WO2014104376A1 - 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法 - Google Patents

磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法 Download PDF

Info

Publication number
WO2014104376A1
WO2014104376A1 PCT/JP2013/085291 JP2013085291W WO2014104376A1 WO 2014104376 A1 WO2014104376 A1 WO 2014104376A1 JP 2013085291 W JP2013085291 W JP 2013085291W WO 2014104376 A1 WO2014104376 A1 WO 2014104376A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
grinding
magnetic disk
substrate
glass
Prior art date
Application number
PCT/JP2013/085291
Other languages
English (en)
French (fr)
Inventor
太志 長田
智 石井
順平 深田
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to SG11201505083VA priority Critical patent/SG11201505083VA/en
Priority to CN201380061557.XA priority patent/CN104823240B/zh
Priority to JP2014528753A priority patent/JP5704777B2/ja
Publication of WO2014104376A1 publication Critical patent/WO2014104376A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • B24B37/245Pads with fixed abrasives

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for a magnetic disk mounted on a magnetic disk device such as a hard disk drive (HDD) and a method for manufacturing a magnetic disk.
  • a magnetic disk device such as a hard disk drive (HDD)
  • HDD hard disk drive
  • a magnetic disk as one of information recording media mounted on a magnetic disk device such as a hard disk drive (HDD).
  • a magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and an aluminum substrate has been conventionally used as the substrate.
  • the ratio of the glass substrate capable of narrowing the distance between the magnetic head and the magnetic disk as compared with the aluminum substrate is gradually increasing.
  • the surface of the glass substrate is polished with high accuracy so as to increase the recording density so that the flying height of the magnetic head can be reduced as much as possible.
  • HDDs high recording capacity and lower prices. In order to achieve this, it is necessary to further improve the quality and cost of glass substrates for magnetic disks. It is coming.
  • high smoothness on the surface of the magnetic disk is indispensable for reducing the flying height (flying height) necessary for increasing the recording density.
  • a substrate surface with a high smoothness is required in the end. Therefore, it is necessary to polish the glass substrate surface with high accuracy.
  • further polishing processing is performed to reduce surface roughness and microwaviness. High smoothness on the main surface has been realized.
  • a diamond pad is an agglomerate in which diamond particles or some diamond particles are hardened with a binder such as glass, ceramic, metal, or resin, and fixed using a support material such as resin (for example, acrylic resin).
  • resin for example, acrylic resin
  • the obtained pellets are pasted on a sheet.
  • a resin layer containing diamond may be formed on the sheet, and then a groove may be formed in the resin layer to form a protrusion.
  • the diamond pad said here is not necessarily a general name, it shall be called "diamond pad" for convenience in this specification.
  • abrasive grains with a distorted shape are present between the surface plate and the glass and are non-uniform, so if the load on the abrasive grains is not constant and the load is concentrated, the surface of the surface plate Because of the low elasticity of cast iron, deep cracks enter the glass, the work-affected layer is deep, and the processing surface roughness of the glass also increases, so a large amount of removal was required in the subsequent mirror polishing process. It was difficult to reduce processing costs.
  • the abrasive grains are uniformly present on the surface of the sheet, so that the load is not concentrated, and in addition, the abrasive is fixed to the sheet using resin. Therefore, even if a load is applied to the abrasive grains, the high elastic action of the resin fixing the abrasive grains makes the cracks (deformed layer) on the processed surface shallow, and the processed surface roughness can be reduced. The load on the machine (such as machining allowance) is reduced, and processing costs can be reduced. After completion of this grinding (lapping) step, mirror polishing for obtaining a highly accurate plane is performed.
  • the present invention has been made to solve such a conventional problem, and its purpose is to produce a high-quality glass substrate in which the flatness of the substrate after processing is good in grinding processing with fixed abrasive grains. It is to provide a method for producing a glass substrate for a magnetic disk, and a method for producing a magnetic disk using the glass substrate obtained thereby.
  • the present inventor has found that the tin content of the glass substrate is large after grinding.
  • the surface roughness of the main surface side having the surface layer portion was larger than that of the main surface on the opposite side. That is, when a difference in surface roughness occurs between the two main surfaces of the glass substrate due to grinding, it is considered that the warpage of the substrate occurs due to a residual stress difference due to the Twiman effect.
  • the sheet-like plate glass manufactured by the float process has the surface layer part with much tin content on the one main surface side derived from the manufacturing method.
  • the main surface having a surface layer portion with a high tin content of the glass substrate is simply referred to as a “tin surface” for the sake of convenience, and the main surface with a very low tin content on the opposite side is simply referred to as “non-surface”. It will be referred to as the “tin surface”.
  • the present inventors have found that, in the case of a glass substrate using a plate glass manufactured by the float process, the processing speed of the tin surface is faster than that of the non-tin surface in the grinding with the fixed abrasive. . Further, using a pair of upper and lower surface plates in which fixed abrasive grains such as diamond particles are arranged on the grinding surface, while supplying a lubricating liquid between the surface plate and the glass substrate, In the double-side simultaneous grinding process in which the two main surfaces of the glass substrate are sandwiched, the surface roughness of the surface to be processed increases generally when the processing speed is high.
  • the present invention has been made as a result of further intensive studies based on the above findings obtained by the study of the present inventors. That is, in order to solve the above problems, the present invention has the following configuration.
  • (Configuration 1) Using the lubricating liquid and a pair of upper and lower surface plates in which fixed abrasive grains containing diamond particles are disposed on the grinding surface, while supplying the lubricating liquid between the grinding surface and the glass substrate, A method of manufacturing a glass substrate for a magnetic disk including a grinding process for grinding with both upper and lower surface plates sandwiching both main surfaces of the glass substrate, wherein the glass substrate is a sheet-shaped plate glass manufactured by a float method.
  • the main surface having a surface layer portion with a high tin content of the glass substrate is ground and ground so that a difference in processing speed occurs between the side and the surface plate side of the slower processing speed.
  • (Configuration 2) The method for producing a glass substrate for a magnetic disk according to Configuration 1, wherein the substrate is ground so that the flatness of the substrate after grinding is within 2.5 [mu] m.
  • (Configuration 3) The method for producing a glass substrate for a magnetic disk according to Configuration 1 or 2, wherein grinding is performed so that a difference in surface roughness between both main surfaces of the substrate after grinding is 0.01 ⁇ m or less in Ra.
  • (Configuration 4) The method of manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 3, wherein the surface roughness of both main surfaces of the substrate after grinding is 0.130 ⁇ m or less in Ra.
  • (Configuration 5) Any one of configurations 1 to 4, wherein when a plurality of glass substrates are simultaneously ground, the main surfaces of the glass substrate having the surface layer portion having a large tin content are all set in the same direction.
  • (Configuration 6) The magnetism according to any one of configurations 1 to 5, wherein on the surface plate side having a relatively high processing speed, the protruding amount of the fixed abrasive is made larger than that on the surface plate side having a relatively low processing speed.
  • a method for producing a glass substrate for a disk. (Configuration 7) The grinding process includes a first stage of roughening the surface of the glass substrate with a load higher than a load for grinding, and after the first stage, the glass with a load lower than the load of the first stage.
  • (Configuration 8) The method for manufacturing a glass substrate for a magnetic disk according to any one of configurations 1 to 7, wherein a processing speed in the grinding processing is 3.0 ⁇ m / min to 9.0 ⁇ m / min.
  • (Configuration 9) A magnetic disk manufacturing method comprising forming at least a magnetic recording layer on a magnetic disk glass substrate manufactured by the method for manufacturing a magnetic disk glass substrate according to any one of Structures 1 to 8.
  • substrate in the grinding process using the conventional fixed abrasive can be improved.
  • a highly reliable magnetic disk can be obtained by using the glass substrate obtained by the present invention.
  • the present invention uses a lubricating liquid and a pair of upper and lower surface plates in which fixed abrasive grains containing diamond particles are arranged on the grinding surface, as in configuration 1 above, and the lubricating liquid is mixed with the surface plate.
  • a method of manufacturing a glass substrate for a magnetic disk including a grinding process of grinding between both main surfaces of the glass substrate with the pair of upper and lower surface plates while supplying between the glass substrates,
  • a glass substrate obtained by cutting a sheet-like plate glass produced by a float method into a predetermined shape, and has a surface layer portion having a higher tin content than the other main surface side on one main surface side, and the grinding process
  • It is characterized by setting and grinding A process for producing a glass substrate for a magnetic disk. Further, as in the above configuration 2, it is preferable to perform grinding so that the flatness of the substrate after grinding is within 2.5 ⁇ m.
  • a glass substrate for a magnetic disk is usually manufactured through a rough grinding process (rough lapping process), a shape processing process, a fine grinding process (fine lapping process), an end surface polishing process, a main surface polishing process, a chemical strengthening process, and the like. .
  • a glass substrate cut out to a predetermined size from a sheet-like glass produced by a float process is used.
  • the sheet-like plate glass produced by the float process has a surface layer portion with a large tin content on one main surface side due to the production method.
  • the present invention solves a specific problem in the case of using a glass substrate obtained from a plate glass produced by this float process.
  • this glass substrate is subjected to grinding (lapping) for improving dimensional accuracy and shape accuracy.
  • This grinding process normally uses a double-sided lapping machine to grind the main surface of the glass substrate using hard abrasive grains such as diamond. By grinding the main surface of the glass substrate in this way, a predetermined plate thickness and flatness are processed, and a predetermined surface roughness is obtained.
  • the present invention relates to the improvement of this grinding process.
  • the grinding process in the present invention is a grinding process using fixed abrasive grains containing diamond particles.
  • the grinding process is held by a carrier between an upper surface plate and a lower surface plate each having a diamond pad attached thereto.
  • the glass substrates are brought into close contact with each other, and both the main surfaces of the glass substrate are ground simultaneously by moving the glass substrate and the upper and lower surface plates relatively while holding the glass substrate with a predetermined pressure by the upper and lower surface plates.
  • a lubricating liquid (coolant) is supplied to cool the working surface or to promote the processing.
  • the diamond pad 1 which is a grinding tool (fixed abrasive wheel) used in the present invention is schematically shown in FIG. 1, but some diamond particles 5 (see FIG. 2) are made of glass, ceramic, metal, Or the pellet 4 which fixed the aggregate 3 hardened with binders, such as resin, using support materials, such as resin (for example, acrylic resin etc.), is affixed on the sheet
  • binders such as resin
  • support materials such as resin (for example, acrylic resin etc.)
  • FIG. 1 the configuration shown in FIG. 1 is merely an example, and the present invention is not limited to this.
  • a diamond pad in which a resin layer containing diamond is formed on a sheet and then a groove is formed in the resin layer to form a protrusion may be used.
  • the size of each diamond particle contained in the aggregate is preferably 1 to 5 ⁇ m in average particle size.
  • the aggregates having different particle diameters (average particle diameters) and abrasive density in the resin.
  • the diamond fixed abrasive is the aggregate
  • it when it is referred to as diamond fixed abrasive grains, unless otherwise specified, it means the above-mentioned aggregate, and when it is referred to as the average particle diameter of diamond abrasive grains and the abrasive density.
  • the present invention is not limited to the case where the diamond fixed abrasive is the aggregate. It is also possible to use a diamond pad in which the diamond fixed abrasive is not an aggregate but a single diamond particle.
  • the grinding processing in the present invention in the double-side simultaneous grinding processing, a difference in processing speed is caused between the upper surface plate side and the lower surface plate side, and the glass substrate is placed on the surface plate side with the lower processing speed.
  • a tin surface having a surface layer portion with a high tin content is set and ground.
  • processing can be performed so that the flatness is improved as compared with the case where the tin surface of the glass substrate is set on the surface plate having the higher processing speed. Then, it is possible to perform grinding so that the flatness of the substrate after grinding is within 2.5 ⁇ m.
  • the tin surface has a higher processing speed than the non-tin surface, and the surface roughness after grinding has been reduced. Becomes bigger. Therefore, in the present invention, by setting the tin surface of the glass substrate on the side of the surface plate having the lower processing speed and grinding, the surface roughness of the substrate after the grinding processing becomes approximately the same on both main surfaces. Can be processed. As a result, it is possible to prevent the substrate from warping after grinding, and a glass substrate with good flatness can be obtained.
  • the grinding processing in the present invention it is necessary to set so that a difference in processing speed occurs between the upper surface plate side and the lower surface plate side in the double-side simultaneous grinding processing with fixed abrasive grains. If the processing speed is the same on the upper and lower surface plate sides, a difference in surface roughness due to the difference in processing speed between the tin surface and the non-tin surface of the glass substrate occurs on both main surfaces. For this reason, it is not possible to prevent the warpage of the substrate.
  • the difference in processing speed between the upper surface plate side and the lower surface plate side is preferably set so that the difference in processing speed between the tin surface and the non-tin surface of the glass substrate can be offset as much as possible.
  • the processing speed of the tin surface and the non-tin surface is about 10 to 20% faster than that of the tin surface.
  • the processing speed on the upper and lower surface plate side is determined by, for example, rotation of the work carrier, revolution of the work carrier determined by the rotation speed of the upper and lower surface plate, the rotation speed of the sun gear (sun gear) and the rotation speed of the internal gear (internal gear), etc. It is possible to adjust. Therefore, by adjusting these on the upper and lower surface plate sides, respectively, it is possible to set so that a desired processing speed difference occurs between the upper surface plate side and the lower surface plate side.
  • the flatness of the substrate after grinding is within 2.5 ⁇ m. More preferably, it is ground so as to be within 2.0 ⁇ m. If the flatness of the substrate after grinding is greater than 2.5 ⁇ m, it is difficult to improve the flatness by subsequent polishing.
  • the flatness of the substrate can be measured by the method described in the examples described later.
  • the tin surface of the glass substrate is set on the surface plate with the slower processing speed as described above, and the difference in surface roughness Ra between the two main surfaces of the substrate after grinding ( It is desirable to perform grinding so that ⁇ Ra is within 0.01 ⁇ m. As a result, the flatness of the substrate after grinding can be made within 2.5 ⁇ m. More preferably, grinding is performed so that the difference ( ⁇ Ra) in the surface roughness Ra between the two main surfaces of the substrate after grinding is within 0.005 ⁇ m. As a result, the flatness of the substrate after the grinding can be further improved within 2.0 ⁇ m.
  • the surface roughness of the substrate can be measured by the method described in the examples described later.
  • the surface roughness of both main surfaces of the glass substrate after the grinding process is 0.130 ⁇ m or less in terms of Ra.
  • the processing load of the subsequent polishing process can be reduced by keeping the roughness of the finish by the grinding process low.
  • a plurality of glass substrates (for example, about 100 in one batch) are ground simultaneously, but the tin surface of the plurality of glass substrates is placed on the surface plate side having a lower processing speed. It is preferable to perform processing by setting so that all are in the same direction. Thereby, the flatness of all the glass substrates after processing can be finished satisfactorily.
  • the substrate surface is a mirror surface.
  • the diamond abrasive grains do not easily penetrate the surface of the substrate and slip, so that a time during which grinding cannot be performed tends to occur.
  • the protruding amount of the fixed abrasive is relatively larger than that on the surface plate side where the processing speed is low. That is, on the surface plate side where the processing speed is relatively high, the protruding amount of the fixed abrasive is made relatively larger than the surface plate side where the processing speed is low, and the non-tin surface is processed on the surface plate side. It is preferable to do.
  • the main surface of the input substrate is a mirror surface, sludge tends to accumulate on the surface of the fixed abrasive grindstone.
  • the present inventor has found that it is preferable to control the protruding amount of the fixed abrasive with an upper and lower surface plate when processing a large number of substrates using the same fixed abrasive wheel. .
  • the amount of protrusion of the fixed abrasive on the surface plate side with a relatively high processing speed is set to be relatively larger than that on the surface plate side with a low processing speed, so that a large number of substrates are processed between the substrates.
  • the variation in flatness can be improved.
  • the protruding amount of the above-mentioned fixed abrasive can be measured as follows. 10%, 50%, 90% from the inner circumference when the distance from the inner circumference to the outer circumference is defined as 100% with respect to the grinding wheel of the upper and lower surface plates before grinding (usually formed in a disk shape). A total of 6 samples (pad pieces) each having a size of 2.5 mm ⁇ 2.5 mm are cut out from the% positions. For each of these six samples, for example, five arbitrary fixed abrasive grains are selected from an observation image obtained using, for example, a laser microscope, and the height difference between the abrasive grains and the resin portion around the abrasive grains is measured. The average value of the height difference of the abrasive grains is defined as the protruding amount of the fixed abrasive grains of the grinding wheel.
  • dressing can be performed.
  • a double-sided grinding device used for grinding is also applied to dressing processing, and a grinding wheel with an appropriate thickness variation is applied to the surface of a grinding wheel such as a diamond pad arranged on an upper and lower surface plate.
  • the dressing process can be performed in a state where the upper and lower surface plates of the double-side grinding apparatus are rotated.
  • the material of the grindstone used for the dressing process is not particularly limited, but for example, an alumina grindstone is suitable.
  • the dressing process may be performed step by step using a plurality of grindstones having different thickness variations.
  • the difference in the protruding amount of the fixed abrasive grains on the upper and lower surface plates is preferably 0.1 ⁇ m or more. Further, if the difference in the protruding amount of the fixed abrasive is larger than 10 ⁇ m, there is a possibility that scratches may occur on the surface plate side where the protruding amount is large.
  • first it is necessary to apply a higher load to the glass surface than during normal grinding in order to cause the diamond abrasive grains to penetrate into the glass substrate surface. The higher the load, the deeper the cutting depth of the abrasive grains, the rougher the glass surface can be made (roughened).
  • the first step is a step of roughening the surface of the mirror glass by causing the diamond abrasive grains to penetrate.
  • FIG. 2 is a diagram for explaining a state at the time of grinding, and shows a state in which the diamond abrasive grains 3 bite into the glass substrate 10 and are ground (image diagram).
  • FIG. 3 is a diagram showing an example of a sequence of applied loads in this grinding process.
  • the horizontal axis in FIG. 3 is time, and the vertical axis is applied load.
  • the load is gradually increased from the start, and the constant time (t1) is maintained at the time when the load reaches P1 (point A). This is the first stage, and the glass surface is roughened.
  • the application of the load up to the point A may be performed in multiple steps. That is, the load may be increased stepwise (stepwise in the sequence).
  • the load P1 in the first stage is preferably in the range of 130 to 200 g / cm 2 . If the load P1 is smaller than 130 g / cm 2, the time during which grinding cannot be performed cannot be sufficiently shortened, and the processing speed decreases. On the other hand, if the load P1 is larger than 200 g / cm 2, the cutting time due to the abrasive grains becomes too deep and a lot of scratches are generated, so that it is necessary to increase the machining allowance for the main processing and the subsequent polishing step. Will become longer.
  • the first stage load application speed (inclination k) from the start of processing to the point A (load P1) is preferably 0.5 to 15 g / (cm 2 ⁇ sec).
  • the slope k is smaller than 0.5g / (cm 2 ⁇ sec) (applying speed is slow)
  • the abrasive grains do not slip and bite due to the low load, rather the abrasive grains wear and the grinding ability deteriorates. It is not preferable.
  • the inclination k is greater than 15 g / (cm 2 ⁇ sec) (applying speed is fast)
  • a sharp load is applied to the abrasive grains on the glass substrate, so that the abrasive grains are crushed and the grinding ability is reduced. Or the glass substrate breaks.
  • the time t1 for roughening with the load P1 in the first stage is preferably in the range of 10 to 600 seconds, for example.
  • t1 is shorter than 10 seconds, the abrasive grains are not sufficiently bited into the glass main surface, which may slow the processing speed.
  • t1 is longer than 600 seconds, deep scratches are likely to occur, and the finished main surface may become rough.
  • the load is gradually decreased from point B (load P1) and the time from point B to point C reaching the normal grinding load P2 is, for example, in the range of 10 to 90 seconds. If the time between BCs is shorter than 10 seconds, the substrate flatness may be deteriorated due to a rapid load fluctuation.
  • the glass is excessively ground during the transition from P1 (first stage) to P2 (second stage), making it difficult to control the plate thickness or deep scratches. May occur and the finished main surface roughness may increase.
  • time t2 which grinds with the load P2 in the said 2nd stage shall be 30 second or more. If a certain amount is not processed with the load P2, the groove formed with the load P1 cannot be removed, which may remain as a scratch.
  • the upper limit of t2 is appropriately determined in consideration of the finished quality in the grinding process. Note that t1 ⁇ t2 is preferable because the roughness of the finish can be reduced.
  • the processing speed in the entire grinding processing is generally in the range of 3.0 to 9.0 ⁇ m / min, and it is possible to perform grinding without reducing the processing speed.
  • the processing speed in the entire grinding processing means a value obtained by dividing the total grinding thickness by the total processing time (including the first stage and the second stage).
  • the diamond fixed abrasive has an average particle size of 20 to 40 ⁇ m.
  • the individual particle size of the diamond fixed abrasive is preferably 10 to 50 ⁇ m.
  • the average particle diameter or individual particle diameter of the diamond abrasive grains is below the above, the cut into the mirror-like glass substrate becomes shallow and the biting into the glass substrate does not proceed.
  • the average particle diameter or individual particle diameter of the diamond abrasive grains exceeds the above, the roughness of the finish becomes rough, so that the machining allowance load in the subsequent process increases.
  • a diamond fixed abrasive means the said aggregate here.
  • the size of the individual diamond particles contained in the aggregate is preferably 1 to 5 ⁇ m in average particle size.
  • the average particle size is a point at which the cumulative curve is 50% when the cumulative curve is obtained with the total volume of the powder population in the particle size distribution measured by the laser diffraction method as 100%. (Hereinafter referred to as “cumulative average particle diameter (50% diameter)”).
  • the cumulative average particle diameter (50% diameter) is specifically a value obtained by measurement using a particle diameter / particle size distribution measuring apparatus.
  • the surface roughness of the glass substrate used for the grinding treatment is usually 0.001 to 0.01 ⁇ m in Ra.
  • the surface roughness of the glass substrate after completion of the first stage is generally in the range of 0.100 to 0.150 ⁇ m in Ra. By roughening the surface in this range, the subsequent second-stage grinding is favorably performed. Further, the surface roughness of the glass substrate after completion of the second stage, that is, after completion of the polishing process is as described above.
  • the grinding process of the present invention includes the first stage of roughening the glass substrate surface with a high load and the second stage of grinding the glass substrate surface with a load lower than the load of the first stage.
  • the grinding process in the present invention is performed in the first stage and the second stage as described above, conditions are set so that a difference in processing speed occurs between the upper surface plate side and the lower surface plate side, and glass It is necessary to process the tin surface side of the substrate with a surface plate having a slower processing speed.
  • the tin surface of the glass substrate may be removed in the second stage (more preferably, the end of the second stage).
  • the processing speed is differentiated between the upper and lower surface plates, if all the tin surface of the glass substrate is completely removed at the initial stage of processing such as the first stage, only one of the main surfaces has a large machining allowance. This is because there are cases where the roughness after the grinding process differs between the two main surfaces.
  • the glass constituting the glass substrate is preferably an amorphous aluminosilicate glass.
  • a glass substrate can be finished to a smooth mirror surface by mirror polishing the surface, and the strength after processing is good.
  • an aluminosilicate glass for example, a glass containing SiO 2 as a main component and containing 20 wt% or less of Al 2 O 3 is preferable. Furthermore, it is more preferable to use glass containing SiO 2 as a main component and containing 15% by weight or less of Al 2 O 3 .
  • SiO 2 is 62 wt% to 75 wt%
  • Al 2 O 3 is 5 wt% to 15 wt%
  • Li 2 O is 4 wt% to 10 wt%
  • Na 2 O is 4 wt%.
  • % To 12% by weight, ZrO 2 is contained in an amount of 5.5% to 15% by weight as a main component, and the weight ratio of Na 2 O / ZrO 2 is 0.5 to 2.0
  • Al 2 O An amorphous aluminosilicate glass containing no phosphorus oxide and having a 3 / ZrO 2 weight ratio of 0.4 to 2.5 can be used.
  • SiO 2 is 50 to 75%
  • Al 2 O 3 is 0 to 5%
  • BaO is 0 to 2%
  • Li 2 O is 0 to 3%
  • ZnO 0-5% Na 2 O and K 2 O 3-15% in total
  • ZrO 2 , TiO 2 , La 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Ta 2 O 5 , Nb 2 O 5 and HfO 2 are included in a total amount of 2 to 9%
  • the molar ratio [(MgO + CaO) / (MgO + CaO + SrO + BaO)] is in the range of 0.85 to 1.
  • And glass having a molar ratio [Al 2 O 3 / (MgO + CaO)] of 0 to 0.30 can be preferably used. Further, a total of 6 to 15 mol of an alkali metal oxide selected from the group consisting of 56 to 75 mol% of SiO 2 , 1 to 9 mol% of Al 2 O 3 , Li 2 O, Na 2 O and K 2 O.
  • the content of Al 2 O 3 in the glass composition is preferably 15% by weight or less. Furthermore, still preferably Al 2 O 3 content is 5 mol% or less.
  • a polishing pad of a polisher such as polyurethane while supplying a slurry (polishing liquid) containing a metal oxide abrasive such as cerium oxide or colloidal silica.
  • a slurry polishing liquid
  • a metal oxide abrasive such as cerium oxide or colloidal silica.
  • a glass substrate having high smoothness is obtained, for example, by polishing with a cerium oxide-based abrasive (first polishing process) and then with final polishing (mirror polishing) (second polishing process) using colloidal silica abrasive grains. It is possible.
  • the surface of the glass substrate after mirror polishing is preferably a mirror surface having an arithmetic average surface roughness Ra of 0.2 nm or less, more preferably 0.13 nm or less.
  • Ra and Rmax are roughnesses calculated in accordance with Japanese Industrial Standard (JIS) B0601.
  • the surface roughness (for example, the maximum roughness Rmax, the arithmetic average roughness Ra) is practically preferable to be the surface roughness obtained by measuring with an atomic force microscope (AFM). .
  • the measurement area of the AFM is a range of 5 ⁇ m ⁇ 5 ⁇ m.
  • a chemical strengthening treatment after the first polishing process and before the second polishing process.
  • a method of the chemical strengthening treatment for example, a low-temperature ion exchange method in which ion exchange is performed in a temperature range not exceeding the glass transition temperature is preferable.
  • the chemical strengthening treatment is a process in which a molten chemical strengthening salt is brought into contact with a glass substrate, whereby an alkali metal element having a relatively large atomic radius in the chemical strengthening salt and a relatively small atomic radius in the glass substrate.
  • the chemically strengthened glass substrate is excellent in impact resistance, it is particularly preferable for mounting on a HDD for mobile use, for example.
  • the chemical strengthening salt alkali metal nitrates such as potassium nitrate and sodium nitrate can be preferably used.
  • the surface layer part with much tin content by the side of the tin surface of a glass substrate is substantially removed at the time of putting into the said chemical strengthening process. This is because, if the surface layer portion with a high tin content remains before the chemical strengthening treatment, a problem arises in that the substrate is warped by the chemical strengthening treatment.
  • the present invention also provides a method for manufacturing a magnetic disk using the above glass substrate for a magnetic disk.
  • the magnetic disk is manufactured by forming at least a magnetic layer on the magnetic disk glass substrate according to the present invention.
  • a material for the magnetic layer a hexagonal CoCrPt-based or CoPt-based ferromagnetic alloy having a large anisotropic magnetic field can be used.
  • a method of forming the magnetic layer it is preferable to use a method of forming a magnetic layer on a glass substrate by a sputtering method, for example, a DC magnetron sputtering method.
  • the orientation direction of the magnetic grains of the magnetic layer and the size of the magnetic grains can be controlled.
  • a cubic base layer such as a Cr-based alloy
  • the magnetization easy direction of the magnetic layer can be oriented along the magnetic disk surface.
  • a magnetic disk of the in-plane magnetic recording system is manufactured.
  • a hexagonal underlayer containing Ru or Ti for example, the easy magnetization direction of the magnetic layer can be oriented along the normal of the magnetic disk surface.
  • a perpendicular magnetic recording type magnetic disk is manufactured.
  • the underlayer can be formed by sputtering as with the magnetic layer.
  • a protective layer and a lubricating layer may be formed in this order on the magnetic layer.
  • the protective layer an amorphous hydrogenated carbon-based protective layer is suitable.
  • the protective layer can be formed by a plasma CVD method.
  • a lubricant having a functional group at the end of the main chain of the perfluoropolyether compound can be used.
  • the main component is a perfluoropolyether compound having a terminal hydroxyl group as a polar functional group.
  • the lubricating layer can be applied and formed by a dip method.
  • Example 1 The following (1) substrate preparation step, (2) shape processing step, (3) end surface polishing step, (4) main surface grinding processing, (5) main surface polishing step (first polishing step), (6) chemistry A glass substrate for a magnetic disk of this example was manufactured through a strengthening step and (7) a main surface polishing step (second polishing step).
  • Substrate preparation process A large plate glass made of aluminosilicate glass having a thickness of 1 mm manufactured by the float method was prepared, and was cut using a diamond cutter so as to form square pieces. Next, using a diamond cutter, it was processed into a disk shape having a circular hole with an outer diameter of 65 mm and an inner diameter of 20 mm at the center.
  • the number of rotations of the platen was appropriately selected in the range of 10 to 100 rpm, and the load on the glass substrate was applied according to the sequence shown in FIG.
  • the first stage (roughening) load (P1) was set to 150 g / cm 2 .
  • the load (P2) in the second stage (main processing) was set to 100 g / cm 2 .
  • the upper surface plate rotation speed was set to 20 rpm, and the lower surface plate rotation speed was set to 30 rpm.
  • the rotation speed of the sun gear (sun gear) was set to 8 rpm, and the rotation speed of the internal gear (internal gear) was set to 3 rpm.
  • the relative speed between the upper surface plate and the substrate is 10 to 20% faster than the relative speed between the lower surface plate and the substrate, and as a result, the processing speed is faster on the upper surface plate side than on the lower surface plate side.
  • the tin surface of the glass substrate was set toward the lower surface plate side where the processing speed was slow, and both surfaces of the glass substrate housed in the carrier were simultaneously ground.
  • the slope k in FIG. 3 was 10 g / (cm 2 ⁇ sec), t1 was 60 seconds, the time between BCs was 15 seconds, and t2 was 200 seconds longer than t1.
  • the glass substrate that had been subjected to the grinding process was sequentially immersed in each washing bath (applied with ultrasonic waves) of neutral detergent and water to perform ultrasonic cleaning.
  • a hard polisher (hard foamed urethane) was used as the polisher, and the first polishing step was performed.
  • the polishing liquid was water in which cerium oxide was dispersed as an abrasive, and the load was 100 g / cm 2 .
  • the glass substrate after the first polishing step was washed and dried.
  • Chemical strengthening step chemical strengthening was performed on the glass substrate after the cleaning.
  • a chemical strengthening solution prepared by mixing and melting potassium nitrate and sodium nitrate was prepared, and a glass substrate was immersed in the chemical strengthening solution to perform chemical strengthening treatment.
  • the second polishing step was performed by replacing the polisher with a polishing pad of soft polisher (suede).
  • the surface roughness of the glass substrate main surface is finished to a smooth mirror surface with a Ra of about 0.2 nm or less while maintaining the flat surface obtained in the first polishing step.
  • the polishing liquid was water in which colloidal silica was dispersed, and the load was 100 g / cm 2 .
  • the glass substrate after the second polishing step was washed and dried.
  • a glass substrate was obtained.
  • the measurement area of AFM is 5 ⁇ m ⁇ 5 ⁇ m.
  • the surface of the glass substrate was analyzed with an atomic force microscope (AFM) and an electron microscope, it was specular and surface defects such as protrusions and scratches were not observed.
  • the obtained glass substrate had an outer diameter of 65 mm, an inner diameter of 20 mm, and a plate thickness of 0.635 mm. Thus, a glass substrate for magnetic disk of this example was obtained.
  • Example 1 In the grinding process of Example 1, the tin surface of the glass substrate was set toward the upper surface plate with a high processing speed, and the grinding process was performed. And the glass substrate for magnetic discs was obtained like Example 1 except this grinding process.
  • Example 2 In the grinding processing of Example 1, the conditions were set so that the processing speeds of the upper and lower surface plates were substantially the same, and the tin surface of the glass substrate was set facing the upper surface plate side, and the grinding processing was performed. . And the glass substrate for magnetic discs was obtained like Example 1 except this grinding process.
  • Examples 2 to 5 In the grinding process of Example 1 above, the processing speed on the upper surface plate side is set to be slowed by 5, 10, 20, and 30%, respectively, and the tin surface of the glass substrate is set toward the upper surface plate side. The grinding process was carried out. And the glass substrate for magnetic discs was obtained like Example 1 except this grinding process. Table 1 shows the measurement results of the flatness and the difference in surface roughness ( ⁇ Ra) between the main surfaces of the glass substrates after grinding in the above examples.
  • Example 1 in which the tin surface of the glass substrate was set on the lower surface plate side where the processing speed was slow and grinding was performed, the flatness of the processed substrate was good. Further, the difference in surface roughness between both main surfaces of the substrate is small, and the substrate roughness after grinding is processed so as to be substantially the same on both sides. Furthermore, from the comparison between Example 1 and Examples 2 to 5, the flatness of the substrate after processing becomes better when the processing speed of the upper surface plate is slowed and the tin surface is set on the upper surface plate side. I understand.
  • Comparative Example 1 in which the tin surface of the glass substrate having a high processing speed was set on the upper surface plate side having a high processing speed and grinding was performed, the flatness of the substrate after processing deteriorated, The substrate warped. Moreover, the difference in surface roughness between both main surfaces of the substrate was large, which was a factor that deteriorated flatness. Also in Comparative Example 2 in which the processing speed of the upper and lower surface plates was set to be substantially the same, the flatness of the substrate after processing deteriorated and the substrate warped. Further, the difference in surface roughness between both main surfaces of the substrate was larger than that in Example 1, which was a cause of deterioration in flatness. In Comparative Example 2, it is considered that the difference in processing speed between the tin surface and the non-tin surface of the glass substrate led to the difference in surface roughness between both main surfaces.
  • Example 6 a substrate was manufactured by making a difference between the upper and lower surface plates with respect to the protruding amount of diamond fixed abrasive grains (aggregates) in the diamond pad.
  • the average protrusion amount on the upper surface plate side was fixed at 5 ⁇ m, and the average protrusion amount of the diamond fixed abrasive on the lower surface plate side was changed as shown in Table 2.
  • the protrusion amount was changed by changing the number of dressing processes for the upper and lower surface plates. Except for this point, grinding was performed in the same manner as in Example 4, the flatness of the 100 glass substrates obtained was measured, and the difference between the maximum value and the minimum value was obtained to determine the variation in flatness.
  • the value of Example 4 (The average protrusion amount of a fixed abrasive is equivalent with an upper and lower surface plate) was set to 1.00 (100%), and was shown by the relative value.
  • the variation in flatness can be improved by making the protruding amount of the fixed abrasive on the surface plate side (here, the lower surface plate side) relatively high in processing speed larger than that on the upper surface plate side. Recognize. This is considered to be due to the fact that the fixed abrasive grains bite into the non-tin surface on the non-tin surface side, which is hard to be ground, by improving the biting characteristics of the fixed abrasive grains at the initial stage of grinding. That is, it is considered that the substrate in which the timing of the biting of the fixed abrasive is delayed receives the pressure of the grinding pad slightly higher than the other substrates, and the processing speed is increased immediately after the biting occurs.
  • the variation in the grinding state during such processing also affects the flatness. From the above results and considerations, on the surface plate side where the processing speed is relatively high, the protruding amount of the fixed abrasive is made relatively larger than the surface plate side where the processing speed is low, and the non-tin surface on the surface plate side. It can be seen that it is preferable to work.
  • Example 10 The following film formation process was performed on the magnetic disk glass substrate obtained in Example 1 to obtain a magnetic disk for perpendicular magnetic recording. That is, an adhesion layer made of a Ti-based alloy thin film, a soft magnetic layer made of a CoTaZr alloy thin film, an underlayer made of a Ru thin film, a perpendicular magnetic recording layer made of a CoCrPt alloy, a carbon protective layer, and a lubricating layer are sequentially formed on the glass substrate. A film was formed.
  • the protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, and provides wear resistance.
  • the lubricating layer was formed by dipping a liquid lubricant of alcohol-modified perfluoropolyether.
  • the obtained magnetic disk was installed in an HDD equipped with a DFH head, and a load / unload durability test was conducted for one month while operating the DFH function in a high temperature and high humidity environment of 80 ° C. and 80% RH. There were no particular obstacles and good results were obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Surface Treatment Of Glass (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

 本発明は固定砥粒による研削加工後の基板の平坦度が良好で、高品質のガラス基板を製造可能な磁気ディスク用ガラス基板の製造方法を提供する。 本発明の磁気ディスク用ガラス基板の製造方法は、潤滑液と、ダイヤモンド粒子を含む固定砥粒が研削面に配備された一対の上下定盤を用い、潤滑液を定盤とガラス基板の間へ供給しつつ、上下定盤でガラス基板の両主表面を挟んで同時研削する。ガラス基板はフロート法で製造したシート状の板ガラスを用い、一方の主表面側にはスズ含有量の多い表層部分を有する。研削加工は上定盤側と下定盤側とで加工速度の差が生じるようにし、加工速度が遅い方の定盤側にガラス基板のスズ含有量の多い表層部分を有する主表面をセットして研削する。

Description

磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
 本発明は、ハードディスクドライブ(HDD)等の磁気ディスク装置に搭載される磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法に関する。
ハードディスクドライブ(HDD)等の磁気ディスク装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板として従来はアルミ基板が用いられてきた。しかし、最近では、高記録密度化の追求に呼応して、アルミ基板と比べて磁気ヘッドと磁気ディスクとの間隔をより狭くすることが可能なガラス基板の占める比率が次第に高くなってきている。また、ガラス基板表面は磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、HDDの更なる大記録容量化、低価格化の要求は増すばかりであり、これを実現するためには、磁気ディスク用ガラス基板においても更なる高品質化、低コスト化が必要になってきている。
上述したように高記録密度化にとって必要な低フライングハイト(浮上量)化のために磁気ディスク表面の高い平滑性は必要不可欠である。磁気ディスク表面の高い平滑性を得るためには、結局、高い平滑性の基板表面が求められるため、高精度にガラス基板表面を研磨する必要がある。このようなガラス基板を作製するために、研削(ラッピング)処理にて板厚の調整と平坦度(平面度)を低減した後、さらに研磨処理を行って表面粗さや微小うねりを低減することによって、主表面における高い平滑性を実現してきた。
ところで、従来、遊離砥粒を用いていた研削(ラッピング)工程(例えば特許文献1等)において、ダイヤモンドパッドを用いた固定砥粒による研削方法が提案されている(例えば特許文献2等)。ダイヤモンドパッドとは、ダイヤモンド粒子や、いくつかのダイヤモンド粒子がガラス、セラミック、金属、または樹脂などのバインダーで固められた凝集体を、樹脂(例えばアクリル系樹脂等)などの支持材を用いて固定したペレットをシートに貼り付けたものである。これ以外にも、ダイヤモンドを含む樹脂の層をシート上に形成した後に、樹脂層に溝を形成して突起状としたものでもよい。なお、ここで言うダイヤモンドパッドは必ずしも一般的な呼び名ではないが、本明細書では便宜上「ダイヤモンドパッド」と呼ぶこととする。
従来の遊離砥粒では形状が歪な砥粒が定盤とガラスとの間に介在し不均一に存在するために、砥粒への荷重が一定にならず荷重が集中した場合、定盤表面は鋳鉄による低弾性であるため、ガラスに深いクラックが入り、加工変質層が深く、またガラスの加工表面粗さも大きくなるので、後工程の鏡面研磨工程で多くの除去量が必要であったため、加工コストの削減が困難であった。これに対し、ダイヤモンドパッドを用いた固定砥粒による研削では、シート表面に砥粒が均一に存在しているため、荷重が集中することなく、加えて樹脂を用いて砥粒をシートに固定しているため、砥粒に荷重が加わっても砥粒を固定している樹脂の高弾性作用により、加工面のクラック(加工変質層)は浅く、加工表面粗さの低下が可能となり、後工程への負荷(取代など)が低減され、加工コストの削減が可能になる。
この研削(ラッピング)工程の終了後は、高精度な平面を得るための鏡面研磨加工を行っている。
特開2001-6161号公報 特開2012-209010号公報
上述のように、ダイヤモンドパッドを用いた固定砥粒による研削方法によれば、加工面の表面粗さの低下が可能となり、後の鏡面研磨工程への負荷が低減され、ガラス基板の加工コストの削減が可能になるものの、本発明者の検討によれば次のような課題があることが判明した。
すなわち、フロート法により製造されたシート状の板ガラスを所定の形状に切り出したガラス基板に対して、直接、上記特許文献2に開示されているような従来のダイヤモンドパッドを用いた固定砥粒による両面同時研削加工を行う場合、加工後の平坦度が悪化し、磁気ディスクとなしたときに十分な平滑性を達成できない場合があった。
なお、上記研削加工の後に、鏡面研磨加工が行われるが、この鏡面研磨加工の取代は極めて僅かなものであり、研削加工によって生じた平坦度の悪化を改善することは困難である。従って、研削加工によってガラス基板の平坦度を十分に低減させる必要がある。
本発明はこのような従来の課題を解決すべくなされたものであって、その目的は、固定砥粒による研削加工において、加工後の基板の平坦度が良好な、高品質のガラス基板を製造可能な磁気ディスク用ガラス基板の製造方法、およびそれによって得られるガラス基板を利用した磁気ディスクの製造方法を提供することである。
本発明者は、従来のダイヤモンドパッドを用いた固定砥粒による両面同時研削加工を行う場合、加工後の平坦度が悪化する原因を調査した結果、研削加工後に、ガラス基板のスズ含有量の多い表層部分を有する主表面側の表面粗さが反対側の主表面に比べて大きくなっていた。つまり、研削加工によってガラス基板の両主表面に表面粗さの差が生じた場合に、トワイマン効果によって、残留応力差を生じることにより基板の反りが発生したものと考えられる。
なお、フロート法で製造したシート状の板ガラスは、その製法に由来して一方の主表面側にはスズ含有量の多い表層部分を有している。本明細書では、以下、このガラス基板のスズ含有量の多い表層部分を有する主表面を便宜上、単に「スズ面」と呼び、その反対側のスズ含有量の非常に少ない主表面を単に「非スズ面」と呼ぶこととする。
本発明者はさらに調査した結果、フロート法で製造した板ガラスを用いたガラス基板の場合、固定砥粒による研削加工においては、スズ面の方が非スズ面よりも加工速度が速いことが判明した。また、ダイヤモンド粒子等の固定砥粒が研削面に配備された一対の上定盤と下定盤とを用い、潤滑液を定盤とガラス基板の間へ供給しつつ、上記一対の上下定盤でガラス基板の両主表面を挟んで研削する両面同時研削加工において、一般的に、加工速度が速いと被加工面の表面粗さが大きくなる。また、加工速度が速いガラス基板のスズ面側を、加工速度の速い定盤(例えば上定盤)で加工した場合、加工速度が速くなる相乗効果によってガラス基板の両主表面の表面粗さの差が大きくなり、その結果、基板の反りが発生するものと推測される。
 本発明は、本発明者の検討により得られた上記知見に基づき、さらに鋭意研究の結果なされたものである。
すなわち、上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
潤滑液と、ダイヤモンド粒子を含む固定砥粒が研削面に配備された一対の上定盤と下定盤とを用い、前記潤滑液を前記研削面とガラス基板の間へ供給しつつ、前記一対の上下定盤で前記ガラス基板の両主表面を挟んで研削する研削加工処理を含む磁気ディスク用ガラス基板の製造方法であって、前記ガラス基板は、フロート法で製造したシート状の板ガラスを所定の形状に切り出したガラス基板であり、一方の主表面側には他方の主表面側よりスズ含有量の多い表層部分を有しており、前記研削加工処理は、前記上定盤側と前記下定盤側とで加工速度の差が生じるようにし、加工速度が遅い方の定盤側に前記ガラス基板の前記スズ含有量の多い表層部分を有する主表面をセットして研削することを特徴とする磁気ディスク用ガラス基板の製造方法。
(構成2)
研削加工後の基板の平坦度が、2.5μm以内となるように研削することを特徴とする構成1に記載の磁気ディスク用ガラス基板の製造方法。
(構成3)
研削加工後の基板の両主表面の表面粗さの差が、Raで0.01μm以内となるように研削することを特徴とする構成1又は2に記載の磁気ディスク用ガラス基板の製造方法。
(構成4)
 研削加工後の基板の両主表面の表面粗さが、いずれもRaで0.130μm以下であることを特徴とする構成1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成5)
 複数枚のガラス基板を同時研削加工する際に、前記ガラス基板の前記スズ含有量の多い表層部分を有する主表面がすべて同じ向きになるようにセットすることを特徴とする構成1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成6)
相対的に加工速度が高い定盤側において、さらに固定砥粒の突き出し量を相対的に加工速度が低い定盤側よりも大きくすることを特徴とする構成1乃至5のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成7)
前記研削加工処理は、研削加工を行う荷重よりも高荷重で前記ガラス基板表面を粗面化する第一段階と、該第一段階の後、前記第一段階の荷重よりも低荷重で前記ガラス基板表面の研削加工を行う第二段階とを有することを特徴とする構成1乃至6のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成8)
 前記研削加工処理における加工速度は、3.0μm/分~9.0μm/分であることを特徴とする構成1乃至7のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
(構成9)
 構成1乃至8のいずれかに記載の磁気ディスク用ガラス基板の製造方法により製造された磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
本発明によれば、従来の固定砥粒を用いた研削加工における基板の平坦度の悪化を改善することができる。これにより、高品質のガラス基板を製造することが可能である。
さらに、本発明によって得られるガラス基板を利用し、信頼性の高い磁気ディスクを得ることができる。
本発明に用いられるダイヤモンドパッドの構成を示す概略断面図である。 研削加工時の状態を説明するための模式図である。 研削加工処理における印加荷重のシーケンスの一例を示す図である。
 以下、本発明の実施の形態を詳述する。
本発明は、上記構成1にあるように、潤滑液と、ダイヤモンド粒子を含む固定砥粒が研削面に配備された一対の上定盤と下定盤とを用い、前記潤滑液を前記定盤とガラス基板の間へ供給しつつ、前記一対の上下定盤で前記ガラス基板の両主表面を挟んで研削する研削加工処理を含む磁気ディスク用ガラス基板の製造方法であって、前記ガラス基板は、フロート法で製造したシート状の板ガラスを所定の形状に切り出したガラス基板であり、一方の主表面側には他方の主表面側よりスズ含有量の多い表層部分を有しており、前記研削加工処理は、前記上定盤側と前記下定盤側とで加工速度の差が生じるようにし、加工速度が遅い方の定盤側に前記ガラス基板の前記スズ含有量の多い表層部分を有する主表面をセットして研削することを特徴とする磁気ディスク用ガラス基板の製造方法である。また、上記構成2にあるように、研削加工後の基板の平坦度が2.5μm以内となるように研削することが好適である。
磁気ディスク用ガラス基板は、通常、粗研削工程(粗ラッピング工程)、形状加工工程、精研削工程(精ラッピング工程)、端面研磨工程、主表面研磨工程、化学強化工程、等を経て製造される。
本発明の磁気ディスク用ガラス基板の製造方法においては、フロート法で製造されたシート状ガラスから所定の大きさに切り出したガラス基板を用いる。前に説明したように、フロート法で製造したシート状の板ガラスは、その製法に由来して一方の主表面側にはスズ含有量の多い表層部分を有している。本発明は、このフロート法で製造した板ガラスから得られたガラス基板を用いる場合の特有の課題を解決するものである。
次に、このガラス基板に寸法精度及び形状精度を向上させるための研削加工(ラッピング)を行う。この研削加工は、通常両面ラッピング装置を用い、ダイヤモンド等の硬質砥粒を用いてガラス基板主表面の研削を行う。こうしてガラス基板主表面を研削加工することにより、所定の板厚、平坦度に加工するとともに、所定の表面粗さを得る。
本発明は、この研削加工の改善に関わるものである。本発明における研削加工処理は、ダイヤモンド粒子を含む固定砥粒を用いた研削加工であり、たとえば、両面ラッピング装置において、ダイヤモンドパッドがそれぞれ貼り付けられた上定盤と下定盤の間にキャリアにより保持したガラス基板を密着させ、さらに前記ガラス基板を上下定盤によって所定圧で挟圧しながら、ガラス基板と上下定盤とを相対的に移動させることにより、ガラス基板の両主表面を同時に研削する。この際、加工作用面を冷却したり、加工を促進するために潤滑液(クーラント)が供給される。
本発明に使用する研削工具(固定砥粒砥石)であるダイヤモンドパッド1は、図1にその構成の概略を示したが、いくつかのダイヤモンド粒子5(図2参照)がガラス、セラミック、金属、または樹脂などのバインダーで固められた凝集体3を樹脂(例えばアクリル系樹脂等)などの支持材を用いて固定したペレット4をシート2に貼り付けたものである。勿論、図1に示す構成はあくまでも一例であり、本発明はこれに限定する趣旨ではない。例えば、ダイヤモンドを含む樹脂の層をシート上に形成した後に、樹脂層に溝を形成して突起状としたダイヤモンドパッドを使用してもよい。凝集体に含まれる個々のダイヤモンド粒子の大きさは、平均粒径で1~5μmであることが好ましい。
上記凝集体の粒径(平均粒径)や樹脂中の砥粒密度の異なるものを製造することは可能である。なお、本実施の形態においては、ダイヤモンド固定砥粒が上記凝集体である場合について説明する。従って、本発明において、ダイヤモンド固定砥粒と言った場合は、特に断りのない限り、上記凝集体を意味するものとし、また、ダイヤモンド砥粒の平均粒径、及び砥粒密度と言った場合は、上記凝集体の平均粒径、及びペレット中の凝集体密度を意味するものとする。
但し、本発明は、ダイヤモンド固定砥粒が上記凝集体である場合に限定するものではない。ダイヤモンド固定砥粒が凝集体ではなく、ダイヤモンド粒子の粒1個であるようなダイヤモンドパッドを使用することもできる。
 本発明における研削加工処理は、上記のとおり、両面同時研削加工において、上定盤側と下定盤側とで加工速度の差が生じるようにし、加工速度が遅い方の定盤側にガラス基板のスズ含有量の多い表層部分を有するスズ面をセットして研削する。
本発明によれば、たとえばガラス基板のスズ面を加工速度の速い方の定盤側にセットした場合に比べて平坦度が向上するように加工することが可能である。そして、研削加工後の基板の平坦度が、2.5μm以内となるように研削することが可能である。
 前にも説明したとおり、フロート法で製造した板ガラスを用いたガラス基板の場合、固定砥粒による研削加工においては、スズ面の方が非スズ面よりも加工速度が速く、研削後の表面粗さが大きくなる。そこで、本発明においては、加工速度が遅い方の定盤側にガラス基板のスズ面をセットして研削することにより、研削加工後の基板の表面粗さが両主表面で同程度になるように加工することができる。その結果、研削加工後に基板の反りが発生するのを防止することが可能になり、平坦度の良好なガラス基板が得られる。
 例えば、上下定盤のうち、下定盤側の加工速度を上定盤側の加工速度に比べて遅くする場合、下定盤側にガラス基板のスズ面をセットして研削することが好適である。また、反対に、上定盤側の加工速度を下定盤側の加工速度に比べて遅くする場合、上定盤側にガラス基板のスズ面をセットして研削することが好適である。
本発明における研削加工処理においては、固定砥粒による両面同時研削加工において、上定盤側と下定盤側とで加工速度の差が生じるように設定する必要がある。仮に、上定盤側と下定盤側とで加工速度が同程度であると、ガラス基板のスズ面と非スズ面との加工速度の差に起因する表面粗さの差が両主表面で生じるため、基板の反りの発生を防止することができない。
 上定盤側と下定盤側の加工速度の差は、ガラス基板のスズ面と非スズ面との加工速度の差を可能な限り相殺できるように設定することが好ましい。フロート法で製造した板ガラスを用いるガラス基板の場合、スズ面と非スズ面の加工速度は、スズ面の方が10~20%程度速いため、このスズ面と非スズ面の加工速度の差により生じる基板の両主表面での表面粗さの差を実質的に相殺できるように、上定盤側と下定盤側の加工速度の差を設定することが好適である。すなわち、スズ面側を加工する定盤の加工速度を、反対側と比較して10~20%遅くすることが好ましい。
 上下定盤側の加工速度は、例えば上下定盤の回転速度や、太陽歯車(サンギア)の回転速度と内歯歯車(インターナルギア)の回転速度とにより決定されるワークキャリアの自転、公転等によって調節することが可能である。よって、これらを上下定盤側で夫々調節することにより、上定盤側と下定盤側で所望の加工速度の差が生じるように設定することができる。
 本発明においては、平坦度の良好なガラス基板を得るために、研削加工後の基板の平坦度が2.5μm以内となるように研削することが好ましい。さらに好ましくは、2.0μm以内となるように研削することである。研削加工後の基板の平坦度が2.5μmよりも大きいと、後の研磨加工では平坦度を改善することは困難である。なお、基板の平坦度は、後述の実施例で説明する方法によって測定することができる。
本発明の研削加工処理においては、上記のように加工速度が遅い方の定盤側にガラス基板のスズ面をセットして、研削加工後の基板の両主表面の表面粗さRaの差(ΔRa)が、0.01μm以内となるように研削することが望ましい。これによって、研削加工後の基板の平坦度を2.5μm以内にすることが可能である。さらに好ましくは、研削加工後の基板の両主表面の表面粗さRaの差(ΔRa)が、0.005μm以内となるように研削することである。これによって、研削加工後の基板の平坦度をさらに良好な2.0μm以内にすることが可能である。なお、基板の表面粗さは、後述の実施例で説明する方法によって測定することができる。
 本発明においては、上記研削加工後のガラス基板の両主表面の表面粗さが、いずれもRaで0.130μm以下であることが好ましい。このように上記研削加工による仕上がりの粗さを低く抑えることによって、後の研磨工程の加工負荷を減らすことができる。
 通常、磁気ディスク用ガラス基板の製造においては、複数枚(例えば1バッチ100枚程度)のガラス基板を同時研削加工するが、加工速度が遅い方の定盤側に複数枚のガラス基板のスズ面がすべて同じ向きになるようにセットして加工を行うことが好適である。これによって、加工後のすべてのガラス基板の平坦度を良好に仕上げることができる。
 ところで、フロート法で製造された板ガラスのような鏡面ガラス表面を有する基板に対して、直接、ダイヤモンドパッドを用いた固定砥粒による研削加工を行う場合、基板表面は鏡面であるため、加工初期に、ダイヤモンド砥粒が基板表面になかなか食い込まず滑ってしまい、研削加工できない時間が発生しやすい。
 本発明においては、相対的に加工速度が高い定盤側において、さらに固定砥粒の突き出し量を加工速度が低い定盤側よりも相対的に大きくすることが好適である。すなわち、相対的に加工速度が高い定盤側において、さらに固定砥粒の突き出し量を加工速度の低い定盤側よりも相対的に大きくし、その定盤側で非スズ面を加工するようにすることが好ましい。
本発明では、投入基板の主表面が鏡面であるために、固定砥粒砥石の表面にスラッジが溜まりやすい。生産性向上のために同じ固定砥粒砥石を用いて多数枚の基板処理を行う場合は、上下定盤で固定砥粒の突き出し量を制御することが好適であることを本発明者は突き止めた。
すなわち、相対的に加工速度が高い定盤側の固定砥粒の突き出し量を、加工速度が低い定盤側よりも相対的に大きくすることで、多数枚の基板を加工した場合の基板間の平坦度のバラツキが改善することができる。これは、研削加工されにくい非スズ面側において、研削加工初期の固定砥粒の食い込み特性が改善することにより、固定砥粒が非スズ面に食い込むタイミングが揃うことに起因すると考えられる。
上記の固定砥粒の突出し量は、以下のようにして測定することができる。
研削加工実施前の上下定盤の研削砥石(通常、円盤状に形成されている)に対して、内周から外周までの距離を100%としたとき、内周から10%、50%、90%の位置から、それぞれ2.5mm×2.5mmの大きさの合計6サンプル(パッド片)を切り出す。この6サンプルのそれぞれについて、例えばレーザー顕微鏡を用いて得られた観察画像から任意の固定砥粒の例えば5個を選択し、砥粒と砥粒周辺の樹脂部との高低差を測定し、全砥粒の高低差の平均値をもってその研削砥石の固定砥粒の突出し量と定義する。
固定砥粒の突出し量を調整するためには、例えばドレス処理によって行うことが可能である。具体的には、たとえば、研削加工に使用する両面研削装置をドレス処理にも適用し、上下定盤に配備されたダイヤモンドパッドのような研削砥石表面に、適当な厚みバラツキに管理された砥石を接触させ、両面研削装置の上下定盤を回転させた状態でドレス処理を行うことができる。ドレス処理に用いる砥石の材質は特に制約されないが、例えばアルミナ砥石などが好適である。また、この場合、厚みバラツキの異なる複数の砥石を用いて、段階的にドレス処理を行うようにしてもよい。
上下定盤での固定砥粒の突き出し量の差は、安定した効果を得るためには0.1μm以上であることが好ましい。また、この固定砥粒の突き出し量の差が10μmより大きいと、突き出し量が大きい定盤側でスクラッチが発生する恐れがあるので、10μm以下とすることが好ましい。
 また、本発明における研削加工処理においては、研削加工を行う荷重よりも高荷重でガラス基板表面を粗面化する第一段階と、該第一段階の後、該第一段階の荷重よりも低荷重でガラス基板表面の研削加工を行う第二段階とによって研削加工を行うことも好適である。
鏡面ガラス表面をダイヤモンドパッドで直接研削加工するためには、まず、ダイヤモンド砥粒をガラス基板表面に食い込ませるためガラス表面に対して通常の研削加工時よりも高い荷重負荷をかける必要がある。高い負荷はそれだけ砥粒の切り込み深さが深くなるため、ガラス表面の粗さを粗くさせる(粗面化する)ことができる。上記第一段階は、このように鏡面ガラス表面にダイヤモンド砥粒を食い込ませて粗面化する段階である。
 このような加工途中の第一段階でガラス表面が粗面化された後には、研削加工に対して高い負荷は必要なく、むしろ負荷を下げて砥粒の切り込み深さを浅くした条件で本来の研削加工(本加工)を行う。上記第二段階はこの本加工を行う段階である。図2は、研削加工時の状態を説明するための図であり、ダイヤモンド砥粒3がガラス基板10に食い込んで研削している状態を示している(イメージ図)。
 以上の第一段階と第二段階とを有する研削加工を行うことにより、加工速度を落とさずに当該研削加工を行うことが可能となる。さらに、それら研削加工の詳細条件を調節することで、仕上がり加工面の表面粗さを低く抑えることも可能となる。
図3は、この研削加工処理における印加荷重のシーケンスの一例を示す図である。
図3の横軸は時間、縦軸は印加荷重である。スタートから荷重を次第に上げていき、荷重がP1に達した時点(A点)で一定時間(t1)を維持する。ここまでが上記第一段階であり、ガラス表面を粗面化する。
なお、A点へ至る荷重の印加を多段階のステップに分けて行ってもよい。すなわち、荷重を段階的に(シーケンス上においては階段状に)上げてもよい。
そして、B点から荷重を次第に下げていき、通常の研削加工荷重P2に達した時点(C点)で一定時間(t2)を維持し、D点で研削加工を終了する。この間が上記第二段階であり、本加工を行う段階である。
上記第一段階における荷重P1は、130~200g/cmの範囲とすることが好ましい。荷重P1が130g/cmよりも小さいと前述の研削加工できない時間を十分に短縮できず、加工速度が低下してしまう。一方、荷重P1が200g/cmよりも大きいと、砥粒による切込みが深くなりすぎて、スクラッチが多く発生し、本加工や後続の研磨工程の取代を大きくする必要が出てくるため加工時間が長くなってしまう。
また、上記第二段階における荷重P2は、50~120g/cmの範囲とすることが好ましい。研削加工の条件を調節することで加工面の表面粗さを低く抑えることも可能になる。
また、P1/P2=3.0以下であることが好ましい。これによって、加工速度の向上に加えて研削加工後の低粗さをも達成することが可能となる。
また、加工開始から上記A点(荷重P1)に至る第一段階の荷重印加速度(傾きk)を、0.5~15g/(cm2・sec)とすることが好ましい。傾きkが0.5g/(cm2・sec)より小さい(印加速度が遅い)場合、低い荷重のため砥粒が滑って食い込まず、むしろ砥粒が磨耗することになり、研削能力が劣化するので好ましくない。一方、傾きkが15g/(cm2・sec)より大きい(印加速度が速い)場合、ガラス基板に対して砥粒に急激な負荷が印加されるため、砥粒が破砕して研削能力が低下したり、ガラス基板が割れてしまったりする。
また、上記第一段階における荷重P1で粗面化する時間t1は、例えば10~600秒の範囲とすることが好ましい。t1が10秒より短いと、ガラス主表面への砥粒の食い込みが不十分となり加工速度が遅くなる恐れがある。一方、t1が600秒より長いと、深いスクラッチが発生しやすくなり、仕上りの主表面が粗くなる恐れがある。
また、B点(荷重P1)から荷重を次第に下げていき、通常の研削加工荷重P2に達するC点までの時間は、例えば10~90秒の範囲とすることが好ましい。BC間の時間が10秒より短いと、急激な荷重変動により基板平坦度が悪化する可能性がある。一方、BC間の時間が90秒より長くなると、P1(第一段階)からP2(第二段階)に移行する間にガラスが過剰に研削されるため板厚のコントロールが難しくなったり、深いスクラッチが発生して仕上りの主表面粗さが増大する恐れがある。
また、上記第二段階における荷重P2で研削加工を行う時間t2は、30秒以上とすることが好ましい。荷重P2にて一定量を加工しないと荷重P1で形成した溝を取りきれず、それがスクラッチとして残る恐れがある。t2の上限は、研削加工処理での仕上がり品質等を考慮して適宜決定される。
なお、t1<t2とすると、仕上がりの粗さを低下させることができるので好ましい。
また、本発明においては、研削加工処理全体における加工速度は、概ね3.0~9.0μm/分の範囲であり、加工速度を落とさずに研削加工を行なうことが可能である。なお、上記研削加工処理全体における加工速度とは、全研削厚みを全加工時間(第一段階と第二段階を含む)で除した値のことを云う。
また、本発明においては、上記ダイヤモンド固定砥粒の平均粒径が20~40μmであることが好適である。さらに、ダイヤモンド固定砥粒の個々の粒径は、10~50μmであることが好ましい。上記ダイヤモンド砥粒の平均粒径あるいは個々の粒径が上記を下回ると鏡面状ガラス基板に対する切り込みが浅くなりガラス基板への食い込みが進行しない。一方、上記ダイヤモンド砥粒の平均粒径あるいは個々の粒径が上記を上回ると仕上りの粗さが粗くなるため後工程の取り代負荷が大きくなる。
なお、前にも説明したとおり、ここでダイヤモンド固定砥粒とは、前記凝集体を意味する。
また、凝集体に含まれる個々のダイヤモンド粒子の大きさは、平均粒径で1~5μmであることが好ましい。
なお、本発明において、上記平均粒径とは、レーザー回折法により測定された粒度分布における粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒径(以下、「累積平均粒子径(50%径)」と呼ぶ。)を言う。本発明において、累積平均粒子径(50%径)は、具体的には、粒子径・粒度分布測定装置を用いて測定して得られる値である。
 本発明において、研削加工処理に投入するガラス基板の表面粗さは、通常はRaで0.001~0.01μmである。また、本発明において、上記第一段階終了後のガラス基板の表面粗さは、概ねRaで0.100~0.150μmの範囲である。この範囲に粗面化されることにより、続く第二段階の研削加工が良好に行われる。
また、上記第二段階終了後、つまり研磨加工終了後のガラス基板の表面粗さに関しては前に説明したとおりである。
以上説明したように、高荷重でガラス基板表面を粗面化する第一段階と、該第一段階の荷重よりも低荷重でガラス基板表面を研削加工する第二段階とによって本発明の研削加工処理を行うことにより、前述の研削加工できない時間の発生による生産性の低下を改善することができ、また、第一段階と第二段階とを有する研削加工処理は、同一の装置を用いて連続して行うことができるので、生産性を上げることが可能である。また、加工速度を落とさずに、しかも加工面の表面粗さを低く抑えることが可能となり、後の工程の加工負荷も減らすことができる。
また、本発明における研削加工処理を以上説明したような第一段階と第二段階とによって行う場合、上定盤側と下定盤側とで加工速度の差が生じるように条件を設定し、ガラス基板のスズ面側が加工速度の遅い方の定盤で加工されるようにすることが必要である。
さらに、2つの段階に分けて研削加工する場合は、第二段階(より好ましくは第二段階の中でも終わりの方)においてガラス基板のスズ面が除去されるようにするとよい。本発明では上下定盤で加工速度に差をつけているため、第一段階などの加工初期の段階でガラス基板のスズ面を全て取りきってしまうと、両主表面のうち一方のみ取代が多くなり、研削加工処理後の粗さが両主表面で異なる場合が出てくるためである。
本発明においては、ガラス基板を構成するガラス(の硝種)は、アモルファスのアルミノシリケートガラスとすることが好ましい。このようなガラス基板は表面を鏡面研磨することにより平滑な鏡面に仕上げることができ、また加工後の強度が良好である。このようなアルミノシリケートガラスとしては、例えば、SiO2 を主成分としてAl23 を20重量%以下含むガラスが好ましい。さらに、SiO2を主成分としてAl23を15重量%以下含むガラスとするとより好ましい。具体的には、SiO2を62重量%以上75重量%以下、Al23 を5重量%以上15重量%以下、Li2 Oを4重量%以上10重量%以下、Na2Oを4重量%以上12重量%以下、ZrO2 を5.5重量%以上15重量%以下、主成分として含有するとともに、Na2O/ZrO2の重量比が0.5以上2.0以下、Al2 O3 /ZrO2 の重量比が0.4以上2.5以下であるリン酸化物を含まないアモルファスのアルミノシリケートガラスを用いることができる。
 また、耐熱性ガラスとしては、例えば、モル%表示にて、SiOを50~75%、Alを0~5%、BaOを0~2%、LiOを0~3%、ZnOを0~5%、NaOおよびKOを合計で3~15%、MgO、CaO、SrOおよびBaOを合計で14~35%、ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で2~9%、含み、モル比[(MgO+CaO)/(MgO+CaO+SrO+BaO)]が0.85~1の範囲であり、且つモル比[Al/(MgO+CaO)]が0~0.30の範囲であるガラスを好ましく用いることができる。
また、SiOを56~75モル%、Alを1~9モル%、LiO、NaOおよびKOからなる群から選ばれるアルカリ金属酸化物を合計で6~15モル%、MgO、CaOおよびSrOからなる群から選ばれるアルカリ土類金属酸化物を合計で10~30モル%、ZrO、TiO、Y、La、Gd、NbおよびTaからなる群から選ばれる酸化物を合計で0%超かつ10モル%以下、含むガラスであってもよい。
 本発明において、ガラス組成におけるAlの含有量が15重量%以下であると好ましい。さらには、Alの含有量が5モル%以下であるとなお好ましい。
本発明における研削加工処理の終了後は、高精度な平面を得るための鏡面研磨加工を行う。本発明においては、研削加工において、本発明による研削加工処理を適用したことにより、平坦度の良好な基板を得ることができ、また加工表面粗さの低下も可能となるため、後の鏡面研磨加工工程での除去量が少なくて済み、加工負荷が低減され、加工コストの削減が可能になる。
ガラス基板の鏡面研磨方法としては、酸化セリウムやコロイダルシリカ等の金属酸化物の研磨材を含有するスラリー(研磨液)を供給しながら、ポリウレタン等のポリシャの研磨パッドを用いて行うのが好適である。高い平滑性を有するガラス基板は、たとえば酸化セリウム系研磨材を用いて研磨した後(第1研磨加工)、さらにコロイダルシリカ砥粒を用いた仕上げ研磨(鏡面研磨)(第2研磨加工)によって得ることが可能である。
本発明においては、鏡面研磨加工後のガラス基板の表面は、算術平均表面粗さRaが0.2nm以下、さらに好ましくは0.13nm以下である鏡面とされることが好ましい。なお、本発明においてRa、Rmaxというときは、日本工業規格(JIS)B0601に準拠して算出される粗さのことである。
また、本発明において表面粗さ(例えば、最大粗さRmax、算術平均粗さRa)は、原子間力顕微鏡(AFM)で測定したときに得られる表面形状の表面粗さとすることが実用上好ましい。なお、AFMの測定領域は、5μm×5μmの範囲である。
本発明においては、第1研磨加工後、第2研磨加工前に、化学強化処理を施すことが好ましい。化学強化処理の方法としては、例えば、ガラス転移点の温度を超えない温度領域で、イオン交換を行う低温型イオン交換法などが好ましい。化学強化処理とは、溶融させた化学強化塩とガラス基板とを接触させることにより、化学強化塩中の相対的に大きな原子半径のアルカリ金属元素と、ガラス基板中の相対的に小さな原子半径のアルカリ金属元素とをイオン交換し、ガラス基板の表層に該イオン半径の大きなアルカリ金属元素を浸透させ、ガラス基板の表面に圧縮応力を生じさせる処理のことである。化学強化処理されたガラス基板は耐衝撃性に優れているので、例えばモバイル用途のHDDに搭載するのに特に好ましい。化学強化塩としては、硝酸カリウムや硝酸ナトリウムなどのアルカリ金属硝酸塩を好ましく用いることができる。
なお、上記化学強化処理に投入される時点で、ガラス基板のスズ面側のスズ含有量の多い表層部分はほぼ除去されていることが好ましい。化学強化処理前に、このスズ含有量の多い表層部分が残っていると、化学強化処理によって基板の反りが発生するという不具合を生じるためである。
また、本発明は、以上の磁気ディスク用ガラス基板を用いた磁気ディスクの製造方法についても提供する。本発明において磁気ディスクは、本発明による磁気ディスク用ガラス基板の上に少なくとも磁性層を形成して製造される。磁性層の材料としては、異方性磁界の大きな六方晶系であるCoCrPt系やCoPt系強磁性合金を用いることができる。磁性層の形成方法としてはスパッタリング法、例えばDCマグネトロンスパッタリング法によりガラス基板の上に磁性層を成膜する方法を用いることが好適である。またガラス基板と磁性層との間に、下地層を介挿することにより磁性層の磁性グレインの配向方向や磁性グレインの大きさを制御することができる。例えば,Cr系合金など立方晶系下地層を用いることにより、例えば磁性層の磁化容易方向を磁気ディスク面に沿って配向させることができる。この場合、面内磁気記録方式の磁気ディスクが製造される。また、例えば、RuやTiを含む六方晶系下地層を用いることにより、例えば磁性層の磁化容易方向を磁気ディスク面の法線に沿って配向させることができる。この場合、垂直磁気記録方式の磁気ディスクが製造される。下地層は磁性層同様にスパッタリング法により形成することができる。
また、磁性層の上に、保護層、潤滑層をこの順に形成するとよい。保護層としてはアモルファスの水素化炭素系保護層が好適である。例えばプラズマCVD法により保護層を形成することができる。また、潤滑層としては、パーフルオロポリエーテル化合物の主鎖の末端に官能基を有する潤滑剤を用いることができる。取り分け、極性官能基として水酸基を末端に備えるパーフルオロポリエーテル化合物を主成分とすることが好ましい。潤滑層はディップ法により塗布形成することができる。
本発明によって得られるガラス基板を利用することにより、信頼性の高い磁気ディスクを得ることができる。
以下に実施例を挙げて、本発明の実施の形態について具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
以下の(1)基板準備工程、(2)形状加工工程、(3)端面研磨工程、(4)主表面研削加工処理、(5)主表面研磨工程(第1研磨工程)、(6)化学強化工程、(7)主表面研磨工程(第2研磨工程)を経て本実施例の磁気ディスク用ガラス基板を製造した。
(1)基板準備工程
フロート法により製造された厚さ1mmのアルミノシリケートガラスからなる大板ガラスを準備し、正方形の小片となるようにダイヤモンドカッターを用いて裁断した。次いで、ダイヤモンドカッターを用いて、外径65mm、中心部に内径20mmの円孔を有する円盤形状に加工した。このアルミノシリケートガラスとしては、重量%で表して、
SiO2 58~66%、Al23 13~19%、Li2O 3~ 4.5%、Na2O 6~13%、K2O 0~ 5%、R2O 10~18%、(ただし、R2O=Li2O+Na2O+K2O)
MgO 0~ 3.5%、CaO1~ 7%、SrO 0~ 2%、BaO 0~ 2%、RO 2~10%、(ただし、RO=MgO+CaO+SrO+BaO)
TiO2 0~ 2%、CeO2 0~ 2%、Fe23 0~ 2%、MnO0~ 1%、(ただし、TiO2+CeO2+Fe23+MnO=0.01~3%)の組成を含有する化学強化用ガラスを使用した。
(2)形状加工工程
次に、ダイヤモンド砥石を用いてガラス基板の中央部分に孔を空けると共に、外周端面および内周端面に所定の面取り加工を施した。なお、一般に、2.5インチ型HDD(ハードディスクドライブ)では、外径が65mmの磁気ディスクを用いる。
(3)端面研磨工程
次いで、公知のブラシ研磨方法により、ガラス基板を回転させながらガラス基板の端面(内周、外周)の表面を研磨した。
(4)主表面研削加工処理
この主表面研削加工処理は両面研削装置を用い、ダイヤモンドパッドが貼り付けられた上下定盤の間にキャリアにより保持したガラス基板をセットして行なった。ダイヤモンドパッドとしては、複数のダイヤモンド粒子をガラスでビトリファイド結合させた凝集体を樹脂で固定して固定砥粒とした固定砥粒砥石を使用した。ここで、凝集体の平均粒径は約25μm、凝集体中の個々のダイヤモンド粒子の平均粒径(D50)は2.5μmとした。また、潤滑液を使用しながら行った。なお、研削加工処理前のガラス基板の主表面は鏡面であった。また、主表面の粗さを触針式粗さ計で測定したところ、Raで5nmであった。
具体的には、定盤の回転数を10~100rpmの範囲で適宜選択し、ガラス基板への荷重は、図3に示すシーケンスに従って印加した。本実施例では、第一段階(粗面化)の荷重(P1)を150g/cmに設定した。また、第二段階(本加工)の荷重(P2)を100g/cmに設定した。上定盤回転数は20rpm、下定盤回転数は30rpmにそれぞれ設定した。また、太陽歯車(サンギア)の回転数は8rpm、内歯歯車(インターナルギア)の回転数は3rpmと設定した。この条件の場合、上定盤と基板の相対速度が下定盤と基板の相対速度よりも10~20%速くなり、結果、上定盤側の方が下定盤側よりも加工速度が速くなる。そして、ガラス基板のスズ面を加工速度の遅い下定盤側に向けてセットし、キャリア内に収納したガラス基板の両面を同時研削加工した。
なお、図3における傾きkは10g/(cm・sec)、t1は60秒、BC間の時間は15秒、t2はt1よりも長い200秒とした。
上記研削加工処理を終えたガラス基板を、中性洗剤、水の各洗浄槽(超音波印加)に順次浸漬して、超音波洗浄を行なった。
この研削加工処理は、合計1バッチ100枚の加工を行なった。加工後のガラス基板について、斜入射干渉法フラットネステスターを用いて、平坦度の測定を行った。また、触針式表面粗さ計を用いて、加工後のガラス基板の両主表面の表面粗さ(Ra)の測定を行った。加工後のガラス基板の平坦度と、両主表面の表面粗さの差(ΔRa)の測定結果を表1に示した。なお、表1の数値は、基板100枚の平均値である。また、研削加工処理直前のガラス基板の平坦度の平均値は、2.5μmであった。
(5)主表面研磨工程(第1研磨工程)
次に、上述した研削加工で残留した傷や歪みを除去するための第1研磨工程を両面研磨装置を用いて行なった。両面研磨装置においては、研磨パッドが貼り付けられた上下研磨定盤の間にキャリアにより保持したガラス基板を密着させ、このキャリアを太陽歯車(サンギア)と内歯歯車(インターナルギア)とに噛合させ、上記ガラス基板を上下定盤によって挟圧する。その後、研磨パッドとガラス基板の研磨面との間に研磨液を供給して回転させることによって、ガラス基板が定盤上で自転しながら公転して両面を同時に研磨加工するものである。具体的には、ポリシャとして硬質ポリシャ(硬質発泡ウレタン)を用い、第1研磨工程を実施した。研磨液としては酸化セリウムを研磨剤として分散した水とし、荷重100g/cmとして実施した。上記第1研磨工程を終えたガラス基板を洗浄し、乾燥した。
(6)化学強化工程
次に、上記洗浄を終えたガラス基板に化学強化を施した。化学強化は硝酸カリウムと硝酸ナトリウムを混合して溶融させた化学強化液を用意し、この化学強化溶液にガラス基板を浸漬して化学強化処理を行なった。
(7)主表面研磨工程(第2研磨工程)
次いで上記の第1研磨工程で使用したものと同じ両面研磨装置を用い、ポリシャを軟質ポリシャ(スウェード)の研磨パッドに替えて第2研磨工程を実施した。この第2研磨工程は、上述した第1研磨工程で得られた平坦な表面を維持しつつ、例えばガラス基板主表面の表面粗さをRaで0.2nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。研磨液としてはコロイダルシリカを分散した水とし、荷重100g/cmとして実施した。上記第2研磨工程を終えたガラス基板を洗浄し、乾燥した。
また、上記工程を経て得られたガラス基板の主表面の表面粗さを原子間力顕微鏡(AFM)にて測定したところ、Rmax=1.53nm、Ra=0.13nmと超平滑な表面を持つガラス基板を得た。AFMの測定エリアは、5μm×5μmである。また、そのガラス基板の表面を原子間力顕微鏡(AFM)及び電子顕微鏡で分析したところ、鏡面状であり、突起や傷等の表面欠陥は観察されなかった。
また、得られたガラス基板の外径は65mm、内径は20mm、板厚は0.635mmであった。
こうして、本実施例の磁気ディスク用ガラス基板を得た。
(比較例1)
 上記実施例1の研削加工処理において、ガラス基板のスズ面を加工速度の速い上定盤側に向けてセットして、研削加工を実施した。そして、この研削加工処理以外は実施例1と同様にして磁気ディスク用ガラス基板を得た。
(比較例2)
 上記実施例1の研削加工処理において、上下定盤の加工速度が略同じとなるように条件を設定し、ガラス基板のスズ面を上定盤側に向けてセットして、研削加工を実施した。そして、この研削加工処理以外は実施例1と同様にして磁気ディスク用ガラス基板を得た。
(実施例2~5)
上記実施例1の研削加工処理において、上定盤側の加工速度をそれぞれ5,10,20,30%遅くなるように設定し、ガラス基板のスズ面を上定盤側に向けてセットして、研削加工を実施した。そして、この研削加工処理以外は実施例1と同様にして磁気ディスク用ガラス基板を得た。
上記各例の研削加工後のガラス基板について、平坦度と、両主表面の表面粗さの差(ΔRa)の測定結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果から、以下のことがわかる。
1.加工速度の遅い下定盤側にガラス基板のスズ面をセットして研削加工を行った実施例1においては、加工後の基板の平坦度が良好である。また基板の両主表面の表面粗さの差も小さく、研削後の基板粗さが両面で略同じになるように加工されている。さらに、実施例1と実施例2~5との対比から、上定盤の加工速度を遅くしてスズ面を上定盤側にセットしたほうが、加工後の基板の平坦度が良好になることがわかる。これは、固定砥粒による研削加工であるため、比較的大きなスラッジが発生しやすく、下定盤側にスラッジが溜まりやすいことと関係していると考えられる。すなわち、下定盤側の研削パッド表面はスラッジが付着しやすく、研削レートが低下しやすい傾向にあるため、下定盤側の加工速度を高くすることで加工が安定し、平坦度及び表面粗さの差が改善したと考えられる。そして、加工速度の差を10~20%とすることで、最も良好な結果となることがわかる。
2.これに対し、加工速度の速い上定盤側に、同じく加工速度の速いガラス基板のスズ面をセットして研削加工を行った比較例1においては、加工後の基板の平坦度が悪化し、基板の反りが発生した。また、基板の両主表面の表面粗さの差は大きく、平坦度が悪化した要因であった。
また、上下定盤の加工速度は略同じに設定した比較例2においても、加工後の基板の平坦度が悪化し、基板の反りが発生した。また、基板の両主表面の表面粗さの差も実施例1と比べると大きく、平坦度が悪化した要因であった。比較例2においては、ガラス基板のスズ面と非スズ面との加工速度の差が両主表面の表面粗さの差につながったと考えられる。
(実施例6~9)
次に、ダイヤモンドパッドにおけるダイヤモンド固定砥粒(凝集体)の突き出し量について、上下定盤面で差をつけて基板を製造した。上定盤側の平均突き出し量を5μmで一定とし、下定盤側のダイヤモンド固定砥粒の平均突き出し量を表2のように変化させた。突き出し量は、上下の定盤に対するドレス処理の回数を変えることによって行った。
この点以外は、実施例4と同様にして研削処理を行い、得られた100枚のガラス基板の平坦度を測定し、最大値と最小値の差を求めて平坦度のバラツキとした。各実施例の平坦度のバラツキの大きさについて、実施例4(上下定盤で固定砥粒の平均突き出し量は同等)の値を1.00(100%)として相対値で示した。
Figure JPOXMLDOC01-appb-T000002
表2より、相対的に加工速度が高い定盤側(ここでは下定盤側)の固定砥粒の突き出し量を、上定盤側よりも大きくすることで、平坦度のバラツキが改善することがわかる。これは、研削加工されにくい非スズ面側において、研削加工初期の固定砥粒の食い込み特性が改善したことにより、固定砥粒が非スズ面に食い込むタイミングが揃ったことに起因すると考えられる。すなわち、固定砥粒の食い込みのタイミングが遅れた基板は、他の基板よりも研削パッドの圧力を僅かに高く受けることになり、その分食い込みが発生した直後は加工速度が高くなると考えられる。そのような加工途中における研削状態のバラツキも平坦度に影響していると考えられる。
以上の結果及び考察から、相対的に加工速度が高い定盤側において、さらに固定砥粒の突き出し量を加工速度の低い定盤側よりも相対的に大きくし、その定盤側で非スズ面を加工するようにすることが好ましいことがわかる。
(実施例10)
上記実施例1で得られた磁気ディスク用ガラス基板に以下の成膜工程を施して、垂直磁気記録用磁気ディスクを得た。
すなわち、上記ガラス基板上に、Ti系合金薄膜からなる付着層、CoTaZr合金薄膜からなる軟磁性層、Ru薄膜からなる下地層、CoCrPt合金からなる垂直磁気記録層、カーボン保護層、潤滑層を順次成膜した。保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層は、アルコール変性パーフルオロポリエーテルの液体潤滑剤をディップ法により形成した。
得られた磁気ディスクについて、DFHヘッドを備えたHDDに組み込み、80℃かつ80%RHの高温高湿環境下においてDFH機能を作動させつつ1ヶ月間のロードアンロード耐久性試験を行ったところ、特に障害も無く、良好な結果が得られた。
1 ダイヤモンドパッド
2 シート
3 凝集体
4 ペレット
5 ダイヤモンド粒子
10 ガラス基板
 

Claims (9)

  1.  潤滑液と、ダイヤモンド粒子を含む固定砥粒が研削面に配備された一対の上定盤と下定盤とを用い、前記潤滑液を前記研削面とガラス基板の間へ供給しつつ、前記一対の上下定盤で前記ガラス基板の両主表面を挟んで研削する研削加工処理を含む磁気ディスク用ガラス基板の製造方法であって、
     前記ガラス基板は、フロート法で製造したシート状の板ガラスを所定の形状に切り出したガラス基板であり、一方の主表面側には他方の主表面側よりスズ含有量の多い表層部分を有しており、
     前記研削加工処理は、前記上定盤側と前記下定盤側とで加工速度の差が生じるようにし、
     加工速度が遅い方の定盤側に前記ガラス基板の前記スズ含有量の多い表層部分を有する主表面をセットして研削することを特徴とする磁気ディスク用ガラス基板の製造方法。
  2.  研削加工後の基板の平坦度が、2.5μm以内となるように研削することを特徴とする請求項1に記載の磁気ディスク用ガラス基板の製造方法。
  3.  研削加工後の基板の両主表面の表面粗さの差が、Raで0.01μm以内となるように研削することを特徴とする請求項1又は2に記載の磁気ディスク用ガラス基板の製造方法。
  4.  研削加工後の基板の両主表面の表面粗さが、いずれもRaで0.130μm以下であることを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
  5.  複数枚のガラス基板を同時研削加工する際に、前記ガラス基板の前記スズ含有量の多い表層部分を有する主表面がすべて同じ向きになるようにセットすることを特徴とする請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
  6.  相対的に加工速度が高い定盤側において、さらに固定砥粒の突き出し量を相対的に加工速度が低い定盤側よりも大きくすることを特徴とする請求項1乃至5のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
  7.  前記研削加工処理は、研削加工を行う荷重よりも高荷重で前記ガラス基板表面を粗面化する第一段階と、該第一段階の後、前記第一段階の荷重よりも低荷重で前記ガラス基板表面の研削加工を行う第二段階とを有することを特徴とする請求項1乃至6のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
  8.  前記研削加工処理における加工速度は、3.0μm/分~9.0μm/分であることを特徴とする請求項1乃至7のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
  9.  請求項1乃至8のいずれかに記載の磁気ディスク用ガラス基板の製造方法により製造された磁気ディスク用ガラス基板上に、少なくとも磁気記録層を形成することを特徴とする磁気ディスクの製造方法。
     
     
PCT/JP2013/085291 2012-12-31 2013-12-31 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法 WO2014104376A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201505083VA SG11201505083VA (en) 2012-12-31 2013-12-31 Method for producing glass substrate for magnetic disk and method for producing magnetic disk
CN201380061557.XA CN104823240B (zh) 2012-12-31 2013-12-31 磁盘用玻璃基板的制造方法以及磁盘的制造方法
JP2014528753A JP5704777B2 (ja) 2012-12-31 2013-12-31 磁気ディスク用ガラス基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012289282 2012-12-31
JP2012-289282 2012-12-31

Publications (1)

Publication Number Publication Date
WO2014104376A1 true WO2014104376A1 (ja) 2014-07-03

Family

ID=51021436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085291 WO2014104376A1 (ja) 2012-12-31 2013-12-31 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法

Country Status (5)

Country Link
JP (1) JP5704777B2 (ja)
CN (1) CN104823240B (ja)
MY (1) MY169422A (ja)
SG (1) SG11201505083VA (ja)
WO (1) WO2014104376A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041536A1 (ja) * 2008-10-07 2010-04-15 コニカミノルタオプト株式会社 ガラス基板の製造方法、および磁気記録媒体の製造方法
JP2010205382A (ja) * 2008-10-07 2010-09-16 Hoya Corp 磁気ディスク用ガラス基板の製造方法
JP2012024863A (ja) * 2010-07-20 2012-02-09 Hoya Corp 研削パッド、磁気ディスク用ガラス基板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853669A (zh) * 2009-03-30 2010-10-06 Hoya株式会社 磁盘用玻璃基板以及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041536A1 (ja) * 2008-10-07 2010-04-15 コニカミノルタオプト株式会社 ガラス基板の製造方法、および磁気記録媒体の製造方法
JP2010205382A (ja) * 2008-10-07 2010-09-16 Hoya Corp 磁気ディスク用ガラス基板の製造方法
JP2012024863A (ja) * 2010-07-20 2012-02-09 Hoya Corp 研削パッド、磁気ディスク用ガラス基板の製造方法

Also Published As

Publication number Publication date
MY169422A (en) 2019-04-02
JP5704777B2 (ja) 2015-04-22
SG11201505083VA (en) 2015-08-28
CN104823240B (zh) 2016-10-12
CN104823240A (zh) 2015-08-05
JPWO2014104376A1 (ja) 2017-01-19

Similar Documents

Publication Publication Date Title
US9299382B2 (en) Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
JP5297549B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP6490842B2 (ja) 研削工具、ガラス基板の製造方法、磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP2012169024A (ja) 磁気記録媒体用ガラス基板の製造方法
JP7270682B2 (ja) 固定砥粒砥石及びガラス基板の製造方法
JP5744159B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP2012089221A (ja) 磁気記録媒体用ガラス基板の製造方法
JP5297281B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP6099034B2 (ja) 磁気ディスク用ガラス基板の製造方法、磁気ディスク、磁気記録再生装置
JP5704777B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP2010080015A (ja) 磁気ディスク用ガラス基板製造用ガラス素材、磁気ディスク用ガラス基板の製造方法、及び磁気ディスクの製造方法
JP5306759B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP2016126808A (ja) 磁気ディスク用基板の製造方法、及び端面研磨処理装置
JP6193388B2 (ja) 磁気ディスク用ガラス基板の製造方法、ガラス基板の製造方法及び磁気ディスクの製造方法、並びに固定砥粒砥石
CN109285565B (zh) 磁盘用玻璃基板的制造方法和磁盘的制造方法
US20100247976A1 (en) Glass substrate for a magnetic disk and method of manufacturing the same
JP2015069685A (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2014104377A1 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014528753

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868532

Country of ref document: EP

Kind code of ref document: A1