WO2014104500A1 - Compound for organic optoelectric device, organic light emitting diode comprising same, and display apparatus comprising organic light emitting diode - Google Patents

Compound for organic optoelectric device, organic light emitting diode comprising same, and display apparatus comprising organic light emitting diode Download PDF

Info

Publication number
WO2014104500A1
WO2014104500A1 PCT/KR2013/005239 KR2013005239W WO2014104500A1 WO 2014104500 A1 WO2014104500 A1 WO 2014104500A1 KR 2013005239 W KR2013005239 W KR 2013005239W WO 2014104500 A1 WO2014104500 A1 WO 2014104500A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
formula
organic
Prior art date
Application number
PCT/KR2013/005239
Other languages
French (fr)
Korean (ko)
Inventor
이한일
정성현
채미영
강의수
김윤환
김준석
류동완
유동규
이승재
장유나
조영경
허달호
홍진석
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to JP2015551050A priority Critical patent/JP2016505611A/en
Publication of WO2014104500A1 publication Critical patent/WO2014104500A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • a compound for an organic optoelectronic device, an organic light emitting device including the same, and a display device including the organic light emitting device is provided.
  • An organic optoelectric device refers to a device requiring charge exchange between an electrode and an organic material using holes or electrons.
  • Organic optoelectronic devices can be divided into two types according to the operation principle.
  • It is an electronic device of the form.
  • the second is an electronic device in which holes or electrons are injected into an organic semiconductor forming an interface with the electrodes by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
  • Examples of an organic optoelectronic device include an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic photo conductor drum, and an organic transistor, all of which inject holes or transport materials and electrons to drive the devices. Or a transport material or a luminescent material.
  • organic light emitting diodes are attracting attention as demand for flat panel displays increases recently.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • Such an organic light emitting device converts electrical energy into light by applying a current to an organic light emitting material, and has a structure in which a functional organic material layer is inserted between an anode and a cathode.
  • the organic material layer is often composed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, can be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. have.
  • the material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to a function.
  • a charge transport material such as a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to a function.
  • the light emitting material may be classified into blue, green, and red light emitting materials and yellow and orange light emitting materials required to achieve better natural colors according to the light emitting color.
  • the maximum emission wavelength is shifted to a long wavelength due to intermolecular interaction, and color purity decreases or the efficiency of the device decreases due to the light emission attenuation effect, thereby increasing color purity and energy.
  • a host / dopant system may be used as a light emitting material.
  • the organic layer of the material such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or dopant in the light emitting material
  • the back should be supported by a stable and efficient material, and the development of a stable and efficient organic material layer for an organic light emitting device has not been made yet. Therefore, the development of new materials is still required. .
  • the necessity of such a material development is the same in other organic optoelectronic devices described above.
  • the low molecular weight organic light emitting diode is manufactured in the form of a thin film by vacuum evaporation method, so the efficiency and lifespan performance is good, and the high molecular weight organic light emitting diode using the inkjet or spin coating method has an initial investment cost. Small and large area is advantageous.
  • Both low molecular weight organic light emitting diodes and high molecular weight organic light emitting diodes are attracting attention as next-generation displays because they have advantages such as self-luminous, high-speed response, wide viewing angle, ultra-thin, high-definition, durability, and wide driving temperature range.
  • it is a self-luminous type, compared to conventional LCD (liquid crystal display), and has good cyanity even in the dark or outside light. It can reduce thickness and weight by 1/3 of LCD because no backlight is required.
  • the response speed is KXX) times faster than LCD, making it possible to realize a perfect video without afterimages. Therefore, it is expected to be spotlighted as the most suitable display in line with the recent multimedia era. Based on these advantages, it has undergone rapid technological advancement of 80 times efficiency and 100 times life span since the first development in the late 1980s. Increasingly, large-scaled developments are being made with the introduction of organic light emitting diode panels.
  • An organic light emitting device including the compound for an organic optoelectronic device and a display device including the organic light emitting device are provided.
  • a compound for an organic optoelectronic device represented by the following formula (1) is provided.
  • Ar is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, or a combination thereof
  • L 1 to L 3 are independently from each other, substituted or unsubstituted A substituted C2 to C6 alkenylene group, a substituted or unsubstituted C2 to C6 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group, or a combination thereof
  • nl To n3 are each independently an integer of any one of 0 to 3
  • A is the following formula A-2
  • B is K-2, a substituted or unsubstituted C6 to C30 aryl group, or a substituted or unsubstituted C2 to C30 heteroaryl group:
  • X is -0- or ⁇ S-, R and R are independently of each other, hydrogen, hydrogen, halogen, cyano group, hydroxyl group amino group, substituted or unsubstituted C1 to C20 Amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxy Carbonyl group, substituted or unsubstituted C2 to C20 acyl
  • C2 to C20 acylamino group substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiol group, substituted or unsubstituted C1 to C20 heterocyclothiol group, substituted or unsubstituted C1 To C20 uride group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
  • B may be A-2.
  • Ar 1 may be represented by Formula B-1.
  • R to R are independently of each other, hydrogen hydrogen, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferrocenyl Group, substituted or unsubstituted C1 to C20 alkyl group, substituted Or an unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryloxy group, a substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubsti
  • Ar 1 may be the following Formula B-2.
  • R to R are independently of each other, hydrogen, hydrogen, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group , Ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted Or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstit
  • R to R are independently of each other, hydrogen, hydrogen, halogen, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferro Senyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted A substituted C6 to C20 aryloxy group, a substituted or unsubstituted C3 to C40 silyloxy group, a substituted or unsubstituted C1 to C20 acyl group, a substituted or unsubstituted C2 to C20 alkoxycarbonyl group, a substituted or unsubstituted C2 to C20 acyloxy
  • Ar 1 may be the following Formula B-4.
  • Ar may be the following Formula B-5. [Formula B-5]
  • X is -0-, -S- or NR ', R', R and R are independently of each other, hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substitution or Unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, Substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyl oxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted Substituted C2 to C20 alkoxycarbony
  • C20 sulfamoylamino group substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiyl group, substituted or unsubstituted C1 to C20 solution
  • a tercyclocyclo group a substituted or unsubstituted C1 to C20 ureide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
  • Ar 1 may be the following Formula B-6.
  • R and R are independently of each other, hydrogen, hydrogen, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferro Cenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted Substituted C6 to C20 Aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, Substituted or unsubstit
  • Ar 1 may be a substituted or unsubstituted biphenyl group.
  • a and B may be a substituent represented by Formula A-2.
  • R 3 and R 4 may be hydrogen.
  • the compound for an organic optoelectronic device may have a molecular weight of 700 or less.
  • the compound for an organic optoelectronic device may have a molecular weight of 600 or less.
  • the organic optoelectronic device may be any one selected from the group consisting of an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, and an organic memory device.
  • the organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode
  • at least one of the organic thin film layer is the organic optoelectronic device It provides an organic light emitting device comprising a compound for.
  • the organic thin film layer may be any one selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer, and a combination thereof.
  • the compound for an organic optoelectronic device may be included in a light emitting layer.
  • the compound for an organic optoelectronic device may be used as a phosphorescent or fluorescent host material in the light emitting layer.
  • a display device including the organic light emitting diode is provided.
  • the organic optoelectronic device including the compound for an organic optoelectronic device has excellent electrochemical and thermal stability, has excellent life characteristics, and may have high luminous efficiency even at a low driving voltage.
  • 1 to 5 are cross-sectional views illustrating various embodiments of an organic light emitting device that may be manufactured using a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • substituted means that at least one hydrogen in a substituent or compound is a deuterium, halogen group, hydroxy group, amino group, substituted or unsubstituted C1 to C30 amine group, nitro group, substituted or unsubstituted C1 to C40 silyl groups, C1 to C30 alkyl groups, C1 to C10 alkylsilyl groups, C3 to C30 cycloalkyl groups, C6 to C30 aryl groups, C1 to C20 alkoxy groups, fluoro groups, trifluoromethyl groups and the like Substituted by a C10 trifluoroalkyl group or a cyano group.
  • hetero means containing 1 to 3 heteroatoms selected from the group consisting of N, 0, S, and P in one functional group, and remaining carbon.
  • alkyl (alkyl) group 1 means, unless otherwise defined, it refers to a desired aliphatic hydrocarbon. Alkyl groups that do not contain any double bonds or triple bonds come “saturated alkyl (saturated alkyl) group” 1 Can be.
  • the alkyl group may be an alkyl group that is C1 to C20. More specifically, the alkyl group may be a C1 to C10 alkyl group or a C1 to C6 alkyl group.
  • a C1 to C4 alkyl group means one to four carbon atoms in the alkyl chain, methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and t-butyl In a group consisting of Selected.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t'butyl group, pentyl group, nucleosil group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclonucleus It means a practical skill.
  • Aryl group means a substituent in which all elements of the cyclic substituent have p-orbitals, and these P-orbitals form a conjugate, and are monocyclic or fused ring polycyclic ( That is, ring groups that share adjacent pairs of carbon atoms.
  • Heteroaryl group means containing 1 to 3 heteroatoms selected from the group consisting of N, 0, S and P in the aryl group, and the rest are carbon. When the heteroaryl group is a fused ring, each ring may contain 1 to 3 heteroatoms.
  • the hole property means a property that has conductivity in accordance with the HOMO level, thereby facilitating injection of holes formed at the anode into the light emitting layer and movement in the light emitting layer. More specifically, it may be similar to the property of repelling electrons.
  • the electronic characteristic means a characteristic that has conductivity characteristics along the LUM0 level, thereby facilitating injection and movement of the electrons formed in the cathode into the light emitting layer. More specifically, it may be similar to the property of attracting electrons.
  • a compound for an organic optoelectronic device represented by Formula 1 may be provided.
  • Ar is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, or a combination thereof
  • L 1 to L 3 are independently from each other, substituted or unsubstituted A substituted C2 to C6 alkenylene group, a substituted or unsubstituted C2 to C6 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group, or a combination thereof, nl To n3 .
  • A is the following formula A-2
  • B is the following formula A-2, substituted or unsubstituted C6 to C30 aryl group, or substituted or unsubstituted C2 to C30 Heteroaryl group.
  • X is -0- or -S-, R to R are independently of each other, hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 Alkoxy carbonyl group, substituted or unsubstituted C2 to C
  • the compound represented by Chemical Formula 1 may have an amine group including a substituent including an indeno structure as a core structure.
  • the substituent having the hole property in the structure of Ar 1 may be combined with the amine group core to have a structure that can easily flow electrons or holes.
  • the substituent of the indeno structure is a structure having a non-covalent pair of electrons to improve the flow of electrons or holes, small molecular weight is suitable as a deposition material. In general, in the case of the deposition material, if the molecular weight exceeds 1000 may cause thermal stability problems.
  • the structure to be substituted in Ar 1 is characterized by having abundant electrons (rich in the bond, electron donor group)
  • the substituent of the indeno structure between the amines is a good structure for drawing electrons of Ar 1 (withdraw group) to prevent electron polarization in the compound, resulting in high efficiency and long life of the device.
  • the compound for an organic optoelectronic device represented by Formula 1 may be a compound having a variety of energy band gap by introducing a variety of further substituents to the substituents substituted in the core portion and the core portion.
  • the hole transfer ability or electron transfer ability is enhanced to have an excellent effect in terms of efficiency and driving voltage, and excellent in electrochemical and thermal stability It can improve the life characteristics when driving the optoelectronic device.
  • a substituted or unsubstituted C6 to C30 aryl group and / or a substituted or unsubstituted C2 to C30 heteroaryl group is a substituted or unsubstituted phenyl group, substituted or unsubstituted naph Tyl group, substituted or unsubstituted anthracenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted P-terpenyl group, substituted or unsubstituted m—terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted triphenylenyl group, substituted or unsubstituted peryleny
  • the L 1 to L 3 by selectively adjusting the conjugate of the entire compound
  • the conjugation length can be determined, from which the triplet energy bandgap can be adjusted. Through this, it is possible to realize the characteristics of the material required in the organic optoelectronic device.
  • the tridental energy band gap can be controlled by changing the binding positions of olso, para, and meta.
  • L 1 to L 3 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted Anthracenylene group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted p—terphenyl group, substituted or unsubstituted m-ter Phenyl group, substituted or unsubstituted perenyl group, and the like.
  • L 1 to L 3 may be, independently of each other, a phenylene group.
  • L 1 to L 3 is a phenylene group
  • both core parts may be bonded to ortho, meta or para based on the phenylene group.
  • Formula B may be represented by Formula A-2.
  • Formula (A-2) has a non-shared electron pair can improve the flow of electrons or holes is advantageous to make a high efficiency device.
  • the molecular weight is smaller than that of dibenzofuran or dibenzothiophene generally used, and may be advantageous as a deposition material.
  • the substituents (withdraw group) of Formula A-2 may be evenly distributed throughout the compound, thereby making a device having high efficiency / long lifespan. More specifically, when the compound for an organic optoelectronic device includes two indeno structures, the electrons may be evenly distributed.
  • Ar 1 may be the following Formula B-1.
  • R to R are independently of each other, hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, ni. Tro, carboxyl, ferrocenyl, substituted or unsubstituted C1 to C20 alkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted C2 to C30 heteroaryl groups, substituted or unsubstituted C1 to C20 Alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted Or unsubstituted C2 to C20 acyloxy group, substituted or unsub
  • the carbon bond (C) is formed without a double bond, and thus the pi bond is broken. For this reason, it becomes easy to form a hole, and can harmonize with the substituent of the indeno structure centered on amine (N).
  • the substituents that can form holes well and the substituents that form electrons must go well together, and the fluorene group is a substituent that can form holes well.
  • the fluorene group is a substituent that can form holes well.
  • Ar 1 may be the following Formula B-2.
  • R to R are independently of each other, hydrogen, hydrogen, halogen, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferro Senyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted A substituted C6 to C20 aryloxy group, a substituted or unsubstituted C3 to C40 silyloxy group, a substituted or unsubstituted C1 To C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted
  • the substituent represented by Formula B-2 may be combined with the amine nitrogen, which is a core, to a position that can be easily synthesized.
  • Ar 1 may be the following Formula B-3.
  • R to R are independently of each other, hydrogen, deuterium, halogen, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl Groups, substituted or unsubstituted C1 to C20 alkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted C2 to C30 heteroaryl groups, substituted or unsubstituted C1 to C20 alkoxy groups, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 Acyloxy group, substituted or unsub
  • a phenanthrene group such as Chemical Formula B-3
  • a lower HOMO level may be achieved.
  • the phenanthrene (B-2) group is known to have a structure in which three phenyl groups are broken to easily form holes.
  • the thermal stability (the phenyl group all have a resonance structure) is superior to the fluorene (B-1) group.
  • Ar 1 may be the following Formula B-4.
  • a lower HOMO level when a lower HOMO level is required than the phenanthrene (Formula B-2) group, it may be controlled by introducing a triphenylene (Formula B-3) group.
  • the triphenylene group may be enriched with three phenyl groups to provide a rich electron group, and when combined with a structure capable of attracting electrons (withdraw group, for example, an indeno substituent), it is easy to form a hole allol. It may be one structure. In addition, it has excellent thermal stability (all phenyl groups have resonance structures) compared to fluorene groups.
  • Ar 1 may be represented by the following Formula B-5.
  • X is 0-, -S- or NR ', R', R and R are independently of each other, hydrogen, hydrogen, halogen, cyano group, hydroxyl group, amino group, substitution Or an unsubstituted C1 to C20 amine group, a nitro group, a carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group , Substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyl oxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or Unsubstituted C2 to C20
  • Ar 1 may be the following Formula B-6.
  • R and R are independently of each other, hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl Groups, substituted or unsubstituted C1 to C20 alkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted C2 to C30 heteroaryl groups, substituted or unsubstituted C1 to C20 alkoxy groups, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 Acyloxy group, substituted or un
  • carbazole groups such as Chemical Formula B-6
  • the pi bond is broken around the amine (N) to form holes.
  • the carbazole group such as Formula B-6 has a very high hole transport ability compared to the electron transport ability, so when applied to the device, a high-efficiency low voltage device is used when used as a host having a hole transport layer, an auxiliary layer of the hole transport layer, or a hole characteristic.
  • Ar 1 may be a substituted or unsubstituted biphenyl group. More specifically, for example, Arl may be represented by Chemical Formula B-7 or B-8.
  • B-7 and / or B-8 substituents provide excellent thermal and electrical stability, making them suitable for high lifetime devices.
  • a and B may be represented by Chemical Formula A-2. That is, when the substituent represented by the formula (A-2) is present at the same time the core amine group, the driving voltage of the device can be lowered and the efficiency can be increased due to the presence of the formula (A-2) excellent in hole or electron transport.
  • the chemical formula A-2 has excellent thermal and electrical stability due to its simple molecular structure.
  • R 3 and R 4 may be hydrogen, but are not limited thereto.
  • the compound for an organic optoelectronic device may have a molecular weight of 700 or less. More specifically, it may have a molecular weight of 600 or less. In this case, since the deposition is possible at low temperatures during device manufacturing, the deposition is easy, and the thermal stability may increase. From this, the stability of the device can be improved.
  • the compound for an organic optoelectronic device is used in an organic thin film layer to improve the life characteristics, efficiency characteristics, electrochemical stability and thermal stability of the organic optoelectronic device, it is possible to lower the driving voltage.
  • the organic thin film layer may be a light emitting layer.
  • the organic optoelectronic device may be an organic light emitting device, an organic photoelectric device, an organic solar cell, an organic transistor, an organic photosensitive drum, or an organic memory device.
  • the organic optoelectronic device may be an organic light emitting device.
  • 1 to 5 are cross-sectional views of an organic light emitting device including a compound for an organic optoelectronic device according to an embodiment of the present invention.
  • the organic light emitting diodes 100, 200, 300, 400, and 500 according to the embodiment of the present invention are interposed between the anode 120, the cathode 110, and the anode and the cathode. It has a structure including at least one organic thin film layer 105.
  • the anode 120 includes an anode material, which is typically an organic thin film layer.
  • anode material may include metals such as nickel, platinum, vanadium, chromium, copper zinc, and gold or alloys thereof, and include zinc oxide, phosphate oxide, tin oxide (ITO), and indium zinc oxide (IZ0).
  • Metal oxides such as ⁇ and A1 or combinations of metals and oxides such as Sn0 2 and Sb; poly (3-methylthiophene), poly (3,4- (ethylene-1, 1,2 Conductive polymers such as polyehtylenedioxythiophene (PEDT), polypyrrole, and polyaniline, and the like, but are not limited thereto. More specifically, a transparent electrode including indium tin oxide (IT0) may be used as the anode.
  • I0 indium tin oxide
  • the negative electrode 110 includes a negative electrode material, and the negative electrode material is generally a material having a small work function to facilitate electron injection into an organic thin film insect.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof, and LiF / Multi-layered materials such as Al, Li0 2 / AI, LiF / Ca, LiF / Al, and BafVCa, and the like, but are not limited thereto. More specifically, a metal electrode such as aluminum may be used as the cathode.
  • FIG. 1 illustrates an organic light emitting device 100 in which only a light emitting layer 130 exists as an organic thin film layer 105.
  • the organic thin film layer 105 may exist only as a light emitting layer 130.
  • FIG. 2 illustrates a two-layered organic light emitting diode 200 including a light emitting layer 230 including an electron transport layer and a hole transport layer 140 as the organic thin film layer 105.
  • the organic thin film layer 105 may be a two-layer type including the light emitting layer 230 and the hole transport layer 140.
  • the light emitting layer 130 functions as an electron transporting layer
  • the hole transporting layer 140 functions to improve adhesion and hole transportability with a transparent electrode such as ITO.
  • FIG. 3 is a three-layer organic light emitting device 300 having an electron transport layer 150, an emission layer 130, and a hole transport layer 140 as an organic thin film layer 105, which is the organic thin film layer 105. ),
  • the light emitting layer 130 is in an independent form, and the film (electron transport layer 150 and hole transport layer 140) having excellent electron transport properties and hole transport properties is stacked in separate layers.
  • Figure 4 is an organic thin film layer 105 as an "electron injection layer 160, emitting layer 130, hole transport layer 140 and the hole injection layer of organic light emitting devices (400, 4-layer type to 170 is present )
  • the hole injection layer 170 may improve the adhesion to ⁇ 0 used as the anode.
  • FIG. 5 shows different organic thin film layers 105, such as an electron injection layer 160, an electron transport layer 150, an emission layer 130, a hole transport layer 140, and a hole injection layer 170.
  • a five-layered organic light emitting device 500 having five layers serving as a function is shown, and the organic light emitting device 500 is effective in lowering voltage by separately forming an electron injection layer 160. 1 to 5, the electron transport layer 150, the electron injection layer 160, the light emitting layers 130 and 230, the hole transport layer 140, the hole injection layer 170, and the like forming the organic thin film layer 105 are described. Any one selected from the group consisting of a combination includes the organic optoelectronic device material.
  • the compound for an organic optoelectronic device may be used in the light emitting layers 130 and 230, and may be used as a green phosphorescent material in the light emitting layer.
  • the compound for an organic optoelectronic device may be used in the hole transport layer.
  • a plurality of hole transport layers may be present, and when the hole transport layer adjacent to the light emitting layer is viewed as an auxiliary layer, the compound for an organic optoelectronic device may be present in the auxiliary layer.
  • the organic light emitting device described above may include a dry film method such as an evaporation, sputtering, full-laser plating and ion plating after forming an anode on a substrate;
  • the organic thin film layer may be formed by a wet film method such as spin coating, dipping, flow coating, or the like, followed by forming a cathode thereon.
  • a display device including the organic optoelectronic device is provided.
  • 1-3 In a nitrogen environment, 1-3 (30 g, 95.1 mmol) was dissolved in 0.3 L of dmtetrahydrofuran (THF), and 0.3 L of methanol was added and cooled to 0 ° C. After adding sodium brohydr ide (36.0 g, 951 ⁇ ol), tin (II) chloride (90.2 g, 475.5 ⁇ ol) was added thereto and reacted at room temperature for 2 hours. After completion of reaction, water was added to the reaction solution, extracted with ethylacetate (EA), water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining 1-4 (14.9 g, 55%).
  • EA ethylacetate
  • cabazole 50 g, 299.0 ⁇ ol
  • l_bromo_4—nitrobenzene 60.4 g, 299.0 ⁇ ol
  • tris di henyl ideneacet one
  • di al ladium (o) 8.24 g , 8.97 mmol
  • tris ⁇ tert Butylphosphine 7.26 g, 35.9 ⁇ ol
  • sodium tert-butoxide 34.5 g, 358.8 ⁇ ol
  • N- (biphenyl— 4 ⁇ yl) -9,9 ⁇ dimethyl-9H-fluoren-2-atnine (l () g, 27.7 ⁇ ol) was dissolved in 0.1 L of toluene, followed by intermediate 1-1.
  • biphenyl-4—amine (10 g, 59.1 ⁇ l ol) was dissolved in 0.16 L of toluene, followed by Intermediate I ⁇ 2 (31.8 g, 130.0 ⁇ l ol), tr is (diphenyl ideneacetone) dipal ladium (o) (1.62 g, 1.77 ramol), tris-tert butylphosphine (1.43 g, 7.09 mmol) and sodium tert-butoxide (12.5 g, 130.0 ⁇ ol) were dissolved sequentially 100 ° C Heated to reflux for 14 h.
  • a glass substrate coated with a thin film having an indium tinoxide (IT0) of 1500 A was washed with distilled water ultrasonically. After the distilled water was washed, isopropyl alcohol, acetone, and methane were ultrasonically cleaned with a round solvent, dried, transferred to a plasma cleaner, and then cleaned with 5 minutes using oxygen plasma, and then transferred to a vacuum evaporator. .
  • IT0 indium tinoxide
  • 9,10-di- (2-naphthyl) anthracene is used as a host on the hole transport layer and 2,5,8, ll-tetra (tert-butyl) perylene (TBPe) is 3% by weight.
  • TBPe 2,5,8, ll-tetra (tert-butyl) perylene
  • Alq 3 was vacuum deposited on the emission layer to form an electron transport layer having a thickness of 250 A.
  • the electron The organic light emitting device was manufactured by sequentially depositing LiF 10 A and Al 1000 A on the transport layer to form a cathode.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 2 instead of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 3 instead of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 4 instead of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 5 instead of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 6 instead of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 7 instead of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 8 instead of Example 1.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 9 instead of Example 1
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 10 instead of Example 1.
  • Comparative Example 1 An organic light emitting diode was manufactured according to the same method as Example 11 except for using NPB instead of Example 1. The structure of the NPB is described below.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using HT1 instead of Example 1.
  • the structure of ⁇ is described below.
  • An organic light emitting diode was manufactured according to the same method as Example 11 except for using HT2 instead of Example 1.
  • the structure of the HT2 is described below.
  • the structure of DNTPD, AND, TBPe, NPB, HT1, and HT2 used in the organic light emitting device is as follows.
  • the current value flowing through the unit device was measured by using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
  • the luminance at that time was measured using (Minolta Cs-1000A) to obtain a result.
  • the current efficiency (cd / A) of the same current density (10 mA / cm2) was calculated using the brightness, current density, and voltage measured from (1) and (2).
  • organic light emitting element 110 cathode
  • hole injection layer 230 light emitting layer + electron transport layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided are a compound for an organic optoelectric device, an organic light emitting diode comprising same, and a display apparatus comprising the organic light emitting diode, wherein the compound for the organic optoelectric device is represented by chemical formula 1.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소 자를 포함하는 표시장치  Compound for an organic optoelectronic device, an organic light emitting device comprising the same and a display device comprising the organic light emitting device
【기술분야】  Technical Field
유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소 자를 포함하는 표시장치에 관한 것이다.  A compound for an organic optoelectronic device, an organic light emitting device including the same, and a display device including the organic light emitting device.
【배경기술】  Background Art
유기광전자소자 (organic optoelectric device)라 함은 정공 또는 전자를 이 용한 전극과 유기물 사이에서의 전하 교류를 필요로 하는 소자를 의미한다.  An organic optoelectric device refers to a device requiring charge exchange between an electrode and an organic material using holes or electrons.
유기광전자소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있 다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시 톤 (exciton)이 형성되고 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원 (전압원)으로사용되는 형태의 전자소자이다. 둘째는 2 개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기물 반도체에 정공 또는 전자를 주입하고, 주입된 전자와 정공에 의하여 동작하 는 형태의 전자소자이다.  Organic optoelectronic devices can be divided into two types according to the operation principle. First, an exciton is formed in the organic layer by photons introduced from the external light source, and the exciton is separated into electrons and holes, and these electrons and holes are transferred to different electrodes to be used as current sources (voltage sources). It is an electronic device of the form. The second is an electronic device in which holes or electrons are injected into an organic semiconductor forming an interface with the electrodes by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.
유기광전자소자의 예로는 유기광전소자 유기발광소자, 유기태양전지, 유기 감광체 드럼 (organic photo conductor drum), 유기트랜지스터 등이 있으며, 이들은 모두 소자의 구동을 위하여 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질을 필요로 한다.  Examples of an organic optoelectronic device include an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic photo conductor drum, and an organic transistor, all of which inject holes or transport materials and electrons to drive the devices. Or a transport material or a luminescent material.
특히, 유기발광소자 (organic light emitting diode, OLED)는 최근 평판 디스 플레이 (flat panel display)의 수요가 증가함에 따라 주목받고 있다. 일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다.  In particular, organic light emitting diodes (OLEDs) are attracting attention as demand for flat panel displays increases recently. In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
이러한 유기발광소자는 유기발광재료에 전류를 가하여 전기에너지를 빛으로 전환시키는 소자로서 통상 양극 (anode)과 음극 (cathode) 사이에 기능성 유기물 층 이 삽입된 구조로 이루어져 있다. 여기서 유기물층은 유기발광소자의 효율과 안정 성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으 며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루 어질 수 있다.  Such an organic light emitting device converts electrical energy into light by applying a current to an organic light emitting material, and has a structure in which a functional organic material layer is inserted between an anode and a cathode. In this case, the organic material layer is often composed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, can be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. have.
이러한 유기발광소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극 에서는 정공 (hole)이, 음극에서는 전자 (electron)가 유기물층에 주입되게 .되고, 주 입된 정공과 전자가 만나 재결합 (recombination)에 의해 에너지가 높은 여기자를 형성하게 된다. 이때 형성된 여기자가 다시 바닥상태 (ground state)로 이동하면서 특정한 파장을 갖는 빛이 발생하게 된다. When the voltage is applied between the two electrodes in the structure of the organic light emitting diode, holes are injected into the organic material layer in the anode and electrons in the cathode. The injected holes and electrons meet to form high energy excitons by recombination. At this time, the excitons formed move to the ground state, and light having a specific wavelength is generated.
최근에는, 형광 발광물질뿐 아니라 인광 발광물질도 유기발광소자의 발광물 질로 사용될 수 있음이 알려졌으며, 이러한 인광 발광은 바닥상태에서 여기상태 (excited state)로 전자가 전이한 후, 계간 전이 ( intersystem crossing)를 통해 단 일항 여기자가 삼증항 여기자로 비발광 전이된 다음, 삼증항 여기자가 바닥상태로 전이하면서 발광하는 메카니즘으로 이루어진다.  Recently, it has been known that not only fluorescent light emitting materials but also phosphorescent materials can be used as light emitting materials of organic light emitting devices. Such phosphorescent light emission is carried out in an intersystem after an electron transitions from a ground state to an excited state. By crossing, the singlet excitons are non-luminescent transition into tritium excitons, and then the tritium excitons emit light as they transition to the ground state.
상기한 바와 같이 유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수 송 재료, 전자주입 재료 등으로 분류될 수 있다.  As described above, the material used as the organic material layer in the organic light emitting device may be classified into a light emitting material and a charge transport material, such as a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to a function.
또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다. 한편, 발광 재료로서 하나의 물질만사용하는 경우 분자간 상호 작용에 의하 여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율과 안정성을 증가시키기 위하여 발광 재료로서 호스트 /도판트 계를 사용 할 수 있다.  In addition, the light emitting material may be classified into blue, green, and red light emitting materials and yellow and orange light emitting materials required to achieve better natural colors according to the light emitting color. On the other hand, when only one material is used as a light emitting material, the maximum emission wavelength is shifted to a long wavelength due to intermolecular interaction, and color purity decreases or the efficiency of the device decreases due to the light emission attenuation effect, thereby increasing color purity and energy. In order to increase luminous efficiency and stability through transition, a host / dopant system may be used as a light emitting material.
유기발광소자가 전술한 우수한 특징들을 층분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자 수송 물질, 전자주입 물질, 발광 재료 중 호스트 및 /또는 도판트 등이 안정하고 효 율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하며, 아직까지 안정하고 효율 적인 유기발광소자용 유기물층 재료의 개발이 층분히 이루어지지 않은 상태이며, 따라서 새로운 재료의 개발이 계속 요구되고 있다. 이와 같은 재료 개발의 필요성 은 전술한 다른 유기광전자소자에서도 마찬가지이다.  In order for the organic light emitting device to fully exhibit the above-mentioned excellent features, the organic layer of the material, such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a host and / or dopant in the light emitting material The back should be supported by a stable and efficient material, and the development of a stable and efficient organic material layer for an organic light emitting device has not been made yet. Therefore, the development of new materials is still required. . The necessity of such a material development is the same in other organic optoelectronic devices described above.
또한, 저분자 유기발광소자는 진공 증착법에 의해 박막의 형태로 소자를 제 조하므로 효율 및 수명성능이 좋으며, 고분자 유기발광소자는 잉크젯 (inkjet) 또는 스핀코팅 (spin coating)법을 사용하여 초기 투자비가 적고 대면적화가 유리한 장점 이 있다.  In addition, the low molecular weight organic light emitting diode is manufactured in the form of a thin film by vacuum evaporation method, so the efficiency and lifespan performance is good, and the high molecular weight organic light emitting diode using the inkjet or spin coating method has an initial investment cost. Small and large area is advantageous.
저분자 유기발광소자 및 고분자 유기발광소자는 모두 자체발광, 고속응답, 광시야각, 초박형, 고화질, 내구성, 넓은 구동온도범위 등의 장점을 가지고 있어 차세대 디스플레이로 주목을 받고 있다. 특히 기존의 LCD( liquid crystal display) 와 비교하여 자체발광형으로서 어두운 곳이나 외부의 빛이 들어와도 시안성이 좋으 며, 백라이트가 필요 없어 LCD의 1/3수준으로 두께 및 무게를 줄일 수 있다. Both low molecular weight organic light emitting diodes and high molecular weight organic light emitting diodes are attracting attention as next-generation displays because they have advantages such as self-luminous, high-speed response, wide viewing angle, ultra-thin, high-definition, durability, and wide driving temperature range. In particular, it is a self-luminous type, compared to conventional LCD (liquid crystal display), and has good cyanity even in the dark or outside light. It can reduce thickness and weight by 1/3 of LCD because no backlight is required.
또한, 응답속도가 LCD에 비해 KXX)배 이상 빠른 마이크로 초 단위여서 잔상 이 없는 완벽한 동영상을 구현할 수 있다. 따라서, 최근 본격적인 멀티미디어 시대 에 맞춰 최적의 디스플레이로 각광받을 것으로 기대되며, 이러한 장점을 바탕으로 1980년대 후반 최초 개발 이후 효율 80배, 수명 100배 이상에 이르는 급격한 기술 발전을 이루어 왔고, 최근에는 40인치 유기발광소자 패널이 발표되는 등 대형화가 급속히 진행되고 있다.  In addition, the response speed is KXX) times faster than LCD, making it possible to realize a perfect video without afterimages. Therefore, it is expected to be spotlighted as the most suitable display in line with the recent multimedia era. Based on these advantages, it has undergone rapid technological advancement of 80 times efficiency and 100 times life span since the first development in the late 1980s. Increasingly, large-scaled developments are being made with the introduction of organic light emitting diode panels.
대형화를 위해서는 발광 효율의 증대 및 소자의 수명 향상이 수반되어야 한 다. 이를 위해 안정하고 효율적인 유기발광소자용 유기물층 재료의 개발이 필요하 다.  In order to increase the size, the luminous efficiency must be increased and the life of the device must be accompanied. To this end, it is necessary to develop a stable and efficient organic material layer for an organic light emitting device.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
고효율, 장수명 등의 특성을 가지는 유기광전자소자를 제공할 수 있는 유기 광전자소자용 화합물을 제공하는 것이다.  It is to provide a compound for an organic optoelectronic device that can provide an organic optoelectronic device having characteristics such as high efficiency and long life.
상기 유기광전자소자용 화합물을 포함하는 유기발광소자 및 상기 유기발광소 자를 포함하는 표시장치를 제공하는 것이다.  An organic light emitting device including the compound for an organic optoelectronic device and a display device including the organic light emitting device are provided.
【기술적 해결방법】  Technical Solution
본 발명의 일 구현예에서는, 하기 화학식 1로 표시되는 유기광전자소자용 화 합물을 제공한다.  In one embodiment of the present invention, a compound for an organic optoelectronic device represented by the following formula (1) is provided.
[화학식 1]  [Formula 1]
Figure imgf000005_0001
Figure imgf000005_0001
상기 화학식 1에서, Ar는 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또 는 비치환된 C2 내지 C30 헤테로아릴기, 또는 이들의 조합이고, L1 내지 L3은 서로 독립적으로, 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환 된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, nl 내지 n3은 서로 독립적 으로, 0 내지 3 중 어느 하나의 정수이고, A는 하기 화학식 A-2이고, B는 하기 화 학식 k-2, 치환 또는 비치환된 C6 내지 C30 아릴기, 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다: In Formula 1, Ar is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, or a combination thereof, L 1 to L 3 are independently from each other, substituted or unsubstituted A substituted C2 to C6 alkenylene group, a substituted or unsubstituted C2 to C6 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group, or a combination thereof, nl To n3 are each independently an integer of any one of 0 to 3, A is the following formula A-2, and B is K-2, a substituted or unsubstituted C6 to C30 aryl group, or a substituted or unsubstituted C2 to C30 heteroaryl group:
[화학식 A-2]  [Formula A-2]
Figure imgf000006_0001
Figure imgf000006_0001
상기 화학식 A-2에서, X은 -0- 또는ᅳ S-이고, R 및 R는 서로 독립적으로, 수소, 증수소, 할로겐기 , 시아노기, 히드록실기 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된. C2 내지 C20 아 실아미노기 , 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기 , 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기 , 치환 또는 비치환된 C1 내지 C20 우레 이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다.  In Formula A-2, X is -0- or ᅳ S-, R and R are independently of each other, hydrogen, hydrogen, halogen, cyano group, hydroxyl group amino group, substituted or unsubstituted C1 to C20 Amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxy Carbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted. C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiol group, substituted or unsubstituted C1 to C20 heterocyclothiol group, substituted or unsubstituted C1 To C20 uride group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
상기 B는 하기 A-2일 수 있다.  B may be A-2.
상기 Ar1은 하기 화학식 B— 1일 수 있다. Ar 1 may be represented by Formula B-1.
[화학식 B-1]  [Formula B-1]
Figure imgf000006_0002
Figure imgf000006_0002
상기 화학식 B— 1에서, R 내지 R은 서로 독립적으로, 수소 증수소, 할로겐 기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니 트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환€ C1 내지 C20 술파모일아 미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티을기, 치환 또는 비치환된 C6 내지 C20 아릴티을기 , 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치 환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. In Formula B-1, R to R are independently of each other, hydrogen hydrogen, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferrocenyl Group, substituted or unsubstituted C1 to C20 alkyl group, substituted Or an unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, a substituted or unsubstituted C1 to C20 alkoxy group, a substituted or unsubstituted C6 to C20 aryloxy group, a substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acyl Amino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted € C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthio group, substituted or unsubstituted C6 to C20 arylthiyl group, substituted or unsubstituted C1 to C20 heterocyclothiol A substituted or unsubstituted C1 to C20 ureide, tooth ring or unsubstituted C3 to C40 silyl group, or a combination thereof.
상기 Ar1은 하기 화학식 B-2일 수 있다. Ar 1 may be the following Formula B-2.
[화학식 B-2]  [Formula B-2]
Figure imgf000007_0001
Figure imgf000007_0001
상기 화학식 B-2에서, R 내지 R은 서로 독립적으로, 수소, 증수소, 할 ^겐 기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니 트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아 미노기 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기 , 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치 환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. 상기 Ar은 하기 화학식 B-3일 수 있다. In Formula B-2, R to R are independently of each other, hydrogen, hydrogen, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group , Ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted Or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonyl No, substituted or unsubstituted C1 to C20 sulfamoylamino group substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiol group, A substituted or unsubstituted C1 to C20 heterocyclothiol group, a substituted or unsubstituted C1 to C20 ureide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof. Ar may be the following Formula B-3.
[화학식 B-3]  [Formula B-3]
Figure imgf000008_0001
Figure imgf000008_0001
상기 화학식 B-3에서, R 내지 R 은 서로 독립적으로, 수소, 증수소, 할로겐 기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니 트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기 , 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아 미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티을기, 치환 또는 비치환된 C1 내지 C20 우레이드기 , 치 환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다.  In Formula B-3, R to R are independently of each other, hydrogen, hydrogen, halogen, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferro Senyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted A substituted C6 to C20 aryloxy group, a substituted or unsubstituted C3 to C40 silyloxy group, a substituted or unsubstituted C1 to C20 acyl group, a substituted or unsubstituted C2 to C20 alkoxycarbonyl group, a substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycar Nylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiol Group, a substituted or unsubstituted C1 to C20 heterocyclothiyl group, a substituted or unsubstituted C1 to C20 ureide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
상기 Ar1은 하기 화학식 B-4일 수 있다. Ar 1 may be the following Formula B-4.
[화학식 B-4]  [Formula B-4]
Figure imgf000008_0002
상기 Ar은 하기 화학식 B-5일 수 있다. [화학식 B-5]
Figure imgf000008_0002
Ar may be the following Formula B-5. [Formula B-5]
Figure imgf000009_0001
Figure imgf000009_0001
상기 화학식 B-5에서, X는 -0- , -S- 또는 NR'이고, R', R 및 R 은 서로 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치 환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비 치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치 환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴 옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환 된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아 미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비 치환된 C1 내지. C20 술파모일아미노기 , 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아 릴티을기, 치환 또는 비치환된 C1 내지 C20 해테로시클로티을기, 치환 또는 비치환 된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다.  In Formula B-5, X is -0-, -S- or NR ', R', R and R are independently of each other, hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substitution or Unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, Substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyl oxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted Substituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino acid group, substituted or unsubstituted C7 If C20 aryloxycarbonylamino group, a substituted or non-substituted C1 to. C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiyl group, substituted or unsubstituted C1 to C20 solution A tercyclocyclo group, a substituted or unsubstituted C1 to C20 ureide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
상기 Ar1은 하기 화학식 B-6일 수 있다. Ar 1 may be the following Formula B-6.
[화학식 B-6]  [Formula B-6]
Figure imgf000009_0002
Figure imgf000009_0002
상기 화학식 B-6에서, R 및 R 은 서로 독립적으로, 수소, 증수소, 할로겐 기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니 트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기 , 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아 미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기 , 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티을기 , 치환 또는 비치환된 C1 내지 C20 우레이드기, 치 환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. In Formula B-6, R and R are independently of each other, hydrogen, hydrogen, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferro Cenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted Substituted C6 to C20 Aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, Substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino Group, a substituted or unsubstituted C1 to C20 sulfonyl group, a substituted or unsubstituted C1 to C20 alkylthiol group, a substituted or unsubstituted C6 to C20 arylthiol group, a substituted or unsubstituted C1 to C20 heterocyclothiyl group, Substituted or unsubstituted C1 to C20 ureide group, substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
상기 Ar1은 치환 또는 비치환된 바이페닐기일 수 있다. Ar 1 may be a substituted or unsubstituted biphenyl group.
상기 A 및 B는 상기 화학식 A-2로 표시되는 치환기일 수 있다.  A and B may be a substituent represented by Formula A-2.
상기 화학식 A-2에서, 상기 R3 및 R4는 수소일 수 있다. In Formula A-2, R 3 and R 4 may be hydrogen.
상기 유기광전자소자용 화합물은 700이하의 분자량을 가질 수 있다.  The compound for an organic optoelectronic device may have a molecular weight of 700 or less.
상기 유기광전자소자용 화합물은 600이하의 분자량을 가질 수 있다.  The compound for an organic optoelectronic device may have a molecular weight of 600 or less.
상기 유기광전자소자는, 유기광전소자, 유기발광소자, 유기태양전지, 유기트 랜지스터, 유기 감광체 드럼 및 유기메모리소자로 이루어진 군에서 선택되는 어느 하나일 수 있다.  The organic optoelectronic device may be any one selected from the group consisting of an organic photoelectric device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, and an organic memory device.
본 발명의 다른 일 구현예에서는, 양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기박막층을 포함하는 유기발광소자에 있어서, 상 기 유기박막층 중 적어도 어느 한 층은 상기 유기광전자소자용 화합물을 포함하는 것인 유기발광소자를 제공한다.  In another embodiment of the present invention, in the organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode, at least one of the organic thin film layer is the organic optoelectronic device It provides an organic light emitting device comprising a compound for.
상기 유기박막층은 발광층, 정공수송층, 정공주입층 전자수송층, 전자주입 층, 정공차단층 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. 상기 유기광전자소자용 화합물은 발광층 내에 포함될 수 있다.  The organic thin film layer may be any one selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer, and a combination thereof. The compound for an organic optoelectronic device may be included in a light emitting layer.
상기 유기광전자소자용 화합물은 발광층 내에 인광 또는 형광 호스트 재료로 서 사용될 수 있다.  The compound for an organic optoelectronic device may be used as a phosphorescent or fluorescent host material in the light emitting layer.
본 발명의 또 다른 일 구현예에서는, 상기 유기발광소자를 포함하는 표시장 치를 제공한다.  In another embodiment of the present invention, a display device including the organic light emitting diode is provided.
【발명의 효과】  【Effects of the Invention】
상기 유기광전자소자용 화합물을 포함하는 유기광전자소자는 우수한 전기화 학적 및 열적 안정성을 가지고 수명 특성이 우수하며, 낮은 구동전압에서도 높은 발광효율을 가질 수 있다. 【도면의 간단한 설명】 The organic optoelectronic device including the compound for an organic optoelectronic device has excellent electrochemical and thermal stability, has excellent life characteristics, and may have high luminous efficiency even at a low driving voltage. [Brief Description of Drawings]
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 이용하여 제조될 수 있는 유기발광소자에 대한 다양한 구현예들을 나타내는 단면도 이다.  1 to 5 are cross-sectional views illustrating various embodiments of an organic light emitting device that may be manufactured using a compound for an organic optoelectronic device according to an embodiment of the present invention.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구 범위의 범주에 의해 정의될 뿐이다.  Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, whereby the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, 치환기 또는 화합물 중의 적어도 하나의 수소가 중수소, 할로겐기, 히드록시기, 아미노기, 치환 또는 비치환 된 C1 내지 C30 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내 지 C30 알킬기ᅳ C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기 또는 시아노기로 치환된 것을 의미한다.  As used herein, unless otherwise defined, "substituted" means that at least one hydrogen in a substituent or compound is a deuterium, halogen group, hydroxy group, amino group, substituted or unsubstituted C1 to C30 amine group, nitro group, substituted or unsubstituted C1 to C40 silyl groups, C1 to C30 alkyl groups, C1 to C10 alkylsilyl groups, C3 to C30 cycloalkyl groups, C6 to C30 aryl groups, C1 to C20 alkoxy groups, fluoro groups, trifluoromethyl groups and the like Substituted by a C10 trifluoroalkyl group or a cyano group.
또한 상기 치환된 할로겐기, 히드톡시기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 치환 또는 비치환된 C3 내지 C40 실릴기, C1 내지 C30 알킬기, C1 내지 C10 알킬실릴기, C3 내지 C30 시클로알킬기, C6 내지 C30 아릴기, C1 내지 C20 알콕시기, 플루오로기, 트리플루오로메틸기 둥의 C1 내지 C10 트리플 루오로알킬기 또는 시아노기 중 인접한 두 개의 치환기가 융합되어 고리를 형성할 수도 있다.  In addition, the substituted halogen group, hydroxy group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, substituted or unsubstituted C3 to C40 silyl group, C1 to C30 alkyl group, C1 to C10 alkylsilyl group, Two adjacent substituents of C3 to C30 cycloalkyl group, C6 to C30 aryl group, C1 to C20 alkoxy group, C1 to C10 triple fluoroalkyl group of the fluoro group, trifluoromethyl group or cyano group are fused to form a ring It may be.
본 명세서에서 "헤테로 "란 별도의 정의가 없는 한, 하나의 작용기 내에 N, 0, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머 지는 탄소인 것을 의미한다.  As used herein, unless otherwise defined, "hetero" means containing 1 to 3 heteroatoms selected from the group consisting of N, 0, S, and P in one functional group, and remaining carbon.
본 명세서에서 "이들의 조합"이란 별도의 정의가 없는 한, 둘 이상의 치환기 가 연결기로 결합되어 있거나, 둘 이상의 치환기가 축합하여 결합되어 있는 것을 의미한다.  In the present specification, "combination thereof" means that two or more substituents are bonded to a linking group or two or more substituents are condensed to each other unless otherwise defined.
본 명세서에서 "알킬 (alkyl)기1'이란 별도의 정의가 없는 한, 지방족 탄화수 소기를 의미한다. 알킬기는 어떠한 이중결합이나 삼중결합올 포함하고 있지 않은 "포화 알킬 (saturated alkyl)기'1일 수 있다. In this specification, "alkyl (alkyl) group 1" means, unless otherwise defined, it refers to a desired aliphatic hydrocarbon. Alkyl groups that do not contain any double bonds or triple bonds come "saturated alkyl (saturated alkyl) group" 1 Can be.
알킬기는 C1 내지 C20인 알킬기일 수 있다. 보다 구체적으로 알킬기는 C1 내지 C10 알킬기 또는 C1 내지 C6 알킬기일 수도 있다. 예를 들어, C1 내지 C4 알 킬기는 알킬쇄에 1 내지 4 개의 탄소원자가 포함되는 것을 의미하며, 메틸, 에틸, 프로필, 이소—프로필, n-부틸, 이소-부틸, sec-부될 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다. The alkyl group may be an alkyl group that is C1 to C20. More specifically, the alkyl group may be a C1 to C10 alkyl group or a C1 to C6 alkyl group. For example, a C1 to C4 alkyl group means one to four carbon atoms in the alkyl chain, methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and t-butyl In a group consisting of Selected.
상기 알킬기는 구체적인 예를 들어 메틸기, 에틸기, 프로필기, 이소프로필 기, 부틸기, 이소부틸기, tᅳ부틸기, 펜틸기, 핵실기, 시클로프로필기, 시클로부틸 기, 시클로펜틸기, 시클로핵실기 등을 의미한다.  Specific examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t'butyl group, pentyl group, nucleosil group, cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclonucleus It means a practical skill.
"아릴 (aryl)기"는 환형인 치환기의 모든 원소가 p—오비탈을 가지고 있으며, 이들 P-오비탈이 공액 (conjugation)을 형성하고 있는 치환기를 의미한하고, 모노시 클릭 또는 융합 고리 폴리시클릭 (즉 , 탄소원자들의 인접한 쌍들을 나눠 가지는 고 리) 작용기를 포함한다.  "Aryl group" means a substituent in which all elements of the cyclic substituent have p-orbitals, and these P-orbitals form a conjugate, and are monocyclic or fused ring polycyclic ( That is, ring groups that share adjacent pairs of carbon atoms.
"헤테로아릴 (heteroaryl)기"는 아릴기 내에 N, 0, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 함유하고, 나머지는 탄소인 것을 의미한다. 상 기 헤테로아릴기가 융합고리인 경우, 각각의 고리마다 상기 헤테로 원자를 1 내지 3개 포함할 수 있다.  "Heteroaryl group" means containing 1 to 3 heteroatoms selected from the group consisting of N, 0, S and P in the aryl group, and the rest are carbon. When the heteroaryl group is a fused ring, each ring may contain 1 to 3 heteroatoms.
본 명세서에서, 정공 특성이란, HOMO 준위를 따라 전도 특성을 가져 양극에 서 형성된 정공의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성 을 의미한다. 보다 구체적으로, 전자를 밀어내는 특성과도 유사할 수 있다.  In the present specification, the hole property means a property that has conductivity in accordance with the HOMO level, thereby facilitating injection of holes formed at the anode into the light emitting layer and movement in the light emitting layer. More specifically, it may be similar to the property of repelling electrons.
또한 전자 특성이란, LUM0 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 의미한 다. 보다 구체적으로 전자를 당기는 특성과도 유사할 수 있다.  In addition, the electronic characteristic means a characteristic that has conductivity characteristics along the LUM0 level, thereby facilitating injection and movement of the electrons formed in the cathode into the light emitting layer. More specifically, it may be similar to the property of attracting electrons.
본 발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 유기광전자소자용 화합물을 제공할 수 있다.  According to one embodiment of the present invention, a compound for an organic optoelectronic device represented by Formula 1 may be provided.
[화학식 1]  [Formula 1]
Figure imgf000012_0001
Figure imgf000012_0001
상기 화학식 1에서, Ar는 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또 는 비치환된 C2 내지 C30 헤테로아릴기, 또는 이들의 조합이고, L1 내지 L3은 서로 독립적으로, 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환 된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, nl 내지 n3은. 서로 독립적 으로, 0 내지 3 중 어느 하나의 정수이고, A는 하기 화학식 A-2이고, B는 하기 화 학식 A-2, 치환 또는 비치환된 C6 내지 C30 아릴기, 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다. In Formula 1, Ar is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group, or a combination thereof, L 1 to L 3 are independently from each other, substituted or unsubstituted A substituted C2 to C6 alkenylene group, a substituted or unsubstituted C2 to C6 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted C2 to C30 heteroarylene group, or a combination thereof, nl To n3 . Independent of each other As an integer of any one of 0 to 3, A is the following formula A-2, B is the following formula A-2, substituted or unsubstituted C6 to C30 aryl group, or substituted or unsubstituted C2 to C30 Heteroaryl group.
[화학식 A-2]  [Formula A-2]
Figure imgf000013_0001
상기 화학식 A— 2에서, X은 -0- 또는 -S-이고, R 내지 R는 서로 독립적으 로, 수소, 중수소, 할로겐기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환 된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시 카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기 , 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티을 기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티을기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이 다.
Figure imgf000013_0001
In Formula A-2, X is -0- or -S-, R to R are independently of each other, hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 Alkoxy carbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C2 0 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 Arylti groups, substituted or unsubstituted C1 to C20 heterocyclotiyl groups, substituted or unsubstituted C1 to C20 ureide groups, substituted or unsubstituted C3 to C40 silyl groups, or a combination thereof.
상기 화학식 1로 표시되는 화합물은 인데노 구조를 포함하는 치환기를 포함 하는 아민기를 코어 구조로 가질 수 있다. 이러한 코어 구조의 경우, Ar1의 구조에 서 정공특성올 나타낼 수 있는 치환기를 아민기 코어와 합쳐지면서 전자 또는 정공 을 쉽게 흐를 수 있는 구조를 가질 수 있다. 또한 인데노 구조의 치환기는 비공유 전자 쌍을 가지고 있는 구조로서 전자 또는 정공의 흐름올 좋게 하며 분자량이 작 아 증착용소재로서 적합하다. 일반적으로 증착용 소재의 경우 분자량이 1000이 넘 게 되면 열안정성 문제를 유발할 수 있다. 또한, Ar1에 치환될 구조의 경우 전자 (파 이 결합이 풍부함, 전자 주게 그룹)를 풍부하게 가지고 있는 것으로 특징으로 하며 아민을 사이로 인데노 구조의 치환기는 Ar1의 전자를 끌어오기 좋은 구조로 (withdraw group) 되어 있어 화합물 내 전자 편중화를 막을 수 있어, 결과적으로 소자의 고효율, 장수명을 달성할 수 있다. The compound represented by Chemical Formula 1 may have an amine group including a substituent including an indeno structure as a core structure. In the case of such a core structure, the substituent having the hole property in the structure of Ar 1 may be combined with the amine group core to have a structure that can easily flow electrons or holes. In addition, the substituent of the indeno structure is a structure having a non-covalent pair of electrons to improve the flow of electrons or holes, small molecular weight is suitable as a deposition material. In general, in the case of the deposition material, if the molecular weight exceeds 1000 may cause thermal stability problems. In addition, the structure to be substituted in Ar 1 is characterized by having abundant electrons (rich in the bond, electron donor group) The substituent of the indeno structure between the amines is a good structure for drawing electrons of Ar 1 (withdraw group) to prevent electron polarization in the compound, resulting in high efficiency and long life of the device.
또한, 상기 화학식 1로 표시되는 유기광전자소자용 화합물은 코어 부분과 코 어 부분에 치환된 치환기에 다양한 또 다른 치환기를 도입함으로써 다양한 에너지 밴드 갭을 갖는 화합물이 될 수 있다.  In addition, the compound for an organic optoelectronic device represented by Formula 1 may be a compound having a variety of energy band gap by introducing a variety of further substituents to the substituents substituted in the core portion and the core portion.
상기 화합물의 치환기에 따라 적절한 에너지 준위를 가지는 화합물을 유기광 전자소자에 사용함으로써, 정공전달 능력 또는 전자전달 능력이 강화되어 효율 및 구동전압 면에서 우수한 효과를 가지고, 전기화학적 및 열적 안정성이 뛰어나 유기 광전자소자 구동시 수명 특성을 향상시킬 수 있다.  By using a compound having an appropriate energy level in the organic optoelectronic device according to the substituent of the compound, the hole transfer ability or electron transfer ability is enhanced to have an excellent effect in terms of efficiency and driving voltage, and excellent in electrochemical and thermal stability It can improve the life characteristics when driving the optoelectronic device.
보다 구체적으로, 본 발명의 일 구현예에서, 치환 또는 비치환된 C6 내지 C30 아릴기 및 /또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기는, 치환 또는 비치환된 페닐기, 치환 또는 비치환된 나프틸기, 치환 또는 비치환된 안트라세닐 기, 치환 또는 비치환된 페난트릴기, 치환 또는 비치환된 나프타세닐기, 치환 또는 비치환된 피레닐기, 치환 또는 비치환된 바이페닐일기, 치환 또는 비치환된 P-터페 닐기, 치환 또는 비치환된 m—터페닐기, 치환 또는 비치환된 크리세닐기, 치환 또는 비치환된 트리페닐레닐기, 치환 또는 비치환된 페릴레닐기, 치환 또는 비치환된 인 데닐기, 치환 또는 비치환된 퓨라닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 피라졸릴기, 치환 또는 비치환된 이미다졸 일기, 치환 또는 비치환된 트리아졸일기, 치환 또는 비치환된 옥사졸일기, 치환 또 는 비치환된 티아졸일기, 치환 또는 비치환된 옥사디아졸일기, 치환 또는 비치환된 티아디아졸일기, 치환 또는 비치환된 피리딜기, 치환 또는 비치환된 피리미다닐기, 치환 또는 비치환된 피라지닐기, 치환 또는 비치환된 트리아지닐기, 치환 또는 비 치환된 벤조퓨라닐기, 치환 또는 비치환된 벤조티오페닐기, 치환 또는 비치환된 벤 즈이미다졸일기, 치환 또는 비치환된 인돌일기, 치환 또는 비치환된 퀴놀리닐기, 치환 또는 비치환된 이소퀴놀리닐기, 치환 또는 비치환된 퀴나졸리닐기, 치환 또는 비치환된 퀴녹살리닐기, 치환 또는 비치환된 나프티리디닐기, 치환 또는 비치환된 벤즈옥사진일기, 치환 또는 비치환된 벤즈티아진일기, 치환 또는 비치환된 아크리 디닐기, 치환 또는 비치환된 페나진일기, 치환 또는 비치환된 페노티아진일기, 치 환 또는 비치환된 페녹사진일기 또는 이들의 조합일 수 있으나, 이에 제한되지는 않는다.  More specifically, in one embodiment of the present invention, a substituted or unsubstituted C6 to C30 aryl group and / or a substituted or unsubstituted C2 to C30 heteroaryl group is a substituted or unsubstituted phenyl group, substituted or unsubstituted naph Tyl group, substituted or unsubstituted anthracenyl group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted naphthacenyl group, substituted or unsubstituted pyrenyl group, substituted or unsubstituted biphenylyl group, substituted or unsubstituted P-terpenyl group, substituted or unsubstituted m—terphenyl group, substituted or unsubstituted chrysenyl group, substituted or unsubstituted triphenylenyl group, substituted or unsubstituted perylenyl group, substituted or unsubstituted phosphorus Denyl group, substituted or unsubstituted furanyl group, substituted or unsubstituted thiophenyl group, substituted or unsubstituted pyrrolyl group, substituted or unsubstituted pyrazolyl group, substituted or unsubstituted imidazole 1 , Substituted or unsubstituted triazolyl group, substituted or unsubstituted oxazolyl group, substituted or unsubstituted thiazolyl group, substituted or unsubstituted oxadiazolyl group, substituted or unsubstituted thiadiazoleyl group, substituted Or unsubstituted pyridyl group, substituted or unsubstituted pyrimidanyl group, substituted or unsubstituted pyrazinyl group, substituted or unsubstituted triazinyl group, substituted or unsubstituted benzofuranyl group, substituted or unsubstituted benzo Thiophenyl group, substituted or unsubstituted benzimidazolyl group, substituted or unsubstituted indolyl group, substituted or unsubstituted quinolinyl group, substituted or unsubstituted isoquinolinyl group, substituted or unsubstituted quinazolinyl group, Substituted or unsubstituted quinoxalinyl group, substituted or unsubstituted naphthyridinyl group, substituted or unsubstituted benzoxazineyl group, substituted or unsubstituted benzthiazinyl group, substituted or unsubstituted It may be, but not limited to, an acridinyl group, a substituted or unsubstituted phenazineyl group, a substituted or unsubstituted phenothiazineyl group, a substituted or unsubstituted phenoxazineyl group, or a combination thereof.
또한, 상기 L1 내지 L3를 선택적으로 조절하여 화합물 전체의 공액 (conjugation) 길이를 결정할 수 있으며, 이로부터 삼중항 (triplet) 에너지 밴드갭 을 조절할 수 있다. 이를 통해 유기광전자소자에서 필요로 하는 재료의 특성을 구 현해 낼 수 있다. 또한, 올소, 파라, 메타의 결합위치 변경을 통해서도 삼증항 에 너지 밴드갭을 조절할 수 있다. In addition, the L 1 to L 3 by selectively adjusting the conjugate of the entire compound The conjugation length can be determined, from which the triplet energy bandgap can be adjusted. Through this, it is possible to realize the characteristics of the material required in the organic optoelectronic device. In addition, the tridental energy band gap can be controlled by changing the binding positions of olso, para, and meta.
상기 L1 내지 L3의 구체적인 예로는 치환 또는 비치환된 페닐렌기 , 치환 또는 비치환된 바이페닐렌기, 치환 또는 비치환된 터페닐렌기, 치환 또는 비치환된 나프 틸렌기, 치환 또는 비치환된 안트라세닐렌기, 치환 또는 비치환된 페난트릴렌기, 치환 또는 비치환된 피레닐렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 p—터페닐기, 치환 또는 비치환된 m-터페닐기, 치환 또는 비치환된 페릴레 닐기 등이다. Specific examples of the L 1 to L 3 are a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted Anthracenylene group, substituted or unsubstituted phenanthryl group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted p—terphenyl group, substituted or unsubstituted m-ter Phenyl group, substituted or unsubstituted perenyl group, and the like.
보다 구체적으로, 상기 L1 내지 L3은 서로 독립적으로, 페닐렌기일 수 있다. 상기 L1 내지 L3가 페닐렌기인 경우, 상기 페닐렌기를 기준으로 양측 코어 부분은 오쏘, 메타 또는 파라로 결합될 수 있다. More specifically, L 1 to L 3 may be, independently of each other, a phenylene group. When L 1 to L 3 is a phenylene group, both core parts may be bonded to ortho, meta or para based on the phenylene group.
상기 B는 하기 화학식 A-2일 수 있다. 상기 화학식 A-2는 비공유 전자쌍을 가지고 있어 전자 또는 정공의 흐름을 좋게 할 수 있어서 고효율의 소자를 만들기 유리하다. 또한, 일반적으로 사용하는 디벤조퓨란 또는 디벤조싸이오펜에 비해 분 자량이 작아 증착소재로서 유리할 수 있다. 그리고 상기 Ar1에 편중된 전자 (파이결 합, 전자 주게 그룹)를 상기 화학식 A— 2의 치환체 (withdraw group)가 화합물 전체 에 고르게 분포하게 함으로서 고효율 /장수명의 소자를 만들 수 있다. 보다 구체적 으로, 상기 유기광전자소자용 화합물이 두 개의 인데노 구조를 포함하는 경우, 전 자를 고르게 분포할 수 있다. B may be represented by Formula A-2. Formula (A-2) has a non-shared electron pair can improve the flow of electrons or holes is advantageous to make a high efficiency device. In addition, the molecular weight is smaller than that of dibenzofuran or dibenzothiophene generally used, and may be advantageous as a deposition material. In addition, by distributing electrons (pie bonds, electron donor groups) that are biased to Ar 1 , the substituents (withdraw group) of Formula A-2 may be evenly distributed throughout the compound, thereby making a device having high efficiency / long lifespan. More specifically, when the compound for an organic optoelectronic device includes two indeno structures, the electrons may be evenly distributed.
보다 구체적으로, 상기 Ar1은 하기 화학식 B-1일 수 있다. More specifically, Ar 1 may be the following Formula B-1.
[화학식 B-1]  [Formula B-1]
Figure imgf000015_0001
Figure imgf000015_0001
상기 화학식 B-1에서, R 내지 R은 서로 독립적으로, 수소, 중수소, 할로겐 기 , 시아노기, 히드록실기, 아미노기 , 치환 또는 비치환된 C1 내지 C20 아민기, 니 트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기 , 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아 미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기 , 치환 또는 비치환된 C1 내지 C20 우레이드기 , 치 환또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. In Formula B-1, R to R are independently of each other, hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, ni. Tro, carboxyl, ferrocenyl, substituted or unsubstituted C1 to C20 alkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted C2 to C30 heteroaryl groups, substituted or unsubstituted C1 to C20 Alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted Or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted Or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiol group, substituted or unsubstituted C1 to C20 heterocyclothiol group, substituted or unsubstituted C1 to C20 uraide group, substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
이러한 경우, 화학식 B-1과 같은 플루오렌기의 경우 가운데 탄소 (C)가 이중 결합 없이 이루어진 구조여서 파이결합이 끊어진다. 이 때문에 정공을 형성하기 용 이해져 아민 (N)을 중심으로 한 인데노 구조의 치환체와 조화를 이를 수 있다. 전자 또는 정공을 잘 전달하기 위해서는 정공을 잘 형성할 수 있는 치환체와 전자를 잘 형성하는 치환체가 잘 어울러져야 하는데 상기 플루오렌기가 정공을 잘 형성할 수 있는 치환체 이다. 또한 플루오렌이 포함된 화합물의 경우 소자의 고효율 및 구동 전압 측면에서 특성을 개선할 수 있다.  In this case, in the case of the fluorene group represented by the formula (B-1), the carbon bond (C) is formed without a double bond, and thus the pi bond is broken. For this reason, it becomes easy to form a hole, and can harmonize with the substituent of the indeno structure centered on amine (N). In order to transfer electrons or holes well, the substituents that can form holes well and the substituents that form electrons must go well together, and the fluorene group is a substituent that can form holes well. In addition, in the case of a compound containing fluorene, it is possible to improve characteristics in terms of high efficiency and driving voltage of the device.
구체적인 예를 들어, 상기 Ar1은 하기 화학식 B-2일 수 있다. For example, Ar 1 may be the following Formula B-2.
[화학식 B-2]  [Formula B-2]
Figure imgf000016_0001
Figure imgf000016_0001
상기 화학식 B-2에서, R 내지 R은 서로 독립적으로, 수소, 증수소, 할로겐 기, 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니 트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기 , 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아 미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티을기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치 환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. In Formula B-2, R to R are independently of each other, hydrogen, hydrogen, halogen, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferro Senyl group, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted A substituted C6 to C20 aryloxy group, a substituted or unsubstituted C3 to C40 silyloxy group, a substituted or unsubstituted C1 To C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonyl Amino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkyl Thiol group, substituted or unsubstituted C6 to C20 arylthiyl group, substituted or unsubstituted C1 to C20 heterocyclothiol group, substituted or unsubstituted C1 to C20 ureide group, substituted or unsubstituted C3 to C40 silyl Groups or a combination thereof.
상기 화학식 B— 2로 표시되는 치환기는 합성이 용이할 수 있는 위치로 코어인 아민 질소와 결합할 수 있다.  The substituent represented by Formula B-2 may be combined with the amine nitrogen, which is a core, to a position that can be easily synthesized.
보다 구체적으로, 상기 Ar1은 하기 화학식 B-3일 수 있다. More specifically, Ar 1 may be the following Formula B-3.
[화학식 B-3]  [Formula B-3]
Figure imgf000017_0001
Figure imgf000017_0001
상기 화학식 B-3에서, R 내지 R 은 서로 독립적으로, 수소, 중수소, 할로겐 기 , 시아노기 , 히드록실기, 아미노기 , 치환 또는 비치환된 C1 내지 C20 아민기, 니 트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기 , 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아 미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티을기, 치환 또는 비치환된 C6 내지 C20 아릴티올기 , 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치 환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. 상기 화학식 B-3과 같은 페난스렌기가 존재하는 경우, 보다 낮은 HOMO 레벨 을 달성할 수 있다. 또한, 상기 페난스렌 (B-2)기는 페닐기 3개가 꺽여있어 정공을 형성하기 용이한 구조로 알려져 있다. 그리고 플루오렌 (B-1)기에 비해 열안정성 (페 닐기 모두 공명구조를 이룸)이 뛰어나다. In Formula B-3, R to R are independently of each other, hydrogen, deuterium, halogen, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl Groups, substituted or unsubstituted C1 to C20 alkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted C2 to C30 heteroaryl groups, substituted or unsubstituted C1 to C20 alkoxy groups, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 Acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino Group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthi group, substituted or unsubstituted C6 to C20 arylthiol group , Substituted or unsubstituted C1 to C20 heterocyclothiol group, substituted or unsubstituted C1 to C20 ureide group, substituted or unsubstituted C3 to C40 silyl group, or a combination thereof. When a phenanthrene group such as Chemical Formula B-3 is present, a lower HOMO level may be achieved. In addition, the phenanthrene (B-2) group is known to have a structure in which three phenyl groups are broken to easily form holes. In addition, the thermal stability (the phenyl group all have a resonance structure) is superior to the fluorene (B-1) group.
보다 구체적으로 상기 Ar1은 하기 화학식 B-4일 수 있다. More specifically, Ar 1 may be the following Formula B-4.
[화학식 B-4]  [Formula B-4]
Figure imgf000018_0001
Figure imgf000018_0001
보다 구체적으로, 페난스렌 (화학식 B— 2)기보다 더 낮은 HOMO레벨이 필요할 경우 트리페닐렌 (화학식 B-3)기를 도입하여 이를 조절 할 수 있다. 상기 트리페닐 렌기는 페닐기가 3개 모여있어 풍부한 전자 (donor group)를 제공할 수 있으며 전자 를 끌어갈 수 있는 구조 (withdraw group, 예를 들어, 인데노 치환체)와 결합되는 경우 정공올 형성하기 용이한 구조일 수 있다. 그리고 플루오렌기에 비해 열안정성 (페닐기 모두 공명구조를 이룸)이 뛰어나다.  More specifically, when a lower HOMO level is required than the phenanthrene (Formula B-2) group, it may be controlled by introducing a triphenylene (Formula B-3) group. The triphenylene group may be enriched with three phenyl groups to provide a rich electron group, and when combined with a structure capable of attracting electrons (withdraw group, for example, an indeno substituent), it is easy to form a hole allol. It may be one structure. In addition, it has excellent thermal stability (all phenyl groups have resonance structures) compared to fluorene groups.
보다 구체적으로, 상기 Ar1은 하기 화학식 B— 5일 수 있다. More specifically, Ar 1 may be represented by the following Formula B-5.
[화학식 B-5]  [Formula B-5]
Figure imgf000018_0002
Figure imgf000018_0002
상기 화학식 B-5에서, X는 0-, -S- 또는 NR'이고, R' , R 및 R 은 서로 독 립적으로, 수소, 증수소, 할로겐기, 시아노기, 히드톡실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기 , 치환 또는 비치 환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비 치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치 환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴 옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환 된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아 미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기, 치환 또는 비 치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아 릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기, 치환 또는 비치환 된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. In Formula B-5, X is 0-, -S- or NR ', R', R and R are independently of each other, hydrogen, hydrogen, halogen, cyano group, hydroxyl group, amino group, substitution Or an unsubstituted C1 to C20 amine group, a nitro group, a carboxyl group, a ferrocenyl group, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to C30 heteroaryl group , Substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyl oxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or Unsubstituted C2 to C20 Alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryl Oxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 aryl Thiol group, substituted or unsubstituted C1 to C20 heterocyclothiol group, substituted or unsubstituted C1 to C20 ureide group, substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
정공 또는 전자 수송 능력이 좋은 상기 화학식 B-5를 사용했을 경우 고효율 소자를 만들 수 있다.  When the chemical formula B-5 having good hole or electron transport ability is used, a high efficiency device can be made.
보다 구체적으로, 상기 Ar1은 하기 화학식 B-6일 수 있다. More specifically, Ar 1 may be the following Formula B-6.
[화학식 B-6]  [Formula B-6]
Figure imgf000019_0001
Figure imgf000019_0001
상기 화학식 B-6에서, R 및 R 은 서로 독립적으로, 수소, 중수소, 할로겐 기 , 시아노기, 히드록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니 트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴 기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보닐아미노기 , 치환 또는 비치환된 C1 내지 C20 술파모일아 미노기, 치환 또는 비치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티을기, 치환 또는 비치환된 C6 내지 C20 아릴티을기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로티올기 , 치환 또는 비치환된 C1 내지 C20 우레이드기, 치 환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다.  In Formula B-6, R and R are independently of each other, hydrogen, deuterium, halogen group, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl Groups, substituted or unsubstituted C1 to C20 alkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted C2 to C30 heteroaryl groups, substituted or unsubstituted C1 to C20 alkoxy groups, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 Acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group Substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthi group, substituted or unsubstituted C6 to C20 arylthi group, A substituted or unsubstituted C1 to C20 heterocyclothiol group, a substituted or unsubstituted C1 to C20 ureide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
상기 화학식 B— 6과 같은 카바졸기의 경우 아민 (N)을 중심으로 파이결합이 끊 어져 정공을 형성하기 유리하며, 비공유 전자쌍을 가지고 있어 정공수송능력 또한 뛰어나다. 또한, 상기 화학식 B-6과 같은 카바졸기는 정공수송 능력이 전자수송 능 력에 비해 매우 뛰어나므로 소자에 적용 시 정공수송층이나 정공수송층의 보조층 또는 정공특성을 가지는 호스트로 이용하면 고효율 저전압 소자를 구현할 수 있다. 보다 구체적으로, 상기 Ar1은 치환 또는 비치환된 바이페닐기일 수 있다. 보 다 구체적인 예를 들어, 상기 Arl은 하기 화학식 B-7 또는 B-8일 수 있다. In the case of carbazole groups such as Chemical Formula B-6, the pi bond is broken around the amine (N) to form holes. outstanding. In addition, the carbazole group such as Formula B-6 has a very high hole transport ability compared to the electron transport ability, so when applied to the device, a high-efficiency low voltage device is used when used as a host having a hole transport layer, an auxiliary layer of the hole transport layer, or a hole characteristic. Can be implemented. More specifically, Ar 1 may be a substituted or unsubstituted biphenyl group. More specifically, for example, Arl may be represented by Chemical Formula B-7 or B-8.
[화학식 B— 7] [화학식 B-8] [Formula B— 7] [Formula B-8]
Figure imgf000020_0001
Figure imgf000020_0001
보다 단순한 구조의 B-7 및 /또는 B-8 치환기는 열적, 전기적 안정성이 뛰어 나 고수명 소자를 구현하기에 적합하다.  The simpler structure of B-7 and / or B-8 substituents provides excellent thermal and electrical stability, making them suitable for high lifetime devices.
구체적인 예를 들어, 상기 A 및 B는 상기 화학식 A-2로 표시될 수 있다. 즉, 코어인 아민기에 화학식 A— 2로 표시되는 치환기가 동시에 존재하는 경우, 정공 또 는 전자수송이 뛰어난 화학식 A-2의 존재로 인해 소자의 구동전압이 낮아지며 효율 이 상승할 수 있다. 또한 상기 화학식 A-2는 분자구조가 단순하여 열적, 전기적 안 정성이 뛰어나다.  For example, A and B may be represented by Chemical Formula A-2. That is, when the substituent represented by the formula (A-2) is present at the same time the core amine group, the driving voltage of the device can be lowered and the efficiency can be increased due to the presence of the formula (A-2) excellent in hole or electron transport. In addition, the chemical formula A-2 has excellent thermal and electrical stability due to its simple molecular structure.
상기 화학식 A— 2에서, 상기 R3 및 R4는 수소일 수 있으며, 이에 제한되지 않 는다. In Formula A-2, R 3 and R 4 may be hydrogen, but are not limited thereto.
상기 유기광전자소자용 화합물은 700이하의 분자량을 가질 수 있다. 보다 구 체적으로 600이하의 분자량올 가질 수 있다. 이러한 경우, 소자 제조시에 낮은 온 도에서 증착이 가능하기에 증착이 용이하며, 열적 안정성이 증가할 수 있다. 이로 부터 소자의 안정성이 개선될 수 있다.  The compound for an organic optoelectronic device may have a molecular weight of 700 or less. More specifically, it may have a molecular weight of 600 or less. In this case, since the deposition is possible at low temperatures during device manufacturing, the deposition is easy, and the thermal stability may increase. From this, the stability of the device can be improved.
구체적인 본 발명의 일 구현예의 예시로 하기 화합물 등이 있다. 다만, 이에 제한되는 것은 아니다. Specific examples of one embodiment of the present invention include the following compounds. However, it is not limited thereto.
Figure imgf000021_0001
Figure imgf000021_0001
6T6T
CZS00/CT0ZaM/X3d OOS ) OZ OAV
Figure imgf000022_0001
CZS00 / CT0ZaM / X3d OOS) OZ OAV
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000023_0001
ISCZS00/CT0ZaM/X3d OOS ) OZ OAV ISCZS00 / CT0ZaM / X3d OOS) OZ OAV
<( <(
Figure imgf000024_0001
Figure imgf000024_0001
eisoo/eTO^HX/i3d OOS^OT/^TOZ; OAV eisoo / eTO ^ HX / i3d OOS ^ OT / ^ TOZ; OAV
Figure imgf000025_0001
CZS00/CT0ZaM/X3d OOS ) OZ OAV
Figure imgf000025_0001
CZS00 / CT0ZaM / X3d OOS) OZ OAV
Figure imgf000026_0001
CZS00/CT0ZaM/X3d OOS ) OZ OAV
Figure imgf000026_0001
CZS00 / CT0ZaM / X3d OOS) OZ OAV
Figure imgf000027_0001
CZS00/CT0ZaM/X3d Z OOS ) OZ OAV
Figure imgf000027_0001
CZS00 / CT0ZaM / X3d Z OOS) OZ OAV
Figure imgf000028_0001
Figure imgf000028_0001
9Z9Z
£ZS00/CT0Za¾X3d OOS Ol/MOZ OAV £ ZS00 / CT0Za¾X3d OOS Ol / MOZ OAV
Figure imgf000029_0001
Figure imgf000029_0001
LZCZS00/CT0ZaM/X3d OOS ) OZ OAV LZCZS00 / CT0ZaM / X3d OOS) OZ OAV
Figure imgf000030_0001
Figure imgf000030_0001
2Z 2Z
CZS00/CT0ZaM/X3d 00S ) 0Z OAV CZS00 / CT0ZaM / X3d 00S) 0Z OAV
Figure imgf000031_0001
CZS00/CT0ZaM/X3d
Figure imgf000031_0001
CZS00 / CT0ZaM / X3d
 
Figure imgf000032_0001
Figure imgf000032_0001
eisoo/eTO^HX/i3d
Figure imgf000033_0001
eisoo / eTO ^ HX / i3d
Figure imgf000033_0001
an an
Figure imgf000034_0001
CZS00/CT0ZaM/X3d OOS ) OZ OAV
Figure imgf000034_0001
CZS00 / CT0ZaM / X3d OOS) OZ OAV
Figure imgf000035_0001
CZS00/CT0ZaM/X3d OOS ) OZ OAV
Figure imgf000035_0001
CZS00 / CT0ZaM / X3d OOS) OZ OAV
Figure imgf000036_0001
CZS00/CT0ZaM/X3d
Figure imgf000036_0001
CZS00 / CT0ZaM / X3d
Figure imgf000037_0001
£
Figure imgf000037_0001
£
£ZS00/CT0Za¾X3d OOS Ol/MOZ OAV £ ZS00 / CT0Za¾X3d OOS Ol / MOZ OAV
8M 8M
Figure imgf000038_0001
Figure imgf000038_0001
9C 9C
CZS00/CT0ZaM/X3d OOS ) OZ OAV CZS00 / CT0ZaM / X3d OOS) OZ OAV
Figure imgf000039_0001
eisoo/eTO^HX/i3d OOS^OT/^TOZ; OAV
Figure imgf000039_0001
eisoo / eTO ^ HX / i3d OOS ^ OT / ^ TOZ; OAV
99i 99i
CZS00/CT0ZaM/X3d
Figure imgf000040_0001
CZS00 / CT0ZaM / X3d
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000041_0001
1?2 본 발명의 다른 일 구현예에서는, 양극, 음극 및 상기 양극과 음극 사이에 개재되는 한 층 이상의 유기박막층을 포함하고, 상기 유기박막층 증 적어도 어느 한 층은 상기 유기광전자소자용 화합물을 포함하는 것인 유기광전자소자를 제공한 다. 1 to 2 In another embodiment of the present invention, an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode, wherein at least one layer of the organic thin film layer comprises the compound for the organic optoelectronic device It provides an organic optoelectronic device.
상기 유기광전자소자용 화합물은 유기박막층에 사용되어 유기광전자소자의 수명 특성, 효율 특성, 전기화학적 안정성 및 열적 안정성을 향상시키며, 구동전압 을 낮출 수 있다.  The compound for an organic optoelectronic device is used in an organic thin film layer to improve the life characteristics, efficiency characteristics, electrochemical stability and thermal stability of the organic optoelectronic device, it is possible to lower the driving voltage.
상기 유기박막층은 구체적으로, 발광층일 수 있다.  Specifically, the organic thin film layer may be a light emitting layer.
상기 유기광전자소자는 유기발광소자, 유기광전소자, 유기태양전지, 유기트 랜지스터, 유기 감광체 드럼 또는 유기메모리소자일 수 있다.  The organic optoelectronic device may be an organic light emitting device, an organic photoelectric device, an organic solar cell, an organic transistor, an organic photosensitive drum, or an organic memory device.
보다 구체적으로, 상기 유기광전자소자는 유기발광소자일 수 있다. 도 1 내 지 도 5는 본 발명의 일 구현예에 따른 유기광전자소자용 화합물을 포함하는 유기 발광소자의 단면도이다.  More specifically, the organic optoelectronic device may be an organic light emitting device. 1 to 5 are cross-sectional views of an organic light emitting device including a compound for an organic optoelectronic device according to an embodiment of the present invention.
도 1 내지 도 5를 참조하면, 본 발명의 일 구현예에 따른 유기발광소자 (100, 200, 300, 400 및 500)는 양극 (120), 음극 (110) 및 이 양극과 음극 사이에 개재된 적어도 1층의 유기박막층 (105)을 포함하는 구조를 갖는다.  1 to 5, the organic light emitting diodes 100, 200, 300, 400, and 500 according to the embodiment of the present invention are interposed between the anode 120, the cathode 110, and the anode and the cathode. It has a structure including at least one organic thin film layer 105.
상기 양극 (120)은 양극 물질을 포함하며, 이 양극 물질로는 통상 유기박막층 으로 정공주입이 원활할 수 있도록 일 함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 니켈, 백금, 바나듐, 크롬, 구리 아연, 금과 같은 금속 또는 이들의 합금을 들 수 있고, 아연산화물, 인듬산화물, 인듬주석산화물 (ITO), 인듐아연산화물 (IZ0)과 같은 금속 산화물을 들 수 있고, ΖηΟ와 A1 또는 Sn02와 Sb와 같은 금속과 산화물의 조합을 들 수 있고, 폴리 (3-메틸티오펜), 폴리 (3, 4- (에틸렌- 1,2ᅳ디옥시)티오펜) (polyehtylenedioxythiophene: PEDT) , 폴리피를 및 폴리아닐린 과 같은 전도성 고분자 등을 들 수 있으나, 이에 한정되는 것은 아니다. 보다 구 체적으로, 상기 양극으로 IT0( indium tin oxide)를 포함하는 투명전극을 사용할 수 있다. The anode 120 includes an anode material, which is typically an organic thin film layer. As a material having a large work function is preferable to facilitate hole injection. Specific examples of the positive electrode material may include metals such as nickel, platinum, vanadium, chromium, copper zinc, and gold or alloys thereof, and include zinc oxide, phosphate oxide, tin oxide (ITO), and indium zinc oxide (IZ0). Metal oxides such as ΖηΟ and A1 or combinations of metals and oxides such as Sn0 2 and Sb; poly (3-methylthiophene), poly (3,4- (ethylene-1, 1,2 Conductive polymers such as polyehtylenedioxythiophene (PEDT), polypyrrole, and polyaniline, and the like, but are not limited thereto. More specifically, a transparent electrode including indium tin oxide (IT0) may be used as the anode.
상기 음극 (110)은 음극 물질을 포함하여, 이 음극 물질로는 통상 유기박막충 으로 전자주입이 용이하도록 일 함수가 작은 물질인 것이 바람직하다. 음극 물질 의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리 튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바퓸 등과 같은 금속 또는 이들의 합금을 들 수 있고, LiF/Al, Li02/AI, LiF/Ca, LiF/Al 및 BafVCa과 같은 다층 구조 물질 등을 들 수 있으나, 이에 한정되는 것은 아니다. 보다 구체적으로, 상기 음 극으로 알루미늄 등과 같은 금속전극을사용할 수 있다. The negative electrode 110 includes a negative electrode material, and the negative electrode material is generally a material having a small work function to facilitate electron injection into an organic thin film insect. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof, and LiF / Multi-layered materials such as Al, Li0 2 / AI, LiF / Ca, LiF / Al, and BafVCa, and the like, but are not limited thereto. More specifically, a metal electrode such as aluminum may be used as the cathode.
먼저 도 1을 참조하면, 도 1은 유기박막층 (105)으로서 발광층 (130)만이 존재 하는 유기발광소자 (100)를 나타낸 것으로, 상기 유기박막층 (105)은 발광층 (130)만 으로 존재할 수 있다.  First, referring to FIG. 1, FIG. 1 illustrates an organic light emitting device 100 in which only a light emitting layer 130 exists as an organic thin film layer 105. The organic thin film layer 105 may exist only as a light emitting layer 130.
도 2를 참조하면, 도 2는 유기박막층 (105)으로서 전자수송층을 포함하는 발 광층 (230)과 정공수송층 (140)이 존재하는 2층형 유기발광소자 (200)를 나타낸 것으 로, 도 2에 나타난 바와 같이, 유기박막층 (105)은 발광층 (230) 및 정공 수송층 (140)을 포함하는 2층형일 수 있다. 이 경우 발광층 (130)은 전자 수송층의 기능을 하며, 정공 수송층 (140)은 ITO와 같은 투명전극과의 접합성 및 정공수송성을 향상 시키는 기능을 한다.  Referring to FIG. 2, FIG. 2 illustrates a two-layered organic light emitting diode 200 including a light emitting layer 230 including an electron transport layer and a hole transport layer 140 as the organic thin film layer 105. As shown, the organic thin film layer 105 may be a two-layer type including the light emitting layer 230 and the hole transport layer 140. In this case, the light emitting layer 130 functions as an electron transporting layer, and the hole transporting layer 140 functions to improve adhesion and hole transportability with a transparent electrode such as ITO.
도 3을 참조하면, 도 3은 유기박막층 (105)으로서 전자수송층 (150), 발광층 (130) 및 정공수송층 (140)이 존재하는 3층형 유기발광소자 (300)로서, 상기 유기박 막층 (105)에서 발광층 (130)은 독립된 형태로 되어 있고, 전자수송성이나 정공수송 성이 우수한 막 (전자수송층 (150) 및 정공수송층 (140))을 별도의 층으로 쌓은 형태 를 나타내고 있다.  Referring to FIG. 3, FIG. 3 is a three-layer organic light emitting device 300 having an electron transport layer 150, an emission layer 130, and a hole transport layer 140 as an organic thin film layer 105, which is the organic thin film layer 105. ), The light emitting layer 130 is in an independent form, and the film (electron transport layer 150 and hole transport layer 140) having excellent electron transport properties and hole transport properties is stacked in separate layers.
도 4를 참조하면, 도 4는 유기박막층 (105)으로서 '전자주입층 (160), 발광층 (130), 정공수송층 (140) 및 정공주입층 (170)이 존재하는 4층형 유기발광소자 (400) 로서, 상기 정공주입층 (170)은 양극으로 사용되는 ΙΤ0와의 접합성을 향상시킬 수 있다. Referring to Figure 4, Figure 4 is an organic thin film layer 105 as an "electron injection layer 160, emitting layer 130, hole transport layer 140 and the hole injection layer of organic light emitting devices (400, 4-layer type to 170 is present ) As a result, the hole injection layer 170 may improve the adhesion to ΤΤ0 used as the anode.
도 5를 참조하면, 도 5는 유기박막층 (105)으로서 전자주입층 (160), 전자수송 층 (150), 발광층 (130), 정공수송층 (140) 및 정공주입층 (170)과 같은 각기 다른 기 능을 하는 5개의 층이 존재하는 5층형 유기발광소자 (500)를 나타내고 있으며, 상기 유기발광소자 (500)는 전자주입층 (160)을 별도로 형성하여 저전압화에 효과적이다. 상기 도 1 내지 도 5에서 상기 유기박막층 (105)을 이루는 전자 수송층 (150), 전자 주입층 (160), 발광층 (130, 230), 정공 수송층 (140), 정공 주입층 (170) 및 이 들의 조합으로 이루어진 군에서 선택되는 어느 하나는 상기 유기광전자소자용 재료 를 포함한다.  Referring to FIG. 5, FIG. 5 shows different organic thin film layers 105, such as an electron injection layer 160, an electron transport layer 150, an emission layer 130, a hole transport layer 140, and a hole injection layer 170. A five-layered organic light emitting device 500 having five layers serving as a function is shown, and the organic light emitting device 500 is effective in lowering voltage by separately forming an electron injection layer 160. 1 to 5, the electron transport layer 150, the electron injection layer 160, the light emitting layers 130 and 230, the hole transport layer 140, the hole injection layer 170, and the like forming the organic thin film layer 105 are described. Any one selected from the group consisting of a combination includes the organic optoelectronic device material.
상기 유기광전자소자용 화합물은 상기 발광층 (130, 230)에 사용될 수 있고, 이때 발광층 내에서 녹색 (green)의 인광 재료로 사용될 수 있다.  The compound for an organic optoelectronic device may be used in the light emitting layers 130 and 230, and may be used as a green phosphorescent material in the light emitting layer.
보다 구체적으로, 상기 유기광전자소자용 화합물은 상기 정공수송층에 사용 될 수 있다. 또한, 도면에서 도시하지 않았으나, 정공수송층은 복수로 존재할 수 있으며, 발광층에 인접한 정공수송층을 보조층으로 볼 때, 상기 유기광전자소자용 화합물은 상기 보조층에 존재할 수 있다.  More specifically, the compound for an organic optoelectronic device may be used in the hole transport layer. In addition, although not shown in the drawings, a plurality of hole transport layers may be present, and when the hole transport layer adjacent to the light emitting layer is viewed as an auxiliary layer, the compound for an organic optoelectronic device may be present in the auxiliary layer.
상기에서 설명한 유기발광소자는, 기판에 양극을 형성한 후, 진공증착법 (evaporation), 스퍼터링 (sputter ing) , 풀라즈마 도금 및 이온도금과 같은 건식성 막법; 또는 스핀코팅 (spin coating), 침지법 (dipping), 유동코팅법 (flow coating) 과 같은 습식성막법 등으로 유기박막층을 형성한 후, 그 위에 음극을 형성하여 제 조할 수 있다.  The organic light emitting device described above may include a dry film method such as an evaporation, sputtering, full-laser plating and ion plating after forming an anode on a substrate; Alternatively, the organic thin film layer may be formed by a wet film method such as spin coating, dipping, flow coating, or the like, followed by forming a cathode thereon.
본 발명의 또 다른 일 구현예에서는, 상기 유기광전자소자를 포함하는 표시 장치를 제공한다.  In another embodiment of the present invention, a display device including the organic optoelectronic device is provided.
실시예  Example
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로 서 본 발명이 제한되어서는 아니된다.  The following presents specific embodiments of the present invention. However, the embodiments described below are merely for illustrating or explaining the present invention in detail, and the present invention is not limited thereto.
(유기광전자소자용 화합물의 제조)  Preparation of Compound for Organic Optoelectronic Devices
합성예 1:중간체 1—1의 제조
Figure imgf000043_0001
질소 환경에서 l-bromo-4-chlorobenzene(53.7 g, 280.7 隱 ol)을 tetrahydrofuran(THF) 0.5 L에 녹인 후, 여기에 2-Benzofuranyl boronic acid (50.0 g, 308.7 闘 ol)와 tetrakis(triphenylphosphine)pal ladiuni(16.2 g, 14.0 隱 ol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(82.7 g, 561.4 隱 ol) 을 넣고 100 °C에서 47시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물 을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분올 제거한 후, 필터 하고 감압 농축하였다. 이렇게 얻어진 잔사를 nash column chromatography로 분리 정제하여 화합물 1—1(50.8 g, 79 %)을 얻었다.
Synthesis Example 1 Preparation of Intermediate 1-1
Figure imgf000043_0001
In nitrogen, l-bromo-4-chlorobenzene (53.7 g, 280.7 隱 ol) is dissolved in 0.5 L of tetrahydrofuran (THF), followed by 2-Benzofuranyl boronic acid (50.0 g, 308.7 闘 ol) and tetrakis (triphenylphosphine) pal ladiuni (16.2 g, 14.0 μl) was added and stirred. Potassium carbonate saturated in water (82.7 g, 561.4 隱 ol) was added thereto, and the mixture was heated and refluxed at 100 ° C. for 47 hours. After completion of the reaction, water was added to the reaction solution, and extracted with dichloromethane (DCM), followed by removing water with anhydrous MgS0 4 , followed by filtration and concentration under reduced pressure. The obtained residue was separated and purified through n as h column chromatography to obtain Compound 1-1 (50.8 g, 79%).
HRMS (70 eV, EI+): m/z calcd for C14H9C10: 228.0342, found: 228.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 14 H 9 C 10: 228.0342, found: 228.
Elemental Analysis: C, 74 %; H, 4 %  Elemental Analysis: C, 74%; H, 4%
합성예 2:중간체 1-2의 제조
Figure imgf000044_0001
Synthesis Example 2 Preparation of Intermediate 1-2
Figure imgf000044_0001
I -2 질소 환경에서 1-br omo-4-ch 1 or obenzene ( 48.9 g, 255.3 画 ol)을 tetrahydrofuran(THF) 0.5 L에 녹인 후, 여기에 Benzothiophen-2-yl boronic acid (50.0 g, 280.9 mmol)와 tetrakis(tr iphenylphosphine)pal ladium(8.85 g, 7.66 圍 ol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(75.2 g, 510.6 mmol) 을 넣고 80 °C에서 17시간 동안 가열하여 환류 시켰다. 반웅 완료 후 반응액에 물 을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터 하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 1-2(61.3 g, 98 ¾)을 얻었다. Dissolve 1-br omo-4-ch 1 or obenzene (48.9 g, 255.3 画 ol) in 0.5 L of tetrahydrofuran (THF) in an I -2 nitrogen environment, and add Benzothiophen-2-yl boronic acid (50.0 g, 280.9 mmol) and tetrakis (tr iphenylphosphine) pal ladium (8.85 g, 7.66 圍 ol) were added and stirred. Potassium carbonate saturated in water (75.2 g, 510.6 mmol) was added thereto, and the resulting mixture was heated and refluxed at 80 ° C. for 17 hours. After completion of reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-2 (61.3 g, 98 ¾).
HRMS (70 eV, EI+): m/z calcd for C14H9C1S: 224.0113, found: 224.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 14 H 9 C 1 S: 224.0113, found: 224.
Elemental Analysis: C, 69 %; H, 4 %  Elemental Analysis: C, 69%; H, 4%
합성예 3:중간체 I -3의 제조
Figure imgf000044_0002
Synthesis Example 3 Preparation of Intermediate I-3
Figure imgf000044_0002
I -3 질소 환경에서 1-bromo— 4-nitrobenzene(50 g, 247.5 薩 ol)을 tetrahydrofuran(THF) 0.5 L에 녹인 후, 여기에 9,9-dimethy卜 9H-f luoren-2- ylboronic acid(70.7 g, 297.0 隱 ol)와 tetrakis(tr iphenylphosphine)pal ladium(8.58 g, 7.43 醒 ol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(72.9 g, 495.0 薩 ol)을 넣고 80 °C에서 21시간 동안 가열하여 환류 시켰다. 반옹 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감 압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하 여 화합물 1-3(78.1 g, 82 «을 얻었다. Dissolve 1-bromo— 4-nitrobenzene (50 g, 247.5 薩 ol) in 0.5 L of tetrahydrofuran (THF) in a nitrogen atmosphere, and then add 9,9-dimethy 卜 9H-f luoren-2-ylboronic acid ( 70.7 g, 297.0 μl ol) and tetrakis (tr iphenylphosphine) pal ladium (8.58 g, 7.43 醒 ol) was added and stirred. Potassium carbonate saturated in water (72.9 g, 495.0 薩 ol) was added thereto, and the mixture was heated and refluxed at 80 ° C. for 21 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-3 (78.1 g, 82 «).
HRMS (70 eV, EI+): m/z calcd for C21H17N02: 315.1259, found: 315.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C21 H17N02: 315.1259, found: 315.
Elemental Analysis: C, 80 %; H, 5 %  Elemental Analysis: C, 80%; H, 5%
합성예 4:중간체 1-4의 제조
Figure imgf000045_0001
Synthesis Example 4 Preparation of Intermediate 1-4
Figure imgf000045_0001
1-3 4 질소 환경에서 1-3(30 g, 95.1 mmol)을 dmtetrahydrofuran(THF) 0.3 L에 녹 인 후, methanol 0.3 L를 넣고 0°C로 냉각하였다. 여기에 sodium brohydr ide(36.0 g, 951 薩 ol)를 넣은 후, tin(II) chloride(90.2 g, 475.5 瞧 ol)을 넣고 상온에서 2시간 반응시켰다. 반웅 완료 후 반응액에 물을 넣고 ethylacetate(EA)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압농축하였다. 이렇게 얻어진 잔 사를 flash column chromatography로 분리 정제하여 1-4(14.9 g, 55 %)를 얻었다. 1-3 In a nitrogen environment, 1-3 (30 g, 95.1 mmol) was dissolved in 0.3 L of dmtetrahydrofuran (THF), and 0.3 L of methanol was added and cooled to 0 ° C. After adding sodium brohydr ide (36.0 g, 951 薩 ol), tin (II) chloride (90.2 g, 475.5 瞧 ol) was added thereto and reacted at room temperature for 2 hours. After completion of reaction, water was added to the reaction solution, extracted with ethylacetate (EA), water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining 1-4 (14.9 g, 55%).
HRMS (70 eV, EI+): m/z calcd for C21H19N: 285.1517, found: 285.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 21 H 19 N: 285.1517, found: 285.
Elemental Analysis: C, 88 %; H, 7 %  Elemental Analysis: C, 88%; H, 7%
합성예 5:중간체 1-5의 제조  Synthesis Example 5 Preparation of Intermediate 1-5
Figure imgf000045_0002
Figure imgf000045_0002
1-5 질소 환경에서 l-bromo-4— nitrobenzene(50 g, 247.5 瞧 ol)을 tetrahydrofuran(THF) 0.6 L에 녹인 후, 여기에 Dibenzofuran-4ᅳ ylboronic acid(63.0 g, 297.0 讓 )와 tetrakis(tr iphenylphosphine)pal ladium(8.58 g, 7.43 画 ol)을 넣고 교반시켰다. 물에 포화된 potassuim carbonate(72.9 g, 495.0 醒 ol) 을 넣고 80 °C에서 24시간 동안 가열하여 환류 시켰다. 반응 완료 후 반응액에 물 을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터 하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 1-5(53.7 g, 75 %)을 얻었다. 1-5 In a nitrogen environment, l-bromo-4—nitrobenzene (50 g, 247.5 瞧 ol) is dissolved in 0.6 L of tetrahydrofuran (THF), followed by dibenzofuran-4 ylboronic acid (63.0 g, 297.0 讓) and tetrakis ( tr iphenylphosphine) pal ladium (8.58 g, 7.43 画 ol) was added thereto and stirred. Potassuim carbonate saturated in water (72.9 g, 495.0 醒 ol) Put in and refluxed by heating at 80 ° C for 24 hours. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-5 (53.7 g, 75%).
HRMS (70 eV, EI+): m/z calcd for C18H11N03: 289.0739, found: 289.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 18 H 11 N 03: 289.0739, found: 289.
Elemental Analysis: C, 75 %; H, 4 %  Elemental Analysis: C, 75%; H, 4%
합성예 6:증간체 1-6의 제조  Synthesis Example 6 Preparation of Intermediate 1-6
Figure imgf000046_0001
Figure imgf000046_0001
1 -5 1 -6 질소 환경에서 Iᅳ 5(30 g, 103.7画 ol)올 dmtetrahydrofuran(THF) 0.3 L에 녹 인 후, methanol 0.3 L를 넣고 0°C로 냉각하였다. 여기에 sodium brohydr ide(39.2 g, 1,037 讓 ol)를 넣은 후, tin(II) chlor ide(98.3 g, 518.5 画 ol)을 넣고 상온에 서 3시간 반웅시켰다. 반응 완료 후 반웅액에 물올 넣고 ethylacetate(EA)로 추출 한 다음 무수 MgS04로 수분을 제거한후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 1-6(14.0 g, 52 %)를 얻었 다. After dissolving I6 5 (30 g, 103.7 画 ol) ol in 0.3 L of dmtetrahydrofuran (THF) in 1 -5 1 -6 nitrogen, 0.3 L of methanol was added and cooled to 0 ° C. After adding sodium brohydr ide (39.2 g, 1,037 讓 ol), tin (II) chlor ide (98.3 g, 518.5 画 ol) was added and reacted at room temperature for 3 hours. After the reaction was completed, water was added to the reaction solution, extracted with ethylacetate (EA), water was removed with anhydrous MgS0 4 , filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining 1-6 (14.0 g, 52%).
HRMS (70 eV, EI+): m/z calcd for C18H13N0: 259.0997, found: 259.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 18 H 13 N 0: 259.0997, found: 259.
Elemental Analysis: C, 83 ; H, 5 %  Elemental Analysis: C, 83; H, 5%
합성예 7:증간체 1-7의 제조  Synthesis Example 7 Preparation of Intermediate 1-7
Figure imgf000046_0002
질소 환경에서 cabazole(50 g, 299.0 瞧 ol)을 toluene 0.5 L에 녹인 후, 여 기에 l_bromo_4—nitrobenzene(60.4 g, 299.0 醒 ol), tris(di henyl ideneacet one )di al ladium(o)(8.24 g, 8.97 mmol ) , tris一 tert butylphosphine(7.26 g, 35.9 議 ol) 그리고 sodium tert-butoxide(34.5 g, 358.8 醒 ol)을 순차적으로 넣고 130 °C에서 46시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 1—7(74.1 g, 86 %)을 얻었다.
Figure imgf000046_0002
In a nitrogen environment, cabazole (50 g, 299.0 瞧 ol) was dissolved in 0.5 L of toluene, followed by l_bromo_4—nitrobenzene (60.4 g, 299.0 醒 ol), tris (di henyl ideneacet one) di al ladium (o) (8.24 g , 8.97 mmol), tris 一 tert Butylphosphine (7.26 g, 35.9 議 ol) and sodium tert-butoxide (34.5 g, 358.8 醒 ol) were added sequentially and heated to reflux for 46 hours at 130 ° C. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 1-7 (74.1 g, 86%).
HRMS (70 eV, EI+): m/z calcd for C18H12N202: 288.0899, found: 288. HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 18 H 12 N 202: 288.0899, found: 288.
Elemental Analysis: C, 75 ; H, 4 % Elemental Analysis: C, 75; H, 4%
합성예 8:중간체 I -8의 제조  Synthesis Example 8 Preparation of Intermediate I-8
Figure imgf000047_0001
Figure imgf000047_0001
질소 환경에서 1-7(30 g, 104.1圍 ol)을 dmtetrahydrofuran(THF) 0.3 L에 녹 인 후, methanol 0.3 L를 넣고 0°C로 냉각하였다. 여기에 sodium brohydr ide(39.4 g, 1,041 國 ol)를 넣은 후, tin(n) chlor ide(98.7 g, 520.5 mmol)을 넣고 상온에 서 3시간 반웅시켰다. 반웅 완료 후 반웅액에 물을 넣고 ethylacetate(EA)로 추출 한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 1-6(11.6 g, 43 %)를 얻었 다. In a nitrogen environment, 1-7 (30 g, 104.1 圍 ol) was dissolved in 0.3 L of dmtetrahydrofuran (THF), and 0.3 L of methanol was added and cooled to 0 ° C. After adding sodium brohydr ide (39.4 g, 1,041 ko), tin (n) chlor ide (98.7 g, 520.5 mmol) was added thereto and reacted at room temperature for 3 hours. After the reaction was completed, water was added to the reaction solution, extracted with ethylacetate (EA), water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining 1-6 (11.6 g, 43%).
HRMS (70 eV, EI+): m/z calcd for C18H14N2: 258.1157, found: 258.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 18 H 14 N 2: 258.1157, found: 258.
Elemental Analysis: C, 84 %; H, 5 % Elemental Analysis: C, 84%; H, 5%
7> 실시예 1: 화합물 2의 제조 7> Example 1: Preparation of Compound 2
Figure imgf000048_0001
Figure imgf000048_0001
o> 질소 환경에서 9,9-dimethy卜 9H-f kioren-2-amine(15.5 g, 74.1 赚 ol)을 toluene 0.35 L에 녹인 후, 여기에 증간체 1—1(50.8 g, 222.2 瞧 ol), tr is(diphenyl ideneacetone)dipal ladium(o)(2.0 g, 2.22 讓 ol), tr is-tert but y 1 phosph i ne ( 1.80 g, 4.23 mmol ) 그리고 sodium tert-butoxide(15.7 g, 162.9 画 ol)을 순차적으로 넣고 100 °C에서 3일 동안 가열하여 환류시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거 한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 1(37.4 g, 85 %)올 얻었다. o> In a nitrogen environment, 9,9-dimethy 卜 9H-f kioren-2-amine (15.5 g, 74.1 赚 ol) was dissolved in 0.35 L of toluene, followed by Intermediate 1-1 (50.8 g, 222.2 瞧 ol). , tr is (diphenyl ideneacetone) dipal ladium (o) (2.0 g, 2.22 讓 ol), tr is-tert but y 1 phosphine (1.80 g, 4.23 mmol) and sodium tert-butoxide (15.7 g, 162.9 画 ol ) Were added sequentially and heated to reflux for 3 days at 100 ° C. After completion of the reaction, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS0 4 , filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography to obtain Compound 1 (37.4 g, 85%).
i> HRMS (70 eV, EI+): m/z calcd for C43H31N02: 593.2355, found: 593. i> HRMS (70 eV, EI +): m / z calcd for C 43 H 31 N 02: 593.2355, found: 593.
2> Elemental Analysis: C, 87 %; H, 5 %  2> Elemental Analysis: C, 87%; H, 5%
4> 실시예 2: 화합물 3의 제조  4> Example 2: Preparation of Compound 3
Figure imgf000048_0002
Figure imgf000048_0002
6> 질소 환경에서 9,9— dimethyl-9H-fluoren-2-amine(19.4 g, 92.9 隱 ol)을 toluene 0.35 L에 녹인 후, 여기에 중간체 1-2(50 g, 204.3 議 ol), tr is(diphenyl ideneacetone)dipal ladium(o)(2.55 g, 2.79 mmol ) , tr is-tert butylphosphine(2.26 g, 11.1 mmol) 그리고 sodium tert-butoxide(19.6 g, 204.4 mmol)을 순차적으로 넣고 100 °C에서 25시간 동안 가열하여 환류시켰다. 반응 완료 후 반웅액에 물올 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 3(54.0 g, 93 %)을 얻었다.6> Dissolve 9,9—dimethyl-9H-fluoren-2-amine (19.4 g, 92.9 隱 ol) in 0.35 L of toluene in a nitrogen environment. Intermediate 1-2 (50 g, 204.3 議 ol), tr is (diphenyl ideneacetone) dipal ladium (o) (2.55 g, 2.79 mmol), tr is-tert Butylphosphine (2.26 g, 11.1 mmol) and sodium tert-butoxide (19.6 g, 204.4 mmol) were added sequentially and heated to reflux for 25 hours at 100 ° C. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS0 4 , filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 3 (54.0 g, 93%).
> HRMS (70 eV, EI+): m/z calcd for C43H31NS2: 625.1898, found: 625.HRMS (70 eV, EI +): m / z calcd for C 43 H 31 NS 2: 625.1898, found: 625.
> Elemental Analysis': C, 83 %; H, 5 %Elemental Analysis ' : C, 83%; H, 5%
> 실시예 3: 화합물 4의 제조 Example 3: Preparation of Compound 4
Figure imgf000049_0001
Figure imgf000049_0001
> 질소 환경에서 증간체 1ᅳ 4(10 g, 35.0 画 ol)을 toluene 0.15 L에 녹인 후, 여기에 중간체 1-2(18.9 g, 77.1 讓 ol), tr is(diphenyl ideneacetone)dipal ladium(o)(0.96 g, 1.05 mmol), tris~tert but y 1 phosph i ne ( 0.85 g, 4.2 mmol ) 그리고 sodium tert~butoxide(7.41 g, 77.1 mmol)을 순차적으로 넣고 100 °C에서 22시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 5(20.9 g, 85 %)을 얻었다.> Dissolve Intermediate 1 ᅳ 4 (10 g, 35.0 画 ol) in 0.15 L of toluene in a nitrogen environment, add Intermediate 1-2 (18.9 g, 77.1 讓 ol), tr is (diphenyl ideneacetone) dipal ladium (o) ) (0.96 g, 1.05 mmol), tris ~ tert but y 1 phosphine (0.85 g, 4.2 mmol) and sodium tert ~ butoxide (7.41 g, 77.1 mmol) were added sequentially and heated at 100 ° C for 22 hours. It was refluxed. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 5 (20.9 g, 85%).
> HRMS (70 eV, EI+): m/z calcd for C49H35NS2: 701.2211, found: 701.HRMS (70 eV, EI +): m / z calcd for C49H35NS2: 701.2211, found: 701.
> Elemental Analysis: C, 84 %; H, 5 % Elemental Analysis: C, 84%; H, 5%
실시예 4: 화합물 110의 제조 Example 4: Preparation of Compound 110
Figure imgf000050_0001
질소 환경에서 N-(biphenyl— 4ᅳ yl)-9,9ᅳ dimethyl-9H-fluoren-2-atnine(l() g, 27.7 讓 ol)을 toluene 0.1 L에 녹인 후, 여기에 중간체 1-1(13.9 g, 60.9 醒 ol), tr is(diphenyl ideneacetone)dipal ladium(o)(0.76 g, 0.83 國 ol), tr is-tert butylphosphine(0.67 g, 3.32 瞧 ol) 그'리고 sodium tert-butoxide(5.85 g, 60.9 画 ol)을 순차적으로 넣고 100 °C에서 13시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물올 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 110(13.9 g, 91 %)을 얻었다.
Figure imgf000050_0001
In a nitrogen environment, N- (biphenyl— 4 ᅳ yl) -9,9 ᅳ dimethyl-9H-fluoren-2-atnine (l () g, 27.7 讓 ol) was dissolved in 0.1 L of toluene, followed by intermediate 1-1. (13.9 g, 60.9 醒 ol), tr is (diphenyl ideneacetone) dipal ladium (o) (0.76 g, 0.83 korea ol), tr is-tert butylphosphine (0.67 g, 3.32 瞧 ol) and sodium tert-butoxide ( 5.85 g, 60.9 μl ol) were added sequentially and refluxed by heating at 100 ° C. for 13 hours. After the reaction was completed, water was added to the reaction solution, followed by extraction with dichloromethane (DCM), followed by removal of moisture with anhydrous MgS0 4 , followed by filtration and concentration under reduced pressure. The obtained residue was separated and purified through flash column chromatography to obtain Compound 110 (13.9 g, 91%).
HRMS (70 eV, EI+): m/z calcd for C41H31N0: 553.2406, found: 553.  HRMS (70 eV, EI &lt; + &gt;): m / z calcd for C 41 H 31 N 0: 553.2406, found: 553.
Elemental Analysis: C, 89 ; H, 6 %  Elemental Analysis: C, 89; H, 6%
실시예 5: 화합물 129의 제조  Example 5: Preparation of Compound 129
Figure imgf000050_0002
질소 환경에서 4-(9-phenyl-9H-carbazol— 3— yl)aniline( ) g, 29.9 薩 ol)을 toluene 0.1 L에 녹인 후, 여기에 증간체 1ᅳ2(16.1 g, 65.8 匪 ol), tr is(diphenyl ideneacetone)di al ladium(o)(0.82 g, 0.90 画 ol), tr is-tert but y 1 phosph i ne ( 0.73 g, 3.59 讓 ol) 그리고 sodium tert-butoxide(6.32 g, 65.8 讓 ol)올 순차적으로 넣고 100 °C에서 17시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 129(19.8 g, 88 %)을 얻었다.
Figure imgf000050_0002
In a nitrogen environment, 4- (9-phenyl-9H-carbazol— 3—yl) aniline () g, 29.9 薩 ol) was dissolved in 0.1 L of toluene, followed by 1 ᅳ 2 (16.1 g, 65.8 匪 ol). , tr is (diphenyl ideneacetone) di al ladium (o) (0.82 g, 0.90 画 ol), tr is-tert but y 1 phosphine (0.73 g, 3.59 讓 ol) and sodium tert-butoxide (6.32 g, 65.8 讓 ol) ol was added sequentially and heated to reflux for 17 hours at 100 ° C. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 129 (19.8 g, 88%).
5> HRMS (70 eV, EI+): m/z calcd for C52H34N2S2: 750.2163, found: 750.  5> HRMS (70 eV, EI +): m / z calcd for C 52 H 34 N 2 S 2: 750.2163, found: 750.
6> Elemental Analysis: C, 83 ; H, 5 % 6> Elemental Analysis: C, 83; H, 5%
7> 실시예 6: 화합물 141의 제조 7> Example 6: Preparation of Compound 141
Figure imgf000051_0001
o> 질소 .환경에서 phenanthren-2-amine(10 g, 51.7 薩 ol)을 toluene 0.15 ᄂ에 녹인 후, 여기에 중간체 1-2(27.9 g, 113.8 醒 ol), tr is(diphenyl ideneacetone)dipal ladium(o)(1.42 g, 1.55 mmo 1 ) , tris一 tert butylphosphine(1.26 g, 6.2 隱 ol) 그리고 sodium tert-butoxide(10.9 g, 113.8 画 ol)을 순차적으로 넣고 100 °C에서 23시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물올 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 141(30.9 g, 98 %)을 얻었다.
Figure imgf000051_0001
o> Nitrogen, dissolve phenanthren-2-amine (10 g, 51.7 薩 ol) in toluene 0.15 ,, then intermediate 1-2 (27.9 g, 113.8 醒 ol), tr is (diphenyl ideneacetone) dipal ladium (o) (1.42 g, 1.55 mmo 1), tris 一 tert butylphosphine (1.26 g, 6.2 隱 ol) and sodium tert-butoxide (10.9 g, 113.8 画 ol) were added sequentially and heated at 100 ° C for 23 hours. It was refluxed. After the reaction was completed, water was added to the reaction solution, followed by extraction with dichloromethane (DCM), followed by removal of water with anhydrous MgS0 4 , followed by filtration and concentration under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 141 (30.9 g, 98%).
i> HRMS (70 eV, EI+): m/z calcd for C42H27NS2: 609.1585, found: 609. i> HRMS (70 eV, EI +): m / z calcd for C 42 H 27 NS 2: 609.1585, found: 609.
2> Elemental Analysis-' C, 83 %; H, 4 % 2> Elemental Analysis- ' C, 83%; H, 4%
> 실시예 7: 화합물 150의 제조 Example 7: Preparation of Compound 150
Figure imgf000052_0001
Figure imgf000052_0001
> 질소 환경에서 triphenylen-2-amine (10 g, 41.1 mmol)을 toluene 0.16 ᄂ에 녹인 후, 여기에 중간체 1-2(22.1 g, 90.4 國 ol), tr is(diphenyl ideneacetone)dipal ladium(o)(l.13 g, 1.23 mmol), tris—tert butylphosphine(1.0 g, 4.93 mmol ) 그리고 sodium tert~butoxide(8.69 g, 90.4 mmol)을 순차적으로 넣고 100 °C에서 21시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 150(25.2 g, 93 %)을 얻었다.> Dissolve triphenylen-2-amine (10 g, 41.1 mmol) in 0.16 of toluene in nitrogen, and then add intermediate 1-2 (22.1 g, 90.4 in ol), tr is (diphenyl ideneacetone) dipal ladium (o) (l.13 g, 1.23 mmol), tris-tert butylphosphine (1.0 g, 4.93 mmol) and sodium tert ~ butoxide (8.69 g, 90.4 mmol) were added sequentially and heated to reflux for 21 hours at 100 ° C. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 150 (25.2 g, 93%).
> HRMS (70 eV, EI+): m/z calcd for C46H29NS2: 659.1742, found: 659.HRMS (70 eV, EI +): m / z calcd for C 46 H 29 NS 2: 659.1742, found: 659.
> Element l Analysis: C, 84 %; H, 4 %Element l Analysis: C, 84%; H, 4%
> 실시예 8: 화합물 153의 제조 Example 8: Preparation of Compound 153
Figure imgf000052_0002
질소 환경에서 bi phenyl -4— amine (10 g, 59.1議 ol)을 toluene 0.16 L에 녹인 여기에 증간체 Iᅳ 2(31.8 g, 130.0 誦 ol), tr is(diphenyl ideneacetone)dipal ladium(o)(1.62 g, 1.77 ramol), tris-tert butylphosphine(1.43 g, 7.09 mmol) 그리고 sodium tert-butoxide(12.5 g, 130.0 誦 ol)을 순차적으로 넣고 100 °C에서 14시간 동안 가열하여 환류시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 153(33.2 g, 96 %)을 얻었다.
Figure imgf000052_0002
In a nitrogen environment, biphenyl-4—amine (10 g, 59.1 μl ol) was dissolved in 0.16 L of toluene, followed by Intermediate I ᅳ 2 (31.8 g, 130.0 μl ol), tr is (diphenyl ideneacetone) dipal ladium (o) (1.62 g, 1.77 ramol), tris-tert butylphosphine (1.43 g, 7.09 mmol) and sodium tert-butoxide (12.5 g, 130.0誦ol) were dissolved sequentially 100 ° C Heated to reflux for 14 h. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS0 4 , filtered, and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 153 (33.2 g, 96%).
3> HRMS (70 eV, EI+): m/z calcd for C40H27NS2: 585.1585, found: 585.  3> HRMS (70 eV, EI +): m / z calcd for C 40 H 27 NS 2: 585.1585, found: 585.
4> Elemental Analysis: C, 82 ; H, 5 %  4> Elemental Analysis: C, 82; H, 5%
5> 실시예 9: 화합물 159의 제조  5> Example 9: Preparation of Compound 159
Figure imgf000053_0001
Figure imgf000053_0001
¾> 질소 환경에서 중간체 1-6(10 g, 38.6 瞧 ol)을 toluene 0.15 L에 녹인 후, 여기에 중간체 1ᅳ2(20.8 g, 84.8 誦 ol), tr is(di henyl i deneacetone)di al ladium(o)( 1.06 g, 1.16 mmol ) , tris-tert butyl hosph i ne ( 0.94 g, 4.63 mmol) 그리고 sodium tert~butoxide(8.15 g, 84.8 麵 ol)을 순차적으로 넣고 100 °C에서 16시간 동안 가열하여 환류시켰다. 반응 완료 후 반응액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 159(22.2 g, 96 %)을 얻었다. ¾> Dissolve Intermediate 1-6 (10 g, 38.6 瞧 ol) in 0.15 L of toluene in a nitrogen environment, add Intermediate 1 ᅳ 2 (20.8 g, 84.8 誦 ol), tr is (di henyl i deneacetone) di al add ladium (o) (1.06 g, 1.16 mmol), tris-tert butyl hosph i ne (0.94 g, 4.63 mmol) and sodium tert to butoxide (8.15 g, 84.8 麵 ol) in sequence for 100 hours at 100 ° C Heated to reflux. After the reaction was completed, water was added to the reaction solution, and extracted with dichloromethane (DCM), and then water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 159 (22.2 g, 96%).
)> HRMS (70 eV, EI+): m/z calcd for C46H29N0S2: 675.1691, found: 675. ) > HRMS (70 eV, EI +): m / z calcd for C 46 H 29 NO 0 S 2: 675.1691, found: 675.
)> Elemental Analysis: C, 82 %; H, 4 % 1> 실시예 10: 화합물 1기의 제조 ) > Elemental Analysis: C, 82%; H, 4% 1> Example 10: Preparation of Compound 1
Figure imgf000054_0001
Figure imgf000054_0001
4> 질소 환경에서 중간체 1-8(10 g, 38.7 mmol)을 toluene 0.16 L에 녹인 후, 여기에 중간체 1-2(20.8 g, 85.2 隱 ol), tr is(diphenyl ideneacetone)dipal ladium(o)(1.06 g, 1.16 mmol ) , tris—tert but y 1 phosph i ne ( 0.94 g, 4.64 mmol ) 그리고 sodium tert一 butoxide(8.19 g, 85.2 mmol)을 순차적으로 넣고 100 °C에서 18시간 동안 가열하여 환류시켰다. 반응 완료 후 반웅액에 물을 넣고 dichloromethane(DCM)로 추출한 다음 무수 MgS04로 수분을 제거한 후, 필터하고 감압 농축하였다. 이렇게 얻어진 잔사를 flash column chromatography로 분리 정제하여 화합물 171(23.5 g, 90 %)을 얻었다. 4> Dissolve Intermediate 1-8 (10 g, 38.7 mmol) in 0.16 L of toluene in a nitrogen environment, add Intermediate 1-2 (20.8 g, 85.2, ol), tr is (diphenyl ideneacetone) dipal ladium (o) (1.06 g, 1.16 mmol), tris—tert but y 1 phosphine (0.94 g, 4.64 mmol), and sodium tert 一 butoxide (8.19 g, 85.2 mmol) were added sequentially and heated to reflux for 18 hours at 100 ° C. I was. After the reaction was completed, water was added to the reaction solution, extracted with dichloromethane (DCM), water was removed with anhydrous MgS0 4 , filtered and concentrated under reduced pressure. The obtained residue was separated and purified through flash column chromatography, obtaining a compound 171 (23.5 g, 90%).
5> HRMS (70 eV, EI+): m/z calcd for C46H30N2S2: 674.1850, found: 674.  5> HRMS (70 eV, EI +): m / z calcd for C 46 H 30 N 2 S 2: 674.1850, found: 674.
6> Elemental Analysis: C, 82 %; H, 4 %  6> Elemental Analysis: C, 82%; H, 4%
7> (유기발광소자의 제조)  7> (Manufacture of organic light emitting device)
9> 실시예 11: 유기발광소자의 제조 (블루 공통층)  9> Example 11 Fabrication of Organic Light Emitting Diode (Blue Common Layer)
o> . IT0( Indium tinoxide)가 1500 A의 두께로 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄을 둥의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시칸 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정 한 후 진공 증착기로 기판을 이 송하였다. 이렇게 준비된 ΙΊΌ 투명 전극을 양극으로 사용하여 Ι Ό 기판 상부에 4,4'-bis[N-[4-{N,N-bis( 3ᅳ me t hy 1 heny 1 ) am i no }-pheny 1 ] -N-pheny laminojbi heny 1 (DNTPD)를 진공 증착하여 600 A 두께의 정공 주입층을 형성하였다. 이어서 실시예 1에서 제조된 화합물 2를 사용하여 진공 증착으로 300 A 두께의 정공 수송층을 형 성하였다. 상기 정공 수송층 상부에 9,10—di-(2-naphthyl) anthracene (AND)을 호스 트로 사용하고 도판트로 2,5,8,ll-tetra(tert-butyl)perylene(TBPe)를 3중량 %로 도핑하여 진공 증착으로 250 A 두께의 발광층을 형성하였다. 그 후 상기 발광층 상부에 Alq3를 진공 증착하여 250 A 두께의 전자 수송층을 형성하였다. 상기 전자 수송층 상부에 LiF 10 A과 Al 1000 A을 순차적으로 진공 증착하여 음극올 형성함 으로써 유기발광소자를 제조하였다. o> . A glass substrate coated with a thin film having an indium tinoxide (IT0) of 1500 A was washed with distilled water ultrasonically. After the distilled water was washed, isopropyl alcohol, acetone, and methane were ultrasonically cleaned with a round solvent, dried, transferred to a plasma cleaner, and then cleaned with 5 minutes using oxygen plasma, and then transferred to a vacuum evaporator. . 4,4'-bis [N- [4- {N, N-bis (3 ᅳ me t hy 1 heny 1) am i no} -pheny 1 on the ΙΌ substrate using the prepared ΙΊΌ transparent electrode as an anode ] -N-pheny laminojbi heny 1 (DNTPD) was vacuum deposited to form a hole injection layer of 600 A thickness. Subsequently, a 300 A thick hole transport layer was formed by vacuum deposition using Compound 2 prepared in Example 1. 9,10-di- (2-naphthyl) anthracene (AND) is used as a host on the hole transport layer and 2,5,8, ll-tetra (tert-butyl) perylene (TBPe) is 3% by weight. Doped to form a light emitting layer of 250 A thickness by vacuum deposition. Thereafter, Alq 3 was vacuum deposited on the emission layer to form an electron transport layer having a thickness of 250 A. The electron The organic light emitting device was manufactured by sequentially depositing LiF 10 A and Al 1000 A on the transport layer to form a cathode.
상기 유기발광소자는 5층의 유기박막층을 가지는 구조로 되어 있으며, 구체 적으로 A1 (1000 A) I LiF (10 A) I Alq3 (250 A) I EML [AND : TBPe = 97 : 3] (250 A) I HTL (300 A) I DNTPD (600 A) I I TO (1500 A)의 구조로 제작하였다.  The organic light emitting device has a structure of five organic thin film layers, specifically, A1 (1000 A) I LiF (10 A) I Alq3 (250 A) I EML [AND: TBPe = 97: 3] (250 A) I HTL (300 A) I DNTPD (600 A) II TO (1500 A).
실시예 12  Example 12
상기 실시예 11에서, 실시예 1 대신 실시예 2를 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 2 instead of Example 1.
실시예 13  Example 13
상기 실시예 11에서, 실시예 1 대신 실시예 3을 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 3 instead of Example 1.
실시예 14  Example 14
상기 실시예 11에서, 실시예 1 대신 실시예 4를 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 4 instead of Example 1.
실시예 15  Example 15
상기 실시예 11에서, 실시예 1 대신 실시예 5를 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 5 instead of Example 1.
실시예 16  Example 16
상기 실시예 11에서, 실시예 1 대신 실시예 6을 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 6 instead of Example 1.
실시예 17  Example 17
상기 실시예 11에서, 실시예 1 대신 실시예 7을 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 7 instead of Example 1.
실시예 18  Example 18
상기 실시예 11에서, 실시예 1 대신 실시예 8을 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 8 instead of Example 1.
실시예 19  Example 19
상기 실시예 11에서, 실시예 1 대신 실시예 9를 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다ᅳ  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 9 instead of Example 1
실시예 20  Example 20
상기 실시예 11에서, 실시예 1 대신 실시예 10을 사용한 점을 제외하고는 동 일한 방법으로 유기발광소자를 제조하였다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using Example 10 instead of Example 1.
비교예 1 상기 실시예 11에서, 실시예 1 대신 NPB를 사용한 점을 제외하고는 동일한 방법으로 유기발광소자를 제조하였다. 상기 NPB의 구조는 하기에 기재되어 있다. Comparative Example 1 An organic light emitting diode was manufactured according to the same method as Example 11 except for using NPB instead of Example 1. The structure of the NPB is described below.
비교예 2  Comparative Example 2
상기 실시예 11에서, 실시예 1 대신 HT1를 사용한 점을 제외하고는 동일한 방법으로 유기발광소자를 제조하였다. 상기 ΗΊΊ의 구조는 하기에 기재되어 있다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using HT1 instead of Example 1. The structure of ΗΊΊ is described below.
비교예 3  Comparative Example 3
상기 실시예 11에서, 실시예 1 대신 HT2를 사용한 점을 제외하고는 동일한 방법으로 유기발광소자를 제조하였다. 상기 HT2의 구조는 하기에 기재되어 있다 상기 유기발광소자 제작에 사용된 DNTPD, AND, TBPe, NPB, HTl 및 HT2의 구 조는 하기와 같다.  An organic light emitting diode was manufactured according to the same method as Example 11 except for using HT2 instead of Example 1. The structure of the HT2 is described below. The structure of DNTPD, AND, TBPe, NPB, HT1, and HT2 used in the organic light emitting device is as follows.
[DNTPD] [ADN] [TBPe]  [DNTPD] [ADN] [TBPe]
Figure imgf000056_0001
Figure imgf000056_0001
(유기발광소자의 성능 측정) (Performance Measurement of Organic Light Emitting Diode)
상기 실시예 11 내지 20과 비교예 1 내지 3에서 제조된 각각의 유기발광소자 에 대하여 전압에 따른 전류밀도 변화, 휘도변화 및 발광효율을 측정하였다. 구체 적인 측정방법은 하기과 같고, 그 결과는 하기 표 1에 나타내었다  For each of the organic light emitting diodes manufactured in Examples 11 to 20 and Comparative Examples 1 to 3, current density change, luminance change, and luminous efficiency according to voltage were measured. Specific measurement methods are as follows, and the results are shown in Table 1 below.
(1) 전압변화에 따른 전류밀도의 변화 측정  (1) Measurement of change in current density according to voltage change
제조된 유기발광소자에 대해, 전압을 0V 부터 10V 까지 상숭시키면서 전류- 전압계 (Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.  For the manufactured organic light emitting diode, the current value flowing through the unit device was measured by using a current-voltmeter (Keithley 2400) while increasing the voltage from 0V to 10V, and the measured current value was divided by the area to obtain a result.
(2) 전압변화에 따른 휘도변화 측정 제조된 유기발광소자에 대해, 전압을 0V부터 10V까지 상승시키면서 휘도계(2) Measurement of luminance change according to voltage change For the organic light emitting device manufactured, the luminance meter while increasing the voltage from 0V to 10V
(Minolta Cs-1000A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다. The luminance at that time was measured using (Minolta Cs-1000A) to obtain a result.
(3) 발광효율 측정  (3) Measurement of luminous efficiency
상기 (1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 전 류밀도 (10 mA/cm2)의 전류 효율 (cd/A) 올 계산하였다.  The current efficiency (cd / A) of the same current density (10 mA / cm2) was calculated using the brightness, current density, and voltage measured from (1) and (2).
【표 1】 Table 1
Figure imgf000057_0001
Figure imgf000057_0001
상기 표 1의 결과에 따르면 플루오렌 치환기가 포함된 실시예 11 내지 14의 경우 효율이 비교예 1내지 2와 비교했을 때 효율이 크게 상승됨을 알 수 있다. 비 교예 3의 경우 플루오렌 치환기를 가지고 있어서 비교예 중에서 효율이 가장 높을 걸로 보아 플루오렌 치환기가 효율을 크게 상승함을 알 수 있다. 실시예 11 내지 20의 경우 전체적으로 비교예 1 내지 3과 비교했을 때 구동전압이 낮아짐을 알 수 있다. 이를 통해 인데노 치환기가 구동전압을 낮춘다는 것올 유추할 수 있다. 그리 고 가장 간단한 구조가 사용된 실시예 18의 경우 반감수명이 가장 높을 걸로 보아 간단한 구조가 소자수명에 어느정도 기여함을 알 수 있다. 이를 바탕으로 우수한 정공 주입 및 정공 전달 능력을 가지는 저전압, 고효율, 고휘도, 장수명의 유기발 광소자를 제작할 수 있었다.  According to the results of Table 1, in the case of Examples 11 to 14 including the fluorene substituent, it can be seen that the efficiency is greatly increased when compared with Comparative Examples 1 to 2. In Comparative Example 3, since the fluorene substituent has the highest efficiency among the comparative examples, it can be seen that the fluorene substituent greatly increases the efficiency. In the case of Examples 11 to 20, it can be seen that the driving voltage is lower as compared with Comparative Examples 1 to 3 as a whole. This infers that the indeno substituent lowers the driving voltage. In the case of Example 18 in which the simplest structure is used, the half-life is expected to be the highest, indicating that the simple structure contributes to device life to some extent. Based on this, low-voltage, high-efficiency, high brightness, long-life organic light-emitting device having excellent hole injection and hole transporting ability can be fabricated.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식올 가진 자는 본 발 명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실 시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들 은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person having ordinary skill in the art to which the present invention pertains does not change the technical spirit or essential features of the present invention. It can be understood that this can be implemented. Therefore, the embodiments described above Is to be understood in all respects as illustrative and not restrictive.
8> <부호의 설명 > 8> <symbol description>
o> 100 : 유기발광소자 110 : 음극 o> 100: organic light emitting element 110: cathode
1> 120 : 양극 105 : 유기박막층  1> 120: anode 105: organic thin film layer
ι> 130 : 발광층 140 : 정공 수송층 ι> 130 : light emitting layer 140 : hole transport layer
¾> 150 : 전자수송층 160 : 전자주입층  ¾> 150: electron transport layer 160: electron injection layer
ί> 170 : 정공주입층 230 : 발광층 + 전자수송층 ί> 170 : hole injection layer 230 : light emitting layer + electron transport layer

Claims

【청구의 범위】 【청구항 1】 하기 화학식 1로 표시되는 유기광전자소자용 화합물: Claims Claim 1 Compound for an organic optoelectronic device represented by the following formula (1):
[화학식 1]  [Formula 1]
Figure imgf000059_0001
Figure imgf000059_0001
상기 화학식 1에서  In Chemical Formula 1
Ar는 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 Ar is a substituted or unsubstituted C6 to C30 aryl group, a substituted or unsubstituted C2 to
C30 헤테로아릴기, 또는 이들의 조합이고, C30 heteroaryl group, or a combination thereof,
L1 내지 L3은 서로 독립적으로, 치환 또는 비치환된 C2 내지 C6 알케닐렌기, 치환 또는 비치환된 C2 내지 C6 알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴 렌기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴렌기 또는 이들의 조합이고, nl 내지 n3은 서로 독립적으로, 0 내지 3 중 어느 하나의 정수이고, L 1 to L 3 are each independently a substituted or unsubstituted C2 to C6 alkenylene group, a substituted or unsubstituted C2 to C6 alkynylene group, a substituted or unsubstituted C6 to C30 arylene group, a substituted or unsubstituted A C2 to C30 heteroarylene group or a combination thereof, nl to n3 are each independently an integer of 0 to 3,
A는 하기 화학식 A-2이고,  A is the following formula A-2,
B는 하기 화학식 A-2, 치환 또는 비치환된 C6 내지 C30 아릴기, 또는 치환 또는 비치환된 C2 내지 C30 헤테로아릴기이다:  B is a chemical formula A-2, a substituted or unsubstituted C6 to C30 aryl group, or a substituted or unsubstituted C2 to C30 heteroaryl group:
[화학식 A— 2]  [Formula A— 2]
Figure imgf000059_0002
Figure imgf000059_0002
상기 화학식 A-2에서,  In Chemical Formula A-2,
X은 -0- 또는 -S-이고, .  X is -0- or -S-,.
R3 및 R4는 서로 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 히드록실 기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페 로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 CI 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비 치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또 는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실 옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내 지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보 닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환 된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티을기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로 티올기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. R 3 and R 4 are each independently hydrogen, deuterium, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferrocenyl, substituted or unsubstituted. C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted CI to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 Alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyl oxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxy Carbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiyl group, substituted or unsubstituted C6 to C20 arylthiol Groups, substituted or unsubstituted C1 to C20 heterocyclo thiol groups, substituted or unsubstituted C1 to C20 ureide groups, substituted or unsubstituted C3 to C40 silyl groups, or these A combination.
【청구항 2】  [Claim 2]
거 U항에 있어서,  In U,
상기 B는 하기 화학식 A-2인 것인 유기광전자소자용 화합물.  B is a compound for an organic optoelectronic device of Formula A-2.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 Ar1은 하기 화학식 B-1인 것인 유기광전자소자용 화합물: Ar 1 is a compound for an organic optoelectronic device of Formula B-1:
[화학식 B-1]  [Formula B-1]
Figure imgf000060_0001
Figure imgf000060_0001
상기 화학식 B-1에서,  In Chemical Formula B-1,
R5 내지 R8은 서로 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 히드록실 기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페 로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비 치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또 는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실 옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내 지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보 닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환 된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티올기 , 치환 또는 비치환된 C1 내지 C20 해테로시클로 티올기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. R 5 to R 8 are each independently hydrogen, deuterium, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferrocenyl, substituted or unsubstituted. C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryl jade Time, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyl oxy group, substituted Or an unsubstituted C2 to C20 acylamino group, a substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, a substituted or unsubstituted C7 to C20 aryloxycarbo Nylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthiol group, A substituted or unsubstituted C1 to C20 heterocyclo thiol group, a substituted or unsubstituted C1 to C20 ureide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 Ar1은 하기 화학식 B-2인 것인 유기광전자소자용 화합물: Ar 1 is a compound for an organic optoelectronic device of Formula B-2:
[화학식 B-2]  [Formula B-2]
Figure imgf000061_0001
Figure imgf000061_0001
상기 화학식 B-2에서,  In Chemical Formula B-2,
R5 내지 R8은 서로 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 히드록실 기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페 로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비 치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또 는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실 옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내 지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보 닐아미노기, 치환 또는 비차환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환 된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티을기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로 티올기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. R 5 to R 8 are each independently hydrogen, deuterium, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferrocenyl, substituted or unsubstituted. C1 to C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryl jade Time, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyl oxy group, substituted Or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted Or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthio group, substituted or unsubstituted C6 to C20 arylthiol group, substituted or unsubstituted C1 to C20 heterocyclo thiol group, substituted or unsubstituted C1 to C20 ureide group, substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
【청구항 5】  [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 Ar1은 하기 화학식 B-3인 것인 유기광전자소자용 화합물: [화학식 B-3] Ar 1 is a compound for an organic optoelectronic device of Formula B-3: [Formula B-3]
Figure imgf000062_0001
Figure imgf000062_0001
상기 화학식 B-3에서  In Chemical Formula B-3
R 내지 R 은 서로 독립적으로, 수소, 증수소, 할로겐기, 시아노기, 히드록 실기, 아미노기 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비 치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또 는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실 옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내 지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보 닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환 된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티을기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로 티을기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다.  R to R independently of each other, hydrogen, hydrogen, halogen, cyano, hydroxyl, amino substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl group, substituted or unsubstituted C1 To C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, Substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyl oxy group, substituted or unsubstituted Substituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiyl group, substituted or unsubstituted C6 to C20 arylthiol group, substituted or unsubstituted C1 to C20 heterocyclo thiyl group, substituted or unsubstituted C1 to C20 ureide group, substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
【청구항 6】  [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 Ar1은 하기 화학식 B-4인 것인 유기광전자소자용 화합물. Ar 1 is a compound for an organic optoelectronic device that is represented by the formula B-4.
[화학식 B-4]  [Formula B-4]
Figure imgf000062_0002
Figure imgf000062_0002
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 Ar1은 하기 화학식 B-5인 것인 유기광전자소자용 화합물: Ar 1 is a compound for an organic optoelectronic device of Formula B-5:
[화학식 B-5]  [Formula B-5]
Figure imgf000063_0001
Figure imgf000063_0001
상기 화학식 B-5에서,  In Chemical Formula B-5,
2.  2.
X는 — 0-, -S- 또는 NR、이고,  X is — 0-, -S- or NR,
R13, R1 , 및 R'은 서로 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 히드 록실기, 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실 기, 페로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치 환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또 는 비치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치 환 또는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카 르보닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비 치환된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티올기, 치환 또는 비치환된 C6 내지 C20 아릴티을기, 치환 또는 비치환된 C1 내지 C20 헤테로시 클로티을기 , 치환 또는 비치환된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다. R 13 , R 1 , and R ′ are each independently hydrogen, deuterium, halogen, cyano group, hydroxyl group, amino group, substituted or unsubstituted C1 to C20 amine group, nitro group, carboxyl group, ferrocenyl Groups, substituted or unsubstituted C1 to C20 alkyl groups, substituted or unsubstituted C6 to C30 aryl groups, substituted or unsubstituted C2 to C30 heteroaryl groups, substituted or unsubstituted C1 to C20 alkoxy groups, substituted or unsubstituted C6 to C20 aryloxy group, substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyloxy group, substituted or unsubstituted C2 to C20 acylamino group, substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or unsubstituted C1 to C20 sulfamoylamino group, substituted or unsubstituted C1 to C20 sulfonyl group, substituted or unsubstituted C1 to C20 alkylthiol group, substituted or unsubstituted C6 to C20 arylthi group, substituted or unsubstituted C1 to C20 Heterocyclyl group, a substituted or unsubstituted C1 to C20 ureide group, a substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 Ar1은 하기 화학식 B-6인 것인 유기광전자소자용 화합물: [화학식 B-6] Ar 1 is a compound for an organic optoelectronic device of Formula B-6: [Formula B-6]
Figure imgf000064_0001
Figure imgf000064_0001
상기 화학식 B-6에서  In Chemical Formula B-6
R 및 R 은 서로 독립적으로, 수소, 중수소, 할로겐기, 시아노기, 히드록실 기 , 아미노기, 치환 또는 비치환된 C1 내지 C20 아민기, 니트로기, 카르복실기, 페 로세닐기, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C6 내지 C30 아릴기, 치환 또는 비치환된 C2 내지 C30 헤테로아릴기, 치환 또는 비치환된 C1 내지 C20 알콕시기, 치환 또는 비치환된 C6 내지 C20 아릴옥시기, 치환 또는 비 치환된 C3 내지 C40 실릴옥시기, 치환 또는 비치환된 C1 내지 C20 아실기, 치환 또 는 비치환된 C2 내지 C20 알콕시카르보닐기, 치환 또는 비치환된 C2 내지 C20 아실 옥시기, 치환 또는 비치환된 C2 내지 C20 아실아미노기, 치환 또는 비치환된 C2 내 지 C20 알콕시카르보닐아미노기, 치환 또는 비치환된 C7 내지 C20 아릴옥시카르보 닐아미노기, 치환 또는 비치환된 C1 내지 C20 술파모일아미노기, 치환 또는 비치환 된 C1 내지 C20 술포닐기, 치환 또는 비치환된 C1 내지 C20 알킬티을기, 치환 또는 비치환된 C6 내지 C20 아릴티올기, 치환 또는 비치환된 C1 내지 C20 헤테로시클로 티올기, 치환 또는 비치환된 C1 내지 C20 우레이드기, 치환 또는 비치환된 C3 내지 C40 실릴기 또는 이들의 조합이다.  R and R are independently of each other hydrogen, deuterium, halogen, cyano, hydroxyl, amino, substituted or unsubstituted C1 to C20 amine, nitro, carboxyl, ferrocenyl, substituted or unsubstituted C1 To C20 alkyl group, substituted or unsubstituted C6 to C30 aryl group, substituted or unsubstituted C2 to C30 heteroaryl group, substituted or unsubstituted C1 to C20 alkoxy group, substituted or unsubstituted C6 to C20 aryloxy group, Substituted or unsubstituted C3 to C40 silyloxy group, substituted or unsubstituted C1 to C20 acyl group, substituted or unsubstituted C2 to C20 alkoxycarbonyl group, substituted or unsubstituted C2 to C20 acyl oxy group, substituted or unsubstituted A substituted C2 to C20 acylamino group, a substituted or unsubstituted C2 to C20 alkoxycarbonylamino group, a substituted or unsubstituted C7 to C20 aryloxycarbonylamino group, substituted or ratio A substituted C1 to C20 sulfamoylamino group, a substituted or unsubstituted C1 to C20 sulfonyl group, a substituted or unsubstituted C1 to C20 alkylthiyl group, a substituted or unsubstituted C6 to C20 arylthiol group, a substituted or unsubstituted C1 to C20 heterocyclo thiol group, substituted or unsubstituted C1 to C20 ureide group, substituted or unsubstituted C3 to C40 silyl group, or a combination thereof.
【청구항 91  [Claim 91]
저 U항에 있어서,  In that U term,
상기 Ar1은 치환 또는 비치환된 바이페닐기인 것인 유기광전자소자용 화합물.Ar 1 is a compound for an organic optoelectronic device that is a substituted or unsubstituted biphenyl group.
【청구항 10] [Claim 10]
게 1항에 있어서,  According to claim 1,
상기 A 및 B는 상기 화학식 A-2로 표시되는 치환기인 것인 유기광전자소자용 화합물.  Wherein A and B is a compound for an organic optoelectronic device which is a substituent represented by the formula A-2.
【청구항 11】  [Claim 11]
거 U항에 있어서,  In U,
상기 화학식 A-2에서, 상기 R3 및 R4는 수소인 것인 유기광전자소자용 화합 In Formula A-2, R 3 and R 4 are hydrogen.
【청구항 12】 [Claim 12]
제 1항에 있어서,  The method of claim 1,
상기 유기광전자소자용 화합물은 700이하의 분자량을 가지는 것인 유기광전 자소자용 화합물.  The compound for an organic optoelectronic device is a compound for an organic optoelectronic device having a molecular weight of 700 or less.
【청구항 13]  [Claim 13]
제 1항에 있어서,  The method of claim 1,
상기 유기광전자소자용 화합물은 600이하의 분자량을 가지는 것인 유기광전 자소자용 화합물 .  The compound for an organic optoelectronic device is a compound for an organic optoelectronic device having a molecular weight of 600 or less.
【청구항 14】  [Claim 14]
제 1항에 있어서,  The method of claim 1,
상기 유기광전자소자는, 유기광전소자, 유기발광소자, 유기태양전지, 유기트 랜지스터, 유기 감광체 드럼 및 유기메모리소자로 이루어진 군에서 선택되는 어느 하나인 것인 유기광전자소자용 화합물.  The organic optoelectronic device is an organic optoelectronic device, an organic light emitting device, an organic solar cell, an organic transistor, an organic photoelectric drum, and any one selected from the group consisting of organic memory devices.
【청구항 15]  [Claim 15]
양극, 음극 및 상기 양극과 음극 사이에 개재되는 적어도 한 층 이상의 유기 박막층을 포함하는 유기발광소자에 있어서,  In an organic light emitting device comprising an anode, a cathode and at least one organic thin film layer interposed between the anode and the cathode,
상기 유기박막층 증 적어도 어느 한 층은 상기 제 1항에 따른 유기광전자소자 용 화합물을 포함하는 것인 유기발광소자.  At least one layer of the organic thin film layer is an organic light emitting device comprising the compound for an organic optoelectronic device according to claim 1.
【청구항 16】  [Claim 16]
제 15항에 있어서,  The method of claim 15,
상기 유기박막층은 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입 층, 정공차단층 및 이들의 조합으로 이루머진 군에서 선택된 어느 하나인 것인 유 기발광소자.  The organic thin film layer is any one selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, a hole blocking layer and a combination thereof.
【청구항 17]  [Claim 17]
제 16항에 있어서,  The method of claim 16,
상기 유기광전자소자용 화합물은 발광층 내에 포함되는 것인 유기발광소자 . 【청구항 18】  The compound for an organic optoelectronic device is included in the light emitting layer. [Claim 18]
제 17항에 있어서,  The method of claim 17,
상기 유기광전자소자용 화합물은 발광층 내에 인광 또는 형광 호스트 재료로 서 사용되는 것인 유기발광소자.  The compound for an organic optoelectronic device is used as a phosphorescent or fluorescent host material in the light emitting layer.
【청구항 191  [Claim 191
제 15항의 유기발광소자를 포함하는 표시장치 .  A display device comprising the organic light emitting device of claim 15.
PCT/KR2013/005239 2012-12-31 2013-06-13 Compound for organic optoelectric device, organic light emitting diode comprising same, and display apparatus comprising organic light emitting diode WO2014104500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551050A JP2016505611A (en) 2012-12-31 2013-06-13 Compound for organic optoelectronic device, organic light emitting device including the same, and display device including the organic light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120158651 2012-12-31
KR10-2012-0158651 2012-12-31

Publications (1)

Publication Number Publication Date
WO2014104500A1 true WO2014104500A1 (en) 2014-07-03

Family

ID=51021530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005239 WO2014104500A1 (en) 2012-12-31 2013-06-13 Compound for organic optoelectric device, organic light emitting diode comprising same, and display apparatus comprising organic light emitting diode

Country Status (3)

Country Link
JP (1) JP2016505611A (en)
KR (1) KR20140087987A (en)
WO (1) WO2014104500A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409326A (en) * 2020-11-24 2021-02-26 吉林奥来德光电材料股份有限公司 Arylamine compound and preparation method and application thereof
CN112745264A (en) * 2019-10-31 2021-05-04 东进世美肯株式会社 Novel organic compound for capping layer and organic light-emitting element comprising same
WO2021093377A1 (en) * 2019-11-12 2021-05-20 广州华睿光电材料有限公司 Organic electroluminescent device containing material of light extraction layer
WO2022100634A1 (en) * 2020-11-12 2022-05-19 烟台海森大数据有限公司 Organic electroluminescent device and display apparatus comprising same
CN116143735A (en) * 2021-11-22 2023-05-23 奥来德(上海)光电材料科技有限公司 Organic electroluminescent compound, preparation method thereof and light-emitting display panel
KR20230156057A (en) 2021-03-12 2023-11-13 호도가야 가가쿠 고교 가부시키가이샤 Organic electroluminescent device and electronic devices thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101493482B1 (en) * 2014-08-29 2015-02-16 덕산네오룩스 주식회사 Organic electronic element using a compound for organic electronic element, and an electronic device thereo
KR102475855B1 (en) * 2019-02-15 2022-12-07 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same
KR102579367B1 (en) * 2019-02-15 2023-09-14 주식회사 엘지화학 Novel compound and organic light emitting device comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354668A (en) * 2000-06-13 2001-12-25 Chisso Corp Benzothiophene derivative and organic electroluminescent element using the same
US20060091359A1 (en) * 2004-10-29 2006-05-04 Jun-Liang Lai Organic light emitting compounds for a blue-light electroluminescent device
WO2009020095A1 (en) * 2007-08-06 2009-02-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
KR20130028672A (en) * 2011-09-09 2013-03-19 주식회사 엘지화학 Organic light emitting device material and organic light emitting device using the same
KR20130073535A (en) * 2011-12-23 2013-07-03 제일모직주식회사 Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR20130077473A (en) * 2011-12-29 2013-07-09 제일모직주식회사 Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354668A (en) * 2000-06-13 2001-12-25 Chisso Corp Benzothiophene derivative and organic electroluminescent element using the same
US20060091359A1 (en) * 2004-10-29 2006-05-04 Jun-Liang Lai Organic light emitting compounds for a blue-light electroluminescent device
WO2009020095A1 (en) * 2007-08-06 2009-02-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
KR20130028672A (en) * 2011-09-09 2013-03-19 주식회사 엘지화학 Organic light emitting device material and organic light emitting device using the same
KR20130073535A (en) * 2011-12-23 2013-07-03 제일모직주식회사 Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
KR20130077473A (en) * 2011-12-29 2013-07-09 제일모직주식회사 Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745264A (en) * 2019-10-31 2021-05-04 东进世美肯株式会社 Novel organic compound for capping layer and organic light-emitting element comprising same
WO2021093377A1 (en) * 2019-11-12 2021-05-20 广州华睿光电材料有限公司 Organic electroluminescent device containing material of light extraction layer
WO2022100634A1 (en) * 2020-11-12 2022-05-19 烟台海森大数据有限公司 Organic electroluminescent device and display apparatus comprising same
CN112409326A (en) * 2020-11-24 2021-02-26 吉林奥来德光电材料股份有限公司 Arylamine compound and preparation method and application thereof
KR20230156057A (en) 2021-03-12 2023-11-13 호도가야 가가쿠 고교 가부시키가이샤 Organic electroluminescent device and electronic devices thereof
CN116143735A (en) * 2021-11-22 2023-05-23 奥来德(上海)光电材料科技有限公司 Organic electroluminescent compound, preparation method thereof and light-emitting display panel

Also Published As

Publication number Publication date
JP2016505611A (en) 2016-02-25
KR20140087987A (en) 2014-07-09

Similar Documents

Publication Publication Date Title
TWI651312B (en) Organic compound and organic optoelectric device and? display device
CN103443241B (en) For the compound of organic optoelectronic device, the Organic Light Emitting Diode comprising this compound and the display device comprising this diode
CN102272264B (en) For the material of organic electroluminescence device
KR101506999B1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
KR101297158B1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
KR101453768B1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
WO2014104515A1 (en) Compound for organic optoelectric device, organic light emitting diode comprising same, and display apparatus comprising organic light emitting diode
WO2014104500A1 (en) Compound for organic optoelectric device, organic light emitting diode comprising same, and display apparatus comprising organic light emitting diode
EP2799515A1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, and display device including organic light-emitting diode
KR101566530B1 (en) COMPOUND FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
KR20140087996A (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
WO2014185595A1 (en) Light-emitting material for organic optoelectronic element, organic optoelectronic element, and display device
CN103827256A (en) Organic light emitting diode
KR20110053114A (en) New fused cyclic compound and organic electronic device
WO2011025282A2 (en) Novel organic compound and organic light-emitting device using same
WO2015156449A1 (en) Organic compound, composition, organic optoelectronic diode, and display device
WO2016024675A1 (en) Organic photoelectronic device and display device
CN109608453B (en) Compound taking 4, 7-phenanthroline as receptor and application thereof
CN110128403B (en) Compound, display panel and display device
WO2014104545A1 (en) Compound for organic optoelectronic device, organic light-emitting element including same, and display apparatus including said organic light-emitting element
WO2014104600A1 (en) Compound for organic optoelectronic device, organic light-emitting device containing same, and display apparatus including said organic light-emitting device
KR20150009370A (en) COMPOUND FOR ORGANIC OPTOELECTRONIC DEVICE, ORGANIC LiGHT EMITTING DIODE INCLUDING THE SAME AND DISPLAY INCLUDING THE ORGANIC LiGHT EMITTING DIODE
WO2014051244A1 (en) Compound for organic optoelectronic device, organic light-emitting device including same, and display device including said organic light-emitting device
US20130285030A1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
EP2998380A1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, display device including organic light-emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868530

Country of ref document: EP

Kind code of ref document: A1