  • the transceiver 1305 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When a plurality of carriers are set, the transceiver 1305 performs data transmission and control signal transmission and reception to the plurality of carriers.
  • the multiplexing and demultiplexing unit 1320 multiplexes data generated by the upper layer processing units 1325 and 1330 or the control message processing unit 1335 or demultiplexes the data received by the transmitting and receiving unit 1305 so that an appropriate upper layer processing unit 1325, 1330, the control message processor 1335, or the controller 1310.
  • the controller 1310 determines whether to apply a band-specific measurement gap to a specific terminal and determines whether to include the configuration information in an RRCConnectionReconfiguration message.
  • the control message processing unit 1335 generates an RRCConnectionRecnofiguraiton to be delivered to the terminal according to the instruction of the control unit, and delivers it to the lower layer.
  • the upper layer processing units 1325 and 1330 may be configured for each service for each terminal, and may process data generated from user services such as FTP or VoIP, and deliver the data to the multiplexing and demultiplexing unit 1320 or the multiplexing and demultiplexing unit 1320. Process the data delivered from) and deliver it to the service application of the upper layer.
  • the scheduler 1315 allocates a transmission resource to the terminal at an appropriate time in consideration of the buffer state, the channel state and the active time of the terminal, and processes the signal transmitted by the terminal to the transceiver or transmits the signal to the terminal. do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for configuring a time division duplex (TDD) of user equipment in a communication system, according to one embodiment of the present invention, comprises the steps of: receiving from a base station a first TDD configuration; receiving from the base station a message including information related to a dynamic TDD configuration; receiving a second TDD configuration according to the received information related to the dynamic TDD configuration; receiving from the base station an uplink grant; and determining whether to apply the first TDD configuration or the second TDD configuration based on a method by which the unlink grant is received. According to one embodiment of the present invention, the advantages of configuring a shorter cycle of the TDD to the user equipment supporting the TDD in a wireless communication system, and rapidly configuring the TDD to the user equipment variably according to a communication situation are provided.

Description

TDD을 지원하는 이동통신 시스템에서 TDD 설정 정보를 단말에게 효과적으로 제공하고 상향링크 전송 타이밍을 결정하기 위한 방법 및 장치Method and apparatus for effectively providing TDD configuration information to a terminal and determining uplink transmission timing in a mobile communication system supporting TDD
본 발명은 TDD을 지원하는 이동통신 시스템에서 TDD 설정 정보를 단말에게 효과적으로 제공하고 상향링크 전송 타이밍을 결정하기 위한 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for effectively providing TDD configuration information to a terminal and determining uplink transmission timing in a mobile communication system supporting TDD.
일반적으로 이동통신 시스템은 사용자의 이동성을 확보하면서 통신을 제공하기 위한 목적으로 개발되었다. 이러한 이동통신 시스템은 기술의 비약적인 발전에 힘입어 음성 통신은 물론 고속의 데이터 통신 서비스를 제공할 수 있는 단계에 이르렀다. In general, a mobile communication system has been developed for the purpose of providing communication while securing user mobility. Such a mobile communication system has reached a stage capable of providing high-speed data communication service as well as voice communication due to the rapid development of technology.
근래에는 차세대 이동통신 시스템 중 하나로 3GPP에서 LTE-A(Long Term Evolution Advanced)에 대한 규격 작업이 진행 중이다. LTE-A는 2012년 정도를 상용화 목표로 해서, 현재 제공되고 있는 데이터 전송률보다 높은 최대 100 Mbps 정도의 전송 속도를 가지는 고속 패킷 기반 통신을 구현하는 기술이다. 이를 위해 여러 가지 방안이 논의되고 있는데, 예를 들어 네트워크의 구조를 간단히 해서 통신로 상에 위치하는 노드의 수를 줄이는 방안이나, 무선 프로토콜들을 최대한 무선 채널에 근접시키는 방안 등이 논의 중이다. Recently, as a next generation mobile communication system, 3GPP is working on specifications for Long Term Evolution Advanced (LTE-A). LTE-A is a technology that implements high-speed packet-based communication with a transmission rate of up to 100 Mbps, which is higher than currently provided data rate, aiming for commercialization in 2012. To this end, various methods are discussed. For example, a method of simplifying a network structure to reduce the number of nodes located on a communication path or a method of bringing wireless protocols as close to the wireless channel as possible is discussed.
한편, 데이터 서비스는 음성 서비스와 달리 전송하고자 하는 데이터의 양과 채널 상황에 따라 할당할 수 있는 자원 등이 결정된다. 따라서 이동통신 시스템과 같은 무선 통신 시스템에서는 스케줄러에서 전송하고자 하는 자원의 양과 채널의 상황 및 데이터의 양 등을 고려하여 전송 자원을 할당하는 등의 관리가 이루어진다. 이는 차세대 이동통신 시스템 중 하나인 LTE에서도 동일하게 이루어지며 기지국에 위치한 스케줄러가 무선 전송 자원을 관리하고 할당한다. On the other hand, the data service, unlike the voice service, is determined according to the amount of data to be transmitted and the channel conditions and resources that can be allocated. Therefore, in a wireless communication system such as a mobile communication system, management such as allocating transmission resources is performed in consideration of the amount of resources to be transmitted by the scheduler, the situation of the channel, and the amount of data. This is the same in LTE, one of the next generation mobile communication systems, and a scheduler located in a base station manages and allocates radio transmission resources.
최근 LTE 통신 시스템에 여러 가지 신기술을 접목해서 전송 속도를 향상시키는 진화된 LTE 통신 시스템 (LTE-Advanced, LTE-A)에 대한 논의가 본격화되고 있다. IMTA (Interference Mitigation and Traffic adaptation) 기술은 LTE-A에서 연구 중인 여러 기술들 중 하나이다. IMTA 기술은 TDD 에 적용되는 기술로, 상, 하향링크에서 발생하는 트래픽량, 간섭량 제어등을 목적으로 짧은 사이클을 가지고, 상, 하향링크에 할당된 자원량의 비율을 변경하는 기술이다. 이러한 IMTA 기술을 효율적으로 구현하기 위해서는 여러 방면에서 LTE-A 시스템을 개선시켜야 한다. Recently, a discussion about an advanced LTE communication system (LTE-Advanced, LTE-A), which improves transmission speed by incorporating various new technologies into an LTE communication system, has been in full swing. Interference Mitigation and Traffic adaptation (IMTA) technology is one of several technologies under study in LTE-A. IMTA technology is a technology applied to TDD, and has a short cycle for the purpose of controlling the amount of traffic generated in the uplink and the downlink, and the amount of interference, and changes the ratio of the resource amount allocated to the uplink and the downlink. In order to effectively implement such IMTA technology, LTE-A system has to be improved in many ways.
본 발명은 상술한 문제점을 해결하기 위하여 제안된 것으로 시간 분할 듀플렉스(Time Division Duplex, TDD)를 지원하는 무선 통신 시스템에서 단말에 TDD를 가변적으로 설정하기 위한 기지국 및 단말과 상기 기지국 및 단말의 운용방법을 제시하는 것을 목적으로 한다. The present invention has been proposed to solve the above-mentioned problems. In a wireless communication system supporting time division duplex (TDD), a base station and a terminal for variably setting a TDD in a terminal and a method of operating the base station and the terminal The purpose is to present.
상술한 과제를 달성하기 위하여, 본 발명의 일 실시 예에 따르는 통신 시스템에서 단말의 시간 분할 듀플렉스(Time Division Duplex, TDD) 설정 방법은 기지국으로부터 제1 TDD 설정을 수신하는 단계; 상기 기지국으로부터 동적 TDD 설정관련 정보를 포함하는 메시지를 수신하는 단계; 상기 수신한 동적 TDD 설정관련 정보에 따라 제2 TDD 설정을 수신하는 단계; 상기 기지국으로부터 역방향 그랜트(Uplink grant)를 수신하는 단계; 및 상기 역방향 그랜트가 수신된 방법을 기반으로 상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 결정하는 단계를 포함한다. In order to achieve the above object, in the communication system according to an embodiment of the present invention, a time division duplex (TDD) configuration method of a terminal includes: receiving a first TDD configuration from a base station; Receiving a message including dynamic TDD configuration related information from the base station; Receiving a second TDD setting according to the received dynamic TDD setting related information; Receiving an uplink grant from the base station; And determining to apply the first TDD setting or the second TDD setting based on how the reverse grant was received.
본 발명의 다른 실시 예에 따르는 통신 시스템에서 시간 분할 듀플렉스(Time Division Duplex, TDD) 설정하는 단말은 기지국으로부터 제1 TDD 설정을 수진하고, 상기 기지국으로부터 동적 TDD 설정관련 정보를 포함하는 메시지를 수신하고, 상기 수신한 동적 TDD 설정관련 정보에 따라 제2 TDD 설정을 수신하고, 상기 기지국으로부터 역방향 그랜트(Uplink grant)를 수신하는 송수신부 및 상기 역방향 그랜트가 수신된 방법을 기반으로 상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 결정하는 제어부를 포함한다. In a communication system according to another embodiment of the present invention, a terminal configuring a time division duplex (TDD) sets a first TDD configuration from a base station and receives a message including dynamic TDD configuration related information from the base station. A transceiver configured to receive a second TDD configuration according to the received dynamic TDD configuration information and to receive an uplink grant from the base station and the first TDD configuration based on a method in which the reverse grant is received; And a controller for determining to apply the second TDD setting.
본 발명의 다른 실시 예에 따르는 통신 시스템에서 기지국의 시간 분할 듀플렉스(Time Division Duplex, TDD) 설정 방법은 단말에 제1 TDD 설정을 전송하는 단계; 상기 단말로부터 TDD 설정 가능 여부를 포함하는 메시지를 수신하는 단계; 상기 수신한 메시지를 기반으로 동적 TDD 동작 설정 여부를 결정하는 단계; 상기 결정 결과에 따라 상기 단말에 동적 TDD 설정관련 정보를 포함하는 메시지를 전송하는 단계; 상기 전송한 동적 TDD 설정관련 정보에 따라 제2 TDD 설정을 송신하는 단계; 및 상기 제1 TDD 설정 또는 상기 제2 TDD 설정에 따라 역방향 그랜트를 송신하는 단계를 포함하고, 상기 단말은 상기 역방향 그랜트가 수신된 방법을 기반으로 상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 특징으로 한다. In a communication system according to another embodiment of the present invention, a method of setting a time division duplex (TDD) of a base station includes: transmitting a first TDD setting to a terminal; Receiving a message including whether TDD can be set from the terminal; Determining whether to set a dynamic TDD operation based on the received message; Transmitting a message including dynamic TDD configuration information to the terminal according to the determination result; Transmitting a second TDD configuration according to the transmitted dynamic TDD configuration information; And transmitting a reverse grant according to the first TDD setting or the second TDD setting, wherein the terminal applies the first TDD setting or the second TDD setting based on a method in which the reverse grant is received. Characterized in that.
본 발명의 또 다른 실시 예에 따르는 통신 시스템에서 단말의 시간 분할 듀플렉스(Time Division Duplex, TDD) 설정하는 기지국은 상기 단말에 제1 TDD 설정을 전송하고, 상기 단말로부터 TDD 설정 가능 여부를 포함하는 메시지를 수신하는 송수신부; 및 상기 수신한 메시지를 기반으로 동적 TDD 동작 설정 여부를 결정하는 제어부를 포함하고, 상기 송수신부는 상기 전송한 동적 TDD 설정관련 정보에 따라 제2 TDD 설정을 송신하고, 상기 제1 TDD 설정 또는 상기 제2 TDD 설정에 따라 역방향 그랜트를 송신하는 것을 특징으로 하고, 상기 단말은 상기 역방향 그랜트가 수신된 방법을 기반으로 상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 특징으로 한다. In a communication system according to another embodiment of the present invention, a base station for setting a time division duplex (TDD) of a terminal transmits a first TDD setting to the terminal and includes a message indicating whether TDD can be set from the terminal. Transmitting and receiving unit for receiving; And a controller configured to determine whether to set a dynamic TDD operation based on the received message, wherein the transceiver transmits a second TDD configuration according to the transmitted dynamic TDD configuration information, and transmits the first TDD configuration or the first TDD configuration. It is characterized in that for transmitting the reverse grant according to the 2 TDD configuration, the terminal is characterized by applying the first TDD configuration or the second TDD configuration based on how the reverse grant is received.
본 발명의 일 실시 예에 따르면 무선 통신 시스템에서 TDD를 지원하는 단말에TDD 설정시 보다 짧은 주기로 설정하는 것이 가능하며 통신 상황에 따라 가변적으로 보다 신속히 단말에 TDD를 설정하는 것이 가능한 효과가 있다.According to an embodiment of the present invention, it is possible to set a shorter period when TDD is set in a terminal supporting TDD in a wireless communication system, and it is possible to set TDD in a terminal more quickly according to a communication situation.
도 1은 본 발명이 적용되는 LTE 시스템의 구조를 도시하는 도면,1 is a diagram showing the structure of an LTE system to which the present invention is applied;
도 2는 본 발명이 적용되는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면,2 is a diagram showing a radio protocol structure in an LTE system to which the present invention is applied;
도 3은 일반적인 SIB 전달 방법에서 Modification period 을 설명하기 위한 도면,3 is a view for explaining a modification period in a general SIB delivery method,
도 4는 일반적인 SIB 전달 방법을 설명하기 위한 동작 흐름도,4 is an operation flowchart for explaining a general SIB delivery method;
도 5는 일반적인 SIB 스케줄링 방법을 설명하기 위한 도면,5 is a view for explaining a general SIB scheduling method,
도 6은 실시 예 1에서의 동작 흐름도,6 is a flowchart illustrating operations of the first embodiment;
도 7은 실시 예 1에서의 단말 동작 블록도,7 is a block diagram of a terminal operation according to the first embodiment;
도 8은 실시 예 1에서의 기지국 동작 블록도,8 is a block diagram of a base station operation according to the first embodiment;
도 9는 실시 예 2에서의 동작 흐름도,9 is a flowchart illustrating the operation of the second embodiment;
도 10은 실시 예 2에서의 단말 동작 블록도,10 is a block diagram of a terminal operation according to the second embodiment;
도 11은 실시 예 2에서의 기지국 동작 블록도,11 is a block diagram of a base station operation according to the second embodiment;
도 12는 본 발명을 설명하기 위한 단말 동작 블록도,12 is a block diagram illustrating a terminal operation for explaining the present invention;
도 13는 본 발명을 설명하기 위한 기지국 동작 블록도,13 is a block diagram of a base station for explaining the present invention;
도 14는 TDD에서 프레임 구조를 설명하기 위한 도면,14 is a view for explaining a frame structure in TDD;
도 15는 PagingCycle-dynamic-TDD와 i_s-dynamic-TDD 정보를 설명하기 위한 도면,15 is a diagram for explaining PagingCycle-dynamic-TDD and i_s-dynamic-TDD information;
도 16은 제 1 TDD 설정과 제 2 TDD 설정을 선택적으로 적용해서 역방향 전송을 수행할 서브 프레임을 판단하는 단말의 동작을 나타낸 흐름도, 16 is a flowchart illustrating an operation of a terminal for determining a subframe to perform reverse transmission by selectively applying a first TDD configuration and a second TDD configuration;
도 17은 제 1 TDD 설정과 제 2 TDD 설정을 선택적으로 적용해서 역방향 전송을 수행할 서브 프레임을 판단하는 단말 동작 예시를 나타낸 흐름도, 17 is a flowchart illustrating an example of an operation of a terminal for determining a subframe to perform reverse transmission by selectively applying a first TDD configuration and a second TDD configuration;
도 18은 제 1 TDD 설정과 제 2 TDD 설정을 선택적으로 적용해서 서브 프레임 n에서 수행할 동작을 결정하는 단말 동작을 나타낸 흐름도, 18 is a flowchart illustrating an operation of a terminal for determining an operation to be performed in subframe n by selectively applying a first TDD configuration and a second TDD configuration;
도 19는 제 1 TDD 설정과 제 2 TDD 설정을 선택적으로 적용해서 PHICH를 수신할 서브 프레임을 결정하는 단말 동작을 나타낸 흐름도, 19 is a flowchart illustrating a UE operation of determining a subframe to receive a PHICH by selectively applying a first TDD setting and a second TDD setting;
도 20은 제 1 TDD 설정과 제 2 TDD 설정을 선택적으로 적용해서 PHICH를 수신할 서브 프레임을 결정하는 또 다른 동작을 나타낸 나타낸 흐름도, 20 is a flowchart illustrating another operation of determining a subframe to receive a PHICH by selectively applying a first TDD setting and a second TDD setting;
도 21은 제 1 TDD 설정과 제 2 TDD 설정을 선택적으로 적용해서 PHICH를 수신할 서브 프레임을 결정하는 동작에 대한 예시를 나타낸 흐름도, 21 is a flowchart illustrating an example of an operation of determining a subframe to receive a PHICH by selectively applying a first TDD setting and a second TDD setting;
도 22는 제 2 TDD 설정을 일시적으로 획득하지 못한 단말이 역방향 전송을 수행할 서브 프레임을 선택하는 단말 동작을 나타낸 흐름도 및FIG. 22 is a flowchart illustrating an operation of a terminal for selecting a subframe for performing reverse transmission by a terminal that temporarily fails to acquire a second TDD configuration; FIG.
도 23은 제 2 TDD 설정을 일시적으로 획득하지 못한 단말이 PHICH를 수신할 서브 프레임을 선택하는 단말 동작을 나타낸 흐름도이다. FIG. 23 is a flowchart illustrating an operation of a terminal for selecting a subframe to receive a PHICH by a terminal that temporarily fails to acquire a second TDD setting.
이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments, descriptions of technical contents which are well known in the technical field to which the present invention belongs and are not directly related to the present invention will be omitted. This is to more clearly communicate without obscure the subject matter of the present invention by omitting unnecessary description.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, in the accompanying drawings, some components are exaggerated, omitted or schematically illustrated. In addition, the size of each component does not fully reflect the actual size. The same or corresponding components in each drawing are given the same reference numerals.
본 발명의 실시 예는 TDD을 지원하는 이동통신 시스템에서 TDD 설정 정보를 단말에게 효과적으로 제공하고 상향링크 전송 타이밍을 결정하기 위한 방법 및 장치에 관한 것이다.An embodiment of the present invention relates to a method and apparatus for effectively providing TDD configuration information to a user equipment and determining uplink transmission timing in a mobile communication system supporting TDD.
제 1 실시 예와 제 2 실시 예는 짧은 사이클을 가지고 변경되는 TDD 설정 정보를 효과적으로 단말에게 전달하는 방법에 대한 것이며, 제 3 실시 예는 이러한 상황에서 상향링크 전송 타이밍을 결정하는 방법에 대한 것이다. The first and second embodiments relate to a method of effectively delivering a changed TDD configuration information to a terminal with a short cycle, and the third embodiment relates to a method of determining uplink transmission timing in such a situation.
IMTA 기술에서 짧은 사이클을 가지고, 상, 하향링크에 할당된 자원량의 비율을 변경하기 위해, TDD 설정 정보를 빠르게 변경되어야 한다. 이를 위해서는 단말에 상기 적용되는 TDD 설정 정보를 빠르게 전달해야 한다. 본 발명에서는 빠르게 변경되는 TDD 설정 정보를 단말에게 효과적으로 전달하기 위한 방안을 제안한다. 본 발명의 설명에 앞서, 본 발명이 적용되는 LTE 시스템과 TDD 설정 정보, TDD 프레임 구조에 대해 설명한다. In order to change the ratio of the resource amount allocated to the uplink and the downlink with a short cycle in the IMTA technology, the TDD configuration information must be changed quickly. To this end, the TDD configuration information applied to the terminal must be delivered quickly. The present invention proposes a method for effectively delivering a fast-changing TDD configuration information to the terminal. Prior to the description of the present invention, an LTE system to which the present invention is applied, TDD configuration information, and a TDD frame structure will be described.
도 1은 본 발명이 적용되는 LTE 시스템의 구조를 도시하는 도면이다. 1 is a diagram illustrating a structure of an LTE system to which the present invention is applied.
도 1을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국)(105, 110, 115, 120)과 MME (125, Mobility Management Entity) 및 S-GW(130, Serving-Gateway)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(135)은 ENB(105 ~ 120) 및 S-GW(130)를 통해 외부 네트워크에 접속한다.Referring to FIG. 1, as shown, a radio access network of an LTE system includes a next-generation base station (Evolved Node B, ENB, Node B, or base station) 105, 110, 115, and 120 and an MME 125. And S-GW 130 (Serving-Gateway). The user equipment (hereinafter referred to as UE or terminal) 135 accesses an external network through the ENBs 105 to 120 and the S-GW 130.
도 1에서 ENB(105 ~ 120)는 UMTS 시스템의 기존 노드 B에 대응된다. ENB는 UE(135)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 ENB(105 ~ 120)가 담당한다. 하나의 ENB는 통상 다수의 셀들을 제어한다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. S-GW(130)는 데이터 베어러를 제공하는 장치이며, MME(125)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다. In FIG. 1, the ENBs 105 to 120 correspond to existing Node Bs of the UMTS system. The ENB is connected to the UE 135 by a radio channel and performs a more complicated role than the existing Node B. In LTE system, all user traffic, including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, so information on the status of buffers, available transmit power, and channel status of UEs is available. It is necessary to have a device for scheduling the collection of this, ENB (105 ~ 120) is in charge. One ENB typically controls multiple cells. For example, in order to realize a transmission rate of 100 Mbps, the LTE system uses orthogonal frequency division multiplexing (hereinafter, referred to as OFDM) in a 20 MHz bandwidth as a radio access technology. In addition, an adaptive modulation & coding (AMC) scheme that determines a modulation scheme and a channel coding rate according to the channel state of the terminal is applied. The S-GW 130 is a device that provides a data bearer, and generates or removes a data bearer under the control of the MME 125. The MME is a device that is in charge of various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations.
도 2는 본 발명이 적용되는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다. 2 is a diagram illustrating a radio protocol structure in an LTE system to which the present invention is applied.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 PDCP(Packet Data Convergence Protocol 205, 240), RLC(Radio Link Control 210, 235), MAC (Medium Access Control 215,230)으로 이루어진다. PDCP(Packet Data Convergence Protocol)(205, 240)는 IP 헤더 압축/복원 등의 동작을 담당하고, 무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(210, 235)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성한다. MAC(215,230)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. 물리 계층(220, 225)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다. 또한 물리 계층에서도 추가적인 오류 정정을 위해, HARQ (Hybrid ARQ) 를 사용하고 있으며, 수신단에서는 송신단에서 전송한 패킷의 수신여부를 1 비트로 전송한다. 이를 HARQ ACK/NACK 정보라 한다. 업링크 전송에 대한 다운링크 HARQ ACK/NACK 정보는 PHICH (Physical Hybrid-ARQ Indicator Channel) 물리 채널을 통해 전송되며 다운링크 전송에 대한 업링크 HARQ ACK/NACK 정보는 PUCCH (Physical Uplink Control Channel)이나 PUSCH (Physical Uplink Shared Channel) 물리 채널을 통해 전송될 수 있다. Referring to FIG. 2, a wireless protocol of an LTE system includes packet data convergence protocols 205 and 240 (PDCP), radio link control 210 and 235 (RMC), and medium access control 215 and 230 (MAC) in a terminal and an ENB, respectively. The PDCP (Packet Data Convergence Protocol) 205, 240 is responsible for operations such as IP header compression / restore, and the radio link control (hereinafter referred to as RLC) 210, 235 is a PDCP PDU (Packet Data Unit). ) To the appropriate size. The MACs 215 and 230 are connected to several RLC layer devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs and demultiplex RLC PDUs from MAC PDUs. The physical layers 220 and 225 channel-code and modulate higher layer data, make an OFDM symbol, and transmit it to a wireless channel, or demodulate, channel decode, and transmit the received OFDM symbol through a wireless channel to a higher layer. . In addition, the physical layer uses HARQ (Hybrid ARQ) for additional error correction, and the receiving end transmits the reception of the packet transmitted by the transmitting end as 1 bit. This is called HARQ ACK / NACK information. Downlink HARQ ACK / NACK information for uplink transmission is transmitted through PHICH (Physical Hybrid-ARQ Indicator Channel) physical channel, and uplink HARQ ACK / NACK information for downlink transmission is PUCCH (Physical Uplink Control Channel) or PUSCH. (Physical Uplink Shared Channel) It may be transmitted through a physical channel.
LTE 표준에서는 FDD (Frequency Division Duplex), TDD (Time Division Duplex)의 두 가지 듀블렉스 (Duplex)을 지원한다. FDD는 상, 하향링크가 각기 다른 주파수 대역을 가지며, TDD는 상, 하향링크가 동일 주파수 대역을 사용한다. 따라서, TDD에서는 특정 서브프레임 동안에는 상향링크로, 또 다른 서브프레임 동안 동안에는 하향링크로 교대로 주파수 대역을 사용하여야 한다. 단말은 각 상, 하향링크가 사용되는 서브프레임을 정확히 알고 있어야 하며, 기지국은 미리 이러한 서브프레임 정보를 단말에게 제공해준다. 상, 하향링크로 사용되는 서브프레임 정보를 TDD configuration로 칭하며, 표 1에서와 같이 기지국에서는 총 7 가지의 TDD configuration 중 하나를 제공해줄 수 있다. TDD configuration에 따라, 각 서브프레임은 상향링크 서브프레임, 하향링크 서브프레임, special 서브프레임으로 나누어진다. 표 1에서 'D'로 표기되는 하향링크 서브프레임은 하향링크 데이터를 전송하는데 이용되며, 'U'로 표기되는 상향링크 서브프레임은 상향링크 데이터를 전송하는데 할당된다. Special 서브프레임은 하향링크 서브프레임과 상향링크 서브프레임 사이의 서브프레임에 해당된다. 상기 special 서브프레임을 두는 이유는 단말의 위치에 단말이 따라, 각 단말이 하향링크 서브프레임을 완전히 수신하는 타이밍과 각 단말이 상향링크 데이터를 전송하는 타이밍이 다르기 때문이다. 예를 들어, 기지국과 멀리 떨어져 있는 단말은 기지국으로부터의 데이터를 더 늦게 수신하게 된다. 반대로, 단말로부터의 데이터를 기지국이 특정 시간 이내에 수신하기 위해서는 상기 단말이 더 이른 시간에 데이터 송신을 시작해야 한다. 반대로, 상향링크 서브프레임과 하향링크 서브프레임 사이에는 special 서브프레임이 필요가 없다. 아래 표 1은 Uplink-downlink configurations을 나타낸다.The LTE standard supports two types of duplexes: frequency division duplex (FDD) and time division duplex (TDD). FDD has different frequency bands for uplink and downlink, and TDD uses the same frequency band for uplink and downlink. Accordingly, in TDD, frequency bands should be used alternately as uplinks during a specific subframe and as downlinks during another subframe. The UE must know exactly the subframes for which downlink is used in each phase, and the base station provides such subframe information to the UE in advance. Subframe information used for downlink is referred to as a TDD configuration. As shown in Table 1, the base station may provide one of a total of seven TDD configurations. According to the TDD configuration, each subframe is divided into an uplink subframe, a downlink subframe, and a special subframe. In Table 1, a downlink subframe denoted as 'D' is used to transmit downlink data, and an uplink subframe denoted as 'U' is allocated to transmit uplink data. The special subframe corresponds to a subframe between the downlink subframe and the uplink subframe. The reason for placing the special subframe is that the timing at which each terminal completely receives a downlink subframe and the timing at which each terminal transmits uplink data differ depending on the position of the terminal. For example, a terminal far from the base station may receive data from the base station later. On the contrary, in order for the base station to receive data from the terminal within a specific time, the terminal must start transmitting data at an earlier time. In contrast, a special subframe is not required between the uplink subframe and the downlink subframe. Table 1 below shows Uplink-downlink configurations.
표 1
Uplink-downlink configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
Table 1
Uplink-downlink configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 One 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
One
5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
도 14은 TDD에서 프레임 구조를 설명하기 위한 도면이다. 10 ms의 길이를 갖는 하나의 라디오 프레임 (radio frame, 1400)은 10개의 서브프레임으로 구성된다. 각 서브프레임은 1 ms이며, 두 개의 slot으로 구성된다. 도 14은 서브프레임 1405와 서브프레임 1415이 하향링크 서브프레임이고, 서브프레임 1410과 서브프레임 1435가 상향링크 서브프레임인 상황, 즉, TDD configuration 0, 1, 2, 6중에 하나이다. 따라서, 그 사이의 서브프레임은 special 서브프레임이 된다. Special 서브프레임은 DwPTS (Downlink Pilot TimeSlot, 1420), GP (Guard Period, 1425), UpPTS (Uplink pilot Timeslot, 1430)으로 지시되는 3 구간으로 나누어진다. DwPTS는 하향링크 수신을 위한 시간 구간이며, UpPTS는 상향링크 송신을 위한 시간 구간이다. GP는 어떠한 송수신도 이루어지지 않는다. 최적의 DwPTS와 UpPTS 값은 전파 환경에 따라 달라질 수 있다. 따라서 기지국은 적절한 DwPTS와 UpPTS 값을 미리 단말에게 알려주며, 표 2와 같다. 표1에서의 TDD configuration과 표2의 DwPTS와 UpPTS 값은 기지국으로부터 broadcast되는 SystemInformationBlockType1 (SIB1)의 IE Tdd-Config에 포함되어 단말에게 전달된다. 아래 표 2는 스페셜 서브프레임 설정(Configuration of special subframe (lengths of DwPTS/GP/UpPTS))을 타나낸다.14 is a diagram for explaining a frame structure in TDD. One radio frame 1400 having a length of 10 ms consists of 10 subframes. Each subframe is 1 ms and consists of two slots. FIG. 14 illustrates one of TDD configurations 0, 1, 2, and 6 when a subframe 1405 and a subframe 1415 are downlink subframes, and the subframe 1410 and the subframe 1435 are uplink subframes. Therefore, the subframe therebetween becomes a special subframe. The special subframe is divided into three sections indicated by DwPTS (Downlink Pilot Timeslot, 1420), GP (Guard Period, 1425), and UpPTS (Uplink pilot Timeslot, 1430). DwPTS is a time interval for downlink reception, and UpPTS is a time interval for uplink transmission. GP does not transmit or receive any data. Optimal DwPTS and UpPTS values may vary depending on the propagation environment. Therefore, the base station informs the terminal of the appropriate DwPTS and UpPTS values in advance, as shown in Table 2. The TDD configuration in Table 1 and the DwPTS and UpPTS values in Table 2 are included in IE Tdd-Config of SystemInformationBlockType1 (SIB1) broadcast from the base station and delivered to the terminal. Table 2 below shows a configuration of special subframe (lengths of DwPTS / GP / UpPTS).
도 14은 TDD에서 프레임 구조를 설명하기 위한 도면이다. 10 ms의 길이를 갖는 하나의 라디오 프레임 (radio frame, 1400)은 10개의 서브프레임으로 구성된다. 각 서브프레임은 1 ms이며, 두 개의 slot으로 구성된다. 도 14은 서브프레임 1405와 서브프레임 1415이 하향링크 서브프레임이고, 서브프레임 1410과 서브프레임 1435가 상향링크 서브프레임인 상황, 즉, TDD configuration 0, 1, 2, 6중에 하나이다. 따라서, 그 사이의 서브프레임은 special 서브프레임이 된다. Special 서브프레임은 DwPTS (Downlink Pilot TimeSlot, 1420), GP (Guard Period, 1425), UpPTS (Uplink pilot Timeslot, 1430)으로 지시되는 3 구간으로 나누어진다. DwPTS는 하향링크 수신을 위한 시간 구간이며, UpPTS는 상향링크 송신을 위한 시간 구간이다. GP는 어떠한 송수신도 이루어지지 않는다. 최적의 DwPTS와 UpPTS 값은 전파 환경에 따라 달라질 수 있다. 따라서 기지국은 적절한 DwPTS와 UpPTS 값을 미리 단말에게 알려주며, 표 2와 같다. 표1에서의 TDD configuration과 표2의 DwPTS와 UpPTS 값은 기지국으로부터 broadcast되는 SystemInformationBlockType1 (SIB1)의 IE Tdd-Config에 포함되어 단말에게 전달된다. 아래 표 2는 스페셜 서브프레임 설정(Configuration of special subframe (lengths of DwPTS/GP/UpPTS))을 타나낸다.14 is a diagram for explaining a frame structure in TDD. One radio frame 1400 having a length of 10 ms consists of 10 subframes. Each subframe is 1 ms and consists of two slots. FIG. 14 illustrates one of TDD configurations 0, 1, 2, and 6 when a subframe 1405 and a subframe 1415 are downlink subframes, and the subframe 1410 and the subframe 1435 are uplink subframes. Therefore, the subframe therebetween becomes a special subframe. The special subframe is divided into three sections indicated by DwPTS (Downlink Pilot Timeslot, 1420), GP (Guard Period, 1425), and UpPTS (Uplink pilot Timeslot, 1430). DwPTS is a time interval for downlink reception, and UpPTS is a time interval for uplink transmission. GP does not transmit or receive any data. Optimal DwPTS and UpPTS values may vary depending on the propagation environment. Therefore, the base station informs the terminal of the appropriate DwPTS and UpPTS values in advance, as shown in Table 2. The TDD configuration in Table 1 and the DwPTS and UpPTS values in Table 2 are included in IE Tdd-Config of SystemInformationBlockType1 (SIB1) broadcast from the base station and delivered to the terminal. Table 2 below shows a configuration of special subframe (lengths of DwPTS / GP / UpPTS).
표 2
Figure PCTKR2014000594-appb-T000001
TABLE 2
Figure PCTKR2014000594-appb-T000001
LTE 표준에서는 표 3과 같이 주파수 밴드 개념을 가지고 있다. LTE 반송파는 하나의 주파수 밴드에 속하게 되며, 주파수 밴드에 따라 단말 송신 전력 등을 계산할 때 적용되는 파라미터값들이 달라진다. 반송파 집적 기술에서는 동일한 밴드 또는 다른 밴드에 속한 반송파들을 함께 사용할 수 있다. 따라서, 반송파 직접 기술을 지원하기 위해, 단말 구현 상, 복수 개의 RF (Radio Frequency) 모듈을 가질 것이다. 단말이 사용할 반송파들이 주파수 상 인접해 있는 밴드들에 속해 있다면, 동일한 RF 모듈에서 이용될 수 있지만, 그렇지 않고, 주파수 상 멀리 떨어진 밴드들에 속해 있다면, 다른 RF 모듈을 이용해야 할 것이다. 이는 적용되는 주파수 대역에 따라 RF 모듈의 성능 특성이 크게 달라지기 때문이다. 만약 단말이 사용할 반송파들이 주파수 상 인접해 있는 밴드들에 속해 동일한 RF 모듈을 사용한다면, 동일한 TDD 설정 정보를 이용해야 한다. 이는 한 RF 모듈에 속한 반송파들을 분리하여 각기 다른 TDD 설정을 적용할 수 없기 때문이다. 이와 대조적으로, 단말이 사용할 반송파들이 주파수 상 멀리 떨어진 밴드들에 속해 있어, 복수 개의 RF 모듈을 이용한다면, 각 반송파에 다른 TDD 설정을 적용할 수 있다. 따라서, 단말은 IMTA 기술을 지원하는지 여부를 기지국에 알릴 때, 주파수 밴드별로 구분하여 알려줄 필요가 있다. 아래 표 3은 E-UTRA operating bands을 나타낸다.The LTE standard has a frequency band concept as shown in Table 3. The LTE carrier belongs to one frequency band, and parameter values applied when calculating the terminal transmission power and the like vary according to the frequency band. In carrier aggregation technology, carriers belonging to the same band or different bands may be used together. Accordingly, in order to support the carrier direct technology, the terminal implementation may have a plurality of RF (Radio Frequency) modules. If carriers used by the UE belong to bands adjacent to each other in frequency, they may be used in the same RF module, but if they belong to bands far apart in frequency, another RF module will have to be used. This is because the performance characteristics of the RF module vary greatly depending on the frequency band applied. If carriers to be used by the UE belong to bands adjacent to each other in frequency and use the same RF module, the same TDD configuration information should be used. This is because carriers belonging to one RF module cannot be separated to apply different TDD settings. In contrast, if carriers to be used by the UE belong to bands far apart in frequency and use a plurality of RF modules, different TDD settings may be applied to each carrier. Therefore, when the UE informs the base station whether the IMTA technology is supported, it is necessary to inform the classification by frequency band. Table 3 below shows E-UTRA operating bands.
표 3
E-UTRA Operating Band Uplink (UL) operating bandBS receiveUE transmit Downlink (DL) operating bandBS transmit UE receive Duplex Mode
FUL_low - FUL_high FDL_low - FDL_high
1 1920 MHz 1980 MHz 2110 MHz 2170 MHz FDD
2 1850 MHz 1910 MHz 1930 MHz 1990 MHz FDD
3 1710 MHz 1785 MHz 1805 MHz 1880 MHz FDD
4 1710 MHz 1755 MHz 2110 MHz 2155 MHz FDD
5 824 MHz 849 MHz 869 MHz 894MHz FDD
61 830 MHz 840 MHz 875 MHz 885 MHz FDD
7 2500 MHz 2570 MHz 2620 MHz 2690 MHz FDD
8 880 MHz 915 MHz 925 MHz 960 MHz FDD
9 1749.9 MHz 1784.9 MHz 1844.9 MHz 1879.9 MHz FDD
10 1710 MHz 1770 MHz 2110 MHz 2170 MHz FDD
11 1427.9 MHz 1447.9 MHz 1475.9 MHz 1495.9 MHz FDD
12 699 MHz 716 MHz 729 MHz 746 MHz FDD
13 777 MHz 787 MHz 746 MHz 756 MHz FDD
14 788 MHz 798 MHz 758 MHz 768 MHz FDD
15 Reserved Reserved FDD
16 Reserved Reserved FDD
17 704 MHz 716 MHz 734 MHz 746 MHz FDD
18 815 MHz 830 MHz 860 MHz 875 MHz FDD
19 830 MHz 845 MHz 875 MHz 890 MHz FDD
20 832 MHz 862 MHz 791 MHz 821 MHz FDD
21 1447.9 MHz 1462.9 MHz 1495.9 MHz 1510.9 MHz FDD
22 3410 MHz 3490 MHz 3510 MHz 3590 MHz FDD
23 2000 MHz 2020 MHz 2180 MHz 2200 MHz FDD
24 1626.5 MHz 1660.5 MHz 1525 MHz 1559 MHz FDD
25 1850 MHz 1915 MHz 1930 MHz 1995 MHz FDD
26 814 MHz 849 MHz 859 MHz 894 MHz FDD
...
33 1900 MHz 1920 MHz 1900 MHz 1920 MHz TDD
34 2010 MHz 2025 MHz 2010 MHz 2025 MHz TDD
35 1850 MHz 1910 MHz 1850 MHz 1910 MHz TDD
36 1930 MHz 1990 MHz 1930 MHz 1990 MHz TDD
37 1910 MHz 1930 MHz 1910 MHz 1930 MHz TDD
38 2570 MHz 2620 MHz 2570 MHz 2620 MHz TDD
39 1880 MHz 1920 MHz 1880 MHz 1920 MHz TDD
40 2300 MHz 2400 MHz 2300 MHz 2400 MHz TDD
41 2496 MHz 2690 MHz 2496 MHz 2690 MHz TDD
42 3400 MHz 3600 MHz 3400 MHz 3600 MHz TDD
43 3600 MHz 3800 MHz 3600 MHz 3800 MHz TDD
NOTE 1: Band 6 is not applicable
TABLE 3
E-UTRA Operating Band Uplink (UL) operating band BS receive UE transmit Downlink (DL) operating band BS transmit UE receive Duplex Mode
F UL_low -F UL_high F DL_low -F DL_high
One 1920 MHz 1980 MHz 2110 MHz 2170 MHz FDD
2 1850 MHz 1910 MHz 1930 MHz 1990 MHz FDD
3 1710 MHz 1785 MHz 1805 MHz 1880 MHz FDD
4 1710 MHz 1755 MHz 2110 MHz 2155 MHz FDD
5 824 MHz 849 MHz 869 MHz 894 MHz FDD
6 1 830 MHz 840 MHz 875 MHz 885 MHz FDD
7 2500 MHz 2570 MHz 2620 MHz 2690 MHz FDD
8 880 MHz 915 MHz 925 MHz 960 MHz FDD
9 1749.9 MHz 1784.9 MHz 1844.9 MHz 1879.9 MHz FDD
10 1710 MHz 1770 MHz 2110 MHz 2170 MHz FDD
11 1427.9 MHz 1447.9 MHz 1475.9 MHz 1495.9 MHz FDD
12 699 MHz 716 MHz 729 MHz 746 MHz FDD
13 777 MHz 787 MHz 746 MHz 756 MHz FDD
14 788 MHz 798 MHz 758 MHz 768 MHz FDD
15 Reserved Reserved FDD
16 Reserved Reserved FDD
17 704 MHz 716 MHz 734 MHz 746 MHz FDD
18 815 MHz 830 MHz 860 MHz 875 MHz FDD
19 830 MHz 845 MHz 875 MHz 890 MHz FDD
20 832 MHz 862 MHz 791 MHz 821 MHz FDD
21 1447.9 MHz 1462.9 MHz 1495.9 MHz 1510.9 MHz FDD
22 3410 MHz 3490 MHz 3510 MHz 3590 MHz FDD
23 2000 MHz 2020 MHz 2180 MHz 2200 MHz FDD
24 1626.5 MHz 1660.5 MHz 1525 MHz 1559 MHz FDD
25 1850 MHz 1915 MHz 1930 MHz 1995 MHz FDD
26 814 MHz 849 MHz 859 MHz 894 MHz FDD
...
33 1900 MHz 1920 MHz 1900 MHz 1920 MHz TDD
34 2010 MHz 2025 MHz 2010 MHz 2025 MHz TDD
35 1850 MHz 1910 MHz 1850 MHz 1910 MHz TDD
36 1930 MHz 1990 MHz 1930 MHz 1990 MHz TDD
37 1910 MHz 1930 MHz 1910 MHz 1930 MHz TDD
38 2570 MHz 2620 MHz 2570 MHz 2620 MHz TDD
39 1880 MHz 1920 MHz 1880 MHz 1920 MHz TDD
40 2300 MHz 2400 MHz 2300 MHz 2400 MHz TDD
41 2496 MHz 2690 MHz 2496 MHz 2690 MHz TDD
42 3400 MHz 3600 MHz 3400 MHz 3600 MHz TDD
43 3600 MHz 3800 MHz 3600 MHz 3800 MHz TDD
NOTE 1: Band 6 is not applicable
<<실시 예 1>><Example 1 >>
실시 예 1에서는 기지국에서 broadcast되는 공통 정보 중 하나인 SIB1을 사용하여, dynamic TDD configuration 정보를 전달한다. 구체적인 방법을 설명하기에 앞서, 일반적인 SIB 전달 방법을 설명한다. In Embodiment 1, dynamic TDD configuration information is transmitted using SIB1, which is one of common information broadcast from a base station. Before describing a specific method, a general SIB delivery method will be described.
도 3은 일반적인 SIB 전달 방법에서 Modification period 을 설명하기 위한 도면이다. 3 is a diagram illustrating a modification period in a general SIB delivery method.
도 3을 참조하면, 일반적인 SIB 전달 방법에서는 Modification period (310) 개념을 적용하고 있다. 즉, SI update 전, Modification period 동안 paging 메시지 을 통해 SI (300) 가 update됨을 알린다. Paging 메시지에 systemInfoModification IE가 존재한다면, 다음 Modification period부터 update된 SI (305) 전송된다는 것을 의미한다. 여러 SI 메시지 중, 하나만 변경되는 경우에도, paging 메시지에서 이를 표시한다. 예외적으로 ETWS을 전달하는 SIB10와 SIN11의 경우엔, modification period의 경계와 상관없이 update 된다. Paging 메시지에 etws-Indication IE와 함께 ETWS가 있다고 표시되면, 단말은 바로, SIB10, 11 수신을 시도한다. Modification period의 길이는 SIB2로 알려지는데, 최대값은 10.24 초이다. Referring to FIG. 3, the general SIB delivery method applies a concept of a modification period 310. That is, before the SI update, it informs that the SI 300 is updated through a paging message during the modification period. If the systemInfoModification IE is present in the paging message, it means that the updated SI 305 is transmitted from the next modification period. If only one of several SI messages changes, the paging message indicates this. The exceptions are SIB10 and SIN11, which carry ETWS, which are updated regardless of the boundary of the modification period. If the paging message indicates that ETWS together with etws-Indication IE, the terminal immediately attempts to receive SIB10,11. The length of the modification period is known as SIB2, with a maximum of 10.24 seconds.
도 4는 일반적인 SIB 전달 방법을 설명하기 위한 동작 흐름도이다. 4 is an operation flowchart for explaining a general SIB delivery method.
도 4를 참조하면, 기지국은 400 단계에서 SIB 정보를 업데이트하기로 결정한다. 405 단계에서 기지국은 Paging 메시지에 SystemInfoModification IE을 포함시켜 단말에 전달한다. 상기 paging 메시지는 다음 modification period부터 새로 업데이트된 SIB정보가 전송된다는 것을 지시한다. 410 단계에서 단말은 해당 Paging 메시지를 수신하여 다음 modification period에서 SIB 정보가 변경되는지를 인지한다. 다음 modification period (420)이 도래하면, 단말은 우선 SIB1 디코딩을 425 단계에서 시도한다. SIB1은 다른 SIB의 스케줄링 정보를 가지고 있기 때문이다. 단말은 430 단계에서 새로 업데이트된 SIB 정보를 수신한다. 단말은 435 단계에서 변경된 SIB정보를 적용한다.Referring to FIG. 4, the base station determines to update SIB information in step 400. In step 405, the base station includes the SystemInfoModification IE in the paging message and delivers it to the terminal. The paging message indicates that newly updated SIB information is transmitted from the next modification period. In step 410, the UE receives the corresponding paging message and recognizes whether the SIB information is changed in the next modification period. When the next modification period 420 arrives, the UE first attempts SIB1 decoding in step 425. This is because SIB1 has scheduling information of another SIB. In step 430, the terminal receives the newly updated SIB information. The terminal applies the changed SIB information in step 435.
도 5는 일반적인 SIB 스케줄링 방법을 설명하기 위한 도면이다. 5 is a diagram illustrating a general SIB scheduling method.
도 5를 참조하면 기지국에서 broadcast되는 공통 정보는 MIB (MasterInformationBlock, 545)과 SIB1~SIB13까지 존재하며, 새로운 기술들을 지원하기 위해, SIB14등이 논의되고 있다. MIB은 SFN (System Frame Number), 주파수 대역폭 등 가장 essential한 정보를 포함하고 있다. MIB는 매 라디오 프레임 (535)의 첫번째 서브프레임에 포함되어 전송된다. 4 라디오 프레임들에서 동일한 정보를 가진 MIB가 전송되기 때문에, 주기는 40 ms이다. SIB1 (550)은 셀 엑세스와 SIB 스케줄링 정보를 포함하고 있다. SIB2는 매 짝수번째 라디오 프레임의 5번째 서브프레임에 포함되어 전송된다. 나머지 SIB2~SIB13들은 복수 개의 SI message 들 (555, 560, 565)중 하나에 포함되어 전송된다. 다수의 SIB 정보로 구성된 SI message는 Si-WindowLength (525)로 정의된 시간 구간인 SI window 동안 전송되며, 상기 시간 구간 동안에는 다른 SI message가 중복하여 전송될 수 없다. Si-WindowLength는 SIB1으로 단말에게 알려지며, 모든 SI message에 공통으로 적용되는 값이다. 하나의 SI message에 포함된 다수의 SIB 정보들은 SIB1의 스케줄링 정보에 따라 순서대로, SI window 내의 하나의 서브프레임에서 전송된다. SI window 내의 서브프레임들 중, MBSFN 서브프레임, TDD일 경우 상향링크 서브프레임, SIB1이 전송되는 서브프레임 (짝수 번째 라디오 프레임의 5번째 서브프레임)에서는 SIB 전송이 제한된다. 또한, 첫번째 SI message의 첫번째로 전송되어야 하는 SIB정보는 SIB2 (530)으로 고정된다. 첫번째 SI message (555)는 특정 주기 (505)을 가지고 반복적으로 전송된다. 즉, 첫번째 SI message (555)가 첫번째 SI window (515)에서 전송되면, 특정 주기 (505)가 지난 후, 재전송된다. 두번째 SI message (560)은 두번째 SI window (520)에서 전송된 후, 다른 주기 (510)을 가지고 반복적으로 전송된다. 각 SI message에 대한 상기 주기 정보는 SIB1으로 단말에게 알려진다. Referring to FIG. 5, common information broadcasted from a base station exists in MIB (MasterInformationBlock) 545 and SIB1 to SIB13, and SIB14 and the like are discussed to support new technologies. MIB contains the most essential information such as SFN (System Frame Number), frequency bandwidth. The MIB is included in the first subframe of every radio frame 535 and transmitted. Since the MIB with the same information is transmitted in 4 radio frames, the period is 40 ms. SIB1 550 includes cell access and SIB scheduling information. SIB2 is included in the fifth subframe of every even radio frame and transmitted. The remaining SIB2 to SIB13 are included in one of the plurality of SI messages 555, 560, and 565 and transmitted. An SI message composed of a plurality of SIB information is transmitted during an SI window, which is a time interval defined by Si-WindowLength 525, and other SI messages may not be repeatedly transmitted during the time interval. Si-WindowLength is known to the UE as SIB1 and is a value commonly applied to all SI messages. A plurality of SIB information included in one SI message is transmitted in one subframe in the SI window in order according to scheduling information of SIB1. Among the subframes in the SI window, SIB transmission is limited in the MBSFN subframe, the uplink subframe in the case of TDD, and the subframe in which SIB1 is transmitted (the fifth subframe of the even-numbered radio frame). In addition, the SIB information to be transmitted first of the first SI message is fixed to the SIB2 (530). The first SI message 555 is repeatedly transmitted with a certain period 505. That is, if the first SI message 555 is transmitted in the first SI window 515, it is retransmitted after a certain period 505. The second SI message 560 is transmitted in the second SI window 520 and then repeatedly transmitted with another period 510. The period information for each SI message is known to the terminal as SIB1.
짧게는 수십 ms 또는 수백 ms 내에서 변경되는 dynamic TDD configuration 정보를 단말에게 알려주기 위해서는 상기 설명한 SIB들 중 SIB1이 가장 적합하다. MIB는 가장 essential한 정보만을 포함시키며, 여유 비트가 많지가 않다. 이에 비해, SIB1은 MIB보단 길지만 비교적 긴 주기를 가지고 전송되지만, 타 SIB에 비해 짧다. 또한, 지정된 서브프레임에서 반복적으로 전송되므로, 따로, 스케줄링 정보를 필요로 하지 않는다. 앞서 설명하였듯이, 다른 SIB정보들은 SIB으로부터 스케줄링 정보를 획득하여야 한다. SIB1을 사용할 경우, 가장 큰 문제점은 modification period을 기반으로 한 SIB 전달 과정이다. SIB1에 Dynamic TDD configuration을 포함한다고 가정할 때, 업데이트된 dynamic TDD configuration을 단말에게 전달하기 위해서는 변경된 SIB1을 전송하는 시점의 이전 modification period에서 paging으로 SIB이 변경될 것임을 미리 알려야 한다. 상기 modification period가 지난 후, 기지국은 변경된 SIB1을 전송할 것이다. 이는 dynamic TDD configuration의 변경 주기를 고려할 때, 업데이트된 dynamic TDD configuration을 제때에 단말에게 알려줄 수 없음을 의미한다. 따라서, 본 발명에서는 dynamic TDD configuration 정보를 SIB1에 포함시키되, 종래의 modification period을 따르지 않고, 단말은 지속적으로 SIB1을 수신, 디코딩하고, 기지국은 업데이트된 dynamic TDD configuration정보를 바로 포함하여 SIB1을 전송하는 방안을 제안한다. SIB1 is most suitable among the above-described SIBs to inform the UE of dynamic TDD configuration information that is changed within tens of ms or hundreds of ms. The MIB contains only the most essential information and does not have a lot of free bits. In comparison, SIB1 is longer than MIB but has a relatively long period, but shorter than that of other SIBs. In addition, since it is repeatedly transmitted in a designated subframe, it does not need scheduling information separately. As described above, other SIB information should obtain scheduling information from the SIB. When using SIB1, the biggest problem is the SIB delivery process based on the modification period. Assuming that the SIB1 includes the dynamic TDD configuration, in order to deliver the updated dynamic TDD configuration to the UE, the SIB should be informed in advance that the SIB will be changed to paging in the previous modification period at the time of transmitting the changed SIB1. After the modification period, the base station will transmit the modified SIB1. This means that the updated dynamic TDD configuration cannot be informed to the UE in time in consideration of the change period of the dynamic TDD configuration. Accordingly, in the present invention, the dynamic TDD configuration information is included in the SIB1, but the terminal continuously receives and decodes the SIB1 without following the conventional modification period, and the base station immediately includes the updated dynamic TDD configuration information to transmit the SIB1. Suggest a solution.
도 6은 실시 예 1에서의 동작 흐름도이다. 6 is a flowchart illustrating the operation of the first embodiment.
도 6을 참조하면 600 단계에서 단말은 TDD을 지원하는 기지국에 RRC connection establishment을 수행한다. 605 단계에서 단말은 각 주파수 밴드별로 dynamic TDD configuration을 수행할 수 있음을 지시하는 capability 비트를 기지국에게 제공한다. 주파수 밴드별로 capability 비트가 필요한 이유는 서두에 상세히 설명하였다. 610 단계에서 기지국은 상기 단말에게 특정 밴드에 속한 특정 반송파에 대해, dynamic TDD configuration을 수행할지를 결정한다. 615 단계에서 기지국은 단말에게 RRCConnectionReconfiguration 메시지를 이용하여, dynamic TDD 을 트리거한다. 상기 메시지를 수신한 단말은 620 단계에서 주기적으로 전송되는 SIB1 정보를 수신, 디코딩한다. 630 단계에서 SIB1으로부터 dynamic TDD configuration정보를 수신한다. 635 단계에서 단말은 다음 SIB1에서 업데이트된 dynamic TDD configuration 정보를 수신할 때까지 가장 최근에 수신한 dynamic TDD configuration을 적용하여, dynamic TDD을 수행한다. 640 단계에서 단말은 업데이트된 dynamic TDD configuration정보를 수신한다. 단말은 dynamic TDD 동작을 종료할 때까지 상기 동작을 반복한다. Referring to FIG. 6, in step 600, the UE performs RRC connection establishment to a base station supporting TDD. In step 605, the UE provides the base station with capability bits indicating that dynamic TDD configuration can be performed for each frequency band. The reason why capability bits are required for each frequency band is described in detail at the beginning. In step 610, the base station determines whether to perform dynamic TDD configuration for a specific carrier belonging to a specific band to the terminal. In step 615, the base station triggers a dynamic TDD to the terminal using an RRCConnectionReconfiguration message. Upon receiving the message, the UE receives and decodes SIB1 information periodically transmitted in step 620. In step 630, dynamic TDD configuration information is received from SIB1. In step 635, the UE performs dynamic TDD by applying the most recently received dynamic TDD configuration until receiving the updated dynamic TDD configuration information in the next SIB1. In step 640, the UE receives the updated dynamic TDD configuration information. The terminal repeats the above operation until the end of the dynamic TDD operation.
도 7은 실시 예 1에서의 단말 동작 블록도이다. 7 is a block diagram of a terminal operation in the first embodiment.
도 7을 참조하면 700 단계에서 단말은 UE capability information 메시지에 각 주파수 밴드별로 dynamic TDD 동작을 지원할 수 있는지 여부를 지시하는 capability 지시자를 포함시킨다. 705 단계에서 단말은 기지국에게 UE capability information 메시지를 전송한다. 710 단계에서 단말은 기지국으로부터 RRCConnectionReconfiguration 메시지를 수신한다. 715 단계에서 단말은 상기 메시지에서 dynamic TDD 동작을 configure하는지를 판단한다. 상기 dynamic TDD 동작을 수행한다면 720 단계에서 단말은 주기적으로 전송되는 SIB1으로부터 dynamic TDD configuration 정보를 획득한다. 725 단계에서 단말은 가장 최근 dynamic TDD configuration 정보를 적용하여 dynamic TDD 동작을 수행한다. 상기 dynamic TDD 동작을 수행하지 않는다면, 730 단계에서 종래의 일반적으로 TDD 동작을 수행한다. Referring to FIG. 7, in step 700, the UE includes a capability indicator indicating whether a dynamic TDD operation can be supported for each frequency band in a UE capability information message. In step 705, the terminal transmits a UE capability information message to the base station. In step 710, the UE receives an RRCConnectionReconfiguration message from the base station. In step 715, the UE determines whether to configure the dynamic TDD operation in the message. If the dynamic TDD operation is performed, the UE acquires dynamic TDD configuration information from SIB1 periodically transmitted in step 720. In step 725, the UE applies the latest dynamic TDD configuration information to perform a dynamic TDD operation. If the dynamic TDD operation is not performed, the conventional TDD operation is performed in step 730.
도 8은 실시 예 1에서의 기지국 동작 블록도이다. 8 is a block diagram of a base station operation according to the first embodiment.
도 8을 참조하면 800 단계에서 기지국은 특정 단말로부터 각 주파수 밴드별로 dynamic TDD 동작을 지원할 수 있는지 여부를 지시하는 capability 지시자를 포함한 UE capability information 메시지를 수신한다. Referring to FIG. 8, in step 800, a base station receives a UE capability information message including a capability indicator indicating whether a dynamic TDD operation can be supported for each frequency band from a specific terminal.
805 단계에서 기지국은 상기 메시지에서 dynamic TDD 동작을 configure할지를 판단한다. 상기 dynamic TDD 동작을 configure한다면, 810 단계에서 기지국은 RRCConnectionReconfiguration 메시지를 이용하여 dynamic TDD 동작을 configure한다. 820 단계에서 기지국은 상기 단말에게 RRCConnectionReconfiguration 메시지를 송신한다. 825 단계에서 기지국은 SIB1에 가장 최근의 dynamic TDD configuration 을 포함시켜 전송한다. In step 805, the base station determines whether to configure the dynamic TDD operation in the message. If the dynamic TDD operation is configured, in step 810, the base station configures the dynamic TDD operation using an RRCConnectionReconfiguration message. In step 820, the base station transmits an RRCConnectionReconfiguration message to the terminal. In step 825, the base station includes the latest dynamic TDD configuration in SIB1 and transmits it.
<<실시 예 2>><< Example 2 >>
실시 예 2에서는 Paging을 사용하여, dynamic TDD configuration 정보를 전달한다. 구체적인 방법을 설명하기에 앞서, 일반적인 paging 전달 방법을 설명한다.In Embodiment 2, dynamic TDD configuration information is delivered using paging. Before describing the specific method, a general paging delivery method will be described.
Paging 메시지는 아무때나 전송되는 것은 아니고, 단말마다 미리 정해진 라디오 프레임의 서브프레임에서 전송된다. 상기 전송 시점은 기지국과 단말이 미리 알고 있기 때문에, 단말은 상기 전송 시점에서만 paging 메시지 수신 동작을 수행하면 된다. Paging 메시지가 전송되는 라디오 프레임을 PF (Paging Frame)이라고 하며, 상기 PF내에서 Paging 메시지가 실제 전송되는 서브프레임을 PO (Paging Occasion)이라고 칭한다. PF와 PO는 아래의 두 수학식에 의해 도출된다. The paging message is not transmitted at any time, but is transmitted in a subframe of a predetermined radio frame for each terminal. Since the transmission time point is known to the base station and the terminal in advance, the terminal needs to perform a paging message reception operation only at the transmission time point. A radio frame to which a paging message is transmitted is called a paging frame (PF), and a subframe in which the paging message is actually transmitted is called a paging occsion (PO). PF and PO are derived by the following two equations.
수학식 1
Figure PCTKR2014000594-appb-M000001
Equation 1
Figure PCTKR2014000594-appb-M000001
수학식 2
Figure PCTKR2014000594-appb-M000002
Equation 2
Figure PCTKR2014000594-appb-M000002
여기서 T 는 DRX 사이클이다. nB는 {4T, 2T, T, T/2, T/4, T/8, T/16, T/32} 중의 한 값을 갖는다. N은 min(T,nB) 값이다. Ns은 max(1,nB/T) 값이다. UE_ID는 IMSI mod 1024로 정의되며, IMSI는 단말 아이디이다. i_s는 아래의 표와 함께 도출된다. 아래 표 4는 TDD 설정(all UL/DL configurations)을 나타내는 표이다.Where T is the DRX cycle. nB has one of {4T, 2T, T, T / 2, T / 4, T / 8, T / 16, T / 32}. N is the min (T, nB) value. Ns is the max (1, nB / T) value. UE_ID is defined as IMSI mod 1024, and IMSI is a terminal ID. i_s is derived with the table below. Table 4 below is a table showing the TDD configuration (all UL / DL configurations).
표 4
Ns PO when i_s=0 PO when i_s=1 PO when i_s=2 PO when i_s=3
1 0 N/A N/A N/A
2 0 5 N/A N/A
4 0 1 5 6
Table 4
Ns PO when i_s = 0 PO when i_s = 1 PO when i_s = 2 PO when i_s = 3
One 0 N / A N / A N / A
2 0 5 N / A N / A
4 0 One 5 6
본 실시 예에서는 Paging 메시지에, 적용해야 할 TDD configuration을 지시하는 3 비트를 추가시킨다. 또한, PDCCH에서의 시그널링 오버헤드를 줄이기 위해, dynamic TDD configuration 을 위한 paging 메시지는 고정된 PF, PO을 이용하여 전송할 수 있다. 상기 dynamic TDD configuration 을 위한 paging 메시지는 모든 단말이 수신할 필요는 없으며, 연결 모드에 있는 단말들 중, dynamic TDD 동작을 수행할 수 있는 단말만 수신하면 된다. 먼저 기지국은 dynamic TDD configuration 을 수행할 단말에게 dedicated RRC 메시지를 이용하여, PagingCycle-dynamic-TDD와 i_s-dynamic-TDD 정보를 전송한다. PagingCycle-dynamic-TDD은 상기 dynamic TDD configuration 정보를 포함한 Paging 메시지가 전송되는 라디오 프레임 (PF) 주기를 나타낸다. i_s-dynamic-TDD은 PO 를 나타낸다. i_s-dynamic-TDD은 표4에서와 같이 정의할 수 있다. In this embodiment, three bits indicating a TDD configuration to be applied are added to the paging message. In addition, to reduce signaling overhead in the PDCCH, a paging message for dynamic TDD configuration may be transmitted using a fixed PF or PO. The paging message for the dynamic TDD configuration does not need to be received by all terminals, and only the terminals capable of performing the dynamic TDD operation among the terminals in the connected mode. First, the base station transmits PagingCycle-dynamic-TDD and i_s-dynamic-TDD information to a terminal to perform dynamic TDD configuration using a dedicated RRC message. PagingCycle-dynamic-TDD indicates a radio frame (PF) period in which a paging message including the dynamic TDD configuration information is transmitted. i_s-dynamic-TDD represents PO. i_s-dynamic-TDD can be defined as shown in Table 4.
도 15는 PagingCycle-dynamic-TDD와 i_s-dynamic-TDD 정보를 설명하기 위한 도면이다. FIG. 15 is a diagram for describing PagingCycle-dynamic-TDD and i_s-dynamic-TDD information.
도 15를 참고하면 PagingCycle-dynamic-TDD (1500)은 상기 dynamic TDD configuration 을 포함한 paging 메시지의 전송 주기이다. PF (1505)는 상기 dynamic TDD configuration 정보를 포함한 Paging 메시지가 전송되는 라디오 프레임을 나타낸다. PO (1510)은 i_s-dynamic-TDD가 지시하는 Paging 메시지가 전송되는 서브프레임이다. 상기 Paging으로부터 수신한 dynamic TDD configuration 정보는 다음 Paging을 수신할 때까지 적용된다 (1515). Referring to FIG. 15, the PagingCycle-dynamic-TDD 1500 is a transmission period of a paging message including the dynamic TDD configuration. The PF 1505 indicates a radio frame in which a paging message including the dynamic TDD configuration information is transmitted. The PO 1510 is a subframe in which a paging message indicated by i_s-dynamic-TDD is transmitted. The dynamic TDD configuration information received from the paging is applied until the next paging is received (1515).
도 9은 실시 예 2에서의 동작 흐름도이다. 9 is a flowchart illustrating the operation of the second embodiment.
도 9를 참조하면 900 단계에서 단말은 TDD을 지원하는 기지국에 RRC connection establishment을 수행한다. 905 단계에서 단말은 각 주파수 밴드별로 dynamic TDD configuration을 수행할 수 있음을 지시하는 capability 비트를 기지국에게 제공한다. 주파수 밴드별로 capability 비트가 필요한 이유는 서두에 상세히 설명하였다. 910 단계에서 기지국은 상기 단말에게 특정 밴드에 속한 특정 반송파에 대해, dynamic TDD configuration을 수행할지를 결정한다. 915 단계에서 기지국은 단말에게 RRCConnectionReconfiguration 메시지를 이용하여, PagingCycle-dynamic-TDD와 i_s-dynamic-TDD 정보를 전송한다. 상기 메시지를 수신한 단말은 920 단계에서 주기적으로 전송되는 Paging 정보를 수신, 디코딩한다. 930 단계에서 Paging으로부터 dynamic TDD configuration정보를 수신한다. 935 단계에서 단말은 다음 Paging에서 업데이트된 dynamic TDD configuration 정보를 수신할 때까지 가장 최근에 수신한 dynamic TDD configuration을 적용하여, dynamic TDD을 수행한다. 940 단계에서 단말은 업데이트된 dynamic TDD configuration정보를 수신한다. 단말은 dynamic TDD 동작을 종료할 때까지 상기 동작을 반복한다. Referring to FIG. 9, in step 900, the UE performs RRC connection establishment to a base station supporting TDD. In step 905, the UE provides the BS with capability bits indicating that dynamic TDD configuration can be performed for each frequency band. The reason why capability bits are required for each frequency band is described in detail at the beginning. In step 910, the base station determines whether to perform dynamic TDD configuration for a specific carrier belonging to a specific band to the terminal. In step 915, the base station transmits PagingCycle-dynamic-TDD and i_s-dynamic-TDD information to the UE using an RRCConnectionReconfiguration message. Upon receiving the message, the terminal receives and decodes paging information periodically transmitted in step 920. In step 930, dynamic TDD configuration information is received from paging. In step 935, the UE performs dynamic TDD by applying the most recently received dynamic TDD configuration until receiving the updated dynamic TDD configuration information at the next paging. In step 940, the UE receives the updated dynamic TDD configuration information. The terminal repeats the above operation until the end of the dynamic TDD operation.
도 10은 실시 예 2에서의 단말 동작 블록도이다. 10 is a block diagram of a terminal operation in the second embodiment.
도 10을 참고하면 1000 단계에서 단말은 UE capability information 메시지에 각 주파수 밴드별로 dynamic TDD 동작을 지원할 수 있는지 여부를 지시하는 capability 지시자를 포함시킨다. 1005 단계에서 단말은 기지국에게 UE capability information 메시지를 전송한다. 1010 단계에서 단말은 기지국으로부터 RRCConnectionReconfiguration 메시지를 수신한다. 1015 단계에서 단말은 상기 메시지에서 dynamic TDD 동작을 configure하고 PagingCycle-dynamic-TDD와 i_s-dynamic-TDD 정보를 포함하는지를 판단한다. 상기 dynamic TDD 동작을 수행한다면 1020 단계에서 단말은 주기적으로 전송되는 paging으로부터 dynamic TDD configuration 정보를 획득한다. 1025 단계에서 단말은 가장 최근 dynamic TDD configuration 정보를 적용하여 dynamic TDD 동작을 수행한다. 상기 dynamic TDD 동작을 수행하지 않는다면, 1030 단계에서 종래의 일반적으로 TDD 동작을 수행한다. Referring to FIG. 10, in step 1000, the UE includes a capability indicator indicating whether a dynamic TDD operation can be supported for each frequency band in a UE capability information message. In step 1005, the UE transmits a UE capability information message to the base station. In step 1010, the UE receives an RRCConnectionReconfiguration message from the base station. In step 1015, the UE configures a dynamic TDD operation in the message and determines whether PagingCycle-dynamic-TDD and i_s-dynamic-TDD information is included. If the dynamic TDD operation is performed, in step 1020, the UE obtains dynamic TDD configuration information from periodically transmitted paging. In step 1025, the UE performs the dynamic TDD operation by applying the latest dynamic TDD configuration information. If the dynamic TDD operation is not performed, the conventional TDD operation is performed in step 1030.
도 11은 실시 예 2에서의 기지국 동작 블록도이다. Fig. 11 is a block diagram of a base station operation according to the second embodiment.
도 11을 참조하면 1100 단계에서 기지국은 특정 단말로부터 각 주파수 밴드별로 dynamic TDD 동작을 지원할 수 있는지 여부를 지시하는 capability 지시자를 포함한 UE capability information 메시지를 수신한다. Referring to FIG. 11, in step 1100, a base station receives a UE capability information message including a capability indicator indicating whether a dynamic TDD operation can be supported for each frequency band from a specific terminal.
1105 단계에서 기지국은 상기 메시지에서 dynamic TDD 동작을 configure할지를 판단한다. 상기 dynamic TDD 동작을 configure한다면, 1110 단계에서 기지국은 PagingCycle-dynamic-TDD와 i_s-dynamic-TDD 정보를 포함한 RRCConnectionReconfiguration 메시지를 전송한다. 1120 단계에서 기지국은 상기 단말에게 RRCConnectionReconfiguration 메시지를 송신한다. 1125 단계에서 기지국은 Paging에 가장 최근의 dynamic TDD configuration 을 포함시켜 전송한다. In step 1105, the base station determines whether to configure the dynamic TDD operation in the message. If the dynamic TDD operation is configured, in step 1110, the base station transmits an RRCConnectionReconfiguration message including PagingCycle-dynamic-TDD and i_s-dynamic-TDD information. In step 1120, the base station transmits an RRCConnectionReconfiguration message to the terminal. In step 1125, the base station includes the latest dynamic TDD configuration in the paging and transmits it.
<실시 예 3>Example 3
단말이 PUSCH 전송을 수행함에 있어서, 전송 자원을 할당 받는 경우로 아래 두 가지가 있다. When the UE performs PUSCH transmission, there are two cases in which transmission resources are allocated.
1. 순방향 제어 채널 (PDCCH)을 통해 최초 전송 혹은 재전송을 지시하는 역방향 그랜트를 수신1. Receive a reverse grant indicating first transmission or retransmission over the forward control channel (PDCCH)
2. 랜덤 액세스 과정에서, 유효한 RAR (valid random access response)에 수납되어 있는 역방향 그랜트를 수신2. In the random access process, a reverse grant stored in a valid valid random access response (RAR) is received.
단말이 임의의 서브 프레임 n에서 역방향 그랜트를 수신했을 때, 단말은 소정의 시간이 지난 후, 예컨대 서브 프레임 (n+k)에서 역방향 전송을 수행한다. 상기 k는 단말이 MAC PDU를 생성하고 역방향 전송을 위한 물리 계층의 전처리를 수행하는 데 소요되는 기간과 관련된 것으로 단말과 기지국이 동일한 값을 사용하여야 한다. When the terminal receives the reverse grant in any subframe n, the terminal performs the reverse transmission in a subframe (n + k) after a predetermined time elapses. K is related to the time required for the terminal to generate the MAC PDU and perform the preprocessing of the physical layer for reverse transmission, and the terminal and the base station should use the same value.
본 발명의 실시 예 3에서는 단말이 역방향 그랜트를 수신했을 때 상기 역방향 그랜트를 순방향 제어 채널을 통해 수신하였는지 RAR을 통해 수신하였는지에 따라서 역방향 전송을 수행할 역방향 서브 프레임을 달리 선택하는 방법 및 장치를 제시한다. 특히 단말에 동적인 TDD 동작이 설정된 경우, PDCCH를 통해 수신한 역방향 그랜트에 대해서는 제 2 TDD 설정을 적용해서 k를 결정하고, RAR를 통해 수신한 역방향 그랜트에 대해서는 제 1 TDD 설정을 적용해서 k를 결정한다. Embodiment 3 of the present invention provides a method and apparatus for differently selecting a reverse subframe to perform reverse transmission according to whether the terminal receives the reverse grant through the forward control channel or the RAR when the terminal receives the reverse grant. . In particular, when the dynamic TDD operation is configured for the UE, k is determined by applying the second TDD configuration to the reverse grant received through the PDCCH, and k is applied by applying the first TDD configuration to the reverse grant received through the RAR. Decide
도 16에 본 발명의 단말 동작을 도시하였다. 16 illustrates a terminal operation of the present invention.
참고로 TDD 설정 정보는 하나의 라디오 프레임에 대해서 순방향 서브 프레임, 역방향 서브 프레임 특별 서브 프레임 (Special subframe)의 구성을 지시하는 0과 6사이의 정수이다. 본 발명에서는 두 가지 종류의 TDD 설정 정보를 사용한다. 제 1 TDD 설정 정보는 동적인 TDD 동작을 지원하지 않는 단말을 포함한 모든 단말들이 이해할 수 있는 정보이며 해당 셀의 모든 단말이 인지할 수 있도록 시스템 정보를 통해 전송된다. 상기 시스템 정보는 예를 들어 System Information Block 1이 될 수 있다. SIB1은 소정의 주기를 가지고 반복적으로 전송되며, 상기 제 1 TDD 설정 정보 외에도 단말이 해당 셀에 캠프 온할지 여부를 판단함에 있어서 필수적인 정보들 예를 들어 해당 셀의 사업자 정보 같은 것들도 함께 수납한다. 제 1 TDD 설정 정보는 초기 릴리즈 (release)의 단말을 포함한 모든 단말들이 이해할 수 있는 필드, 즉 레거시 필드(legacy field)에 수납된다. 제 2 TDD 설정 정보는 동적인 TDD 동작을 지원하는 단말들에게만 해당되는 것으로 여러 가지 방식으로 단말에게 전달이 가능하다. 제 2 TDD 설정 정보는 일정 주기를 가지고 반복적으로 전송되며 동적으로 변경이 가능하다. 기지국은 현재 셀의 로드 상황이나 순방향 트래픽과 역방향 트래픽의 비율 등을 고려해서 소정의 시점에 가장 적합한 TDD 설정을 결정해서 제 2 TDD 설정 정보를 소정의 방식으로 동적인 TDD 동작이 설정된 단말들에게 전달한다. For reference, the TDD configuration information is an integer between 0 and 6 indicating the configuration of a forward subframe and a reverse subframe special subframe for one radio frame. In the present invention, two types of TDD configuration information are used. The first TDD configuration information is information that can be understood by all terminals including a terminal that does not support dynamic TDD operation and is transmitted through system information so that all terminals of the cell can be recognized. The system information may be, for example, System Information Block 1. The SIB1 is repeatedly transmitted with a predetermined period. In addition to the first TDD configuration information, the SIB1 stores information essential for determining whether the UE camps on the cell, for example, information on a carrier of the cell. The first TDD configuration information is stored in a field that all terminals including the terminal of the initial release can understand, that is, a legacy field. The second TDD configuration information corresponds only to terminals supporting dynamic TDD operation and can be delivered to the terminal in various ways. The second TDD configuration information may be repeatedly transmitted at regular intervals and may be dynamically changed. The base station determines the most suitable TDD configuration at a predetermined time point in consideration of the current cell load situation or the ratio of the forward traffic and the reverse traffic, and delivers the second TDD configuration information to the terminals configured with the dynamic TDD operation in a predetermined manner. do.
도 16을 참조하면 1605 단계에서 단말은 제 1 TDD 설정 정보를 획득한다. 전술한 바와 같이 단말은 소정의 시스템 정보를 수신하고 상기 시스템 정보의 레거시 필드에 수납된 제 1 TDD 설정 정보를 인지한다. 상기 제 1 TDD 설정 정보는 자주 변경되지 않는 속성을 가지며, 변경되는 경우 시스템 정보 변경 절차가 적용된다. 1610 단계에서 단말에게 동적인 TDD 동작이 설정된다. 동적인 TDD 동작이 설정된다는 것은 동적인 TDD 동작을 시작할 것을 지시하는 제어 정보가 수납된 제어 메시지를 단말이 수신하는 것을 의미한다. 동적인 TDD 동작이란, 셀의 로드 상황에 따라서 단말의 TDD 설정을 동적으로 변화시키는 동작을 의미한다. 동적인 TDD 동작은 아래 두 가지 종류로 분류될 수 있다. Referring to FIG. 16, in step 1605, the UE acquires first TDD configuration information. As described above, the terminal receives predetermined system information and recognizes first TDD configuration information stored in the legacy field of the system information. The first TDD configuration information has an attribute that is not frequently changed, and when changed, a system information changing procedure is applied. In step 1610, a dynamic TDD operation is set for the UE. The setting of the dynamic TDD operation means that the terminal receives a control message containing control information indicating to start the dynamic TDD operation. The dynamic TDD operation means an operation of dynamically changing the TDD configuration of the terminal according to the load situation of the cell. Dynamic TDD operation can be classified into the following two types.
동적인 TDD 동작 1: 소정의 주기로 TDD 설정이 변경될 수 있으며, 기지국은 단말에게 소정의 방법, 예를 들어 소정의 제어 정보를 사용해서 단말에게 주기적으로 현 시점 혹은 가까운 미래에 적용될 TDD 설정을 알려준다. 상기 TDD 설정 정보는 종래의 TDD 설정 정보와 마찬가지로 0과 6 사이의 정수로 지시되는 소정의 역방향 서브 프레임, 순방향 서브 프레임, 특별 서브 프레임의 구성에 관한 것이다. Dynamic TDD operation 1: The TDD configuration may be changed at a predetermined cycle, and the base station informs the terminal to the TDD configuration to be periodically applied at the present time or in the near future by using a predetermined method, for example, predetermined control information. . The TDD setting information relates to the configuration of a predetermined reverse subframe, a forward subframe, and a special subframe indicated by an integer between 0 and 6, as in the conventional TDD setting information.
동적인 TDD 동작 2: 한 라디오 프레임을 구성하는 10개의 서브 프레임을 고정 서브 프레임과 변경 가능한 서브 프레임으로 구분한다. 고정 서브 프레임은 순방향 서브 프레임, 역방향 서브 프레임 혹은 특별 서브 프레임으로 고정되고, 변경 가능한 서브 프레임은 상황에 따라 순방향 서브 프레임이 될 수도 있고 역방향 서브 프레임이 될 수도 있다. 예를 들어 아래의 표 5와 같이 정의될 수 있다. Dynamic TDD operation 2: The ten subframes constituting one radio frame are divided into a fixed subframe and a changeable subframe. The fixed subframe is fixed as a forward subframe, a reverse subframe or a special subframe, and the changeable subframe may be a forward subframe or a reverse subframe depending on circumstances. For example, it may be defined as shown in Table 5 below.
표 5
순방향 고정 서브 프레임 (fixed downlink subframe) 서브 프레임 #0, #5
역방향 고정 서브 프레임 (fixed uplink subframe) 서브 프레임 #1, #6
특별 고정 서브 프레임 (fixed special subframe) 서브 프레임 #2, #7
변경 가능한 서브 프레임 (flexible subframe) 서브 프레임 #3, #4, #8, #9
Table 5
Fixed downlink subframe Subframe # 0, # 5
Fixed uplink subframe Subframe # 1, # 6
Fixed special subframe Subframe # 2, # 7
Flexible subframe Subframe # 3, # 4, # 8, # 9
본 발명의 실시 예는 동적인 TDD 동작 1과 동적인 TDD 동작 2에 모두 적용 가능하다. 그러나 구체적인 단말의 동작 측면에서는 일부 동작은 둘 중 하나의 동적인 TDD 동작에만 적용될 수도 있다. The embodiment of the present invention is applicable to both dynamic TDD operation 1 and dynamic TDD operation 2. However, some operations may be applied to only one of the dynamic TDD operations in terms of a specific UE operation.
1615 단계에서 단말은 제 2 TDD 설정 정보를 획득한다. 상기 제 2 TDD 설정 정보는 소정의 제어 메시지를 통해서 단말에게 전달된다. 상기 소정의 제어 메시지는 시스템 정보이거나 RRC 제어 메시지이거나 MAC 제어 메시지이거나 PDCCH를 통해 전달되는 것일 수도 있다. 1615 단계는 동적인 TDD 동작 1에만 적용된다.In step 1615, the UE acquires second TDD configuration information. The second TDD configuration information is transmitted to the terminal through a predetermined control message. The predetermined control message may be a system information, an RRC control message, a MAC control message, or transmitted through a PDCCH. Step 1615 applies only to dynamic TDD operation 1.
1620 단계에서 단말은 서브 프레임 n에서 유효한 역방향 그랜트를 수신한다. In step 1620, the UE receives a valid reverse grant in subframe n.
1625 단계에서 단말은 상기 유효한 역방향 그랜트가 RAR을 통해서 수신되었는지 PDCCH를 통해 수신되었는지 검사한다. RAR (Random Access Response, 이하 RAR)을 통해 수신되었다면 1630 단계로, PDCCH를 통해 수신되었다면 1645 단계로 진행한다. RAR을 통해 유효한 역방향 그랜트를 수신한다는 것은 다음과 같은 의미를 가진다. In step 1625, the UE checks whether the valid reverse grant has been received through the RAR or the PDCCH. If it is received through RAR (Random Access Response, RAR), it proceeds to step 1630, and if it is received through PDCCH, step 1645. Receiving a valid reverse grant through RAR has the following meanings.
RAR은 단말이 전송한 프리앰블에 대해서 기지국이 응답 메시지로 전송하는 것으로 헤더와 페이로드로 구성되며, 헤더에는 RAPID(Random Access Preamble ID)라는 정보가 수납되고 페이로드에는 역방향 그랜트를 비롯한 각 종 정보가 수납된다. 단말은 랜덤 액세스 프리앰블을 전송한 후 소정의 기간 동안 RAR 수신 여부를 감시하고 RAR이 수신되었을 때 RAR에 수납된 RAPID가 자신이 전송했던 프리앰블에 관한 것이라면 상기 RAR은 유효한 RAR이며 단말은 상기 RAR에 수납된 역방향 그랜트를 유효한 것으로 판단하는 것이다. The RAR is a base station transmits a response message to the preamble transmitted by the terminal and consists of a header and a payload. The header contains information called a random access preamble ID (RAPID), and the payload includes various information including a reverse grant. It is stored. After the UE transmits a random access preamble, the RAR monitors whether or not the RAR is received for a predetermined period, and when the RAR is received, if the RAPID stored in the RAR is about a preamble transmitted by the UE, the RAR is a valid RAR and the UE is stored in the RAR The reverse grant is considered valid.
PDCCH를 통해 유효한 역방향 그랜트를 수신하였다는 것은 PDCCH를 통해 단말의 식별자 (C-RNTI)로 마스크된 역방향 그랜트를 수신하였다는 것을 의미한다. Receiving a valid reverse grant through the PDCCH means receiving a reverse grant masked with an identifier (C-RNTI) of the UE through the PDCCH.
1630 단계에서 단말은 상기 RAR 전송을 유발한 프리앰블이 전용 프리앰블 (dedicate preamble)이었는지 랜덤 프리앰블 (random preamble)이었는지 검사한다. 랜덤 액세스 과정은 통상 단말이 프리앰블을 전송하고 기지국이 RAR을 전송하고 단말이 RAR의 역방향 그랜트에 따라서 역방향 전송을 수행하는 과정 (이를 메시지 3을 전송한다고 한다)으로 구성된다. 랜덤 액세스 과정을 개시함에 있어서 단말이 직접 프리앰블을 선택하거나 기지국이 특정 프리앰블을 사용할 것을 지시한다. 전자는 랜덤 프리앰블을 사용하는 것이라 하고 후자는 전용 프리앰블을 사용하는 것이라 한다. 랜덤 프리앰블을 사용하는 경우, 기지국은 메시지 3을 성공적으로 수신할 때까지는 어떤 단말이 랜덤 액세스 과정을 수행하고 있는지 알 수 없다. 반면 전용 프리앰블을 사용하는 경우, 기지국은 프리앰블을 수신하는 것만으로 단말이 누구인지 알 수 있다. 예컨대 기지국은 단말에 동적인 TDD가 설정되었는지 여부를, 랜덤 프리앰블의 경우 메시지 3을 수신한 후에, 전용 프리앰블의 경우 프리앰블을 수신했을 때 알 수 있다. 단말이 랜덤 프리앰블을 전송한 후 RAR를 수신한 것이라면, 기지국은 단말이 동적인 TDD 동작을 적용하는지 여부를 모르는 상태에서 단말에게 역방향 그랜트를 할당했다는 것을 의미하며 단말은 1635 단계로 진행한다. 전용 프리앰블을 전송한 후 RAR를 수신한 것이라면, 기지국은 단말이 동적인 TDD 동작을 적용한다는 것을 아는 상태에서 단말에게 역방향 그랜트를 할당했다는 것을 의미하며 단말은 1640 단계로 진행한다.In step 1630, the UE checks whether the preamble causing the RAR transmission was a dedicated preamble or a random preamble. The random access process generally consists of a process in which a terminal transmits a preamble, a base station transmits a RAR, and a terminal performs reverse transmission according to a reverse grant of the RAR (this is called message 3). In initiating the random access procedure, the UE directly selects a preamble or instructs the base station to use a specific preamble. The former is called using a random preamble and the latter is called using a dedicated preamble. In the case of using the random preamble, the base station cannot know which terminal is performing the random access procedure until the message 3 is successfully received. On the other hand, when the dedicated preamble is used, the base station can know who the terminal is by simply receiving the preamble. For example, the base station may know whether dynamic TDD is set in the terminal when receiving the preamble in the case of the dedicated preamble after receiving the message 3 in the case of the random preamble. If the terminal receives the RAR after transmitting the random preamble, it means that the base station has allocated a reverse grant to the terminal without knowing whether the terminal applies the dynamic TDD operation, the terminal proceeds to step 1635. If the RAR is received after transmitting the dedicated preamble, it means that the base station has allocated a reverse grant to the terminal while the terminal knows that the terminal applies the dynamic TDD operation, and the terminal proceeds to step 1640.
1635 단계에서 단말은 제 1 TDD 설정 정보에서 지시된 TDD 설정을 적용해서 역방향 전송을 수행할 서브 프레임을 결정한다. 1635 단계로 진행하였다는 것은 동적인 TDD 동작이 설정된 단말이 랜덤 프리앰블을 전송하고 이에 대한 응답 메시지를 수신하였다는 것이다. 임의의 셀에서 동적인 TDD 동작이 적용된다고 하더라도, 상기 셀에는 동적인 TDD 동작을 지원하지 않는 단말들도 존재하기 때문에, 랜덤 액세스 동작과 같이 모든 단말이 수행하고 일정 시점까지 기지국이 단말을 식별할 수 없는 경우에는, 단말에 동적인 TDD 동작이 설정되었다 하더라도, 동적인 TDD 동작에 의해서 결정되는 역방향 서브 프레임이 아니라 동적인 TDD 동작이 설정되지 않은 다른 단말들과 동일한 규칙을 적용해서 역방향 서브 프레임을 결정하는 것이 바람직하다. 따라서 1635 단계에서 단말은 제 1 TDD 설정 정보에서 지시된 TDD 설정을 적용해서 역방향 전송을 수행할 서브 프레임을 결정하는 것이다. 이는 구체적으로 아래와 같은 동작을 의미한다. 단말은 서브 프레임 n에서 수신한 역방향 그랜트에 대해서는 (n+k1)번째 서브 프레임에서 역방향 전송을 수행한다. 이 때 k1은 6보다 크거나 같은 정수로 (n+6) 이 후의 첫 번째 역방향 서브 프레임에 대응되는 값이다. 임의의 서브 프레임이 역방향 서브 프레임인지 여부는 TDD 설정에 따라서 달라질 수 있으며, 1635 단계에서 단말은 제 1 TDD 설정을 적용해서 상기 (n+6) 이 후의 첫 번째 역방향 서브 프레임이 어느 서브 프레임인지 판단하고 상기 정보를 바탕으로 역방향 전송을 수행한다. 이 때 상기 제 1 TDD 설정 정보에 따라서 (n+6) 이 후의 첫 번째 역방향 서브 프레임으로 판단된 서브 프레임이, 제 2 TDD 설정 정보에 따르면 순방향 서브 프레임이거나 변경 가능한 서브 프레임이라 하더라도 단말은 상기 서브 프레임이 역방향 서브 프레임인 것으로 판단하고 동작을 수행한다. RAR의 역방향 그랜트에는 역방향 전송 자원 정보, 역방향 전송 시 적용할 변조 방식과 코딩 레이트에 관한 정보, 전송할 데이터의 크기에 대한 정보, 그리고 역방향 전송 지연 여부를 지시하는 1 비트 정보 (이하 역방향 전송 지연 정보)가 수납된다. 상기 역방향 전송 지연 정보가 0으로 설정되어 있으면 단말은 상기 k1에 대응되는 역방향 서브 프레임에서 역방향 전송을 수행한다. 상기 역방향 전송 지연 정보가 1로 설정되어 있으면 단말은 상기 k1에 대응되는 역방향 서브 프레임이 아니라 그 이 후 첫 번째 역방향 서브 프레임에서 역방향 전송을 수행한다. 이 때 상기 k1 이 후 첫 번째 역방향 서브 프레임을 판단함에 있어서도 단말은 제 1 TDD 설정 정보에서 지시된 TDD 설정을 기준으로 한다. 상기 역방향 전송 지연은 일종의 로드 분산을 위한 것이다.In step 1635, the UE determines a subframe to perform backward transmission by applying the TDD configuration indicated by the first TDD configuration information. Proceeding to step 1635, the UE configured with the dynamic TDD operation transmits a random preamble and receives a response message. Even if a dynamic TDD operation is applied to a cell, since there are terminals that do not support the dynamic TDD operation in the cell, all terminals are performed like a random access operation and the base station can identify the terminal until a certain point. If it is not possible, even if the dynamic TDD operation is configured for the terminal, the reverse subframe is applied by applying the same rules as other terminals not configured for the dynamic TDD operation, not the reverse subframe determined by the dynamic TDD operation. It is desirable to decide. Therefore, in step 1635, the UE determines a subframe to perform reverse transmission by applying the TDD configuration indicated by the first TDD configuration information. This specifically means the following operation. The UE performs backward transmission in the (n + k1) th subframe with respect to the reverse grant received in the subframe n. K1 is an integer greater than or equal to 6, and is a value corresponding to the first reverse subframe after (n + 6). Whether an arbitrary subframe is a reverse subframe may vary according to the TDD configuration. In step 1635, the UE determines which subframe is the first reverse subframe after (n + 6) by applying the first TDD configuration. And perform reverse transmission based on the information. At this time, even if the subframe determined to be the first reverse subframe after (n + 6) according to the first TDD configuration information is a forward subframe or a changeable subframe according to the second TDD configuration information, the terminal may perform the subframe. It is determined that the frame is a reverse subframe and performs an operation. The reverse grant of the RAR includes information on uplink transmission resources, information on a modulation scheme and coding rate to be applied during uplink transmission, information on the size of data to be transmitted, and 1-bit information indicating whether there is a backward transmission delay (hereinafter, referred to as backward transmission delay information). Is housed. If the reverse transmission delay information is set to 0, the terminal performs reverse transmission in a reverse subframe corresponding to k1. If the reverse transmission delay information is set to 1, the UE performs backward transmission in the first reverse subframe after the reverse subframe corresponding to k1. At this time, also in determining the first reverse subframe after k1, the terminal is based on the TDD configuration indicated by the first TDD configuration information. The reverse transmission delay is for some kind of load balancing.
1640 단계에서 단말은 제 2 TDD 설정을 적용해서 역방향 전송을 수행할 서브 프레임을 결정한다. 1640 단계로 진행하였다는 것은 동적인 TDD 동작이 설정된 단말이 전용 프리앰블을 전송하고 이에 대한 응답 메시지를 수신하였다는 것이다. 기지국은 단말에 동적인 TDD가 설정되었다는 것을 인지한 상태에서 역방향 그랜트를 제공한 것이며 단말은 제 2 TDD 설정 정보를 적용하는 것이다. 좀 더 구체적으로 단말은 (n+k1) 서브 프레임에서 역방향 전송을 수행하며, k1은 제 2 TDD 설정 정보에서 지시된 TDD 설정을 기준으로 6보다 크거나 같으면서 첫 번째 역방향 서브 프레임에 대응되는 정수이다. 단말은 상기 RAR 역방향 그랜트의 역방향 전송 지연 정보가 0이라면 제 2 TDD 설정을 기준으로 k1을 선택하고 서브 프레임 n+k1에서 역방향 전송을 수행한다 RAR 역방향 그랜트의 역방향 전송 지연 정보가 1이라면 제 2 TDD 설정 기준으로 선택된 k1에 대응되는 서브 프레임 이 후 첫 번째 역방향 서브 프레임에서 역방향 전송을 수행한다. 이 때 상기 k1 이 후 첫 번째 역방향 서브 프레임을 판단함에 있어서 단말은 제 2 TDD 설정을 적용한다. In step 1640, the UE determines a subframe to perform reverse transmission by applying the second TDD configuration. Proceeding to step 1640, the UE configured with the dynamic TDD operation transmits a dedicated preamble and receives a response message. The base station has provided a reverse grant in the state that the dynamic TDD is configured for the terminal and the terminal applies the second TDD configuration information. More specifically, the UE performs backward transmission in a (n + k1) subframe, and k1 is an integer corresponding to the first reverse subframe that is greater than or equal to 6 based on the TDD configuration indicated by the second TDD configuration information. . If the reverse transmission delay information of the RAR reverse grant is 0, the UE selects k1 based on the second TDD setting and performs backward transmission in the subframe n + k1. The backward transmission is performed in the first reverse subframe after the subframe corresponding to k1 selected as a setting criterion. At this time, in determining the first reverse subframe after k1, the UE applies a second TDD configuration.
1645 단계로 진행하였다는 것은 동적인 TDD 동작이 설정된 단말에게 그 사실을 알고 있는 기지국이 역방향 그랜트를 할당했다는 것을 의미한다. 단말은 제 2 TDD 설정을 적용해서 역방향 전송을 수행할 서브 프레임을 결정한다. PDCCH를 통해 수신한 역방향 그랜트와 그에 대응되는 역방향 전송 사이의 시간 관계는 규격 36.213의 테이블 8-2(표 6)에 TDD 설정 별로 정의되어 있다. 따라서 서브 프레임 n에서 PDCCH 역방향 그랜트를 수신한 단말은 TDD 설정 1과 TDD 설정 2 중 TDD 설정 2를 적용해서 k를 결정하고, 상기 결정된 k에 따라서 역방향 전송을 수행할 서브 프레임을 결정한다. 아래의 표 6은 규격 36.213의 테이블 8-2를 나타낸 표이다. Proceeding to step 1645 means that the base station, which is aware of the fact, has allocated the reverse grant to the terminal having the dynamic TDD operation. The terminal determines a subframe to perform reverse transmission by applying the second TDD configuration. The time relationship between the uplink grant received through the PDCCH and the corresponding uplink transmission is defined for each TDD configuration in Table 8-2 (Table 6) of Specification 36.213. Accordingly, the terminal receiving the PDCCH reverse grant in subframe n determines k by applying TDD configuration 2 of TDD configuration 1 and TDD configuration 2 and determines a subframe to perform reverse transmission according to the determined k. Table 6 below shows Table 8-2 of Specification 36.213.
표 6
TDD UL/DLConfiguration subframe number n
0 1 2 3 4 5 6 7 8 9
0 4 6 4 6
1 6 4 6 4
2 4 4
3 4 4 4
4 4 4
5 4
6 7 7 7 7 5
Table 6
TDD UL / DLConfiguration subframe number n
0 One 2 3 4 5 6 7 8 9
0 4 6 4 6
One 6 4 6 4
2 4 4
3 4 4 4
4 4 4
5 4
6 7 7 7 7 5
예컨대, 단말이 서브 프레임 0에서 역방향 그랜트를 수신했을 때, TDD 설정이 0이라면 k는 4, TDD 설정이 6이라면 k는 7이다. For example, when the UE receives the reverse grant in subframe 0, k is 4 if the TDD configuration is 0 and k is 7 if the TDD configuration is 6.
상기 동작을 도 17에서 예를 들어 설명하였다. The above operation has been described with reference to FIG. 17.
도 16 및 도 17을 참고하면 제 1 TDD 설정은 설정 0이고 (1705), 제 2 TDD 설정은 설정 3 (1710)이다. 단말은 서브 프레임 0에서 역방향 그랜트를 수신하였다 (1715). 상기 역방향 그랜트가 RAR을 통해 수신된 것이며 단말이 랜덤 프리앰블을 사용하였다면, 단말은 제 1 TDD 설정을 적용해서 k1을 판단한다. 즉, 적어도 6 서브 프레임 이 후의 서브 프레임들 중 TDD 설정 0을 적용했을 때 첫 번째 역방향 서브 프레임이 k1에 대응되며 상기 예에서는 7이다. 역방향 전송 지연 정보가 0이라면 단말은 서브 프레임 7 (1720)에서 역방향 전송을 수행한다. 역방향 전송 지연 정보가 1로 설정되어 있다면 단말은 제 1 TDD 설정을 적용해서 k1에 의해서 지시되는 서브 프레임을 판단하고, 다시 제 1 TDD 설정을 적용해서 이 후의 첫 번째 역방향 서브 프레임(1725)를 판단한다. 그리고 상기 서브 프레임에서 역방향 전송을 수행한다. 16 and 17, the first TDD setting is set to 0 (1705) and the second TDD setting is set to 3 (1710). The terminal receives a reverse grant in subframe 0 (1715). If the reverse grant is received through the RAR and the UE uses a random preamble, the UE determines k1 by applying the first TDD configuration. That is, when the TDD setting 0 is applied among the subframes after at least 6 subframes, the first reverse subframe corresponds to k1 and is 7 in the example. If the backward transmission delay information is 0, the terminal performs backward transmission in subframe 7 (1720). If the backward transmission delay information is set to 1, the terminal determines the subframe indicated by k1 by applying the first TDD configuration, and then determines the first reverse subframe 1725 after applying the first TDD configuration. do. In the subframe, backward transmission is performed.
상기 역방향 그랜트가 RAR을 통해 수신된 것이며 단말이 전용 프리앰블을 사용하였다면 단말은 제 2 TDD 설정을 적용해서 k1을 판단한다. 즉, 적어도 6 서브 프레임 이 후의 서브 프레임 들 중 TDD 설정 3을 적용했을 때 첫 번째 역방향 서브 프레임이 k1이며 상기 예에서 12가 된다. 역방향 전송 지연 정보가 0으로 설정되어 있다면 단말은 서브 프레임 2(1730)에서 역방향 전송을 수행한다. 역방향 전송 지연 정보가 1로 설정되어 있다면 단말은 제 2 TDD 설정 정보를 이용해서 k1에 의해서 지시되는 서브 프레임을 판단하고 다시 제 2 TDD 설정을 적용해서 이 후의 첫 번째 역방향 서브 프레임(1735)를 판단한다. 그리고 상기 서브 프레임에서 역방향 전송을 수행한다.If the reverse grant is received through the RAR and the UE uses the dedicated preamble, the UE determines k1 by applying the second TDD configuration. That is, when the TDD configuration 3 is applied among at least six subframes or more, the first reverse subframe is k1 and becomes 12 in the example. If the backward transmission delay information is set to 0, the terminal performs backward transmission in subframe 2 (1730). If the backward transmission delay information is set to 1, the terminal determines the subframe indicated by k1 using the second TDD configuration information, and again applies the second TDD configuration to determine the first reverse subframe 1735 thereafter. do. In the subframe, backward transmission is performed.
*상기 역방향 그랜트가 PDCCH를 통해 수신된 것이라면 단말은 제 2 TDD 설정을 적용해서 k를 결정한다. 테이블 8-2를 참조하면, TDD 설정이 3이고 역방향 그랜트가 서브 프레임 0에서 수신된 경우 k는 4이다. 따라서 단말은 서브 프레임 4(1740)에서 역방향 전송을 수행한다. If the reverse grant is received through the PDCCH, the terminal determines k by applying a second TDD configuration. Referring to Table 8-2, k is 4 when the TDD configuration is 3 and a reverse grant is received in subframe 0. Accordingly, the terminal performs reverse transmission in subframe 4 (1740).
상기 예시는 동적인 TDD 동작 1을 사용하는 경우에 관한 것이다. 동적인 TDD 동작 2를 사용하는 경우, 단말 동작의 차이에 대해서 아래에 설명한다.The example above relates to the case of using dynamic TDD operation 1. In the case of using the dynamic TDD operation 2, the difference in the terminal operation will be described below.
1605 단계와 1610 단계는 동적인 TDD 동작 2를 사용하는 경우에도 동일하다. Steps 1605 and 1610 are also the same when using dynamic TDD operation 2.
동적인 TDD 동작 2를 사용하는 경우 1615 단계는 필요치 않다.When using dynamic TDD operation 2, step 1615 is not necessary.
1620 ~ 1635 단계 역시 동적인 TDD 동작 2를 사용하는 경우에도 동일하다. Steps 1620 through 1635 are also the same when using dynamic TDD operation 2.
1640 단계에서 단말은 역방향 그랜트를 수신한 서브 프레임에서 6 서브 프레임 이 후의 역방향 서브 프레임과 변경 가능한 서브 프레임 중 첫번째 서브 프레임에서 역방향 전송을 수행한다. 즉, k1은 6보다 크면서 첫 번째 역방향 서브 프레임과 첫 번째 변경 가능한 서브 프레임 중 먼저 발생하는 서브 프레임에 대응되는 정수이다. 도 17의 예시에서 단말은 서브 프레임 7(1720, 역방향 전송 지연정보가 0으로 설정되어 있다면) 혹은 서브 프레임 8(1725, 역방향 전송 지연 정보가 1로 설정되어 있다면)에서 역방향 전송을 수행한다. In step 1640, the UE performs backward transmission in the first subframe of the reverse subframe after the 6th subframe and the changeable subframe in the subframe in which the reverse grant is received. That is, k1 is an integer greater than 6 and corresponding to a first subframe among the first reverse subframe and the first changeable subframe. In the example of FIG. 17, the UE performs backward transmission in subframe 7 (1720, if backward transmission delay information is set to 0) or in subframe 8 (1725, if backward transmission delay information is set to 1).
1645 단계에서 단말은 역방향 그랜트를 수신한 서브 프레임에서 4 서브 프레임 이 후의 역방향 서브 프레임과 변경 가능한 서브 프레임 중 첫번째 서브 프레임에서 역방향 전송을 수행한다. 즉 k는 4보다 크면서 첫 번째 역방향 서브 프레임과 첫 번째 변경 가능한 서브 프레임 중 먼저 발생하는 서브 프레임과 대응되는 정수이다. 도 17의 예시에서 단말은 서브 프레임 4(1740)에서 역방향 전송을 수행한다.In step 1645, the UE performs backward transmission in the first subframe of the reverse subframe after the 4th subframe and the changeable subframe in the subframe in which the reverse grant is received. That is, k is an integer that is larger than 4 and corresponds to the first subframe among the first reverse subframe and the first changeable subframe. In the example of FIG. 17, the UE performs backward transmission in subframe 4 1740.
단말은 임의의 서브 프레임 n이 시작되기에 앞서 서브 프레임 n에서 어떤 동작을 수행할지를 결정한다. 상기 동작은 예를 들어 해당 서브 프레임에서 PDCCH를 감시할 것인지, 역방향 피드백을 전송할 것인지, 순방향 피드백을 수신할 것인지, PUSCH 전송을 수행할 것인지 등이다. 단말은 순방향 서브 프레임에서는 PDCCH를 감시해서 스케줄링 여부 혹은 자신에게 전송되는 데이터의 유무를 판단한다. 만약 단말에 동적 TDD 동작이 설정되어 있다면 단말은 제 1 TDD 설정과 제 2 TDD 설정을 선택적으로 적용해서 상기 어떤 동작을 수행할지 결정한다. 동적 TDD 동작이 설정되지 않은 단말은 항상 제 1 TDD 설정을 적용해서 어떤 동작을 수행할지 결정한다. The terminal determines what operation to perform in subframe n before any subframe n starts. The operation is, for example, whether to monitor the PDCCH, transmit reverse feedback, receive forward feedback, or perform PUSCH transmission in the corresponding subframe. The UE monitors the PDCCH in the forward subframe to determine whether to schedule or whether data is transmitted to the UE. If a dynamic TDD operation is configured in the terminal, the terminal determines which operation to perform by selectively applying the first TDD configuration and the second TDD configuration. The terminal for which the dynamic TDD operation is not configured always determines what operation is performed by applying the first TDD configuration.
도 18은 제 1 TDD 설정과 제 2 TDD 설정을 선택적으로 적용해서 서브 프레임 n에서 수행할 동작을 결정하는 단말 동작이다.18 is a terminal operation of determining an operation to be performed in subframe n by selectively applying a first TDD setting and a second TDD setting.
도 18을 참고하면 1805 단계에서 단말은 임의의 서브 프레임에서 순방향 서브 프레임과 관련된 동작을 수행할지 역방향 서브 프레임과 관련된 동작을 수행할지 판단하는 과정을 개시한다. Referring to FIG. 18, in step 1805, the UE determines whether to perform an operation related to a forward subframe or an operation related to a reverse subframe in an arbitrary subframe.
1810 단계에서 단말은 동적 TDD 동작 설정 여부를 판단한다. 동적 TDD 동작이 설정되지 않았다면 1815 단계로, 설정되어 있다면 1820 단계로 진행한다. In step 1810, the UE determines whether to set a dynamic TDD operation. If the dynamic TDD operation is not configured, the operation proceeds to step 1815 and, if so, the operation proceeds to step 1820.
1815 단계에서 단말은 아래와 같이 동작한다. In step 1815, the terminal operates as follows.
제 1 TDD 설정을 적용해서 해당 서브 프레임에서 PDCCH를 통해서 C-RNTI로 마스크된 스케줄링 메시지가 수신되는지 감시할지 여부를 판단. 제 1 TDD 설정을 적용했을 때 해당 서브 프레임이 순방향 서브 프레임 혹은 특별 서브 프레임이라면 단말은 상기 서브 프레임에서 PDCCH를 통해 C-RNTI로 마스크된 스케줄링 메시지가 수신되는지 여부를 감시한다.It is determined whether to monitor whether a scheduling message masked by C-RNTI is received through a PDCCH in a corresponding subframe by applying a first TDD configuration. If the corresponding subframe is a forward subframe or a special subframe when the first TDD configuration is applied, the UE monitors whether a scheduling message masked with C-RNTI is received through the PDCCH in the subframe.
제 1 TDD 설정을 적용해서 해당 서브 프레임에서 HARQ 피드백을 수신할 지 여부를 판단. PUSCH 전송과 HARQ 피드백 수신 사이의 시간 관계는 36.213에 TDD 설정 별로 정의되어 있다. 단말은 제 1 TDD 설정을 기준으로 해당 서브 프레임이 순방향 서브 프레임이라면, 단말은 제 1 TDD 설정을 기준으로 상기 서브 프레임에서 HARQ 피드백을 수신하도록 이전 소정의 역방향 서브 프레임에서 PUSCH가 전송되었는지 판단한다. Whether to receive HARQ feedback in the corresponding subframe by applying the first TDD configuration. The time relationship between PUSCH transmission and HARQ feedback reception is defined for each TDD configuration in 36.213. If the corresponding subframe is a forward subframe based on the first TDD configuration, the terminal determines whether the PUSCH has been transmitted in the previous predetermined subframe to receive HARQ feedback in the subframe based on the first TDD configuration.
제 1 TDD 설정을 적용해서 해당 서브 프레임에서 PUSCH를 전송할지 여부를 판단. 단말은 해당 서브 프레임이 역방향 서브 프레임이고, k 서브 프레임 이 전에 PDCCH를 통해 역방향 그랜트를 수신하였다면 해당 서브 프레임에서 PUSCH를 전송한다. 상기 k는 제 1 TDD 설정을 기준으로 결정된다. It is determined whether to transmit a PUSCH in a corresponding subframe by applying a first TDD configuration. If the corresponding subframe is a reverse subframe and has received a reverse grant through the PDCCH before the k subframe, the UE transmits the PUSCH in the corresponding subframe. K is determined based on the first TDD setting.
제 1 TDD 설정을 적용해서 해당 서브 프레임에서 역방향 HARQ 피드백을 전송할지 여부를 판단. 단말은 제 1 TDD 설정을 기준으로 해당 서브 프레임이 역방향 서브 프레임이고, TDD 설정 별로 정의되는 소정의 기간 이 전에 PDSCH를 수신하였다면 역방향 HARQ 피드백을 전송한다. It is determined whether to transmit reverse HARQ feedback in a corresponding subframe by applying a first TDD configuration. If the corresponding subframe is a reverse subframe based on the first TDD configuration, and the PDSCH is received before a predetermined period defined for each TDD configuration, the UE transmits reverse HARQ feedback.
제 1 TDD 설정을 적용해서 해당 서브 프레임에서 PDCCH를 통해 RA-RNTI로 마스크된 RAR 수신 여부를 감시해야 하는지 판단. 단말이 서브 프레임 x에서 프리앰블을 전송하였으며, 해당 서브 프레임이 (x+m)과 (x+m+k) 사이의 서브 프레임이며, 해당 서브 프레임이 제 1 TDD 설정을 기준으로 순방향 서브 프레임 혹은 특별 서브 프레임이라면 단말은 해당 서브 프레임에서 PDCCH를 통해 RA-RNTI로 마스크된 RAR 수신 여부를 감시한다. 상기 m과 k는 단말이 프리앰블을 전송한 후 언제부터 언제까지 RAR 수신을 시도할지를 규정하는 랜덤 액세스 응답 윈도우에 대한 파라미터이다. m은 고정된 값이고 k는 시스템 정보로 그 길이가 공지된다. 단말은 랜덤 액세스 응답 윈도우가 종료될 때까지 유효한 RAR를 수신하지 못하면, 프리앰블을 재전송하는 절차에 돌입한다. Determining whether to receive the RAR masked by the RA-RNTI through the PDCCH in the corresponding subframe by applying the first TDD configuration. The UE transmits a preamble in subframe x, and the corresponding subframe is a subframe between (x + m) and (x + m + k), and the corresponding subframe is a forward subframe or a special based on the first TDD configuration. In the subframe, the UE monitors whether the RAR masked by the RA-RNTI is received through the PDCCH in the corresponding subframe. M and k are parameters for a random access response window that defines when and when a terminal attempts to receive a RAR after transmitting a preamble. m is a fixed value and k is the length of the system information. If the terminal does not receive a valid RAR until the random access response window is terminated, the terminal enters a procedure for retransmitting the preamble.
제 1 TDD 설정을 적용해서 해당 서브 프레임에서 RAR 역방향 그랜트에 대한 PUSCH를 전송할지 여부를 판단. 해당 서브 프레임이 역방향 서브 프레임이고, k1 서브 프레임 이전에 RAR을 통해 역방향 그랜트를 수신하였다면 단말은 해당 서브 프레임에서 PUSCH를 전송한다. 상기 k1은 제 1 TDD 설정을 기준으로 결정된다. Whether to transmit the PUSCH for the RAR reverse grant in the corresponding subframe by applying the first TDD configuration. If the corresponding subframe is the reverse subframe and the backward grant is received through the RAR before the k1 subframe, the UE transmits the PUSCH in the corresponding subframe. K1 is determined based on the first TDD setting.
1820 단계에서 단말은 아래와 같이 동작한다. 요약하자면, 단말은 메시지 3 전송과 RAR 수신을 위해서는 제 1 TDD 설정을 적용하되 나머지 경우에는 제 2 TDD 설정을 적용한다. In step 1820, the terminal operates as follows. In summary, the UE applies the first TDD configuration for message 3 transmission and the RAR reception, but applies the second TDD configuration in the other cases.
제 2 TDD 설정을 적용해서 해당 서브 프레임에서 PDCCH를 통해서 C-RNTI로 마스크된 스케줄링 메시지가 수신되는지 감시할지 여부를 판단. 제 2 TDD 설정을 적용했을 때 해당 서브 프레임이 순방향 서브 프레임 혹은 특별 서브 프레임이라면 단말은 상기 서브 프레임에서 PDCCH를 통해 C-RNTI로 마스크된 스케줄링 메시지가 수신되는지 여부를 감시한다.It is determined whether to monitor whether a scheduling message masked with a C-RNTI is received through a PDCCH in a corresponding subframe by applying a second TDD configuration. When the second TDD configuration is applied, if the corresponding subframe is a forward subframe or a special subframe, the UE monitors whether a scheduling message masked with C-RNTI is received through the PDCCH in the subframe.
제 2 TDD 설정을 적용해서 해당 서브 프레임에서 HARQ 피드백을 수신할 지 여부를 판단. PUSCH 전송과 HARQ 피드백 수신 사이의 시간 관계는 36.213에 TDD 설정 별로 정의되어 있다. 단말은 제 2 TDD 설정을 기준으로 해당 서브 프레임이 순방향 서브 프레임이라면, 단말은 제 2 TDD 설정을 기준으로 상기 서브 프레임에서 HARQ 피드백을 수신하여야 하는지 판단한다. Whether to receive HARQ feedback in a corresponding subframe by applying a second TDD configuration. The time relationship between PUSCH transmission and HARQ feedback reception is defined for each TDD configuration in 36.213. If the corresponding subframe is a forward subframe based on the second TDD configuration, the terminal determines whether to receive HARQ feedback in the subframe based on the second TDD configuration.
제 2 TDD 설정을 적용해서 해당 서브 프레임에서 PUSCH를 전송할지 여부를 판단. 단말은 해당 서브 프레임이 역방향 서브 프레임이고, k 서브 프레임 이 전에 PDCCH를 통해 역방향 그랜트를 수신하였다면 해당 서브 프레임에서 PUSCH를 전송한다. 상기 k는 제 2 TDD 설정을 기준으로 결정된다. Whether to transmit the PUSCH in the corresponding subframe by applying the second TDD configuration. If the corresponding subframe is a reverse subframe and has received a reverse grant through the PDCCH before the k subframe, the UE transmits the PUSCH in the corresponding subframe. K is determined based on the second TDD setting.
제 2 TDD 설정을 적용해서 해당 서브 프레임에서 역방향 HARQ 피드백을 전송할지 여부를 판단. 단말은 제 2 TDD 설정을 기준으로 해당 서브 프레임이 역방향 서브 프레임이고, TDD 설정 별로 정의되는 소정의 기간 이 전에 PDSCH를 수신하였다면 역방향 HARQ 피드백을 전송한다. Whether to transmit reverse HARQ feedback in a corresponding subframe by applying a second TDD configuration. If the corresponding subframe is a reverse subframe based on the second TDD configuration, and the PDSCH is received before a predetermined period defined for each TDD configuration, the UE transmits reverse HARQ feedback.
제 1 TDD 설정을 적용해서 해당 서브 프레임에서 PDCCH를 통해 RA-RNTI로 마스크된 RAR 수신 여부를 감시해야 하는지 판단. 단말이 서브 프레임 x에서 프리앰블을 전송하였으며, 해당 서브 프레임이 (x+n+m)과 (x+m+k) 사이의 서브 프레임이며, 해당 서브 프레임이 제 1 TDD 설정을 기준으로 순방향 서브 프레임 혹은 특별 서브 프레임이라면 단말은 해당 서브 프레임에서 PDCCH를 통해 RA-RNTI로 마스크된 RAR 수신 여부를 감시한다. 상기 m과 k는 단말이 프리앰블을 전송한 후 언제부터 언제까지 RAR 수신을 시도할지를 규정하는 랜덤 액세스 응답 윈도우에 대한 파라미터이다. m은 고정된 값이 사용되고 k는 시스템 정보로 그 길이가 공지된다. 단말은 랜덤 액세스 응답 윈도우가 종료될 때까지 유효한 RAR를 수신하지 못하면, 프리앰블을 재전송하는 절차에 돌입한다. Determining whether to receive the RAR masked by the RA-RNTI through the PDCCH in the corresponding subframe by applying the first TDD configuration. The UE transmits a preamble in subframe x, and the corresponding subframe is a subframe between (x + n + m) and (x + m + k), and the corresponding subframe is a forward subframe based on the first TDD configuration. Alternatively, in the case of a special subframe, the UE monitors whether the RAR masked by the RA-RNTI is received through the PDCCH in the corresponding subframe. M and k are parameters for a random access response window that defines when and when a terminal attempts to receive a RAR after transmitting a preamble. m is a fixed value and k is the length of the system information. If the terminal does not receive a valid RAR until the random access response window is terminated, the terminal enters a procedure for retransmitting the preamble.
제 1 TDD 설정을 적용해서 해당 서브 프레임에서 RAR 역방향 그랜트에 대한 PUSCH를 전송할지 여부를 판단. 해당 서브 프레임이 역방향 서브 프레임이고, k1 서브 프레임 이전에 RAR을 통해 역방향 그랜트를 수신하였다면 단말은 해당 서브 프레임에서 PUSCH를 전송한다. 상기 k1은 제 1 TDD 설정을 기준으로 결정된다. Whether to transmit the PUSCH for the RAR reverse grant in the corresponding subframe by applying the first TDD configuration. If the corresponding subframe is the reverse subframe and the backward grant is received through the RAR before the k1 subframe, the UE transmits the PUSCH in the corresponding subframe. K1 is determined based on the first TDD setting.
아래에 또 다른 단말 동작을 설명한다.Another operation of the terminal will be described below.
랜덤 액세스 과정은 단말이 프리앰블을 전송하고, 기지국이 랜덤 액세스 응답을 전송하고, 단말이 역방향 데이터를 전송하는 과정으로 구성된다. 이 때 단말은 역방향 데이터를 전송한 후 이에 대한 HARQ 피드백을 수신한다. 만약 단말에게 동적인 TDD 동작이 설정되어 있다면, 단말은 상기 HARQ 피드백을 수신하는 시점을 결정함에 있어서 제 1 TDD 설정이나 제 2 TDD 설정을 선택적으로 적용하여야 한다. The random access process includes a process in which a terminal transmits a preamble, a base station transmits a random access response, and a terminal transmits reverse data. In this case, the terminal transmits reverse data and then receives HARQ feedback thereto. If a dynamic TDD operation is configured for the terminal, the terminal should selectively apply the first TDD configuration or the second TDD configuration in determining a time point for receiving the HARQ feedback.
도 19에 관련 단말 동작을 도시하였다. 19 illustrates a related terminal operation.
도 19를 참조하면 1905 단계에서 단말은 제 1 TDD 설정 정보를 획득한다. 전술한 바와 같이 단말은 소정의 시스템 정보를 수신하고 상기 시스템 정보의 레거시 필드에 수납된 제 1 TDD 설정 정보를 인지한다. 상기 제 1 TDD 설정 정보는 자주 변경되지 않는 속성을 가지며, 변경되는 경우 시스템 정보 변경 절차가 적용된다. 1910 단계에서 단말에게 동적인 TDD 동작이 설정된다. 동적인 TDD 동작이 설정된다는 것은 동적인 TDD 동작을 시작할 것을 지시하는 제어 정보가 수납된 제어 메시지를 단말이 수신하는 것을 의미한다. 동적인 TDD 동작이란, 단말의 로드 상황에 따라서 단말의 TDD 설정을 동적으로 변화시키는 동작을 의미한다. Referring to FIG. 19, in step 1905, the UE acquires first TDD configuration information. As described above, the terminal receives predetermined system information and recognizes first TDD configuration information stored in the legacy field of the system information. The first TDD configuration information has an attribute that is not frequently changed, and when changed, a system information changing procedure is applied. In step 1910, a dynamic TDD operation is set for the UE. The setting of the dynamic TDD operation means that the terminal receives a control message containing control information indicating to start the dynamic TDD operation. The dynamic TDD operation means an operation of dynamically changing the TDD configuration of the terminal according to the load situation of the terminal.
1915 단계에서 단말은 제 2 TDD 설정 정보를 획득한다. 상기 제 2 TDD 설정 정보는 소정의 제어 메시지를 통해서 단말에게 전달된다. 상기 소정의 제어 메시지는 시스템 정보이거나 RRC 제어 메시지이거나 MAC 제어 메시지이거나 PDCCH를 통해 전달되는 것일 수도 있다. 1915 단계는 동적인 TDD 동작 1에만 적용된다.In step 1915, the UE acquires second TDD configuration information. The second TDD configuration information is transmitted to the terminal through a predetermined control message. The predetermined control message may be a system information, an RRC control message, a MAC control message, or transmitted through a PDCCH. Step 1915 applies only to dynamic TDD operation 1.
1920 단계에서 단말은 임의의 서브 프레임 i에서 순방향 HARQ 피드백을 수신한다. 상기 순방향 HARQ 피드백은 PHICH (Physical Harq Indicator Channel)을 통해서 송수신되므로, 순방향 HARQ 피드백을 수신한다는 것은 PHICH를 수신한다는 것과 동일한 의미를 가진다. 단말은 상기 PHICH가 어느 역방향 서브 프레임에서 전송된 PUSCH에 대한 HARQ ACK/NACK 정보인지를 판단하기 위해서 1925 단계로 진행한다. In step 1920, the UE receives the forward HARQ feedback in any subframe i. Since the forward HARQ feedback is transmitted and received through PHICH (Physical Harq Indicator Channel), receiving the forward HARQ feedback has the same meaning as receiving the PHICH. The UE proceeds to step 1925 to determine whether the PHICH is HARQ ACK / NACK information for the PUSCH transmitted in which reverse subframe.
1925 단계에서 단말은 상기 수신한 PHICH에 대응되는 PUSCH 전송을 유발한 역방향 그랜트가 RAR를 통해 전달된 것인지 PDCCH를 통해 전달된 것인지 검사한다. RAR을 통해 전달된 것이라면 1930 단계로, PDCCH를 통해 전달된 것이라면 1940 단계로 진행한다. 1930 단계에서 단말은 상기 RAR 전송을 유발한 프리앰블이 (혹은 RAR에 수납된 RAPID에 대응되는 프리앰블이) 전용 프리앰블 (dedicate preamble)이었는지 랜덤 프리앰블 (random preamble)이었는지 검사한다. 단말이 랜덤 프리앰블을 전송한 후 RAR를 수신한 것이라면, 기지국은 단말이 동적인 TDD 동작을 적용하는지 여부를 모르는 상태에서 단말에게 역방향 그랜트를 전송했다는 것을 의미하며 단말은 1935 단계로 진행한다. 전용 프리앰블을 전송한 후 RAR를 수신한 것이라면, 기지국은 단말이 동적인 TDD 동작을 적용한다는 것을 아는 상태에서 단말에게 역방향 그랜트를 전송했다는 것을 의미하며 단말은 1940 단계로 진행한다.In step 1925, the UE checks whether the uplink grant causing the PUSCH transmission corresponding to the received PHICH is transmitted through RAR or PDCCH. If it is delivered through the RAR, the process proceeds to step 1930, and if it is delivered through the PDCCH, it proceeds to step 1940. In step 1930, the UE checks whether the preamble causing the RAR transmission (or a preamble corresponding to the RAPID stored in the RAR) was a dedicated preamble or a random preamble. If the terminal receives the RAR after transmitting the random preamble, it means that the base station has transmitted a reverse grant to the terminal without knowing whether the terminal applies the dynamic TDD operation, the terminal proceeds to step 1935. If the RAR is received after transmitting the dedicated preamble, it means that the base station has transmitted a reverse grant to the terminal while the terminal knows that the terminal applies the dynamic TDD operation, and the terminal proceeds to step 1940.
1935 단계에서 단말은 제 1 TDD 설정 정보에서 지시된 TDD 설정을 적용해서 PHICH가 어느 역방향 서브 프레임에서 전송된 PUSCH에 관한 것인지 판단한다. 요컨대 PHICH는 서브프레임 (i-k)에서 전송된 PUSCH에 대한 것이며, 상기 k는 제 1 TDD 설정 정보에서 지시된 TDD 설정을 기준으로 판단한다. TDD 설정과 k의 관계는 규격 36.213의 표 7에 나타낸 테이블 8.3-1에 정의되어 있다. 예컨대 단말이 서브 프레임 0에서 PHICH를 수신하고 해당 시점의 TDD 설정이 설정 0이라면, k는 7이고 PHICH는 (i-7)에서 전송된 PUSCH에 대한 HARQ 피드백이다.In step 1935, the UE applies the TDD configuration indicated in the first TDD configuration information to determine in which uplink subframe the PHICH is transmitted. In short, PHICH is for a PUSCH transmitted in a subframe (i-k), and k is determined based on the TDD configuration indicated in the first TDD configuration information. The relationship between the TDD setting and k is defined in Table 8.3-1 shown in Table 7 of Specification 36.213. For example, if the UE receives the PHICH in subframe 0 and the TDD configuration at that time is set to 0, k is 7 and the PHICH is HARQ feedback for the PUSCH transmitted in (i-7).
아래의 표 7은 규격 36.213의 테이블 8. 3-1을 나타낸 표이다. 상기의 테이블은 TDD 설정 0-6에서 k값을 나타낼 수 있다.Table 7 below shows Table 8. 3-1 of Specification 36.213. The above table may indicate a k value in TDD settings 0-6.
표 7
TDD UL/DLConfiguration subframe number i
0 1 2 3 4 5 6 7 8 9
0 7 4 7 4
1 4 6 4 6
2 6 6
3 6 6 6
4 6 6
5 6
6 6 4 7 4 6
TABLE 7
TDD UL / DLConfiguration subframe number i
0 One 2 3 4 5 6 7 8 9
0 7 4 7 4
One 4 6 4 6
2 6 6
3 6 6 6
4 6 6
5 6
6 6 4 7 4 6
1940 단계에서 단말은 제 2 TDD 설정 정보에서 지시된 TDD 설정을 적용해서 PHICH가 어느 역방향 서브 프레임에서 전송된 PUSCH에 관한 것인지 판단한다. 요컨대 PHICH는 서브프레임 (i-k)에서 전송된 PUSCH에 대한 것이며, 상기 k는 제 2 TDD 설정 정보에서 지시된 TDD 설정을 기준으로 판단한다. TDD 설정과 k의 관계는 규격 36.213의 테이블 8.3-1에 정의되어 있다.In step 1940, the UE determines whether the PHICH relates to the PUSCH transmitted in which subframe by applying the TDD configuration indicated by the second TDD configuration information. In short, PHICH is for a PUSCH transmitted in a subframe (i-k), and k is determined based on the TDD configuration indicated in the second TDD configuration information. The relationship between the TDD setting and k is defined in Table 8.3-1 of Specification 36.213.
도 20에 상기 동작과 관련된 단말의 또 다른 동작을 도시하였다. 20 illustrates another operation of the terminal associated with the operation.
도 19 및 도 20을 참조하면, 도 20에 도시된 동작과 도 19에 도시된 동작은 본질적으로 동일한 결과로 이어지고 동일한 효과를 제공한다.19 and 20, the operation shown in FIG. 20 and the operation shown in FIG. 19 lead to essentially the same result and provide the same effect.
2005 ~ 2015는 1905 ~ 1915와 동일하다. 2005 ~ 2015 is the same as 1905 ~ 1915.
2020 단계에서 단말은 서브 프레임 n에서 PUSCH전송을 수행한다. 단말은 상기 PUSCH 전송에 대한 피드백을 수신할 서브 프레임을 결정하기 위해서 2025 단계로 진행한다. In step 2020, the UE performs PUSCH transmission in subframe n. The UE proceeds to step 2025 to determine a subframe to receive the feedback for the PUSCH transmission.
2025 단계에서 단말은 상기 PUSCH 전송을 유발한 역방향 그랜트가 RAR를 통해 전달된 것인지 PDCCH를 통해 전달된 것인지 검사한다. RAR을 통해 수신된 것이라면 2030 단계로, PDCCH를 통해 수신되었다면 2040 단계로 진행한다. In step 2025, the UE checks whether the uplink grant causing the PUSCH transmission is transmitted through RAR or PDCCH. If it is received through the RAR, the process proceeds to step 2030, and if it is received through the PDCCH, the process proceeds to step 2040.
2030 단계에서 단말은 상기 RAR과 관련된 프리앰블이 전용 프리앰블 (dedicate preamble)이었는지 랜덤 프리앰블 (random preamble)이었는지 검사한다. 단말이 랜덤 프리앰블을 전송한 후 RAR를 수신한 것이라면, 기지국은 단말이 동적인 TDD 동작을 적용하는지 여부를 모르는 상태에서 단말에게 역방향 그랜트를 전송했다는 것을 의미하며 단말은 2035 단계로 진행한다. 전용 프리앰블을 전송한 후 RAR를 수신한 것이라면, 기지국은 단말이 동적인 TDD 동작을 적용한다는 것을 아는 상태에서 단말에게 역방향 그랜트를 전송했다는 것을 의미하며 단말은 2040 단계로 진행한다.In step 2030, the UE checks whether the preamble associated with the RAR is a dedicated preamble or a random preamble. If the terminal receives the RAR after transmitting the random preamble, it means that the base station has transmitted a reverse grant to the terminal without knowing whether the terminal applies the dynamic TDD operation, the terminal proceeds to step 2035. If the RAR is received after transmitting the dedicated preamble, it means that the base station has transmitted a reverse grant to the terminal while the terminal knows that the terminal applies the dynamic TDD operation, and the terminal proceeds to step 2040.
2035 단계에서 단말은 제 1 TDD 설정을 적용해서 어느 서브 프레임에서 PHICH를 수신할지 판단한다. 요컨대 단말은 서브 프레임 (n+k)에서 PHICH를 수신한다. 상기 k는 제 1 TDD 설정 정보에서 지시된 TDD 설정을 기준으로 판단한다. TDD 설정과 k의 관계는 규격 36.213의 테이블 8.3-1에서 판단할 수 있다. 예컨대 단말이 서브 프레임 2에서 PUSCH를 전송하였으며 TDD 설정 1이라면, PHICH는 서브 프레임 6에서 수신한다.In step 2035, the UE determines which subframe to receive the PHICH by applying the first TDD configuration. In short, the terminal receives the PHICH in the subframe (n + k). K is determined based on the TDD configuration indicated by the first TDD configuration information. The relationship between the TDD setting and k can be determined from Table 8.3-1 of Specification 36.213. For example, if the UE transmits the PUSCH in subframe 2 and the TDD configuration 1, the PHICH is received in subframe 6.
2040 단계에서 단말은 제 2 TDD 설정을 적용해서 어느 서브 프레임에서 PHICH를 수신할지 판단한다. 요컨대 단말은 서브 프레임 (n+k)에서 PHICH를 수신한다. In step 2040, the UE determines which subframe to receive the PHICH by applying the second TDD configuration. In short, the terminal receives the PHICH in the subframe (n + k).
도 21에 상기 동작을 예를 들어 설명한다. The above operation will be described by way of example in FIG.
도 21을 참조하면, 제 1 TDD 설정은 설정 0이고 (2105), 제 2 TDD 설정은 설정 3 (2110)이다. 단말은 서브 프레임 3에서 PUSCH를 전송하였다(2115). 상기 PUSCH 전송과 관련된 역방향 그랜트가 RAR을 통해 수신된 것이며, 단말이 랜덤 프리앰블을 사용하였다면, 단말은 제 1 TDD 설정을 적용해서 k를 판단한다. 테이블 8.3-1을 참조하면, 서브프레임 3에서 PUSCH를 전송하였으며 TDD 설정이 0일 때 서브 프레임 0의 k가 7, 서브 프레임 0과 서브 프레임 3 사이의 거리가 7로 서로 매치되므로, k는 7을 선택하고 단말은 서브 프레임 0 (2120)에서 PHICH를 수신한다. 상기 역방향 그랜트가 RAR을 통해 수신된 것이며 단말이 전용 프리앰블을 사용하였거나, 상기 역방향 그랜트가 PDCCH를 통해 수신된 것이라면 단말은 제 2 TDD 설정 정보를 이용해서 k를 판단한다. 테이블 8.3-1을 참조하면, 서브 프레임 3에서 PUSCH를 전송하였으며 TDD 설정이 3일 때 서브 프레임 9의 k는 6이고 서브 프레임 9와 서브 프레임 3의 거리 역시 6 서브 프레임으로 서로 일치하므로 단말은 k를 6으로 선택하고 서브 프레임 9 (2125)에서 PHICH를 수신한다. Referring to FIG. 21, a first TDD setting is setting 0 (2105) and a second TDD setting is setting 3 (2110). The UE transmits the PUSCH in subframe 3 (2115). If the reverse grant associated with the PUSCH transmission is received through the RAR, and the UE uses the random preamble, the UE determines k by applying the first TDD configuration. Referring to Table 8.3-1, when the PUSCH is transmitted in subframe 3 and the TDD configuration is 0, k of subframe 0 matches 7, and the distance between subframe 0 and subframe 3 matches 7, so k is 7 And the UE receives the PHICH in subframe 0 2120. If the reverse grant is received through the RAR and the UE uses a dedicated preamble or the reverse grant is received through the PDCCH, the UE determines k using the second TDD configuration information. Referring to Table 8.3-1, when the PUSCH is transmitted in subframe 3 and the TDD configuration is 3, k of subframe 9 is 6 and the distance between subframe 9 and subframe 3 is also equal to 6 subframes. Is selected as 6 and a PHICH is received in subframe 9 2125.
상기 예시는 동적인 TDD 동작 1을 사용하는 경우에 관한 것이다. 동적인 TDD 동작 2를 사용하는 경우, 단말 동작의 차이에 대해서 아래에 설명한다. The example above relates to the case of using dynamic TDD operation 1. In the case of using the dynamic TDD operation 2, the difference in the terminal operation will be described below.
2005 ~ 2010 단계 및 2020 ~ 2035 단계에 대해서는 동적인 TDD 동작 1를 적용하는 경우의 단말 동작과 동적인 TDD 동작 2를 적용한 단말 동작이 동일하다. 동적인 TDD 동작 2를 사용한다면 2015 동작은 필요치 않다. For steps 2005 to 2010 and steps 2020 to 2035, a terminal operation when the dynamic TDD operation 1 is applied and a terminal operation to which the dynamic TDD operation 2 is applied are the same. If you use dynamic TDD operation 2, 2015 operation is not necessary.
2040 단계에서 단말은 PHICH를 수신할 서브 프레임을 아래 기준에 맞춰서 결정한다.In step 2040, the UE determines a subframe to receive the PHICH based on the following criteria.
[기준] [standard]
PUSCH를 전송한 서브 프레임보다 적어도 4 서브 프레임 이 후의 순방향 고정 서브 프레임, 특별 고정 서브 프레임 그리고 변경 가능한 서브 프레임 중 가장 먼저 나타나는 서브 프레임. The first subframe of the forward fixed subframe, the special fixed subframe, and the changeable subframe after at least 4 subframes after the PUSCH is transmitted.
도 21의 예시에서 단말은 서브 프레임 3에서 PUSCH를 전송하면, 상기 조건을 충족하는 서브 프레임 8 (2130)에서 PHICH를 수신한다.In the example of FIG. 21, when a UE transmits a PUSCH in subframe 3, the UE receives a PHICH in subframe 8 2130 that satisfies the condition.
동적인 TDD 동작이 설정된 단말이 제 2 TDD 설정을 일시적으로 인지하지 못하는 경우가 발생할 수도 있다. 예를 들어 제 2 TDD 설정이 전송되는 서브 프레임에 단말이 불연속 수신 동작을 수행 중이거나, 다른 주파수에 대한 측정을 수행하기 위해서 상기 서브 프레임에서 순방향 신호를 수신하지 않은 경우 등을 들 수 있다. A terminal in which a dynamic TDD operation is configured may not temporarily recognize the second TDD configuration. For example, the UE may perform a discontinuous reception operation in a subframe in which the second TDD configuration is transmitted, or a forward signal may not be received in the subframe in order to perform measurement on another frequency.
도 22에 상기 제 2 TDD 설정을 일시적으로 인지하지 못한 단말이 역방향 그랜트를 수신했을 때 취하는 동작을 도시하였다. FIG. 22 illustrates an operation performed when a terminal that has not temporarily recognized the second TDD setting receives a reverse grant.
도 22를 참조하면 2205 단계와 2210 단계는1605 단계 및 1610 단계와 동일하다. Referring to FIG. 22, steps 2205 and 2210 are the same as steps 1605 and 1610.
2215 단계에서 역방향 그랜트를 수신한다. 편의상 상기 역방향 서브 프레임이 수신된 서브 프레임을 서브 프레임 n이라 한다. In step 2215, the reverse grant is received. For convenience, a subframe in which the reverse subframe is received is called a subframe n.
2220 단계에서 단말은 해당 시점에 적용해야 할 제 2 TDD 설정 정보를 가지고 있는지 검사한다. 전술한 바와 같이 제 2 TDD 설정 정보는 일정한 주기를 가지고 전송된다. 예컨대 임의의 (m-1) 번째 시구간의 소정의 서브 프레임에서 m 번째 시구간에 적용할 제 2 TDD 설정 정보가 전송되며, 단말은 m 번째 시구간의 임의의 서브 프레임에서 역방향 그랜트를 수신했을 때 m 번째 시구간에 적용할 제 2 TDD 설정 정보를 가지고 있는지 검사하는 것이다. 만약 가지고 있다면 단말은 2225 단계로 진행한다. 가지고 있지 않다면 2230 단계로 진행한다. In step 2220, the UE checks whether it has the second TDD configuration information to be applied at that time. As described above, the second TDD configuration information is transmitted with a certain period. For example, the second TDD configuration information to be applied to the m th time period is transmitted in a predetermined subframe of an arbitrary (m-1) th time period, and when the terminal receives the reverse grant in any subframe of the m th time period, the m th time is transmitted. It is to check whether there is the second TDD configuration information to be applied to the time period. If yes, the terminal proceeds to step 2225. If no, go to Step 2230.
2225 단계에서 단말은 역방향 그랜트가 RAR을 통해 수신되었는지 PDCCH를 통해 수신되었는지를 고려해서 제 1 TDD 설정 혹은 제 2 TDD 설정을 적용해서 PUSCH 전송을 수행할 서브 프레임을 판단한다. In step 2225, the UE determines a subframe to perform PUSCH transmission by applying the first TDD configuration or the second TDD configuration in consideration of whether the reverse grant is received through the RAR or the PDCCH.
2230 단계에서 단말은 역방향 그랜트가 RAR을 통해 수신되었는지 PDCCH를 통해 수신되었는지 검사한다. PDCCH를 통해 수신되었다면 2240 단계로, RAR을 통해 수신되었다면 2235 단계로 진행한다. In step 2230, the UE checks whether the reverse grant is received through the RAR or the PDCCH. If it is received through the PDCCH, the process proceeds to step 2240, and if it is received through the RAR, it proceeds to step 2235.
2240 단계로 진행하였다는 것은 단말이 제 2 TDD 설정을 적용해서 k를 판단하여야 함에도 불구하고 k를 판단하지 못한다는 것을 의미한다. 따라서 단말은 역방향 그랜트가 최초 전송을 지시하더라도 최초 전송을 수행하지 않고 재전송을 지시하더라도 재전송을 수행하지 않는다. 그렇지만 전송 회수를 기록하는 CURRENT_NB_TX나 다음 전송에 사용할 리던던시 버전 (Redundancy Version)과 관련된 CURRENT_IRV는 정상적으로 증가시킨다. Proceeding to step 2240 means that the terminal cannot determine k even though the terminal should determine k by applying the second TDD configuration. Accordingly, the terminal does not perform retransmission even if the reverse grant instructs the first transmission but does not perform the initial transmission. However, CURRENT_NB_TX, which records the number of transfers, or CURRENT_IRV associated with the redundancy version to be used for the next transfer, normally increases.
2235 단계에서 단말은 RAR 수신을 유발한 프리앰블이 전용 프리앰블이었는지 랜던 프리앰블이었는지 검사한다. 랜덤 프리앰블이었다면 2245 단계로 전용 프리앰블이었다면 2250 단계로 진행한다. In step 2235, the UE checks whether the preamble causing the RAR reception was a dedicated preamble or a random preamble. If it is a random preamble, the process proceeds to step 2245.
2245 단계로 진행하였다는 것은 랜덤 프리앰블을 이용한 랜덤 액세스 과정에서 RAR의 역방향 그랜트에 대한 역방향 전송을 수행해야 한다는 것을 의미한다. 단말은 제 2 TDD 설정을 모르더라도 제 1 TDD 설정을 적용해서 k1을 판단하고 서브 프레임 (n+k1)에서 (역방향 지연이 0으로 설정되었다면) 혹은 서브 프레임 (n+k1) 이 후의 첫 번째 역방향 서브 프레임에서(역방향 지연이 1로 설정되었다면) 할당된 역방향 전송 자원을 이용해서 PUSCH를 전송한다. Proceeding to step 2245 means that the uplink transmission of the uplink grant of the RAR must be performed in the random access process using the random preamble. Although the UE does not know the second TDD configuration, the terminal determines the k1 by applying the first TDD configuration and in the subframe (n + k1) (if the reverse delay is set to 0) or the first backward after the subframe (n + k1). In the subframe (if the reverse delay is set to 1), the PUSCH is transmitted using the allocated uplink transmission resource.
2250 단계로 진행하였다는 것은 전용 프리앰블을 이용한 랜덤 액세스 과정에서 RAR의 역방향 그랜트에 대한 역방향 전송을 수행해야 한다는 것을 의미한다. 따라서 단말은 제 2 TDD 설정을 적용해서 k1을 판단해야 하지만, 단말이 해당 시구간에서 적용해야 할 제 2 TDD 설정을 모르기 때문에 k1을 판단할 수 없다. 단말은 상기 역방향 그랜트를 무시하고, 즉 역방향 그랜트에서 할당된 역방향 전송 자원을 이용한 PUSCH 전송을 수행하지 않고, 프리앰블 재전송 절차를 개시한다. 즉 소정의 조건을 만족시키는 역방향 서브 프레임에서 프리앰블을 재전송한다. 상기 소정의 조건이란 제 1 TDD 설정을 적용했을 때 적어도 4 서브 프레임 이 후에 존재하는, 프리앰블 전송 자원이 설정된 역방향 서브 프레임이다. Proceeding to step 2250 means that the uplink transmission of the uplink grant of the RAR must be performed in the random access process using the dedicated preamble. Therefore, the terminal should determine k1 by applying the second TDD configuration, but cannot determine k1 because the terminal does not know the second TDD configuration to be applied in the corresponding time period. The UE ignores the reverse grant, that is, does not perform the PUSCH transmission using the uplink transmission resources allocated in the reverse grant, and initiates a preamble retransmission procedure. That is, the preamble is retransmitted in the reverse subframe satisfying the predetermined condition. The predetermined condition is a reverse subframe in which a preamble transmission resource is present, which exists after at least 4 subframes when the first TDD configuration is applied.
도 23에 상기 제 2 TDD 설정을 일시적으로 인지하지 못한 단말의 PHICH 수신과 관련된 동작을 도시하였다. FIG. 23 illustrates an operation related to PHICH reception of a UE that does not temporarily recognize the second TDD setting.
도 23을 참조하면, 2305 단계와 2310 단계는 1605 단계 및 1610 단계와 동일하다. Referring to FIG. 23, steps 2305 and 2310 are the same as steps 1605 and 1610.
2315 단계에서 단말은 PUSCH 전송을 수행한다. 편의상 상기 PUSCH 전송이 수행된 서브 프레임을서브 프레임 n이라고 한다. In step 2315, the UE performs PUSCH transmission. For convenience, the subframe in which the PUSCH transmission is performed is called a subframe n.
2320 단계에서 단말은 해당 시점에 적용해야 할 제 2 TDD 설정 정보를 가지고 있는지 검사한다. 전술한 바와 같이 제 2 TDD 설정 정보는 일정한 주기를 가지고 전송된다. 예컨대 임의의 (m-1) 번째 시구간의 소정의 서브 프레임에서 m 번째 시구간에 적용할 제 2 TDD 설정 정보가 전송되며, 단말은 m 번째 시구간의 임의의 서브 프레임에서 역방향 그랜트를 수신했을 때 m 번째 시구간에 적용할 제 2 TDD 설정 정보를 가지고 있는지 검사하는 것이다. 만약 가지고 있다면 단말은 2325 단계로 진행한다. 가지고 있지 않다면 2330 단계로 진행한다. In step 2320, the UE checks whether it has the second TDD configuration information to be applied at that time. As described above, the second TDD configuration information is transmitted with a certain period. For example, the second TDD configuration information to be applied to the m th time period is transmitted in a predetermined subframe of an arbitrary (m-1) th time period, and when the terminal receives the reverse grant in any subframe of the m th time period, the m th time is transmitted. It is to check whether there is the second TDD configuration information to be applied to the time period. If yes, the terminal proceeds to step 2325. If no, go to Step 2330.
2325 단계에서 단말은 PUSCH 전송을 유발한 역방향 그랜트가 RAR을 통해 수신되었는지 PDCCH를 통해 수신되었는지를 고려해서 제 1 TDD 설정 혹은 제 2 TDD 설정을 적용해서 PHICH를 수신할 서브 프레임을 판단한다. In step 2325, the UE determines the subframe to receive the PHICH by applying the first TDD configuration or the second TDD configuration in consideration of whether the reverse grant causing the PUSCH transmission is received through the RAR or the PDCCH.
2330 단계에서 단말은 PUSCH 전송을 유발한 역방향 그랜트가 RAR을 통해 수신되었는지 PDCCH를 통해 수신되었는지 검사한다. PDCCH를 통해 수신되었다면 2340 단계로, RAR을 통해 수신되었다면 2335 단계로 진행한다. In step 2330, the UE checks whether a reverse grant that causes PUSCH transmission is received through RAR or PDCCH. If it is received through the PDCCH, the process proceeds to step 2340, and if it is received through the RAR, proceeds to step 2335.
2340 단계로 진행하였다는 것은 단말이 제 2 TDD 설정을 적용해서 PHICH를 수신할 서브 프레임을 판단하여야 하지만 제 2 TDD 설정을 모르기 때문에 상기 서브프레임을 판단하지 못함을 의미한다. 따라서 단말은 PHICH 수신을 위한 시도를 중지한다. 그리고 상기 PUSCH에 대한 비적응적 재전송(non-adaptive retransmission)이 발생하지 않도록 HARQ_FEEDBACK을 ACK으로 설정한다. 혹은 상기 PUSCH 전송과 관련된 HARQ 프로세스의 버퍼를 플러시(flush)한다. HARQ_FEEDBACK은 소정의 HARQ 프로세스 별로 가장 최근의 HARQ 피드백 정보를 관리하는 변수이며, NACK으로 설정되어 있으면 비적응적 재전송을 수행하고 ACK으로 설정되어 있으면 별도의 재전송 명령을 수신할 때까지 전송을 수행하지 않는다. HARQ_FEEDBACK은 실제로 수신한 HARQ 피드백에 따라서 설정되어야 하지만 본 발명에서는 제 2 TDD 설정을 몰라서 PHICH를 수신하지 못한 경우에는 HARQ 피드백을 수신하지 못했다 하더라도 HARQ_FEEDBACK을 ACK으로 설정한다. Proceeding to step 2340 means that the UE should determine the subframe to receive the PHICH by applying the second TDD configuration, but cannot determine the subframe since the second TDD configuration is not known. Therefore, the terminal stops attempting to receive the PHICH. And HARQ_FEEDBACK is set to ACK so that non-adaptive retransmission for the PUSCH does not occur. Alternatively, the buffer of the HARQ process associated with the PUSCH transmission is flushed. HARQ_FEEDBACK is a variable that manages the most recent HARQ feedback information for each HARQ process.If it is set to NACK, it performs non-adaptive retransmission. If it is set to ACK, it does not perform transmission until a separate retransmission command is received. . HARQ_FEEDBACK should be set according to the actually received HARQ feedback, but in the present invention, if the PHICH is not received because the second TDD setting is not known, HARQ_FEEDBACK is set to ACK even if the HARQ feedback is not received.
2335 단계에서 단말은 RAR 수신을 유발한 프리앰블이 전용 프리앰블이었는지 랜던 프리앰블이었는지 검사한다. 랜덤 프리앰블이었다면 2345 단계로 전용 프리앰블이었다면 2340 단계로 진행한다. In step 2335, the UE checks whether the preamble causing the RAR reception was a dedicated preamble or a random preamble. If it is a random preamble, the process proceeds to step 2345.
2345 단계로 진행하였다는 것은 랜덤 프리앰블을 이용한 랜덤 액세스 과정에서 RAR를 통해 역방향 그랜트를 수신하였고 이에 따라 PUSCH 전송을 수행했다는 것을 의미한다. 따라서 단말은 제 2 TDD 설정을 모르더라도 제 1 TDD 설정을 적용해서 k를 판단하고 서브 프레임 (n+k)에서 PHICH를 (혹은 HARQ 피드백을) 수신한다. 도 12은 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다. Proceeding to step 2345 means that the reverse grant was received through the RAR in the random access process using the random preamble and accordingly, the PUSCH transmission was performed. Therefore, even though the UE does not know the second TDD configuration, the UE determines k by applying the first TDD configuration and receives the PHICH (or HARQ feedback) in the subframe n + k. 12 is a block diagram illustrating an internal structure of a terminal to which the present invention is applied.
단말은 상위 계층 (1210)과 데이터 등을 송수신하며, 제어 메시지 처리부 (1215)를 통해 제어 메시지들을 송수신한다. 그리고 상기 단말은 기지국으로 제어 신호 또는 데이터 송신 시, 제어부 (1220)의 제어에 따라 다중화 장치 (1205)을 통해 다중화 후 송신기 (1200)를 통해 데이터를 전송한다. 반면, 수신 시, 단말은 제어부 (1220)의 제어에 따라 수신기 (1200)로 물리신호를 수신한 후, 역다중화 장치 (1205)으로 수신 신호를 역다중화하고, 각각 메시지 정보에 따라 상위 계층 (1210) 혹은 제어메시지 처리부 (1215)로 전달한다.The terminal transmits and receives data with the upper layer 1210 and transmits and receives control messages through the control message processor 1215. When the control signal or data is transmitted to the base station, the terminal transmits data through the transmitter 1200 after multiplexing through the multiplexing device 1205 under the control of the controller 1220. On the other hand, upon reception, the terminal receives the physical signal to the receiver 1200 under the control of the controller 1220, and then demultiplexes the received signal by the demultiplexing apparatus 1205, each of the higher layer 1210 according to the message information Or the control message processor 1215.
도 13는 본 발명에 따른 기지국의 구성을 나타낸 블록도이다.13 is a block diagram showing the configuration of a base station according to the present invention.
도 13을 참고하면, 도시된 기지국 장치는 송수신부 (1305), 제어부(1310), 다중화 및 역다중화부 (1320), 제어 메시지 처리부 (1335), 각 종 상위 계층 처리부 (1325, 930), 스케줄러(1315)를 포함한다. Referring to FIG. 13, the illustrated base station apparatus includes a transceiver 1305, a controller 1310, a multiplexing and demultiplexing unit 1320, a control message processor 1335, various upper layer processors 1325 and 930, and a scheduler. (1315).
송수신부(1305)는 순방향 캐리어로 데이터 및 소정의 제어 신호를 전송하고 역방향 캐리어로 데이터 및 소정의 제어 신호를 수신한다. 다수의 캐리어가 설정된 경우, 송수신부(1305)는 상기 다수의 캐리어로 데이터 송수신 및 제어 신호 송수신을 수행한다.The transceiver 1305 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When a plurality of carriers are set, the transceiver 1305 performs data transmission and control signal transmission and reception to the plurality of carriers.
다중화 및 역다중화부(1320)는 상위 계층 처리부(1325, 1330)나 제어 메시지 처리부(1335)에서 발생한 데이터를 다중화하거나 송수신부(1305)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(1325, 1330)나 제어 메시지 처리부(1335), 혹은 제어부 (1310)로 전달하는 역할을 한다. 제어부(1310)는 band-specific measurement gap 을 특정 단말에게 적용할지를 결정하고, 상기 설정 정보를 RRCConnectionReconfiguration 메시지에 포함시킬지를 결정한다. The multiplexing and demultiplexing unit 1320 multiplexes data generated by the upper layer processing units 1325 and 1330 or the control message processing unit 1335 or demultiplexes the data received by the transmitting and receiving unit 1305 so that an appropriate upper layer processing unit 1325, 1330, the control message processor 1335, or the controller 1310. The controller 1310 determines whether to apply a band-specific measurement gap to a specific terminal and determines whether to include the configuration information in an RRCConnectionReconfiguration message.
제어 메시지 처리부 (1335)는 제어부의 지시를 받아, 단말에게 전달할 RRCConnectionRecnofiguraiton을 생성해서 하위 계층으로 전달한다. The control message processing unit 1335 generates an RRCConnectionRecnofiguraiton to be delivered to the terminal according to the instruction of the control unit, and delivers it to the lower layer.
상위 계층 처리부(1325, 1330)는 단말 별 서비스 별로 구성될 수 있으며, FTP나 VoIP 등과 같은 사용자 서비스에서 발생하는 데이터를 처리해서 다중화 및 역다중화부 (1320)로 전달하거나 다중화 및 역다중화부 (1320)로부터 전달한 데이터를 처리해서 상위 계층의 서비스 어플리케이션으로 전달한다.The upper layer processing units 1325 and 1330 may be configured for each service for each terminal, and may process data generated from user services such as FTP or VoIP, and deliver the data to the multiplexing and demultiplexing unit 1320 or the multiplexing and demultiplexing unit 1320. Process the data delivered from) and deliver it to the service application of the upper layer.
스케줄러(1315)는 단말의 버퍼 상태, 채널 상태 및 단말의 Active Time 등을 고려해서 단말에게 적절한 시점에 전송 자원을 할당하고, 송수신부에게 단말이 전송한 신호를 처리하거나 단말에게 신호를 전송하도록 처리한다.The scheduler 1315 allocates a transmission resource to the terminal at an appropriate time in consideration of the buffer state, the channel state and the active time of the terminal, and processes the signal transmitted by the terminal to the transceiver or transmits the signal to the terminal. do.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art will appreciate that the present invention can be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and the equivalent concept are included in the scope of the present invention. Should be interpreted.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the present specification and the drawings have been described with respect to the preferred embodiments of the present invention, although specific terms are used, it is merely used in a general sense to easily explain the technical details of the present invention and help the understanding of the invention, It is not intended to limit the scope of the invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (16)

  1. 통신 시스템에서 단말의 시간 분할 듀플렉스(Time Division Duplex, TDD) 설정 방법에 있어서, In the method of setting a time division duplex (TDD) of the terminal in a communication system,
    기지국으로부터 제1 TDD 설정을 수신하는 단계; Receiving a first TDD setting from a base station;
    상기 기지국으로부터 동적 TDD 설정관련 정보를 포함하는 메시지를 수신하는 단계;Receiving a message including dynamic TDD configuration related information from the base station;
    상기 수신한 동적 TDD 설정관련 정보에 따라 제2 TDD 설정을 수신하는 단계; Receiving a second TDD setting according to the received dynamic TDD setting related information;
    상기 기지국으로부터 역방향 그랜트(Uplink grant)를 수신하는 단계; 및Receiving an uplink grant from the base station; And
    상기 역방향 그랜트가 수신된 방법을 기반으로 상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 결정하는 단계를 포함하는 방법. Determining to apply the first TDD setting or the second TDD setting based on how the reverse grant was received.
  2. 제1항에 있어서, The method of claim 1,
    상기 동적 TDD 설정관련 정보를 포함하는 메시지를 수신하는 단계는Receiving a message including the dynamic TDD configuration information
    상기 기지국으로부터 동적 TDD 설정 여부를 수신하는 단계를 포함하고, Receiving whether to set a dynamic TDD from the base station,
    상기 제2 TDD 설정을 수신하는 단계는Receiving the second TDD setting
    상기 동적 TDD 설정 여부를 기반으로 기지국으로부터 동적 TDD 설정을 SIB1을 통해 수신하는 단계를 포함하는 방법. Receiving the dynamic TDD configuration from the base station via SIB1 based on the dynamic TDD configuration.
  3. 제1항에 있어서, The method of claim 1,
    상기 동적 TDD 설정관련 정보를 포함하는 메시지를 수신하는 단계는Receiving a message including the dynamic TDD configuration information
    상기 기지국으로부터 동적 TDD 설정 여부를 수신하는 단계를 포함하고, Receiving whether to set a dynamic TDD from the base station,
    상기 제2 TDD 설정을 수신하는 단계는 Receiving the second TDD setting
    상기 동적 TDD 설정 여부를 기반으로 기지국으로부터 동적 TDD 설정을 페이징을 통해 수신하는 단계를 포함하는 방법.And receiving, through paging, the dynamic TDD configuration from the base station based on the dynamic TDD configuration.
  4. 제1항에 있어서, The method of claim 1,
    상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 결정하는 단계는 The determining of applying the first TDD setting or the second TDD setting may include
    상기 역방향 그랜트가 PDCCH를 통해 수신된 경우, 제2 TDD 설정에 따라 동적 TDD를 적용 하는 단계를 포함하는 방법. If the reverse grant is received on a PDCCH, applying dynamic TDD according to a second TDD configuration.
  5. 제1항에 있어서, The method of claim 1,
    상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 결정하는 단계는 The determining of applying the first TDD setting or the second TDD setting may include
    상기 역방향 그랜트가 PAR를 통해 수신된 경우, If the reverse grant is received via the PAR,
    상기 PAR 전송을 유발한 프리앰블이 전용 프리앰블일 경우 제2 TDD 설정에 따라 동적 TDD를 적용하고, If the preamble causing the PAR transmission is a dedicated preamble, dynamic TDD is applied according to a second TDD configuration,
    상기 PAR 전송을 유발한 프리앰블이 랜덤 프리앰블일 경우 제1 TDD 설정에 따라 동적 TDD를 적용하는 것을 특징으로 하는 방법. And if the preamble causing the PAR transmission is a random preamble, applying the dynamic TDD according to the first TDD configuration.
  6. 통신 시스템에서 시간 분할 듀플렉스(Time Division Duplex, TDD) 설정하는 단말에 있어서, A terminal for setting a time division duplex (TDD) in a communication system,
    기지국으로부터 제1 TDD 설정을 수진하고, 상기 기지국으로부터 동적 TDD 설정관련 정보를 포함하는 메시지를 수신하고, 상기 수신한 동적 TDD 설정관련 정보에 따라 제2 TDD 설정을 수신하고, 상기 기지국으로부터 역방향 그랜트(Uplink grant)를 수신하는 송수신부 및Receive a first TDD configuration from a base station, receive a message including dynamic TDD configuration information from the base station, receive a second TDD configuration according to the received dynamic TDD configuration information, and receive a reverse grant from the base station ( Transceiver for receiving uplink grant)
    상기 역방향 그랜트가 수신된 방법을 기반으로 상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 결정하는 제어부를 포함하는 단말. And a control unit for determining to apply the first TDD setting or the second TDD setting based on the method in which the reverse grant is received.
  7. 제6항에 있어서, The method of claim 6,
    상기 송수신부는 상기 기지국으로부터 동적 TDD 설정 여부를 수신하고, 상기 동적 TDD 설정 여부를 기반으로 기지국으로부터 동적 TDD 설정을 SIB1을 통해 수신하는 것을 특징으로 하는 단말. The transmitting and receiving unit receives a dynamic TDD configuration from the base station, and based on whether the dynamic TDD configuration, the terminal, characterized in that for receiving the dynamic TDD configuration from the base station via SIB1.
  8. 제6항에 있어서, The method of claim 6,
    상기 송수신부는 상기 기지국으로부터 동적 TDD 설정 여부를 수신하고, 상기 동적 TDD 설정 여부를 기반으로 기지국으로부터 동적 TDD 설정을 페이징을 통해 수신하는 것을 특징으로 하는 단말. The transmitting and receiving unit receives a dynamic TDD setting from the base station, and based on whether the dynamic TDD setting, the terminal, characterized in that for receiving the dynamic TDD setting through the paging.
  9. 제6항에 있어서, The method of claim 6,
    상기 제어부는 상기 역방향 그랜트가 PDCCH를 통해 수신된 경우, 제2 TDD 설정에 따라 동적 TDD를 적용 하는 것을 특징으로 하는 단말. The controller, if the reverse grant is received through the PDCCH, characterized in that for applying a dynamic TDD according to the second TDD configuration.
  10. 제6항에 있어서, The method of claim 6,
    상기 제어부는 상기 역방향 그랜트가 PAR를 통해 수신된 경우, When the reverse grant is received through the PAR,
    상기 PAR 전송을 유발한 프리앰블이 전용 프리앰블일 경우 제2 TDD 설정에 따라 동적 TDD를 적용하고, 상기 PAR 전송을 유발한 프리앰블이 랜덤 프리앰블일 경우 제1 TDD 설정에 따라 동적 TDD를 적용하는 것을 특징으로 하는 단말.The dynamic TDD is applied according to the second TDD configuration when the preamble causing the PAR transmission is a dedicated preamble, and the dynamic TDD is applied according to the first TDD configuration when the preamble causing the PAR transmission is a random preamble. Terminal.
  11. 통신 시스템에서 기지국의 시간 분할 듀플렉스(Time Division Duplex, TDD) 설정 방법에 있어서, A method of setting a time division duplex (TDD) of a base station in a communication system,
    단말에 제1 TDD 설정을 전송하는 단계;Transmitting a first TDD setting to a terminal;
    상기 단말로부터 TDD 설정 가능 여부를 포함하는 메시지를 수신하는 단계; Receiving a message including whether TDD can be set from the terminal;
    상기 수신한 메시지를 기반으로 동적 TDD 동작 설정 여부를 결정하는 단계; Determining whether to set a dynamic TDD operation based on the received message;
    상기 결정 결과에 따라 상기 단말에 동적 TDD 설정관련 정보를 포함하는 메시지를 전송하는 단계; Transmitting a message including dynamic TDD configuration information to the terminal according to the determination result;
    상기 전송한 동적 TDD 설정관련 정보에 따라 제2 TDD 설정을 송신하는 단계; 및 Transmitting a second TDD configuration according to the transmitted dynamic TDD configuration information; And
    상기 제1 TDD 설정 또는 상기 제2 TDD 설정에 따라 역방향 그랜트를 송신하는 단계를 포함하고,Transmitting a reverse grant in accordance with the first TDD setting or the second TDD setting,
    상기 단말은 상기 역방향 그랜트가 수신된 방법을 기반으로 상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 특징으로 하는 방법. Wherein the terminal applies the first TDD configuration or the second TDD configuration based on the method in which the reverse grant is received.
  12. 제11항에 있어서, The method of claim 11,
    상기 단말에 동적 TDD 설정관련 정보를 포함하는 메시지를 전송하는 단계는 The step of transmitting a message including the dynamic TDD configuration information to the terminal is
    상기 단말에 동적 TDD 설정 여부를 전송하는 단계를 포함하고, Transmitting whether to set a dynamic TDD to the terminal;
    상기 제2 TDD 설정을 송신하는 단계는The transmitting of the second TDD setting may include
    상기 동적 TDD 설정 여부를 기반으로 동적 TDD 설정을 SIB1을 통해 상기 단말로 전송하는 단계를 포함하는 것을 특징으로 하는 방법. And transmitting the dynamic TDD configuration to the terminal through SIB1 based on the dynamic TDD configuration.
  13. 제11항에 있어서, The method of claim 11,
    상기 단말에 동적 TDD 설정관련 정보를 포함하는 메시지를 전송하는 단계는 The step of transmitting a message including the dynamic TDD configuration information to the terminal is
    상기 단말에 동적 TDD 설정 여부를 전송하는 단계를 포함하고, Transmitting whether to set a dynamic TDD to the terminal;
    상기 제2 TDD 설정을 송신하는 단계는The transmitting of the second TDD setting may include
    상기 동적 TDD 설정 여부를 기반으로 동적 TDD 설정을 페이징을 통해 상기 단말로 전송하는 단계를 포함하는 것을 특징으로 하는 방법. And transmitting the dynamic TDD configuration to the terminal through paging based on the dynamic TDD configuration.
  14. 통신 시스템에서 단말의 시간 분할 듀플렉스(Time Division Duplex, TDD) 설정하는 기지국에 있어서A base station for setting a time division duplex (TDD) of a terminal in a communication system
    상기 단말에 제1 TDD 설정을 전송하고, 상기 단말로부터 TDD 설정 가능 여부를 포함하는 메시지를 수신하는 송수신부; 및A transmitter / receiver for transmitting a first TDD setting to the terminal and receiving a message including whether TDD can be set from the terminal; And
    상기 수신한 메시지를 기반으로 동적 TDD 동작 설정 여부를 결정하는 제어부를 포함하고,And a controller configured to determine whether to set a dynamic TDD operation based on the received message.
    상기 송수신부는 상기 전송한 동적 TDD 설정관련 정보에 따라 제2 TDD 설정을 송신하고, 상기 제1 TDD 설정 또는 상기 제2 TDD 설정에 따라 역방향 그랜트를 송신하는 것을 특징으로 하고, The transceiver unit transmits a second TDD setting according to the transmitted dynamic TDD setting related information, and transmits a reverse grant according to the first TDD setting or the second TDD setting.
    상기 단말은 상기 역방향 그랜트가 수신된 방법을 기반으로 상기 제1 TDD 설정 또는 상기 제2 TDD 설정을 적용하는 것을 특징으로 하는 기지국. The terminal, the base station, characterized in that for applying the first TDD setting or the second TDD setting based on how the grant is received.
  15. 제14항에 있어서, The method of claim 14,
    상기 송수신부는 상기 단말에 동적 TDD 설정 여부를 전송하고, 상기 동적 TDD 설정 여부를 기반으로 동적 TDD 설정을 SIB1을 통해 상기 단말로 전송하는 것을 특징으로 하는 기지국. The base station, characterized in that for transmitting and receiving the dynamic TDD setting to the terminal, and transmitting the dynamic TDD setting to the terminal through the SIB1 based on the dynamic TDD setting.
  16. 제14항에 있어서, The method of claim 14,
    상기 송수신부는 상기 단말에 동적 TDD 설정 여부를 전송하고, 상기 동적 TDD 설정 여부를 기반으로 동적 TDD 설정을 페이징을 통해 상기 단말로 전송하는 것을 특징으로 하는 기지국. The base station, characterized in that for transmitting and receiving the dynamic TDD setting to the terminal, and transmitting the dynamic TDD setting to the terminal through paging based on the dynamic TDD setting.
PCT/KR2014/000594 2013-01-21 2014-01-21 Method and apparatus for effectively providing tdd configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting tdd WO2014112850A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP21168110.1A EP3905548A1 (en) 2013-01-21 2014-01-21 Method and apparatus for effectively providing tdd configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting tdd
CN201480014205.3A CN105075148B (en) 2013-01-21 2014-01-21 The method and apparatus that TDD configuration is provided and determines uplink transmission timing
EP14740380.2A EP2947791B1 (en) 2013-01-21 2014-01-21 Method and apparatus for effectively providing tdd configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting tdd
EP18200771.6A EP3447937B1 (en) 2013-01-21 2014-01-21 Method and apparatus for effectively providing tdd configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting tdd
US14/762,398 US9591665B2 (en) 2013-01-21 2014-01-21 Method and apparatus for effectively providing TDD configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting TDD
CN201910703578.6A CN110380840B (en) 2013-01-21 2014-01-21 Terminal, base station and method thereof in communication system
US15/451,395 US9949254B2 (en) 2013-01-21 2017-03-06 Method and apparatus for effectively providing TDD configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting TDD
US15/954,261 US10652873B2 (en) 2013-01-21 2018-04-16 Method and apparatus for effectively providing TDD configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting TDD
US16/835,048 US11452084B2 (en) 2013-01-21 2020-03-30 Method and apparatus for effectively providing TDD configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting TDD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0006533 2013-01-21
KR1020130006533A KR102036298B1 (en) 2013-01-21 2013-01-21 Method and apparatus to efficiently provide TDD configuration to terminal in the mobile communication system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/762,398 A-371-Of-International US9591665B2 (en) 2013-01-21 2014-01-21 Method and apparatus for effectively providing TDD configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting TDD
US15/451,395 Continuation US9949254B2 (en) 2013-01-21 2017-03-06 Method and apparatus for effectively providing TDD configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting TDD

Publications (1)

Publication Number Publication Date
WO2014112850A1 true WO2014112850A1 (en) 2014-07-24

Family

ID=51209869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000594 WO2014112850A1 (en) 2013-01-21 2014-01-21 Method and apparatus for effectively providing tdd configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting tdd

Country Status (5)

Country Link
US (4) US9591665B2 (en)
EP (3) EP3447937B1 (en)
KR (1) KR102036298B1 (en)
CN (2) CN110380840B (en)
WO (1) WO2014112850A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172293A1 (en) * 2015-04-22 2016-10-27 Qualcomm Incorporated System type dependent master information block (mib)
WO2017052326A1 (en) * 2015-09-24 2017-03-30 Lg Electronics Inc. Method and apparatus for handling various iot network access in wireless communication system
WO2017069432A1 (en) * 2015-10-18 2017-04-27 엘지전자 주식회사 Method and device for communicating using wireless frame in tdd-based wireless communication system
WO2017126713A1 (en) * 2016-01-19 2017-07-27 엘지전자(주) Method and apparatus for transceiving uplink data in wireless communication system
US10334617B2 (en) 2015-06-16 2019-06-25 Qualcomm Incorporated System information for enhanced machine type communication

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102036298B1 (en) * 2013-01-21 2019-10-24 삼성전자 주식회사 Method and apparatus to efficiently provide TDD configuration to terminal in the mobile communication system
US10349464B2 (en) * 2013-04-12 2019-07-09 Telefonaktiebolaget L M Ericsson (Publ) User equipment, and method in the user equipment, for monitoring a downlink control channel
US9923690B2 (en) * 2013-08-06 2018-03-20 Texas Instruments Incorporated Dynamic signaling of the downlink and uplink subframe allocation for a TDD wireless communication system
CN106664688B (en) * 2014-08-26 2020-03-20 华为技术有限公司 Wireless communication method, device and system
EP3186995A1 (en) * 2014-08-28 2017-07-05 Telefonaktiebolaget LM Ericsson (publ) Methods receiving radiation pattern information and related network nodes and base stations
EP3187014B1 (en) 2014-08-28 2019-11-27 Telefonaktiebolaget LM Ericsson (publ) Methods for communicating radiation pattern information and related network nodes and base stations
US10805957B2 (en) * 2014-09-23 2020-10-13 Lg Electronics Inc. Method and apparatus for performing initial acccess procedure for low cost user equipment in wireless communication system
US9872286B2 (en) 2014-11-21 2018-01-16 Apple Inc. Compressed system information for link budget limited UEs in a radio access network
US11382080B2 (en) * 2015-01-09 2022-07-05 Apple Inc. System information signaling for link budget limited wireless devices
EP3252966B1 (en) * 2015-03-31 2019-04-24 Huawei Technologies Co., Ltd. Communication method, base station and user equipment in time division duplex (tdd) system
WO2016163768A1 (en) * 2015-04-09 2016-10-13 엘지전자 주식회사 Method and device for reducing paging overhead
US10091775B2 (en) 2015-08-18 2018-10-02 Apple Inc. Non-PDCCH signaling of SIB resource assignment
DE112015006733T5 (en) * 2015-08-27 2018-04-19 Intel IP Corporation Specify the TDD uplink and downlink configurations
US10200164B2 (en) 2015-09-22 2019-02-05 Comcast Cable Communications, Llc Carrier activation in a multi-carrier wireless network
US10172124B2 (en) 2015-09-22 2019-01-01 Comcast Cable Communications, Llc Carrier selection in a multi-carrier wireless network
CA3000508C (en) 2015-10-17 2019-01-22 Ofinno Technologies, Llc Control channel configuration in partial and full subframes
US10548121B2 (en) 2016-02-03 2020-01-28 Comcast Cable Communications, Llc Downlink and uplink channel transmission and monitoring in a wireless network
CN107041003B (en) * 2016-02-03 2020-04-10 电信科学技术研究院 Uplink and downlink transmission resource allocation method and device
US10880921B2 (en) * 2016-02-04 2020-12-29 Comcast Cable Communications, Llc Detection threshold for a wireless network
CN108702746B (en) * 2016-03-04 2021-08-03 华为技术有限公司 Subframe configuration switching method and device
US10382169B2 (en) * 2016-04-01 2019-08-13 Huawei Technologies Co., Ltd. HARQ systems and methods for grant-free uplink transmissions
CN109314990B (en) * 2016-04-15 2022-08-23 瑞典爱立信有限公司 System and method for granting transmission in a multi-carrier dynamic Time Division Duplex (TDD) cellular communication system
US10200992B2 (en) 2016-05-06 2019-02-05 Comcast Cable Communications, Llc Uplink signal starting position in a wireless device and wireless network
US11147062B2 (en) 2016-10-14 2021-10-12 Comcast Cable Communications, Llc Dual connectivity power control for wireless network and wireless device
US20180124831A1 (en) 2016-10-29 2018-05-03 Ofinno Technologies, Llc Dual connectivity scheduling request for wireless network and wireless device
US10848977B2 (en) 2016-11-02 2020-11-24 Comcast Cable Communications, Llc Dual connectivity with licensed assisted access
US10673593B2 (en) 2016-11-03 2020-06-02 Huawei Technologies Co., Ltd. HARQ signaling for grant-free uplink transmissions
KR102444377B1 (en) * 2016-11-23 2022-09-19 한국전자통신연구원 Access method in communication system and apparatus for the same
US10396962B2 (en) * 2016-12-15 2019-08-27 Qualcomm Incorporated System and method for self-contained subslot bundling
CN109891983A (en) * 2016-12-30 2019-06-14 富士通株式会社 Setting device, method and the communication system of dynamic Time Division duplex
JP6913750B2 (en) * 2017-01-06 2021-08-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmission of control information
US11202279B2 (en) * 2017-01-16 2021-12-14 Samsung Electronics Co., Ltd Method and apparatus for processing data in wireless communication system
EP3829212B1 (en) * 2018-07-25 2024-03-27 Beijing Xiaomi Mobile Software Co., Ltd. Transmission configuration method and device
US11272539B2 (en) 2018-08-09 2022-03-08 Ofinno, Llc Channel access and bandwidth part switching
WO2020029219A1 (en) * 2018-08-10 2020-02-13 Qualcomm Incorporated Dynamic resource multiplexing
US11659552B2 (en) * 2019-09-27 2023-05-23 Qualcomm Incorporated Time division duplex (TDD) slot format configuration indication for sidelink communications
US11765750B2 (en) * 2020-06-17 2023-09-19 Qualcomm Incorporated Methods and apparatus for dynamic switching of uplink configurations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113131A1 (en) * 2011-02-21 2012-08-30 Renesas Mobile Corporation Dynamic uplink/downlink configuration for time division duplex
WO2012128490A2 (en) * 2011-03-23 2012-09-27 엘지전자 주식회사 Retransmission method for dynamic subframe setting in wireless communication system and apparatus for same
WO2012134580A1 (en) * 2011-04-01 2012-10-04 Intel Corporation Flexible adjustment of uplink and downlink ratio configuration

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969923B2 (en) 2008-11-14 2011-06-28 Dbsd Satellite Services G.P. Asymmetric TDD in flexible use spectrum
US8948105B2 (en) 2009-04-28 2015-02-03 Zte (Usa) Inc. Method and system for dynamic adjustment of downlink/uplink allocation ratio in LTE/TDD system
WO2011028078A2 (en) * 2009-09-07 2011-03-10 엘지전자 주식회사 Channel status information feedback method and apparatus in wireless communication system with relay station
JP5275325B2 (en) 2010-11-29 2013-08-28 シャープ株式会社 Image processing apparatus, image forming apparatus, image processing method, computer program, and recording medium
CN102075949B (en) 2010-12-22 2013-03-20 大唐移动通信设备有限公司 Carrier aggregation (CA) technology-based data transmission method and device
KR101859594B1 (en) * 2011-03-10 2018-06-28 삼성전자 주식회사 Method and Apparatus for Supporting Flexible Time Division Duplex in Communication System
EP2966800A1 (en) * 2011-04-29 2016-01-13 Interdigital Patent Holdings, Inc. Carrier aggregation with subframe restrictions
KR20120123997A (en) 2011-05-02 2012-11-12 주식회사 팬택 Apparatus And Method For Random Access
KR101876230B1 (en) 2011-06-16 2018-07-10 주식회사 팬택 Apparatus and method for receiving control channel in multiple component carrier system
KR102031031B1 (en) 2011-06-20 2019-10-15 삼성전자 주식회사 Method and apparatus for transmitting and receiving time division duplex frame configuration information in wireless communication system
CN102325382B (en) * 2011-06-30 2016-01-20 电信科学技术研究院 Accidental access method and equipment
US20130010706A1 (en) * 2011-07-08 2013-01-10 Renesas Mobile Corporation Uplink Power Control Adjustment State In Discontinuos Data Transfer
CN103650394B (en) * 2011-07-11 2017-03-01 Lg电子株式会社 The method and apparatus determining the transmit power of preamble in wireless communication system
US9686056B2 (en) * 2012-05-11 2017-06-20 Blackberry Limited PHICH transmission in time division duplex systems
CA3067371C (en) * 2012-09-26 2023-01-10 Interdigital Patent Holdings, Inc. Methods for dynamic tdd uplink/downlink configuration
KR102036298B1 (en) * 2013-01-21 2019-10-24 삼성전자 주식회사 Method and apparatus to efficiently provide TDD configuration to terminal in the mobile communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012113131A1 (en) * 2011-02-21 2012-08-30 Renesas Mobile Corporation Dynamic uplink/downlink configuration for time division duplex
WO2012128490A2 (en) * 2011-03-23 2012-09-27 엘지전자 주식회사 Retransmission method for dynamic subframe setting in wireless communication system and apparatus for same
WO2012134580A1 (en) * 2011-04-01 2012-10-04 Intel Corporation Flexible adjustment of uplink and downlink ratio configuration

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP, TSGRAN; E-UTRA; Further enhancements to LTE Time Division Duplex (TDD) for Downlink-Uplink(DL-UL) intelference management and traffic adaptation (Release 11", 3GPP TR 36.828 V11.0.0, June 2012 (2012-06-01), XP050906266, Retrieved from the Internet <URL:http://www. 3gpp.org/DynaReport/36828. htm> *
NOKIA CORPORATION ET AL.: "Evaluation results for LTE TDD eIMTA in multiple-outdoor Pico cell scenario", R1-121300, 3GPP TSG-RAN WG1 MEETING #68BIS, JEJU, KOREA, 26 March 2012 (2012-03-26), XP050599590, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_68b/Docs> *
See also references of EP2947791A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016172293A1 (en) * 2015-04-22 2016-10-27 Qualcomm Incorporated System type dependent master information block (mib)
EP3493600A1 (en) * 2015-04-22 2019-06-05 Qualcomm Incorporated System type dependent master information block (mib)
US11146376B2 (en) 2015-04-22 2021-10-12 Qualcomm Incorporated System type dependent master information block (MIB)
US11888788B2 (en) 2015-04-22 2024-01-30 Qualcomm Incorporated System type dependent master information block (MIB)
US10334617B2 (en) 2015-06-16 2019-06-25 Qualcomm Incorporated System information for enhanced machine type communication
WO2017052326A1 (en) * 2015-09-24 2017-03-30 Lg Electronics Inc. Method and apparatus for handling various iot network access in wireless communication system
US10868658B2 (en) 2015-09-24 2020-12-15 Lg Electronics Inc. Method and apparatus for handling various IoT network access in wireless communication system
WO2017069432A1 (en) * 2015-10-18 2017-04-27 엘지전자 주식회사 Method and device for communicating using wireless frame in tdd-based wireless communication system
US10536942B2 (en) 2015-10-18 2020-01-14 Lg Electronics Inc. Method and device for communicating using wireless frame in TDD-based wireless communication system
WO2017126713A1 (en) * 2016-01-19 2017-07-27 엘지전자(주) Method and apparatus for transceiving uplink data in wireless communication system

Also Published As

Publication number Publication date
EP2947791A1 (en) 2015-11-25
US11452084B2 (en) 2022-09-20
EP2947791A4 (en) 2016-09-21
US9949254B2 (en) 2018-04-17
EP3905548A1 (en) 2021-11-03
US9591665B2 (en) 2017-03-07
EP2947791B1 (en) 2018-10-17
EP3447937A1 (en) 2019-02-27
US20200229167A1 (en) 2020-07-16
CN105075148A (en) 2015-11-18
US20180234958A1 (en) 2018-08-16
CN105075148B (en) 2019-08-23
CN110380840B (en) 2022-07-15
KR20140094166A (en) 2014-07-30
US20170181143A1 (en) 2017-06-22
US20150365968A1 (en) 2015-12-17
US10652873B2 (en) 2020-05-12
EP3447937B1 (en) 2021-04-14
CN110380840A (en) 2019-10-25
KR102036298B1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2014112850A1 (en) Method and apparatus for effectively providing tdd configuration information to user equipment and determining uplink transmission timing in mobile communication system supporting tdd
WO2013162345A1 (en) Method and device for performing device-to-device communication in wireless communication system
WO2016114576A1 (en) Method for transmitting multiplexed harq feedbacks in a carrier aggregation system and a device therefor
WO2016163829A1 (en) Method and apparatus for indicating activation/inactivation of serving cell in wireless communication system by using plurality of component carriers
WO2013168850A1 (en) Method and apparatus for controlling discontinuous reception in mobile communication system
WO2017003118A1 (en) Method for transmitting data in dual connectivity and a device therefor
WO2013066044A1 (en) Method for transmitting an uplink control signal, user equipment, method for receiving an uplink signal, and base station
WO2016114550A1 (en) Method for de-configuring a cell from pucch resource in a carrier aggregation system and a device therefor
WO2021060786A1 (en) Method for controlling sidelink communication, and device therefor
WO2016114551A1 (en) Method for de-configuring a cell from pucch resource in a carrier aggregation system and a device therefor
WO2016018068A1 (en) Method for transmitting resource information for d2d communication and apparatus therefor in wireless communication system
WO2016126029A1 (en) Method for applying a new pucch configuration in a carrier aggregation system and a device therefor
WO2017007148A1 (en) Method for cancelling a buffer status report or a scheduling request in dual connectivity and a device therefor
WO2016117889A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
WO2016126027A1 (en) Method for deactivating scells upon a tat expiry for pucch cell in a carrier aggregation system and a device therefor
WO2016114581A1 (en) Method for configuring an activated scell with pucch resource in a carrier aggregation system and a device therefor
WO2018230995A1 (en) Method for performing a random access procedure in wireless communication system and a device therefor
WO2018217021A1 (en) Method and user equipment for performing random access procedure
WO2019070098A1 (en) Method and device for signal transmission or reception on basis of lte and nr in wireless communication system
WO2016117886A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
WO2016117937A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
WO2018030713A1 (en) Resource allocation method for controlling inter-cell interference in wireless communication system operating in flexible duplex mode on a cell-by-cell basis, and apparatus therefor
WO2016114577A1 (en) Method for transmitting multiplexed harq feedbacks in a carrier aggregation system and a device therefor
WO2019054757A1 (en) Method and device for performing sidelink communication in wireless communication system
WO2016036196A1 (en) Method for operating buffer for d2d communication and wan communication in wireless communication system and apparatus therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480014205.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14762398

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014740380

Country of ref document: EP