WO2014104523A1 - Ci(g)s thin film and method for manufacturing same, ci(g)s solar cell using same and method for manufacturing same - Google Patents

Ci(g)s thin film and method for manufacturing same, ci(g)s solar cell using same and method for manufacturing same Download PDF

Info

Publication number
WO2014104523A1
WO2014104523A1 PCT/KR2013/007098 KR2013007098W WO2014104523A1 WO 2014104523 A1 WO2014104523 A1 WO 2014104523A1 KR 2013007098 W KR2013007098 W KR 2013007098W WO 2014104523 A1 WO2014104523 A1 WO 2014104523A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
solar cell
manufacturing
cuinse
layer
Prior art date
Application number
PCT/KR2013/007098
Other languages
French (fr)
Korean (ko)
Inventor
어영주
조아라
조준식
박주형
윤경훈
윤재호
곽지혜
신기식
안세진
안승규
유진수
박상현
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2014104523A1 publication Critical patent/WO2014104523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Solar cell and power generation system is a technology that converts solar energy directly into electrical energy and generates electricity immediately by receiving solar light using solar cells made of materials such as semiconductors, dyes, and polymers. Compared with this technology, solar power generation absorbs and converts solar radiation into thermal energy.
  • Photovoltaic is a power generation method that converts solar energy of no limit and no pollution directly into electric energy and consists of elements such as solar cell (module), PCS, and power storage device.
  • the basic structure and the principle of power generation of the most common silicon solar cell are manufactured by bonding a p-type semiconductor and an n-type semiconductor (p-n junction) and coating metal electrodes on both ends.
  • p-n junction n-type semiconductor
  • the semiconductor absorbs sunlight, electricity is generated using the photovoltaic effect.
  • sunlight is incident on a semiconductor junction, electrons are generated at the junction, and current flows to an external circuit.
  • the photovoltaic system consists of a part (module) that receives light and converts it into electricity and a part (PCS) that converts the produced electricity into alternating current and connects it to the system to meet demand.
  • Solar cell is basically a semiconductor device technology that converts sunlight into electrical energy, which is basically opposite in direction to information display devices such as lasers and light emitting diodes that convert electricity into light.
  • information display devices such as lasers and light emitting diodes that convert electricity into light.
  • the structure and material properties are the same.
  • the minimum unit of a solar cell is called a cell. Since the voltage from one cell is usually about 0.5V, it is very small, so that many solar cells can be connected in parallel to obtain a practical range of voltage and output depending on the range of use.
  • the power generation device manufactured by packaging is called a PV module.
  • the solar cell module is manufactured in the form of a panel using glass, a buffer and a surface agent to protect the solar cell from the external environment, and includes an external terminal for drawing an output having durability and weather resistance.
  • a power generation device configured in accordance with the range of use by connecting in parallel and electrically using a mount and a support is used for a solar cell array (PV). Array).
  • PCS Power Conditioning System
  • PCS Power Conditioning System
  • PCS Power Conditioning System
  • PCS for solar power generation refers to an inverter device for converting DC power generated in a solar cell array into AC power.
  • PCS is also called an inverter because the inverter converts the DC power generated from the solar cell array into AC power of the same voltage and frequency as the commercial system.
  • PCS is composed of inverter, power control device and protection device. It is the largest component among peripheral devices except solar cell body.
  • Photovoltaic Power Generation System A power generation system that converts solar energy into electrical energy. Power generation performance is determined by environmental changes according to installation conditions such as insolation intensity and temperature, and design and construction of component devices and photovoltaic systems. Although the photovoltaic power generation system has the same installation location, method, rating, and configuration, the performance characteristics of the photovoltaic power generation system change depending on the environment of the installation location. As the use of photovoltaic power generation system, which is an environmentally friendly energy source, is expanded, technology development becomes increasingly important for systems with high quality, reliability and stability that can satisfy a wide variety of diversified user demands.
  • Thin-film solar cells have lower raw material usage compared to crystalline silicon solar cells, which enables large-area production and mass production, which can lower the cost of manufacturing solar cells. It is possible to manufacture large-scale module of class, and the value chain is simple because solar cell and module manufacturing are combined.
  • thin film solar cells (modules) using silicon thin films and compound thin films such as CI (G) S and CdTe are commercially available.
  • the weight of the fifth generation module is about 20 kg or more.
  • the light absorbing layer for the flexible thin film solar cell which is being actively developed, is a silicon thin film and a CI (G) S compound thin film.
  • a metal thin film (M, Ag, Al, etc.) having excellent reflectance and electrical conductivity is used as the back electrode layer, and a transparent conductive layer such as ZnO and ITO having excellent transmittance and excellent electrical conductivity is used as the transparent conductive layer as a window layer. do.
  • the flexible thin-film solar cell is lightweight, unbreakable, and has excellent aesthetics and applicability as well as low cost, thus creating a new large market including BAPV (Building Applied PV) and portable and military power supplies as well as replacing the existing market of large-capacity power generation. This is a possible future industry field.
  • Patent Document 1 Patent No. 10-1127226 relates to a flexible organic solar cell and a method for manufacturing the same, and more specifically, a high efficiency including a solution process using a highly conductive polymer ink and a step of patterning a first electrode and a photoactive layer.
  • the present invention relates to a flexible organic solar cell and a method for manufacturing the same. According to the method of the present invention, a morphology and conductivity of a thin film are improved by adding a supplement to a highly conductive polymer solution forming a first electrode, and the first electrode and photoactivity The layer can be patterned in a simple way.
  • the flexible organic solar cell of the present invention has an excellent energy conversion efficiency, a simple manufacturing process, and can produce an organic solar cell module having a large area and high efficiency at a low price.
  • it does not include an improvement plan to reduce the porosity of CI (G) S, which is a solar cell light absorption layer, and the composition uniformity of CI (G) S and the senrenization of each material of CI (G) S. There is no suggestion to control process conditions.
  • a method of manufacturing an organic-based solar cell through a paint process using a brush in the process of manufacturing one or more layers of an organic electrode layer, a hole transport layer, a photoactive layer and an electrode layer but the application of the technology It is limited to the production of a photoactive layer of the base solar cell.
  • patterning is not possible in the desired shape, it is not suitable for fabrication of electrodes and photoactive layers of large area devices and modules.
  • Flexible thin film solar cell (CI (G) S thin film) is a toll-to-roll process compared to conventional crystalline silicon solar cell or glass substrate thin film solar cell. It is the next generation solar cell field that can drastically lower the manufacturing cost by using. Flexible thin film solar cell (CI (G) S thin film) is a next generation solar cell field that can significantly lower the manufacturing cost by using a roll-to-roll process as compared to conventional crystalline silicon solar cells or glass substrate thin film solar cells.
  • Application technology of solar cell printing process is under development of some technology in dye-sensitized, organic, CI (G) S solar cell.
  • Silicon printing process is very early stage in the world and there is no research in Korea.
  • silicon thin film and CI (G) S thin film are used as the light absorption layer used in solar cell manufacturing.
  • the problem varies each time the proportion of each material prepared in accordance with the form of a mixture.
  • a step of adding a chelating agent may be included.
  • Chelating agent is ⁇ -diketone, Heterocyclic Amine, more specifically ⁇ -diketone is Beta-Diketone, 2,4-Hexanedione, 5-Methyl-2,4-hexanedione, 2,2-Dimethyl-3,5- hexanedione, 3,5-Heptanedione, 2-Methyl-3,5-Heptanedione, 2,2-Dimethyl-3,5-Heptanedione, 2,6-Dimethyl-3,5-Heptanedione, 2,2,6-Trimethyl- 3,5-Heptanedione, 2,2,6,6-Trimethyl-3,5-Heptanedione, etc.
  • Heterocyclic Amine may be pyrrolidine, pyrrole, Imidazole, porphyrin, pyridine, pyrimidine, 2,
  • CI (G) S thin film manufacturing process used as the light absorption layer used in solar cells, forming complexes with Cu or In when dissolving CuI, InI 3 and Na 2 Se used as raw materials of the light absorption layer
  • a Chelating Agent in the CI (G) S thin film manufacturing process used as the light absorption layer used in solar cells, forming complexes with Cu or In when dissolving CuI, InI 3 and Na 2 Se used as raw materials of the light absorption layer
  • small particles can be produced. Therefore, it is possible to reduce the size of the porosity (Porosity), it is possible to manufacture a CI (G) S thin film with improved uniformity of the composition.
  • the composition of the prepared absorbing layer or CI (G) S thin film is less uniform in the existing absorbing layer or CI (G). The problem of the S thin film manufacturing method can be solved.
  • CI (G) S thin film production method of the present invention is a light absorption layer, CI (G) S thin film production method of the present invention.
  • FIG 3 is a cross-sectional view of a solar cell manufactured by the present invention.
  • Figure 4 shows an example of the ⁇ -diketone class of Chelating Agent used in the present invention.
  • FIG. 5 shows one example of the Heterocyclic Amine of the Chelating Agent used in the present invention.
  • CI (G) S thin film relates to a method for producing a CI (G) S thin film according to the present invention.
  • CuInSe 2 and NaI in nanoparticle state are centrifuged to separate CuInSe 2 in nanoparticle state.
  • the CuInSe 2 in the separated nanoparticle state may be sensified using a coating and heat treatment to prepare a CuInSe 2 thin film.
  • a Chelating Agent may be added.
  • the absorbing layer or the CI (G) S thin film prepared The problem of the conventional absorbing layer or CI (G) S thin film manufacturing method that the composition is poor in uniformity can be solved.
  • Chelating Agent can be selected from ⁇ -diketone and Heterocyclic Amine.
  • Beta-Diketone 2,4-Hexanedione, 5-Methyl-2,4-hexanedione, 2,2-Dimethyl-3,5-hexanedione, 3,5- Heptanedione, 2-Methyl-3,5-Heptanedione, 2,2-Dimethyl-3,5-Heptanedione, 2,6-Dimethyl-3,5-Heptanedione, 2,2,6-Trimethyl-3,5-Heptanedione, 2,2,6,6-Trimethyl-3,5-Heptanedione and the like, but is not limited thereto.
  • Heterocyclic Amine family may be selected from pyrrolidine, pyrrole, Imidazole, porphyrin, pyridine, pyrimidine, 2,2'-bipyridine, 1,10-phenanthroline, as can be seen in FIG. This is also not limited to what is specified.
  • Centrifugation of CuInSe 2 and NaI in nanoparticle state may be performed to separate CuInSe 2 in nanoparticle state from Methanol, and various other organic solvents may be used.
  • the coated CuInSe 2 may be obtained through a selenization process through heat treatment at a temperature of 300 to 700 ° C. to obtain a CuInSe 2 thin film.
  • Figure 2 relates to a solar cell manufacturing method using a CI (G) S thin film manufactured by the CI (G) S thin film manufacturing method of the present invention.
  • the substrate 10 is prepared, and the back electrode layer 20 is deposited.
  • the CI (G) S thin film is deposited on the back electrode layer 20 as the light absorption layer 30, and the buffer layer 40 is deposited on the CI (G) S thin film.
  • the transparent conductive layer 50 is deposited on the buffer layer 40, and then the anti-reflection film 60 is deposited on a portion other than a region where the front electrode layer 70 is formed.
  • the front electrode layer 70 is deposited on a portion where the anti-reflection film 60 is not formed.
  • the substrate 10 used for manufacturing a solar cell may be selected from glass, ceramic, stainless steel, polymer, and metal, but is not limited thereto.
  • glass is used as a material of the substrate, and a ceramic substrate such as alumina, stainless steel, a metal substrate such as Cu tape, and a polymer may be used.
  • Cheap sodaime glass can be used as the glass substrate.
  • the back electrode layer 20 may be selected from Mo, Ni, and Cu, but is not limited thereto. Since Mo has high electrical conductivity, it is most widely used as the back electrode layer 20. The production of Mo thin film is described in D.C. Sputtering is the most widely used and Mo thin film should have low resistivity as electrode and excellent adhesion to glass substrate so that peeling does not occur due to the difference of thermal expansion coefficient.
  • the most important variable here is the partial pressure of Ar and oxygen during thin film manufacturing. The lower the partial pressure of Ar, the lower the resistance, but the peeling phenomenon occurs. To solve this problem, the higher the partial pressure of Ar, the thinner the adhesive film is formed. It is also possible to form a double structure that forms a low thin film.
  • the CuInSe 2 thin film which is a CI (G) S thin film, may be deposited on the back electrode layer 20 to be used as the light absorption layer 30.
  • CI (G) S thin film As the physical thin film manufacturing method, evaporation, sputtering + selenization, chemical method, electrodeposition, etc. may be used, and in each method, various manufacturing methods may be mobilized depending on the type of starting material. Unlike conventional physical and chemical thin film manufacturing methods, nano-sized particles (powder, colloid, etc.) may be synthesized on a Mo substrate, and then mixed with a solvent, screen printing and reaction sintering may be used to prepare a light absorbing layer.
  • the buffer layer 40 deposited on the light absorption layer 30 may be selected from among CdS, In x Se y , Zn (O, S, OH) x , In (OH) x S y , ZnIn x Se y , and ZnSe. It is not limited to this.
  • a CuInSe 2 thin film which is a p-type semiconductor and a ZnO thin film which is used as a transparent conductive layer as an n-type semiconductor form a pn junction.
  • a buffer layer having a band gap in the middle of the two materials is required to form a good junction.
  • the buffer layer 40 is used for the solar cell having the highest efficiency. to be.
  • the CdS thin film can be formed into a thin film having a thickness of about 500 mm by using a chemical bath deposition (CBD) method.
  • the most important variable in determining the film properties CdS deposited on it CBD method is a suitable amount of Cd ++ and S within the deposition temperature, pH of the solution, the film thickness or the like, a solution - to create an ion controlling the temperature of each solution If the product of the ion concentration is greater than the solubility of the solution, the property of precipitation in the form of CdS can be used.
  • the transparent conductive layer 50 may be layered with ZnO on the deposited buffer layer 40, but is not limited thereto.
  • the transparent conductive layer 50 forming the pn junction with CI (G) S which is a light absorption layer, functions as a transparent electrode on the front of the solar cell. Therefore, the light transmittance must be high.
  • ZnO thin film is ZnO by RF sputtering method. Deposition using a target, reactive sputtering using Zn metal, and metal organic chemical vapor deposition (MOCVD) may be used.
  • ITO indium tin oxide
  • the anti-reflection film 60 may be deposited on MgF 2 on the deposited transparent conductive layer 50. It is not limited to this.
  • the anti-reflection film 60 may be deposited on the transparent conductive layer 50 in a region except for a portion where the front electrode layer 70 will be deposited later.
  • Anti-reflection film 60 is generally deposited to reduce the reflection loss of sunlight incident on the solar cell, E-beam Evaporation may be used as a physical thin film manufacturing method.
  • the front electrode layer 70 may be deposited on the transparent conductive layer 60 except for the portion where the anti-reflection film 60 is deposited. This is to collect current from the surface of the solar cell can be used to select one or more of Al, Ag, Ni, M, but is not limited thereto.
  • FIG. 3 the cross-sectional view of the solar cell manufactured through the above process, the back electrode layer 20 on the substrate 10, the light absorption layer 30, the light absorption layer 30 on the back electrode layer 20.
  • the transparent conductive layer 50 on the buffer layer 40 On the part where the anti-reflection film 60 and the barrier film 60 are not formed on the part of the buffer layer 40, the transparent conductive layer 50 on the buffer layer 40, and the transparent conductive layer 50 on the buffer layer 40. It can be seen that the front electrode layer 70 is deposited.
  • the synthesized Cu-In-Se particles are mixed with Pyridine to prepare a slurry.
  • the total particle weight: Pyridine weight 1: 8.
  • the slurry is coated on the substrate on which the Mo thin film is deposited by using a spin coating method.
  • selenization heat treatment was performed for 30 minutes while supplying Se vapor at a substrate temperature of 500 ° C. or higher to complete a CIGS-based thin film.
  • a Chelating Agent in the CI (G) S thin film manufacturing process used as the light absorption layer used in the solar cell Cu or dissolution of CuI, InI 3 and Na 2 Se used as a raw material of the light absorption layer
  • a complex with In to structurally interfere with Se ions small particles can be produced. Therefore, it is possible to reduce the size of the porosity (Porosity), it is possible to manufacture a CI (G) S thin film with improved uniformity of the composition.
  • the composition of the prepared absorbing layer or CI (G) S thin film is less uniform in the existing absorbing layer or CI (G).
  • the problem of the S thin film manufacturing method can be solved. For this reason, the present invention has high industrial applicability.

Abstract

A chelating agent can be added in a CI(G)S thin film manufacturing process to be used as a light-absorbing layer for a solar cell so as to form a complex with Cu or In when dissolving CuI, InI3 and Na2Se used as raw materials of the light-absorbing layer, thereby producing small-sized particles by structurally obstructing the bonding with Se ions. Accordingly, the manufactured CI(G)S thin film can have a porosity of which the size is reduced and an improved uniformity of composition. In addition, the present invention can solve problems of the existing method for manufacturing an absorption layer or a CI(G)S thin film, such as the large size of porosity, having to change a selenization condition for each step, and the deterioration of the uniformity of composition of the manufactured absorption layer or a CI(G)S thin film when the change in the selenization condition is not suitable.

Description

CI(G)S 박막과 그 제조 방법, 및 이를 이용한 CI(G)S 태양전지와 그 제조 방법.CI (G) S thin film and its manufacturing method, and CI (G) S solar cell and its manufacturing method using the same.
태양전지 및 발전시스템은 태양에너지를 직접 전기에너지로 변환시키는 기술로 반도체, 염료, 고분자 등의 물질로 이루어진 태양전지를 이용하여 태양 빛을 받아 바로 전기를 생성한다. 이와 비교되는 기술로는 태양의 복사에너지를 흡수하여 열에너지로 변환하여 이용하는 태양열발전이 있다.Solar cell and power generation system is a technology that converts solar energy directly into electrical energy and generates electricity immediately by receiving solar light using solar cells made of materials such as semiconductors, dyes, and polymers. Compared with this technology, solar power generation absorbs and converts solar radiation into thermal energy.
태양광발전(PV, Photovoltaic)은 무한정, 무공해의 태양에너지를 직접 전기에너지로 변환하는 발전방식으로 태양전지(모듈), PCS, 축전장치 등의 요소로 구성된다. 가장 일반적인 실리콘 태양전지의 기본 구조 및 발전원리를 태양전지는 p형 반도체와 n형 반도체를 접합시키고 (p-n 접합) 양단에 금속전극을 코팅하여 제작한다. 태양빛이 입사되면 반도체 내부에서 흡수되면 전자와 정공이 발생하여 p-n 접합부 전기장에 끌려 전자는 n측으로 정공은 p측으로 새로운 흐름이 생기면 접합부 양단의 전위차가 작아진다. 즉 반도체가 태양빛을 흡수하면 전기가 발생되는 원리인 광기전력효과(Photovoltaic Effect)를 이용한 것으로 반도체 접합부에 태양빛이 입사되면 접합부에서 전자가 발생하여 외부회로에 전류가 흐르게 된다.Photovoltaic (PV) is a power generation method that converts solar energy of no limit and no pollution directly into electric energy and consists of elements such as solar cell (module), PCS, and power storage device. The basic structure and the principle of power generation of the most common silicon solar cell are manufactured by bonding a p-type semiconductor and an n-type semiconductor (p-n junction) and coating metal electrodes on both ends. When sunlight is incident on the inside of the semiconductor, electrons and holes are generated, attracted by the p-n junction electric field, and electrons move toward the n-side and holes move toward the p-side, and the potential difference across the junction decreases. In other words, when the semiconductor absorbs sunlight, electricity is generated using the photovoltaic effect. When sunlight is incident on a semiconductor junction, electrons are generated at the junction, and current flows to an external circuit.
태양광 시스템은 빛을 받아서 전기로 전환시켜 주는 부분 (모듈)과 생산된 전기를 수요에 맞도록 교류로 변환시키고 계통에 연결시켜 주는 부분 (PCS) 으로 구성된다.The photovoltaic system consists of a part (module) that receives light and converts it into electricity and a part (PCS) that converts the produced electricity into alternating current and connects it to the system to meet demand.
태양광발전 시스템의 구성 요소기기 중 핵심부품은 태양전지이다. 태양전지는 기본적으로 반도체 소자 기술로서 태양빛을 전기에너지로 변환하는 기능을 수행하는데, 이는 전기를 빛으로 변환시키는 레이저나 발광다이오드(Light Emitting Diode) 등 정보 표시 소자와 작동 방향이 반대일 뿐 기본 구조나 재료특성이 동일하다.The key component of the photovoltaic system components is the solar cell. Solar cell is basically a semiconductor device technology that converts sunlight into electrical energy, which is basically opposite in direction to information display devices such as lasers and light emitting diodes that convert electricity into light. The structure and material properties are the same.
태양전지의 최소단위를 셀이라고 하며 보통 셀 1개로부터 나오는 전압이 약 0.5V로 매우 작으므로 다수의 태양전지를 직병렬로 연결하여 사용범위에 따라 실용적인 범위의 전압과 출력을 얻을 수 있도록 1매로 패키징하여 제작된 발전장치를 태양전지 모듈(PV Module)이라고 한다.The minimum unit of a solar cell is called a cell. Since the voltage from one cell is usually about 0.5V, it is very small, so that many solar cells can be connected in parallel to obtain a practical range of voltage and output depending on the range of use. The power generation device manufactured by packaging is called a PV module.
태양전지 모듈은 외부 환경으로부터 태양전지를 보호하기 위해서 유리, 완충재 및 표면제 등을 사용하여 패널 형태로 제작하며 내구성 및 내후성을 가진 출력을 인출하기 위한 외부단자를 포함한다. 복수 개의 태양전지 모듈에 태양빛이 많이 입사할 수 있도록 경사각, 방위각 등의 설치조건을 고려, 가대 및 지지대를 이용하여 전기적인 직병렬로 연결하여 사용범위에 맞게 구성한 발전장치를 태양전지 어레이(PV Array)라고 한다.The solar cell module is manufactured in the form of a panel using glass, a buffer and a surface agent to protect the solar cell from the external environment, and includes an external terminal for drawing an output having durability and weather resistance. Considering installation conditions such as inclination angle and azimuth angle so that a large amount of sunlight can be incident on a plurality of solar cell modules, a power generation device configured in accordance with the range of use by connecting in parallel and electrically using a mount and a support is used for a solar cell array (PV). Array).
태양광발전용 PCS(Power Conditioning System)는 태양전지 어레이에서 발전된 직류전력을 교류전력으로 변환하기 위한 인버터 장치를 말한다. PCS는 태양전지 어레이에서 발전한 직류전원을 상용계통과 같은 전압과 주파수의 교류전력으로 변환하는 장치가 인버터이기 때문에 PCS를 인버터라고도 한다. PCS는 인버터, 전력제어장치 및 보호 장치로 구성되어 있다. 태양전지 본체를 제외한 주변장치 중에서 가장 큰 비중을 차지하는 요소이다.PCS (Power Conditioning System) for solar power generation refers to an inverter device for converting DC power generated in a solar cell array into AC power. PCS is also called an inverter because the inverter converts the DC power generated from the solar cell array into AC power of the same voltage and frequency as the commercial system. PCS is composed of inverter, power control device and protection device. It is the largest component among peripheral devices except solar cell body.
태양광발전 시스템 태양에너지로부터 전기에너지로 변환하는 발전시스템으로 일사강도, 온도 등의 설치조건에 따른 환경변화, 구성요소기기 및 태양광발전 시스템의 설계시공에 따라서 발전성능이 결정된다. 태양광발전 시스템은 설치장소, 방식, 정격, 구성 등이 같다고 하더라도 설치장소의 환경변화에 따라서 성능특성은 변화된다. 친환경에너지원인 태양광발전 시스템의 이용보급이 확대됨에 따라 광범위하고 다양화되는 사용자 요구에 만족할 수 있는 고품질, 신뢰성과 안정성을 가진 시스템들이 기술개발이 점점 중요하게 된다. 태양광발전 시스템이 수명을 다할 때까지 최대성능을 달성하기 위해서는 고성능화와 설치조건 및 설계시공에 따른 성능추정, 발생손실 등의 종합적인 성능특성을 정량화가 필요하다. 성능평가 및 진단은 태양전지 모듈, PCS, 가대 및 지지대, 커넥터 등의 구성요소 기기의 저가화, 성능향상, 수명예측, 맞춤형 설계시공 및 유지점검 기술개발에 중요하다. 또한 대규모 시스템의 적용을 위한 연계제어기술, 전력품질 및 공급안정화와 전력저장기술에 대해서도 검토되어야 한다.Photovoltaic Power Generation System A power generation system that converts solar energy into electrical energy. Power generation performance is determined by environmental changes according to installation conditions such as insolation intensity and temperature, and design and construction of component devices and photovoltaic systems. Although the photovoltaic power generation system has the same installation location, method, rating, and configuration, the performance characteristics of the photovoltaic power generation system change depending on the environment of the installation location. As the use of photovoltaic power generation system, which is an environmentally friendly energy source, is expanded, technology development becomes increasingly important for systems with high quality, reliability and stability that can satisfy a wide variety of diversified user demands. In order to achieve maximum performance until the lifetime of the photovoltaic power generation system, it is necessary to quantify the overall performance characteristics such as high performance, performance estimation according to installation conditions and design construction, and generation loss. Performance evaluation and diagnosis are important for low cost, performance improvement, life prediction, customized design construction and maintenance inspection technology development of component devices such as solar cell module, PCS, mount and support, and connector. In addition, link control technology, power quality and supply stabilization and power storage technology for the application of large-scale systems should be examined.
태양광 시장은 대체에너지 개발 및 온실가스 저감을 위한 청정에너지 개발, 그리고 지속가능한 미래 에너지원 확보를 위한 각국 정부의 신재생에너지 보급 정책에 따라 급속히 성장하고 있음에도 불구하고, 태양광발전의 높은 시스템 가격으로 인하여 발전단가는 화석연료를 이용한 타 발전방식에 비하여 여전히 높은 수준이며, 태양광발전 시스템 가격의 50~60%를 차지하는 태양전지(모듈)의 저가화가 반드시 요구된다. 결정질 실리콘 태양전지(모듈)은 전 세계적인 생산라인 증설에 따라 결정질 실리콘 태양전지 가격은 급속히 하락하고 있으나 아직까지 높은 원소재 가격, 웨이퍼 제조시 kerf loss 발생 및 단속적인 공급에 따른 공정 문제 등으로 추가적인 가격경쟁력 확보에는 한계가 따를 것으로 예측됨에 따라, 결정질 실리콘 태양전지보다 값싸고 높은 효율을 나타낼 수 있는 박막 태양전지를 비롯한 차세대 태양전지 기술개발이 활발히 이루어지고 있으며 시장점유율도 점차로 확대되어 나갈 것으로 예측됨.Although the PV market is rapidly growing in line with the development of alternative energy, clean energy for GHG reduction, and government's renewable energy supply policy to secure a sustainable future energy source, high system price of PV Due to this, the power generation cost is still higher than that of other power generation methods using fossil fuels, and lowering of solar cells (modules), which account for 50 to 60% of the price of photovoltaic power generation systems, is required. The price of crystalline silicon solar cells (modules) is rapidly falling due to the expansion of global production lines. However, the price of crystalline silicon solar cells (modules) is still high due to high raw material prices, kerf loss in wafer manufacturing, and process problems due to intermittent supply. As it is expected that there will be limits to securing competitiveness, development of next-generation solar cell technology including thin film solar cell, which can be cheaper and higher efficiency than crystalline silicon solar cell, is being actively conducted, and market share is expected to expand gradually.
박막 태양전지는 결정질 실리콘 태양전지에 비하여 원료사용량이 매우 적고 대면적화 및 대량생산이 가능하여 태양전지 제조단가를 낮출 수 있으며, 광흡수층 소재의 두께가 수 ㎛로 원소재 소비가 매우 적으며 5세대급의 대면적 모듈 제조가 가능하고 태양전지 및 모듈제조가 함께 이루어져 Value chain이 단순하다. 또한, 실리콘 박막과 CI(G)S 및 CdTe 등의 화합물 박막을 이용한 박막 태양전지(모듈)이 상용화되고 있다. Thin-film solar cells have lower raw material usage compared to crystalline silicon solar cells, which enables large-area production and mass production, which can lower the cost of manufacturing solar cells. It is possible to manufacture large-scale module of class, and the value chain is simple because solar cell and module manufacturing are combined. In addition, thin film solar cells (modules) using silicon thin films and compound thin films such as CI (G) S and CdTe are commercially available.
현재 생산되고 있는 대부분의 박막 태양전지는 유리기판 위에 제조되고 있으며 5세대급 모듈제조시 무게는 약 20㎏이상이 되고 있다. Most of the thin film solar cells currently produced are manufactured on glass substrates, and the weight of the fifth generation module is about 20 kg or more.
플렉서블(flexible) 박막 태양전지는 기존의 결정질 실리콘 태양전지나 유리기판을 사용하는 박막 태양전지에 비하여 저가, 경량소재 사용 및 우수한 생산성을 바탕으로 태양전지의 제조비용을 획기적으로 저감할 수 있는 기술로, 현재 개발이 가장 활발히 진행되고 있는 플렉서블 박막 태양전지용 광흡수층으로는 실리콘 박막 및 CI(G)S 화합물 박막이다. 후면전극층으로는 일반적으로 반사율과 전기전도성이 우수한 금속박막(M, Ag, Al 등)을 사용하고, 투명전도층은 Window층으로 투과율이 우수한 동시에 전기전도성이 우수한 ZnO, ITO 등의 투명전도막을 사용한다. Flexible thin film solar cell is a technology that can drastically reduce manufacturing cost of solar cell based on low cost, light weight material and excellent productivity compared to thin film solar cell using crystalline silicon solar cell or glass substrate. Currently, the light absorbing layer for the flexible thin film solar cell, which is being actively developed, is a silicon thin film and a CI (G) S compound thin film. In general, a metal thin film (M, Ag, Al, etc.) having excellent reflectance and electrical conductivity is used as the back electrode layer, and a transparent conductive layer such as ZnO and ITO having excellent transmittance and excellent electrical conductivity is used as the transparent conductive layer as a window layer. do.
또한, 플렉서블 박막 태양전지는 저가화 특성과 더불어 경량이며 잘 깨지지 않고, 심미성과 적용성이 우수하여 대용량 발전의 기존 시장 대체뿐만 아니라 BAPV(Building Applied PV) 및 휴대용, 군사용 전원을 포함하는 신규 거대시장 창출이 가능한 미래산업 분야이다.In addition, the flexible thin-film solar cell is lightweight, unbreakable, and has excellent aesthetics and applicability as well as low cost, thus creating a new large market including BAPV (Building Applied PV) and portable and military power supplies as well as replacing the existing market of large-capacity power generation. This is a possible future industry field.
태양전지 분야의 기술상의 문제점과 향후 개선 방안은 소면적 태양전지의 효율이 다결정 실리콘 태양전지의 최고 효율에 근접할 정도로 높은데 반해, 대면적 모듈의 효율이 이유는 공정이 복잡하고 엄밀한 제어를 필요로 하기 때문에 장치의 대형화가 어렵기 때문이다. 따라서, 저가, 고효율화, 대면적화를 통한 상업화 기술의 확보를 위해, 단위 박막의 성능 및 구조 개선을 통한 실험실 제조 태양전지의 효율 향상, 대면적 모듈의 제조, CdS 대체 공정 개발 등의 문제를 해결해야 할 것이다. 또한, 현재의 저가 고효율화를 위한 기술개발 노력과 함께 나노기술 및 다층구조 기술의 접목이 장기적인 차원에서 추진되어야 할 것이다.Technical problems and future improvements in the solar cell field are that the efficiency of small-area solar cells is close to the highest efficiency of polycrystalline silicon solar cells, whereas the efficiency of large-area modules is complicated and requires strict control. This is because it is difficult to increase the size of the device. Therefore, in order to secure commercialization technology through low cost, high efficiency, and large area, it is necessary to solve problems such as improving efficiency of lab-made solar cell, manufacturing large-area module, and developing CdS replacement process by improving performance and structure of unit thin film. something to do. In addition, in the long term, the integration of nanotechnology and multilayer structure technology should be pursued along with the current technology development efforts for low cost and high efficiency.
(특허문헌 1) 등록특허 10-1127226는 플렉서블 유기태양전지 및 그 제조방법에 관한 것으로서, 보다 구체적으로는 고전도성 고분자 잉크를 사용한 용액공정과 제1 전극 및 광활성 층을 패터닝하는 단계를 포함하는 고효율의 플렉서블 유기태양전지 및 그 제조방법에 관한 것으로 본 발명의 제조방법에 따르면, 제1 전극을 형성하는 고전도성 고분자 용액에 서팩턴트를 첨가시킴으로써 박막의 모폴로지 및 전도성을 향상시키고, 제1 전극 및 광활성 층을 간단한 방법으로 패터닝할 수 있다. 또한, 본 발명의 플렉서블 유기태양전지는 에너지변환 효율이 우수하고, 제작공정이 간단하며, 대면적, 고효율의 유기태양전지 모듈을 저렴한 가격으로 제작할 수 있다. 그러나, 태양전지 광흡수층인 CI(G)S의 기공(Porosity)을 줄일 수 있는 개선안이 포함되어 있지 않으며, 이를 통한 CI(G)S의 조성 균일도 및 CI(G)S의 각 재료 별로 센렌화 공정 조건을 조절하는 방안이 제시되어 있지 않다. 또한, 유기 전극 층, 정공전달 층, 광활성 층 및 전극 층 중 하나 이상의 층을 제작하는 과정에서 브러쉬를 이용한 칠 공정을 통하여 유기기반 태양전지를 제조하는 방법을 포함하고 있으나, 상기 기술의 적용을 유기기반 태양전지의 광활성 층의 제조로 한정하고 있다. 또한, 원하는 모양으로 패터닝이 불가능하기 때문에, 대면적 소자 및 모듈의 전극 및 광활성 층의 제작에 적합하지 않다. (Patent Document 1) Patent No. 10-1127226 relates to a flexible organic solar cell and a method for manufacturing the same, and more specifically, a high efficiency including a solution process using a highly conductive polymer ink and a step of patterning a first electrode and a photoactive layer. The present invention relates to a flexible organic solar cell and a method for manufacturing the same. According to the method of the present invention, a morphology and conductivity of a thin film are improved by adding a supplement to a highly conductive polymer solution forming a first electrode, and the first electrode and photoactivity The layer can be patterned in a simple way. In addition, the flexible organic solar cell of the present invention has an excellent energy conversion efficiency, a simple manufacturing process, and can produce an organic solar cell module having a large area and high efficiency at a low price. However, it does not include an improvement plan to reduce the porosity of CI (G) S, which is a solar cell light absorption layer, and the composition uniformity of CI (G) S and the senrenization of each material of CI (G) S. There is no suggestion to control process conditions. In addition, a method of manufacturing an organic-based solar cell through a paint process using a brush in the process of manufacturing one or more layers of an organic electrode layer, a hole transport layer, a photoactive layer and an electrode layer, but the application of the technology It is limited to the production of a photoactive layer of the base solar cell. In addition, since patterning is not possible in the desired shape, it is not suitable for fabrication of electrodes and photoactive layers of large area devices and modules.
이러한 태양광발전 경제성 확보를 위한 초저가, 고효율 태양전지 원천 기술개발의 중요성 증대되고 있는데 플렉서블 박막 태양전지(CI(G)S 박막)은 기존의 결정질 실리콘 태양전지나 유리기판 박막 태양전지에 비하여 톨투롤 공정을 이용함으로 제조 단가를 획기적으로 낮출 수 있는 차세대 태양전지 분야이다. 플렉서블 박막 태양전지 (CI(G)S 박막)은 기존의 결정질 실리콘 태양전지나 유리기판 박막 태양전지에 비하여 롤투롤 공정을 이용함으로 제조단가를 획기적으로 낮출 수 있는 차세대 태양전지 분야이다. 태양전지의 프린팅공정 적용기술은 현재 염료감응형, 유기, CI(G)S 태양전지에서 일부 기술개발이 진행중에 있으며, 실리콘 프린팅 공정은 전 세계적으로 매우 초기적인 단계이고 국내에서는 연구가 전무하다. 그 중에서도 태양전지 제조에 사용되는 광흡수층으로는 실리콘 박막 및 CI(G)S 박막이 사용되는데 특히, CI(G)S 박막의 제조 단계에서 피리딘(pyridine)을 용매로한 CuI와 InI3, Methanol을 용매로한 Na2Se을 혼합공정을 통해 나노파티클(Nanoparticle) 상태의 CuInSe2와 부산물인 NaI 얻는 단계에서, 혼합물의 형태에 따라 각 물질의 비율이 제조할 때마다 달라지는 문제점이 있다. 이러한 기존의 방법으로 입자를 만들 경우, 광흡수층의 기공(Porosity)이 크고, CI(G)S의 조성 균일도 및 CI(G)S의 각 재료 별로 센렌화 공정 조건을 조절해야 하기 때문에 제조 단가를 높이는 요인으로 작용한다. The development of ultra-low cost, high efficiency solar cell source technology for securing photovoltaic economic feasibility is increasing. Flexible thin film solar cell (CI (G) S thin film) is a toll-to-roll process compared to conventional crystalline silicon solar cell or glass substrate thin film solar cell. It is the next generation solar cell field that can drastically lower the manufacturing cost by using. Flexible thin film solar cell (CI (G) S thin film) is a next generation solar cell field that can significantly lower the manufacturing cost by using a roll-to-roll process as compared to conventional crystalline silicon solar cells or glass substrate thin film solar cells. Application technology of solar cell printing process is under development of some technology in dye-sensitized, organic, CI (G) S solar cell. Silicon printing process is very early stage in the world and there is no research in Korea. Among them, silicon thin film and CI (G) S thin film are used as the light absorption layer used in solar cell manufacturing. Particularly, CuI, InI 3 and Methanol using pyridine as a solvent during the manufacturing step of CI (G) S thin film. in the obtaining of CuInSe 2 and a by-product of the nanoparticle NaI (nanoparticle) state the Na 2 Se in a solvent through a mixing process, the problem varies each time the proportion of each material prepared in accordance with the form of a mixture. In the case of producing particles by such a conventional method, since the porosity of the light absorption layer is large, the composition uniformity of CI (G) S and the senrenization process conditions for each material of CI (G) S have to be adjusted. Height acts as a factor.
이러한 상기 문제점을 해소하기 위하여, In order to solve this problem,
광흡수층으로 사용되는 CuInSe2와 수득 공정에서, Chelating Agent를 첨가하는 공정을 포함시킬수 있다. Chelating Agent는 β-diketone 류, Heterocyclic Amine 류, 더욱 자세하게는 β-diketone 류는 Beta-Diketone, 2,4-Hexanedione, 5-Methyl-2,4-hexanedione, 2,2-Dimethyl-3,5-hexanedione, 3,5-Heptanedione, 2-Methyl-3,5-Heptanedione, 2,2-Dimethyl-3,5-Heptanedione, 2,6-Dimethyl-3,5-Heptanedione, 2,2,6-Trimethyl-3,5-Heptanedione, 2,2,6,6-Trimethyl-3,5-Heptanedione 등이 포함될 수 있으며, Heterocyclic Amine 류는 pyrrolidine, pyrrole, Imidazole, porphyrin, pyridine, pyrimidine, 2,2’-bipyridine, 1,10-phenanthroline 등이 포함될 수 있다. In the obtaining process with CuInSe 2 used as the light absorption layer, a step of adding a chelating agent may be included. Chelating agent is β-diketone, Heterocyclic Amine, more specifically β-diketone is Beta-Diketone, 2,4-Hexanedione, 5-Methyl-2,4-hexanedione, 2,2-Dimethyl-3,5- hexanedione, 3,5-Heptanedione, 2-Methyl-3,5-Heptanedione, 2,2-Dimethyl-3,5-Heptanedione, 2,6-Dimethyl-3,5-Heptanedione, 2,2,6-Trimethyl- 3,5-Heptanedione, 2,2,6,6-Trimethyl-3,5-Heptanedione, etc., Heterocyclic Amine may be pyrrolidine, pyrrole, Imidazole, porphyrin, pyridine, pyrimidine, 2,2'-bipyridine, 1,10-phenanthroline and the like.
태양전지에 사용되는 광흡수층으로 사용되는 CI(G)S박막 제조 공정에서 Chelating Agent를 첨가하여, 광흡수층의 원료로 사용되는 CuI, InI3 및 Na2Se의 용해시 Cu 또는 In 과 complex를 형성하여 Se 이온과 결합을 구조적으로 방해함으로써, 크기가 작은 입자를 만들 수 있다. 따라서, 기공(Porosity)의 크기를 줄이고, 조성의 균일도가 향상된 CI(G)S박막을 제조할 수 있다. Adding a Chelating Agent in the CI (G) S thin film manufacturing process used as the light absorption layer used in solar cells, forming complexes with Cu or In when dissolving CuI, InI 3 and Na 2 Se used as raw materials of the light absorption layer By structurally interfering with the bond with Se ions, small particles can be produced. Therefore, it is possible to reduce the size of the porosity (Porosity), it is possible to manufacture a CI (G) S thin film with improved uniformity of the composition.
또한, 크고 각 공정별로 셀렌화 공정 조건의 변화시켜야 하고, 또한, 공정 조건의 변화가 적합하지 않을 경우, 제조된 흡수층이나 CI(G)S박막의 조성이 균일도가 떨어지는 기존의 흡수층이나 CI(G)S박막 제조 방법의 문제점을 해소할 수 있다. In addition, if the selenization process conditions must be large and change for each process, and if the process conditions are not suitable, the composition of the prepared absorbing layer or CI (G) S thin film is less uniform in the existing absorbing layer or CI (G). The problem of the S thin film manufacturing method can be solved.
도 1은 본원 발명의 광흡수층, CI(G)S박막 제조 방법이다. 1 is a light absorption layer, CI (G) S thin film production method of the present invention.
도 2는 본원 발명의 태양전지 제조 방법이다. 2 is a solar cell manufacturing method of the present invention.
도 3은 본원 발명에 의해 제조된 태양전지의 단면도이다. 3 is a cross-sectional view of a solar cell manufactured by the present invention.
도 4는 본원 발명에서 사용되는 Chelating Agent 중 β-diketone 류의 일 예를 나타낸다. Figure 4 shows an example of the β-diketone class of Chelating Agent used in the present invention.
도 5는 본원 발명에서 사용되는 Chelating Agent는 중 Heterocyclic Amine 류의 일 예를 나타낸다. Figure 5 shows one example of the Heterocyclic Amine of the Chelating Agent used in the present invention.
<부호의 설명><Description of the code>
10 : 기판10: substrate
20 : 후면전극층20: back electrode layer
30 : 광흡수층30: light absorption layer
40 : 버퍼층40: buffer layer
50 : 투명전도층50: transparent conductive layer
60 : 반사방지막60: antireflection film
70 : 전면전극층70: front electrode layer
도 1은 본원 발명에 의한 CI(G)S박막 제조 방법에 관한 것이다. 먼저, Substrate를 준비한다. 준비된 Substrate 상에 피리딘(pyridine)을 용매로한 CuI와 InI3혼합 용액, Methanol을 용매로한 Na2Se 용액을 반응시키는 혼합공정을 통해 나노파티클(Nanoparticle) 상태의 CuInSe2와 부산물인 NaI 얻는다. 1 relates to a method for producing a CI (G) S thin film according to the present invention. First, prepare the substrate. Prepared Substrate InI and pyridine CuI one (pyridine) as a solvent in the third mixed solution obtained NaI a nanoparticle (Nanoparticle) state of CuInSe 2 and a by-product through a mixing step of reacting the Na 2 Se solution Methanol as solvent.
다음 단계로, 상기 나노파티클 상태의 CuInSe2와 NaI을 원심 분리하여 나노파티클 상태의 CuInSe2를 분리한다. In the next step, CuInSe 2 and NaI in nanoparticle state are centrifuged to separate CuInSe 2 in nanoparticle state.
다음 단계로, 상기 분리된 나노파티클 상태의 CuInSe2를 코팅과 열처리를 이용하여 센렌화 하여 CuInSe2박막을 제조할 수 있다. As a next step, the CuInSe 2 in the separated nanoparticle state may be sensified using a coating and heat treatment to prepare a CuInSe 2 thin film.
상기 혼합 공정에서, Chelating Agent가 첨가될 수 있다. In the mixing process, a Chelating Agent may be added.
혼합 공정에 Chelating Agent의 첨가하면, 기공(Porosity)이 크고 각 공정별로 셀렌화 공정 조건의 변화시켜야 하고, 또한, 공정 조건의 변화가 적합하지 않을 경우, 제조된 흡수층이나 CI(G)S박막의 조성이 균일도가 떨어지는 기존의 흡수층이나 CI(G)S박막 제조 방법의 문제점을 해소할 수 있다. When the Chelating Agent is added to the mixing process, the porosity is large and the selenization process conditions must be changed for each process, and if the process conditions are not suitable, the absorbing layer or the CI (G) S thin film prepared The problem of the conventional absorbing layer or CI (G) S thin film manufacturing method that the composition is poor in uniformity can be solved.
Chelating Agent는 β-diketone 류, Heterocyclic Amine 류 중에 선택될 수 있다. Chelating Agent can be selected from β-diketone and Heterocyclic Amine.
β-diketone 류는 도 3에서 확인할 수 있는 바와 같이, Beta-Diketone, 2,4-Hexanedione, 5-Methyl-2,4-hexanedione, 2,2-Dimethyl-3,5-hexanedione, 3,5-Heptanedione, 2-Methyl-3,5-Heptanedione, 2,2-Dimethyl-3,5-Heptanedione, 2,6-Dimethyl-3,5-Heptanedione, 2,2,6-Trimethyl-3,5-Heptanedione, 2,2,6,6-Trimethyl-3,5-Heptanedione 등에서 선택될 수 있으나, 이에 한정된 것은 아니다. β-diketones can be seen in Figure 3, Beta-Diketone, 2,4-Hexanedione, 5-Methyl-2,4-hexanedione, 2,2-Dimethyl-3,5-hexanedione, 3,5- Heptanedione, 2-Methyl-3,5-Heptanedione, 2,2-Dimethyl-3,5-Heptanedione, 2,6-Dimethyl-3,5-Heptanedione, 2,2,6-Trimethyl-3,5-Heptanedione, 2,2,6,6-Trimethyl-3,5-Heptanedione and the like, but is not limited thereto.
Heterocyclic Amine 류는 도 4에서 확인할 수 있는 바와 같이, pyrrolidine, pyrrole, Imidazole, porphyrin, pyridine, pyrimidine, 2,2’-bipyridine, 1,10-phenanthroline 중에 선택될 수 있으나. 이 또한 명시한 것에 한정되는 것은 아니다. Heterocyclic Amine family may be selected from pyrrolidine, pyrrole, Imidazole, porphyrin, pyridine, pyrimidine, 2,2'-bipyridine, 1,10-phenanthroline, as can be seen in FIG. This is also not limited to what is specified.
나노파티클 상태의 CuInSe2와 NaI을 원심 분리하여 나노파티클 상태의 CuInSe2를 분리 단계는 Methanol에서 수행할 수 있으며, 이 외의 다양한 유기 용제를 사용할 수 있다.Centrifugation of CuInSe 2 and NaI in nanoparticle state may be performed to separate CuInSe 2 in nanoparticle state from Methanol, and various other organic solvents may be used.
분리된 나노파티클 상태의 CuInSe2를 스핀코팅(spin coating), 딥코팅(dip coating), 스프레이코팅(spray coating), 닥터블레이드코팅(Dr. blade coating), 롤코팅(roll coating), 바코팅(bar coating), 그래비에 코팅(gravier coating), 슬롯다이코팅(slot-die coating)중에 어는 하나의 방법으로 코팅할 수 있나, 이에 한정된 것은 아니다. Spin coating, dip coating, spray coating, Dr. blade coating, roll coating, and bar coating of CuInSe 2 in the separated nanoparticle state Bar coating, gravier coating, slot-die coating can be coated by any one method, but is not limited thereto.
상기 코팅된 CuInSe2를 300 내지 700 ℃ 의 온도에서 열처리를 통한 셀렌화 과정을 통해 CuInSe2 박막을 얻을 수 있다. The coated CuInSe 2 may be obtained through a selenization process through heat treatment at a temperature of 300 to 700 ° C. to obtain a CuInSe 2 thin film.
도 2는 본원 발명의 CI(G)S박막 제조 방법을 통해 제조된 CI(G)S박막을 이용한 태양전지 제조 방법에 관한 것이다. 기판(10)을 준비하고, 후면전극층(20)을 증착한다. 후면전극층(20) 상에 CI(G)S박막을 광흡수층(30)으로 증착하고, 상기 CI(G)S박막 상에 버퍼층(40)을 증착한다. 상기 버퍼층(40) 상에 투명전도층(50)을 증착하고, 차후 전면전극층(70)이 형성되는 영역을 제외한 부분에 반사방지막(60)을 증착한다. 상기 반사방지막(60)이 형성되지 않은 부분에 전면전극층(70)을 증착한다. 태양전지 제조에 사용되는 상기 기판(10)은 유리, 세라믹, 스테인레스 스틸(stainless steel), 폴리머(polymer), 금속 중에서 선택하여 사용할 수 있으나, 이에 한정된 것은 아니다. 일반적으로 기판의 재질로는 유리가 사용되고, 알루미나와 같은 세라믹 기판, 스테인레스 스틸, Cu tape 같은 금속 기판, 폴리머 등도 사용이 가능하다. 유리 기판으로 값싼 소다회 유리(sodalime glass)를 사용할 수 있다. Figure 2 relates to a solar cell manufacturing method using a CI (G) S thin film manufactured by the CI (G) S thin film manufacturing method of the present invention. The substrate 10 is prepared, and the back electrode layer 20 is deposited. The CI (G) S thin film is deposited on the back electrode layer 20 as the light absorption layer 30, and the buffer layer 40 is deposited on the CI (G) S thin film. The transparent conductive layer 50 is deposited on the buffer layer 40, and then the anti-reflection film 60 is deposited on a portion other than a region where the front electrode layer 70 is formed. The front electrode layer 70 is deposited on a portion where the anti-reflection film 60 is not formed. The substrate 10 used for manufacturing a solar cell may be selected from glass, ceramic, stainless steel, polymer, and metal, but is not limited thereto. In general, glass is used as a material of the substrate, and a ceramic substrate such as alumina, stainless steel, a metal substrate such as Cu tape, and a polymer may be used. Cheap sodaime glass can be used as the glass substrate.
후면전극층(20)으로는 Mo, Ni, Cu 중 선택되어 사용될 수 있는데, 이에 한정된 것은 아니다. Mo이 높은 전기 전도도를 갖기 때문에 후면전극층(20)으로 가장 광범위하게 사용되는데, Mo 박막의 제조는 D.C. sputtering이 가장 널리 이용되고 있으며, Mo 박막은 전극으로서 비저항이 낮아야 하고 또한 열팽창계수의 차이로 인하여 박리현상이 일어나지 않도록 유리기판에의 점착성이 뛰어나야 한다. 여기서 가장 중요한 변수가 박막제조 중 Ar과 산소의 분압인데, Ar 분압이 낮을수록 저항은 낮아지나 박리현상이 발생하게 되는데, 이를 해결하기 위해 Ar 분압을 높여 점착성이 좋은 막을 얇게 형성시키고 그 위에 저항이 낮은 박막을 형성하는 2중 구조를 형성시킬 수도 있다. The back electrode layer 20 may be selected from Mo, Ni, and Cu, but is not limited thereto. Since Mo has high electrical conductivity, it is most widely used as the back electrode layer 20. The production of Mo thin film is described in D.C. Sputtering is the most widely used and Mo thin film should have low resistivity as electrode and excellent adhesion to glass substrate so that peeling does not occur due to the difference of thermal expansion coefficient. The most important variable here is the partial pressure of Ar and oxygen during thin film manufacturing. The lower the partial pressure of Ar, the lower the resistance, but the peeling phenomenon occurs. To solve this problem, the higher the partial pressure of Ar, the thinner the adhesive film is formed. It is also possible to form a double structure that forms a low thin film.
후면전극층(20) 상에 CI(G)S 박막인 CuInSe2박막을 증착시켜 광흡수층(30)으로 사용할 수 있다. 물리적인 박막제조방법으로는 evaporation, sputtering + selenization, 화학적인 방법으로 electrodeposition 등이 사용될 수 있고, 각 방법에 있어서도 출발물질의 종류에 따라 다양한 제조방법이 동원될 수 있다. 기존의 물리적 및 화학적 박막 제조법과는 달리 Mo 기판위에 나노크기의 입자(분말, 콜로이드 등)를 합성하고 이를 용매와 혼합하여 스크린프린팅,반응소결시켜 광흡수층을 제조하는 공정도 가능할 것이다. The CuInSe 2 thin film, which is a CI (G) S thin film, may be deposited on the back electrode layer 20 to be used as the light absorption layer 30. As the physical thin film manufacturing method, evaporation, sputtering + selenization, chemical method, electrodeposition, etc. may be used, and in each method, various manufacturing methods may be mobilized depending on the type of starting material. Unlike conventional physical and chemical thin film manufacturing methods, nano-sized particles (powder, colloid, etc.) may be synthesized on a Mo substrate, and then mixed with a solvent, screen printing and reaction sintering may be used to prepare a light absorbing layer.
광흡수층(30) 상에 증착되는 버퍼층(40)은 CdS, InxSey, Zn(O,S,OH)x, In(OH)xSy, ZnInxSey, ZnSe 중에서 선택될 수 있으나, 이에 한정된 것은 아니다. The buffer layer 40 deposited on the light absorption layer 30 may be selected from among CdS, In x Se y , Zn (O, S, OH) x , In (OH) x S y , ZnIn x Se y , and ZnSe. It is not limited to this.
CI(G)S 태양전지는 p형 반도체인 CuInSe2 박막과 n형 반도체로 투명전도층으로 사용되는 ZnO 박막이 pn 접합을 형성한다. 하지만 두 물질은 격자상수와 에너지밴드갭의 차이가 크기 때문에 양호한 접합을 형성하기 위해서는 밴드갭이 두 물질의 중간에 위치하는 버퍼층이 필요하다 현재 가장 높은 효율의 태양전지에 사용되고 버퍼층(40)은 CdS이다. CdS박막은 CBD(Chemical Bath Deposition) 방법을 사용하여 두께 약 500 Å정도의 박막으로 형성할 수 있다. CBD 방법에 있어 증착되는 CdS막의 특성을 결정하는 가장 중요한 변수로는 증착온도, 용액의 pH, 막의 두께 등으로, 용액 내에 적정량의 Cd++와 S--이온을 만들고 용액의 온도를 조절하여 각 이온 농도의 곱이 용액의 용해도적보다 큰 경우에 CdS의 형태로 석출되는 성질을 이용할 수 있다. In the CI (G) S solar cell, a CuInSe 2 thin film which is a p-type semiconductor and a ZnO thin film which is used as a transparent conductive layer as an n-type semiconductor form a pn junction. However, since the two materials have a large difference in lattice constant and energy band gap, a buffer layer having a band gap in the middle of the two materials is required to form a good junction. Currently, the buffer layer 40 is used for the solar cell having the highest efficiency. to be. The CdS thin film can be formed into a thin film having a thickness of about 500 mm by using a chemical bath deposition (CBD) method. The most important variable in determining the film properties CdS deposited on it CBD method is a suitable amount of Cd ++ and S within the deposition temperature, pH of the solution, the film thickness or the like, a solution - to create an ion controlling the temperature of each solution If the product of the ion concentration is greater than the solubility of the solution, the property of precipitation in the form of CdS can be used.
증착된 상기 버퍼층(40) 상에 ZnO로 투명전도층(50)을 층작시킬 수 있으나, 이에 한정된 것은 아니다. The transparent conductive layer 50 may be layered with ZnO on the deposited buffer layer 40, but is not limited thereto.
n형 반도체로서 광흡수층인 CI(G)S와 pn접합을 형성하는 투명전도층(50)은 태양전지 전면의 투명전극으로서의 기능을 하기 때문에 광투과율이 높아야 하는데, ZnO박막은 RF sputtering방법으로 ZnO target을 사용하여 증착하는 방법과, Zn metal을 이용한 reactive sputtering 및 MOCVD(Metal Organic Chemical Vapor Deposition) 방법 등을 사용할 수 있다.As the n-type semiconductor, the transparent conductive layer 50 forming the pn junction with CI (G) S, which is a light absorption layer, functions as a transparent electrode on the front of the solar cell. Therefore, the light transmittance must be high. ZnO thin film is ZnO by RF sputtering method. Deposition using a target, reactive sputtering using Zn metal, and metal organic chemical vapor deposition (MOCVD) may be used.
전기광학적 특성이 뛰어난 ITO(Indium Tin Oxide) 박막을 ZnO 박막위에 증착한 2중 구조로 증착하는 것도 가능할 것이다.It is also possible to deposit an indium tin oxide (ITO) thin film having excellent electro-optic properties in a double structure deposited on a ZnO thin film.
증착한 투명전도층(50) 상에 MgF2 로 반사방지막(60)을 증착할 수 있으나. 이에 한정된 것은 아니다. 반사방지막(60)은 투명전도층(50) 상에, 차후 전면전극층(70)이 증착될 부분을 제외한 영역에 증착할 수 있다. 반사방지막(60)은 일반적으로 태양전지에 입사되는 태양광의 반사 손실을 줄이기 위해 증착되며, 물리적인 박막 제조법으로 E-beam Evaporation 이 사용될 수 있다. The anti-reflection film 60 may be deposited on MgF 2 on the deposited transparent conductive layer 50. It is not limited to this. The anti-reflection film 60 may be deposited on the transparent conductive layer 50 in a region except for a portion where the front electrode layer 70 will be deposited later. Anti-reflection film 60 is generally deposited to reduce the reflection loss of sunlight incident on the solar cell, E-beam Evaporation may be used as a physical thin film manufacturing method.
반사방지막(60)이 증착된 부분을 제외한, 투명전도층(60) 상에 전면전극층(70)이 증착될 수 있다. 이는 태양전지 표면에서 전류를 수집하기 위한 것으로 Al, Ag, Ni, M 중에 하나 이상 선택하여 사용할 수 있으나, 이에 한정된 것은 아니다. 이러한 공정을 통해 제조된 태양전지의 단면도는 도 3에서 확인할 수 있는 바와 같이, 기판(10) 상에 후면전극층(20), 후면전극층(20) 상에 광흡수층(30), 광흡수층(30) 상에 퍼버층(40), 버퍼층(40) 상에 투명전도층(50), 투명전도층(50) 상에 일부 부분에 반사방지막(60), 방바상지막(60)이 형성되지 않은 부분에 전면전극층(70)이 증착되어 있음을 알 수 있다. The front electrode layer 70 may be deposited on the transparent conductive layer 60 except for the portion where the anti-reflection film 60 is deposited. This is to collect current from the surface of the solar cell can be used to select one or more of Al, Ag, Ni, M, but is not limited thereto. As can be seen in FIG. 3, the cross-sectional view of the solar cell manufactured through the above process, the back electrode layer 20 on the substrate 10, the light absorption layer 30, the light absorption layer 30 on the back electrode layer 20. On the part where the anti-reflection film 60 and the barrier film 60 are not formed on the part of the buffer layer 40, the transparent conductive layer 50 on the buffer layer 40, and the transparent conductive layer 50 on the buffer layer 40. It can be seen that the front electrode layer 70 is deposited.
글로브 박스 내에서 CuI 0.42g 및 InI3 0.99g을 Pyridine 90ml 와 Acetyl acetone 50ml로 이루어진 혼합 용액에 첨가하여 12시간 이상 교반하여 녹인다.(용액 1) 마찬가지로, 글로브 박스 내에서 Na2Se 0.48g을 메탄올 30ml에 첨가하여 12시간 이상 교반하여 녹인다.(용액 2) 이후, 용액 1 과 용액 2를 Ice Bath 안에서 교반하면서 혼합하여 Cu-In-Se로 이루어진 콜로이드 혼합용액을 제조하였다. 합성된 Cu-In-Se 콜로이드 용액을 10000rpm 으로 20분간 원심분리 및 메탄올 세척을 반복하였다. 부산물로 생성된 NaI 및 Pyridine은 상기 원심분리 과정에 의해 제거된다. 이러한 과정을 거쳐 고순도의 Cu-In-Se 입자를 합성하였다. In a glove box, 0.42 g of CuI and 0.99 g of InI 3 are added to a mixed solution consisting of 90 ml of Pyridine and 50 ml of Acetyl acetone and dissolved by stirring for at least 12 hours. (Solution 1) Similarly, 0.48 g of Na 2 Se in methanol is similarly dissolved in methanol. The solution was added to 30 ml and stirred for 12 hours or more to dissolve. (Solution 2) Thereafter, solution 1 and solution 2 were mixed with stirring in an ice bath to prepare a colloidal mixed solution composed of Cu-In-Se. The synthesized Cu-In-Se colloidal solution was centrifuged at 10000 rpm for 20 minutes and the methanol wash was repeated. By-products NaI and Pyridine are removed by the centrifugation process. Through this process, high purity Cu-In-Se particles were synthesized.
상기 합성된 Cu-In-Se입자를 Pyridine 에 혼합하여 슬러리(Slurry)를 제조한다. 이때 입자 총 무게 : Pyridine 무게 = 1 : 8 이다. 이후, 상기 슬러리를 Mo 박막이 증착된 기판상에 스핀코팅법을 사용하여 코팅한다. The synthesized Cu-In-Se particles are mixed with Pyridine to prepare a slurry. The total particle weight: Pyridine weight = 1: 8. Thereafter, the slurry is coated on the substrate on which the Mo thin film is deposited by using a spin coating method.
코팅 후, 핫플레이트 상에서 3단계에 걸친 건조를 수행한다. 이때, 1단계 건조는 60 ℃에서 5분, 2단계는 200 ℃에서 2분, 3단계는 300 ℃에서 10분 동안 건조하였다. After coating, three stages of drying are performed on a hotplate. At this time, the first stage of drying for 5 minutes at 60 ℃, the second stage for 2 minutes at 200 ℃, the third stage was dried for 10 minutes at 300 ℃.
마지막으로, 기판온도 500 ℃ 이상에서 Se 증기를 공급하면서 30분간 셀렌화 열처리를 하여 CIGS계 박막을 완성하였다. Finally, selenization heat treatment was performed for 30 minutes while supplying Se vapor at a substrate temperature of 500 ° C. or higher to complete a CIGS-based thin film.
본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시예에 불과하며, 당업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시예에만 국한되는 것이 아님은 명확하다. 따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. 또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다.Although the present invention has been described with reference to the accompanying drawings, it is merely one example of various embodiments including the gist of the present invention, which can be easily implemented by those skilled in the art. It is clear that the present invention is not limited to the above-described embodiment only. Therefore, the protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto by the change, substitution, substitution, etc. within the scope not departing from the gist of the present invention are the rights of the present invention. It will be included in the scope. In addition, some of the components of the drawings are intended to more clearly describe the configuration, and it is clear that the exaggerated or reduced size is provided.
본 발명에 따르면, 태양전지에 사용되는 광흡수층으로 사용되는 CI(G)S박막 제조 공정에서 Chelating Agent를 첨가하여, 광흡수층의 원료로 사용되는 CuI, InI3 및 Na2Se의 용해시 Cu 또는 In 과 complex를 형성하여 Se 이온과 결합을 구조적으로 방해함으로써, 크기가 작은 입자를 만들 수 있다. 따라서, 기공(Porosity)의 크기를 줄이고, 조성의 균일도가 향상된 CI(G)S박막을 제조할 수 있다. According to the present invention, by adding a Chelating Agent in the CI (G) S thin film manufacturing process used as the light absorption layer used in the solar cell, Cu or dissolution of CuI, InI 3 and Na 2 Se used as a raw material of the light absorption layer By forming a complex with In to structurally interfere with Se ions, small particles can be produced. Therefore, it is possible to reduce the size of the porosity (Porosity), it is possible to manufacture a CI (G) S thin film with improved uniformity of the composition.
또한, 크고 각 공정별로 셀렌화 공정 조건의 변화시켜야 하고, 또한, 공정 조건의 변화가 적합하지 않을 경우, 제조된 흡수층이나 CI(G)S박막의 조성이 균일도가 떨어지는 기존의 흡수층이나 CI(G)S박막 제조 방법의 문제점을 해소할 수 있다. 이러한 이유로 본 발명은 산업상 이용가능성이 높다. In addition, if the selenization process conditions must be large and change for each process, and if the process conditions are not suitable, the composition of the prepared absorbing layer or CI (G) S thin film is less uniform in the existing absorbing layer or CI (G). The problem of the S thin film manufacturing method can be solved. For this reason, the present invention has high industrial applicability.

Claims (16)

  1. 태양전지의 광흡수층으로서의 CI(G)S박막 제조 방법에 있어서, In the manufacturing method of CI (G) S thin film as a light absorption layer of a solar cell,
    (i) Substrate를 준비하는 단계;(i) preparing a substrate;
    (ii) 상기 Substrate 상에서 피리딘(pyridine)을 용매로 한 CuI와 InI3 혼합용액과, Methanol을 용매로 한 Na2Se 용액을 반응시켜, 나노파티클(Nanoparticle) 상태의 CuInSe2와 부산물인 NaI 얻는 혼합 단계;(ii) a mixture of CuI and InI 3 mixed with pyridine as a solvent and Na 2 Se solution with Methanol as a solvent on the substrate to obtain CuInSe 2 in a nanoparticle state and NaI as a byproduct; step;
    (iii) 상기 나노파티클 상태의 CuInSe2와 NaI을 원심 분리하여 나노파티클 상태의 CuInSe2를 분리하는 단계;(iii) separating CuInSe 2 in nanoparticle state by centrifuging CuInSe 2 and NaI in nanoparticle state;
    (iv) 상기 분리된 나노파티클 상태의 CuInSe2를 코팅하는 단계;(iv) coating CuInSe 2 in the separated nanoparticle state;
    (v) 상기 코팅된 CuInSe2를 열처리하여 셀렌화를 통해 CuInSe2 박막을 얻는 단계;(v) to afford a CuInSe 2 thin film through a selenide by heating the coated CuInSe 2;
    를 포함하는 것을 특징으로 하는 CI(G)S박막 제조 방법.CI (G) S thin film manufacturing method comprising a.
  2. 청구항 1항에 있어서,The method according to claim 1,
    상기 (ii) 단계의 상기 혼합 단계에서, In the mixing step of step (ii),
    Chelating Agent가 첨가되는 단계를 포함하는 것을 특징으로 하는 CI(G)S박막 제조 방법.CI (G) S thin film manufacturing method comprising the step of adding a Chelating Agent.
  3. 청구항 2항에 있어서,The method according to claim 2,
    상기 Chelating Agent는 β-diketone 류, Heterocyclic Amine 류 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 CI(G)S박막 제조 방법.The chelating agent is a CI (G) S thin film manufacturing method characterized in that it comprises at least one of β-diketones, Heterocyclic Amines.
  4. 청구항 3항에 있어서, The method according to claim 3,
    상기 β-diketone 류는 Beta-Diketone, 2,4-Hexanedione, 5-Methyl-2,4-hexanedione, 2,2-Dimethyl-3,5-hexanedione, 3,5-Heptanedione, 2-Methyl-3,5-Heptanedione, 2,2-Dimethyl-3,5-Heptanedione, 2,6-Dimethyl-3,5-Heptanedione, 2,2,6-Trimethyl-3,5-Heptanedione, 2,2,6,6-Trimethyl-3,5-Heptanedione 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 CI(G)S박막 제조 방법.The β-diketones are Beta-Diketone, 2,4-Hexanedione, 5-Methyl-2,4-hexanedione, 2,2-Dimethyl-3,5-hexanedione, 3,5-Heptanedione, 2-Methyl-3, 5-Heptanedione, 2,2-Dimethyl-3,5-Heptanedione, 2,6-Dimethyl-3,5-Heptanedione, 2,2,6-Trimethyl-3,5-Heptanedione, 2,2,6,6- A method for producing a CI (G) S thin film, comprising at least one of trimethyl-3,5-Heptanedione.
  5. 청구항 3에 있어서, The method according to claim 3,
    상기 Heterocyclic Amine 류는 pyrrolidine, pyrrole, Imidazole, porphyrin, pyridine, pyrimidine, 2,2’-bipyridine, 1,10-phenanthroline 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 CI(G)S박막 제조 방법.The Heterocyclic Amine class CI (G) S thin film production method characterized in that it comprises at least one of pyrrolidine, pyrrole, Imidazole, porphyrin, pyridine, pyrimidine, 2,2'-bipyridine, 1,10-phenanthroline.
  6. 청구항 1항에 있어서,The method according to claim 1,
    상기 (iii) 단계에서, In step (iii),
    원심 분리 단계는 Methanol에서 수행하는 것을 특징으로 하는 CI(G)S박막 제조 방법.Centrifugation step is CI (G) S thin film production method characterized in that carried out in Methanol.
  7. 청구항 1항에 있어서, The method according to claim 1,
    상기 (iv) 단계에서,In step (iv),
    상기 나노파티클 상태의 CuInSe2를 스핀코팅(spin coating), 딥코팅(dip coating), 스프레이코팅(spray coating), 닥터블레이드코팅(Dr. blade coating), 롤코팅(roll coating), 바코팅(bar coating), 그래비에 코팅(gravier coating), 슬롯다이코팅(slot-die coating) 중 적어도 어느 하나의 방법으로 코팅하는 것을 특징으로 하는 CI(G)S박막 제조 방법.CuInSe 2 in the nanoparticle state is spin coated, dip coated, spray coated, doctor blade coated, roll coated, roll coated, bar coated A method for producing a CI (G) S thin film, characterized in that the coating is carried out by at least one of coating, gravy coating, and slot-die coating.
  8. 청구항 1항에 있어서, The method according to claim 1,
    상기 (v) 단계에서, In step (v),
    상기 코팅된 CuInSe2를 300 내지 700 ℃ 의 온도에서 열처리하여 셀렌화를 통해 CuInSe2 박막을 얻는 것을 특징으로 하는 CI(G)S박막 제조 방법.The coating of the CuInSe 2 by heat treatment at a temperature of 300 to 700 ℃ CuInSe CI (G) S thin film manufacturing method characterized by obtaining the second thin film through a selenide.
  9. 태양전지 제조 방법에 있어서,In the solar cell manufacturing method,
    (1) 기판을 준비하는 단계;(1) preparing a substrate;
    (2) 후면전극층을 증착하는 단계;(2) depositing a back electrode layer;
    (3) 상기 청구항 1 내지 청구항 8의 방법으로 제조된 CI(G)S박막을 광흡수층으로 증착하는 단계;(3) depositing a CI (G) S thin film prepared by the method of claims 1 to 8 as a light absorption layer;
    (4) 버퍼층을 증착하는 단계;(4) depositing a buffer layer;
    (5) 투명전도층을 증착하는 단계;(5) depositing a transparent conductive layer;
    (6) 반사방지막을 전면전극층이 형성되는 영역을 제외한 부분에 증착하는 단계;(6) depositing an anti-reflection film on portions other than the region where the front electrode layer is formed;
    (7) 상기 반사방지막이 형성되지 않은 부분에 전면전극층을 증착하는 단계;(7) depositing a front electrode layer on a portion where the anti-reflection film is not formed;
    를 포함하는 것을 특징으로 하는 태양전지 제조 방법.Solar cell manufacturing method comprising a.
  10. 청구항 9에 있어서, The method according to claim 9,
    상기 기판은 유리, 세라믹, 스테인레스 스틸(stainless steel), 폴리머(polymer), 금속 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 태양전지 제조 방법.The substrate is a solar cell manufacturing method comprising at least one of glass, ceramic, stainless steel (stainless steel), polymer (polymer), metal.
  11. 청구항 10에 있어서, The method according to claim 10,
    상기 후면전극층은 Mo, Ni, Cu 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 태양전지 제조 방법.The back electrode layer is a solar cell manufacturing method comprising at least one of Mo, Ni, Cu.
  12. 청구항 11에 있어서, The method according to claim 11,
    상기 버퍼층은 CdS, InxSey, Zn(O,S,OH)x, In(OH)xSy, ZnInxSey, ZnSe 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 태양전지 제조 방법.The buffer layer comprises at least one of CdS, In x Se y , Zn (O, S, OH) x , In (OH) x S y , ZnIn x Se y , ZnSe.
  13. 청구항 12에 있어서, The method according to claim 12,
    상기 투명전도층은 ZnO 인 것을 특징으로 하는 태양전지 제조 방법.The transparent conductive layer is a solar cell manufacturing method, characterized in that ZnO.
  14. 청구항 13에 있어서, The method according to claim 13,
    상기 투명전도층은 하부막인 ZnO 위에 상부막인 ITO(Indium Tin Oxide)로 이루어진 2중 구조로 증착하는 것을 특징으로 하는 태양전지 제조 방법.The transparent conductive layer is a solar cell manufacturing method characterized in that the deposition on the lower layer of ZnO in a double structure consisting of ITO (Indium Tin Oxide).
  15. 청구항 13 또는 청구항 14에 있어서, The method according to claim 13 or 14,
    상기 반사방지막은 MgF2 인 것을 특징으로 하는 태양전지 제조 방법.The anti-reflection film is a solar cell manufacturing method, characterized in that MgF 2 .
  16. 청구항 15에 있어서, The method according to claim 15,
    상기 전면전극층은 Al, Ag, Ni, M 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 태양전지 제조 방법.The front electrode layer is a solar cell manufacturing method comprising at least any one of Al, Ag, Ni, M.
PCT/KR2013/007098 2012-12-24 2013-08-06 Ci(g)s thin film and method for manufacturing same, ci(g)s solar cell using same and method for manufacturing same WO2014104523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120151848A KR101508132B1 (en) 2012-12-24 2012-12-24 A CI(G)S Thin Film And The Fabrciation Method Of The Same, And A CI(G)S Solar Cell Using The CI(G)S Thin Film And The Fabrciation Method Of The Same.
KR10-2012-0151848 2012-12-24

Publications (1)

Publication Number Publication Date
WO2014104523A1 true WO2014104523A1 (en) 2014-07-03

Family

ID=51021545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007098 WO2014104523A1 (en) 2012-12-24 2013-08-06 Ci(g)s thin film and method for manufacturing same, ci(g)s solar cell using same and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101508132B1 (en)
WO (1) WO2014104523A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037832A1 (en) * 1998-01-27 1999-07-29 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
KR20110094703A (en) * 2010-02-17 2011-08-24 한국화학연구원 Method for fabricating the ci(g)s thin-film with dense microstructure using stoichiometric ci(g)s particles containing phases with low melting point
JP2012044187A (en) * 2010-08-23 2012-03-01 Samsung Sdi Co Ltd Solar cell
KR101192289B1 (en) * 2011-07-15 2012-10-17 한국에너지기술연구원 Preparation method for ci(g)s-based compound thin film using binary nano particle hydrid and ci(g)s-based compound thin film prepared by the same
KR20120131536A (en) * 2011-05-25 2012-12-05 한국에너지기술연구원 Preparation method for cis-based compound thin film with high density

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709917B2 (en) * 2010-05-18 2014-04-29 Rohm And Haas Electronic Materials Llc Selenium/group 3A ink and methods of making and using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037832A1 (en) * 1998-01-27 1999-07-29 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
KR20110094703A (en) * 2010-02-17 2011-08-24 한국화학연구원 Method for fabricating the ci(g)s thin-film with dense microstructure using stoichiometric ci(g)s particles containing phases with low melting point
JP2012044187A (en) * 2010-08-23 2012-03-01 Samsung Sdi Co Ltd Solar cell
KR20120131536A (en) * 2011-05-25 2012-12-05 한국에너지기술연구원 Preparation method for cis-based compound thin film with high density
KR101192289B1 (en) * 2011-07-15 2012-10-17 한국에너지기술연구원 Preparation method for ci(g)s-based compound thin film using binary nano particle hydrid and ci(g)s-based compound thin film prepared by the same

Also Published As

Publication number Publication date
KR101508132B1 (en) 2015-04-06
KR20140082880A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
Chowdhury et al. Stability of perovskite solar cells: issues and prospects
Efaz et al. A review of primary technologies of thin-film solar cells
Sun et al. Semi-transparent solar cells
US20090194165A1 (en) Ultra-high current density cadmium telluride photovoltaic modules
US7922804B2 (en) Method for preparing sol-gel solution for CIGS solar cell
WO2013066030A1 (en) Solar cell and preparing method of the same
WO2015160069A1 (en) Method for preparing light absorbing layer of thin-film solar cell, and thin-film solar cell using same
WO2013077547A1 (en) Cis/cigs solar cell having a rear tco layer and production method therefor
Jiang et al. Metal halide perovskite-based flexible tandem solar cells: next-generation flexible photovoltaic technology
CN102543972A (en) Solar battery module
KR101523246B1 (en) Double buffer comprising ZnS and solar cell using the same, and a method of manufacturing them
WO2013069998A1 (en) Solar cell and method of fabricating the same
Chantana et al. Flexible Cu (In, Ga) Se2 solar cell with superstrate-type configuration fabricated by a lift-off process
US9391215B2 (en) Device for generating photovoltaic power and method for manufacturing same
WO2013058459A1 (en) Solar cell module and preparing method of the same
KR101591719B1 (en) Non-vacuum Process Method of Thin film using High pressure Selenization process
Fan et al. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact
WO2014104523A1 (en) Ci(g)s thin film and method for manufacturing same, ci(g)s solar cell using same and method for manufacturing same
WO2013051854A2 (en) Solar cell and solar cell module using the same
KR101508133B1 (en) A CI(G)S Thin Film And The Fabrciation Method Of The Same, And A CI(G)S Solar Cell Using The CI(G)S Thin Film And The Fabrciation Method Of The Same.
KR101584072B1 (en) Non-vacuum Process Method of Thin film using Carbon Layer as Diffusion Barier Film
US10453973B2 (en) Titanium oxide having hexagonal column shape, method of fabricating the same, solar cell including the same, and method of fabricating solar cell including the same
KR20150087874A (en) Solar cell and method of fabricating the same
WO2014142401A1 (en) Method for producing ci(g)s thin film having improved performance, and photovoltaic cell using same
US20120180863A1 (en) Solar cell apparatus and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866602

Country of ref document: EP

Kind code of ref document: A1