WO2014110849A1 - 一种震动发电机及其级联结构发电机 - Google Patents

一种震动发电机及其级联结构发电机 Download PDF

Info

Publication number
WO2014110849A1
WO2014110849A1 PCT/CN2013/071372 CN2013071372W WO2014110849A1 WO 2014110849 A1 WO2014110849 A1 WO 2014110849A1 CN 2013071372 W CN2013071372 W CN 2013071372W WO 2014110849 A1 WO2014110849 A1 WO 2014110849A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction unit
electrode
generator
friction
material layer
Prior art date
Application number
PCT/CN2013/071372
Other languages
English (en)
French (fr)
Inventor
张海霞
唐伟
孟博
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to US14/762,135 priority Critical patent/US9825558B2/en
Publication of WO2014110849A1 publication Critical patent/WO2014110849A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the invention relates to a vibration generator and a cascade structure generator thereof, and provides a self-powered solution for an Internet of Things, an implantable medical device and a portable electronic device, that is, using the principle of electrostatic induction to collect mechanical motion in daily life, Generator design and application scenarios for energy such as vibration, collision and friction. Background technique
  • a vibration generator characterized by comprising an arched friction unit 1 and an arched friction unit 2, wherein the inner concave surface of the arched friction unit 1 and the concave inner surface of the arcuate friction unit 2 are respectively opposite to each other as a friction surface
  • the outer convex surface of the arched friction unit 1 is provided with an electrode and supporting material layer
  • the outer convex surface of the arched friction unit 2 is provided with an electrode and supporting material layer.
  • a vibration generator is characterized in that it comprises an arch-shaped friction unit 1, an arch-shaped friction unit 2, and a convex surface on the outer side of the arch-shaped friction unit 1 and a convex surface on the outer side of the arc-shaped friction unit 2 are respectively opposite to each other as a friction surface
  • the inner concave surface of the arched friction unit 1 is provided with an electrode and supporting material layer
  • the inner concave surface of the arched friction unit 2 is provided with an electrode and supporting material layer.
  • the arched friction unit 1 is connected to the electrode and supporting material layer through an insulating bonding layer; the arcuate friction unit 2 is connected to the electrode and supporting material layer through an insulating bonding layer.
  • the electrode and supporting material layer is a metal electrode plate; and the insulating bonding layer is an adhesive.
  • the friction surface of the arched friction unit 1 has a micro/nano pattern structure or a smooth surface
  • the friction surface of the arcuate friction unit 2 has a micro/nano pattern structure or a smooth surface.
  • the material of the arched friction unit 1 is polydimethylsiloxane; the material of the arched friction unit 2 is polyethylene terephthalate; the electrode and supporting material layer is aluminum Electrode plate.
  • a cascade structure generator characterized by comprising a plurality of vibration generators according to claim 1, a plurality of first geometric complementary friction units matching the electrode and support material layers of the vibration generator, and a second a geometric complementary friction unit; wherein, the plurality of the vibration generators respectively pass through a set of the first geometric complementary friction units, a second geometric complementary friction unit connection; a first geometric complementary friction unit connecting the two vibration generators; and an electrode and support material layer connected thereto, a second geometric complementary friction unit, and an electrode and supporting material layer connected thereto A vibration generator complementary to the vibration generator. Further, the first complementary friction unit is connected to the electrode and supporting material layer through an insulating bonding layer; and the second complementary friction unit is connected to the electrode and supporting material layer through an insulating bonding layer.
  • a surface of the first complementary friction unit opposite to the second complementary friction unit has a micro/nano pattern structure or a smooth surface; the second complementary friction unit and the first complementary friction unit The opposite surface has a micro/nano pattern structure or is a smooth surface.
  • a plurality of the vibration generators are relatively fixed together by a connecting belt or a connecting line.
  • the present invention improves a single layer generator.
  • the original generator uses the stress difference between polyimide and silicon oxide to form an arch structure, and then adds a friction layer and an electrode on both sides of the arch structure.
  • the invention utilizes pre-bent aluminum foil, directly as electrode layer and arch shape, simplifies the process steps of multiple molding, separates the material selection of the support layer, can select more suitable materials, and provides better elasticity for the generator. And reliability, while also enabling the packaging of the generator;
  • the invention proposes a novel complementary single-layer generator, which forms a good geometric complement with the original arch shape, and at the same time maintains the excellent performance of the single-layer generator;
  • the invention proposes a generator with a stacked spring structure, which can absorb external energy shock more effectively than a single-layer generator, thereby using more energy for external output; by complementary geometric superposition, by generating electricity through the original single layer
  • the performance of the simple stacking of the generator is doubled, which increases the energy output per unit area and unit volume while saving material and processing costs.
  • the present invention has an output voltage of up to 760 volts and an output power of 38 mW (10.1 mW/cm 2 ) in the case of only a double stack, which is much higher than other micro power generation technologies.
  • the number of laminates can be increased in a large amount, so that the output of the generator is greatly improved, and finally applied to the actual production and life, promoting and realizing the effective collection and utilization of environmental energy.
  • This technology will be a revolutionary technology in the energy field and will develop into an important new industry. With the further reduction of power consumption of existing electronic devices, this technology will completely change the energy supply mode of handheld electronic devices and permanently solve the long-term standby problem. It can also be widely used in other low-energy devices and related fields that require long-term power supply. :
  • Power supplement for handheld electronic devices It can charge the battery of handheld devices such as smartphones, tablets, and e-books, making handheld electronic devices stand by for a long time or no charge. Examples are as follows:
  • the transparent film is combined with the touch screen. When the screen is touched, the power is generated to supply power to the screen. The excess power can charge the battery. In normal state, the external vibration is generated to generate electric energy to charge the battery.
  • the charging cover of the mobile phone is connected with the charging circuit of the mobile phone to directly charge the mobile phone;
  • the power supply of the portable machine is as follows:
  • the transparent film is combined with the touch screen to generate electricity when the screen is touched, and the screen is powered.
  • the excess power can charge the battery of the portable device. Under normal conditions, the external vibration is generated to generate electric energy to charge the battery;
  • the micro-vibration energy harvester is placed under the keyboard of the portable computer, and is connected with the corresponding charging circuit, and the portable computer is charged while tapping the keyboard;
  • a) use the vibration of the ground or subject in the environment, the vibration generated by the flow of air or water, to supply power to various IoT sensors (eg animal stocking tracking, field management, ocean current/water system monitoring, meteorological detection, environmental monitoring, etc.) , thereby eliminating the time-consuming and labor-intensive consequences of replacing the battery;
  • IoT sensors eg animal stocking tracking, field management, ocean current/water system monitoring, meteorological detection, environmental monitoring, etc.
  • Figure 1 is a structural diagram of a conventional generator
  • Figure 2 is a schematic diagram of a single electrostatic induction generator and its output
  • FIG. 1 is the structure diagram, (b) is the friction unit structure diagram, (c) voltage output diagram, (d) voltage output diagram;
  • Figure 3 is a schematic diagram of the double-stack electrostatic induction generator and its output;
  • (a) is the structure diagram, (b) voltage output diagram, (C) voltage output diagram, (d) voltage output diagram;
  • Figure 4 is a schematic diagram of the three-stack electrostatic induction generator and its continuous output;
  • (a) is a structure diagram, (b) voltage output diagram, (c) voltage output diagram;
  • Figure 5 is a schematic diagram of a single complementary electrostatic induction generator and its output:
  • 1-friction unit 1 1 - friction unit 2
  • 3-electrode layer and support layer ie electrode and support material layer
  • 4 - single-layer generator 5-complementary single-layer generator.
  • stacking in addition to the arch shape, stacking can be performed for various other geometric shapes; the number of cascades is not limited to the two or three generator cascades given in FIGS. 3 and 4, It is a cascade of multiple generators.
  • Figure 2 is a schematic diagram of a single arch form electrostatic induction generator
  • the 1 in Figure 2 (a) is polydimethylsiloxane (PDMS), as the friction unit 1, and the micro-nano pattern can be made on the friction unit 1 by micromachining, as shown in Figure 2 (b). , such as pyramids, grids, etc.;
  • PDMS polydimethylsiloxane
  • the friction unit 2 is polyethylene terephthalate (PET), and the micro-nano pattern can also be formed by the micro-machining method on the friction unit 2;
  • PET polyethylene terephthalate
  • the metal electrode plate 3 is a metal material and is also a structural support layer.
  • the material of the electrode plate 3 is selected to have different materials to adjust and improve the stiffness coefficient and reliability of the generator;
  • 2(c), (d) are the device outputs. It can be seen that the maximum output voltage of the device is 518.4V and the internal resistance is about 1OMohm, so the maximum output power of the device is 6.7mW (1.77 mW/cm 2 ).
  • Figure 5 is a schematic diagram of a single inverted arch form electrostatic induction generator
  • 1 is polydimethylsiloxane (PDMS), as the friction unit 1, and micro-nano patterns can be made on the friction unit 1 by micromachining, as shown in Figure 5 (b). , such as pyramids, grids, etc.;
  • PDMS polydimethylsiloxane
  • the friction unit 2 is polyethylene terephthalate (PET), and the micro-nano pattern can also be made by the micro-machining method on the friction unit 2;
  • PET polyethylene terephthalate
  • the metal electrode plate 3 is a metal material and is also a structural support layer.
  • the material of the electrode plate 3 is selected to have different materials to adjust and improve the stiffness coefficient and reliability of the generator; 4. 1 and 3, 2 and 3 can be bonded by adhesive. There is no generator of this structure at present;
  • Figures 5(b) and (c) show the device output.
  • the maximum output voltage of the device is 450V
  • the internal resistance is about 9Mohm
  • the maximum output power is 5.6mW (1.5mW/cm 2 ).
  • Figure 3 is a schematic diagram of a double stack electrostatic induction generator
  • the double stack structure here is composed of two arches and an inverted arch shape.
  • the friction unit 1 is polydimethylsiloxane (PDMS)
  • the friction unit 2 is Polyethylene terephthalate (PET)
  • these two materials can be selected according to the sequence of triboelectric charging to maximize the friction pairing combination, and micro-nano graphics can also be made by micromachining, such as pyramids, grids
  • the metal electrode plate 3 is a metal material and is also a structural support layer. The output voltage of each generator is output through a lead wire connected to the electrode plate, and 1 and B 3, 2 and 3 can be adhered by an adhesive.
  • the two stacked arches are relatively fixed together by connecting straps or wires;
  • Figure 4 is a schematic diagram of a three-layer electrostatic induction generator
  • the structure of the triple-stack generator is similar to that of the double stack, consisting of three arches and two inverted arches, as shown in Fig. 4 (a), the same friction unit 1 is polydimethylsiloxane. (PDMS), the friction unit 2 is polyethylene terephthalate (PET), which can select the largest friction pairing combination according to the sequence of triboelectric charging, and can also be made by micromachining.
  • PDMS polydimethylsiloxane.
  • PET polyethylene terephthalate
  • metal electrode plate 3 is a metal material, and is also a structural support layer, between 1 and 3, 2 and 3 can be bonded by common adhesive, the output voltage of each generator Through the lead output connected to the electrode plate, and then connected in parallel, the output can be extended to the multi-stack electrostatic generator; the output voltage is shown in Figure 4 (b).
  • the plurality of stacked arches are relatively fixed together by a connecting strip or wire.
  • multi-stack generators Another great advantage of multi-stack generators is that the output voltage is longer and therefore allows continuous energy output. As shown in Figure 4 (c), the generator continuously outputs a continuous square wave voltage signal with an amplitude of up to 12V under the action of 3Hz external shock.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种震动发电机及其级联结构发电机。该震动发电机包括第一拱形摩擦单元(1)、第二拱形摩擦单元(2),第一拱形摩擦单元内侧凹形表面与第二拱形摩擦单元内侧凹形表面分别作为摩擦面相对放置,第一拱形摩擦单元和第二拱形摩擦单元的外侧凸形表面分别设有一电极兼支撑材料层。该级联结构发电机包括多个该震动发电机,若干组与该震动发电机的电极兼支撑材料层匹配的第一几何互补形摩擦单元、第二几何互补形摩擦单元;连接两个上述震动发电机的第一几何互补形摩擦单元以及与其连接的电极兼支撑材料层、第二几何互补形摩擦单元以及与其连接的电极兼支撑材料层构成一与该震动发电机互补的级联结构震动发电机。该震动发电机及其级联结构发电机提高了发电机的输出电压,有效提高对环境能量的收集和利用。

Description

一种震动发电机及其级联结构发电机
技术领域
本发明涉及一种震动发电机及其级联结构发电机, 为物联网、 植入式医疗器件和便携 式电子设备等提供自供能的解决方案, 即利用静电感应原理, 采集日常生活中的机械运动、 震动、 碰撞和摩擦等能量的发电机设计和应用方案。 背景技术
近年来, 物联网概念被提出, 这需要将大量的传感器分布于各地, 如何为这些散布网 点的传感器供电, 将是实现这项技术的一大难点; 医疗技术中, 往往需要向生物体植入芯 片, 如何为这些植入芯片持续供能, 也是阻碍植入式治疗技术发展的一大障碍; 除此之外, 如何为人们日常常用的便携式电子设备, 如 ipad、 iphone, 电子书、 笔记本电脑等, 在断电 后, 提供一种应急的充电方案, 也被产业界广泛关注。 随着自采能、 自供能(self-powered) 新概念的提出, 以上的问题有了解决的希望。 目前, 很多的研究工作都集中于此, 包括基 于光电 (参考文献: Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics 3, 297 - 302 (2009); Chen, H. Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics 3, 649 - 653 (2009))、压电 (参考文献: Wang, Z. L. and Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242-246 (2006).; Yang R., Qin Y, Dai L. M. and Wang Z. L., Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology 4, 34-39 (2009).; Chang, C., Tran, V. H., Wang, J. B., Fuh, Y. K. and Lin, L. W. Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10, 726-731 (2010). )禾口热电 (参考文献: Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nano wires. Nature 451, 163-167 (2008).; Snyder, G. J. and Toberer, E. S. Complex thermoelectric materials. Nature Materials 7, 105 - 114 (2008) ) 效应的纳米发电机被提 出。
近来,一种基于静电感应原理的发电机也被报道(参考文献: Fan, F. R., Tian, Z. Q., Wang, Z. L. Nano Energy 1, 328-334(2012).; Fan, F. R. et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Letters 12, 3109-3114 (2012).; Zhu, G. et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Letters 12, 4960-4965 (2012).; Wang, S., Lin, L. and Wang, Z. L. Nanoscale triboelectric-efFect-enabled energy conversion for sustainably powering portable electronics. Nimo Letters 12, 6339-6346 (2012).)。 借助拱形结构 (参考文献: Wang, S., Lin, L. and Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Letters 12, 6339-6346 (2012) ) , 这种摩擦发电机可以输出 230伏的电压, 输出功率可到 9 mW (合 3.56 mW/cm2 ) (见图 1所示)。 不过在实际应用 中, 拱形结构不利于充分吸收外界输入的能量。 发明内容
针对现有技术存在的技术问题, 本发明的目的在于提供了一种基于静电感应, 针对环 境中的机械运动、 震动、 碰撞和摩擦等能量进行采集的发电机。
本发明的技术方案为:
一种震动发电机, 其特征在于包括拱形摩擦单元 1、 拱形摩擦单元 2, 所述拱形摩擦单 元 1 内侧凹形表面与所述拱形摩擦单元 2内侧凹形表面分别作为摩擦面相对放置, 所述拱 形摩擦单元 1 的外侧凸形表面设有一电极兼支撑材料层, 所述拱形摩擦单元 2的外侧凸形 表面设有一电极兼支撑材料层。
一种震动发电机, 其特征在于包括拱形摩擦单元 1、 拱形摩擦单元 2, 所述拱形摩擦单 元 1外侧凸形表面与所述拱形摩擦单元 2外侧凸形表面分别作为摩擦面相对放置, 所述拱 形摩擦单元 1 的内侧凹形表面设有一电极兼支撑材料层, 所述拱形摩擦单元 2的内侧凹形 表面设有一电极兼支撑材料层。
进一步的, 所述拱形摩擦单元 1 通过绝缘粘结层与所述电极兼支撑材料层连接; 所述 拱形摩擦单元 2通过绝缘粘结层与所述电极兼支撑材料层连接。
进一步的, 所述电极兼支撑材料层为一金属电极板; 所述绝缘粘结层为胶粘剂。
进一步的, 所述拱形摩擦单元 1 的摩擦表面具有微纳米图形结构或为光滑表面; 所述 拱形摩擦单元 2的摩擦表面具有微纳米图形结构或为光滑表面。
进一步的, 所述拱形摩擦单元 1 的材料为聚二甲基硅氧烷; 所述拱形摩擦单元 2的材 料为聚对苯二甲酸乙二醇酯; 所述电极兼支撑材料层为铝电极板。
一种级联结构发电机, 其特征在于包括多个如权利要求 1 所述震动发电机, 若干组与 所述震动发电机的电极兼支撑材料层匹配的第一几何互补形摩擦单元、 第二几何互补形摩 擦单元; 其中, 多个所述震动发电机之间分别通过一组所述第一几何互补形摩擦单元、 第 二几何互补形摩擦单元连接; 连接两所述震动发电机的第一几何互补形摩擦单元以及与其 连接的电极兼支撑材料层、 第二几何互补形摩擦单元以及与其连接的电极兼支撑材料层构 成一与所述震动发电机互补的震动发电机。 进一步的, 所述第一互补形摩擦单元通过绝缘 粘结层与所述电极兼支撑材料层连接; 所述第二互补形摩擦单元通过绝缘粘结层与所述电 极兼支撑材料层连接。
进一步的, 所述第一互补形摩擦单元与所述第二互补形摩擦单元相对的表面具有微纳 米图形结构或为光滑表面; 所述第二互补形摩擦单元与所述第一互补形摩擦单元相对的表 面具有微纳米图形结构或为光滑表面。
进一步的, 多个所述震动发电机通过连接带或连接线相对固定在一起。
与现有技术相比, 本发明的积极效果为:
本发明改进了单层发电机。 原有发电机利用聚酰亚胺和氧化硅间的应力差形成拱形结 构, 再在拱形结构的两面分别添加摩擦层和电极。 本发明利用预弯曲的铝箔, 直接作电极 层和拱形, 简化了多次制模的工艺步骤, 把支撑层的材料选择分离出来, 可以选择更合适 的材料, 为发电机提供更好的弹性和可靠性, 同时还可实现对发电机的封装;
本发明提出了新型的互补单层发电机, 与原有的拱形形成了良好的几何互补, 同时还 保持了单层发电机的优异性能;
本发明提出叠式弹簧结构的发电机, 比单层发电机能更有效的吸收外界的能量冲击, 从而将更多的能量用于对外输出; 通过互补式几何叠加, 比通过对原有单层发电机进行简 单堆叠形成发电机的性能提高了两倍, 从而提高了单位面积、 单位体积的能量输出, 同时 还节省了材料和加工成本。 本发明在只有双叠层的情况下, 输出电压已高达 760伏, 输出 功率为 38 mW (合 10.1 mW/cm2), 远高于其他微型发电技术。 利用工业技术, 叠层数量还 可以大量增加, 从而使得发电机的输出大大提高, 并最终应用到实际的生产生活中, 促进 和实现对环境能量的有效收集和利用。
这项技术将是能源领域的革命性技术, 将发展成一个重要的新产业。 随着现有电子设备 功耗的进一步降低, 这项技术会彻底改变手持电子设备的能源供给方式并永久性解决长期 待机问题, 也可在其它需要长期供电的低能耗设备和相关领域获得广泛应用:
1、 手持电子设备的电能补充: 可给智能手机、 平板电脑、 电子书等手持设备的电池充 电, 使手持电子设备超长待机或免充电。 举例如下:
a)制成透明薄膜与触屏结合, 当触动屏幕时产生电量, 给屏幕供电, 多余的电量可 以给自身电池充电, 平常状态下感受外界震动产生电能给自身电池充电; b)制成手机充电后盖与手机充电电路连接, 直接给手机充电;
C)制成独立的手机充电外壳或扁平充电模块粘贴到手机后面, 给手机充电;
2、 便携机的供电, 举例如下:
a)制成透明薄膜与触屏结合, 当触动屏幕时产生电量, 给屏幕供电, 多余的电量可 以给便携机的电池充电, 在平常状态下, 感受外界震动产生电能给自身电池充电; b) 在便携机键盘下方放置这种微型震动能量采集器, 并与相应的充电电路连接, 敲击键盘的同时实现为便携机充电;
C)制成独立的键盘膜, 保护键盘的同时, 接受敲击, 并给便携机充电;
3、 物联网领域: 举例如下:
a)利用环境中的地面或主体的运动、 空气或水的流动产生的震动, 为各种物联网传 感器的供电 (例如动物放养跟踪、 田间管理、 洋流 /水系监测、 气象探测、 环境监控等), 从而免去了更换电池带来的耗时耗力的后果;
b)利用本发明中的发电机作为主动测量传感器, 从而直接克服了能量需求, 将所测 物理量直接转换为电学量进行收集分析;
c)制成 RFID, 在发电机上接入不同的电感, 实现自供能的射频身份识别, 具有极大 的应用前景。
4、 医疗领域, 举例如下
a) 利用发电机产生的高电压脉冲, 在行走的过程中, 刺激按摩人体的相应穴位、 器官, 实现日常行走中的医疗保健, 同时存储记录相应的反馈信号, 成为人体护理管家;
b) 针对各类植入式器件的供能要求, 借助环境震动提供能量来源, 免除定期手术 更换电池的危险;
c) 新概念心脏起搏器, 心脏跳动引起电压脉冲, 再将产生的电压通过相应处理后, 反作用于心脏, 建立一个稳定的反馈机制, 维持心脏的正常、 持续跳动。
5、 其它领域, 还包括发电地板、 自加热坐垫、 自供电玩具、 TPMS (胎压检测)等。 附图说明
图 1为现有发电机结构图;
图 2为单个静电感应式发电机示意图和其输出;
( a) 为结构图, (b) 为摩擦单元结构图, (c) 电压输出图, (d) 电压输出图; 图 3为双叠式静电感应式发电机示意图及其输出; (a) 为结构图, (b) 电压输出图, (C) 电压输出图, (d) 电压输出图; 图 4为三叠式静电感应发电机示意图及其连续输出;
(a) 为结构图, (b) 电压输出图, (c) 电压输出图;
图 5为单个互补形静电感应式发电机示意图和其输出:
(a)为结构图,(b) 为摩擦单元结构图,(c) 电压输出图;
其中, 1-摩擦单元 1, 2 -摩擦单元 2, 3-电极层和支撑层 (即电极兼支撑材料层), 4 - 单层发电机, 5 -互补单层发电机。 具体实施方式
此处以拱形堆叠为例, 除了拱形, 还可以针对其他各种几何形状进行堆叠; 级联的数 目也不限于所给附图 3、 4中的 2个或 3个发电机级联, 可以是多个发电机级联。
图 2为单个拱形式静电感应发电机示意图
1. 图 2 (a) 中的 1为聚二甲基硅氧烷 (PDMS), 作为摩擦单元 1, 同时可用微加工的 方法在摩擦单元 1上做出微纳米图形, 如图 2 (b), 例如金字塔、 栅槽等;
2.摩擦单元 2为聚对苯二甲酸乙二醇酯(PET), 摩擦单元 2上也可以用微加工方法做 出微纳米图形等;
3.金属电极板 3为金属材料, 同时也是结构支撑层, 电极板 3材料选择不同的材料可 以对发电机的劲度系数和可靠性有调节、 改良作用;
4. 1和 3,2和 3之间可通过胶黏剂粘合, 相比于现有公知技术, 加工工艺非常简单;
5.另外, 相比于现有公知设计, 电极和摩擦材料的分离, 可以更好的选择相应材料, 从摩擦效率、发电机劲度系数和可靠性等不同方面分别对发电机进行优化,图 2(c)、 (d)分别是器件输出,可以看到器件的最高输出电压为 518.4V,内阻约为 lOMohm, 所以器件的最大输出功率为 6.7mW (合 1.77 mW/cm2)。
图 5为单个反拱形式静电感应发电机示意图
1. 图 5 (a) 中的 1为聚二甲基硅氧烷 (PDMS), 作为摩擦单元 1, 同时可用微加 工的方法在摩擦单元 1上做出微纳米图形, 如图 5 (b), 例如金字塔、 栅槽等;
2. 摩擦单元 2为聚对苯二甲酸乙二醇酯 (PET), 摩擦单元 2上也可以用微加工方 法做出微纳米图形等;
3. 金属电极板 3为金属材料, 同时也是结构支撑层, 电极板 3材料选择不同的材 料可以对发电机的劲度系数和可靠性有调节、 改良作用; 4. 1和 3,2和 3之间可通过胶黏剂粘合, 目前尚无该种结构的发电机;
5. 图 5 (b)、 (c) 分别是器件输出, 可以看到器件的最高输出电压为 450V, 内阻 约为 9Mohm, 最大输出功率为 5.6mW (合 1.5mW/cm2)。
图 3为双叠式静电感应发电机示意图
1.这里的双叠式结构是由两个拱形和一个反拱形共同组成, 如图 3 (a)所示, 摩擦单 元 1为聚二甲基硅氧烷 (PDMS), 摩擦单元 2为聚对苯二甲酸乙二醇酯 (PET), 这两种材料可根据摩擦起电的序列来选出最大的摩擦配对组合,同时还可用微加工 的方法做出微纳米图形, 例如金字塔、 栅槽等, 金属电极板 3为金属材料, 同时也 是结构支撑层, 每个发电机的输出电压通过与电极板连接的引线输出, 1禾 B 3,2禾口 3之间可通过胶黏剂粘合;
.两个堆叠的拱形通过连接带或线相对固定在一起;
.经测试, 相较于单个发电机, 其输出能力明显提高, 如图 3 (b) 〜(d)所示, 最高 输出电压为 740V, 内阻约为 3.6Mohm (减小为单个发电机的三分之一), 所以最 大输出功率为 38.0 mW (合 10.1 mW/cm2) (增大为单个发电机的 6倍)。
图 4为三叠式静电感应发电机示意图;
1.三叠式发电机的结构类似于双叠式, 由三个拱形和两个反拱形构成, 如图 4 (a)所 示, 同理摩擦单元 1为聚二甲基硅氧烷 (PDMS), 摩擦单元 2为聚对苯二甲酸乙 二醇酯 (PET), 这两种材料可根据摩擦起电的序列来选出最大的摩擦配对组合, 同时还可用微加工的方法做出微纳米图形, 例如金字塔、 栅槽等, 金属电极板 3 为金属材料, 同时也是结构支撑层, 1和 3,2和 3之间可通过常用胶黏剂粘合, 每 个发电机的输出电压通过与电极板连接的引线输出, 再并联连接输出, 如此可延伸 至多叠式静电发电机; 其输出电压如图 4 (b) 所示。
. 多个堆叠的拱形通过连接带或线相对固定在一起。
. 多叠式发电机的另一个巨大优势就是输出电压时长更长, 因此可以实现连续能量输 出。 如图 4 (c) 所示, 发电机在外界 3Hz的敲击作用下, 连续输出幅值高达 12V 的连续方波电压信号。

Claims

权利要求书
1 . 一种震动发电机, 其特征在于包括拱形摩擦单元 1、 拱形摩擦单元 2, 所述拱形摩擦单 元 1内侧凹形表面与所述拱形摩擦单元 2内侧凹形表面分别作为摩擦面相对放置, 所述 拱形摩擦单元 1的外侧凸形表面设有一电极兼支撑材料层, 所述拱形摩擦单元 2的外侧 凸形表面设有一电极兼支撑材料层。
2. 如权利要求 1所述的发电机, 其特征在于所述拱形摩擦单元 1通过绝缘粘结层与其外侧 的所述电极兼支撑材料层连接; 所述拱形摩擦单元 2通过绝缘粘结层与其外侧的所述电 极兼支撑材料层连接。
3. 如权利要求 2所述的发电机, 其特征在于所述电极兼支撑材料层为一金属电极板; 所述 绝缘粘结层为胶粘剂。
4. 如权利要求 1或 2或 3所述的发电机, 其特征在于所述拱形摩擦单元 1的内侧摩擦表面 具有微纳米图形结构或为光滑表面; 所述拱形摩擦单元 2的内侧摩擦表面具有微纳米图 形结构或为光滑表面。
5. 如权利要求 4所述的发电机,其特征在于所述拱形摩擦单元 1的材料为聚二甲基硅氧烷; 所述拱形摩擦单元 2的材料为聚对苯二甲酸乙二醇酯; 所述电极兼支撑材料层为铝电极 板。
6. 一种震动发电机, 其特征在于包括拱形摩擦单元 1、 拱形摩擦单元 2, 所述拱形摩擦单 元 1外侧凸形表面与所述拱形摩擦单元 2外侧凸形表面分别作为摩擦面相对放置, 所述 拱形摩擦单元 1的内侧凹形表面设有一电极兼支撑材料层, 所述拱形摩擦单元 2的内侧 凹形表面设有一电极兼支撑材料层。
7. 如权利要求 6所述的发电机, 其特征在于所述拱形摩擦单元 1通过绝缘粘结层与其内侧 的所述电极兼支撑材料层连接; 所述拱形摩擦单元 2通过绝缘粘结层与其内侧的所述电 极兼支撑材料层连接。
8. 如权利要求 7所述的发电机, 其特征在于所述电极兼支撑材料层为一金属电极板; 所述 绝缘粘结层为胶粘剂。
9. 如权利要求 6或 7或 8所述的发电机, 其特征在于所述拱形摩擦单元 1的外侧摩擦表面 具有微纳米图形结构或为光滑表面; 所述拱形摩擦单元 2的外侧摩擦表面具有微纳米图 形结构或为光滑表面。
10. 如权利要求 9所述的发电机, 其特征在于所述拱形摩擦单元 1的材料为聚二甲基硅 氧烷; 所述拱形摩擦单元 2的材料为聚对苯二甲酸乙二醇酯; 所述电极兼支撑材料层为 铝电极板。
11. 一种级联结构发电机, 其特征在于包括多个如权利要求 1所述震动发电机, 若干组 与所述震动发电机的电极兼支撑材料层匹配的第一几何互补形摩擦单元、 第二几何互补 形摩擦单元; 其中, 多个所述震动发电机之间分别通过一组所述第一几何互补形摩擦单 元、 第二几何互补形摩擦单元连接; 连接两所述震动发电机的第一几何互补形摩擦单元 以及与其连接的电极兼支撑材料层、 第二几何互补形摩擦单元以及与其连接的电极兼支 撑材料层构成一与所述震动发电机互补的震动发电机。
12. 如权利要求 11 所述的级联结构发电机, 其特征在于所述第一互补形摩擦单元通过 绝缘粘结层与所述电极兼支撑材料层连接; 所述第二互补形摩擦单元通过绝缘粘结层与 所述电极兼支撑材料层连接。
13. 如权利要求 11或 12所述的级联结构发电机, 其特征在于所述第一互补形摩擦单元 与所述第二互补形摩擦单元相对的表面具有微纳米图形结构或为光滑表面; 所述第二互 补形摩擦单元与所述第一互补形摩擦单元相对的表面具有微纳米图形结构或为光滑表 面。
14. 如权利要求 11或 12所述的级联结构发电机, 其特征在于多个所述震动发电机通过 连接带或连接线相对固定在一起。
PCT/CN2013/071372 2013-01-21 2013-02-05 一种震动发电机及其级联结构发电机 WO2014110849A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/762,135 US9825558B2 (en) 2013-01-21 2013-02-05 Vibration generator and stacked-structure generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310022144.2A CN103944443B (zh) 2013-01-21 2013-01-21 一种级联结构发电机
CN201310022144.2 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014110849A1 true WO2014110849A1 (zh) 2014-07-24

Family

ID=51191971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071372 WO2014110849A1 (zh) 2013-01-21 2013-02-05 一种震动发电机及其级联结构发电机

Country Status (3)

Country Link
US (1) US9825558B2 (zh)
CN (1) CN103944443B (zh)
WO (1) WO2014110849A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317514A (zh) * 2017-08-17 2017-11-03 浙江师范大学 一种组合式压电发电机
CN111555659A (zh) * 2020-04-20 2020-08-18 同济大学 一种可组合的静电式动能采集器及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944442B (zh) * 2013-01-21 2016-07-06 北京大学科技开发部 一种折叠式微型震动发电机及其制造方法
US10042446B2 (en) 2013-08-13 2018-08-07 Samsung Electronics Company, Ltd. Interaction modes for object-device interactions
US10108305B2 (en) 2013-08-13 2018-10-23 Samsung Electronics Company, Ltd. Interaction sensing
KR101544325B1 (ko) * 2014-09-23 2015-08-12 성균관대학교산학협력단 형상기억폴리머를 이용한 자가 회복 에너지 발전 소자
CN105515437B (zh) * 2014-10-14 2018-06-08 北京纳米能源与***研究所 摩擦发电机和应用该摩擦发电机发电的方法
CN105756750B (zh) * 2014-12-15 2018-11-02 北京纳米能源与***研究所 一种气体净化装置
CN104682768B (zh) * 2015-03-19 2016-11-30 京东方科技集团股份有限公司 一种摩擦发电结构及显示装置
US10425018B2 (en) * 2015-05-19 2019-09-24 Georgia Tech Research Corporation Triboelectric nanogenerator for harvesting broadband kinetic impact energy
CN105262365B (zh) * 2015-09-29 2017-05-17 西南交通大学 一种草丛结构的纳米摩擦风能发电机
CN105958858B (zh) * 2016-05-25 2018-02-02 西南交通大学 一种双层波浪形杂化纳米发电机
US20180153450A1 (en) * 2016-12-02 2018-06-07 Glysens Incorporated Analyte sensor receiver apparatus and methods
US10804818B2 (en) * 2017-06-30 2020-10-13 Toyota Motor Engineering & Manufacturing North America, Inc. Triboelectric generator and network for mechanical energy harvesting
CN107196551B (zh) * 2017-07-20 2019-01-08 京东方科技集团股份有限公司 一种摩擦发电机、具有该摩擦发电机的装置及制作方法
CN109698544B (zh) * 2017-10-20 2021-05-18 北京纳米能源与***研究所 基于摩擦纳米发电机的风力发电集成***
CN108683356B (zh) * 2018-04-04 2019-08-23 河南大学 柔性摩擦纳米发电机及基于该电机的减振及货物状态监测***
CN109149996A (zh) * 2018-04-27 2019-01-04 纳智源科技(唐山)有限责任公司 具有多个摩擦组件的摩擦发电机
CN109713933B (zh) 2019-01-18 2021-01-22 京东方科技集团股份有限公司 一种微型发电装置及具有该装置的电子设备
CN111555654B (zh) * 2020-05-16 2023-05-26 西安工业大学 集成微纳能量回收存储芯片及其工作方法
CN113074840B (zh) * 2021-03-30 2023-03-24 西交利物浦大学 一种主动式压力传感器及其制备方法
CN113206610B (zh) * 2021-05-10 2022-05-03 北华航天工业学院 一种可拉伸的拱形阵列摩擦纳米发电织物及其制备方法
KR102588571B1 (ko) * 2021-08-12 2023-10-12 한국세라믹기술원 친환경 에너지원으로 사용 가능한 책 구조의 압전-마찰전기 올인원 에너지 하베스터 모듈 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157646A (ja) * 2005-12-08 2007-06-21 Canon Inc 触媒電極および固体高分子型燃料電池
CN101604930A (zh) * 2008-06-13 2009-12-16 鸿富锦精密工业(深圳)有限公司 发电机
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN102683573A (zh) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 纳米发电机、纳米发电机组及其自供电***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349141B1 (en) * 2000-03-03 2002-02-19 The United States Of America As Represented By The Secretary Of The Navy Dual bi-laminate polymer audio transducer
KR101562060B1 (ko) * 2009-04-06 2015-10-21 삼성전자주식회사 전기 에너지 발생 장치 및 그 제조 방법
US8803406B2 (en) * 2010-11-30 2014-08-12 KAIST (Korea Advanced Institute of Science and Technology) Flexible nanocomposite generator and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157646A (ja) * 2005-12-08 2007-06-21 Canon Inc 触媒電極および固体高分子型燃料電池
CN101604930A (zh) * 2008-06-13 2009-12-16 鸿富锦精密工业(深圳)有限公司 发电机
CN102683573A (zh) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 纳米发电机、纳米发电机组及其自供电***
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317514A (zh) * 2017-08-17 2017-11-03 浙江师范大学 一种组合式压电发电机
CN107317514B (zh) * 2017-08-17 2023-06-02 浙江师范大学 一种组合式压电发电机
CN111555659A (zh) * 2020-04-20 2020-08-18 同济大学 一种可组合的静电式动能采集器及其制备方法
CN111555659B (zh) * 2020-04-20 2023-08-29 同济大学 一种可组合的静电式动能采集器及其制备方法

Also Published As

Publication number Publication date
CN103944443B (zh) 2016-09-07
CN103944443A (zh) 2014-07-23
US9825558B2 (en) 2017-11-21
US20150318800A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
WO2014110849A1 (zh) 一种震动发电机及其级联结构发电机
Shi et al. Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications
Li et al. Triboelectric nanogenerators enabled internet of things: A survey
CN106602924A (zh) 一种收集振动能量的摩擦纳米发电机和振动传感器
Li et al. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply
CN103368450A (zh) 摩擦电纳米发电机和利用摩擦电纳米发电机的鞋垫
Liu et al. Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization
CN103779885A (zh) 恒压自充电能量供给设备及其制造方法
CN110601331B (zh) 一种基于摩擦纳米发电机的手机自充电***
CN103840710A (zh) 一种振动能量采集器
CN107592030A (zh) 一种利用波浪能的压电发电装置
CN107453644A (zh) 一种柔性海洋能采集装置
Iqbal et al. Power harvesting footwear based on piezo-electromagnetic hybrid generator for sustainable wearable microelectronics
CN109818521A (zh) 一种蜂窝式驻极体/静电能量采集器
CN207304405U (zh) 一种柔性海洋能采集装置
CN104283456A (zh) 自充电储能装置
CN206962735U (zh) 一种基于衣物摩擦纳米发电机的能量收发***
CN205533013U (zh) 一种基于压电材料的非特定方向风能收集装置
KR101172278B1 (ko) 나노와이어의 전체가 코팅되고 발전량이 향상된 나노발전기 및 그 제조방법
CN207460028U (zh) 基于桥梁振动的接触式摩擦发电装置
CN205287550U (zh) 一种利用振动能量压电发电的塑胶篮球场
RU2570819C1 (ru) Пьезоэлектрический генератор, способ его изготовления и мобильное устройство, содержащее его
CN206349946U (zh) 能量采集装置及能量采集***
KR101172279B1 (ko) 발전량이 향상된 나노발전기 및 그 제조방법
WO2013069038A1 (en) Baggage for the recovery of energy from the dynamic movements of the baggage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762135

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 29/09/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13871983

Country of ref document: EP

Kind code of ref document: A1