WO2014107093A1 - 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지 - Google Patents

자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지 Download PDF

Info

Publication number
WO2014107093A1
WO2014107093A1 PCT/KR2014/000149 KR2014000149W WO2014107093A1 WO 2014107093 A1 WO2014107093 A1 WO 2014107093A1 KR 2014000149 W KR2014000149 W KR 2014000149W WO 2014107093 A1 WO2014107093 A1 WO 2014107093A1
Authority
WO
WIPO (PCT)
Prior art keywords
pouch
heat dissipation
electrode assembly
secondary battery
support member
Prior art date
Application number
PCT/KR2014/000149
Other languages
English (en)
French (fr)
Inventor
진예진
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2014107093A1 publication Critical patent/WO2014107093A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a heat dissipation support member for a pouch type secondary battery having a self-supporting ability and a pouch type secondary battery having the same.
  • a secondary battery is a battery capable of repeatedly charging and discharging.
  • a secondary battery is widely used in a lightweight portable device such as a mobile phone, a notebook computer, a camera, or an electric vehicle or a hybrid vehicle.
  • a secondary battery of a type using a non-aqueous electrolyte having a high energy density has a good output and is used to drive a motor of an electric vehicle by connecting a plurality of them in series.
  • the secondary battery may be manufactured in various forms, such as a pouch type, a cylindrical shape, or a square shape.
  • a pouch type in the case of the pouch type, its shape is relatively free, light in weight, slim and lightweight, and is widely used for portable devices.
  • the pouch serving as a case in the pouch-type secondary battery has a laminated structure in which a thin film of a metal film and an insulating film are attached to both sides thereof, and is freely bent, unlike a cylindrical or rectangular shape formed of a thick metal material.
  • the case itself forming the outer shape is made of a flexible material, it is difficult to apply a separate structure for improving heat dissipation characteristics because it does not take a standardized form. That is, it is difficult to effectively dissipate heat generated from the electrode assembly inside the pouch.
  • Korean Patent Laid-Open No. 2011-0082745 discloses a pouch type secondary battery having a heat dissipation member.
  • the heat dissipation member is integrally formed with the positive electrode plate of the electrode assembly accommodated inside the pouch, and extends to the outside of the pouch, and serves to extract heat generated in the pouch to be discharged to the outside in a state of being fixed to the outer surface of the pouch.
  • the secondary battery of the above-mentioned type should not only anodize the heat dissipation member exposed to the outside of the pouch but also apply an expensive thermal grease to fix the heat dissipation member to the pouch. There was a downside.
  • cooling plate when the cooling plate is located outside the pouch as described above, it is very easy to generate an air gap between the pouch and the cooling plate is not good heat radiation efficiency. Accordingly, in order to increase the heat dissipation efficiency, a larger size cooling plate must be applied, which causes an increase in cost and increases the volume of the device.
  • the most important thing in the pouch is to provide a stable sealing force so that the electrolyte solution inside the pouch does not leak, the conventional secondary battery, the heat dissipation member extended to the outside of the pouch to the fusion portion of the pouch
  • Another problem is that microscopic crevices can occur. If a gap occurs, the electrolyte may leak and a short circuit may occur or ignite due to the leaked electrolyte.
  • the present invention is to solve the above problems, since the heat dissipation support member responsible for heat dissipation is completely accommodated in the pouch in a state in close contact with the inward surface of the pouch, there is no fear that the fusion portion of the pouch will be opened so that the sealing is stable and the electrode assembly Heat dissipation efficiency is good, in particular, the heat dissipation support member has a structure that can be placed vertically on the horizontal target surface, the heat dissipation support member for pouch-type secondary battery having a self-supporting ability that can be easily installed in the external cooling unit and the pouch having the same It is an object to provide a type secondary battery.
  • a self-supporting heat dissipation support member having a support member is provided.
  • the heat dissipation support member It takes the form of a plate of constant thickness and at least two surfaces are bent to face the electrode assembly.
  • the heat dissipation support member Covering the electrode assembly and interviewing the inward surface of the pouch, absorbing heat generated from the electrode assembly and dissipating it to the outside of the pouch; It has a support located opposite the portion where the positive electrode tab and the negative electrode tab are located.
  • the support part is further provided with an insulating sheet for insulation between the support part and the electrode assembly.
  • the heat dissipation support member A heat dissipation unit covering the electrode assembly and in close contact with an inward surface of the pouch, absorbing heat generated from the electrode assembly and dissipating it to the outside of the pouch, and integrally formed at both ends of the heat dissipating unit and bent with respect to the heat dissipating unit; It consists of supports which are located on opposite sides of the assembly.
  • the heat dissipation supporting member is made of copper or aluminum or HOPG (highly ordered pyrolytic graphite).
  • the heat dissipation support member for a pouch type secondary battery having the self-supporting capability of the present invention for achieving the above object is built with the electrode assembly in the inside of the pouch providing a sealed receiving space, in close contact with the inward surface of the pouch In one state, the heat generated from the electrode assembly is absorbed and released to the outside of the pouch, and the support is provided so that the pouch can be placed on a horizontal plane.
  • the heat dissipation support member It takes the form of a plate having a predetermined thickness, the heat dissipation portion in close contact with the inward surface of the pouch and absorbs heat generated from the electrode assembly, the heat dissipation unit is integral with the heat dissipation unit and bent to the heat dissipation unit, It is provided on the opposite side of the electrode tab and the cathode tab of the electrode assembly is provided with a support that is parallel to the horizontal plane with the electrode assembly upright.
  • the heat dissipation portion and the support portion form a right angle
  • the support portion is provided with an insulating sheet for insulation between the support portion and the electrode assembly.
  • the heat dissipation support member A heat dissipation unit covering the electrode assembly and interviewing the inward side of the pouch, absorbing heat generated from the electrode assembly, and integrally formed at both ends of the heat dissipation unit, and bent to the heat dissipation unit, and being both sides of the electrode assembly. And a support part positioned parallel to the horizontal plane with the electrode assembly standing up.
  • the heat dissipation supporting member is made of copper or aluminum or HOPG (highly ordered pyrolytic graphite).
  • FIG. 1 is an exploded perspective view of a pouch type secondary battery provided with a heat dissipation supporting member having self-supporting ability according to an embodiment of the present invention.
  • FIG. 2 is a partially enlarged perspective view illustrating the heat dissipation supporting member illustrated in FIG. 1 separately.
  • FIG. 3 is a side cross-sectional view of the pouch type secondary battery illustrated in FIG. 2.
  • Figure 4 is a perspective view showing another example of a pouch-type secondary battery provided with a heat dissipation support member having a self-supporting ability according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view showing another example of a pouch type secondary battery provided with a heat dissipation supporting member having self-standing ability according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of a pouch type secondary battery 11 provided with a heat dissipation supporting member 19 having a self-supporting ability according to an embodiment of the present invention.
  • the pouch type secondary battery 11 As shown, the pouch type secondary battery 11 according to the present embodiment, the pouch 12 and the inner space corresponding to each other and the heat-sealed in the state that the edge portion is interviewed to provide the inner space (13b), and the inner space ( 13b), the electrode assembly 17 having the positive electrode tab 17a and the negative electrode tab 17b on one side thereof, and the heat dissipation supporting member 19 embedded in the pouch 12 together with the electrode assembly 17. It consists of.
  • the pouch 12 is composed of a lower pouch piece 13 and an upper pouch piece 15 to accommodate the electrolyte solution therein.
  • the fusion heat is applied to the three fusion surfaces 13a provided at the edge portions of the lower pouch pieces 13 in a state where the edge portions of the upper pouch pieces 15 are interviewed, the upper and lower pouch pieces 15 and 17 are melted and integrated. do.
  • the electrode assembly 17 is made to be flat so that it can be accommodated in the inner space 13b by pressing the laminated body composed of the positive electrode plate 17c, the separator 17d, and the negative electrode plate 17e in a wound state.
  • the electrode assembly 17 is applied in a jelly roll type, but any type of electrode assembly may be applied to the secondary battery of this embodiment.
  • the positive electrode plate 17c is coated with an active material on both sides of a metal thin plate having excellent conductivity, for example, aluminum foil.
  • the active material is a chalcogenide (chalcogenide) compound, for example, a composite metal oxide such as LiCo 2 , LiMn 2 O 4 , LiNiO 2 , LiNiMnO 2, and the like.
  • the negative electrode plate 17e is coated with a negative electrode active material on both surfaces of a current collector made of copper or nickel foil.
  • a current collector made of copper or nickel foil.
  • Carbon-based materials, Si, Sn, tin oxide, tin alloy composites, transition metal oxides and the like are used as the negative electrode active material.
  • the heat dissipation support member 19 is a plate-shaped member having a predetermined thickness, the heat dissipation portion 19a covering one side of the electrode assembly 17 and the heat dissipation portion 19a integrally with the electrode It consists of a support 19b which is located at the lower end of the assembly 17, that is, opposite the portion where the positive electrode tab 17a and the negative electrode tab 17b are located.
  • the support 19b is in contact with the lower end of the electrode assembly 17. At this time, in order to insulate the electrode assembly 17 and the heat dissipation support member 19, an insulating sheet 19c is stacked on the support 19b.
  • the insulating sheet 19c will be described later with reference to FIG. 2.
  • the heat dissipation support member 19 is bent at a right angle to the heat dissipation portion 19a at a right angle to have a substantially lateral shape.
  • the heat dissipation support member 19 shown in FIG. 1 is a basic type, and of course, the shape of the heat dissipation support member can be changed as needed.
  • the heat dissipation support member 19 has a certain elastic force and maintains the angle of the right angle. For example, if the force is removed while the heat dissipation unit 19a and the support unit 19b are opened by applying an external force, the initial state is returned.
  • the heat dissipating portion 19a collects heat generated from the electrode assembly 17 in contact with one side surface of the electrode assembly 17 in a state of being in close contact with the inwardly facing surface of the upper pouch piece 15 to collect the upper pouch piece 15. Release through the outside.
  • the heat dissipation unit 19a may be brought into close contact with the electrode assembly 17, or an electrolyte may be filled between the heat dissipation unit 19a and the electrode assembly 17 with a gap therebetween.
  • the support 19b is applied to put the heat radiating portion 19a upright. For example, as shown in FIG. 3, when the support 19b is placed on a horizontal plane, the heat radiating portion 19a is erected vertically.
  • the support portion 19b is fitted between the lower end portion of the electrode assembly 17 and the inner wall surface 13c of the lower pouch piece 13 and is in close contact with the inner wall surface 13c.
  • the heat dissipation support member 19 having the above-described configuration may be made of a conductive metal such as copper or aluminum, or a highly ordered pyrolytic graphite (HOPG).
  • a conductive metal such as copper or aluminum
  • HOPG highly ordered pyrolytic graphite
  • FIG. 2 is a partially enlarged perspective view of the heat dissipation support member 19 illustrated in FIG. 1 separately.
  • the heat radiating portion 19a and the supporting portion 19b are bent to have a right angle.
  • the angle between the heat dissipation unit 19a with respect to the support unit 19b may vary depending on the width w of the support unit 19b. For example, it may be formed in an angle range of 85 ° to 90 °.
  • an insulating sheet 19c is laminated on the upper surface of the support part 19b.
  • the insulating sheet 19c is to insulate the support 19b from the electrode assembly 17 and may have the same material as the separator 17d.
  • a synthetic resin such as rubber or silicone, which is resistant to the electrolyte, may be applied.
  • FIG. 3 is a side cross-sectional view of the pouch type secondary battery 11 illustrated in FIG. 2.
  • the pouch-type secondary battery 11 has a feature in that the heat dissipation support member 19 is built into the pouch 12 so that the secondary battery 11 can be placed on an external object.
  • To stand up also means that the external object and the side or the bottom of the secondary battery (the opposite side where the electrode is located) interview.
  • the secondary battery 11 When the secondary battery 11 is laid down on the water cooling unit 27, heat dissipation may be faster. However, in order to package a plurality of secondary batteries 11, the secondary battery 11 may not be laid down.
  • the heat generated from the electrode assembly 17 is absorbed by the heat dissipation support member 19, and a part of the heat is transferred to the water-cooled cooling part 27 through the pouch after reaching the support 19b, The rest is discharged into the air through the lower pouch piece 13 from the heat radiating portion 19a.
  • Figure 4 is a perspective view showing another example of a pouch-type secondary battery provided with a heat dissipation support member having a self-supporting ability according to an embodiment of the present invention.
  • the secondary battery 11 has a heat dissipation supporting member 25 having a shape of approximately c.
  • the heat dissipation support member 25 has a shape having a predetermined thickness, and includes a heat dissipation portion 25a contacting one side surface of the electrode assembly 17 and support portions formed at both ends of the heat dissipation portion 25a. 25b).
  • the support part 25b is flat and has a certain area so that the secondary battery 11 can be placed sideways on a horizontal plane.
  • the angle between each support portion 25b with respect to the heat radiation portion 25a is the same as the heat radiation support member described with reference to FIG. 2.
  • the support portion 25b is bitten by the fusion between the lower pouch piece 13 and the upper pouch piece 15.
  • the bent portion is not disturbed when the secondary battery 11 is set to the side by surrounding the bent support portion 25b with the fusion portion.
  • the heat dissipation unit 25a covers the electrode assembly 17 in close contact with the lower pouch piece 13 to release heat absorbed from the electrode assembly 17 to the outside through the lower pouch piece 13, or both ends thereof. To the support 25b.
  • the secondary battery 11 of the type shown in FIG. 4 may be disposed side by side since the supporting portion 25b is located at both sides of the electrode assembly 17. That is, when setting the plurality of secondary batteries 11 on the water cooling part 27 (to construct a package), the water cooling part with one support part 25b of the two support parts 25b sandwiched between the pouches. Indirect contact with (27).
  • the material of the heat dissipation support member 25 is the same as that of the heat dissipation support member 19 of FIG. 1.
  • FIG. 5 is an exploded perspective view showing another example of a pouch type secondary battery provided with a heat dissipation supporting member having self-standing ability according to an embodiment of the present invention.
  • the electrode assembly 17 shown in FIG. 5 is an assembly of the type in which the positive electrode tab 17a and the negative electrode tab 17b are located on opposite sides. As described above, the type of the electrode assembly which can be applied to the secondary battery according to the present embodiment is not determined.
  • the electrode assembly 17 and the heat dissipation supporting member 19 are embedded in the inner space 13b provided by the pouch 12.
  • the heat dissipation support member 19 is the same as the type shown in FIG. 2 and is bent by a letter B to have a heat dissipation portion 19a and a support portion 19b.
  • the support 19b is a flat rectangular portion that contacts one inner wall surface of the lower pouch piece 13 so that the secondary battery can stand when the secondary battery 11 is placed on the water cooling unit 27.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지에 관한 것이다. 상기 이차전지는, 상호 대응하는 파우치편의 테두리부를 면접시킨 상태로 면접부위를 융착 결합하여 융착부의 내측 영역에 밀폐된 수용공간을 제공하는 파우치와; 상기 파우치의 수용공간 내에 전해액과 함께 수용되며 파우치 외부로 연장된 양극탭 및 음극탭을 갖는 전극조립체와; 상기 파우치에 내장되되, 파우치편의 내향면에 밀착한 상태로 전극조립체로부터 발생하는 열을 흡열하여 파우치 외부로 배출함과 동시에 전극조립체가 내장된 파우치를 수평면상에 세워 놓을 수 있도록 지지력을 제공하는 방열지지부재를 구비한다. 방열을 담당하는 방열지지부재가 파우치의 내향면에 밀착한 상태로 파우치 내에 완전히 수용되므로 파우치의 융착부가 벌어질 염려가 없어 그만큼 실링이 안정적이고 전극조립체의 방열효율이 좋으며, 특히 방열지지부재가 수평의 대상면 상에 수직으로 세워 놓을 수 있는 구조를 가져 외부의 냉각부에 쉽게 적용시킬 수 있다.

Description

자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지
[관련출원의 상호참조]
본 출원은 2013년 1월 7일 출원된 한국특허 출원번호 제10-2013-0001602호를 우선권 주장하고 있으며, 상기 특허 문헌의 내용은 참조를 위해 본 발명에 모두 포함된다.
본 발명은 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지에 관한 것이다.
이차전지(Secondary battery)는 일차전지와 달리 반복적 충방전이 가능한 전지로서, 가령 휴대폰이나 노트북컴퓨터 또는 카메라와 같은 경량 휴대 기기에서부터 전기자동차나 하이브리드자동차에 이르기까지 널리 사용되고 있다.
최근, 기술의 급속한 발전에 따라, 보다 작고 가벼운 대용량 고출력 이차전지가 속속 개발되고 있다. 예컨대 고에너지 밀도의 비수전해액을 이용한 타입의 이차전지는 출력이 좋아, 복수개를 직렬로 연결하여 전기자동차의 모터 구동에 사용된다.
상기한 이차전지는 다양한 형태로 제조가 가능하며, 이를테면 파우치형이나 원통형이나 각형으로 제작 할 수 있다. 특히 상기 파우치형의 경우 그 형상이 비교적 자유롭고 무게가 가벼우며 슬림화 및 경량화가 가능하여 휴대기기용으로 많이 사용되고 있다.
상기 파우치형 이차전지에 있어서 케이스 역할을 하는 파우치는, 박막의 금속필름과 그 양면에 절연성 필름이 부착된 적층구조를 가지며, 두꺼운 금속재로 성형한 원통형이나 각형과 달리, 자유롭게 구부러짐이 가능하다.
그런데, 상기한 파우치형의 경우, 외형을 이루는 케이스 자체가 유연성 소재로 이루어져 강성이 없으므로 정형화된 형태를 취하지 않아, 방열특성 개선을 위한 별도의 구조를 적용하기가 어려웠다. 즉, 파우치 내부의 전극조립체에서 발생하는 열을 효과적으로 방열하기가 힘들었다.
공지의 사실과 같이, 이차전지는 충전과 방전을 수행하는 동안 내부에서 많은 열을 발생하므로 내부의 열을 신속히 방출하는 것이 매우 중요한데, 파우치형은 이런 방열문제가 취약한 것이다. 각형이나 원통형 이차전지는 상대적으로 방열이 용이한 편이다.
이러한 파우치형 이차전지에서의 방열을 위한 수단으로서, 국내공개특허 제2011-0082745호(이차전지)에, 방열부재가 구비되어 있는 파우치형 이차전지가 개시되어 있다. 상기 방열부재는 파우치 내부에 수납되는 전극조립체의 양극판에 일체를 이룬 것으로서 파우치의 외부로 연장된 후 파우치 외측면에 접착 고정된 상태로 파우치 내에서 발생하는 열을 외부로 빼내어 방출하는 역할을 한다.
그런데 상기한 타입의 이차전지는, 파우치의 외부로 노출되어 있는 방열부재를 아노다이징(anodizing) 처리해야 함은 물론, 방열부재를 파우치에 대해 고정시키기 위해 고가의 서멀그리스(Thermal grease)를 도포해야 한다는 단점이 있었다.
또한 상기한 바와같이 파우치의 외부에 냉각용 플레이트를 위치시킬 경우, 파우치와 냉각플레이트와의 사이에 에어갭이 발생하기가 매우 쉬워 그만큼 방열효율이 좋지 못하다. 이에 따라 방열효율을 높이고자 더 큰 사이즈의 냉각용 플레이트를 적용해야 하는데 이것은 코스트의 상승을 유발하고 장치의 부피를 크게 하는 요인이된다.
또한 상기 파우치에 있어서 가장 중요하다고 할 수 있는 것은, 파우치 내부의 전해액이 누출되지 않도록 안정적 밀폐력을 제공하는 것인데, 상기한 종래의 이차전지는, 파우치 외부로 연장된 방열부재에 의해 파우치의 융착부위에 미세한 틈새가 발생할 수 있다는 또 다른 문제를 갖는다. 틈새가 발생하면 전해액이 누액되고 누출된 전해액으로 인하여 단락이 발생하거나 발화할 수 있다.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 방열을 담당하는 방열지지부재가 파우치의 내향면에 밀착한 상태로 파우치 내에 완전히 수용되므로 파우치의 융착부가 벌어질 염려가 없어 그만큼 실링이 안정적이고 전극조립체의 방열효율이 좋으며, 특히 방열지지부재가 수평의 대상면 상에 수직으로 세워 놓을 수 있는 구조를 가져, 외부의 냉각부에 쉽게 설치할 수 있는 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지를 제공함에 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 파우치형 이차전지는, 상호 대응하는 파우치편의 테두리부를 면접시킨 상태로 면접부위를 융착 결합하여 융착부의 내측 영역에 밀폐된 수용공간을 제공하는 파우치와; 상기 파우치의 수용공간 내에 전해액과 함께 수용되며 파우치 외부로 연장된 양극탭 및 음극탭을 갖는 전극조립체와; 상기 파우치에 내장되되, 파우치편의 내향면에 밀착한 상태로 전극조립체로부터 발생하는 열을 흡열하여 파우치 외부로 배출함과 동시에 전극조립체가 내장된 파우치를 수평면상에 세워 놓을 수 있도록 지지력을 제공하는 방열지지부재를 구비한 자립형 방열지지부재를 구비한다.
또한, 상기 방열지지부재는; 일정두께의 플레이트의 형태를 취하며 적어도 두 면 이상이 전극조립체에 대향하도록 절곡되어 있다.
또한, 상기 방열지지부재는; 상기 전극조립체를 커버하며 파우치의 내향면에 면접하고, 전극조립체에서 발생하는 열을 흡열하여 파우치 외부로 방출하는 방열부와, 상기 방열부에 일체를 이루며 직각으로 절곡된 상태를 취하고, 전극조립체의 양극탭 및 음극탭이 위치한 부분의 반대편에 위치하는 지지부를 갖는다.
또한, 상기 지지부에는, 지지부와 전극조립체간의 절연을 위한 절연시트가 더 구비된다.
아울러, 상기 방열지지부재는; 상기 전극조립체를 커버하며 파우치의 내향면에 밀착하고, 전극조립체에서 발생하는 열을 흡열하여 파우치 외부로 방출하는 방열부와, 상기 방열부의 양단부에 일체로 형성되며 방열부에 대해 절곡된 상태로 전극조립체의 양측부에 대응 위치하는 지지부로 이루어진다.
또한, 상기 방열지지부재는, 구리 또는 알루미늄 또는 HOPG(highly ordered pyrolytic graphite)로 이루어진다.
또한, 상기 목적을 달성하기 위한 본 발명의 자립능력을 갖는 파우치형 이차전지용 방열지지부재는, 밀폐된 수용공간을 제공하는 파우치의 내부에 전극조립체와 함께 내장되는 것으로서, 상기 파우치의 내향면에 밀착한 상태로, 전극조립체로부터 발생하는 열을 흡열하여 파우치 외부로 방출함과 아울러 파우치를 수평면에 대해 세워 놓을 수 있도록 지지력을 제공한다.
아울러, 상기 방열지지부재는; 일정두께를 갖는 플레이트의 형태를 취하며, 상기 파우치의 내향면에 밀착하고 전극조립체에서 발생하는 열을 흡열하는 방열부와, 상기 방열부에 일체를 이루되 방열부에 대해 절곡된 상태를 취하고, 전극조립체의 상기 양극탭 및 음극탭이 위치한 부분의 반대편에 위치하고 전극조립체를 세운 상태로 수평면에 평행을 이루는 지지부를 구비한다.
또한, 방열부와 지지부는 직각을 이루고, 상기 지지부에는 지지부와 전극조립체간의 절연을 위한 절연시트가 구비된다.
또한, 상기 방열지지부재는; 상기 전극조립체를 커버하며 파우치의 내향면에 면접하고, 전극조립체에서 발생하는 열을 흡열하는 방열부와, 상기 방열부의 양단부에 일체로 형성되며, 방열부에 대해 절곡된 상태로 전극조립체의 양측부에 대응 위치하고, 전극조립체를 세운 상태로 상기 수평면에 평행을 이루는 지지부로 이루어진다.
또한, 상기 방열지지부재는, 구리 또는 알루미늄 또는 HOPG(highly ordered pyrolytic graphite)로 이루어진다.
도 1은 본 발명의 일 실시예에 따른 자립능력을 갖는 방열지지부재가 구비된 파우치형 이차전지의 분해 사시도이다.
도 2는 상기 도 1에 도시한 방열지지부재를 별도로 도시한 일부 확대 사시도이다.
도 3은 상기 도 2에 도시한 파우치형 이차전지의 측단면도이다.
도 4는 본 발명의 일 실시예에 따른 자립능력을 갖는 방열지지부재가 구비된 파우치형 이차전지의 다른 예를 도시한 절제 사시도이다.
도 5는 본 발명의 일 실시예에 따른 자립능력을 갖는 방열지지부재가 구비된 파우치형 이차전지의 또 다른 예를 도시한 분해 사시도이다.
본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다.
본 명세서에서 각 도면의 구성요소들에 참조번호를 부가함에 있어서, 동일한 구성요소 들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 번호를 가지도록 하고 있음에 유의하여야 한다.
또한, “제 1”, “제 2”, “일측 면”, “타측 면” 등의 용어는, 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 상기 용어들에 의해 제한되는 것은 아니다.
본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지기술에 대한 상세한 설명은 생략한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 자립능력을 갖는 방열지지부재(19)가 구비된 파우치형 이차전지(11)의 분해 사시도이다.
도시한 바와같이, 본 실시예에 따른 파우치형 이차전지(11)는, 상호 대응하며 그 테두리부가 면접한 상태로 열융착되어 내부공간(13b)을 제공하는 파우치(12)와, 상기 내부공간(13b)에 밀폐 수납되며 그 일측에 양극탭(17a) 및 음극탭(17b)을 갖는 전극조립체(17)와, 상기 전극조립체(17)와 함께 파우치(12)에 내장되는 방열지지부재(19)로 구성된다.
상기 파우치(12)는, 하부파우치편(13)과 상부파우치편(15)으로 이루어지며 내부에 전해액을 함께 수용한다. 상기 하부파우치편(13)의 테두리부에 마련되어 있는 세 개의 융착면(13a)에 상부파우치편(15)의 테두리부를 면접시킨 상태로 융착열을 가하면 상하파우치편(15,17)이 녹아 붙어 일체화 된다.
상기 전극조립체(17)는, 양극판(17c)과 세퍼레이터(17d)와 음극판(17e)으로 이루어진 적층체를, 권취한 상태로 눌러 내부공간(13b)에 수납될 수 있도록 평평하게 만든 것이다. 본 실시예에서 전극조립체(17)를 젤리롤 타입으로 적용하였지만, 본 실시예의 이차전지에는, 모든 종류의 전극조립체를 얼마든지 적용할 수 있다.
참고로, 상기 양극판(17c)은 도전성이 우수한 금속박판, 예를 들면 알루미늄 호일의 양면에 활물질을 코팅한 것이다. 상기 활물질은 칼코게나이드(chalcogenide;칼코겐의 이원 화합물) 화합물, 가령 LiCo2, LiMn2O4, LiNiO2, LiNiMnO2 등의 복합 금속산화물이다.
상기 음극판(17e)은 구리나 니켈 호일로 이루어진 집전체의 양면에 음극활물질을 코팅한 것이다. 상기 음극활물질로서 탄소계열물질, Si, Sn, 주석옥사이드, 주석합금복합체, 전이금속 산화물 등이 사용된다.
한편, 상기 방열지지부재(19)는, 일정두께를 갖는 플레이트형 부재로서, 상기 전극조립체(17)의 한쪽 면을 커버하는 방열부(19a)와, 상기 방열부(19a)에 일체를 이루며 전극조립체(17)의 하단부 즉, 상기 양극탭(17a)과 음극탭(17b)이 위치한 부분의 반대편에 위치하는 지지부(19b)로 이루어진다.
상기 지지부(19b)는 전극조립체(17)의 하단부에 접한다. 이때 전극조립체(17)와 방열지지부재(19)의 절연을 위해, 지지부(19b)에는 절연시트(19c)가 적층되어 있다. 상기 절연시트(19c)에 대해서는 도 2를 통해 후술하기로 한다.
상기 방열지지부재(19)는, 방열부(19a)에 대해 지지부(19b)가 직각으로 절곡되어 대략 ㄱ 자의 측면 형태를 취한다. 특히 도 1에 도시한 방열지지부재(19)는 기본형으로서, 필요에 따라 방열지지부재의 형상을 얼마든지 변경 할 수 있음은 물론이다.
아울러 상기 방열지지부재(19)는 어느 정도의 탄성력을 가지며 직각의 각도를 유지한다. 가령 외력을 가하여 방열부(19a)와 지지부(19b)를 벌린 상태에서 힘을 제거하면 처음의 상태로 돌아오는 것이다.
상기 방열부(19a)는, 상부파우치편(15)의 내향면에 밀착한 상태로 전극조립체(17)의 일측면에 접하여 전극조립체(17)에서 발생하는 열을 모아들여 상부파우치편(15)을 통해 외부로 방출한다.
상기 방열부(19a)를 전극조립체(17)에 완전히 밀착시킬 수 도 있고, 어느 정도 간극을 두어 방열부(19a)와 전극조립체(17) 사이에 전해액이 들어차 있게 할 수 도 있다.
상기 지지부(19b)는 방열부(19a)를 세워 놓을 수 있도록 적용된 것이다. 이를테면 도 3에 도시한 바와같이, 상기 지지부(19b)를 수평면상에 올리면 방열부(19a)가 수직으로 세워지는 것이다. 상기 지지부(19b)는 전극조립체(17)의 하단부와 하부파우치편(13)의 내벽면(13c) 사이에 끼워지며, 내벽면(13c)에 대해서는 밀착한다.
상기 구성을 갖는 방열지지부재(19)는 일체형으로서, 구리 또는 알루미늄을 포함한 전도성금속류 또는 HOPG(highly ordered pyrolytic graphite)등으로 제작할 수 있다.
도 2는 상기 도 1에 도시한 방열지지부재(19)를 별도로 도시한 일부 확대 사시도이다.
도시한 바와같이, 상기 방열부(19a)와 지지부(19b)가 직각의 사이각을 가지도록 절곡되어 있다. 상기 지지부(19b)에 대한 방열부(19a)의 사이각은 지지부(19b)의 폭(w)에 따라 달라질 수 있다. 가령 85° 내지 90°의 각도 범위로 형성될 수 있다.
아울러 상기 지지부(19b)의 도면상 상면에는 절연시트(19c)가 적층되어 있다. 상기 절연시트(19c)는 전극조립체(17)에 대한 지지부(19b)의 절연을 위한 것으로서, 세퍼레이터(17d)와 같은 재질을 가질 수 있다. 경우에 따라 전해액에 내성을 갖는 고무나 실리콘 등의 합성수지를 적용할 수 도 있다.
도 3은 상기 도 2에 도시한 파우치형 이차전지(11)의 측단면도이다.
무엇보다 본 실시예에 따른 파우치형 이차전지(11)는, 파우치(12)의 내부에 방열지지부재(19)가 내장되어, 이차전지(11)를 외부의 대상물 위에 세워 놓을 수 있다는 특징을 갖는다. 세워 놓는다는 의미는 외부의 대상물과 이차전지의 양측부 또는 하단부(전극이 위치한 부분의 반대편) 가 면접한다는 의미이기도 한다.
상기와 같이 대상물과 이차전지가 면접하므로, 상기 대상물로서 수냉식냉각부(27)를 적용할 경우, 전극조립체(17)에서 발생한 열은 수냉식냉각부(27)로 빠르게 전달되어 소멸된다.
수냉식냉각부(27)에 이차전지(11)를 눕힐 경우 더욱 빠르게 방열할 수 있겠으나, 다수의 이차전지(11)를 패키지화하기 위해서는, 이차전지(11)를 눕힐 수 없다.
여하튼, 상기 전극조립체(17)에서 발생한 열은 방열지지부재(19)로 흡수되어, 일부는 하부로 이동하여 지지부(19b)에 도달한 후 파우치를 통해 수냉식냉각부(27)로 흘러 제거되고, 나머지는 방열부(19a)에서 하부파우치편(13)을 통해 공기중으로 방출된다.
도 4는 본 발명의 일 실시예에 따른 자립능력을 갖는 방열지지부재가구비된 구비된 파우치형 이차전지의 다른 예를 도시한 절제 사시도이다.
상기한 도면부호와 동일한 도면부호는 동일한 기능의 동일한 부재를 가리킨다.
도시한 바와같이, 본 실시예에 따른 이차전지(11)에는, 대략 ㄷ 자의 형태를 취하는 방열지지부재(25)가 적용되어 있다.
상기 방열지지부재(25)는, 일정두께를 갖는 플레이트의 형태를 취하며, 전극조립체(17)의 일측면에 접하는 방열부(25a)와, 상기 방열부(25a)의 양단에 절곡 형성된 지지부(25b)로 이루어진다. 상기 지지부(25b)는 이차전지(11)를 수평면상에 옆으로 세워 놓을 수 있도록 어느 정도의 면적을 가지며 평평한 상태이다. 또한 상기 방열부(25a)에 대한 각 지지부(25b)의 사이각은 도 2에 설명한 방열지지부재와 같다.
특히 상기 지지부(25b)는, 하부파우치편(13)과 상부파우치편(15)의 융착부에 물려 있다. 이와같이 절곡된 지지부(25b)를 융착부로 감싸 구성함으로서 이차전지(11)를 옆으로 세울 때 융착부가 방해되지 않는다.
상기 방열부(25a)는, 하부파우치편(13)에 밀착한 상태로 전극조립체(17)를 커버하여 전극조립체(17)로부터 흡열한 열을 하부파우치편(13)을 통해 외부로 방출하거나 양단의 지지부(25b)로 보낸다.
상기한 바와같이 도 4에 도시한 타입의 이차전지(11)는, 지지부(25b)가 전극조립체(17)의 양측부에 위치하므로 옆으로 세워 배치할 수 있다. 즉 (패키지를 구성하기 위하여) 수냉식냉각부(27)상에 다수의 이차전지(11)를 세팅할 때, 양측 지지부(25b) 중 어느 하나의 지지부(25b)가 파우치를 사이에 두고 수냉식냉각부(27)에 간접적으로 접하도록 하는 것이다.
상기 방열지지부재(25)의 재질은 도 1의 방열지지부재(19)와 동일하다.
도 5는 본 발명의 일 실시예에 따른 자립능력을 갖는 방열지지부재가 구비된 파우치형 이차전지의 또 다른 예를 도시한 분해 사시도이다.
도 5에 도시한 전극조립체(17)는 양극탭(17a)과 음극탭(17b)이 반대편에 위치한 타입의 조립체이다. 상기한 바와같이, 본 실시예에 따른 이차전지에 적용될 수 있는 전극조립체의 형식은 정해지지 않는다.
여하튼, 상기 파우치(12)가 제공하는 내부공간(13b)에 전극조립체(17)와 방열지지부재(19)가 내장된다. 상기 방열지지부재(19)는 도 2에 도시한 타입과 같은 것으로서 ㄴ 자로 절곡되어 방열부(19a)와 지지부(19b)를 갖는다. 상기 지지부(19b)는 평활한 직사각형 부분으로서 하부파우치편(13)의 일측 내벽면에 접하며 이차전지(11)를 수냉식냉각부(27) 위에 세웠을 때 이차전지가 서 있을 수 있도록 한다.
이상, 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 이는 본 발명의 구체적으로 설명하기 위한 것으로, 본 발명은 이에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.
[부호의 설명]
11:이차전지
12:파우치
13:하부파우치편
13a:융착면
13b:내부공간
13c:내벽면
15:상부파우치편
17:전극조립체
17a:양극탭
17b:음극탭
17c:양극판
17d:세퍼레이터
17e:음극판
19:방열지지부재
19a:방열부
19b:지지부
19c:절연시트
25:방열지지부재
25a:방열부
25b:지지부
27:수냉식냉각부

Claims (13)

  1. 상호 대응하는 파우치편의 테두리부를 면접시킨 상태로 면접부위를 융착 결합하여 융착부의 내측 영역에 밀폐된 수용공간을 제공하는 파우치와;
    상기 파우치의 수용공간 내에 전해액과 함께 수용되며 파우치 외부로 연장된 양극탭 및 음극탭을 갖는 전극조립체와;
    상기 파우치에 내장되되, 파우치편의 내향면에 밀착한 상태로 전극조립체로부터 발생하는 열을 흡열하여 파우치 외부로 배출함과 동시에 전극조립체가 내장된 파우치를 수평면상에 세워 놓을 수 있도록 지지력을 제공하는 방열지지부재를 구비한 자립형 방열지지부재를 구비한 파우치형 이차전지.
  2. 제 1항에 있어서,
    상기 방열지지부재는;
    일정두께의 플레이트의 형태를 취하며 적어도 두 면 이상이 전극조립체에 대향하도록 절곡되어 있는 방열지지부재인 파우치형 이차전지.
  3. 제 2항에 있어서,
    상기 방열지지부재는;
    상기 전극조립체를 커버하며 파우치의 내향면에 면접하고, 전극조립체에서 발생하는 열을 흡열하여 파우치 외부로 방출하는 방열부와,
    상기 방열부에 일체를 이루며 직각으로 절곡된 상태를 취하고, 전극조립체의 양극탭 및 음극탭이 위치한 부분의 반대편에 위치하는 지지부를 갖는 파우치형 이차전지.
  4. 제 3항에 있어서,
    상기 지지부에는, 지지부와 전극조립체간의 절연을 위한 절연시트가 더 구비된 파우치형 이차전지.
  5. 제 2항에 있어서,
    상기 방열지지부재는;
    상기 전극조립체를 커버하며 파우치의 내향면에 밀착하고, 전극조립체에서 발생하는 열을 흡열하여 파우치 외부로 방출하는 방열부와,
    상기 방열부의 양단부에 일체로 형성되며 방열부에 대해 절곡된 상태로 전극조립체의 양측부에 대응 위치하는 지지부로 이루어진 파우치형 이차전지.
  6. 제 2항에 있어서,
    상기 방열지지부재는,
    구리 또는 알루미늄으로 이루어진 파우치형 이차전지.
  7. 제 2항에 있어서,
    상기 방열지지부재는;
    HOPG(highly ordered pyrolytic graphite)로 이루어진 파우치형 이차전지.
  8. 밀폐된 수용공간을 제공하는 파우치의 내부에 전극조립체와 함께 내장되는 것으로서, 상기 파우치의 내향면에 밀착한 상태로, 전극조립체로부터 발생하는 열을 흡열하여 파우치 외부로 방출함과 아울러 파우치를 수평면에 대해 세워 놓을 수 있도록 지지력을 제공하는 자립능력을 갖는 파우치형 이차전지용 방열지지부재.
  9. 제 8항에 있어서,
    상기 방열지지부재는;
    일정두께를 갖는 플레이트의 형태를 취하며,
    상기 파우치의 내향면에 밀착하고 전극조립체에서 발생하는 열을 흡열하는 방열부와,
    상기 방열부에 일체를 이루되 방열부에 대해 절곡된 상태를 취하고, 전극조립체의 상기 양극탭 및 음극탭이 위치한 부분의 반대편에 위치하고 전극조립체를 세운 상태로 수평면에 평행을 이루는 지지부를 구비한 자립능력을 갖는 파우치형 이차전지용 방열지지부재.
  10. 제 9항에 있어서,
    방열부와 지지부는 직각을 이루고,
    상기 지지부에는 지지부와 전극조립체간의 절연을 위한 절연시트가 구비된 자립능력을 갖는 파우치형 이차전지용 방열지지부재.
  11. 제 8항에 있어서,
    상기 방열지지부재는;
    상기 전극조립체를 커버하며 파우치의 내향면에 면접하고, 전극조립체에서 발생하는 열을 흡열하는 방열부와,
    상기 방열부의 양단부에 일체로 형성되며, 방열부에 대해 절곡된 상태로 전극조립체의 양측부에 대응 위치하고, 전극조립체를 세운 상태로 상기 수평면에 평행을 이루는 지지부로 이루어진 자립능력을 갖는 파우치형 이차전지용 방열지지부재.
  12. 제 8항에 있어서,
    상기 방열지지부재는,
    구리 또는 알루미늄으로 이루어진 자립능력을 갖는 파우치형 이차전지용 방열지지부재.
  13. 제 8항에 있어서,
    상기 방열지지부재는;
    HOPG(highly ordered pyrolytic graphite)로 이루어진 자립능력을 갖는 파우치형 이차전지용 방열지지부재.
PCT/KR2014/000149 2013-01-07 2014-01-07 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지 WO2014107093A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130001602A KR20140090335A (ko) 2013-01-07 2013-01-07 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지
KR10-2013-0001602 2013-01-07

Publications (1)

Publication Number Publication Date
WO2014107093A1 true WO2014107093A1 (ko) 2014-07-10

Family

ID=51062359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000149 WO2014107093A1 (ko) 2013-01-07 2014-01-07 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지

Country Status (2)

Country Link
KR (1) KR20140090335A (ko)
WO (1) WO2014107093A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041575A (ja) * 2015-08-21 2017-02-23 太陽誘電株式会社 電気化学デバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101999758B1 (ko) * 2015-06-02 2019-07-12 주식회사 엘지화학 이차전지
KR101925090B1 (ko) 2015-11-18 2018-12-04 주식회사 엘지화학 이차전지용 실링장치
WO2017086593A1 (ko) * 2015-11-18 2017-05-26 주식회사 엘지화학 이차전지용 실링장치
KR20220015252A (ko) 2020-07-30 2022-02-08 주식회사 엘지에너지솔루션 탄성부재를 포함하는 파우치형 전지셀 및 이를 포함하는 전지팩
KR20230019358A (ko) * 2021-07-30 2023-02-08 삼성전자주식회사 배터리를 포함하는 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102207A (ko) * 2005-03-23 2006-09-27 에스케이 주식회사 고출력 리튬 2차 전지용 케이스
KR100870355B1 (ko) * 2007-07-19 2008-11-25 삼성에스디아이 주식회사 파우치형 전지팩
KR20110082745A (ko) * 2010-01-12 2011-07-20 삼성에스디아이 주식회사 이차전지
KR20110126764A (ko) * 2010-05-18 2011-11-24 주식회사 엘지화학 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
US20120301777A1 (en) * 2011-05-25 2012-11-29 Chang-Bum Ahn Secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102207A (ko) * 2005-03-23 2006-09-27 에스케이 주식회사 고출력 리튬 2차 전지용 케이스
KR100870355B1 (ko) * 2007-07-19 2008-11-25 삼성에스디아이 주식회사 파우치형 전지팩
KR20110082745A (ko) * 2010-01-12 2011-07-20 삼성에스디아이 주식회사 이차전지
KR20110126764A (ko) * 2010-05-18 2011-11-24 주식회사 엘지화학 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
US20120301777A1 (en) * 2011-05-25 2012-11-29 Chang-Bum Ahn Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041575A (ja) * 2015-08-21 2017-02-23 太陽誘電株式会社 電気化学デバイス

Also Published As

Publication number Publication date
KR20140090335A (ko) 2014-07-17

Similar Documents

Publication Publication Date Title
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2014107093A1 (ko) 자립능력을 갖는 파우치형 이차전지용 방열지지부재 및 이를 갖는 파우치형 이차전지
WO2014148858A1 (ko) 에너지 밀도가 향상된 이차전지
WO2017209365A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2017104878A1 (ko) 배터리 팩
WO2011115464A2 (ko) 파우치형 케이스 및 이를 포함하는 전지팩
WO2017052041A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2014137112A1 (ko) 단차 구조를 포함하는 전지셀
WO2010050697A2 (ko) 전지 카트리지와 이를 포함하는 전지모듈
WO2017043889A1 (ko) 냉각 성능이 개선된 배터리 모듈
WO2016032092A1 (ko) 전지모듈
WO2014081239A1 (ko) 파우치형 이차전지용 내장프레임 및 상기 내장프레임을 갖는 이차전지
WO2017061746A1 (ko) 전지 모듈
WO2019235724A1 (ko) 개선된 냉각 구조를 갖는 배터리 모듈
WO2015141920A1 (ko) 비대칭 구조 및 만입 구조를 포함하는 전지셀
WO2015046723A1 (ko) 보호회로모듈 고정테이프를 포함하는 전지팩
WO2015046744A1 (ko) 전극리드-전극 탭 결합부 보호용 필름부재를 포함하는 파우치형 전지셀
WO2021221300A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2020022643A1 (ko) 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
WO2020101353A1 (ko) 파우치 케이스 및 이를 포함하는 파우치형 이차 전지의 제조 방법
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020111469A1 (ko) 이차 전지 및 이를 포함하는 디바이스
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2018080074A1 (ko) 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14735400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14735400

Country of ref document: EP

Kind code of ref document: A1