WO2014110689A1 - 地下工程突水灾害源超前地质预报三维聚焦激发极化设备 - Google Patents

地下工程突水灾害源超前地质预报三维聚焦激发极化设备 Download PDF

Info

Publication number
WO2014110689A1
WO2014110689A1 PCT/CN2013/000042 CN2013000042W WO2014110689A1 WO 2014110689 A1 WO2014110689 A1 WO 2014110689A1 CN 2013000042 W CN2013000042 W CN 2013000042W WO 2014110689 A1 WO2014110689 A1 WO 2014110689A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
module
electrode
current
converter
Prior art date
Application number
PCT/CN2013/000042
Other languages
English (en)
French (fr)
Inventor
李术才
刘斌
聂利超
隋青美
宋杰
郝亭宇
曹玉强
张法业
王静
刘征宇
孙怀凤
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2013200184650U external-priority patent/CN203164433U/zh
Priority claimed from CN201310013435.5A external-priority patent/CN103064121B/zh
Application filed by 山东大学 filed Critical 山东大学
Priority to US14/235,332 priority Critical patent/US9256003B2/en
Publication of WO2014110689A1 publication Critical patent/WO2014110689A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • G01V3/04Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current using dc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/083Controlled source electromagnetic [CSEM] surveying
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells

Definitions

  • the invention relates to an advanced geological prediction system for water inrush disaster source based on three-dimensional focusing induced polarization method in underground engineering construction such as tunnel, in particular to a three-dimensional focusing excitation pole for advanced geological prediction of water inrush disaster source during construction period of grounding project Instrumentation. Background technique
  • the most effective method for advanced geological prediction in electrical methods is the induced polarization method.
  • the induced polarization method has been proved to have a good response to the spatial position and water volume of water bodies, in order to solve the problem of water inrush disasters in underground construction such as tunnels. Forecasting three-dimensional positioning and water volume prediction problems provides a feasible and effective way.
  • the existing pre-detection excitation and polarization equipments for tunnels and other projects are based on the electric sounding theory and are fixed-source non-focusing excitation polarization devices.
  • the non-focusing type of induced polarization prediction device is to arrange the detection line on the side wall or bottom plate of the tunnel. The side interference near the line often obscures the useful information of the tunnel excavation surface.
  • the accuracy of positioning and water quantity prediction is low and the credibility is poor, which often leads to errors in geological detection results and affects the safety of tunnel construction.
  • the purpose of the invention is to solve the problem of the non-focusing induced polarization device, and provide a three-dimensional focus excitation polarization device for the underground geological disaster source advanced geological prediction, which has stable performance, high sensitivity, convenient and practical, and can be mass-produced. It is able to predict the lithological changes and aquifer properties in front of the face of underground engineering such as tunnels.
  • the present invention adopts the following technical solutions.
  • An underground engineering water inrush disaster source advanced geological prediction three-dimensional focusing excitation polarization device which comprises a constant current multi-channel transmitter, a multi-channel intelligent receiver, a multi-channel electrode automatic converter, an industrial computer and an electrode system;
  • the invention comprises an observation electrode array and a shielding electrode; the observation electrode array comprises a plurality of electrodes, the electrodes in the observation electrode array and the shielding electrode are respectively connected with the multi-channel auto-converter, and the multi-channel auto-converter and the constant current multi-channel transmission respectively
  • the machine, the multi-channel intelligent receiver connection, the constant current multi-channel transmitter, the multi-channel intelligent receiver, and the multi-channel electrode automatic converter respectively communicate with the industrial computer.
  • the invention arranges the observation electrode array and the shielding electrode on the tunnel heading surface, selects any electrode in the observation electrode array as the power supply electrode, and the other electrodes serve as the observation electrode, and the industrial computer controls the constant current multi-channel transmitter to supply the shielding electrode and the power supply.
  • the electrode transmits the same current, so that the current of the power supply electrode is directed to the front of the heading surface under the action of the shielding electrode, and there is no side interference; the scanning data is collected by the observation electrode and fed back to the industrial computer through the multi-channel intelligent receiver; After measuring this cycle, the industrial computer controls the multi-electrode autochanger to replace the power supply electrode and then perform the next cycle measurement, which can obtain a large amount of data carrying the effective information in front of the tunneling surface, thereby realizing the three-dimensional positioning of the water inrush danger source and the prediction of the water quantity. , solved the problem of non-focusing induced polarization devices.
  • the constant current multi-channel transmitter comprises a transmitting single-chip microcomputer system, an inverter circuit, a multi-channel driving module, a boosting module, a rectifying module, a current-voltage sampling module and a data collecting module.
  • the power supply generates a high-voltage constant current through the inverter circuit, the boosting module, and the rectifier module, and the rectifier module is connected with the multi-channel driving module;
  • the transmitting single-chip microcomputer system controls the inverter circuit, the boosting module, and the multi-channel driving module, and detects the feedback through the current-voltage sampling module.
  • the current in the circuit controls the multi-channel drive module to output multiple adjustable constant currents.
  • the transmitting single chip microcomputer system comprises a transmitting single chip microcomputer, a digital 3 ⁇ 4 display module, a clock module, a data storage module and a data communication module, and mainly completes detection, display, switching quantity and analog quantity control, and transmits the single chip microcomputer and the peripheral circuit power supply and the constant current source adopts the whole Isolation design, parameter setting is set by keyboard, and displayed on the digital display module.
  • the transmitting single-chip microcomputer system uses the timer of the transmitting single-chip microcomputer to compare the output function to output two PWM modulation waveforms, and the inverter circuit is controlled by pulse width modulation (PWM).
  • PWM pulse width modulation
  • the DC voltage is inverted; the current and voltage sampling module detects the current after passing through the rectifier module, and transmits The single-chip microcomputer adjusts the boosting circuit to meet the constant current after passing through the rectifier module.
  • the current-voltage sampling module detects each current output by the multi-channel driving module, and the transmitting single-chip microcomputer controls the multi-channel driving module, thereby adjusting each of the multi-way driving modules.
  • the current reaches a stable set point.
  • the multi-channel driving module generates a high voltage through a DC voltage through an inverter circuit and a boosting module, and uses a high-power MOSFET to form a multi-channel negative feedback constant current output loop, thereby realizing multi-channel constant current and large current output, and current
  • the voltage sampling module feeds back the current of each channel, so that the multi-channel driving module is adjusted by the transmitting single-chip microcomputer to output the set number of supply circuits, the power supply time, and the current.
  • the current-voltage sampling module detects the current after passing through the rectifier module and the multi-channel current generated by the multi-channel driving module, and the other end is connected to the transmitting single-chip microcomputer through the data acquisition module.
  • the current-voltage sampling module uses a Hall detection circuit for analog isolation.
  • the transmitting single-chip microcomputer system further comprises an overvoltage and overcurrent protection module, wherein the overvoltage and overcurrent protection module is respectively connected with the current voltage sampling module and the transmitting single chip microcomputer, and the current voltage sampling module feeds back the current magnitude to the current voltage protection module to realize the multiple output each.
  • the output voltage of the circuit is automatically protected.
  • the multi-channel intelligent receiver comprises a multi-channel parallel receiving module, a multi-channel ADC converter and a receiving single-chip microcomputer which are sequentially connected, and the receiving signal sequentially passes through the receiving module, the ADC converter, and enters the receiving single-chip microcomputer; receiving the single-chip microcomputer for each receiving module
  • the data is collected, and the control and information feedback are realized through communication and industrial computer, and the final processing of the digital signal is performed to complete the measurement of apparent resistivity, grounding resistance, apparent polarizability, half-life, and excitation ratio.
  • the receiving module comprises an electrostatic high voltage suppression circuit, a common mode suppression circuit, a differential mode suppression circuit, a first stage 50 Hz wave limiter, a differential input amplifier, a second stage 50 Hz wave limiter, a 100 Hz wave limiter, and an 8th order.
  • the Butterworth 20Hz low-pass filter is connected, and the same receiving microcontroller controls the differential input amplifier through the DAC zeroing circuit.
  • the electrostatic high voltage suppression circuit mainly absorbs static electricity and surge impact in the working environment, and protects the back end circuit; the common mode suppression circuit and the differential mode suppression circuit absorb the input common mode and differential mode ten disturbance signals, and the two-stage 50Hz wave limiter Initially absorb 50Hz power frequency interference to ensure that the DC operating point of the differential input amplifier does not drift with the above interference signal; the differential input amplifier output signal, after passing through the first stage 50Hz limiter and 100Hz limiter, fully suppress the power frequency and power frequency harmonic Wave interference; 8th-order Butterworth low-pass filter with 40dB per decade octave attenuation and flat signal within the bandwidth.
  • the multi-channel auto-converter comprises a multi-channel relay switch, a decoding circuit, a converter single-chip microcomputer, a communication module, a voltage sampling circuit, the industrial computer is connected with the converter single-chip through the communication module, and the converter single-chip passes the decoding circuit and the multi-channel relay Switch connection, one end of the multi-way relay switch is connected with the electrode system, and the other end is connected with the constant current multi-channel transmitter and the multi-channel intelligent receiver through multiple cables, and can perform four kinds of arrangement conversions of heating, dipole, differential and cross-section. It takes only one second for each measurement point to be changed, which greatly saves manpower, material and time, and improves the accuracy and efficiency of measurement.
  • the multi-way relay switch adopts a high-power relay, and at the same time, the voltage sampling circuit is used to detect the high-power relay voltage, and is fed back to the industrial computer through the converter single-chip microcomputer, thereby realizing fast switching of the large current of the transmission, and avoiding the load being too large to burn the relay.
  • the converter single-chip microcomputer controls the opening and closing of the multi-way relay switch by the coding circuit according to the instruction sent by the industrial computer, and realizes the rapid conversion of the multi-channel electrode.
  • the industrial computer comprises a signal identification module, a signal processing module and a terminal display control module.
  • the industrial computer is connected with the constant current multi-channel transmitter through communication, realizes control and information feedback through communication and the industrial computer, and automatically converts through communication and multi-channel electrodes.
  • the current size control command completes the detection of the voltage fed back by the multi-channel auto-converter, processes the multi-channel signal passing through the multi-channel intelligent receiver, and performs digital signal processing and terminal display.
  • the multi-channel auto-converter is connected to the multi-channel output of the constant current multi-channel transmitter and the multi-channel intelligent receiver multi-channel receiver through the cable.
  • the invention adopts a high-power high-precision multi-channel driving module to realize a multi-channel high-current constant-current transmitter with automatic modulation function, which can realize 6-channel high-current constant-current output, thereby realizing simultaneous output of the shield electrode and the power supply electrode.
  • the same current the current output range is 0 ⁇ 2.0A, and the step size is 0.01A.
  • the invention can realize multi-channel observation data multi-channel intelligent receiver by using 8 parallel receiving modules and three multi-channel 24-bit ADC converters, which can simultaneously achieve 8-channel observation data simultaneous measurement, greatly improving the acquisition. Efficiency, meeting the requirements of three-dimensional focused excitation polarization detection method to detect huge data volume.
  • the invention uses a multi-channel electrode conversion device, which realizes automatic conversion of electrodes, and uses a high-power relay and a feedback circuit to realize automatic switching of large currents, and realizes focus-excited polarization detection according to a preset sequence. Enter The automatic acquisition of the line improves the collection efficiency and provides hardware support for the fast detection of the three-dimensional focus excitation polarization.
  • the invention realizes the hardware system of the focus-excited polarization instrument, and can complete the multi-information comprehensive collection of apparent resistivity, grounding resistance, apparent polarizability, half-life, excitation ratio, etc., and the current directivity is good, and the realization is realized.
  • the face orientation prediction is effective, which reduces the interference information behind the face and improves the accuracy and accuracy of the detection. It can meet the urgent needs of geological disaster control in the current national key construction projects, and will bring considerable economic and social benefits.
  • Figure 1 is a schematic block diagram of the present invention.
  • FIG. 2 is a structural diagram of a constant current multi-channel transmitter of the present invention.
  • Figure 3 is a block diagram of a multi-channel intelligent receiver of the present invention.
  • FIG. 4 is a block diagram showing the hardware of the receiving module of the multi-channel intelligent receiver of the present invention.
  • Figure 5 is a structural view of a multi-electrode autochanger of the present invention.
  • a three-dimensional focus excitation polarization device for underground geological disaster source advanced geological prediction which includes a large current constant current multi-channel transmitter 1, a multi-channel intelligent receiver 2, and a multi-channel auto-converter 3
  • Electrode system 5 has 36 electrodes, and multi-channel auto-converter 3 is connected with high-current constant-current multi-channel transmitter 1, multi-channel intelligent receiver 2, high-current constant-current multi-channel transmitter 1, multi-channel intelligent receiver 2.
  • the multi-channel auto-converter 3 communicates with the industrial computer 4 respectively.
  • the invention arranges the observation 4 ⁇ 4 pole array and the shielding electrode group on the tunnel boring surface, selects any electrode in the observation electrode array as the power supply electrode, the other electrode serves as the observation electrode, and the industrial computer 4 controls the large current constant current multiplex transmitter 1
  • the isotropic current is transmitted to the shielding electrode and the power supply electrode, so that the current of the power supply electrode is directed to the front of the tunneling surface under the action of the shielding electrode, and there is no side interference; the scanning electrode is used for the scanning data collection, and the multi-channel intelligent receiving is performed.
  • the machine 2 feeds back to the industrial computer 4; after measuring the cycle, the industrial computer 4 controls the multi-electrode auto-converter 3 to replace the power supply electrode and perform the next cycle measurement.
  • a large amount of data carrying effective information in front of the tunneling surface can be obtained, thereby realizing the three-dimensional positioning of the water inrush danger source and the prediction of the water quantity, and solving the problem of the non-focusing induced polarization device.
  • the large current constant current multi-channel transmitter 1 is mainly composed of a transmitting single chip microcomputer system, an H-bridge inverter circuit 6, a high-power high-precision multi-channel driving module 9, a boosting module 7, a rectifying module 8, a current-voltage sampling module 10, and
  • the over-current protection module 11 and the data acquisition module 12 are composed, as shown in FIG. 2 .
  • the 36V power supply generates a high-voltage constant current through the H-bridge inverter circuit 6, the boosting module 7, and the rectifier module 8, and the rectifier module 8 is connected with the high-power ⁇ precision multi-channel driving module 9; the transmitting single-chip microcomputer system controls the H-bridge inverter circuit 6, liter
  • the voltage module 7 and the high-power high-precision multi-channel driving module 9 detect the current in the feedback circuit through the current-voltage sampling module 10, and control the high-power high-precision multi-channel driving module 9 to output 6 adjustable constant currents to the multi-channel relay switch.
  • the transmitting single chip microcomputer system comprises a transmitting single chip microcomputer 13, the model number is MSP430F169, the digital display module 14, the clock module 15, the data storage module 16, the data communication module 17, and mainly completes detection, display, switching quantity and analog quantity control, and transmits the single chip microcomputer 13 And the peripheral circuit power supply and constant current source adopt full isolation design, the parameter setting is set and displayed through the keyboard, and the display adopts LED mode.
  • the transmitting single-chip microcomputer control system uses the timer of the transmitting single-chip microcomputer 13 to compare the output function to output two PWM modulation waveforms, and controls the H-bridge inverter circuit 6 to use the pulse width modulation technology (PWM) to invert the DC voltage; the current-voltage sampling module 10 pairs
  • PWM pulse width modulation technology
  • the transmitting microcontroller 13 adjusts the boosting module 7 to satisfy the constant current after passing through the rectifier module 8, and the current and voltage sampling module 10 outputs each current to the high-power high-precision multi-channel driving module 9.
  • the detection is performed, and the transmitting single-chip microcomputer 13 controls the high-power high-precision multi-channel driving module 9, thereby adjusting the current setting of the high-power high-precision multi-channel driving module 9 to a stable set value.
  • the high-power high-precision multi-channel driving module 9 generates a high voltage through the H-bridge inverter circuit 6 and the boosting module 7 through a 36V DC voltage output from the battery pack, and forms a multi-channel negative feedback constant current output by using a high-power MOSFET tube.
  • the loop realizes the output of 6 constant currents and large currents, and the current and voltage sampling module 10 feeds back the current of each channel, so that the high-power high-precision multi-channel driving module 9 is adjusted by the transmitting single-chip microcomputer 13 to output the set number of circuits and power supply. Time, current size, current setting range 0 ⁇ 2.0A, length 0.01A.
  • the current and voltage sampling module 10 detects the current through the rectifier module 8 and the multi-channel current generated by the high-power high-precision multi-channel driving module 9 at one end, and the other end is connected to the current voltage protection module 11 and the data acquisition module 12 respectively. And connected with the transmitting microcontroller 13.
  • the current-voltage sampling module 10 uses a Hall detection circuit for analog isolation. At the same time, the current-voltage sampling module 10 feeds back the current to the current-voltage protection module 11.
  • the multi-output output voltage of each branch exceeds 1000V for automatic protection.
  • the multi-channel intelligent receiver 2 comprises 8 parallel receiving modules 18, three multi-channel 24-bit ADC converters 19, and a receiving single-chip microcomputer 20, as shown in FIG. 3, the receiving signals sequentially pass through the receiving module 18, and the multi-channel 24-bit ADC
  • the converter 19 enters and receives the single-chip microcomputer 20; the receiving single-chip microcomputer 20 collects the data of each receiving module 18, and realizes control through communication and the industrial computer 4 System and information feedback.
  • the receiving module 18 includes an electrostatic high voltage suppression circuit, a common mode suppression circuit, a differential mode suppression circuit, a first stage SOHz wave limiter, a differential input amplifier, a second stage 50 Hz wave limiter, a 100 Hz wave limiter, and 8
  • the Butterworth 20Hz low-pass filter is connected, and the receiving single-chip 20 controls the differential input amplifier through the DAC zeroing circuit.
  • the principle block diagram is shown in FIG. 4 .
  • the electrostatic high-voltage suppression circuit mainly absorbs static electricity and surge shock in the working environment, and protects the back-end circuit; the common-mode suppression circuit and the differential mode suppression circuit absorb the input common-mode and differential-mode interference signals, and the two-stage 50Hz current limiter is initially configured. Absorb 50H Z power frequency interference to ensure that the DC operating point of the differential input amplifier does not drift with the above interference signal; The differential input amplifier output signal, after passing through the first stage 50H Z limiter and 100Hz limiter, fully suppress the power frequency and power frequency Harmonic interference; 8th-order Butterworth low-pass filter with 40dB per decade octave attenuation and flat signal within the bandwidth.
  • the input bipolar signal of the ADC converter 19 has a maximum signal voltage of ⁇ 15V, and the signal resolution of each stage of the gain down conversion output can be up to 24 bits.
  • the DAC zeroing circuit is connected to the differential input amplifier with a minimum zeroing voltage of ⁇ 4. 8uV.
  • the multi-channel auto-converter 3 is mainly composed of a multi-way relay switch 21, a decoding circuit 22, a converter single-chip microcomputer 23, a communication module 24 , a voltage sampling circuit 25, and the like, as shown in FIG.
  • the industrial computer 4 is connected to the converter single-chip microcomputer 23 through a communication module, and the converter single-chip microcomputer 23 is connected to the multi-way relay switch 21 through the decoding circuit 22, the multi-way relay switch 21-end is connected with the 36-way electrode, and the other end is connected with the multi-channel cable respectively.
  • the high-power high-precision multi-channel driving module 9 is connected with the receiving module 18, and can perform four kinds of arrangement conversions of heating, dipole, differential, and cross-section, and each measurement point takes only one second, which greatly saves manpower, material resources and Time increases the accuracy and efficiency of the measurement.
  • the multi-way relay switch 21 adopts a high-power relay, and at the same time, the voltage sampling circuit 25 is used to detect the high-power relay voltage, and is fed back to the industrial computer 4 through the converter single-chip microcomputer 23, thereby realizing fast switching of the large current of the transmission, and avoiding the load being too large to burn. Relay.
  • the converter MCU 23 controls the opening and closing of the multi-way relay switch 21 by the coding circuit 22 according to the command sent by the industrial computer 4, thereby realizing the rapid conversion of the 36-channel electrode.
  • the industrial computer 4 includes a signal identification module, a signal processing module and a terminal display control module.
  • the industrial computer 4 is connected to the high current constant current multi-channel transmitter 1 by communication, and the industrial computer 4 communicates with the high current constant current multi-channel transmitter. 1
  • the signal control is realized, and the industrial computer 4 performs the final processing of the digital signal to complete the measurement of the apparent resistivity, the grounding resistance, the apparent polarizability, the half-life, and the excitation ratio.
  • Control and information feedback are realized through communication and multi-channel intelligent receiver 2, and multi-channel auto-converter 3, high-current constant-current multi-channel transmitter 1, multi-channel intelligent can be set by communication with multi-electrode auto-converter 3
  • the parameters of the receiver 2 are simultaneously sent to the multi-channel intelligent receiver 2 and the high-current constant current multi-channel transmitter 1 to control the number of tributary circuits and the current of each branch, and complete the feedback to the multiplexer 3
  • the voltage is detected, and the multi-channel signal passing through the multi-channel intelligent receiver 2 is processed, and digital signal processing is performed and displayed at the terminal.
  • the shielding electrode is made With the power supply electrode current flowing into the surrounding rock almost in the radial direction, the effective information of the front of the carrying face can be obtained, and the multi-channel automatic converter 3, the multi-channel intelligent receiver 2, the high-current constant-current multi-channel power supply transmitter 1 can be obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Electromagnetism (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种地下工程突水灾害源超前地质预报三维聚焦激发极化设备,包括恒流多路发射机(1)、多通道智能接收机(2)、多路电极自动转换器(3)、工控机(4)、观测电极阵列和屏蔽电极。选择观测电极阵列中的电极分别作为供电电极和观测电极,工控机(4)控制恒流多路发射机(1)向屏蔽电极和供电电极传输同性电流,使得在屏蔽电极的作用下供电电极电流几乎指向掘进面的正前方。利用观测电极进行扫描性数据采集,并通过多通道智能接收机(2)反馈至工控机(4)。工控机(4)控制多路电极自动转换器(3)更换供电电极。该设备实现了多路供电以及多路采集,实现了掌子面的定向探测,电流的指向性好,有效解决了测线附近的旁侧干扰问题,使得背景干扰数据少,预报精度以及探测距离大大提高。

Description

地下工程突水灾害源超前地质预报三维聚焦激发极化设备
技术领域
本发明涉及一种隧道等地下工程施工中基于三维聚焦激发极化法的突水灾害源超前地质 预报***,具体地说是一种地卜工程施工期突水灾害源超前地质预报三维聚焦激发极化仪器。 背景技术
我国是隧道等地下工程突水灾害最严重的国家之一, 突水突泥灾害所造成的人员伤亡和 经济损失在各类隧道等地下工程地质灾害中居于前列, 往往造成重大的人员伤亡、 严重的经 济损失和环境破坏。 为防止隧道等地下工程突水突泥灾害的发生, 需要在施工期间实施超前 地质预报工作, 超前地质预报工作的目的就是探明隧道等地下工程开挖面前方一定范围之内 的地质情况。 但是由于突水突泥灾害源的强隐蔽性和强复杂性, 缺乏对突水灾害源三维定位 与水量定量预测的有效方法和仪器,是国内外隧道等地下工程工程领域亟待解决的关键难题。
自上世纪 70 年代起, 国际上开始了隧道等地下工程施工期的不良地质超前预报研究工 作, 经过近 40年的发展, 己经发展到地震反射法、 电法、 电磁法等多种地球物理勘探方法。 对于突水灾害源的超前地质预报而言, 地震波反射超前预报方法及其设备 (如 TSP法、 TRT法 等)对水体的响应不敏感,无法有效的识别并定位突水灾害源。电磁超前预报方法及其设备 (如 地质雷达法、 瞬变电磁法等)对水体的空间位置信息响应比较敏感, 在水体定位方面有一定的 效果, 但电磁法抗干扰能力极弱, 且无法预测水量的大小。
电法类超前地质预报方法中较为有效的是激发极化法, 激发极化方法被证明对水体的空 间位置和水量大小有较好的反应, 为解决隧道等地下工程施工中突水灾害源超前预报三维定 位和水量预测难题提供了可行有效的途径。 但是目前已有的隧道等^ k下工程超前探测激发极 化设备均是基于电测深理论的定点源非聚焦型的激发极化设备。 非聚焦型的激发极化超前预 报设备是将探测测线布置在隧道边墙或底板上, 测线附近的旁侧干扰往往掩盖了隧道开挖面 ^方的有用信息, 对突水灾害源的定位和水量预测的精度低, 可信性差, 往往导致地质探测 结果错误, 影响了隧道施工安全。
在三维聚焦型激发极化设备的发明中存在以下关键难题:① 屏蔽电极和供电电极需要同 时输出同性电流, 具有自动调制功能的多路大电流恒流发射机的发明是关键难题; ② 三维聚 焦型激发极化探测方法在掘进面上需要布置由数十个电极构成的观测电极***, 需要研制多 通道观测数据自动化采集装置, 即多通道智能接收机; ③ 该设备需要测量观测电极阵列的大 确认本 量数据, 采集过程中需要不断的切换电极, 同时大电流的切换是一个亟待解决的难题, 需要 研制电极自动转换器。④ 该设备需要具备多元激发极化信息综合采集的功能,包括屏蔽电流、 供电电流、 视电阻率、 接地电阻、 视极化率、 激发极化衰减时等。
发明内容
本发明的目的就是为了解决非聚焦型激发极化设备存在的问题, 提供一种地下工程突水 灾害源超前地质预报三维聚焦激发极化设备, 它性能稳定、 灵敏度高、 方便实用且能批量生 产, 能够预报隧道等地下工程掌子面前方岩性的变化和含水层性质。
为实现上述目的, 本发明采用下述技术方案。
一种地下工程突水灾害源超前地质预报三维聚焦激发极化设备,它包括恒流多路发射机、 多通道智能接收机、 多路电极自动转换器、 工控机和电极系; 所述电极系包括观测电极阵列 和屏蔽电极; 所述观测电极阵列包括若干个电极, 观测电极阵列中的电极、 屏蔽电极分别与 多路电极自动转换器连接, 多路电极自动转换器分别与恒流多路发射机、 多通道智能接收机 连接, 恒流多路发射机、 多通道智能接收机、 多路电极自动转换器分别与工控机实现通信。 本发明将观测电极阵列和屏蔽电极布置在隧道掘进面上, 选择观测电极阵列中的任一电极作 为供电电极, 其他的电极作为观测电极, 工控机控制恒流多路发射机向屏蔽电极和供电电极 传输同性电流, 使得在屏蔽电极的作用下供电电极电流几乎指向掘进面的正前方, 不存在旁 侧干扰; 利用观测电极进行扫描性数据采集, 并通过多通道智能接收机反馈至工控机; 测完 此循环后, 工控机控制多路电极自动转换器更换供电电极再进行下一循环测量, 可得到携带 掘进面前方有效信息的大量数据, 从而实现突水危险源的三维定位和水量的预测, 解决了非 聚焦型激发极化设备存在问题。
所述恒流多路发射机包括发射单片机***、 逆变电路、 多路驱动模块、 升压模块、 整流 模块、 电流电压采样模块以及数据采集模块。 电源通过逆变电路、 升压模块、 整流模块产生 高压恒定电流, 整流模块与多路驱动模块连接; 发射单片机***控制逆变电路、 升压模块和 多路驱动模块, 通过电流电压采样模块检测反馈电路中的电流, 控制多路驱动模块输出多路 可调的恒流电流。
所述发射单片机***包含发射单片机、 数字¾示模块、 时钟模块、 数据存储模块、 数据 通信模块, 主要完成检测、 显示、 开关量和模拟量控制, 发射单片机及***电路供电与恒流 源采用全隔离设计, 参量设置通过键盘设定, 并在数字显示模块上显示, 发射单片机***利 用发射单片机的定时器比较输出功能输出两路 PWM调制波形, 控制逆变电路利用脉宽调制技 术 (PWM)对直流电压进行逆变; 电流电压采样模块对经过整流模块后的电流进行检测, 发射 单片机调节升压电路, 以满足通过整流模块后电流的恒定, 同时电流电压采样模块对多路驱 动模块输出的每一路电流进行检测, 发射单片机控制多路驱动模块, 从而调节多路驱动模块 每一路电流达到稳定的设定值。
所述多路驱动模块, 将直流电压, 经逆变电路和升压模块产生高压, 利用大功率 MOSFET 管构成多路负反馈恒流输出回路, 从而实现多路恒流大电流的输出, 同时电流电压采样模块 反馈每一路电流大小, 从而由发射单片机调节多路驱动模块以输出设置的供电路数、 供电时 间、 电流大小。
所述电流电压采样模块, 一端分别检测通过整流模块后的电流以及多路驱动模块产生的 多路电流, 另一端通过数据采集模块连接与发射单片机连接。 电流电压采样模块采用霍尔检 测电路, 进行模拟隔离。
所述发射单片机***还包括过压过流保护模块, 过压过流保护模块分别与电流电压采样 模块、 发射单片机连接, 电流电压采样模块反馈电流大小到电流电压保护模块, 实现多路输 出每支路输出电压自动保护。
所述多通道智能接收机包括依次连接的多道并行的接收模块、 多通道 ADC转换器、 接收 单片机, 接收信号依次通过接收模块、 ADC转换器, 并进入接收单片机; 接收单片机对每个 接收模块的数据进行采集, 通过通信与工控机实现控制和信息反馈, 进行数字信号的最终处 理, 完成视电阻率、 接地电阻、 视极化率、 半衰时、 激发比的测量。
所述接收模块包括依次连接的静电高压抑制电路、 共模抑制电路、 差模抑制电路、 第一 级 50Hz限波器、 差分输入放大器、 第二级 50Hz限波器、 100Hz限波器、 8阶巴特沃斯 20Hz低通 滤波器连接, 同吋接收单片机通过 DAC调零电路控制差分输入放大器。
所述静电高压抑制电路主要吸收工作环境中的静电和浪涌冲击, 保护后端电路; 共模抑 制电路和差模抑制电路吸收输入的共模、 差模十扰信号, 两级 50Hz限波器初步吸收 50Hz工 频干扰, 保证差分输入放大器的直流工作点不随上述干扰信号漂移; 差分输入放大器输出信 号, 在经过第一级 50Hz限波器和 100Hz限波器, 充分抑制工频及工频谐波的干扰; 8阶巴特 沃斯低通滤波器, 有 40dB每十倍频程的衰减量, 且保证带宽内信号的平坦。
所述多路电极自动转换器包括多路继电器幵关、 解码电路、 转换器单片机、 通信模块、 电压采样电路, 工控机通过通信模块与转换器单片机连接, 转换器单片机通过解码电路与多 路继电器开关连接, 多路继电器开关一端与电极系连接, 另一端通过多路电缆与恒流多路发 射机和多通道智能接收机连接, 可进行温纳、 偶极、 微分、 联剖四种排列转换, 每改变一次 测点只需一秒钟, 大大节省了人力、 物力和时间, 提高了测量的精度和效率。 所述多路继电器开关采用大功率继电器,同时采用电压采样电路检测大功率继电器电压, 通过转换器单片机反馈到工控机, 从而实现对发射大电流的快速切换, 避免负载太大烧毁继 电器。 转换器单片机按照工控机发送的指令, 通过编码电路控制多路继电器开关的开、 合, 实现了多路电极快速转换。
所述工控机包含信号识别模块、 信号处理模块和终端显示控制模块, 工控机通过通信与 恒流多路发射机连接, 通过通信与工控机实现控制和信息反馈, 通过通信与多路电极自动转 换器连接, 可以设置多路电极自动转换器、 恒流多路发射机、 多通道智能接收机的参数, 同 时向多通道智能接收机和恒流多路发射机发送支路路数以及每支路电流大小的控制指令, 完 成对多路电极自动转换器反馈的电压进行检测,对经过多通道智能接收机的多路信号的处理, 并进行数字信号处理并终端显示。
本发明的实际应用过程操作简单:
1、 连接仪器。连接电极电缆到多路电极自动转换器, 多路电极自动转换器通过电缆与恒 流多路发射机多路输出端、 多通道智能接收机多路接收端连接。
2、 启动接收机。 连接电源, 打开发射机、 接收机开关, 打开控制软件并打开端口。
3、 设置参数。 设置供电电路路数、 电流大小、 供电时间, 多通道智能接收机接收路数、 设置采样时间、 间隔, 设置多路电极自动转换器参数。
4、 仪器检验。 测量接地电阻, 检验电极与测区的接触情况, 检测恒流多路发射机、 多通 道智能接收机、 多路电极自动转换器的接通情况。
5、仪器测量。 点击"调零按钮"开始调零, 待曲线显示窗口电压曲线在零点时停止调零。 点击 "开始测量"发射电流幵始测量, 点击 "停止采样"停止电流采样, 停止电流发射。
6、 保存退出。 点击 "保存数据"保存曲线和采样值, 同时退出采集程序。
本发明的有益效果是-
1、该发明采用大功率高精度多路驱动模块, 实现了自动调制功能的多路大电流恒流发射 机, 可以实现 6路大电流恒流输出, 从而实现屏蔽电极和供电电极同时输出大小可调的同性 电流, 电流输出范围 0〜2.0A, 步长 0.01A。
2、 该发明可使用 8道并行的接收模块、 三个多通道 24位 ADC转换器, 实现了多通道观 测数据多通道智能接收机, 可以同时实现 8通道观测数据同歩测量, 大大提高了采集效率, 满足三维聚焦型激发极化探测方法探测巨大数据量的要求。
3、 该发明使用了多路电极转换装置, 该装置实现了电极的自动化转换, 并采用大功率继 电器和反馈电路实现了大电流的自动切换, 实现了聚焦激发极化探测按照预先设定的序列进 行自动采集, 提高了采集效率, 为三维聚焦激发极化快速探测提供了硬件支持。
4、 该发明实现了聚焦激发极化仪器的硬件***, 可以完成视电阻率、 接地电阻、 视极化 率、 半衰时、 激发比等等多元信息综合采集, 其电流指向性好, 实现了掌子面定向超前预报, 有效的减少了掌子面后方的干扰信息, 提高了探测的精度与准确性。 可满足目前国家重点工 程建设中地质灾害控制的迫切需求, 将带来可观的经济效益与社会效益。
附图说明
图 1是本发明原理结构图。
图 2是本发明恒流多路发射机结构图。
图 3 本发明多通道智能接收机结构图。
图 4是本发明多通道智能接收机的接收模块硬件原理框图。
图 5本发明多路电极自动转换器结构图。
其中, 1、 大电流恒流多路发射机; 2、 多通道智能接收机; 3、 多路电极自动转换器; 4、 工控机; 5、 电极系; 6、 H桥逆变电路; 7、 升压模块; 8、 整流模块; 9、 大功率高精度多路 驱动模块; 10、 电流电压采样模块; 11、 过压过流保护模块; 12、 数据采集模块; 13、 发射 单片机; 14、 数字显示模块; 15、 时钟模块; 16、 数据存储模块; 17、 数据通信模块; 18、 接收模块; 19、 ADC转换器; 20、 接收单片机; 21、 多路继电器幵关; 22、 解码电路; 23、 转换器单片机; 24、 通信模块; 25、 电压采样电路。
具体实施方式
下面结合附图与实施例对本发明作进一歩说明。
如图 1所示, 一种地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 它包括大 电流恒流多路发射机 1、 多通道智能接收机 2、 多路电极自动转换器 3、 工控机 4和电极系 5; 电极系 5包括观测电极阵列和屏蔽电极; 所述观测电极阵列包括若干个电极, 观测电极阵列 中的电极、屏蔽电极分别与多路电极自动转换器 3连接, 电极系 5共有 36路电极, 多路电极 自动转换器 3分别与大电流恒流多路发射机 1、 多通道智能接收机 2连接, 大电流恒流多路 发射机 1、 多通道智能接收机 2、 多路电极自动转换器 3分别与工控机 4实现通信。本发明将 观测 ¾极阵列和屏蔽电极组布置在隧道掘进面上, 选择观测电极阵列中的任一电极作为供电 电极, 其他的电极作为观测电极, 工控机 4控制大电流恒流多路发射机 1向屏蔽电极和供电 电极传输同性电流, 使得在屏蔽电极的作用下供电电极电流几乎指向掘进面的正前方, 不存 在旁侧干扰; 利用观测电极进行扫描性数据采集, 并通过多通道智能接收机 2反馈至工控机 4; 测完此循环后, 工控机 4控制多路电极自动转换器 3更换供电电极再进行下一循环测量, 可得到携带掘进面前方有效信息的大量数据,从而实现突水危险源的三维定位和水量的预测, 解决了非聚焦型激发极化设备存在问题。
所述大电流恒流多路发射机 1主要由发射单片机***、 H桥逆变电路 6、大功率高精度多路 驱动模块 9、 升压模块 7、 整流模块 8、 电流电压采样模块 10、过压过流保护模块 11以及数据采 集模块 12组成, 如图 2。 36V电源通过 H桥逆变电路 6、 升压模块 7、 整流模块 8产生高压恒定电 流, 整流模块 8与大功率髙精度多路驱动模块 9连接; 发射单片机***控制 H桥逆变电路 6、 升 压模块 7和大功率高精度多路驱动模块 9, 通过电流电压采样模块 10检测反馈电路中的电流, 控制大功率高精度多路驱动模块 9输出 6路可调的恒流电流给多路继电器开关。
所述发射单片机***包含发射单片机 13, 其型号为 MSP430F169、 数字显示模块 14、 时钟 模块 15、 数据存储模块 16、 数据通信模块 17, 主要完成检测、 显示、 开关量和模拟量控制, 发射单片机 13及***电路供电与恒流源采用全隔离设计, 参量设置通过键盘设定并显示, 显 示采用 LED方式。 发射单片机控制***利用发射单片机 13的定时器比较输出功能输出两路 PWM调制波形, 控制 H桥逆变电路 6利用脉宽调制技术 (PWM)对直流电压进行逆变; 电流电压 采样模块 10对经过整流模块 8后的电流进行检测, 发射单片机 13调节升压模块 7, 以满足通过 整流模块 8后电流的恒定, 同时电流电压采样模块 10对大功率高精度多路驱动模块 9输出的每 一路电流进行检测, 发射单片机 13控制大功率高精度多路驱动模块 9, 从而调节大功率高精度 多路驱动模块 9每一路电流达到稳定的设定值。
所述大功率高精度多路驱动模块 9, 通过从蓄电池组输出的 36V直流电压, 经 H桥逆变电 路 6和升压模块 7产生高压, 利用大功率 MOSFET管构成多路负反馈恒流输出回路, 从而实现 6 路恒流大电流的输出, 同时电流电压釆样模块 10反馈每一路电流大小, 从而由发射单片机 13 调节大功率高精度多路驱动模块 9以输出设置的供电路数、供电时间、 电流大小, 电流设定值 范围 0〜2.0A, 歩长 0.01A。
所述电流电压采样模块 10, 一端分别检测通过整流模块 8后的电流以及大功率高精度多 路驱动模块 9产生的多路电流, 另一端分别与电流电压保护模块 11、 数据采集模块 12连接, 并与发射单片机 13连接。 电流电压釆样模块 10采用霍尔检测电路, 进行模拟隔离, 同时, 电流电压釆样模块 10反馈电流大小到电流电压保护模块 11, 实现多路输出每支路输出电压 超过 1000V自动保护。
所述多通道智能接收机 2包括 8道并行的接收模块 18、 三个多通道 24位 ADC转换器 19、 接 收单片机 20组成, 如图 3, 接收信号依次通过接收模块 18、 多通道 24位 ADC转换器 19, 并进入 接收单片机 20; 接收单片机 20对每个接收模块 18的数据进行采集,通过通信与工控机 4实现控 制和信息反馈。
所述接收模块 18包括依次连接的静电高压抑制电路、 共模抑制电路、 差模抑制电路、 第 一级 SOHz限波器、 差分输入放大器、 第二级 50Hz限波器、 100HZ限波器、 8阶巴特沃斯 20Hz低 通滤波器连接,同时接收单片机 20通过 DAC调零电路控制差分输入放大器,其原理框图如图 4。
所述静电高压抑制电路主要吸收工作环境中的静电和浪涌冲击, 保护后端电路; 共模抑 制电路和差模抑制电路吸收输入的共模、 差模干扰信号, 两级 50Hz限波器初歩吸收 50HZ工 频干扰, 保证差分输入放大器的直流工作点不随上述干扰信号漂移; 差分输入放大器输出信 号, 在经过第一级 50HZ限波器和 100Hz限波器, 充分抑制工频及工频谐波的干扰; 8阶巴特 沃斯低通滤波器, 有 40dB每十倍频程的衰减量, 且保证带宽内信号的平坦。 ADC转换器 19 的输入双极性信号, 最大信号电压为 ± 15V, 每级增益下转换输出的信号分辨率可达 24位。 DAC调零电路与差分输入放大器连接, 最小调零电压为 ± 4. 8uV。
所述多路电极自动转换器 3主要由多路继电器开关 21、 解码电路 22、 转换器单片机 23、 通信模块 24、 电压采样电路 25等组成, 如图 5。 工控机 4通过通信模块与转换器单片机 23 连接, 转换器单片机 23通过解码电路 22与多路继电器开关 21连接, 多路继电器开关 21— 端与 36路电极连接, 另一端通过多路电缆分别与大功率高精度多路驱动模块 9和接收模块 18连接, 可进行温纳、 偶极、 微分、 联剖四种排列转换, 每改变一次测点只需一秒钟, 大大 节省了人力、 物力和时间, 提高了测量的精度和效率。
所述多路继电器开关 21采用大功率继电器, 同时采用电压采样电路 25检测大功率继电 器电压, 通过转换器单片机 23反馈到工控机 4, 从而实现对发射大电流的快速切换, 避免负 载太大烧毁继电器。 转换器单片机 23按照工控机 4发送的指令, 通过编码电路 22控制多路 继电器开关 21的开、 合, 实现了 36路电极快速转换。
所述工控机 4包含信号识别模块、 信号处理模块和终端显示控制模块, 工控机 4通过通信 与大电流恒流多路发射机 1连接, 工控机 4通过通信与大电流恒流多路发射机 1实现信号控制, 并且工控机 4进行数字信号的最终处理, 完成视电阻率、 接地电阻、 视极化率、 半衰时、 激发 比的测量。通过通信与多通道智能接收机 2实现控制和信息反馈, 通过通信与多路电极自动转 换器 3连接, 可以设置多路电极自动转换器 3、 大电流恒流多路发射机 1、 多通道智能接收机 2 的参数, 同时向多通道智能接收机 2和大电流恒流多路发射机 1发送支路路数以及每支路电流 大小的控制指令, 完成对多路电极自动转换器 3反馈的电压进行检测, 对经过多通道智能接收 机 2的多路信号的处理, 并进行数字信号处理并终端显示。
本发明在工作时, 通过在掌子面上布置扫描电极阵列和屏蔽电极, 使得在屏蔽电极的作 用下供电电极电流几乎沿径向流入围岩, 即可得到携带掌子面前方有效信息, 采用多路电极 自动转换器 3、 多通道智能接收机 2、 大电流恒流多路供电发射机 1, 实现了对掌子面前方信 息的快速采集可获得丰富的数据, 利用三维电阻率反演成像技术和水量估^:技术对掌子面前 方的含水体进行地质解译, 电流的指向性好, 有效解决了测线附近的旁侧干扰 (如低阻含水 体、 金属构件) 问题, 使得背景干扰数据少, 预报精度以及探测距离大大提高。
上述虽然结合附图对本发明的具体实施方式进行了描述, 但并非对本发明保护范围的限 制, 所属领域技术人员应该明白, 在本发明的技术方案的基础上, 本领域技术人员不需要付 出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims

权利要求书
1、 一种地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 其特征是, 包括恒流 多路发射机、 多通道智能接收机、 多路电极自动转换器、 工控机和电极系; 所述电极系包括 观测电极阵列和屏蔽电极; 所述观测电极阵列包括若干个电极, 观测电极阵列中的电极、 屏 蔽电极分别与多路电极自动转换器连接, 多路电极自动转换器分别与恒流多路发射机、 多通 道智能接收机连接, 恒流多路发射机、 多通道智能接收机、 多路电极自动转换器分别与工控 机实现通信; 所述观测电极阵列和屏蔽电极布置在隧道掘进面上, 选择观测电极阵列中的任 一电极作为供电电极, 其他的电极作为观测电极, 工控机控制恒流多路发射机向屏蔽电极和 供电电极传输同性电流, 使得在屏蔽电极的作用下供电电极电流几乎指向掘进面的正前方; 利用观测电极进行扫描性数据釆集, 并通过多通道智能接收机反馈至工控机; 工控机控制多 路电极自动转换器更换供电电极再进行下一循环测量。
2、 如权利要求 1所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 其特 征是, 所述恒流多路发射机包括发射单片机***、 逆变电路、 多路驱动模块、 升压模块、 整 流模块、 电流电压采样模块以及数据采集模块; 电源通过逆变电路、 升压模块、 整流模块产 生高压恒定电流, 整流模块与多路驱动模块连接; 发射单片机***控制逆变电路、 升压模块 和多路驱动模块, 通过电流电压采样模块检测反馈电路中的电流, 控制多路驱动模块输出多 路可调的恒流电流。
3、 如权利要求 2所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 其特 征是, 所述发射单片机***包含发射单片机、 数字显示模块、 时钟模块、 数据存储模块、 数 据通信模块, 完成检测、 显示、 幵关量和模拟量控制, 发射单片机控制逆变电路对直流电压 进行逆变; 电流电压釆样模块对经过整流模块后的电流进行检测, 发射单片机调节升压电路, 以满足通过整流模块后电流的恒定, 同时电流电压采样模块对多路驱动模块输出的每一路电 流进行检测, 发射单片机控制多路驱动模块, 从而调节多路驱动模块每一路电流达到稳定的 设定值。
4、 如权利要求 2所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 其特 征是, 所述多路驱动模块, 与直流电压、 经逆变电路、 升压模块构成多路负反馈恒流输出回 路, 从而实现多路恒流大电流的输出。
5、如权利要求 2所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备,其特 征是, 所述电流电压采样模块, 一端分别检测通过整流模块后的电流以及多路驱动模块产生 的多路电流, 另一端通过数据采集模块连接与发射单片机连接。
6、 如权利要求 2所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 其特 征是, 所述发射单片机***还包括过压过流保护模块, 过压过流保护模块分别与电流电压采 样模块、 发射单片机连接, 电流电压采样模块反馈电流大小到电流电压保护模块, 实现多路 输出每支路输出电压自动保护。
7、 如权利要求 1所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 其特 征是, 所述多通道智能接收机包括依次连接的多道并行的接收模块、 多通道 ADC转换器、 接 收单片机, 接收信号依次通过接收模块、 ADC转换器, 并进入接收单片机; 接收单片机对每 个接收模块的数据进行采集, 通过通信与工控机实现控制和信息反馈, 进行数字信号的最终 处理。
8、 如权利要求 7所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 其特 征是, 所述接收模块包括依次连接的静电高压抑制电路、 共模抑制电路、 差模抑制电路、 第 一级 50Hz限波器、 差分输入放大器、 第二级 50Hz限波器、 100Hz限波器、 8阶巴特沃斯 20Hz低 通滤波器连接, 同时接收单片机通过 DAC调零电路控制差分输入放大器。
9、如权利要求 1所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备,其特 征是, 所述多路电极自动转换器包括多路继电器开关、 解码电路、 转换器单片机、 通信模块、 电压采样电路, 工控机通过通信模块与转换器单片机连接, 转换器单片机通过解码电路与多 路继电器开关连接, 多路继电器幵关一端与电极系连接, 另一端通过多路电缆与恒流多路发 射机和多通道智能接收机连接; 所述多路继电器幵关采用大功率继电器, 同时采用电压采样 电路检测大功率继电器电压, 通过转换器单片机反馈到工控机, 从而实现对发射大电流的快 速切换; 转换器单片机按照工控机发送的指令, 通过编码电路控制多路继电器开关的开、合, 实现多路电极快速转换。
10、 如权利要求 1所述的地下工程突水灾害源超前地质预报三维聚焦激发极化设备, 其 特征是, 所述工控机包含信号识别模块、 信号处理模块和终端显示控制模块, 工控机通过通 信与恒流多路发射机连接, 通过通信与工控机实现控制和信息反馈, 通过通信与多路电极自 动转换器连接, 能够设置多路电极自动转换器、恒流多路发射机、 多通道智能接收机的参数, 同时向多通道智能接收机和恒流多路发射机发送支路路数以及每支路电流大小的控制指令, 完成对多路电极自动转换器反馈的电压进行检测, 对经过多通道智能接收机的多路信号的处 理, 并进行数字信号处理并终端显示。
PCT/CN2013/000042 2013-01-15 2013-01-17 地下工程突水灾害源超前地质预报三维聚焦激发极化设备 WO2014110689A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,332 US9256003B2 (en) 2013-01-15 2013-01-17 Three-dimensional focusing induced polarization equipment for advanced geological prediction of water inrush disaster source in underground engineering

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2013200184650 2013-01-15
CN2013200184650U CN203164433U (zh) 2013-01-15 2013-01-15 地下工程突水灾害源超前地质预报三维聚焦激发极化设备
CN2013100134355 2013-01-15
CN201310013435.5A CN103064121B (zh) 2013-01-15 2013-01-15 地下工程突水灾害源超前地质预报三维聚焦激发极化设备

Publications (1)

Publication Number Publication Date
WO2014110689A1 true WO2014110689A1 (zh) 2014-07-24

Family

ID=51208908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000042 WO2014110689A1 (zh) 2013-01-15 2013-01-17 地下工程突水灾害源超前地质预报三维聚焦激发极化设备

Country Status (2)

Country Link
US (1) US9256003B2 (zh)
WO (1) WO2014110689A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966635A (zh) * 2016-10-19 2018-04-27 贾海亮 一种客车绝缘检测仪***
US20230228903A1 (en) * 2022-01-18 2023-07-20 Chinese Academy Of Geological Sciences Distributed three-dimensional (3d) induced polarization (ip) data acquisition and processing device and method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891890B (zh) * 2016-03-31 2017-09-05 山东大学 一种盾构搭载的非接触式频域电法实时超前探测***与方法
CN107479451A (zh) * 2017-09-26 2017-12-15 烟台海珐电气科技有限公司 一种直流综合测量控制单元
CN108873074B (zh) * 2018-04-18 2020-03-24 浙江大学 一种电极随机分布式高密度电阻率测量方法及勘探***
CN109061745A (zh) * 2018-08-29 2018-12-21 中交第公路工程局有限公司 一种隧道掌子面瞬变电磁雷达探水***及探水装置
US10705984B1 (en) * 2018-09-26 2020-07-07 Cadence Design Systems, Inc. High-speed low VT drift receiver
CN109583047B (zh) * 2018-11-14 2022-06-07 华侨大学 一种隧道突水突泥地表塌陷形成时间的预测方法
CN111965708A (zh) * 2019-05-20 2020-11-20 中国石油天然气集团有限公司 一种用于陆上电磁发射***的发电机、发射***及方法
CN110513149A (zh) * 2019-07-19 2019-11-29 武强 一种突水监测装置及突水监测方法
CN111239840B (zh) * 2020-02-25 2022-05-24 华北科技学院 一种基于高密度电法的底板突水预警方法
CN113309506B (zh) * 2021-05-18 2023-02-03 山东大学 基于孔中电偶极子发射的超前观测方法与装置
CN114265349B (zh) * 2021-12-20 2023-03-24 贵州振华风光半导体股份有限公司 一种多通道全差分高压高精度实时数据采集***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642570A (en) * 1983-03-25 1987-02-10 Conoco Inc. Method and apparatus for complex resistivity measurements with elimination of electromagnetic coupling effects
US20050280419A1 (en) * 2004-06-18 2005-12-22 Schlumberger Technology Corporation While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics
CN1904644A (zh) * 2006-08-08 2007-01-31 武汉长盛工程检测技术开发有限公司 网络化的隧道实时连续超前预报方法及装置
CN101561513A (zh) * 2009-06-02 2009-10-21 吉林大学 三维直流电法模拟实验观测装置及观测方法
CN201508417U (zh) * 2009-09-22 2010-06-16 山东大学 隧道或坑道超前地质预报激发极化时域接收机设备
CN201909852U (zh) * 2011-01-18 2011-07-27 山东大学 隧道或坑道超前地质预报复合式激发极化仪器设备
CN102176059A (zh) * 2011-01-18 2011-09-07 山东大学 隧道或坑道超前地质预报复合式激发极化仪器设备
CN102508303A (zh) * 2011-11-23 2012-06-20 山东大学 地下工程聚焦层析激发极化超前探测方法
CN202649483U (zh) * 2011-12-20 2013-01-02 中国矿业大学(北京) 电场约束法煤安型综掘机载地质构造探测***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4295096A (en) * 1978-12-20 1981-10-13 Conoco, Inc. Electrode prospecting method providing calculable electromagnetic coupling for the indirect detection of hydrocarbon reservoirs
JP4311745B2 (ja) * 2003-07-16 2009-08-12 キヤノン株式会社 地中探査装置、システム及び方法
US8873334B2 (en) * 2013-03-05 2014-10-28 Hunt Energy Enterprises, L.L.C. Correlation techniques for passive electroseismic and seismoelectric surveying

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642570A (en) * 1983-03-25 1987-02-10 Conoco Inc. Method and apparatus for complex resistivity measurements with elimination of electromagnetic coupling effects
US20050280419A1 (en) * 2004-06-18 2005-12-22 Schlumberger Technology Corporation While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics
CN1904644A (zh) * 2006-08-08 2007-01-31 武汉长盛工程检测技术开发有限公司 网络化的隧道实时连续超前预报方法及装置
CN101561513A (zh) * 2009-06-02 2009-10-21 吉林大学 三维直流电法模拟实验观测装置及观测方法
CN201508417U (zh) * 2009-09-22 2010-06-16 山东大学 隧道或坑道超前地质预报激发极化时域接收机设备
CN201909852U (zh) * 2011-01-18 2011-07-27 山东大学 隧道或坑道超前地质预报复合式激发极化仪器设备
CN102176059A (zh) * 2011-01-18 2011-09-07 山东大学 隧道或坑道超前地质预报复合式激发极化仪器设备
CN102508303A (zh) * 2011-11-23 2012-06-20 山东大学 地下工程聚焦层析激发极化超前探测方法
CN202649483U (zh) * 2011-12-20 2013-01-02 中国矿业大学(北京) 电场约束法煤安型综掘机载地质构造探测***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, SHUCAI ET AL.: "Study of Advanced Detection for Tunnel Water-bearing Geological Structures with Induced Polarization Method", CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING, vol. 30, no. 7, July 2011 (2011-07-01), pages 1297 - 1309 *
LI, ZHIWU ET AL.: "Data-collecting System for Resistivity Tomography", PROGRESS IN GEOPHYSICS, vol. 19, no. 4, December 2004 (2004-12-01), pages 812 - 817 *
NIE, LICHAO ET AL.: "An Advanced Detection Study of Frequency Domain Induced Polarization Method for Water-bearing Structure of Tunnel", ROCK AND SOIL MECHANICS, vol. 33, no. 4, April 2012 (2012-04-01), pages 1151 - 1160 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966635A (zh) * 2016-10-19 2018-04-27 贾海亮 一种客车绝缘检测仪***
US20230228903A1 (en) * 2022-01-18 2023-07-20 Chinese Academy Of Geological Sciences Distributed three-dimensional (3d) induced polarization (ip) data acquisition and processing device and method
US11892587B2 (en) * 2022-01-18 2024-02-06 Chinese Academy Of Geological Sciences Distributed three-dimensional (3D) induced polarization (IP) data acquisition and processing device and method

Also Published As

Publication number Publication date
US20150077119A1 (en) 2015-03-19
US9256003B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
WO2014110689A1 (zh) 地下工程突水灾害源超前地质预报三维聚焦激发极化设备
CN103064121B (zh) 地下工程突水灾害源超前地质预报三维聚焦激发极化设备
CN102253416B (zh) 多功能大功率多道滚动快速测量电法地震综合测量***
CN109490635B (zh) 杆塔接地电阻在线监测***及在线监测方法
CN207181713U (zh) 一种基于阵列矩阵分布的接地网网格拓扑结构探测装置
CN203811762U (zh) 一种gis局部放电监测装置
CN102435907A (zh) 一种电子式电流互感器极性测试方法
CN202166714U (zh) 一种架空式智能故障指示器装置
CN203101659U (zh) 天然电场多路同时采测物探仪
CN106772642B (zh) 一种地电场激发的核磁共振探水***及野外工作方法
CN102183571B (zh) 一种充电法地下水渗漏监测装置
WO2014166237A1 (zh) 双巷多电极电透视探测***
CN105510982A (zh) 基于激发极化法的tbm施工隧道聚焦型前向三维多电极在线探测***
CN203350386U (zh) 带自诊断功能的光伏逆变器多路输入反接检测电路
CN205246806U (zh) 一种远程电缆在线检测***
CN103176050A (zh) 新型接地电阻测试仪的设计方法
CN204481761U (zh) 大功率光伏逆变器的光伏方阵对地绝缘阻抗在线检测***
CN104635272B (zh) 一种分布式高密度电法仪器
CN203164433U (zh) 地下工程突水灾害源超前地质预报三维聚焦激发极化设备
WO2022061490A1 (zh) 一种光伏发电***、检测光伏组串对地故障的方法及设备
CN102185335A (zh) 一种新型孤岛检测方法及***
CN101841166A (zh) 一种应用于光伏并网逆变器的双dsp控制方法
CN204964656U (zh) 一种便携式绝缘子智能检测仪
CN103323732A (zh) 一种带自诊断功能的光伏逆变器多路输入反接检测电路
CN103604977A (zh) 一种基于大气湿度的雷电流监测***

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235332

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872116

Country of ref document: EP

Kind code of ref document: A1