WO2014111654A1 - Structure de suspension a géométrie variable d'un turbopropulseur sur un élément structurel d'un aéronef - Google Patents

Structure de suspension a géométrie variable d'un turbopropulseur sur un élément structurel d'un aéronef Download PDF

Info

Publication number
WO2014111654A1
WO2014111654A1 PCT/FR2014/050072 FR2014050072W WO2014111654A1 WO 2014111654 A1 WO2014111654 A1 WO 2014111654A1 FR 2014050072 W FR2014050072 W FR 2014050072W WO 2014111654 A1 WO2014111654 A1 WO 2014111654A1
Authority
WO
WIPO (PCT)
Prior art keywords
turboprop
bow
aircraft
structure according
return spring
Prior art date
Application number
PCT/FR2014/050072
Other languages
English (en)
Inventor
Antoine HELLEGOUARCH
Mathieu Ange POISSON
François Gallet
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to GB1512579.2A priority Critical patent/GB2523970B/en
Priority to US14/762,281 priority patent/US9738392B2/en
Publication of WO2014111654A1 publication Critical patent/WO2014111654A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • B64D27/12Aircraft characterised by the type or position of power plants of gas-turbine type  within, or attached to, wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • B64D27/14Aircraft characterised by the type or position of power plants of gas-turbine type  within, or attached to, fuselages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/20Mounting or supporting of plant; Accommodating heat expansion or creep
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing

Definitions

  • the present invention relates to the general field of non-ducted propeller aircraft turboprop engines. It is more specifically aimed at hooking up these turboprop engines on a structural element of the aircraft.
  • an aircraft turboprop is an aviation turbine engine whose main thrust is generated by a non-vetted propeller positioned at the front of the engine.
  • a turboprop engine can for example be mounted on a wing of the aircraft via a suspension structure, the latter having to withstand in particular the thrust forces of the engine and the rotational torque of the propeller.
  • the turboprop propeller undergoes a flow of air having a non-zero incidence. Indeed, during these phases of flight, the air flow is no longer parallel to the axis of rotation of the turboprop propeller.
  • turboprop suspension structure which makes it possible to limit the incidence seen by the propeller during the take-off and climb phases of the aircraft propelled by this turboprop.
  • this object is achieved by virtue of a variable geometry suspension structure of a turboprop engine on a structural element of an aircraft, comprising a rear bow intended for to be fixed on a structural element of an aircraft and a front bow to support a front part of the turboprop engine, the front bow being connected to the rear bow, on the one hand by a pivot link capable of allowing a vertical tilting of the front bow relative to the rear bow, and secondly by a return spring adapted to prevent the tilting of the front bow within a predetermined threshold thrust of the turboprop.
  • the return spring prevents any forward tilting of the turboprop (because it is supported only by the front cradle).
  • the turboprop remains in a horizontal position.
  • the turboprop engine will tilt forward under the effect of this thrust.
  • taring the return spring adequately, it is therefore possible to allow the turboprop to bow forward during certain phases of flight of the aircraft.
  • Such a tilting of the turboprop makes it possible to greatly reduce the incidence seen by the propeller of the turboprop engine during these critical phases of flight.
  • variable geometry suspension structure is relatively simple in design and compatible with the forces it supports (including the thrust of the turboprop and the rotational torque of the propeller).
  • this suspension structure does not require external power supply or dedicated control system, only the turboprop thrust directly manages the position of the latter.
  • Such a suspension structure is therefore reliable and low maintenance cost.
  • the return spring naturally brings the turboprop to a horizontal position which is its nominal position, which limits the consequences of engine failure.
  • the suspension structure further comprises means for preventing lateral displacement of the front bow by compared to the rear arch.
  • means for preventing lateral displacement of the front bow by compared to the rear arch Such a feature aimed at preventing any lateral movement of the front cradle during its tilting allows the rear bow to take up the rotational torque of the propeller which is transmitted to the structural element of the aircraft on which the turboprop is fixed. .
  • the variable geometry of the suspension structure is thus insensitive to the rotational torque of the turboprop propeller.
  • the rear arch may comprise at least one rod provided with a roller adapted to slide in an axial groove which is formed in the front bow so as to prevent lateral displacement of the front bow relative to the rear cradle.
  • the groove of the front bow can be closed at its axial ends so as to limit the angular amplitude of the tilting of the front bow.
  • the rod may comprise two branches forming a V open towards the rear, the wheel being positioned at an intersection of the branches of the rod.
  • the rear arch can comprise two rods positioned angularly on either side of the return spring.
  • the return spring may comprise a hydraulic damper controlled by a valve to allow locking in position of the front bow on command of the pilot.
  • the damper makes it possible to obtain a tilting movement of the front bow that is progressive and does not give rise to resonance phenomena.
  • valve controlled by the pilot allows it to lock the return spring - and thus the front bow - in position. This is particularly useful during the taxiing phases of the aircraft before takeoff for which the turboprop is at full thrust but the propeller thereof is orthogonal to the air flow (it is only at clean takeoff) says the pilot is controlling the valve to allow the turboprop to tip). Similarly, the use of such a valve prevents the turboprop booster ballots in case of severe turbulence.
  • the return spring has a stiffness which is calculated so that its return force is greater than a thrust of the turboprop corresponding to a phase of flight at cruising speed of the aircraft and less than a thrust of the turboprop corresponding to a take-off and climb phase of the aircraft.
  • the rear arch is devoid of means for supporting the turboprop.
  • the suspension structure further comprises means for taking up the engine torque of the turboprop propeller.
  • Such means make it possible to "unload” the wheel from the rear arch which slides in the groove of the front bow while allowing direct transmission of the engine torque to the rear bow.
  • the suspension structure may comprise a torsion bar of the engine torque which is connected at each of its ends to the rear bow by connecting rods and which is intended to be fixed on the turboprop and below that -this.
  • the invention also relates to an aircraft comprising at least one turboprop mounted on a structural element by a variable geometry suspension structure.
  • FIG. 1 is a schematic view of an aircraft propelled by turboprop engines which are fixed under the wings of the aircraft by suspension structures according to the invention
  • FIGS. 2 and 3 are schematic side views of a suspension structure of Figure 1 in two different positions;
  • FIGS. 4 and 5 are partial and top views of the suspension structure corresponding to Figures 2 and 3;
  • FIG. 7 and 8 show a suspension structure according to another embodiment of the invention, respectively in side view and in view from below.
  • FIG 1 very schematically shows an aircraft 2 which is propelled by four turboprop engines 4 fixed under the wings 6 of the aircraft. More specifically, the nacelle 8 of these turboprop engines is fixed on the wings of the aircraft via longitudinal members (not shown in Figure 1).
  • the turboprop engines 4 each comprise a propeller 4a positioned at the front of the engine and driven in rotation about an axis XX by a turbine (not shown), a gearbox 4b being interposed between the engine shaft. the turbine and the rotation shaft XX of the propeller in particular to increase the torque that is applied thereto.
  • FIGS 2 and 3 show more precisely the attachment of these turboprop engines on the wings of the aircraft.
  • Each turboprop engine 4 is suspended from a suspension structure 100 according to the invention, the latter being fixed on a wing of the aircraft by means of the longitudinal members 10.
  • the suspension structure 100 is of variable geometry. It comprises in particular a rear arch 102 which is fixed to the wing of the aircraft via the longitudinal members 10, and a front bow 104 which is rotatable relative to the rear bow.
  • the rear arch 102 comprises a frame 106 extending in a transverse plane and whose shape evokes that of a "horseshoe".
  • the frame 106 is provided with conventional means for attachment to the longitudinal members 10, such as, for example, attachment screeds 108. On the other hand, it lacks means for supporting any part of the turboprop engine 4.
  • the front bow 104 is not directly attached to the wing of the aircraft.
  • a front frame 110 having a horseshoe shape extending in a transverse plane and on which is fixed a front part of the turboprop (for example the gearbox 4b).
  • This attachment (not shown in the figures) is achieved by means of conventional fastening means, for example by suspension rods extending radially from an inner surface of the front frame 110 inwardly thereof.
  • the front frame 110 of the front bow is further connected through a plurality of rods 112 to a main frame 114 extending in a transverse plane.
  • This main frame also has a horseshoe shape.
  • the front bow 104 of the suspension structure 100 according to the invention is connected to the rear bow 102 by a pivot connection adapted to allow a vertical tilting of the front bow relative to the rear bow.
  • each lower free end of the main frame 114 of the front bow is thus provided with a pivot 116 about which rotates in rotation the end of a rod 118 whose opposite end is fixed to the frame 106 of the rear arch.
  • This articulation allows a forward pivoting of the front bow 104 (which is not fixed to the wing of the aircraft) relative to the rear bow 102.
  • the front bow 104 of the suspension structure is also connected to the rear arch 102 by a return spring 120 adapted to prevent the tilting of the front bow within a predetermined threshold thrust of the turboprop.
  • the return spring 120 has one end fixed to the frame 106 of the rear arch (in its upper middle part, between its lower free ends) and an opposite end fixed to the main frame 114 of the front bow (in its upper middle part, between its lower free ends provided with pivots).
  • the return spring 120 is calibrated so as to prevent any tilting of the front bow 104 until the thrust of the turboprop has not reached a predetermined threshold thrust.
  • the return spring has a stiffness which is calculated so that its return force is greater than a thrust of the turboprop corresponding to a phase of flight at cruising speed of the aircraft and less than a thrust of the turboprop corresponding to a take-off and climb phase of the aircraft.
  • the return spring 120 holds the front bow 104 of the structure suspension 100 so that it is in the non-tilted position shown in Figure 2. In this position, the turboprop 4 is in a purely horizontal position.
  • the return spring 120 subjected to the traction force exerted by the turboprop through the suspension structure, can no longer retain the front bow of the suspension structure.
  • the turboprop engine is only fixed at the front on the front rollbar, the latter rolls forward with respect to the rear rollbar in the position represented by FIG. 3. In this position, the turboprop engine 4 therefore leans towards the before, which limits the incidence seen by its propeller 4a.
  • the frame 106 of the rear arch 102 comprises, at its upper middle part, at least one rod 122 provided with a roller 124 adapted to slide in a groove axial 126 which is practiced in the main frame 114 of the front bow.
  • each of these rods 122 is provided angularly on either side of the return spring 120, each of these rods 122 being formed of two branches 122a forming a V open towards the rear, the wheel 124 of these rods being positioned at the intersection of the branches.
  • the groove 126 formed in the main frame 114 of the front bow is closed at its two axial ends so as to limit the angular amplitude of the tilting of the front bow.
  • FIG. 4 the front bow is shown in its non-tilted position, while FIG. 5 shows it in its tilted position.
  • the length of this groove makes it possible to determine the amplitude of the tilting.
  • the return spring 120 'connecting the frame 106 of the rear bow to the main frame 114 of the front bow comprises a hydraulic damper 128 which is controlled by a valve 130.
  • the valve is controlled by the pilot of the aircraft which can thus decide to lock the front bow in position relative to the rear bow.
  • Such blockage in the position of the front bow can be controlled by the pilot during taxiing phases of the aircraft before takeoff itself (the turboprop is at full thrust but the propeller is always orthogonal to the flow), or in case of strong turbulence to avoid any boiling of the turboprop.
  • Figures 7 and 8 show an alternative embodiment of the suspension structure 100 'according to the invention.
  • suspension structure 100 'further comprises means for taking up the engine torque of the turboprop propeller.
  • these engine torque recovery means comprise a torsion bar 132 positioned below the turboprop engine 4 and which is, on the one hand, connected at each of its ends to the rollbar rear 102 by connecting rods 134, and secondly fixed on the turboprop.
  • the torsion bar 132 extends horizontally along an axis YY perpendicular to the longitudinal axis XX of the turboprop between the two free ends 106a of the frame 106 of the rear arch 102. It is fixed on the rods 118 of this frame 106 via the rods 134. In addition, the torsion bar 132 is fixed on a ring of the turboprop (not shown in the figures) by means of fixing plates 136.
  • the torsion bar 132 makes it possible to recover the engine torque of the propeller of the turboprop engine 4 by directly transmitting the engine torque to the rear bow 102 of the suspension structure 100 '.
  • this torsion bar makes it possible to "unload" the caster systems 124 '/ 126' grooves from the forces they undergo.
  • rollers 124 'sliding in the axial grooves 126' formed in the main frame 114 of the front bow extend in horizontal (and not vertical) planes. which makes it possible to improve the guidance in translation.
  • these means can be envisaged to allow such a recovery of the engine torque of the turboprop propeller.
  • these means may for example be in the form of two hydraulic cylinders arranged vertically and fixed on the rear arch of the suspension structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne une structure de suspension (100) à géométrie variable d'un turbopropulseur (4) sur un élément structurel d'un aéronef, comprenant un arceau arrière (102) destiné à être fixé sur un élément structurel d'un aéronef et un arceau avant (104) destiné à supporter une partie avant du turbopropulseur, l'arceau avant étant relié à l'arceau arrière, d'une part par une liaison pivot (116) apte à permettre un basculement vertical de l'arceau avant par rapport à l'arceau arrière, et d'autre part par un ressort de rappel (120) apte à empêcher le basculement de l'arceau avant en deçà d'une poussée de seuil prédéterminée du turbopropulseur.

Description

Structure de suspension à géométrie variable d'un turbopropulseur sur un élément structurel d'un aéronef Arrière-plan de l'invention
La présente invention se rapporte au domaine général des turbopropulseurs d'aéronef à hélice non carénée. Elle vise plus précisément l'accrochage de ces turbopropulseurs sur un élément structurel des aéronefs.
De façon connue, un turbopropulseur d'avion est une turbomachine aéronautique dont la poussée principale est générée par une hélice non carénée positionnée à l'avant du moteur. Un tel turbopropulseur peut par exemple être monté sur une aile de l'avion par l'intermédiaire d'une structure de suspension, cette dernière devant notamment supporter les efforts de poussée du moteur et du couple de rotation de l'hélice.
Lors des différentes phases de vol de l'aéronef, telles que le décollage et la phase de montée, l'hélice du turbopropulseur subit un flux d'air ayant une incidence non nulle. En effet, lors de ces phases de vol, le flux d'air n'est plus parallèle à l'axe de rotation de l'hélice du turbopropulseur.
Or, cette incidence engendre de nombreux inconvénients, notamment en termes de baisses de rendement de l'hélice et de nuisances acoustiques. En outre, une telle incidence donne lieu à un moment aérodynamique sur l'hélice qui charge fortement la structure mécanique du turbopropulseur. Pour y remédier, cette structure doit être renforcée, ce qui implique une pénalité de masse.
Objet et résumé de l'invention
II existe donc un besoin de pouvoir disposer d'une structure de suspension de turbopropulseur qui permette de limiter l'incidence vue par l'hélice lors des phases de décollage et de montée de l'aéronef propulsé par ce turbopropulseur.
Conformément à l'invention, ce but est atteint grâce à une structure de suspension à géométrie variable d'un turbopropulseur sur un élément structurel d'un aéronef, comprenant un arceau arrière destiné à être fixé sur un élément structurel d'un aéronef et un arceau avant destiné à supporter une partie avant du turbopropulseur, l'arceau avant étant relié à l'arceau arrière, d'une part par une liaison pivot apte à permettre un basculement vertical de l'arceau avant par rapport à l'arceau arrière, et d'autre part par un ressort de rappel apte à empêcher le basculement de l'arceau avant en deçà d'une poussée de seuil prédéterminée du turbopropulseur.
Tant que la poussée du turbopropulseur reste inférieure à la poussée de seuil, le ressort de rappel empêche tout basculement vers l'avant du turbopropulseur (car celui-ci est supporté uniquement par le berceau avant). Le turbopropulseur reste dans une position horizontale. En revanche, lorsque la poussée du turbopropulseur dépasse la poussée de seuil, le turbopropulseur va basculer vers l'avant sous l'effet de cette poussée. En tarant le ressort de rappel de manière adéquate, il est donc possible de permettre au turbopropulseur de s'incliner vers l'avant lors de certaines phases de vol de l'aéronef. En particulier, il est possible de permettre un basculement vers l'avant du turbopropulseur uniquement lors des phases de décollage et de montée de l'aéronef (correspondant aux phases pour lesquelles la poussée du turbopropulseur est la plus importante), le turbopropulseur restant dans sa position nominale à l'horizontal pendant les autres phases de vol. Un tel basculement du turbopropulseur permet ainsi de réduire fortement l'incidence vue par l'hélice du turbopropulseur pendant ces phases critiques de vol.
Par ailleurs, une telle structure de suspension à géométrie variable est relativement simple de conception et compatible avec les efforts qu'elle supporte (notamment la poussée du turbopropulseur et le couple de rotation de l'hélice). Notamment, cette structure de suspension ne nécessite pas d'apport extérieur de puissance ni de système de régulation dédié, seule la poussée du turbopropulseur gère directement la position de celui-ci. Une telle structure de suspension est donc fiable et à faible coût de maintenance. De plus, le ressort de rappel ramène naturellement le turbopropulseur vers une position horizontale qui est sa position nominale, ce qui permet de limiter les conséquences des cas de pannes moteur.
De préférence, la structure de suspension comprend en outre des moyens pour empêcher tout déplacement latéral de l'arceau avant par rapport à l'arceau arrière. Une telle caractéristique visant à empêchant tout mouvement latéral du berceau avant lors de son basculement permet à l'arceau arrière de reprendre le couple de rotation de l'hélice qui est transmis à l'élément structurel de l'aéronef sur lequel est fixé le turbopropulseur. La géométrie variable de la structure de suspension est ainsi insensible au couple de rotation de l'hélice du turbopropulseur.
Ainsi, l'arceau arrière peut comprendre au moins une tige munie d'une roulette apte à coulisser dans une rainure axiale qui est pratiquée dans l'arceau avant de façon à empêcher tout déplacement latéral de l'arceau avant par rapport au berceau arrière.
Dans ce cas, la rainure de l'arceau avant peut être fermée à ses extrémités axiales de façon à limiter l'amplitude angulaire du basculement du l'arceau avant. De plus, la tige peut comprendre deux branches formant un V ouvert vers l'arrière, la roulette étant positionnée au niveau d'une intersection des branches de la tige. L'arceau arrière peut comprendre deux tiges positionnées angulairement de part et d'autre du ressort de rappel.
Le ressort de rappel peut comprendre un amortisseur hydraulique contrôlé par une vanne pour permettre un blocage en position de l'arceau avant sur commande du pilote. L'amortisseur permet d'obtenir un mouvement de basculement de l'arceau avant qui soit progressif et qui ne donne pas lieu à des phénomènes de résonnance.
De plus, la présence de la vanne commandée par le pilote permet à celui-ci de bloquer le ressort de rappel - et donc l'arceau avant - en position. Ceci est notamment utile lors des phases de roulage au sol de l'aéronef avant décollage pour lesquelles le turbopropulseur est à pleine poussée mais l'hélice de celui-ci est orthogonale au flux d'air (ce n'est qu'au décollage proprement dit que le pilote commande la vanne pour permettre le basculement du turbopropulseur). De même, le recours à une telle vanne permet d'éviter que le turbopropulseur ne ballote en cas de fortes turbulences.
De préférence, le ressort de rappel possède une raideur qui est calculée de sorte que son effort de rappel soit supérieur à une poussée du turbopropulseur correspondant à une phase de vol en régime de croisière de l'aéronef et inférieur à une poussée du turbopropulseur correspondant à une phase de décollage et montée de l'aéronef. De préférence également, l'arceau arrière est dépourvu de moyens pour supporter le turbopropulseur.
De préférence encore, la structure de suspension comprend en outre des moyens de reprise du couple moteur de l'hélice du turbopropulseur. De tels moyens permettent de « décharger » la roulette de l'arceau arrière qui coulisse dans la rainure de l'arceau avant en permettant une transmission directe du couple moteur à l'arceau arrière. A cet effet, la structure de suspension peut comprendre une barre de torsion de reprise du couple moteur qui est reliée à chacune de ses extrémités à l'arceau arrière par des bielles et qui est destinée à être fixée sur le turbopropulseur et en dessous de celui-ci.
L'invention a aussi pour objet un aéronef comprenant au moins un turbopropulseur monté sur un élément structurel par une structure de suspension à géométrie variable.
Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent des exemples de réalisation dépourvus de tout caractère limitatif. Sur les figures :
- la figure 1 est une vue schématique d'un avion propulsé par des turbopropulseurs qui sont fixés sous les ailes de l'avion par des structures de suspension conformes à l'invention ;
- les figures 2 et 3 sont des vues schématiques de côté d'une structure de suspension de la figure 1 dans deux positions différentes ;
- les figures 4 et 5 sont des vues partielles et de dessus de la structure de suspension correspondant aux figures 2 et 3 ;
- la figure 6 représente une variante de réalisation du ressort de rappel de la structure de suspension conforme à l'invention ; et
- les figures 7 et 8 représentent une structure de suspension selon un autre mode de réalisation de l'invention, respectivement en vue de côté et en vue de dessous.
Description détaillée de l'invention
La figure 1 représente de façon très schématique un avion 2 qui est propulsé par quatre turbopropulseurs 4 fixés sous les ailes 6 de l'avion. Plus précisément, la nacelle 8 de ces turbopropulseurs est fixée sur les ailes de l'avion par l'intermédiaire de longerons (non représentés sur la figure 1).
De façon connue en soi, les turbopropulseurs 4 comprennent chacun une hélice 4a positionnée à l'avant du moteur et entraînée en rotation autour d'un axe X-X par une turbine (non représentée), un boîtier réducteur 4b étant intercalé entre l'arbre de la turbine et l'arbre de rotation X-X de l'hélice notamment pour augmenter le couple qui est appliquée à celle-ci.
Les figures 2 et 3 représentent de façon plus précise la fixation de ces turbopropulseurs sur les ailes de l'avion. Chaque turbopropulseur 4 est suspendu à une structure de suspension 100 conforme à l'invention, celle-ci étant fixée sur une aile de l'avion par l'intermédiaire des longerons 10.
La structure de suspension 100 selon l'invention est à géométrie variable. Elle comprend notamment un arceau arrière 102 qui est fixé à l'aile de l'avion par l'intermédiaire des longerons 10, et un arceau avant 104 qui est mobile en rotation par rapport à l'arceau arrière.
L'arceau arrière 102 comporte un cadre 106 s'étendant dans un plan transversal et dont la forme évoque celle d'un « fer à cheval ». Le cadre 106 est muni de moyens classiques de fixation aux longerons 10, tels que par exemple des chapes de fixation 108. Il est en revanche dépourvu de moyens pour supporter une quelconque partie du turbopropulseur 4.
L'arceau avant 104 n'est pas directement fixé à l'aile de l'avion.
Il comporte un cadre avant 110 ayant une forme de fer à cheval s'étendant dans un plan transversal et sur lequel est fixée une partie avant du turbopropulseur (par exemple le boîtier réducteur 4b). Cette fixation (non représentée sur les figures) est réalisée à l'aide de moyens d'attache conventionnels, par exemple par des bielles de suspension d'étendant radialement depuis une surface interne du cadre avant 110 vers l'intérieur de celui-ci.
Le cadre avant 110 de l'arceau avant est par ailleurs relié par l'intermédiaire d'une pluralité de tiges 112 à un cadre principal 114 s'étendant dans un plan transversal. Ce cadre principal présente également une forme de fer à cheval. De plus, l'arceau avant 104 de la structure de suspension 100 selon l'invention est relié à l'arceau arrière 102 par une liaison pivot apte à permettre un basculement vertical de l'arceau avant par rapport à l'arceau arrière.
Dans l'exemple représenté sur les figures, chaque extrémité libre inférieure du cadre principal 114 de l'arceau avant est ainsi munie d'un pivot 116 autour duquel s'articule en rotation l'extrémité d'une tige 118 dont l'extrémité opposée est fixée au cadre 106 de l'arceau arrière. Cette articulation permet un pivotement vers l'avant de l'arceau avant 104 (qui n'est pas fixé à l'aile de l'avion) par rapport à l'arceau arrière 102.
L'arceau avant 104 de la structure de suspension est également relié à l'arceau arrière 102 par un ressort de rappel 120 apte à empêcher le basculement de l'arceau avant en deçà d'une poussée de seuil prédéterminée du turbopropulseur.
Plus précisément, le ressort de rappel 120 a une extrémité fixée au cadre 106 de l'arceau arrière (dans sa partie médiane supérieure, entre ses extrémités libres inférieures) et une extrémité opposée fixée au cadre principal 114 de l'arceau avant (dans sa partie médiane supérieure, entre ses extrémités libres inférieures munie des pivots).
Le ressort de rappel 120 est taré de sorte à empêcher tout basculement de l'arceau avant 104 tant que la poussée du turbopropulseur n'a pas atteint une poussée de seuil prédéterminée. De préférence, le ressort de rappel possède une raideur qui est calculée de sorte que son effort de rappel soit supérieur à une poussée du turbopropulseur correspondant à une phase de vol en régime de croisière de l'avion et inférieur à une poussée du turbopropulseur correspondant à une phase de décollage et de montée de l'avion.
Ainsi, lors de toutes les phases de vol de l'avion à l'exception du décollage et de la montée (par exemple en phase de vol en régime de croisière), le ressort de rappel 120 retient l'arceau avant 104 de la structure de suspension 100 de sorte que celle-ci est dans la position non basculée représentée par la figure 2. Dans cette position, le turbopropulseur 4 est dans une position purement horizontale.
En revanche, lors des phases de décollage et de montée de l'avion qui correspondent aux phases de vol de l'avion pendant lesquelles l'hélice 4a du turbopropulseur 4 est susceptible de subir un flux d'air avec une incidence non nulle, le ressort de rappel 120, soumis à la force de traction exercée par le turbopropulseur au travers de la structure de suspension, ne peut plus retenir l'arceau avant de la structure de suspension. Le turbopropulseur étant fixé uniquement à l'avant sur l'arceau avant, celui-ci bascule vers l'avant par rapport à l'arceau arrière dans la position représentée par la figure 3. Dans cette position, le turbopropulseur 4 penche donc vers l'avant, ce qui permet de limiter l'incidence vue par son hélice 4a.
Lors du basculement de l'arceau avant, il est également prévu d'empêcher tout déplacement latéral de l'arceau avant 104 par rapport à l'arceau arrière 102.
A cet effet, comme notamment représenté sur les figures 4 et 5, le cadre 106 de l'arceau arrière 102 comprend, au niveau de sa partie médiane supérieure, au moins une tige 122 munie d'une roulette 124 apte à coulisser dans une rainure axiale 126 qui est pratiquée dans le cadre principal 114 de l'arceau avant.
Plus précisément, il est prévu deux tiges 122 disposées angulairement de part et d'autre du ressort de rappel 120, chacune de ces tiges 122 étant formée de deux branches 122a formant un V ouvert vers l'arrière, la roulette 124 de ces tiges étant positionnée au niveau de l'intersection des branches.
De plus, la rainure 126 pratiquée dans le cadre principal 114 de l'arceau avant est fermée à ses deux extrémités axiales de façon à limiter l'amplitude angulaire du basculement du l'arceau avant. Ainsi, sur la figure 4, l'arceau avant est représenté dans sa position non basculée, tandis que la figure 5 le montre dans sa position basculée. La longueur de cette rainure permet de déterminer l'amplitude du basculement.
Dans un mode de réalisation représenté sur la figure 6, le ressort de rappel 120' reliant le cadre 106 de l'arceau arrière au cadre principal 114 de l'arceau avant comprend un amortisseur hydraulique 128 qui est contrôlé par une vanne 130. La vanne est commandée par le pilote de l'avion qui peut ainsi décider de bloquer l'arceau avant en position par rapport à l'arceau arrière.
Un tel blocage en position de l'arceau avant peut être commandé par le pilote lors des phases de roulage au sol de l'avion avant son décollage à proprement dit (le turbopropulseur est à pleine poussée mais l'hélice est toujours orthogonale au flux), ou en cas de fortes turbulences pour éviter tout ballotement du turbopropulseur.
Les figures 7 et 8 représentent une variante de réalisation de la structure de suspension 100' selon l'invention.
Cette variante de réalisation diffère de celle précédemment décrite notamment en ce que la structure de suspension 100' comprend en outre des moyens de reprise du couple moteur de l'hélice du turbopropulseur.
Dans un mode de réalisation représenté sur les figures 7 et 8, ces moyens de reprise du couple moteur comprennent une barre de torsion 132 positionnée en dessous du turbopropulseur 4 et qui est, d'une part reliée à chacune de ses extrémités à l'arceau arrière 102 par des bielles 134, et d'autre part fixée sur le turbopropulseur.
De façon plus précise, la barre de torsion 132 s'étend horizontalement selon un axe Y-Y perpendiculaire à l'axe longitudinal X-X du turbopropulseur entre les deux extrémités libres 106a du cadre 106 de l'arceau arrière 102. Elle est fixée sur les tiges 118 de ce cadre 106 par l'intermédiaire des bielles 134. De plus, la barre de torsion 132 est fixée sur un anneau du turbopropulseur (non représenté sur les figures) par l'intermédiaire de platines de fixation 136.
De la sorte, la barre de torsion 132 permet d'assurer une reprise du couple moteur de l'hélice du turbopropulseur 4 en transmettant directement le couple moteur à l'arceau arrière 102 de la structure de suspension 100'. Ainsi, cette barre de torsion permet de « décharger » les systèmes roulettes 124' / 126' rainures des efforts qu'ils subissent.
Cette variante de réalisation diffère également de celle précédemment décrite en ce que les roulettes 124' venant coulisser dans les rainures axiales 126' pratiquées dans le cadre principal 114 de l'arceau avant s'étendent dans des plans horizontaux (et non verticaux), ce qui permet d'améliorer le guidage en translation.
D'autres moyens peuvent être envisagés pour permettre une telle reprise du couple moteur de l'hélice du turbopropulseur. Dans une variante non représentée sur les figures, ces moyens peuvent par exemple se présenter sous la forme de deux vérins hydrauliques disposés verticalement et fixés sur l'arceau arrière de la structure de suspension.

Claims

REVENDICATIONS
1. Structure de suspension (100 ; 1000 à géométrie variable d'un turbopropulseur (4) sur un élément structurel (6) d'un aéronef (2), comprenant un arceau arrière (102) destiné à être fixé sur un élément structurel d'un aéronef et un arceau avant (104) destiné à supporter une partie avant du turbopropulseur, l'arceau avant étant relié à l'arceau arrière, d'une part par une liaison pivot (116) apte à permettre un basculement vertical de l'arceau avant par rapport à l'arceau arrière, et d'autre part par un ressort de rappel (120 ; 1200 apte à empêcher le basculement de l'arceau avant en deçà d'une poussée de seuil prédéterminée du turbopropulseur.
2. Structure selon la revendication 1, comprenant en outre des moyens pour empêcher tout déplacement latéral de l'arceau avant par rapport à l'arceau arrière.
3. Structure selon la revendication 2, dans laquelle l'arceau arrière (102) comprend au moins une tige (122) munie d'une roulette (124 ; 1240 aPte à coulisser dans une rainure axiale (126 ; 1260 qui est pratiquée dans l'arceau avant de façon à empêcher tout déplacement latéral de l'arceau avant par rapport au berceau arrière.
4. Structure selon la revendication 3, dans laquelle la rainure (126) est fermée à ses extrémités axiales de façon à limiter l'amplitude angulaire du basculement du l'arceau avant.
5. Structure selon l'une des revendications 3 et 4, dans laquelle la tige (122) comprend deux branches (122a) formant un V ouvert vers l'arrière, la roulette (124 ; 1240 étant positionnée au niveau d'une intersection des branches de la tige.
6. Structure selon l'une quelconque des revendications 3 à 5, dans laquelle l'arceau arrière comprend deux tiges (122) positionnées angulairement de part et d'autre du ressort de rappel (120).
7. Structure selon l'une quelconque des revendications 1 à 6, dans laquelle le ressort de rappel (1200 comprend un amortisseur hydraulique (128) contrôlé par une vanne (130) pour permettre un blocage en position de l'arceau avant sur commande du pilote.
8. Structure selon l'une quelconque des revendications 1 à 7, dans laquelle le ressort de rappel possède une raideur qui est calculée de sorte que son effort de rappel soit supérieur à une poussée du turbopropulseur correspondant à une phase de vol en régime de croisière de l'aéronef et inférieur à une poussée du turbopropulseur correspondant à une phase de décollage et montée de l'aéronef.
9. Structure selon l'une quelconque des revendications 1 à 8, dans laquelle l'arceau arrière (102) est dépourvu de moyens pour supporter le turbopropulseur.
10. Structure selon l'une quelconque des revendications 1 à 9, comprenant en outre des moyens de reprise du couple moteur de l'hélice du turbopropulseur.
11. Structure selon la revendication 10, comprenant une barre de torsion (132) de reprise du couple moteur qui est reliée à chacune de ses extrémités à l'arceau arrière (102) par des bielles (134) et qui est destinée à être fixée sur le turbopropulseur et en dessous de celui-ci.
12. Aéronef (2) comprenant au moins un turbopropulseur (4) monté sur un élément structurel (6) par une structure de suspension (100) à géométrie variable selon l'une quelconque des revendications 1 à
PCT/FR2014/050072 2013-01-21 2014-01-15 Structure de suspension a géométrie variable d'un turbopropulseur sur un élément structurel d'un aéronef WO2014111654A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1512579.2A GB2523970B (en) 2013-01-21 2014-01-15 Suspension structure with variable geometry of a turboprop engine on a structural element of an aircraft
US14/762,281 US9738392B2 (en) 2013-01-21 2014-01-15 Suspension structure with variable geometry of a turboprop engine on a structural element of an aircraft

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1350501 2013-01-21
FR1350501A FR3001196B1 (fr) 2013-01-21 2013-01-21 Structure de suspension a geometrie variable d'un turbopropulseur sur un element structurel d'un aeronef
FR1353492A FR3001198B1 (fr) 2013-01-21 2013-04-17 Structure de suspension a geometrie variable d'un turbopropulseur sur un element structurel d'un aeronef
FR1353492 2013-04-17

Publications (1)

Publication Number Publication Date
WO2014111654A1 true WO2014111654A1 (fr) 2014-07-24

Family

ID=47882387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050072 WO2014111654A1 (fr) 2013-01-21 2014-01-15 Structure de suspension a géométrie variable d'un turbopropulseur sur un élément structurel d'un aéronef

Country Status (4)

Country Link
US (1) US9738392B2 (fr)
FR (2) FR3001196B1 (fr)
GB (1) GB2523970B (fr)
WO (1) WO2014111654A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199454A1 (fr) * 2016-02-01 2017-08-02 Bell Helicopter Textron Inc. Ensembles de montage de moteur pour aéronef
US20170313431A1 (en) * 2016-04-28 2017-11-02 Safran Aircraft Engines Aircraft propulsion assembly with a filtered cradle
FR3058704A1 (fr) * 2016-11-14 2018-05-18 Safran Aircraft Engines Berceau bipartite a coulissement pour turbopropulseur

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464684B2 (en) * 2016-02-01 2019-11-05 Bell Textron Inc. Tapered sockets for aircraft engine mount assemblies
JP7265260B2 (ja) * 2019-09-17 2023-04-26 国立研究開発法人宇宙航空研究開発機構 航空機
EP4299445A1 (fr) * 2022-06-27 2024-01-03 Airbus Operations (S.A.S.) Ensemble de propulsion électrique comprenant au moins deux supports indépendants, aéronef comportant au moins un tel ensemble de propulsion électrique
US12025055B1 (en) 2023-01-24 2024-07-02 General Electric Company Variable geometry inlet for turbopropeller inlet pressure recovery optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607330A1 (fr) * 2004-06-14 2005-12-21 Rolls-Royce Plc Bâti moteur
FR2942205A1 (fr) * 2009-02-18 2010-08-20 Airbus France Attache moteur a courbe charge/deformation adaptee
US20110259996A1 (en) * 2010-04-27 2011-10-27 Daniel Kent Vetters Aircraft propulsion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607330A1 (fr) * 2004-06-14 2005-12-21 Rolls-Royce Plc Bâti moteur
FR2942205A1 (fr) * 2009-02-18 2010-08-20 Airbus France Attache moteur a courbe charge/deformation adaptee
US20110259996A1 (en) * 2010-04-27 2011-10-27 Daniel Kent Vetters Aircraft propulsion system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199454A1 (fr) * 2016-02-01 2017-08-02 Bell Helicopter Textron Inc. Ensembles de montage de moteur pour aéronef
US10384790B2 (en) 2016-02-01 2019-08-20 Bell Textron Inc. Engine mount assemblies for aircraft
US20170313431A1 (en) * 2016-04-28 2017-11-02 Safran Aircraft Engines Aircraft propulsion assembly with a filtered cradle
FR3050722A1 (fr) * 2016-04-28 2017-11-03 Snecma Ensemble propulsif pour aeronef a berceau filtre
US10843806B2 (en) 2016-04-28 2020-11-24 Safran Aircraft Engines Aircraft propulsion assembly with a filtered cradle
FR3058704A1 (fr) * 2016-11-14 2018-05-18 Safran Aircraft Engines Berceau bipartite a coulissement pour turbopropulseur

Also Published As

Publication number Publication date
FR3001196A1 (fr) 2014-07-25
GB2523970A (en) 2015-09-09
GB2523970B (en) 2019-01-02
GB201512579D0 (en) 2015-08-26
US20150360788A1 (en) 2015-12-17
US9738392B2 (en) 2017-08-22
FR3001198A1 (fr) 2014-07-25
FR3001198B1 (fr) 2015-03-13
FR3001196B1 (fr) 2015-03-06

Similar Documents

Publication Publication Date Title
WO2014111654A1 (fr) Structure de suspension a géométrie variable d'un turbopropulseur sur un élément structurel d'un aéronef
CA2697380C (fr) Berceau de support de capot de soufflante monte sur le mat d'accrochage et sur l'entree d'air de la nacelle
EP2167384B1 (fr) Mât d'accrochage de moteur pour aéronef disposant d'une poutre d'attache moteur arrière formant palonnier
EP1858758B1 (fr) Attache moteur d'un systeme de montage interpose entre un mat d'accrochage et un moteur d'aeronef
EP2244943B1 (fr) Ensemble moteur pour aeronef comprenant une structure annulaire de transfert d'efforts entourant le carter central d'un turboreacteur
EP2895391B1 (fr) Pylone de montage d'un moteur a la structure d'un aeronef
EP0021901B1 (fr) Rotor de giravion à moyeu articulé compact
EP2754612B1 (fr) Manille à trois points à capacité de filtrage de vibrations et attache moteur d'aéronef équipée d'une telle manille
EP1480876B1 (fr) Mat d'accrochage d'un moteur sous une voilure d'aeronef
FR2903666A1 (fr) Ensemble moteur pour aeronef comprenant un capotage aerodynamique de jonction monte sur deux elements distincts
EP1707487A1 (fr) Suspension arrière de turboréacteur
WO2008155497A1 (fr) Mat de fixation d'un moteur a une aile d'aeronef
FR3019522A1 (fr) Ensemble sustentateur amovible d'un giravion et giravion
WO2010018323A1 (fr) Mât de moteur pour aéronef
FR2902756A1 (fr) Systeme de deportance au sol d'un aeronef et aeroplane comportant un tel systeme
FR3020343A1 (fr) Ensemble pour aeronef comprenant une structure primaire de mat d'accrochage constituee par trois elements independants
EP2595879B1 (fr) Dispositif et procédé de stabilisation latérale d'un avion
EP3486174B1 (fr) Attache moteur arriere pour un moteur d'aeronef
FR3044297A1 (fr) Ensemble moteur pour aeronef comprenant des attaches moteur arriere sous forme de manilles
FR3040686A1 (fr) Partie arriere d'aeronef comprenant un stabilisateur vertical dont la structure formant caisson comporte une partie inferieure logee dans le fuselage
CA2969992A1 (fr) Rotor et aeronef pourvu d'un tel rotor
WO2014174222A1 (fr) Structure de suspension d'un turbopropulseur a double helices non carenees sur un element structurel d'un aeronef
EP3540205A1 (fr) Groupe propulseur d'aéronef dont la nacelle est liée par un pivot à l'arbre d'entraînement de sa soufflante
WO2010061070A1 (fr) Aile volante pour aeronef
FR3015432A1 (fr) Ensemble pour aeronef comprenant un moteur a hauteur reglable et procede de commande de l'aeronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14703150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1512579

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140115

WWE Wipo information: entry into national phase

Ref document number: 1512579.2

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14762281

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14703150

Country of ref document: EP

Kind code of ref document: A1